

What Readers Are Saying About
The RSpec Book: Behaviour-Driven Development with

RSpec, Cucumber, and Friends

The RSpec Book is a fantastic introduction to all things BDD. It goes much deeper
than just testing to provide you with the right tools you need to fully embrace the
ideas that the framework has baked in.

➤ Aaron Bedra, principal, Relevance Inc.

This book covers the territory of writing great software, and the authors are your
experienced guides. If you follow the map that they have drawn, you’ll learn to
write only the code that you need, and you’ll write it simply and clearly. You’ll
come home from this journey with some experiences that will have immediate
and lasting effects on the code in your editor and the code yet to flow from your
fingertips.

➤ Craig Demyanovich, 8th Light, Inc.

The RSpec Book teaches you much more than how to use RSpec’s features; it
teaches you how to write code the way the RSpec team does: patiently, and with
great precision and clarity. There is something here for everyone: beginners are
given plenty of gentle attention but there is some real meat for the more experi-
enced reader to chew on, too.

➤ Matt Wynne, independent programmer and coach

The second generation of tools for the XP generation explained by their creators
and maintainers. Awesome, a must read.

➤ Marcus Ahvne, software developer, Valtech

Some authors would be satisfied with just writing the definitive guide for a tech-
nology. These folks go a step further, and show you insider tips that will keep
your tests clean and maintainable.

➤ Ian Dees, Software Engineer

The RSpec Book
Behaviour-Driven Development

with RSpec, Cucumber, and Friends

David Chelimsky

with Dave Astels
Zach Dennis

Aslak Hellesøy
Bryan Helmkamp

Dan North

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2010 David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy, Bryan Helmkamp, and Dan
North.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-37-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.1—September 2012

http://pragprog.com

Contents

Foreword xi

About the Authors xv

Acknowledgments xvii

Preface xix

Part I — Getting Started with RSpec and Cucumber

1. Introduction 3
Test-Driven Development: Where It All Started 31.1

1.2 Behaviour-Driven Development: The Next Step 5
1.3 RSpec 5
1.4 Cucumber 6
1.5 The BDD Cycle 8

2. Hello 11
2.1 Installation 11
2.2 Hello RSpec 12
2.3 Hello Cucumber 14

3. Describing Features 19
Introducing Codebreaker 203.1

3.2 Planning the First Release 20
3.3 Planning the First Iteration 25
3.4 What We’ve Learned 33

4. Automating Features with Cucumber 35
Steps and Step Definitions 364.1

4.2 Step Definition Methods 38

4.3 Test Double 41
4.4 What We’ve Learned 43

5. Describing Code with RSpec 45
Getting Started with RSpec 455.1

5.2 Red: Start with a Failing Code Example 47
5.3 Green: Get the Example to Pass 49
5.4 Refactor 53
5.5 What We’ve Learned 57

6. Adding New Features 59
6.1 Scenario Outlines in Cucumber 59
6.2 Responding to Change 62
6.3 What We’ve Learned 65

7. Specifying an Algorithm 67
Begin with the Simplest Example 677.1

7.2 Refactor to Remove Duplication 70
7.3 Refactor to Express Intent 72
7.4 What We’ve Learned 77

8. Refactoring with Confidence 79
Sniffing Out Code Smells 798.1

8.2 One Step at a Time 80
8.3 Updating Specs After Refactoring 90
8.4 Exploratory Testing 93
8.5 What We’ve Learned 94

9. Feeding Back What We’ve Learned 97
9.1 Use Cucumber for Collaboration 97
9.2 Experimenting with a New Implementation 101
9.3 What We’ve Learned 105

Part II — Behaviour-Driven Development

10. The Case for BDD 109
How Traditional Projects Fail 10910.1

10.2 Why Traditional Projects Fail 110
10.3 Redefining the Problem 114
10.4 The Cost of Going Agile 117
10.5 What We’ve Learned 119

Contents • vi

11. Writing Software That Matters 121
A Description of BDD 12111.1

11.2 The Principles of BDD 121
11.3 The Project Inception 122
11.4 The Cycle of Delivery 124
11.5 What’s in a Story? 128
11.6 What We’ve Learned 129

Part III — RSpec

12. Code Examples 133
Describe It! 13412.1

12.2 Pending Examples 138
12.3 Hooks: Before, After, and Around 140
12.4 Helper Methods 144
12.5 Shared Examples 147
12.6 Nested Example Groups 148
12.7 What We’ve Learned 152

13. RSpec::Expectations 153
should, should_not, and matchers 15413.1

13.2 Built-in Matchers 155
13.3 Predicate Matchers 163
13.4 Be True in the Eyes of Ruby 164
13.5 Have Whatever You Like 164
13.6 Operator Expressions 168
13.7 Generated Descriptions 169
13.8 Subjectivity 171
13.9 What We’ve Learned 172

14. RSpec::Mocks 173
Test Doubles 17414.1

14.2 Method Stubs 175
14.3 Message Expectations 176
14.4 Test-Specific Extensions 178
14.5 More on Method Stubs 182
14.6 More on Message Expectations 184
14.7 When to Use Test Doubles and Test-Specific Extensions 194
14.8 Risks and Trade-Offs 198

Contents • vii

14.9 Choosing Other Test Double Frameworks 200
14.10 What We’ve Learned 202

15. Tools and Integration 205
The rspec Command 20515.1

15.2 TextMate 210
15.3 Autotest 210
15.4 Rake 211
15.5 RCov 212
15.6 What We’ve Learned 213

16. Extending RSpec 215
Metadata 21516.1

16.2 Configuration 216
16.3 Filtering 216
16.4 Extension Modules 219
16.5 Global Hooks 219
16.6 Mock Framework 220
16.7 Custom Matchers 220
16.8 Macros 224
16.9 Custom Formatters 228
16.10 What We’ve Learned 230

Part IV — Cucumber

17. Intro to Cucumber 233
From 20,000 Feet 23417.1

17.2 Features 234
17.3 Customer Acceptance Tests 237
17.4 Gherkin 238
17.5 Scenarios 239
17.6 Steps 240
17.7 The cucumber Command 241
17.8 Given/When/Then 242
17.9 Declarative and Imperative Scenario Styles 243
17.10 Organizing Features 244
17.11 Tags 245
17.12 What We’ve Learned 247

Contents • viii

18. Cucumber Detail 249
Step Definitions 24918.1

18.2 World 251
18.3 Calling Steps Within Step Definitions 252
18.4 Hooks 253
18.5 Background 255
18.6 Multiline Text 256
18.7 Tables in Steps 257
18.8 Scenario Outlines 258
18.9 Configuration 260
18.10 What We’ve Learned 260

Part V — Behaviour-Driven Rails

19. BDD in Rails 265
Outside-In Rails Development 26619.1

19.2 Setting Up a Rails 3 Project 268
19.3 Setting Up a Rails 2 Project 270
19.4 What We’ve Learned 271

20. Cucumber with Rails 273
20.1 Step Definition Styles 273
20.2 Direct Model Access 275
20.3 What We’ve Learned 279

21. Simulating the Browser with Webrat 281
Writing Simulated Browser Step Definitions 28221.1

21.2 Navigating to Pages 287
21.3 Manipulating Forms 290
21.4 Specifying Outcomes with View Matchers 295
21.5 Building on the Basics 298
21.6 What We’ve Learned 301

22. Automating the Browser with Webrat and Selenium . . . 303
Getting Started 30422.1

22.2 Writing Step Definitions for Selenium 307
22.3 Debugging Selenium Issues 311
22.4 What We’ve Learned 313

Contents • ix

23. Rails Views 315
Writing View Specs 31523.1

23.2 Mocking Models 318
23.3 Specifying Helpers 325
23.4 When Should I Write View Specs? 326
23.5 What We’ve Learned 327

24. Rails Controllers 329
Controller Specs 32924.1

24.2 Context-Specific Examples 336
24.3 Specifying ApplicationController 344
24.4 What We’ve Learned 346

25. Rails Models 349
Writing Model Specs 34925.1

25.2 Specifying Business Rules 356
25.3 Exercise 365
25.4 Useful Tidbits 366
25.5 What We’ve Learned 369

A1. RubySpec 371
The Project 372A1.1

A1.2 Syntax 372
A1.3 Guards 374
A1.4 Extensibility 375
A1.5 MSpec 377
A1.6 Tags 377
A1.7 Community 378

A2. RSpec’s Built-in Expectations 381

Bibliography 385

Index 387

Contents • x

Foreword
Caution! You’ve fallen for a trap. You’ve picked up this book thinking it was
about RSpec. Fortunately, you decided to read the foreword. Good! That gives
me the opportunity to tell you about the mistake you just made and possibly
save you from an unexpected fate.

You see, this book isn’t about RSpec at all. Oh, RSpec is certainly mentioned.
There are lots of examples of how to use it. There’s even a very detailed refer-
ence manual in Part III. But that’s all just part of an insidiously clever
deception, because this book is not about RSpec.

Perhaps you thought you might read about Cucumber? After all, Part IV is
named “Cucumber.” Oh, these authors are clever; God they are! They’ve littered
this book with examples and details that tell you all about Cucumber in all
its intricacies and all its copious fiddledy-bits. There’s even a section on using
it with Rails and Webrat and all the other gory things that you’ll need to
become a Cucumber expert. But this book is not about Cucumber.

No. This book is not about RSpec. And this book is not about Cucumber. This
book is about…

I’m not sure I should tell you. I mean, once the secret gets out, it’s liable to
cause mayhem. If it ever got out who the audience for this book really is, if
the masses learned of the diabolical plan being executed in their midst, I’m
not sure our civilization would survive.

You see…(come closer, and cover this part with your hand so nobody else
can see it)…you see, this book is not for…(covered?)…it’s not for Ruby pro-
grammers!

There, I’ve said it! Now don’t panic, and don’t drop the book—whatever you
do, don’t drop the book! Hold on tight, and keep it covered. Don’t let anyone
else see.

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Yes, you see, this book is not about RSpec. It’s not about Cucumber, It’s not
for Ruby programmers. This book is for…(covered again?)…it’s for all program-
mers!

Keep a good tight grip. I know it’s hard. Don’t look around suspiciously. Don’t
draw attention to yourself. Just try to stay calm, breathe normally, and keep
reading.

Yes, all the code is in Ruby. Yes, all the examples use RSpec and Cucumber
to one degree or another. Yes, if you read this book, you will learn RSpec,
Cucumber, and things about Ruby and Rails and Webrat that you didn’t
know before. No doubt about it. Remember, the best lies are near-truths.

Here’s the thing. While you read this book, you will think you are learning
about all those cool tools. You will think “Oh, cool, I’m learning RSpec and
Cucumber.” But you will be learning something else at the same time!
Something unexpected. Something unadvertised. Something, perhaps,
unwelcome.

As you read these pages, a hidden meme will creep into your mind—a meme
of such potency and power that it is likely to change everything about the
way you program. And not just how you program in Ruby!

If you read this book, that meme will change the way you program in Java,
C#, Python, or (oh, God, the thought) COBOL! This book will change the way
you code—period!

Worse, you don’t have to be a Ruby programmer to be infected by this meme.
As I said, these authors are clever. Their unholy plan is to infect all program-
mers with this meme. You see, they’ve cleverly constructed the Ruby code in
this book so that it can be understood by (gasp) any programmer at all! I
mean, this is worse than Fluoridation!

Any programmer who picks up this book will be infected by the meme. And
the meme is subtle. And the meme is persistent. And the meme will have its
way. And when it does, our industry will never be the same again. Are you
willing to risk that?

What is this meme? What name shall we give it? The meme is legion! It’s not
just Agile, though Agile is there. It’s not just TDD and BDD, though both are
there. It’s not just Continuous Integration, Acceptance Test–Driven Develop-
ment, Acceptance Test–Driven Planning, or even Extreme Programming,
though all those things are present in the meme.

Foreword • xii

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

No, the meme is more than any one of those things. The meme is a synergistic
witches brew of some of the most contagious and effective ideas of the past
two decades. The meme is…

Dare I say it?

The meme is…

…Craftsmanship.

—Robert C. Martin

report erratum • discuss

Foreword • xiii

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

About the Authors
David Chelimsky is the lead developer/maintainer of RSpec, and has contribut-
ed to several other open source projects including Cucumber, Aruba, and
Rails. He has been developing software for over a decade, including three
years training and mentoring agile teams at Object Mentor. He is currently
a Senior Software Engineer at DRW Trading Group in Chicago, IL. In his spare
time, David likes to play guitar, travel, and speak something resembling
Portuguese.

Dave Astels is the Director of Technology at ChannelFireball.com and has
been involved with software and computing for over 25 years, recently having
spent several years working exclusively with Ruby and Rails. Dave wrote the
article that prompted Steven Baker to start the RSpec project.

Zach Dennis is a co-founder and fellow human at Mutually Human Software,
an expert custom software strategy and design consultancy in Grand Rapids,
Michigan. He has been enjoying Ruby for nearly eight years and has contribut-
ed to several projects such as Ruby’s standard library documentation, Ruby
on Rails, and RSpec. In his spare time, Zach loves spending time with his
family, continuously learning, playing music, and running continuousthink-
ing.com.

Aslak Hellesøy is a Senior Software Engineer at DRW Trading Group in Lon-
don. While contributing to this book he was the Chief Scientist of BEKK
Consulting in Oslo. In 2003, after seven years of professional Java program-
ming, he fell in love with Ruby. He has contributed to dozens of open source
projects and is the founder of the Cucumber project. Aslak likes to cook, ski,
and travel.

Bryan Helmkamp maintains Webrat, a Ruby library to implement acceptance
tests for web applications in an expressive and maintainable way, and is an
active participant in the New York City Ruby community. Bryan is the CTO
of Efficiency 2.0, a startup that helps people understand and reduce their
energy use.

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Dan North writes software and coaches teams and organizations in agile and
lean methods. He believes that most problems that teams face are about
communication and understanding, which is why he puts so much emphasis
on “getting the words right.” In 2003–4 this led him to develop the ideas that
would become Behaviour-Driven Development. He is delighted by the commu-
nity that has grown up around RSpec and Cucumber, and especially the
enthusiasm and dedication of their core contributors. Dan is currently a
Senior Software Engineer at DRW Trading Group in London, where he gets
to actually code again!

About the Authors • xvi

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Acknowledgments
This book is the product of a lengthy journey that started back in 2006 when
Dave Astels’ proposal was accepted by the Pragmatic Bookshelf. Dave, Aslak,
and I (David) were working hard to push RSpec along, so Dave invited us to
join him in writing the book.

It turns out that software maintainers writing about the software they maintain
presents some interesting challenges. There were many times when we’d be
writing about a particular aspect of RSpec and realize that there was a better
way. Next thing you know, we’re cracking open RSpec to make improvements
and returning to the book to update all the newly obsolesced references. Add
to that assorted personal and professional trials that have pulled us all in
different directions, and it’s a miracle that you’re even reading this.

Big thanks to Dave, Aslak, Dan, Bryan, Zach, and Brian for the content they
each contributed. The breadth of experience and knowledge each brought to
the book are invaluable.

Thanks, also, to Dan for BDD, and to Dave for introducing me to BDD and
the RSpec project.

Thanks to Steven Baker for creating RSpec.

Thanks to our technical reviewers: Marcus Ahvne, Aaron Bedra, Ian Dees,
Craig Demyanovich, Corey Haines, Stuart Halloway, Sean Kellogg, Ben Mabey,
Frederick Ros, Brett Schuchert, Dean Wampler, and Matt Wynne.

Thanks to all the beta readers who made suggestions and did a great job of
pointing out inconsistencies in the code examples.

Thanks to Uncle Bob Martin for his inspired and inspiring foreword and for
taking me under his wing at Object Mentor. It was Bob who first introduced
me to FitNesse and the idea of customer-readable acceptance tests. And it
was that experience that ignited my interest in RSpec and Dan’s RBehave
(Cucumber’s predecessor).

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Thanks to Jacquelyn Carter, our editor, for your endless patience. It was a
long road, Jackie, but we actually made it.

Thanks to my longtime friend and colleague, Randy Stearns, for the cover
art.

In addition to all the people who contributed directly to the book, I’m very
lucky to be surrounded by friends who stood by me and held me up through
all of the personal challenges I faced while this book was in process. To Randy
Stearns and Stacey Bashara, I thank you for not only being great friends but
for being the sort of employers who provide the perfect balance of room to
work (and feel productive and valuable) and room to breathe in the face of
personal challenges.

And lastly, to Flor Pinho, my partner in so many things, I thank you for
seemingly endless love, support, and patience (we can finally stop saying
“after the book!”). Thank you, thank you, and, again, thank you.

Acknowledgments • xviii

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Preface
The RSpec Book is an exploration of Behaviour-Driven Development and tools
that Ruby developers use when practicing BDD: RSpec, Cucumber, et al.

All the tools and libraries used in this book are under regular development
with contributions from vibrant communities. By the time you read this, there
are very likely new releases of many, if not all of them. The examples in this
book have all been run to ensure that they execute and are free of typos. To
provide yourself the smoothest path through the lessons in this book, we
strongly encourage you to use the same versions we used.

Ruby and Gem Versions

• ruby-1.8.71

• rubygems-1.3.7
• rspec-2.0.0
• rspec-rails-2.0.0
• cucumber-0.9.2
• cucumber-rails-0.3.2
• database_cleaner-0.5.2
• webrat-0.7.2
• selenium-client-1.2.18
• rails-3.0.0

Downloading the Code Examples

Most of the code examples in this book are available for download from
http://pragprog.com/titles/achbd/source_code. The files are generally grouped by chapter
and are often in numbered directories that represent snapshots of the code
as you progress through an exercise.

1. The examples should all work with ruby-1.9.2 as well as ruby-1.8.7, but the output
will be different from time to time.

report erratum • discuss

http://pragprog.com/titles/achbd/source_code
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

What’s in This Book

We begin with a hands-on tutorial in Chapter 3, Describing Features, on page
19, in which we build a simple logic game that you can play on the command
line. This will get you up and running quickly with RSpec and Cucumber and
will provide a sense of the BDD technique practiced by RSpec’s maintainers
and contributors.

Beginning with Chapter 10, The Case for BDD, on page 109, the next part of
the book provides background information intended to put these tools and
practices into a greater context. In this part, you’ll read about the initial
motivations for BDD, its history in Extreme Programming (XP), and what we
mean when we say that we find Test-Driven Development (TDD) to be as much
a design and documentation practice as it is a testing practice.

Once you’ve been through the tutorial or if you already have a working
knowledge of RSpec, you’ll find a detailed exploration of RSpec beginning with
Chapter 12, Code Examples, on page 133. Read this part to improve your
understanding of the various facilities you get with RSpec, ranging from the
simple expectations that are built in to the custom formatters for presenting
output appropriate for various audiences. You’ll also find material on RSpec’s
evolving extension API, which supports IDE integration by making it easy to
hook into RSpec’s runner. It also supports framework-specific extensions
(like rspec-rails), making it simple to extend example groups with custom
expectations, and expressive macros that do a lot with little effort.

A similarly detailed study of Cucumber begins on Chapter 17, Intro to
Cucumber, on page 233. Cucumber is Aslak Hellesøy’s reimplementation of
Dan North’s RBehave framework, which is a BDD framework targeted at
expressing application behavior in automated scenarios described from outside
the application.

In this part of the book, you’ll learn all about the BDD triad—Given, When,
and Then—and various approaches to organizing automated scenarios to
keep them expressive, lean, and maintainable.

RSpec certainly owes a debt of gratitude to Ruby on Rails for helping build
and foster a community that cares about testing. Beginning with Chapter 19,
BDD in Rails, on page 265, we’ll introduce you to Rails-specific extensions to
RSpec and Cucumber and help you develop a practical understanding of how
to approach Rails development from the outside in.

Whether you are looking for tutorials, reference material, integration tips,
extension tips, and so on, you’ve come to the right place.

Preface • xx

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Part I

Getting Started with RSpec and
Cucumber

CHAPTER 1

Introduction
Behaviour-Driven Development began its journey as an attempt to better
understand and explain the process of Test-Driven Development. Dan North
had observed that the developers he was coaching were having a tough time
relating to TDD as a design tool and came to the conclusion that it had a lot
to do with the word test.

Dave Astels took that to the next step in the seminal article “A New Look at
Test-Driven Development,”1 in which he suggested that even experienced
TDDers were not getting all the benefit from TDD that they could be getting.

To put this into perspective, perhaps a brief exploration of Test-Driven
Development is in order.

1.1 Test-Driven Development: Where It All Started

Test-Driven Development is a developer practice that involves writing tests
before writing the code being tested. Begin by writing a very small test for
code that does not yet exist. Run the test, and, naturally, it fails. Now write
just enough code to make that test pass. No more.

Once the test passes, observe the resulting design, and refactor any duplica-
tion you see.2 It is natural at this point to judge the design as too simple to
handle all the responsibilities this code will have.

Instead of adding more code, document the next responsibility in the form of
the next test. Run it, watch it fail, write just enough code to get it to pass,
review the design, and remove duplication. Now add the next test, watch it

1. http://techblog.daveastels.com/2005/07/05/a-new-look-at-test-driven-development/
2. Refactoring: improving the design of code without changing its behavior. From Martin

Fowler’s Refactoring [FBBO99].

report erratum • discuss

http://techblog.daveastels.com/2005/07/05/a-new-look-at-test-driven-development/
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

fail, get it to pass, refactor, fail, pass, refactor, fail, pass, refactor, and so on,
and so on.

In many unit testing systems, when a test fails, we see the results printed in
red. Then when it passes, the results are printed in green. Because of this,
we often refer to this cycle as red/green/refactor.

Emergent Design

As a code base increases in size, we find that more attention is consumed by
the refactoring step. The design is constantly evolving and under constant
review, though it is not predetermined.

This is emergent design at a granular level and is one of the most significant
by-products of Test-Driven Development.

Rather than thinking of TDD as a testing practice, we see it as a technique
used to deliver high-quality code to testers, who are responsible for formal
testing practices (see But What If “the Testers” Is Me?).

Joe asks:

But What If “the Testers” Is Me?
Not all project teams have a separate tester role. On teams that don’t, the notion of
pushing off the responsibility of testing practices to other people doesn’t really fly. In
cases like this, it’s still helpful to separate testing practices from TDD.

When you’re “wearing your TDD hat,” focus on red/green/refactor, design, and doc-
umentation. Don’t think about testing. Once you’ve developed a body of code, put
on your “tester hat,” and think about all the things that could go wrong. This is where
you add all the crazy edge cases, using exploratory testing to weed out the nasty bugs
hiding in the cracks and documenting them as you discover them with more code
examples.

And this is where the Test in TDD becomes a problem. Specifically, it is the
idea of unit testing that often leads new TDDers to verify things such as
making sure that a register() method stores a Registration in a Registry’s registrations
collection and that collection is specifically an Array.

This sort of detail in a test creates a dependency in the test on the internal
structure of the object being tested. This dependency means that if other
requirements guide us to change the Array to a Hash, this test will fail, even
though the behavior of the object hasn’t changed. This brittleness can make
test suites much more expensive to maintain and is the primary reason for
test suites to become ignored and, ultimately, discarded.

Chapter 1. Introduction • 4

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

So if testing internals of an object is counterproductive in the long run, what
should we focus on when we write these tests first?

1.2 Behaviour-Driven Development: The Next Step

The problem with testing an object’s internal structure is that we’re testing
what an object is instead of what it does. What an object does is significantly
more important.

The same is true at the application level. Stakeholders don’t usually care that
data is being persisted in an ANSI-compliant, relational database. They care
that it’s in “the database,” but even then, they generally mean is that it’s
stored somewhere and they can get it back.

It’s All Behavior

BDD puts the focus on behavior instead of structure, and it does so at every
level of development. Whether we’re talking about an object calculating the
distance between two cities, another object delegating a search off to a third-
party service, or a user-facing screen providing feedback when we provide
invalid input, it’s all behavior!

Once we acknowledge this, it changes the way we think about driving out
code. We begin to think more about interactions between people and systems,
or between objects, than we do about the structure of the objects.

Getting the Words Right

We believe that most of the problems that software development teams face
are communication problems. BDD aims to help communication by simplifying
the language we use to describe scenarios in which the software will be used:
Given some context, When some event occurs, Then I expect some outcome.

Given, When, Then, the BDD triad, are simple words that we use whether
we’re talking about application behavior or object behavior. They are easily
understood by business analysts, testers, and developers alike. As you’ll see
in Section 17.8, Given/When/Then, on page 242 and throughout the book,
these words are embedded right in the language of Cucumber.

1.3 RSpec

RSpec was created by Steven Baker in 2005. Steven had heard about BDD
from Aslak Hellesøy, who had been working on a project with Dan North when
the idea first came to light. Steven was already interested in the idea when

report erratum • discuss

Behaviour-Driven Development: The Next Step • 5

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Dave Astels suggested that with languages like Smalltalk and Ruby, we could
more freely explore new TDD frameworks that could encourage focus on
behavior. And RSpec was born.

Although the syntactic details have evolved since Steven’s original version of
RSpec, the basic premise remains. We use RSpec to write executable examples
of the expected behavior of a small bit of code in a controlled context. Here’s
how that might look:

describe MovieList do
context "when first created" do

it "is empty" do
movie_list = MovieList.new
movie_list.should be_empty

end
end

end

The it() method creates an example of the behavior of a MovieList, with the context
being that the MovieList was just created. The expression movie_list.should be_empty
is self-explanatory. Just read it out loud. You’ll see how be_empty() interacts
with movie_list in Section 13.3, Predicate Matchers, on page 163.

Running this code in a shell with the rspec command yields the following
specification:

MovieList when first created
is empty

Add some more contexts and examples, and the resulting output looks even
more like a specification for a MovieList object.

MovieList when first created
is empty

MovieList with 1 item
is not empty
includes that item

Of course, we’re talking about the specification of an object, not a system.
You could specify application behavior with RSpec. Many do. Ideally, however,
for specifying application behavior, we want something that communicates
in broader strokes. And for that, we use Cucumber.

1.4 Cucumber

As you’ll read about in Chapter 11, Writing Software That Matters, on page
121, BDD is a full-stack agile methodology. It takes some of its cues from

Chapter 1. Introduction • 6

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Extreme Programming, including a variation of Acceptance Test-Driven Devel-
opment called Acceptance Test-Driven Planning (ATDP).

In ATDP, we use customer acceptance tests to drive the development of code.
Ideally, these are the result of a collaborative effort between the customer
and the delivery team. Sometimes they are written by the delivery team and
then reviewed/approved by the customer. In either case, they are customer
facing and must be expressed in a language and format that customers can
relate to. Cucumber gives us that language and format.

Cucumber reads plain-text descriptions of application features with example
scenarios and uses the scenario steps to automate interaction with the code
being developed. Here’s an example:

Feature: pay bill on-lineLine 1

-

In order to reduce the time I spend paying bills-

As a bank customer with a checking account-

I want to pay my bills on-line5

-

Scenario: pay a bill-

Given checking account with $50-

And a payee named Acme-

And an Acme bill for $3710

When I pay the Acme bill-

Then I should have $13 remaining in my checking account-

And the payment of $37 to Acme should be listed in Recent Payments-

Cucumber Seeds

Even before we started exploring structures and syntax for RSpec, Dan North had
been exploring a completely different model for a BDD tool.

He wanted to document and drive behavior in a simplified language that could be
easily understood by customers, developers, testers, business analysts, and so on.
The early result of that exploration was the JBehave library, which is still in active
use and development.

Dan ported JBehave to Ruby as RBehave, and we merged it into RSpec as the Story
Runner. It only supported scenarios written in Ruby at first, but we later added
support for plain text, opening up a whole new world of expressiveness and access.
But as new possibilities were revealed, so were limitations.

In the spring of 2008, Aslak Hellesøy set out to rewrite RSpec’s Story Runner with a
real grammar defined with Nathan Sobo’s Treetop library. Aslak dubbed it Cucumber
at the suggestion of his fiancée, Patricia Carrier, thinking it would be a short-lived
working title until it was merged back into RSpec. Little did either of them know that
Cucumber would develop a life of its own.

report erratum • discuss

Cucumber • 7

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Everything up to and including the Scenario declaration on line 7 is treated as
documentation (not executable). The subsequent lines are steps in the
scenario.

In Chapter 4, Automating Features with Cucumber, on page 35, you’ll be
writing step definitions in Ruby. These step definitions interact with the code
being developed and are invoked by Cucumber as it reads in the scenario.

Don’t worry if that doesn’t make perfect sense to you just yet. For now, it’s
only important to understand that both RSpec and Cucumber help us specify
the behavior of code with examples that are programmatically tied to that
code. The details will become clear as you read on.

We use Cucumber to describe the behavior of applications and use RSpec to
describe the behavior of objects.3 If you’ve ever done TDD before, you’re
probably familiar with the red/green/refactor cycle. With the addition of a
higher-level tool like Cucumber, we’ll actually have two concentric red/green/
refactor cycles, as depicted in Figure 1, The BDD cycle, on page 9.

Both cycles involve taking small steps and listening to the feedback you get
from the tools. We start with a failing step (red) in Cucumber (the outer cycle).
To get that step to pass, we’ll drop down to RSpec (the inner cycle) and drive
out the underlying code at a granular level (red/green/refactor).

1.5 The BDD Cycle

At each green point in the RSpec cycle, we’ll check the Cucumber cycle. If it
is still red, the resulting feedback should guide us to the next action in the
RSpec cycle. If it is green, we can jump out to Cucumber, refactor if appropri-
ate, and then repeat the cycle by writing a new failing Cucumber step.

In the next chapter, we’ll get you set up with Cucumber and RSpec and walk
you through a simple example of each tool. In the tutorial that begins in
Chapter 3, Describing Features, on page 19, we’ll use a number of features
in Cucumber and RSpec. In most cases, we’ll only touch the surface of a
feature, covering just enough to be able to use it as needed for this project,
with references to other places in the book where you can go to learn more
of the detail and philosophy behind each feature.

3. Although we use Cucumber to focus on high-level behavior and use RSpec to focus
on more granular behavior, each can be used for either purpose.

Chapter 1. Introduction • 8

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Figure 1—The BDD cycle

report erratum • discuss

The BDD Cycle • 9

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 2

Hello
All good programming language books start with the obligatory Hello World
example. Although RSpec is not an all-purpose programming language, it is
sometimes described as a domain-specific language (DSL), for describing the
behavior of objects. Similarly, Cucumber is a DSL for describing the behavior
of applications.

To satisfy this requirement, we’ll write Hello examples for both RSpec and
Cucumber. But first things first, let’s get the environment set up.

2.1 Installation

If you haven’t done so already, the first thing you’ll need to do is install the
rspec and cucumber gems.1 Open a shell, and type the following (you may
need to prefix this with sudo on some systems):

gem install rspec --version 2.0.0

Now type rspec --help, and you should see output that starts like this:

Usage: rspec [options] [files or directories]

If you don’t see that, or something close, then the installation failed for any
number of reasons. If that happened, we recommend you email the rspec-
users mailing list. All the authors of this book and many other knowledgeable
members of the community are members and will be happy to help you sort
it out.2

1. We assume that you already have a basic working knowledge of Ruby and Rubygems.
If you don’t, we can recommend Programming Ruby: The Pragmatic Programmers’ Guide
[TFH05] to learn about Ruby 1.8 and/or Programming Ruby 1.9: The Pragmatic
Programmers’ Guide [TFH09] if you want to learn about Ruby 1.9.

2. http://rubyforge.org/mailman/listinfo/rspec-users

report erratum • discuss

http://rubyforge.org/mailman/listinfo/rspec-users
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Assuming all is well so far, the next thing to do is install Cucumber by typing
this:

gem install cucumber --version 0.9.2

Again, you may need to prefix this command with sudo on some systems. Now
type cucumber --help, and you should see output that starts something like this:

Usage: cucumber [options] [[FILE|DIR|URL][:LINE[:LINE]*]]+

In the unlikely event of a Cucumber installation failure, please consult the
Cucumber Google group for assistance.3

Now that the tools are installed, it’s time to say hello!

2.2 Hello RSpec

Create a file named greeter_spec.rb anywhere on your system, open it in your
favorite text editor, and type the following code:

hello/1/greeter_spec.rb
describe "RSpec Greeter" doLine 1

it "should say 'Hello RSpec!' when it receives the greet() message" do2

greeter = RSpecGreeter.new3

greeting = greeter.greet4

greeting.should == "Hello RSpec!"5

end6

end7

We’ll get into all the details of this later in the book, but briefly here’s an
explanation.

We start by declaring an example group using the describe() method on line 1.
On line 2, we declare an example using the it() method.

Within the example, we initialize a new RSpecGreeter on line 3. This is the Given
in this example: the context that we set up and take for granted as a starting
point.

On line 4, we assign the value returned by the greet() method to a greeting
variable. This is the When in this example: the action that we’re focused on.

Lastly, on line 5, we set an expectation that the value of greeting should equal
“Hello RSpec!” This is the Then of this example: the expected outcome.

3. http://groups.google.com/group/cukes

Chapter 2. Hello • 12

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/hello/1/greeter_spec.rb
http://groups.google.com/group/cukes
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

As you’ll see throughout this book, we use these three simple words—Given,
When, and Then—because they are easily understood by both technical and
nontechnical contributors to a project.

Now save the file, open a command shell, cd into the directory in which it is
saved, and type this command:

rspec greeter_spec.rb

You should see output including this in the shell:

uninitialized constant RSpecGreeter

This is RSpec telling you that the example failed because there is no RSpecGreeter
class defined yet. To keep things simple, let’s just define it in the same file.
Adding this definition, the entire file should look like this:

hello/2/greeter_spec.rb
class RSpecGreeter
def greet
"Hello RSpec!"

end
end

describe "RSpec Greeter" do
it "should say 'Hello RSpec!' when it receives the greet() message" do
greeter = RSpecGreeter.new
greeting = greeter.greet
greeting.should == "Hello RSpec!"

end
end

Run the file again by typing rspec greeter_spec.rb, and the output should be
something like this:

.

Finished in 0.00075 seconds
1 example, 0 failures

Success! The dot on the first line represents the one example that was run,
and the summary on the last line reports that there was one example and
zero failures.

This is a bit different from the Hello World examples we’re used to seeing in
programming language books because it doesn’t actually print Hello RSpec
to the command line. In this case, the feedback we get tells us the example
ran and the code works as expected.

report erratum • discuss

Hello RSpec • 13

http://media.pragprog.com/titles/achbd/code/hello/2/greeter_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

2.3 Hello Cucumber

For Cucumber, we’re going to need a little bit more structure, so let’s create
a small project directory named hello. Inside the hello directory, add two
directories named features and spec, and then move the greeter_spec.rb file from
the RSpec example into the hello/spec directory. Now create a file
greeter_says_hello.feature in the features directory, and enter the following text:

hello/3/features/greeter_says_hello.feature
Feature: greeter says hello

In order to start learning RSpec and Cucumber
As a reader of The RSpec Book
I want a greeter to say Hello

Scenario: greeter says hello
Given a greeter
When I send it the greet message
Then I should see "Hello Cucumber!"

In the shell, cd to the project root, the hello directory, and type cucumber features.
You should see output like this:

Feature: greeter says hello
In order to start learning RSpec and Cucumber
As a reader of The RSpec Book
I want a greeter to say Hello

Scenario: greeter says hello # features/greeter_says_hello.feature:7
Given a greeter # features/greeter_says_hello.feature:8
When I send it the greet message # features/greeter_says_hello.feature:9
Then I should see "Hello Cucumber!" # features/greeter_says_hello.feature:10

1 scenario (1 undefined)
3 steps (3 undefined)
0m0.003s

You can implement step definitions for undefined steps with these snippets:

Given /^a greeter$/ do
pending # express the regexp above with the code you wish you had

end

When /^I send it the greet message$/ do
pending # express the regexp above with the code you wish you had

end

Then /^I should see "([^"]*)"

Chapter 2. Hello • 14

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/hello/3/features/greeter_says_hello.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We’ll go into the details of this output later, but the high points are that we
see the feature and scenario text from the greeter_says_hello.feature file, a summary
of everything that was run, and then some code snippets that we can use for
our step definitions.

A step definition is a method that creates a step. In this example, we use the
Given(), When(), and Then() methods to write step definitions, each of which takes
a Regexp and a block. Cucumber will read the first step in the scenario, Given
a greeter; look for a step definition whose regular expression matches that
step; and then execute that step definition’s block.

To get this scenario to pass, we need to store step definitions in a file that
Cucumber can load. Go ahead and add a step_definitions directory inside hello/fea-
tures, and add a file named greeter_steps.rb with the following code:

hello/4/features/step_definitions/greeter_steps.rb
Given /^a greeter$/ do

@greeter = CucumberGreeter.new
end

When /^I send it the greet message$/ do
@message = @greeter.greet

end

Then /^I should see "([^"]*)"$/ do |greeting|
@message.should == greeting

end

This looks a lot like the code snippets that we got from running the cucumber
command, but we’ve added some code in each step definition. Now run
cucumber features again, and the output should look more like this:

Feature: greeter says hello
In order to start learning RSpec and Cucumber
As a reader of The RSpec Book
I want a greeter to say Hello

Scenario: greeter says hello \
features/greeter_says_hello.feature:7

Given a greeter \
features/step_definitions/greeter_steps.rb:1

uninitialized constant CucumberGreeter (NameError)
./features/step_definitions/greeter_steps.rb:2:in `/^a greeter$/'
features/greeter_says_hello.feature:8:in `Given a greeter'

When I send it the greet message \
features/step_definitions/greeter_steps.rb:5

Then I should see "Hello Cucumber!" \
features/step_definitions/greeter_steps.rb:9

report erratum • discuss

Hello Cucumber • 15

http://media.pragprog.com/titles/achbd/code/hello/4/features/step_definitions/greeter_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Failing Scenarios:
cucumber features/greeter_says_hello.feature:7 # Scenario: greeter says hello

1 scenario (1 failed)
3 steps (1 failed, 2 skipped)
0m0.003s

The first step is failing because we haven’t defined a CucumberGreeter. The next
two steps are being skipped because the first one failed. Again, to keep things
simple, go ahead and define the missing class right alongside the step defini-
tions in greeter_steps.rb.

Here is the full listing:

hello/5/features/step_definitions/greeter_steps.rb
class CucumberGreeter
def greet
"Hello Cucumber!"

end
end
Given /^a greeter$/ do

@greeter = CucumberGreeter.new
end

When /^I send it the greet message$/ do
@message = @greeter.greet

end

Then /^I should see "([^"]*)"$/ do |greeting|
@message.should == greeting

end

Now we should get different output when we run cucumber features:

Feature: greeter says hello
In order to start learning RSpec and Cucumber
As a reader of The RSpec Book
I want a greeter to say Hello

Scenario: greeter says hello \
features/greeter_says_hello.feature:7

Given a greeter \
features/step_definitions/greeter_steps.rb:7

When I send it the greet message \
features/step_definitions/greeter_steps.rb:11

Then I should see "Hello Cucumber!" \
features/step_definitions/greeter_steps.rb:15

1 scenario (1 passed)
3 steps (3 passed)
0m0.003s

Chapter 2. Hello • 16

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/hello/5/features/step_definitions/greeter_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This time, the scenario and all of its steps pass. So, now we have a passing
RSpec example and a passing Cucumber scenario. You can type rspec spec,
and the rspec command will run everything inside the spec directory. If you
moved greeter_spec.rb to the spec directory, then you should see output similar
to the output you saw at the end of Section 2.2, Hello RSpec, on page 12.

There is certainly a lot of detail yet to cover here, but that’s why this is a book
and not a blog post! In the chapters that follow, you’ll learn all about RSpec
and Cucumber and how to use them in the context of Behaviour-Driven
Development. So, what are you waiting for? All the good stuff is yet to come.
Turn the page already!

report erratum • discuss

Hello Cucumber • 17

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 3

Describing Features
To get started doing BDD with RSpec and Cucumber, we’re going to write a
problem-solving game that we’ll call Codebreaker. Our version will be played
in a shell, but it is based on a classic pencil and paper game named Bulls
and Cows.1

We picked a game because we thought it would be more fun than a banking
or social networking application. We also wanted something that was small
enough to accomplish in a few short chapters but complex enough to provide
some interesting edge cases. By the time we get through this tutorial, we’ll
have planned a small release, planned and executed an iteration, developed
some code from the outside in, and have a game we can play at the command
line.

We’ll develop the game using the process and practices of Behaviour-Driven
Development that we introduced in Chapter 1, Introduction, on page 3, and
that you’ll read more about throughout this book. We’re going to drive straight
on through, stopping only occasionally to review things and answer questions
at the end of each chapter. When you’re looking for more detail, we’ll tell you
where you can find it, but we won’t get hung up in too much detail during
this part of the book so that we can experience the feel of BDD in the
trenches.

But before we develop anything, let’s start with an overview of the game and
its rules.

1. http://en.wikipedia.org/wiki/Bulls_and_cows

report erratum • discuss

http://en.wikipedia.org/wiki/Bulls_and_cows
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

3.1 Introducing Codebreaker

Codebreaker is a logic game in which a code-breaker tries to break a secret
code created by a code-maker. The code-maker, which will be played by the
application we’re going to write, creates a secret code of four numbers between
1 and 6.

The code-breaker then gets some number of chances to break the code. In
each turn, the code-breaker makes a guess of four numbers (again, 1 to 6).
The code-maker then marks the guess with up to four + and - signs.

A + indicates an exact match: one of the numbers in the guess is the same
as one of the numbers in the secret code and in the same position.

A - indicates a number match: one of the numbers in the guess is the same
as one of the numbers in the secret code but in a different position.

For example, given a secret code 1234, a guess with 4256 would earn a +-. The
+ is for the 2 in the second position in the guess, which matches the 2 in the
secret code in both number and position: an exact match. The - is for the 4
in the first position in the guess, which matches the 4 in the code but not in
the same position: a number match.

The plus signs for the exact matches always come before the minus signs for
the number matches and don’t align with specific positions in the guess or
the secret code.

3.2 Planning the First Release

As you’ll read about in Chapter 11, Writing Software That Matters, on page
121, one of the three principles of BDD is “Enough is enough.” We want to
avoid the pitfalls of the Big Design Up Front,2 but we also want to do enough
planning to know we’re heading in the right direction. We’ll do some of that
planning in this chapter, picking out user stories for our first iteration.

For the first release, we simply want to be able to play the game. We should
be able to type a command in a shell to start it up, submit guesses, and see
the mark for each of our guesses until we crack the code. That may sound
like an over-simplification, and it certainly leaves open more questions than
it answers, but it sets a target in our sights, which serves as a basis from
which we can start assembling a list of user stories that will get us there.

2. BDUF is designing an application in significant detail before writing the first line of
code.

Chapter 3. Describing Features • 20

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Selecting Stories

A great way to get started gathering user stories is to do a high-level brain
dump of the sorts of things we might like to do. Here are some titles to get
started:

• Code-breaker starts game
• Code-breaker submits guess
• Code-breaker wins game
• Code-breaker loses game
• Code-breaker plays again
• Code-breaker requests hint
• Code-breaker saves score

See how each of these is phrased as role + action? The role is the code-
breaker role each time because this game has only one kind of user. In other
applications, we might have several different kinds of users, in which case
we want to express stories in terms of a specific role (not just a generic user),
because that impacts how we think about each requirement and why we’re
implementing code to satisfy it. See Focus on the Role for more on this.

Focus on the Role

Mike Cohn, author of User Stories Applied [Coh04], talked about focusing on the role
when writing user stories at the Agile 2006 Conference. The example he gave was
that of an airline reservation system, pointing out that the regular business traveler
booking a flight wants very different things from such a system than the occasional
vacation traveler.

Think about that for a minute. Imagine yourself in these two different roles and the
different sorts of details you would want from such a system based on your goals.
For starters, the business traveler might want to maintain a profile of regular
itineraries, while the vacationer might be more interested in finding package deals
that include hotel and car at a discount.

Focusing on this distinction is a very powerful tool in getting down to the details of
the features required of a system.

These are also high level and don’t tell us much about how the system should
respond to these actions. Let’s take these titles and generate some user stories
from them.

A Token for a Conversation

We’ll use the simple format described in Extreme Programming Installed
[JAH02]. The idea is that there should be just enough information to serve

report erratum • discuss

Planning the First Release • 21

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

as a token for a conversation that should take place as we get closer to
implementation.3

Code-breaker starts game The code-breaker opens a shell, types a command,
and sees a welcome message and a prompt to enter the first guess.

Code-breaker submits guess The code-breaker enters a guess, and the system
replies by marking the guess according to the marking algorithm.

Code-breaker wins game The code-breaker enters a guess that matches the
secret code exactly. The system responds by marking the guess with four
+ signs and a message congratulating the code-breaker on breaking the
code in however many guesses it took.

We can already see some of the challenges ahead: “according to the marking
algorithm” is going to require some conversation with the stakeholders. In
fact, this is where we’ll spend most of our time both planning and developing,
because the marking algorithm is where much of the complexity lies.

Continuing with stories for the other titles:

Code-breaker loses game After some number of turns, the game tells the
code-breaker that the game is over (need to decide how many turns and
whether to reveal the code).

Code-breaker plays again After the game is won or lost, the system prompts
the code-breaker to play again. If the code-breaker indicates yes, a new
game begins. If the code-breaker indicates no, the system shuts down.

Code-breaker requests hint At any time during a game, the code-breaker can
request a hint, at which point the system reveals one of the numbers in
the secret code.

Code-breaker saves score After the game is won or lost, the code-breaker can
opt to save information about the game: who (initials?), how many turns,
and so on.

Note the deliberate lack of detail and even some open questions. We’ll get into
some detail as we choose which of these stories we want to include in the
release, and then we’ll get more detailed in each iteration within the release.

3. In Extreme Programming, index cards are the preferred medium for user stories. This
keeps them lightweight and reinforces the idea that these are not formal documentation.
There is an XP joke that if you can’t fit a requirement on an index card, you should
get a smaller card.

Chapter 3. Describing Features • 22

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

But at each phase, we want to do just enough planning to keep on moving,
and no more.

Narrowing Things Down

Now that we have some stories,4 let’s consider them in the context of the
stated goal for the initial release: to simply be able to play the game. Looking
at the original list of stories, there are only two that are absolutely necessary
to meet that goal:

• Code-breaker starts game
• Code-breaker submits guess

We definitely have to be able to start the game somehow so that one is a no-
brainer. Once we’ve started the game, if we can submit a guess and get the
mark, then we can submit more guesses. As soon as we get a perfect mark,
the game is won, and we hit Ctrl+C to stop the game and start the game back
up to play again. What do you think?

Maybe it would be a bit more satisfying to play if the game told us when we
won—a bit of positive feedback to motivate us to play again. That sounds
pretty important, so let’s add the Code-breaker wins game story to our release plan.

Of course, having to hit Ctrl+C and then restart the game to play again is a
little cheesy, don’t you think? That just won’t do, so let’s also add the Code-
breaker plays again story as well. So, now our release plan includes these stories:

• Code-breaker starts game
• Code-breaker submits guess
• Code-breaker wins game
• Code-breaker plays again

Hmmm. Seeing those together brings up the question of what will happen if
the code-breaker doesn’t win after some number of guesses. How else will we
know when to prompt the code-breaker to play again? Maybe we should add
the Code-breaker loses game story. What do you think?

Wait, wait, wait! We’re heading down a slippery slope here. Pretty soon we’ll
be including our entire backlog of stories in the first release! Let’s step back
for a second. What is the release goal? To be able to play the game. Let’s
examine that a bit. Why does playing the game matter? Why do we want to
be able to play the game?

4. If we were developing this for commercial distribution, we’d likely have dozens more
stories, even for such a simple game.

report erratum • discuss

Planning the First Release • 23

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Context Matters

Perhaps our plan is to sell the game to millions of people and retire young.
More likely, it’s for a class project for school. OK, which class? If it’s a
usability class, then hitting Ctrl+C just won’t fly. But if it’s an algorithms
class, then the most important thing is that the marking algorithm works
correctly.

The point is that our goal is to write software that matters, and what matters
depends entirely on context and is the purview of the stakeholders! In our
case, the primary stakeholder is you! You’re reading this book and trying to
learn something about RSpec and Cucumber and the process of BDD. You’re
also a programmer, so it’s likely that you’re perfectly capable of hitting Ctrl+C.

Given this context, we’ll go with Code-breaker starts game and Code-breaker submits
guess. Together, those two stories should suffice to get us to the point where
we can play the game—unless, of course, we’re missing something.

The Hidden Story

It turns out that there is one feature of the game that we haven’t discussed
yet! We won’t really see the evidence of it until we submit a guess and the
game marks it. Can you guess what it is? Think about how the game will be
able to mark the guess. It has to mark it against something, right?

The secret code!

The game will need to generate a secret code that is different every time in
order for it to be truly enjoyable. Now is this a user story? This is one of those
gray areas that challenges the boundaries of what a user story is. Ask one
experienced XPer, and you’ll hear that this is really part of the Code-breaker
starts game story based on the idea that the secret code should be generated
when the game starts up.

The next person might argue that it’s really part of the Code-breaker submits guess
story because that’s the first time the user gets any feedback from the system
that depends on the guess.

User Stories Are a Planning Tool

We’re going to take a third stance and make it a separate story based on
practicality. We’re going to have a lot to cover in these chapters, and we want
to keep things small enough to accomplish in a reasonable time so we can
check things off the list as we go. Does that sound selfish? Does that sound
like we’re putting the developer’s needs ahead of those of the stakeholder?

Chapter 3. Describing Features • 24

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Absolutely not! We’re just planning! And user stories are, above all else, a
planning tool. Although you can find many definitions of what a user story
is and therefore must be in order to earn the title, here is a simple set of cri-
teria that David learned from Bob Koss at Object Mentor. A user story must
have the following characteristics:

Have business value Clearly, the game is no fun unless it generates a different
secret code each time.

Be testable That’s easy. We just start up a bunch of games and ask for the
code. As you’ll see when we develop this part, this reveals some interesting
questions about designing for testability.

Be small enough to implement in one iteration This is the motivation for sepa-
rating this story. It’s a guideline that allows us to balance implementation
concerns with requirements.

So, now we have our release plan with three stories. It’s time to start breaking
it down into iterations.

3.3 Planning the First Iteration

Acceptance Test–Driven Planning is one of three practices of BDD.5 It is an
extension of Acceptance Test–Driven Development, which is a formalization
of the notion of customer tests in XP. ATDD involves collaborating with
stakeholders on acceptance tests before we write any code.6

The difference between ATDP and ATDD is simple. ATDD specifies that we
write acceptance tests before we write code, but it doesn’t specify when we
should write them.

ATDP specifies that the acceptance tests are agreed on during or possibly
before, but no later than, an iteration planning meeting. This lets us consider
the acceptance criteria in our estimates, which improves our ability to plan
iterations, which is why it’s called Acceptance Test–Driven Planning.

Narratives in Features

Cucumber lets us describe application features in a simple plain-text format
and then use those descriptions to automate interaction with the application.

5. The other two are Domain-Driven Design and Test-Driven Development.
6. The term acceptance test means different things to different people. We’ll discuss this

in the context of BDD in Chapter 17, Intro to Cucumber, on page 233.

report erratum • discuss

Planning the First Iteration • 25

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We’re going to use Cucumber to express application features in this chapter
and then automate them in the next.

Cucumber features have three parts: a title, a brief narrative, and an arbitrary
number of scenarios that serve as acceptance criteria. Here’s what the title
and narrative for the code-breaker starts game feature might look like:

Feature: code-breaker starts game

As a code-breaker
I want to start a game
So that I can break the code

The title is just enough to remind us who the feature is for, the code-breaker,
and what the feature is about, starting a game. Although the narrative is free-
form, we generally follow the Connextra format that is described in Chapter
17, Intro to Cucumber, on page 233 or variations of it that we’ll discuss at dif-
ferent points in the book.

With this narrative, we have some understanding of what we want to do with
the system, but how will we know when we’ve started the game? How will we
know when we’ve satisfied this requirement? How will we know when we’re
done?

Acceptance Criteria

To answer these questions, we’ll add acceptance criteria to the feature.
Imagine that you sit down to play Codebreaker, fire up a shell, and type the
codebreaker command. How do you know it started? Perhaps it says something
like “Welcome to Codebreaker!” And then, so you know what to do next, it
probably says something like “Enter a guess.”

That will be the acceptance criteria for this feature. Here’s how we express
that in Cucumber:

Feature: code-breaker starts game

As a code-breaker
I want to start a game
So that I can break the code

Scenario: start game
Given I am not yet playing
When I start a new game
Then I should see "Welcome to Codebreaker!"
And I should see "Enter guess:"

Chapter 3. Describing Features • 26

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The Scenario keyword is followed by a string and then a series of steps. Each
step begins with any of five keywords: Given, When, Then, And, and But.

Given steps represent the state of the world before an event. When steps
represent the event. Then steps represent the expected outcomes.

And and But steps take on the quality of the previous step. In the start game
scenario, the And step is a second Then; a second expected outcome. If we
wanted to expect that the game says “Welcome to Codebreaker!” but not “What
is your quest?” we would add a But step saying But I should not see “What is
your quest?” This would be treated as a Then.

See how the Given and When steps in this scenario both use the first person?
We choose the first-person form because it makes the narrative feel more
compelling. Given x, when I y, then I should see a message saying “z.” This
helps keep the focus on how I would use the system if I were in a given role
(the code-breaker).

Given I am not yet playing expresses the context in which the subsequent steps
will be executed. When I start a new game is the event or action that occurs because
I did something. The Thens are the expected outcomes—what we expect to
happen as a result of the When.

Let’s store this feature in a file. We will go over the details of the project
structure later in Chapter 4, Automating Features with Cucumber, on page
35, but for now just create a codebreaker directory wherever you like to keep
projects on your computer. This will be the root directory for the project, from
which we’ll type all our shell commands as we progress.

Inside the codebreaker directory, add a subdirectory named features. Create a
new file named codebreaker_starts_game.feature in that directory, and copy in the
content of the feature, shown earlier.

Now add a subdirectory inside features named support, and inside features/support
add a file named env.rb. Even though we’ll leave this empty for now, Cucumber
needs this file (or any .rb file) in order to know that we’re using Ruby.7

Now open a shell, cd into the codebreaker project root directory, and type
cucumber. You’ll see the same text that is in the file with some additional context
information and metadata. We’ll discuss what all that means in the next
chapter when we begin to automate the scenarios.

7. Cucumber supports several different programming languages.

report erratum • discuss

Planning the First Iteration • 27

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Submitting a Guess

The next feature we want to tackle in the first iteration is as follows:

cb/01/features/codebreaker_submits_guess.feature
Feature: code-breaker submits guess

The code-breaker submits a guess of four numbers. The game marks the guess
with + and - signs.

For each number in the guess that matches the number and position of a number
in the secret code, the mark includes one + sign. For each number in the guess
that matches the number but not the position of a number in the secret code,
the mark includes one - sign.

This time we used a free-form narrative instead of the Connextra format. This
seems appropriate given that we’re describing an algorithm, which is a bit
more complex than a statement such as “I should see a welcome message.”
Could we use the Connextra format? Let’s give it a try and see.

Feature: code-breaker submits guess

As a code-breaker
I want to submit a guess
So that I can try to break the code

That doesn’t tell us a whole lot, so let’s add a scenario:

Feature: code-breaker submits guess

As a code-breaker
I want to submit a guess
So that I can try to break the code

Scenario: all exact matches
Given the secret code is "1234"
When I guess "1234"
Then the mark should be "++++"

Even when we add this narrative together with this scenario, we don’t really
supply enough context information to understand the meaning of the mark.

Now look at the original narrative plus a single scenario:

Feature: code-breaker submits guess

The code-breaker submits a guess of four numbers. The game marks the guess
with + and - signs.

For each number in the guess that matches the number and position of a number
in the secret code, the mark includes one +. For each number in the guess

Chapter 3. Describing Features • 28

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/01/features/codebreaker_submits_guess.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

that matches the number but not the position of a number in the secret code,
a - is added to the mark.

Scenario: all exact matches
Given the secret code is "1234"
When I guess "1234"
Then the mark should be "++++"

Wow, what a difference that makes. Now we have an explanation of the mark
and an example of how it works in practice. Much clearer, no? So then, why
don’t we add some prose narrative to the Code-breaker starts game feature as well?
Well, we don’t really need it. In that case, the scenario tells us everything we
need to know in order to understand the context.

So, which should we use? Connextra format? Free-form prose? Some other
format? The answer, of course, is that it depends, as we’ve just seen. In the
end, it’s good to have a number of tools at our disposal, so we can pick the
right one for each job. That’s true of RSpec and Cucumber. That’s also true
of narrative formats.

Adding More Scenarios

With an algorithm as complex as marking a guess, we’re going to need more
scenarios to demonstrate what the mark should be under different conditions.
Let’s add a second scenario, shown here without the narrative:

Scenario: all exact matches
Given the secret code is "1234"
When I guess "1234"
Then the mark should be "++++"

Scenario: 2 exact matches and 2 number matches
Given the secret code is "1234"
When I guess "1243"
Then the mark should be "++--"

The addition of another scenario increases the expression and our understand-
ing of the rules of the algorithm. Of course, we have a long way to go, so let’s
add some more:

Scenario: all exact matches
Given the secret code is "1234"
When I guess "1234"
Then the mark should be "++++"

Scenario: 2 exact matches and 2 number matches
Given the secret code is "1234"
When I guess "1243"
Then the mark should be "++--"

report erratum • discuss

Planning the First Iteration • 29

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Scenario: 1 exact match and 3 number matches
Given the secret code is "1234"
When I guess "1342"
Then the mark should be "+---"

Scenario: 4 number matches
Given the secret code is "1234"
When I guess "4321"
Then the mark should be "----"

If we hadn’t seen it before, we can certainly see now that this is not going to
scale very well. We have four scenarios, and it’s already starting to become
difficult to take them all in at a glance. Imagine what this would look like
when we add scenarios for three matching numbers, two, one, and then none.
We’ll likely end up with a couple of dozen scenarios, and it’s going to be quite
difficult to scan them all and really understand the intent.

Fortunately, Cucumber offers us a few different tools we can use to DRY things
up without sacrificing expressiveness and cohesion.8 You’ll read about all of
these tools in Chapter 17, Intro to Cucumber, on page 233, but the one we’re
interested in right now is the scenario outline.

Scenario Outlines

Cucumber lets us define a single scenario outline and then provide tables of
input data and expected output. Here’s the scenario outline for our submit guess
scenarios:

Scenario Outline: submit guess
Given the secret code is "<code>"
When I guess "<guess>"
Then the mark should be "<mark>"

This looks a lot like the scenario declarations we wrote for the code-breaker
submits guess feature, with two subtle differences:

• Scenario Outline instead of Scenario
• Variable data placeholders in angle brackets

The words in angle brackets are placeholders for variable data that we’ll pro-
vide in a tabular format, inspired by FIT (see FIT, on page 31).

8. DRY stands for Don’t Repeat Yourself. The DRY principle, as described in The Pragmatic
Programmer [HT00], states that every piece of knowledge in a system should have one
authoritative, unambiguous representation.

Chapter 3. Describing Features • 30

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

FIT

Ward Cunningham’s Framework for Integration Test (FIT) parses display tables in
rich documents written with Microsoft Word or HTML, sends the contents of table
cells to the system in development, and compares the results from the system to
expected values in the table.a

This allows teams that were already using tools like Word for requirements documen-
tation to turn those documents into executable acceptance tests by specifying
expected outputs resulting from prescribed inputs. This works especially well when
the acceptance criteria are naturally expressed in a table.

Cucumber’s scenario outlines and scenario tables provide a FIT-inspired tabular
format for expressing repetitive scenarios like those in our “submit guess” feature,
while maintaining the Given, When, and Then language of BDD.

a. See http://fit.c2.com/ for more information about FIT.

Tabular Data

Here is the first of several tables we’ll add, supplying data for scenarios in
which all four numbers match:

Scenarios: all numbers correct
code	guess	mark
1234	1234	++++
1234	1243	++--
1234	1423	+---
1234	4321	----

The Scenarios keyword indicates that what follows are rows of example data.
The first row contains column headers that align with the placeholders in the
scenario outline. Each subsequent row represents a single scenario.

Following convention, we’ve named the columns using the same names that
are in angle brackets in the scenario outline, but the placeholders and columns
are bound by position, not name.

The <code> variable in the Given step is assigned the value 1234, from the first
column in the first data row (after the headers). It’s just as though we wrote
Given the secret code is 1234.

The <guess> in the When step gets 1234 from the second column, and the <mark>
in the Then step gets ++++.

With the scenario outline and this first table, we’ve expressed four scenarios
that would have taken sixteen lines in only ten. We’ve also reduced duplication

report erratum • discuss

Planning the First Iteration • 31

http://fit.c2.com/
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

and created very readable executable documentation in the process.
Cucumber lets us supply as many groups of scenarios as we want, supporting
a very natural way to group similar scenarios.

Here’s the whole feature with fourteen scenarios expressed in a mere twenty-
seven lines (beginning with the scenario outline):

Feature: code-breaker submits guess

The code-breaker submits a guess of four numbers. The game marks the guess
with + and - signs.

For each number in the guess that matches the number and position of a number
in the secret code, the mark includes one + sign. For each number in the guess
that matches the number but not the position of a number in the secret code,
the mark includes one - sign.

Scenario Outline: submit guess
Given the secret code is "<code>"
When I guess "<guess>"
Then the mark should be "<mark>"

Scenarios: no matches
| code | guess | mark |
| 1234 | 5555 | |

Scenarios: 1 number correct
code	guess	mark
1234	1555	+
1234	2555	-

Scenarios: 2 numbers correct
code	guess	mark
1234	5254	++
1234	5154	+-
1234	2545	--

Scenarios: 3 numbers correct
code	guess	mark
1234	5234	+++
1234	5134	++-
1234	5124	+--
1234	5123	---

Scenarios: all numbers correct
code	guess	mark
1234	1234	++++
1234	1243	++--
1234	1423	+---
1234	4321	----

Chapter 3. Describing Features • 32

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

See how easy that is to read and understand? Even a nontechnical team
member can read this and figure out what’s going on. And therein lies the
power of Cucumber. It lets us express requirements in language that the
whole team can understand so we can all speak the same language. When
we talk about mark, it means the same thing to the CEO as it does to the
developer. The same goes for the secret code and a guess.

We now have the acceptance criteria for the two stories we want to include
in our first iteration, so the planning meeting has come to a close. In the next
chapter, we’ll use these same plain-text features to begin to drive out the code
for our game, but first let’s quickly recap what we’ve done.

3.4 What We’ve Learned

In this chapter, we introduced the project that we’ll spend the remaining
chapters in Part I working on. We planned a release and the first iteration.
In the process, we learned about the following:

Selecting stories for a release We did this by narrowing down the stories to
those that really matter in the context of the release goals.

Selecting stories for an iteration We picked out two stories that will result in
working software sufficient to interact with it in a meaningful way.

Acceptance criteria We wrote Cucumber features and scenarios for each story.
We do this during the iteration planning meeting so that we can use what
we learn from writing the scenarios to affirm or modify existing estimates.
This is known as Acceptance Test–Driven Planning.

Scenario outlines This is one of many tools that Cucumber offers to keep
features and scenarios DRY and expressive.

report erratum • discuss

What We’ve Learned • 33

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 4

Automating Features with Cucumber
In the previous chapter, we selected the stories for the first iteration and wrote
them out as features and scenarios in plain text using Cucumber. Now it’s
time to put those scenarios to work to guide us as we develop code.

At this point, the feature files should be in the features/ directory, each with
the .feature file extension. Cucumber recognizes this extension and treats these
files as input. Here are the contents of the two files:

cb/02/features/codebreaker_starts_game.feature
Feature: code-breaker starts game

As a code-breaker
I want to start a game
So that I can break the code

Scenario: start game
Given I am not yet playing
When I start a new game
Then I should see "Welcome to Codebreaker!"
And I should see "Enter guess:"

cb/02/features/codebreaker_submits_guess.feature
Feature: code-breaker submits guess

The code-breaker submits a guess of four numbers. The game marks the guess
with + and - signs.
For each number in the guess that matches the number and position of a number
in the secret code, the mark includes one + sign. For each number in the guess
that matches the number but not the position of a number in the secret code,
the mark includes one - sign.

Scenario Outline: submit guess
Given the secret code is "<code>"
When I guess "<guess>"
Then the mark should be "<mark>"

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/02/features/codebreaker_starts_game.feature
http://media.pragprog.com/titles/achbd/code/cb/02/features/codebreaker_submits_guess.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Scenarios: no matches
| code | guess | mark |
| 1234 | 5555 | |

Scenarios: 1 number correct
code	guess	mark
1234	1555	+
1234	2555	-

Scenarios: 2 numbers correct
code	guess	mark
1234	5254	++
1234	5154	+-
1234	2545	--

Scenarios: 3 numbers correct
code	guess	mark
1234	5234	+++
1234	5134	++-
1234	5124	+--
1234	5123	---

Scenarios: all numbers correct
code	guess	mark
1234	1234	++++
1234	1243	++--
1234	1423	+---
1234	4321	----

We should also have an env.rb file in features/support directory. The .rb extension
tells Cucumber that we’re using Ruby.

If you didn’t try to run the features in the previous chapter, try it now. Open
a shell to the codebreaker directory, and type cucumber. You should see output
that looks just like the text in the .feature files, plus some additional information
that we’ll talk about as we progress.

4.1 Steps and Step Definitions

When you ran the cucumber command, you should have seen a bunch of code
snippets at the end of the output that look something like this:

Given /^I am not yet playing$/ do
pending # express the regexp above with the code you wish you had

end

If you don’t see the step definition snippets, it’s likely because Cucumber
doesn’t know what programming language you’re using. It determines the
language based on the types of files in features/step_definitions or features/support.

Chapter 4. Automating Features with Cucumber • 36

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

That’s why we added the env.rb file to features/support. If you haven’t added it
already, do it now so you can see the step definition snippets.

The code snippet in the example is a Cucumber step definition. If you think
of the steps in scenarios as method calls, then step definitions are like method
definitions.

Downloadable Files

The Codebreaker source files you will download from http://pragprog.com/titles/achbd/
source_code are stored in a series of numbered directories like code/cb/01. Each numbered
directory represents a snapshot of the development process, which allows you to
watch the evolution of the project, rather than just see its ultimate output.

The numbered directories each stand in for the project root. For example,
code/cb/01/features and code/cb/02/features each represent the same features directory in the
root codebreaker directory on your system.

Go ahead and create a codebreaker_steps.rb file in features/step_definitions/, and add
that snippet to it, removing the pending call from the block, like this:

cb/02/features/step_definitions/codebreaker_steps.rb
Given /^I am not yet playing$/ do
end

Now run cucumber features/codebreaker_starts_game.feature from the project root, and
you’ll see the following in the output:1

Feature: code-breaker starts game

As a code-breaker
I want to start a game
So that I can break the code

Scenario: start game
Given I am not yet playing
When I start a new game
Then I should see "Welcome to Codebreaker!"
And I should see "Enter guess:"

1 scenario (1 undefined)
4 steps (3 undefined, 1 passed)
0m0.002s

1. We’ve suppressed some information from the output to make it easier to read. We’ll
do this throughout the chapter, so don’t be surprised if the output in the book doesn’t
perfectly match the output you see in the shell.

report erratum • discuss

Steps and Step Definitions • 37

http://pragprog.com/titles/achbd/source_code
http://pragprog.com/titles/achbd/source_code
http://media.pragprog.com/titles/achbd/code/cb/02/features/step_definitions/codebreaker_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

You can implement step definitions for undefined steps with these snippets:

When /^I start a new game$/ do
pending # express the regexp above with the code you wish you had

end

Then /^I should see "([^"]*)"$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

The output starts with the content of the file, followed by a summary that
tells us that we have one scenario with four steps, including one passing step
and three undefined steps and then code snippets for the remaining undefined
steps. So, what just happened?

The argument to the cucumber command was the features/codebreaker_
starts_game.feature file. When Cucumber starts up, it loads up all the Ruby files
in the same directory as the file and any of its subdirectories. This includes
features/step_definitions/codebreaker_steps.rb, where we copied the step definition
earlier.

4.2 Step Definition Methods

We can define steps by calling any of the following methods provided by
Cucumber: Given(), When(), Then(), And(), or But(). The last two, And() and But(), take
on the meaning of the previous Given(), When(), or Then(), so in this example, the
And() on the last line of the scenario is treated as a Then().

In this case, we called the Given() method and passed it a Regexp and a block.
Cucumber then stores the block in a hash-like structure with the Regexp as
its key.

After loading the Ruby files, Cucumber loads and parses the .feature files,
matching the steps in scenarios against the stored step definitions. It does
this by searching for a Regexp that matches the step and then executes the
block stored with that Regexp as its key.

Given

In our case, when Cucumber sees the Given I am not yet playing step in the sce-
nario, it strips off the Given and looks for a Regexp that matches the string
I am not yet playing. At this point, we have only one step definition, and its Regexp
is /^I am not yet playing$/, so Cucumber executes the associated block from the
step definition.

Chapter 4. Automating Features with Cucumber • 38

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Of course, since there is nothing in the block yet, there is nothing that can
go wrong, so the step is considered passing. As it turns out, that’s exactly
what we want in this case. We don’t actually want Given I am not yet playing to do
anything. We just want it in the scenario to provide context for the subsequent
steps, but we’re going to leave the associated block empty.

When

The When is where the action is. We need to create a new game and then
start it. Here’s what that might look like:

cb/03/features/step_definitions/codebreaker_steps.rb
Given /^I am not yet playing$/ do
end

When /^I start a new game$/ do➤

Codebreaker::Game.new.start➤

end➤

At this point, we don’t have any application code, so we’re just writing the
code we wish we had. We want to keep it simple, and this is about as simple
as it can get.

Now run cucumber features/codebreaker_starts_game.feature again, and you should see
the following within the output:

Scenario: start game
Given I am not yet playing
When I start a new game

uninitialized constant Codebreaker (NameError)
./features/step_definitions/codebreaker_steps.rb:5:in `/^I start a new game$/'
features/codebreaker_starts_game.feature:9:in `When I start a new game'

Then I should see "Welcome to Codebreaker!"
And I should see "Enter guess:"

Failing Scenarios:
cucumber features/codebreaker_starts_game.feature:7 # Scenario: start game

1 scenario (1 failed)
4 steps (1 failed, 2 undefined, 1 passed)
0m0.003s

Cucumber shows us the error message, uninitialized constant Codebreaker (NameError),
immediately following the step that caused the error. The summary tells us
that there is one failing scenario and one failing step.The scenario is consid-
ered failing because it has a failing step.

The error message tells us that we need to create a Codebreaker constant. It’s
coming from the reference to Codebreaker::Game in the step definition we just

report erratum • discuss

Step Definition Methods • 39

http://media.pragprog.com/titles/achbd/code/cb/03/features/step_definitions/codebreaker_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The Code You Wish You Had

In my early days at Object Mentor I (David) attended a TDD class taught by James
Grenning. He was refactoring an existing method, and he wrote a statement that
called a method that didn’t exist yet, saying “start by writing the code you wish you
had.”

This was a galvanizing moment for me.

It is common to write the code we wish we had doing TDD. We send a message from
the code example to an object that does not have a corresponding method. We let the
Ruby interpreter tell us that the method does not exist (red) and then implement that
method (green).

Doing the same thing within application code, calling the code we wish we had in one
module from another module, was a different matter. It was as though an arbitrary
boundary had been lifted and suddenly all of the code was my personal servant, ready
and willing to bend to my will. It didn’t matter whether we were in a test or in the
code being tested. What mattered was that we started from the view of the code that
was going to use the new code we were about to write.

Over the years this has permeated my daily practice. It is very liberating, and it results
in more usable APIs than I would have come up with starting with the object receiving
the message.

In retrospect, this also aligns closely with the outside-in philosophy of BDD. If the
goal is to provide great APIs, then the best place to design them is from their
consumers.

wrote, which also calls the start(), so let’s go ahead and create that. Create a
lib directory with a codebreaker subdirectory, and add a game.rb file in lib/codebreaker
with the following:

cb/04/lib/codebreaker/game.rb
module Codebreaker

class Game
def start
end

end
end

If you run cucumber now, you’ll see the same error because Cucumber isn’t
loading game.rb yet. The conventional approach to this is to have a file in the
lib directory named for the top-level module of the app. In our case, that’s
codebreaker.rb. Create that file now, with the following:

cb/04/lib/codebreaker.rb
require 'codebreaker/game'

Chapter 4. Automating Features with Cucumber • 40

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/04/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/04/lib/codebreaker.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Now add the following to features/support/env.rb:

cb/04/features/support/env.rb
$LOAD_PATH << File.expand_path('../../../lib', __FILE__)
require 'codebreaker'

Cucumber will load features/support/env.rb, which now requires lib/code-breaker.rb,
which, in turn, requires lib/codebreaker/game.rb, which is where we defined the
Codebreaker module with the Game with an empty start() method. If you now run
cucumber features/codebreaker_starts_game.feature, you should see some different
results:

Scenario: start game
Given I am not yet playing
When I start a new game
Then I should see "Welcome to Codebreaker!"
And I should see "Enter guess:"

1 scenario (1 undefined)
4 steps (2 undefined, 2 passed)
0m0.002s

You can implement step definitions for undefined steps with these snippets:

Then /^I should see "([^"]*)"$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Then

With the second step passing, we can move on to the Then steps. The last
snippet is a single step definition that will handle both the Then and And steps
in the scenario, passing whatever is captured by the ([^\"]*) part of the regular
expression to the block as the message parameter.

As for what to write in the block, when we say I should see "Welcome to Codebreaker!",
we’re really saying I should see "Welcome to Codebreaker!" in the console, and that means
we need a means of capturing messages that the Game sends to STDOUT.

The trick, of course, is that we’re running Cucumber in the console, and it is
already using STDOUT. We need a fake object that the Game thinks is STDOUT,
but it really just captures messages for us so we can set expectations about
those messages.

4.3 Test Double

A fake object that pretends to be real object is called a test double. You’re
probably familiar with stubs and mocks. Test double is a generic name for

report erratum • discuss

Test Double • 41

http://media.pragprog.com/titles/achbd/code/cb/04/features/support/env.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

them, along with fakes, spies, and so on, and so on. You’ll read all about test
doubles in Chapter 14, RSpec::Mocks, on page 173.

Given that we’ll use a test double for output, here is what we want the step
definition to look like:

cb/06/features/step_definitions/codebreaker_steps.rb
Then /^I should see "([^"]*)"$/ do |message|

output.messages.should include(message)
end

Again, we’re writing the code we wish we had so that we know what code to
add. This line suggests that our fake object should have a messages collection.
We’ll also want it to have a puts() method that the Game can use.

Here’s what that looks like:

cb/06/features/step_definitions/codebreaker_steps.rb
class Output
def messages
@messages ||= []

end
def puts(message)

messages << message
end

end
def output

@output ||= Output.new
end

The output() method uses a caching technique called memoization. The first
time output() is called, it creates an Output, stores it in an @output variable, and
returns it. If it gets called again, it returns the same Output object.

Now we need to give the Game a reference to the Output. Modify the When step
as follows:

cb/06/features/step_definitions/codebreaker_steps.rb
When /^I start a new game$/ do

game = Codebreaker::Game.new(output)
game.start

end

Run cucumber after making these modifications and additions to codebreak-
er_steps.rb. You should see the following output:

Scenario: start game
Given I am not yet playing
When I start a new game
wrong number of arguments (1 for 0) (ArgumentError)

Chapter 4. Automating Features with Cucumber • 42

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/06/features/step_definitions/codebreaker_steps.rb
http://media.pragprog.com/titles/achbd/code/cb/06/features/step_definitions/codebreaker_steps.rb
http://media.pragprog.com/titles/achbd/code/cb/06/features/step_definitions/codebreaker_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We need to modify the game to accept the output object passed to new:

cb/07/lib/codebreaker/game.rb
module Codebreaker

class Game
def initialize(output)➤

end➤

def start
end

end
end

Now run Cucumber again, and this time you should see this:

Scenario: start game
Given I am not yet playing
When I start a new game
Then I should see "Welcome to Codebreaker!"
expected [] to include "Welcome to Codebreaker!"

So far, all the failures we’ve seen have been because of exceptions and errors.
We now have our first logical error, so it’s time to add some behavior to our
Game. For that we’re going to shift gears and jump over to RSpec. Before we
do, however, let’s review what we’ve just learned.

4.4 What We’ve Learned

At this point, we’ve made our way through the second step in the concentric
cycles described in Section 1.5, The BDD Cycle, on page 8: we now have a
Cucumber step, which is failing with a logical failure. And we’ve also laid
quite a bit of foundation.

We’ve set up the development environment for the Codebreaker game, with
a conventional directory layout for Ruby libraries. We expressed the first
feature from the outside using Cucumber, with automatable acceptance cri-
teria using the simple language of Given, When, Then.

So far, we’ve been describing things from the outside with Cucumber. In the
next chapter, we’ll begin to work our way from the outside in, using RSpec
to drive out behavior of individual objects.

report erratum • discuss

What We’ve Learned • 43

http://media.pragprog.com/titles/achbd/code/cb/07/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 5

Describing Code with RSpec
In the previous chapter, we introduced and used Cucumber to describe the
behavior of our Codebreaker game from the outside, at the application level.
We wrote step definitions for our first Cucumber feature that will handle the
steps in the scenario, and we left off with a failing step: we’re expecting Game
to send a message to our fake Output, but its array of messages is empty.

In this chapter, we’re going to use RSpec to describe behavior at a much more
granular level: the expected behavior of instances of the Game class.

5.1 Getting Started with RSpec

To get going, create a spec directory, with a subdirectory named codebreaker.
Now create a file named game_spec.rb in spec/codebreaker/. As we progress, we’ll
maintain a parallel structure like this in which each source file (for example,
lib/codebreaker/game.rb) has a parallel spec file (for example, spec/codebreaker/
game_spec.rb). See Shouldn't We Avoid a One-to-One Mapping?, on page 46 for
more on this. Add the following to game_spec.rb:

cb/08/spec/codebreaker/game_spec.rb
require 'spec_helper'Line 1

2

module Codebreaker3

describe Game do4

describe "#start" do5

it "sends a welcome message"6

it "prompts for the first guess"7

end8

end9

end10

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/08/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The first two statements are standard Ruby. We require a file named
spec_helper.rb on line 1. We’ll actually store that file in the spec directory, which
RSpec adds to the global $LOAD_PATH. More on that in a minute.

The second statement declares a Ruby module named Codebreaker. This isn’t
necessary in order to run the specs, but it provides some conveniences. For
example, we don’t have to fully qualify Game on line 4.

The describe() method hooks into RSpec’s API and returns a subclass of
RSpec::Core::ExampleGroup. As its name suggests, this is a group of examples of
the expected behavior of an object. If you’re accustomed to xUnit tools like
Test::Unit, you can think of an ExampleGroup as being akin to a TestCase.

The it() method creates an example. Technically, it’s an instance of the Exam-
pleGroup returned by describe(), but you really don’t need to worry about that at
this point. We’ll get into the details of the underlying framework in Chapter
12, Code Examples, on page 133.

Joe asks:

Shouldn’t We Avoid a One-to-One Mapping?
Perhaps you’ve heard that a one-to-one mapping between objects and their specs is
a BDD no-no. There is some truth to this, but the devil is in the details.

We want to avoid a strict adherence to a structure in which every object has a single
example group and every method has a single code example. That sort of structure
leads to long examples that take an object through many phases, setting expectations
at several stopping points in each example. Examples like these are difficult to write
to begin with and much more difficult to understand and debug later.

A one-to-one mapping of spec-file to application-code-file, however, is not only per-
fectly fine but actually beneficial. It makes it easier to understand where to find the
specs for code you might be looking at. It also makes it easier for tools to automate
shortcuts like the one in the RSpec TextMate bundle, which switches between spec-
file and application-code-file with Ctrl+Shift+Down.

Connect the Specs to the Code

Before we can run this, we need to add the spec_helper.rb required on line 1.
Create that now, and add the following:

cb/08/spec/spec_helper.rb
require 'codebreaker'

Chapter 5. Describing Code with RSpec • 46

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/08/spec/spec_helper.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Similar to what we did with Cucumber’s env.rb in the previous chapter,
spec/codebreaker/game_spec.rb requires spec/spec_helper.rb, which requires lib/codebreak-
er.rb, which, in turn, requires lib/codebreaker/game.rb.

Open a shell and cd to the codebreaker project root directory, and run the
game_spec.rb file with the rspec command,1 like this:

rspec spec/codebreaker/game_spec.rb --format doc

You should see output similar to this:

Codebreaker::Game
#start

sends a welcome message (PENDING: Not Yet Implemented)
prompts for the first guess (PENDING: Not Yet Implemented)

Pending:
Codebreaker::Game#start sends a welcome message

Not Yet Implemented
./spec/codebreaker/game_spec.rb:6

Codebreaker::Game#start prompts for the first guess
Not Yet Implemented
./spec/codebreaker/game_spec.rb:7

The --format doc option tells RSpec to format the output using the same nesting
we see in the nested describe blocks in the file. We see Codebreaker::Game on
the first line because we wrapped describe Game do inside the Codebreaker module.

The second line shows the string we passed to describe(), and the third and
fourth lines show the strings we passed to it().

“PENDING: Not Yet Implemented” tells us that we have to implement those
examples, which we do by passing a block to the it() method. Without the
block, the example is considered pending.

After RSpec outputs all the strings we passed to describe() and it(), it lists all
the pending examples and their locations. This is followed by a summary that
tells us how many examples were run, how many failed, and how many are
pending.

5.2 Red: Start with a Failing Code Example

In game_spec.rb, we want to do what we’ve done in the feature: specify that
when we start the game, it sends the right messages to the output. Start by
modifying game_spec.rb as follows:

1. The rspec command is installed when you install the rspec gem.

report erratum • discuss

Red: Start with a Failing Code Example • 47

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cb/09/spec/codebreaker/game_spec.rb
require 'spec_helper'
module Codebreaker

describe Game do
describe "#start" do
it "sends a welcome message" do➤

output = double('output')➤

game = Game.new(output)➤

output.should_receive(:puts).with('Welcome to Codebreaker!')➤

game.start➤

end➤

it "prompts for the first guess"
end

end
end

Just as we did in the scenario, we want a test double to stand in for the real
STDOUT. Instead of rolling our own as we did in the scenario, however, we’re
using RSpec’s dynamic test double framework, RSpec::Mocks,2 to create a
dynamic test double on the first line of the example.

Next, we create a Game object, passing it the test double output we created on
the previous line. These first two lines are the givens in this example.

The next line sets up a message expectation: an expectation that the output
object should receive the puts message with the string “Welcome to Codebreak-
er!” as its only argument. If it does, then the expectation will pass. If not, we’ll
get a failure.

We send the game the start message on the last line. The intent here is that
when we call game.start, the output should receive puts('Welcome to Codebreaker!').

Now run the rspec command again, but this time use the --color flag:

rspec spec --color --format doc

Codebreaker::Game
#start

sends a welcome message (FAILED - 1)
prompts for the first guess (PENDING: Not Yet Implemented)

Pending:
Codebreaker::Game#start prompts for the first guess

Not Yet Implemented
./spec/codebreaker/game_spec.rb:17

Failures:
1) Codebreaker::Game#start sends a welcome message

2. See Chapter 14, RSpec::Mocks, on page 173 for more about RSpec::Mocks.

Chapter 5. Describing Code with RSpec • 48

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/09/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Failure/Error: output.should_receive(:puts).with('Welcome to Codebreaker!')
(Double "output").puts("Welcome to Codebreaker!")

expected: 1 time
received: 0 times

./spec/codebreaker/game_spec.rb:11

Finished in 0.00143 seconds
2 examples, 1 failure, 1 pending

And voila! We have red, a failing example. Sometimes failures are logical fail-
ures, and sometimes they’re errors. In this case, we have a failure. Regardless,
once we have red, we want to get to green.

The summary at the bottom of the output tells us we have one failure and
one pending example. On the third line, we see FAILED - 1, which tells us that
the example is the first failure recorded, the details of which are listed
beginning on the line with 1). If we had more failures, they’d each be numbered
in sequence.

5.3 Green: Get the Example to Pass

The failure message tells us that output never received puts. Here’s what we
need to do to get this example to pass:

cb/10/lib/codebreaker/game.rb
module Codebreaker

class Game
def initialize(output)
@output = output➤

end
def start

@output.puts 'Welcome to Codebreaker!'➤

end
end

end

Make those changes, run the rspec command again, and you should see:

Codebreaker::Game
#start

sends a welcome message
prompts for the first guess (PENDING: Not Yet Implemented)

Pending:
Codebreaker::Game#start prompts for the first guess

Not Yet Implemented
./spec/codebreaker/game_spec.rb:14

Finished in 0.00144 seconds
2 examples, 0 failures, 1 pending

report erratum • discuss

Green: Get the Example to Pass • 49

http://media.pragprog.com/titles/achbd/code/cb/10/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We have our first passing example! We’ve gone from red to green. The next
step in the cycle is to refactor. We don’t really have any duplication yet, so
let’s see whether we’ve had any impact on the features:

Scenario: start game
Given I am not yet playing
When I start a new game
Then I should see "Welcome to Codebreaker!"
And I should see "Enter guess:"
expected ["Welcome to Codebreaker!"] to include "Enter guess:"

Progress! Now one of the two Thens is passing, so it looks like we’re about
halfway done with this feature. Actually, we’re quite a bit more than halfway
done, because, as you’ll soon see, all the pieces are already in place for the
rest.

Next Step

The following failing step is the next thing to work on: And I should see “Enter guess:”.
Go ahead and add an example for this behavior to game_spec.rb:

cb/11/spec/codebreaker/game_spec.rb
require 'spec_helper'
module Codebreaker

describe Game do
describe "#start" do
it "sends a welcome message" do

output = double('output')
game = Game.new(output)

output.should_receive(:puts).with('Welcome to Codebreaker!')

game.start
end

it "prompts for the first guess" do➤

output = double('output')➤

game = Game.new(output)➤
➤

output.should_receive(:puts).with('Enter guess:')➤
➤

game.start➤

end➤

end
end

end

Chapter 5. Describing Code with RSpec • 50

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/11/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This is very similar to the first example, but we’re expecting a different mes-
sage. We’ll come back and DRY that up in a bit, but first let’s get it passing.
Run the spec, and watch it fail:

Codebreaker::Game
#start

sends a welcome message
prompts for the first guess (FAILED - 1)

Failures:
1) Codebreaker::Game#start prompts for the first guess

Failure/Error: game.start
Double "output" received :puts with unexpected arguments

expected: ("Enter guess:")
got: ("Welcome to Codebreaker!")

./lib/codebreaker/game.rb:8:in `start'
./spec/codebreaker/game_spec.rb:22

Finished in 0.00199 seconds
2 examples, 1 failure

This time, the output didn’t receive puts('Enter guess:'). Resolve that as follows:

cb/12/lib/codebreaker/game.rb
module Codebreaker

class Game
def initialize(output)
@output = output

end
def start
@output.puts 'Welcome to Codebreaker!'
@output.puts 'Enter guess:'➤

end
end

end

Run the rspec command:

Codebreaker::Game
#start

sends a welcome message (FAILED - 1)
prompts for the first guess (FAILED - 2)

Failures:
1) Codebreaker::Game#start sends a welcome message

Failure/Error: game.start
Double "output" received :puts with unexpected arguments

expected: ("Welcome to Codebreaker!")
got: ("Enter guess:")

./lib/codebreaker/game.rb:10:in `start'
./spec/codebreaker/game_spec.rb:12

report erratum • discuss

Green: Get the Example to Pass • 51

http://media.pragprog.com/titles/achbd/code/cb/12/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

2) Codebreaker::Game#start prompts for the first guess
Failure/Error: game.start
Double "output" received :puts with unexpected arguments

expected: ("Enter guess:")
got: ("Welcome to Codebreaker!")

./lib/codebreaker/game.rb:8:in `start'
./spec/codebreaker/game_spec.rb:21

Finished in 0.00219 seconds
2 examples, 2 failures

And ta-da! Now not only is the second example still failing, but the first
example is failing as well! Who’da thunk? This may seem a bit confusing if
you’ve never worked with test doubles and message expectations before, but
test doubles are like computers. They are extraordinarily obedient, but they
are not all that clever. By default, they will expect exactly what you tell them
to expect, nothing more and nothing less.

We’ve told the double in the first example to expect puts() with “Welcome to
Codebreaker!” and we’ve satisfied that requirement, but we’ve only told it to
expect “Welcome to Codebreaker!” It doesn’t know anything about “Enter
guess:”

Similarly, the double in the second example expects “Enter guess:” but the
first message it gets is “Welcome to Codebreaker!”

We could combine these two into a single example, but we like to follow the
guideline of “one expectation per example.” The rationale here is that if there
are two expectations in an example that should both fail given the implemen-
tation at that moment, we’ll only see the first failure. No sooner do we meet
that expectation than we discover that we haven’t met the second expectation.
If they live in separate examples, then they’ll both fail, and that will provide
us with more accurate information than if only one of them is failing.

We could also try to break the messages up into different steps, but we’ve
already defined how we want to talk to the game object. So, how can we resolve
this?

as_null_object

There are a couple of ways we can go about it, but the simplest way is to tell
the double output to only listen for the messages we tell it to expect and ignore
any other messages.3 This is based on the Null Object design pattern described

3. Actually, that’s not completely true. Unexpected messages are actually recorded because
it is sometimes helpful to include them in failure messages.

Chapter 5. Describing Code with RSpec • 52

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

in Pattern Languages of Program Design 3 [MRB97] and is supported by RSpec’s
double framework with the as_null_object() method:

cb/13/spec/codebreaker/game_spec.rb
require 'spec_helper'

module Codebreaker
describe Game do

describe "#start" do
it "sends a welcome message" do

output = double('output').as_null_object➤

game = Game.new(output)

output.should_receive(:puts).with('Welcome to Codebreaker!')

game.start
end

it "prompts for the first guess" do
output = double('output').as_null_object➤

game = Game.new(output)

output.should_receive(:puts).with('Enter guess:')

game.start
end

end
end

end

Run the rspec command again, and you should see this:

Codebreaker::Game
#start

sends a welcome message
prompts for the first guess

Finished in 0.00174 seconds
2 examples, 0 failures

Good news. Both examples are now passing. Now that we have green, it’s
time to refactor!

5.4 Refactor

In the preface to his seminal book on Refactoring [FBBO99], Martin Fowler
writes, “Refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet improves its
internal structure.”

report erratum • discuss

Refactor • 53

http://media.pragprog.com/titles/achbd/code/cb/13/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

How do we know that we’re not changing behavior? We run the examples
between every change. If they pass, we’ve refactored successfully. If any fail,
we know that the very last change we made caused a problem, and we either
quickly recognize and address the problem or roll back that step to get back
to green and try again.

Fowler talks about changing the designs of systems, but on a more granular
scale, we want to refactor to, for example, eliminate duplication in the
implementation and examples. Looking back at game_spec.rb, we can see that
the first two lines of each example are identical. Perhaps you noticed this
earlier, but we prefer to refactor in the green rather than in the red. Also, the
intent of the examples is expressed in the last two lines of each.

before(:each)

In this case, we have a very clear break between what is context and what is
behavior, so let’s take advantage of that and move the context to a block that
is executed before each of the examples. Modify game_spec.rb as follows:

cb/14/spec/codebreaker/game_spec.rb
require 'spec_helper'
module Codebreaker

describe Game do
describe "#start" do
before(:each) do➤

@output = double('output').as_null_object➤

@game = Game.new(@output)➤

end➤

it "sends a welcome message" do
@output.should_receive(:puts).with('Welcome to Codebreaker!')➤

@game.start➤

end

it "prompts for the first guess" do
@output.should_receive(:puts).with('Enter guess:')➤

@game.start➤

end
end

end
end

Just as you might expect from reading this, the block passed to before(:each)
will be run before each example. The before block and the example are exe-
cuted in the same object, so they have access to the same instance variables.

Adding all of those @ symbols can be tedious and error prone, so RSpec offers
an alternative approach.

Chapter 5. Describing Code with RSpec • 54

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/14/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

let(:method) {}

When the code in a before block is only creating instance variables and
assigning them values, which is most of the time, we can use RSpec’s let()
method instead. let() takes a symbol representing a method name and a block,
which represents the implementation of that method. Here’s the same example,
using let():

cb/15/spec/codebreaker/game_spec.rb
require 'spec_helper'
module Codebreaker

describe Game do
describe "#start" do
let(:output) { double('output').as_null_object }➤

let(:game) { Game.new(output) }➤

it "sends a welcome message" do
output.should_receive(:puts).with('Welcome to Codebreaker!')➤

game.start➤

end
it "prompts for the first guess" do
output.should_receive(:puts).with('Enter guess:')➤

game.start➤

end
end

end
end

The first call to let() defines a memoized output() method that returns a double
object. Memoized means that the first time the method is invoked, the return
value is cached and that same value is returned every subsequent time the
method is invoked within the same scope. That fact doesn’t affect our current
example, but it will come in handy a bit later.

Now run the feature again:

Feature: code-breaker starts game

As a code-breaker
I want to start a game
So that I can break the code

Scenario: start game
Given I am not yet playing
When I start a new game
Then I should see "Welcome to Codebreaker!"
And I should see "Enter guess:"

1 scenario (1 passed)
4 steps (4 passed)
0m0.003s

report erratum • discuss

Refactor • 55

http://media.pragprog.com/titles/achbd/code/cb/15/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

And voilà! We now have our first passing code examples and our first passing
feature. There were a lot of steps to get there, but in practice this all really
takes just a few minutes, even with all the wiring and require statements.

We’ve also set up quite a bit of infrastructure. You’ll see, as we move along,
that there is less and less new material needed to add more features, code
examples, and application code. It just builds gradually on what we’ve already
developed.

Now that we have a passing feature, it would be nice to see it in action. For
that, we’ll need to create and execute a simple script. Create a bin in the project
root directory (sibling to lib and spec), and add a bin/codebreaker file. If you’re on
a *nix system, enter this code in that file:

cb/15/bin/codebreaker
#!/usr/bin/env ruby
$LOAD_PATH.unshift File.expand_path('../../lib', __FILE__)
require 'codebreaker'

game = Codebreaker::Game.new(STDOUT)
game.start

Windows users use the same script without the first line and also add
bin/codebreaker.bat with the following:

cb/15/bin/codebreaker.bat
@"ruby.exe" "%~dpn0" %*

If you’re on *nix, now run chmod+x bin/codebreaker so we can execute it, and then
run this:

$ bin/codebreaker
Welcome to Codebreaker!
Enter guess:

Now look at that! Who knew that this little bit of code was actually going to
start to make something work? Of course, our Codebreaker game just says
hello and then climbs back in its cave, so we have a ways to go before you’ll
want to show this off to all your friends.

In the next chapter, we’ll start to get down to the real fun, submitting guesses
and having the game score them. But before we move on, let’s review what
we’ve done thus far.

Chapter 5. Describing Code with RSpec • 56

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/15/bin/codebreaker
http://media.pragprog.com/titles/achbd/code/cb/15/bin/codebreaker.bat
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

5.5 What We’ve Learned

We started this chapter with a logical failure in a Cucumber scenario. This
was our cue to jump from the outer circle (Cucumber) to the inner circle
(RSpec) of the BDD cycle.

We then followed the familiar TDD red/green/refactor cycle using RSpec.
Once we had a passing code example, we reran the Cucumber scenario. We
saw that we had gotten our first Then step to pass, but there was one more
that was failing, so we jumped back down to RSpec, went through another
red/green/refactor cycle, and now the whole scenario was passing.

This is the BDD cycle. Driving development from the outside in, starting with
business-facing scenarios in Cucumber and working our way inward to the
underlying objects with RSpec.

The material in the next chapter, submitting guesses, is going to present some
interesting challenges. It will expose you to some really cool features in
Cucumber, as well as some thought-provoking discussion about the relation-
ship between Cucumber scenarios and RSpec code examples. So, take a few
minutes break, drink up some brain juice, and meet us at the top of the next
chapter.

report erratum • discuss

What We’ve Learned • 57

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 6

Adding New Features
Welcome back! We left off with the Codebreaker game inviting us to guess
the secret code but then leaving us hanging at the command line. The next
feature we’re going to tackle is to subimt a guess and get feedback from the
Codebreaker game as to how close the guess is to breaking the secret code.

This feature is going to introduce an algorithm for marking a guess. This is
where things start to get really interesting because algorithms tend to cover
a lot of possible cases with a small amount of code. As you’ll see, we’re going
to have a lot more scenarios and specs than we did for the Code-breaker starts
game feature. Luckily, we have tools in both RSpec and Cucumber to keep
things readable and DRY.

6.1 Scenario Outlines in Cucumber

Here’s the Cucumber feature we wrote back in Section 3.3, Planning the First
Iteration, on page 25:

cb/15/features/codebreaker_submits_guess.feature
Feature: code-breaker submits guess

The code-breaker submits a guess of four numbers. The game marks the guess
with + and - signs.

For each number in the guess that matches the number and position of a number
in the secret code, the mark includes one + sign. For each number in the guess
that matches the number but not the position of a number in the secret code,
the mark includes one - sign.

Scenario Outline: submit guess
Given the secret code is "<code>"
When I guess "<guess>"
Then the mark should be "<mark>"

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/15/features/codebreaker_submits_guess.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Scenarios: no matches
| code | guess | mark |
| 1234 | 5555 | |

Scenarios: 1 number correct
code	guess	mark
1234	1555	+
1234	2555	-

Scenarios: 2 numbers correct
code	guess	mark
1234	5254	++
1234	5154	+-
1234	2545	--

Scenarios: 3 numbers correct
code	guess	mark
1234	5234	+++
1234	5134	++-
1234	5124	+--
1234	5123	---

Scenarios: all numbers correct
code	guess	mark
1234	1234	++++
1234	1243	++--
1234	1423	+---
1234	4321	----

The narrative is self-explanatory. After that, we use a scenario outline, which
we introduced in Scenario Outlines, on page 30. Briefly, the rows in the sce-
narios tables provide data for the <placeholders> in the scenario outline. To
figure out what our next step is, run the Code-breaker submits guess feature with
the following command:

cucumber features/codebreaker_submits_guess.feature

As we saw earlier, the output includes the contents of the file listed previously,
plus a summary and code snippets for any undefined steps. Here is the
summary and just a few of the code snippets:

14 scenarios (14 undefined)
42 steps (42 undefined)
0m0.031s

You can implement step definitions for undefined steps with these snippets:

Given /^the secret code is "([^"]*)"$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Chapter 6. Adding New Features • 60

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

When /^I guess "([^"]*)"$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Then /^the mark should be "([^"]*)"

The summary says we have fourteen scenarios, one for each nonheader row
in the tables in each group of scenarios. All fourteen scenarios are considered
undefined because we don’t have step definitions defined for them. So now,
with that help from Cucumber, let’s write some step definitions.

Step Definitions

Step definitions for scenario outlines and tables are just like the step defini-
tions we learned about in Chapter 4, Automating Features with Cucumber, on
page 35. We’ll still provide regular expressions that capture input data and
a block of code that interacts with the application code.

Copy the first snippet into features/step_definitions/codebreaker_steps.rb, and modify
it as follows:

cb/16/features/step_definitions/codebreaker_steps.rb
Given /^the secret code is "([^"]*)"$/ do |secret|

game = Codebreaker::Game.new(output)
game.start(secret)

end

The Regexp captures a group of characters in quotes. This will capture the
code (1234, for example) and pass it to the body of the step definition. The first
line of the body should look familiar, because it is just like the first step in I
start a new game. Then the last line passes in the secret code from the match
group.

Now run cucumber again, and you’ll see output including this:

Scenarios: no matches
| code | guess | mark |
| 1234 | 5555 | |
wrong number of arguments (1 for 0) (ArgumentError)
./features/step_definitions/codebreaker_steps.rb:20:in `start'

You should see the ArgumentError for every scenario. This is actually good news,
because the error tells us that everything is wired up correctly, and we now
know what we have to do next: get the start() method on Game to accept the
secret code as an argument.

report erratum • discuss

Scenario Outlines in Cucumber • 61

http://media.pragprog.com/titles/achbd/code/cb/16/features/step_definitions/codebreaker_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

6.2 Responding to Change

At this point, all the RSpec code examples are passing, but we have failing
Cucumber scenarios. We’re “in the meantime,” so to speak, where changing
requirements from the outside are rendering our requirements on the inside
incorrect.

Our new step definition wants Game.start() to accept the secret code as an
argument, but our RSpec examples assume that start() does not take any
arguments. If we just add the argument to start(), then the specs fail with an
argument error as well, but with 0 for 1 instead of 1 for 0. To keep the specs
passing while we’re making changes to support the scenarios, modify start()
to accept an argument with a default value, like so:

cb/17/lib/codebreaker/game.rb
def start(secret=nil)➤

@output.puts 'Welcome to Codebreaker!'
@output.puts 'Enter guess:'

end

Run the specs, and they should all still pass. Now run the codebreaker_sub-
mits_guess scenarios, and you should see this:

14 scenarios (14 undefined)
42 steps (28 undefined, 14 passed)
0m0.028s

At this point, the scenarios are either passing or undefined, but none is failing,
and the specs are passing. Now we can go in and modify the specs to pass a
secret code to start(), like this:

cb/18/spec/codebreaker/game_spec.rb
it "sends a welcome message" do

output.should_receive(:puts).with('Welcome to Codebreaker!')
game.start('1234')➤

end
it "prompts for the first guess" do
output.should_receive(:puts).with('Enter guess:')
game.start('1234')➤

end

Run the examples, and watch them pass. Now modify start() again, this time
removing the default value from the method definition:

cb/18/lib/codebreaker/game.rb
def start(secret)➤

@output.puts 'Welcome to Codebreaker!'
@output.puts 'Enter guess:'

end

Chapter 6. Adding New Features • 62

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/17/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/18/spec/codebreaker/game_spec.rb
http://media.pragprog.com/titles/achbd/code/cb/18/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the examples one more time, and they should still pass. Now run the
codebreaker_submits_guess scenarios again, and they should still be passing or
undefined. But what about the codebreaker_starts_game scenario?

Assess the Impact on Other Features

Now that we don’t have any failures in the feature we’re working on or the
specs, run cucumber with no arguments to run all (both) of the features. The
output should include this:

When I start a new game
wrong number of arguments (0 for 1) (ArgumentError)
./features/step_definitions/codebreaker_steps.rb:25:in `start'

The step definition for When I start a new game is still calling start() with no argu-
ment. Modify that as follows:

cb/19/features/step_definitions/codebreaker_steps.rb
When /^I start a new game$/ do

game = Codebreaker::Game.new(output)
game.start('1234')➤

end

Now all the specs should be passing, and all the scenarios are either passing
or undefined.

A Small Change Goes a Long Way

We still have twenty-eight steps undefined, but we now have fourteen passing
steps in codebreaker_submits_guess.feature. These are all the Given steps. Remember,
each row in the tables represents a separate scenario. Until we get to the
point where the failures are logical failures, as opposed to runtime errors
due to structural discrepancies, a small change is likely to impact all of the
scenarios at once.

The remaining undefined steps are the When steps that actually submit the
guess and the Then steps that set the expectation that the game should mark
the guess. Copy the snippet for the When step into codebreaker_steps.rb, and
modify it as follows:

cb/20/features/step_definitions/codebreaker_steps.rb
When /^I guess "([^"]*)"$/ do |guess|

@game.guess(guess)
end

Similar to the Given step, we capture the guess in the regular expression and
pass it on to the Game, this time via the guess() method. This new step is
expecting an @game instance variable, so modify the Given step as follows:

report erratum • discuss

Responding to Change • 63

http://media.pragprog.com/titles/achbd/code/cb/19/features/step_definitions/codebreaker_steps.rb
http://media.pragprog.com/titles/achbd/code/cb/20/features/step_definitions/codebreaker_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cb/20/features/step_definitions/codebreaker_steps.rb
Given /^the secret code is "([^"]*)"$/ do |secret|

@game = Codebreaker::Game.new(output)➤

@game.start(secret)➤

end

Run the features again, and you’ll see this in the output:

Scenarios: no matches
| code | guess | mark |
| 1234 | 5555 | |
undefined method `guess' for #<Codebreaker::Game:0x10219f728> (NoMethodError)

We wrote the code we wish we had, but we don’t have it! The Game has no
guess() method, so we’ll need to add one. Add this to game.rb:

cb/21/lib/codebreaker/game.rb
class Game
def initialize(output)
@output = output

end

def start(secret)
@output.puts 'Welcome to Codebreaker!'
@output.puts 'Enter guess:'

end

def guess(guess)➤

end➤

end

Now run the scenarios:

14 scenarios (14 undefined)
42 steps (14 undefined, 28 passed)
0m0.024s

You can implement step definitions for undefined steps with these snippets:

Then /^the mark should be "([^"]*)"$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Again, there are no failures, but now there are only fourteen steps undefined.
These are the Then steps. Copy the last snippet to codebreaker_steps.rb, and
modify it like this:

cb/22/features/step_definitions/codebreaker_steps.rb
Then /^the mark should be "([^"]*)"$/ do |mark|

output.messages.should include(mark)
end

Now run the scenarios again, and you should see this:

Chapter 6. Adding New Features • 64

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/20/features/step_definitions/codebreaker_steps.rb
http://media.pragprog.com/titles/achbd/code/cb/21/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/22/features/step_definitions/codebreaker_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Scenarios: no matches
| code | guess | mark |
| 1234 | 5555 | |
expected ["Welcome to Codebreaker!", "Enter guess:"] to include ""

(Spec::Expectations::ExpectationNotMetError)

Fantastic! Instead of an exception or a structural error, we’re getting a logical
failure on the Then step. Even though this is happening in all fourteen sce-
narios, this is good news because we know that we have all the step definitions
we need and everything is wired up correctly. Now it’s time to drill down to
RSpec and drive out the solution with isolated code examples.

6.3 What We’ve Learned

In this chapter, we explored scenario outlines in Cucumber, which allow us
to express groups of similar scenarios in a readable, scannable, and DRY
format.

We also added a new feature to an existing code base. In doing so, we intro-
duced a change that would lead to many failures at once if we had used brute
force and just made the change: adding a parameter to a method signature.
Instead of brute force, we assigned a default value to the parameter. This
kept the existing specs passing and allowed us to make progress on the
Cucumber scenarios. We later removed the default parameter, once it became
obsolete.

Although this is just one simple technique, it demonstrates and reinforces
the notion that code is always in motion, and we are able to keep it moving
with confidence if we keep the examples passing.

report erratum • discuss

What We’ve Learned • 65

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 7

Specifying an Algorithm
The RSpec code examples we wrote for the Codebreaker starts game feature specified
a simple responsibility of the Game: send messages to the output. The next
responsibility is more complex. We need to specify the algorithm we’re going
to use to mark a guess submitted by the codebreaker.

We have fourteen scenarios for this, all of which are failing because the
marking algorithm hasn’t been written yet. They all have to pass for this fea-
ture to be done, so no single scenario is more important than the next. So,
which one should we start with?

7.1 Begin with the Simplest Example

From the perspective of business value, the order in which we get the scenarios
within a feature to pass doesn’t really matter. This suggests that we should

pick examples that will make it easy for us to progress in small steps.

At any point in this part of the process, we want to find the example that we
think would be the simplest to implement. With no examples written yet, the
simplest example is probably one in which there are no matches in the guess,
so the mark is empty. As it happens, that’s the first scenario in the feature
as well, but even if it weren’t, this would be a good place to start.

Make the following changes to game_spec.rb:

cb/24/spec/codebreaker/game_spec.rb
require 'spec_helper'

module Codebreaker
describe Game do

let(:output) { double('output').as_null_object }➤

let(:game) { Game.new(output) }➤

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/24/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe "#start" do
it "sends a welcome message" do

output.should_receive(:puts).with('Welcome to Codebreaker!')
game.start('1234')

end

it "prompts for the first guess" do
output.should_receive(:puts).with('Enter guess:')
game.start('1234')

end
end

describe "#guess" do➤

context "with no matches" do➤

it "sends a mark with ''" do➤

game.start('1234')➤

output.should_receive(:puts).with('')➤

game.guess('5555')➤

end➤

end➤

end➤

end
end

We moved the let() statements up a block so they are in scope in the new
example. See Section 12.6, Nested Example Groups, on page 148 for more about
nested example groups and scopes.

The output allows the messages it receives when we call start() because it uses
as_null_object. The only message it cares about is the one we specify in the
example—that it should receive puts() with an empty string.

Run the rspec command, and you should see this:

1) Codebreaker::Game #guess with no matches sends a mark with ''
Failure/Error: output.should_receive(:puts).with('')
(Double "output").puts("")

expected: 1 time
received: 0 times

./spec/codebreaker/game_spec.rb:27

The failure message tells us that output received the messages sent when we
called start, but not the empty string we’re expecting now. To get this to pass,
modify the guess() method as follows:

cb/25/lib/codebreaker/game.rb
def guess(guess)
@output.puts ''➤

end

Chapter 7. Specifying an Algorithm • 68

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/25/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the specs again, and they should pass. Now go back and run the features,
and you should see that the first scenario is passing, but the rest are failing.
One down, thirteen to go.

With the simplest example passing, what example should we write next?

Follow Up with the Next Simplest Example

Again, we want to find an example that would fail given the current implemen-
tation and be simple to implement. Given that we started with no matches,
the next simplest example would probably be one match, but which kind?
We can have an exact match, which is when a number in the guess is in the
secret code in the same position, or a number match, which is when a number
in the guess is in the secret code but not in the same position.

Thinking briefly about the implementation of each, one might argue that the
exact match would be easier to implement because we have to examine only
one position in the secret code. Of course, one might also argue that, given
the fact that we don’t have any examples with exact matches right now, we
can determine a number match by simply asking whether the secret contains
a specific number. We’re going to go with the latter, but please feel free to
experiment with this after you’ve gone through the chapter.

Add the following example:

cb/26/spec/codebreaker/game_spec.rb
describe "#guess" do

context "with no matches" do
it "sends a mark with ''" do
game.start('1234')
output.should_receive(:puts).with('')
game.guess('5555')

end
end

context "with 1 number match" do➤

it "sends a mark with '-'" do➤

game.start('1234')➤

output.should_receive(:puts).with('-')➤

game.guess('2555')➤

end➤

end➤

end

Run the specs, and the new example fails with this:

1) Codebreaker::Game #guess with 1 number match sends a mark with '-'
Failure/Error: output.should_receive(:puts).with('-')
Double "output" received :puts with unexpected arguments

report erratum • discuss

Begin with the Simplest Example • 69

http://media.pragprog.com/titles/achbd/code/cb/26/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

expected: ("-")
got: ("")

./spec/codebreaker/game_spec.rb:34

The current implementation of guess always sends an empty string to the output.
We still want it to do that for the first example, but this new example is
expecting a minus sign. Here’s a simple solution:

cb/27/lib/codebreaker/game.rb
def start(secret)

@secret = secret➤

@output.puts 'Welcome to Codebreaker!'
@output.puts 'Enter guess:'

end
def guess(guess)
if @secret.include?(guess[0])➤

@output.puts '-'➤

else➤

@output.puts ''
end➤

end
end

The code should be self-explanatory. Run the examples, and you should see
them pass. Admittedly, this works only because the matching number in the
example is in the first position (index 0) in the guess. If it were anywhere else,
our implementation would have to use a different index.

This is one of those moments that makes people who are new to TDD
uncomfortable. We know with some certainty that this is not the implemen-
tation we want when we’re finished, and we might even have a good idea of
what that implementation should be. The problem is that we don’t have
enough examples to really specify what this code should do, so any code that
we write right now would be speculative.

This should all make sense by the time we get to the end of the chapter, but
for now, let’s move on to the next step. We just made a failing example pass,
so it’s time to refactor.

7.2 Refactor to Remove Duplication

As we discussed earlier, refactoring is a technique for improving a design
without changing behavior. There are many ways in which we can improve
a design. The most common is to remove duplication, so let’s start with that.
There are two lines in the guess method that are sending messages to output.

Chapter 7. Specifying an Algorithm • 70

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/27/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Let’s start by extracting that to a single statement. Modify the guess() method
as follows:

cb/28/lib/codebreaker/game.rb
def guess(guess)
if @secret.include?(guess[0])

mark = '-'➤

else
mark = ''➤

end
@output.puts mark➤

end

Now run the specs, and make sure they all still pass. Then, run the scenarios,
and you should see that we have two of them passing. Progress!

Looking back at the spec, we have an example for no matches and one
number match, so let’s add an example for an exact match:

cb/30/spec/codebreaker/game_spec.rb
describe "#guess" do

context "with no matches" do
it "sends a mark with ''" do
game.start('1234')
output.should_receive(:puts).with('')
game.guess('5555')

end
end
context "with 1 number match" do

it "sends a mark with '-'" do
game.start('1234')
output.should_receive(:puts).with('-')
game.guess('2555')

end
end
context "with 1 exact match" do➤

it "sends a mark with '+'" do➤

game.start('1234')➤

output.should_receive(:puts).with('+')➤

game.guess('1555')➤

end➤

end➤

end

Run the specs, and you should see the new example fail with this message:

Failure/Error: output.should_receive(:puts).with('+')
Double "output" received :puts with unexpected arguments
expected: ("+")

got: ("-")
./spec/codebreaker/game_spec.rb:42

report erratum • discuss

Refactor to Remove Duplication • 71

http://media.pragprog.com/titles/achbd/code/cb/28/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/30/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We got a - instead of a + because the current implementation gives us a - if
the first number in the guess is anywhere in the code. We need to treat an
exact match differently from a number match. Modify the guess() method as
follows:

cb/31/lib/codebreaker/game.rb
def guess(guess)
if guess[0] == @secret[0]➤

mark = '+'➤

elsif @secret.include?(guess[0])➤

mark = '-'
else

mark = ''
end
@output.puts mark

end

Run the specs, and they should all pass, so let’s look for more refactoring
opportunities.

7.3 Refactor to Express Intent

The changes we just made didn’t add any new duplication, but removing
duplication is not the only way to improve a design. Take a look at the first
and third lines of the guess() method. Do they express intent well? Not really.
The first line is asking whether the first number is an exact match, and the
third line is asking whether it is a number match. We know that’s what it
means now because we just implemented the code, but it might not be so
clear to anyone else.

Here is a great opportunity to use the Extract Method refactoring to introduce
abstractions that more clearly express the intent of the guess() method. You
may think of classes and interfaces when we use the word abstraction, but
here’s another way to look at it: names are abstractions. That applies to names
of systems, components, packages, namespaces, classes, methods, and even
variable names. With that context, let’s extract an exact_match? method, like
this:

cb/32/lib/codebreaker/game.rb
def guess(guess)
if exact_match?(guess, 0)➤

mark = '+'
elsif @secret.include?(guess[0])
mark = '-'

else
mark = ''

Chapter 7. Specifying an Algorithm • 72

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/31/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/32/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

end
@output.puts mark

end

def exact_match?(guess, index)➤

guess[index] == @secret[index]➤

end➤

Run the specs, and they should still pass. Next, we’ll extract a number_match?
method:

cb/325/lib/codebreaker/game.rb
def guess(guess)
if exact_match?(guess, 0)

mark = '+'
elsif number_match?(guess, 0)➤

mark = '-'
else

mark = ''
end
@output.puts mark

end
def exact_match?(guess, index)

guess[index] == @secret[index]
end
def number_match?(guess, index)➤

@secret.include?(guess[index])➤

end➤

Run the specs again. They should still pass. Now read the code in the guess
method out loud. Paraphrasing in English, it sounds something like this: “If
we have an exact match in the first position, the mark is a single plus sign.
Else, if we have a number match in the first position, the mark is a single
minus sign. Else, the mark is empty.”

That is what we mean when we talk about self-documenting code.

Gradually Add Complexity

Run the scenarios, and you’ll see that three are passing now. The eleven
failing scenarios involve more than one match, so we’ll move on to multiple
matches. Add the following context and example to game_spec.rb:

cb/33/spec/codebreaker/game_spec.rb
context "with 2 number matches" do
it "sends a mark with '--'" do
game.start('1234')
output.should_receive(:puts).with('--')
game.guess('2355')

end
end

report erratum • discuss

Refactor to Express Intent • 73

http://media.pragprog.com/titles/achbd/code/cb/325/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/33/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the specs, and you should see this new example fail with the following
message:

1) Codebreaker::Game #guess with 2 number matches sends a mark with '--'
Failure/Error: output.should_receive(:puts).with('--')
Double "output" received :puts with unexpected arguments

expected: ("--")
got: ("-")

./spec/codebreaker/game_spec.rb:49

We’re getting one minus sign instead of the two that we were expecting because
the implementation only deals with the number in the first position, indicated
by the index 0 that we’re passing to number_match? and exact_match?. Modify the
guess method as follows:

cb/34/lib/codebreaker/game.rb
def guess(guess)
mark = ''➤

(0..3).each do |index|➤

if exact_match?(guess, index)
mark << '+'➤

elsif number_match?(guess, index)
mark << '-'➤

end
end➤

@output.puts mark
end

First, we declare a mark variable and assign it a value of empty string. We then
iterate through the four indices representing the positions in the guess. Then,
instead of assigning values to mark in the loop, we append to the same string.
We’re also able to remove the else branch in the conditional because there’s
no need to append an empty string.

Run the specs, and they should all pass. Run the scenarios, and you should
see that twelve are passing, leaving only three failing scenarios to go. The
failure messages include the following:

expected ["Welcome to Codebreaker!", "Enter guess:", "-+"] to include "+-"

expected ["Welcome to Codebreaker!", "Enter guess:", "-++"] to include "++-"

expected ["Welcome to Codebreaker!", "Enter guess:", "--+"] to include "+--"

We want the plus signs to appear before the minus signs, but each of these
failures are because of the minus signs showing up first. Let’s add an RSpec
example that exposes this:

Chapter 7. Specifying an Algorithm • 74

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/34/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cb/35/spec/codebreaker/game_spec.rb
context "with 1 number match and 1 exact match (in that order)" do
it "sends a mark with '+-'" do
game.start('1234')
output.should_receive(:puts).with('+-')
game.guess('2535')

end
end

The 2 in the first position of the guess is a number match, so it gets a minus
sign. The 3 in the third position is an exact match, so it gets a plus sign. Run
the specs, and this last example fails the same way as the scenario:

1) Codebreaker::Game #guess with 1 number match and 1 exact match (in that order)
sends a mark with '+-'

Failure/Error: output.should_receive(:puts).with('+-')
Double "output" received :puts with unexpected arguments

expected: ("+-")
got: ("-+")

./spec/codebreaker/game_spec.rb:57

To get this to pass, we have to make sure all the plus signs come before the
minus signs. One approach to this would be to split the iteration into two,
one that adds plus signs for the exact matches and one that adds minus signs
for the number matches.

Modify the guess() method as follows:

cb/37/lib/codebreaker/game.rb
def guess(guess)
mark = ''
(0..3).each do |index|➤

if exact_match?(guess, index)➤

mark << '+'➤

end➤

end➤

(0..3).each do |index|➤

if number_match?(guess, index)➤

mark << '-'➤

end➤

end➤

@output.puts mark
end

Run the specs, and you’ll see that in addition to our last example still failing,
we’ve also introduced a second failure:

Codebreaker::Game
#start

sends a welcome message
prompts for the first guess

report erratum • discuss

Refactor to Express Intent • 75

http://media.pragprog.com/titles/achbd/code/cb/35/spec/codebreaker/game_spec.rb
http://media.pragprog.com/titles/achbd/code/cb/37/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

#guess
with no matches

sends a mark with ''
with 1 number match
sends a mark with '-'

with 1 exact match
sends a mark with '+' (FAILED - 1)

with 2 number matches
sends a mark with '--'

with 1 number match and 1 exact match (in that order)
sends a mark with '+-' (FAILED - 2)

1) Codebreaker::Game #guess with 1 exact match sends a mark with '+'
Failure/Error: output.should_receive(:puts).with('+')
Double "output" received :puts with unexpected arguments
expected: ("+")

got: ("+-")
./spec/codebreaker/game_spec.rb:40

2) Codebreaker::Game #guess with 1 number match and 1 exact match (in that order)
sends a mark with '+-'

Failure/Error: output.should_receive(:puts).with('+-')
Double "output" received :puts with unexpected arguments

expected: ("+-")
got: ("+--")

./spec/codebreaker/game_spec.rb:56

Finished in 0.00237 seconds
7 examples, 2 failures

Learning from Rapid Feedback

One of the benefits of progressing in small steps is that when we introduce
a new failure, we know exactly what we just did, so we have context in which
we can analyze the failure. Both failures are because of one more minus sign
than we were expecting in the mark. What about the change we just made
would cause that to happen?

If you go back and look at the guess() method before we broke the single iterator
into two, the block had an if, elsif, else structure. The elsif branch was the one
that was adding minus signs to the mark, and it was executed only if the if
branch hadn’t already been executed.

Now take a look at the number_match? method. Can you see what’s missing? It
only looks to see whether the number is in the secret code, but it doesn’t
ensure that it’s not an exact match! A number match is a number in the
guess that appears in the secret code in any other position.

Chapter 7. Specifying an Algorithm • 76

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We got the definition of number_match? wrong, so let’s fix it. Update the num-
ber_match? to reflect this learning:

cb/38/lib/codebreaker/game.rb
def number_match?(guess, index)

@secret.include?(guess[index]) && !exact_match?(guess, index)➤

end

Run the specs now, and they’ll all pass. Run the scenarios again, and you’ll
see that they are all passing as well! This feature is done!

Not so fast! We skipped over the refactoring step in the last red/green/refactor
cycle, so we should review the implementation of the marking algorithm to
make sure it is clear and expresses intent well. As it turns out, there is quite
a bit that we can do to improve its expressiveness, so we’ll save that for the
next chapter. In the meantime, let’s review what we’ve learned so far.

7.4 What We’ve Learned

In this chapter, we drove out the implementation of an algorithm in small
steps. We still have some refactoring to do to make it as simple and expressive
as we’d like, but the current implementation does pass all of its scenarios
and all of its specs.

We started with an example that we believed would be the simplest to imple-
ment. We followed that with the next simplest example, and then the next,
and so on.

We also learned that we benefit from working in small steps because we know
exactly what we just did when we introduce a failure. If we didn’t run the
specs right after splitting up the iterator, we might not have learned about
the problem we introduced until much later, when it would be more difficult
to track it down.

In the next chapter, we’ll dig a bit deeper into refactoring, exploring techniques
and tools we use to refactor with confidence!

report erratum • discuss

What We’ve Learned • 77

http://media.pragprog.com/titles/achbd/code/cb/38/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 8

Refactoring with Confidence
In his book Refactoring [FBBO99], Martin Fowler describes refactoring as “a
change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable behavior.”

In this chapter, we’re going to examine the guess method that we left in the
previous chapter and look for ways we can improve it with the goal of making
it easier to understand and cheaper to modify. To do that, we need to recognize
problems when we see them. And for that, one must have a nose for smelly
code!

8.1 Sniffing Out Code Smells

A code smell, according to the c2 wiki,1 is “a hint that something has gone
wrong somewhere in your code.” The Refactoring book catalogs and categorizes
several of them. We’re not going to go through every code smell, but we’ll
examine the guess method and see what smells we might discover. Here is
how we left it:

cb/38/lib/codebreaker/game.rb
def guess(guess)
mark = ''
(0..3).each do |index|
if exact_match?(guess, index)

mark << '+'
end

end
(0..3).each do |index|

if number_match?(guess, index)
mark << '-'

end

1. http://c2.com/xp/CodeSmell.html

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/38/lib/codebreaker/game.rb
http://c2.com/xp/CodeSmell.html
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

end
@output.puts mark

end

If you just finished reading the previous chapter, this should make pretty
good sense to you without much study. Start with an empty string for the
mark. For each number in the guess, add a plus sign to the mark if it is an
exact match. Then, for each number in the guess, add a minus sign if it is
a number match. Then output the result.

Of course, when we explain it like that, it is clear that this method is proce-
dural code embedded in an object structure. Generally speaking, we want to
avoid procedural code because it has a tendency to grow in complexity and
become progressively difficult to understand and maintain.

If you’re familiar with code smells, you may recognize two of them in this
method: Temporary Variable and Long Method. Both of these smells are
related to procedural methods like this.

Temporary Variable

The mark variable in the guess method is the temporary variable we’re talking
about. The problem with temp variables is that they tend to change state
within a method. As a method grows longer, this makes it easier to introduce
bugs based on poor understanding of the state of that variable at any given
moment in the method.

Right now, the mark variable has eight opportunities to change state before
we send it to the output. If anything goes wrong in either of the iterators, it will
be difficult to track down which iteration of which iterator. We’ll clean this
up during our refactoring this chapter.

Long Method

A long method is a method that does more than one thing. Think of it as the
Single Responsibility Principle applied to a method. The motivation is the
same as SRP: we want methods to have only one reason to change as
requirements of a system change so that we can make changes in small steps
and with confidence.

8.2 One Step at a Time

The refactoring we’re about to engage in has many steps. We’re going to go
one step at a time, running the specs between each step to ensure that we’re
preserving behavior as we move.

Chapter 8. Refactoring with Confidence • 80

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Clarify the Smell

Before we can refactor away the procedural nature of a method, it is sometimes
helpful to clarify that nature first. Let’s start by rephrasing the procedure a
bit:

• Count up the exact matches.
• Count up the number matches.
• Add a plus sign for each exact match.
• Add a minus sign for each number match.

We’ll start by clarifying the first step: counting up the exact matches. Make
the following modifications to the guess() method:

cb/39/lib/codebreaker/game.rb
def guess(guess)
exact_match_count = 0➤

mark = ''
(0..3).each do |index|
if exact_match?(guess, index)

exact_match_count += 1➤

end
end

(0..3).each do |index|
if number_match?(guess, index)

mark << '-'
end

end

@output.puts '+'*exact_match_count + mark➤

end

Now we’ll introduce a new exact_match_count variable and assign it a value of 0.
We increment its value in the first iterator and then use the * operator on the
last line to build a string of n plus signs.

A Circuitous Path

Wait. Didn’t we just identify temporary variables as a code smell? Why yes,
we did. Refactoring is not always linear in that some steps seem to take us
further away from our goal even when those steps are in service of our goal.
Temporary variables can be a very useful tool in the process of refactor-
ing…temporarily. By the time we’re done, we’ll have eliminated them.

Run the specs, and they all should pass. On to the next step. We’ll do the
same thing with the number matches:

report erratum • discuss

One Step at a Time • 81

http://media.pragprog.com/titles/achbd/code/cb/39/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cb/391/lib/codebreaker/game.rb
def guess(guess)
exact_match_count = 0
number_match_count = 0➤

(0..3).each do |index|
if exact_match?(guess, index)

exact_match_count += 1
end

end
(0..3).each do |index|
if number_match?(guess, index)

number_match_count += 1➤

end
end
@output.puts '+'*exact_match_count + '-'*number_match_count➤

end

Again, we introduce a temp variable, increment its value in the second iterator,
and then use it to build the string on the last line. We don’t need the mark
variable any longer, so we’ve removed it. Run the specs, and they should still
pass. On to the next step: extract the calculation of exact_match_count to a sep-
arate method.

Extract Method

The Extract Method refactoring is a great tool for improving a long method.
The process is quite simple. We create a new empty method with the name
we want to use, move the code from the source method to the target method,
and adjust as necessary. Here is the result:

cb/392/lib/codebreaker/game.rb
def guess(guess)
number_match_count = 0
(0..3).each do |index|

if number_match?(guess, index)
number_match_count += 1

end
end
@output.puts '+'*exact_match_count + '-'*number_match_count➤

end
def exact_match_count➤

exact_match_count = 0➤

(0..3).each do |index|➤

if exact_match?(guess, index)➤

exact_match_count += 1➤

end➤

end➤

exact_match_count➤

end➤

Chapter 8. Refactoring with Confidence • 82

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/391/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/392/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We created a new method named exact_match_count. Then we moved the decla-
ration of the exact_match_count temp variable to the top of the new method,
followed by the first iterator from the guess method. Then we return the value
of the temp variable at the end of the method. The last line of the guess() method
didn’t change, but its reference to exact_match_count now points to the method
instead of a local, temp variable.

Run the specs, and you’ll see several failures like this one:

1) Codebreaker::Game #guess with no matches sends a mark with ''
Failure/Error: game.guess('5555')
wrong number of arguments (0 for 1)
./lib/codebreaker/game.rb:30:in `guess'

Run the specs with the --backtrace flag, like this:

rspec spec --backtrace

This tells RSpec to print out a full backtrace for each failure. In this case, the
first two lines are the same in each backtrace, and they point us to the third
line of the new exact_match_count() method. There is no guess variable in the scope
of the method, so it finds the guess() method on the object, which requires a
single argument.

To resolve this error, let’s pass the guess from the guess() method to the
exact_match_count() method, like this:

cb/393/lib/codebreaker/game.rb
def guess(guess)
number_match_count = 0
(0..3).each do |index|

if number_match?(guess, index)
number_match_count += 1

end
end
@output.puts '+'*exact_match_count(guess) + '-'*number_match_count➤

end

def exact_match_count(guess)➤

exact_match_count = 0
(0..3).each do |index|

if exact_match?(guess, index)
exact_match_count += 1

end
end
exact_match_count

end

Now the guess on line 3 of the exact_match_count() method points to the argument.
Run the specs, and they should all pass again. As we discussed in Learning

report erratum • discuss

One Step at a Time • 83

http://media.pragprog.com/titles/achbd/code/cb/393/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

from Rapid Feedback, on page 76, running the specs between every step
provides rapid feedback when there are failures and makes it much easier to
isolate them than it would if we learned about the failures later in the process.

Next step! Let’s do the same thing with number_match_count. We’ll extract a num-
ber_match_count() method, this time including the guess in the method definition:

cb/394/lib/codebreaker/game.rb
def guess(guess)
@output.puts '+'*exact_match_count(guess) + '-'*number_match_count(guess)➤

end
def exact_match_count(guess)
exact_match_count = 0
(0..3).each do |index|

if exact_match?(guess, index)
exact_match_count += 1

end
end
exact_match_count

end
def number_match_count(guess)➤

number_match_count = 0➤

(0..3).each do |index|➤

if number_match?(guess, index)➤

number_match_count += 1➤

end➤

end➤

number_match_count➤

end➤

Run the specs, and they should all pass.

Watch Out for New Smells

As we’re refactoring, the design is gradually changing before our very noses.
We need to keep them open, constantly sniffing for new code smells. We’ve
cleaned up the guess() method quite a bit, but we’ve also introduced even more
duplication between the two new methods.

We can reduce the duplication using Ruby’s inject iterator in each of the new
methods.2 Start with the exact_match_count method:

cb/40/lib/codebreaker/game.rb
def exact_match_count(guess)
(0..3).inject(0) do |count, index|➤

count + (exact_match?(guess, index) ? 1 : 0)➤

end➤

end

2. See Programming Ruby [TFH05] to learn more about inject().

Chapter 8. Refactoring with Confidence • 84

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/394/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/40/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

If you’re new to Ruby, you might find inject a bit confusing. We’re going to use
it in this case because it helps us get rid of our own temp variables by provid-
ing one as a block argument.

What happens is that the count variable is initialized with the 0 passed to inject
and passed into the block as the first block argument. The second block
argument is the next value in the collection we’re iterating on: 0 the first time,
1 the second, and so on.

With each iteration, inject assigns the return value of the block to the count
variable.

And now the same with number_match_count:

cb/40/lib/codebreaker/game.rb
def number_match_count(guess)
(0..3).inject(0) do |count, index|➤

count + (number_match?(guess, index) ? 1 : 0)➤

end➤

end

Here is the result of all the refactoring we’ve done so far:

cb/41/lib/codebreaker/game.rb
def guess(guess)
@output.puts '+'*exact_match_count(guess) + '-'*number_match_count(guess)

end
def exact_match_count(guess)
(0..3).inject(0) do |count, index|
count + (exact_match?(guess, index) ? 1 : 0)

end
end
def number_match_count(guess)

(0..3).inject(0) do |count, index|
count + (number_match?(guess, index) ? 1 : 0)

end
end
def exact_match?(guess, index)

guess[index] == @secret[index]
end
def number_match?(guess, index)

@secret.include?(guess[index]) && !exact_match?(guess, index)
end

Isn’t that expressive? And look how much cleaner everything is! The guess
method is no longer procedural, and we’ve reduced all of the temp variables
to those provided as block arguments by Ruby’s iterators. All in all, this is a
big improvement, but there’s more we can do. Do you see any other code
smells?

report erratum • discuss

One Step at a Time • 85

http://media.pragprog.com/titles/achbd/code/cb/40/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/41/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Large Class

Similar to the Long Method smell, the Large Class smell is not really about
size; it’s about responsibilities. Our Game violates the Single Responsibility
Principle by taking on multiple concerns: it formats output, sends messages
to output, and marks each guess. It was violating SRP since we first introduced
the guess() method, but that violation and its solution are much more clear
now.

We have four methods that all deal with marking a guess. These methods
clearly belong together. We might even be tempted to put a comment above
the first one indicating that the next four methods deal with marking the
guess. This is a strong hint that we’re missing an abstraction in our design.

Extract Class

The Extract Class refactoring is the remedy for an SRP violation. The steps
are as follows:

1. Create an empty Marker class inside the Game class. We’ll move it to its own
file later, but it’s easier to do the refactoring if everything is in one file.

2. Add an initializer to the Marker that accepts the secret code and assigns it
to an instance variable named @secret.

3. Copy the four calculation methods directly into the new Marker class. Don’t
delete the originals yet.

4. Create a new Marker in the guess method, passing the @secret instance vari-
able to Marker.new.

5. Call exact_match_count and number_match_count on the Markerobject.

6. Remove the original copies of the four calculation methods from the Game.

If you follow those steps correctly, the specs should pass between every step,
and the end result should look like this:

cb/411/lib/codebreaker/game.rb
def guess(guess)
marker = Marker.new(@secret)➤

@output.puts '+'*marker.exact_match_count(guess) +➤

'-'*marker.number_match_count(guess)➤

end

class Marker
def initialize(secret)➤

@secret = secret➤

end➤

Chapter 8. Refactoring with Confidence • 86

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/411/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

def exact_match_count(guess)
(0..3).inject(0) do |count, index|

count + (exact_match?(guess, index) ? 1 : 0)
end

end

def number_match_count(guess)
(0..3).inject(0) do |count, index|

count + (number_match?(guess, index) ? 1 : 0)
end

end

def exact_match?(guess, index)
guess[index] == @secret[index]

end

def number_match?(guess, index)
@secret.include?(guess[index]) && !exact_match?(guess, index)

end
end

Now that we have this structure, of course, we can smell some new odors.
First, doesn’t it seem odd that we have to pass the guess to the exact_match_count
and number_match_count() methods from the guess() method in the Game?

Also, notice how we assign the secret to an instance variable that we access
directly from the instance methods, whereas we’re slinging the guess around
from method to method. The fact that they operate at two different levels of
abstraction made sense in the context of the Game object, but it no longer
does in the context of the Marker.

To resolve both of these issues, let’s start by passing the guess to the initial-
izer of the Marker, like this:

cb/412/lib/codebreaker/game.rb
def guess(guess)
marker = Marker.new(@secret, guess)➤

@output.puts '+'*marker.exact_match_count(guess) +
'-'*marker.number_match_count(guess)

end

class Marker
def initialize(secret, guess)

@secret, @guess = secret, guess➤

end
end

Now change all the references to guess inside the Marker to point to the @guess
instance variable:

report erratum • discuss

One Step at a Time • 87

http://media.pragprog.com/titles/achbd/code/cb/412/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cb/413/lib/codebreaker/game.rb
def exact_match_count(guess)
(0..3).inject(0) do |count, index|
count + (exact_match?(@guess, index) ? 1 : 0)➤

end
end

def number_match_count(guess)
(0..3).inject(0) do |count, index|
count + (number_match?(@guess, index) ? 1 : 0)➤

end
end

def exact_match?(guess, index)
@guess[index] == @secret[index]➤

end

def number_match?(guess, index)
@secret.include?(@guess[index]) && !exact_match?(@guess, index)➤

end

Now we can start removing the guess from the signatures of each of the
methods. Start with the exact_match_count() method, removing it from the call
to that method and the method declaration itself:

cb/414/lib/codebreaker/game.rb
def guess(guess)
marker = Marker.new(@secret, guess)
@output.puts '+'*marker.exact_match_count +➤

'-'*marker.number_match_count(guess)
end

class Marker
def exact_match_count➤

(0..3).inject(0) do |count, index|
count + (exact_match?(@guess, index) ? 1 : 0)

end
end

end

Run the specs, and they should all pass. Now do the same with the num-
ber_match_count, exact_match?, and number_match? methods, running the specs
between each change. They should pass every time. The end result should
look like this:

cb/415/lib/codebreaker/game.rb
def guess(guess)
marker = Marker.new(@secret, guess)
@output.puts '+'*marker.exact_match_count +

'-'*marker.number_match_count
end

Chapter 8. Refactoring with Confidence • 88

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/413/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/414/lib/codebreaker/game.rb
http://media.pragprog.com/titles/achbd/code/cb/415/lib/codebreaker/game.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

class Marker
def initialize(secret, guess)

@secret, @guess = secret, guess
end

def exact_match_count
(0..3).inject(0) do |count, index|
count + (exact_match?(index) ? 1 : 0)

end
end

def number_match_count
(0..3).inject(0) do |count, index|

count + (number_match?(index) ? 1 : 0)
end

end

def exact_match?(index)
@guess[index] == @secret[index]

end

def number_match?(index)
@secret.include?(@guess[index]) && !exact_match?(index)

end
end

There! Now we have good decoupling of concepts and good cohesion within
each object. The Marker is responsible only for marking. We kept the plus and
minus signs inside the Game, which is currently responsible for all the mes-
sages that get sent to output. Had we moved those into the Marker, we would
have violated the DRY principle by having that responsibility represented in
two locations.

Now that we have the Marker in pretty good shape, let’s move it to its own file.
Create a marker.rb file in lib/codebreaker/, open the Codebreaker module, and copy
the Marker into that file. Don’t forget to remove it from the Game class. Now
require that file from lib/codebreaker.rb, like this:

cb/42/lib/codebreaker.rb
require 'codebreaker/game'
require 'codebreaker/marker'

Run the specs to make sure everything is still wired up correctly. They should
all pass. So should all of the scenarios. Go ahead and run them to make sure
everything is still working correctly.

report erratum • discuss

One Step at a Time • 89

http://media.pragprog.com/titles/achbd/code/cb/42/lib/codebreaker.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

8.3 Updating Specs After Refactoring

After refactorings that introduce new methods and classes like Extract Method
and Extract Class, the RSpec code examples may no longer reflect the
responsibilities of the objects they specify. In our case, we have no specs for
the Marker, and we have a bunch of examples for the Game that are more
closely aligned with the Marker than they are with the Game.

We want the specs to serve as documentation of the responsibilities of the
objects they exercise, so let’s move some things around. First, let’s add some
examples for the Marker behavior. Add a marker_spec.rb file to spec/codebreaker/, and
add the following code:

cb/42/spec/codebreaker/marker_spec.rb
require 'spec_helper'

module Codebreaker
describe Marker do

describe "#exact_match_count" do
context "with no matches" do
it "returns 0" do

marker = Marker.new('1234','5555')
marker.exact_match_count.should == 0

end
end

context "with 1 exact match" do
it "returns 1" do

marker = Marker.new('1234','1555')
marker.exact_match_count.should == 1

end
end

context "with 1 number match" do
it "returns 0" do

marker = Marker.new('1234','2555')
marker.exact_match_count.should == 0

end
end
context "with 1 exact match and 1 number match" do
it "returns 1" do

marker = Marker.new('1234','1525')
marker.exact_match_count.should == 1

end
end

end

describe "#number_match_count" do
context "with no matches" do

Chapter 8. Refactoring with Confidence • 90

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/42/spec/codebreaker/marker_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

it "returns 0" do
marker = Marker.new('1234','5555')
marker.number_match_count.should == 0

end
end

context "with 1 number match" do
it "returns 1" do

marker = Marker.new('1234','2555')
marker.number_match_count.should == 1

end
end

context "with 1 exact match" do
it "returns 0" do

marker = Marker.new('1234','1555')
marker.number_match_count.should == 0

end
end

context "with 1 exact match and 1 number match" do
it "returns 1" do

marker = Marker.new('1234','1525')
marker.number_match_count.should == 1

end
end

end
end

end

We’re really only interested in the exact_match_count and number_match_count()
methods because those are the only methods being used by the Game. Run
that new spec file with this command:

rspec spec/codebreaker/marker_spec.rb --format nested

The output should look like this:

Codebreaker::Marker
#exact_match_count

with no matches
returns 0

with 1 exact match
returns 1

with 1 number match
returns 0

with 1 exact match and 1 number match
returns 1

#number_match_count
with no matches
returns 0

report erratum • discuss

Updating Specs After Refactoring • 91

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

with 1 number match
returns 1

with 1 exact match
returns 0

with 1 exact match and 1 number match
returns 1

See how nicely that documents the behavior of these methods of the Marker in
different contexts?

Now comes the question of what to do with the examples we wrote for the
guess() method on the Game. We used them to drive out the implementation of
the marking algorithm in small steps, and they served that purpose well. They
also served us well during the refactoring we just did because we were able
to get rapid feedback after each change, and when there were failures, we
were able to isolate them quickly.

That said, the responsibility of the Game object has changed. It’s still respon-
sible for sending a mark to the output, but it’s no longer responsible for
calculating the mark. With that, let’s remove the existing examples for guess
and add one that documents its responsibility. Modify game_spec.rb so it looks
like this:

cb/42/spec/codebreaker/game_spec.rb
require 'spec_helper'
module Codebreaker

describe Game do
let(:output) { double('output').as_null_object }
let(:game) { Game.new(output) }

describe "#start" do
it "sends a welcome message" do

output.should_receive(:puts).with('Welcome to Codebreaker!')
game.start('1234')

end
it "prompts for the first guess" do
output.should_receive(:puts).with('Enter guess:')
game.start('1234')

end
end
describe "#guess" do
it "sends the mark to output" do

game.start('1234')
output.should_receive(:puts).with('++++')
game.guess('1234')

end
end

end
end

Chapter 8. Refactoring with Confidence • 92

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/42/spec/codebreaker/game_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the specs, and they should all pass. If you run them with --format nested,
you’ll see documentation of the responsibilities of both objects.

Are We Done Yet?

Refactoring can be addictive. Every time we do one refactoring, our attention
is drawn to an area of the code we may not have focused on before. Or perhaps
we were focused on it, but the new structure exposes new smells. We could
certainly do more refactoring now if we wanted to, but eventually we have to
stop and move on.

At this point, we’ve made excellent progress, and the code is clear and well
factored. Of course, we could do more, and we will in the next chapter, but
for now let’s move on to a new topic.

8.4 Exploratory Testing

Exploratory testing is a practice in which we discover the behavior of an
application by interacting with it directly. It is the opposite of the process
we’ve been learning about, in that we’re looking to see what the app actually
does and then question whether that is the correct behavior.

It has a rich history and is a deep craft in its own right, the breadth of which
is outside the scope of this book. For our purposes, we want you to simply
fire up the Codebreaker game and enter guesses and analyze the outcomes.

Now that the game can mark a guess for us, we just need a minor adjustment
to bin/codebreaker, and we can begin interacting with the game. Here’s the script
for *nix users:

cb/42/bin/codebreaker
#!/usr/bin/env ruby
$LOAD_PATH.unshift File.expand_path('../../lib', __FILE__)
require 'codebreaker'

game = Codebreaker::Game.new(STDOUT)
game.start('1234')
while guess = gets.chomp

game.guess(guess)
end

Windows users use the same script without the first line and also add
bin/codebreaker.bat with the following:

cb/42/bin/codebreaker.bat
@"ruby.exe" "%~dpn0" %*

report erratum • discuss

Exploratory Testing • 93

http://media.pragprog.com/titles/achbd/code/cb/42/bin/codebreaker
http://media.pragprog.com/titles/achbd/code/cb/42/bin/codebreaker.bat
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Clearly, the game won’t be too much fun because it has the same code every
time, but at least at this point, you can try it and maybe even show your
friends.

Perhaps you’re wondering why we’d want to do exploratory testing if we’ve
already tested the app. Well, we haven’t. Remember that BDD is a design
practice, not a testing practice. We’re using executable examples of how we
want the application to behave. But just as Big Design Up Front fails to allow
for discovery of features and designs that naturally emerge through iterative
development, driving out behavior with examples fails to unearth all of the
corner cases that we’ll naturally discover by simply using the software.

As you explore the Codebreaker game, try to find the flaws in the marking
algorithm. You’ll know what the not-so-secret code is, so try different inputs
and see what happens. What happens when you input non-numeric charac-
ters? How about too many or too few? What about duplicates in the guess
that match one of the numbers in the secret code?

As you’re doing this, flaws will appear for a variety of reasons. Perhaps there
are missing scenarios or code examples. Some flaws may stem from naive
design choices. The reasons for these flaws are not important. What is
important is that the investment we’ve made to get this far has been very,
very small compared to an exhaustive up-front requirements-gathering pro-
cess. An interactive session with working software is worth a thousand
meetings.

8.5 What We’ve Learned

In this chapter, we took a closer look at refactoring and how it impacts the
resulting design. We were able to refactor with confidence because we ran
the specs between each step, so we always knew right away when we intro-
duced a problem.

We looked at two structural refactorings in detail: Extract Method and Extract
Class. We also talked about a few specific code smells: Temporary Variable,
Long Method, and Large Class.

Refactoring is not a direct path; some of the steps seem to take us further in
the wrong direction, even though they really help us to set up a step we are
about to make. We can often make it easier to remove a code smell by clarifying
it first.

Chapter 8. Refactoring with Confidence • 94

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Each step in a refactoring draws our attention to different parts of the design.
This process often reveals new code smells that had either gone unnoticed
or hadn’t been there before.

After a refactoring, we should look at our specs and make sure they still
document responsibilities correctly. Documentation is a key value of exe-
cutable code examples.

Lastly, we discussed using exploratory testing as a means of discovering bugs
and misconceptions, rather than trying to think of everything in a vacuum
before we’ve written any code.

In the next chapter, we’ll address a couple of fallacies in our marking that
may have been discovered in exploratory testing. So, put down this book for
a few minutes, and go explore! See you at the top of the next chapter.

report erratum • discuss

What We’ve Learned • 95

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 9

Feeding Back What We’ve Learned
At the end of the previous chapter, we asked you to do some exploratory
testing. How did it go? Did you discover anything odd? Did you find any bugs?
Any requirements that we may have missed in our initial planning?

One issue you may have encountered is the way in which the Marker handles
duplicate matches. If the secret code is 1234 and the guess is 1155, we get a
mark of +-. We didn’t really discuss what should happen in a case like this
earlier, but now that we see it, it does make us question what the correct
mark should be.

In this chapter, we’ll examine this question and document the results in
Cucumber scenarios. Then we’ll write code examples and evolve the Marker to
handle these new requirements. In the process, we’ll do a bit more refactoring,
which we’ll discover is made far simpler by the refactoring we’ve already done.

9.1 Use Cucumber for Collaboration

As we just saw, with a secret code of 1234 and a guess of 1155, we’re getting a
mark of +-. Without even looking at the code, we can guess that this is hap-
pening because the Marker evaluates the 1 in the first position of the guess as
an exact match with the 1 in the first position in the secret code, and then it
evaluates the 1 in the second position of the guess as a number match with
the same number in the first position of the code.

Does that seem right?

Document New Requirements with Cucumber

It’s tempting, when this sort of question comes up, to make assumptions
about how things should work. Fight that temptation! This is exactly what
Cucumber is for. We can sit down with the customer and sketch out some

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

scenarios and talk about them. Cucumber’s simple use of Given, When, Then
is a great facilitator for this sort of conversation. And in our case, our use of
Cucumber’s scenario outlines makes it even easier.

That said, we will now fast-forward past that conversation, having decided
on the following rules, as expressed in the narrative and some new scenarios
in codebreaker_submits_guess.feature:

cb/43/features/codebreaker_submits_guess.feature
Feature: code-breaker submits guess

The code-breaker submits a guess of four numbers. The game marks the guess
with + and - signs.

For each number in the guess that matches the number and position of a number
in the secret code, the mark includes one + sign. For each number in the guess
that matches the number but not the position of a number in the secret code,
the mark includes one - sign.

Each position in the secret code can only be matched once. For example, a➤

guess of 1134 against a secret code of 1234 would get three plus signs: one➤

for each of the exact matches in the first, third and fourth positions. The➤

number match in the second position would be ignored.➤

Scenario Outline: submit guess
Given the secret code is "<code>"
When I guess "<guess>"
Then the mark should be "<mark>"

Scenarios: no matches
| code | guess | mark |
| 1234 | 5555 | |

Scenarios: 1 number correct
code	guess	mark
1234	1555	+
1234	2555	-

Scenarios: 2 numbers correct
code	guess	mark
1234	5254	++
1234	5154	+-
1234	2545	--

Scenarios: 3 numbers correct
code	guess	mark
1234	5234	+++
1234	5134	++-
1234	5124	+--
1234	5123	---

Chapter 9. Feeding Back What We’ve Learned • 98

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/43/features/codebreaker_submits_guess.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Scenarios: all numbers correct
code	guess	mark
1234	1234	++++
1234	1243	++--
1234	1423	+---
1234	4321	----

Scenarios: matches with duplicates➤

| code | guess | mark |➤

| 1234 | 1155 | + |➤

| 1234 | 5115 | - |➤

| 1134 | 1155 | ++ |➤

| 1134 | 5115 | +- |➤

| 1134 | 5511 | -- |➤

| 1134 | 1115 | ++ |➤

| 1134 | 5111 | +- |➤

Now run the scenarios with the cucumber command, and you should see the
following failures (output abbreviated for clarity):

Scenarios: matches with duplicates
| code | guess | mark |
| 1234 | 1155 | + |
expected ["Welcome to Codebreaker!", "Enter guess:", "+-"] to include "+"
| 1234 | 5115 | - |
expected ["Welcome to Codebreaker!", "Enter guess:", "--"] to include "-"
1134	1155	++
1134	5115	+-
1134	5511	--
1134	1115	++
expected ["Welcome to Codebreaker!", "Enter guess:", "++-"] to include "++"		
1134	5111	+-
expected ["Welcome to Codebreaker!", "Enter guess:", "+--"] to include "+-"

21 scenarios (4 failed, 17 passed)
63 steps (4 failed, 59 passed)
0m0.039s

The failing scenarios all fail in similar ways. They each get a symbol in the
mark for every 1 that appears in the guess even when there are fewer 1s in
the secret code. We need to modify the marking algorithm so that each position
in the code can be matched only once. It also seems that the extra mark is
always an extra minus sign, so let’s focus on the number_match_count method
first.

report erratum • discuss

Use Cucumber for Collaboration • 99

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Write a Code Example That Exposes the Problem

Add the following context and example to the examples for number_match_count
in marker_spec.rb:

cb/43/spec/codebreaker/marker_spec.rb
module Codebreaker

describe Marker do
describe "#number_match_count" do
context "with 1 exact match duplicated in guess" do➤

it "returns 0" do➤

marker = Marker.new('1234','1155')➤

marker.number_match_count.should == 0➤

end➤

end➤

end
end

end

The first argument to Marker.new is the secret code, and then second is the
guess. We expect the 1 in the first position of the secret code to be accounted
for in the exact_match_count, so the 1 in the second position of the guess should
not be matched against it. Run this new example with the rspec command,
and you should see the following failure:

1) Codebreaker::Marker #number_match_count with 1 exact match
duplicated in guess returns 0

Failure/Error: marker.number_match_count.should == 0
expected: 0,

got: 1 (using ==)

Let’s review the implementation of the Marker:

cb/43/lib/codebreaker/marker.rb
module Codebreaker

class Marker
def initialize(secret, guess)

@secret, @guess = secret, guess
end

def exact_match_count
(0..3).inject(0) do |count, index|
count + (exact_match?(index) ? 1 : 0)

end
end

def number_match_count
(0..3).inject(0) do |count, index|

count + (number_match?(index) ? 1 : 0)
end

end

Chapter 9. Feeding Back What We’ve Learned • 100

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/43/spec/codebreaker/marker_spec.rb
http://media.pragprog.com/titles/achbd/code/cb/43/lib/codebreaker/marker.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

def exact_match?(index)
@guess[index] == @secret[index]

end

def number_match?(index)
@secret.include?(@guess[index]) && !exact_match?(index)

end
end

end

Our implementation of number_match? is not robust enough to handle this new
requirement. It looks for any number that’s in the secret and not in the same
position, but it doesn’t account for whether that number has been matched
already. This is why we occasionally get two matches for one number in the
secret code.

9.2 Experimenting with a New Implementation

We need a new way to count up the number matches. We could modify the
design such that we keep track of each number in the secret code and dis-
qualify it for future matches once it’s been matched, but that would require
returning to the more procedural approach we left behind in the previous
chapter.

Take a Step Back

Let’s look at this from a different angle. We already know the number of exact
matches. That’s easy because we just have to evaluate one position at a time.
We can do that in any order, and we don’t need to know whether positions
have been matched before or not.

What if we count up all the matches without regard for whether they’re in
the same position and then subtract the number of exact matches? If that
total is three, for example, and there are two exact matches, then we know
that we have one number match remaining. Make sense?

Phrased differently, the count of number matches is the total match count
less the exact match count. We can express that very cleanly in Ruby like
this:

def number_match_count
total_match_count - exact_match_count

end

report erratum • discuss

Experimenting with a New Implementation • 101

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Assuming that’s correct, how do we count the total matches? The simplest
approach would probably be to iterate through the numbers in the guess,
removing matches from the secret as they are found.

For example, if the secret is 1234 and the guess is 1145, we start by evaluating
the 1 in the first position of the guess. There is a 1 in the secret, so we remove
it, leaving 234. Now we look at the 1 in the second position in the guess. There
is no longer a 1 in the secret, so we move on to the 4 in the third position of
the guess. There is a 4 in the secret, so we remove it, leaving 23. Finally, we
look at the 5 in the last position of the guess. There is no match in the secret,
so we are done. We’ve removed two numbers from the secret, so that’s the
total count of matches.

That seems like it might work, but it’s a very different implementation from
the one we have now. One of the benefits of having the specs we have is that
we can experiment with alternate implementations very cheaply, and we’ll
quickly know whether we’re on the right path. Let’s give it a whirl.

Experiment in the Green

We’re going to experiment with a new implementation, and we want to use
our existing code examples as a safety net to ensure that we’re preserving
behavior as we do. We have a failing example now, so we want to disable it
temporarily while we’re working. That way, if we introduce any new failures,
we won’t confuse them with this one. Let’s declare this example pending, like
this:

cb/44/spec/codebreaker/marker_spec.rb
context "with 1 exact match duplicated in guess" do

it "returns 0" do
pending("refactor number_match_count")➤

marker = Marker.new('1234','1155')
marker.number_match_count.should == 0

end
end

Similar to when we called the it() method with no block, RSpec treats this
example as pending: execution stops after the pending statement, and then
RSpec lists the example as pending in the output. This gets the example out
of the way while keeping it on our radar. You can read more about different
ways to declare pending examples in Section 12.2, Pending Examples, on page
138.

Chapter 9. Feeding Back What We’ve Learned • 102

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/44/spec/codebreaker/marker_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the specs, and you should see one pending example and zero failures.
Now let’s write our experimental implementation and see how it goes. Modify
marker.rb as follows:

cb/45/lib/codebreaker/marker.rb
def number_match_count
total_match_count - exact_match_count

end

def total_match_count
count = 0
@guess.map do |n|

if @secret.include?(n)
@secret.delete_at(@secret.index(n))
count += 1

end
end
count

end

We iterate through the numbers in the @guess, asking the @secret each time if
it includes that number. If it does, we ask the @secret for the index of the
number and then tell it to delete at that index.

Run the specs, and you’ll see a bunch of failures. The failure message in the
first one gives us a pretty big hint as to what the problem is:

1) Codebreaker::Game #guess sends the mark to output
Failure/Error: game.guess('1234')
undefined method `delete_at' for "1234":String
./lib/codebreaker/marker.rb:22:in `total_match_count'

The implementation is assuming an array API, but the @secret and @guess
variables are actually strings. Let’s split the strings into arrays, like this:

cb/46/lib/codebreaker/marker.rb
def total_match_count
count = 0
secret = @secret.split('')➤

@guess.split('').map do |n|➤

if secret.include?(n)➤

secret.delete_at(secret.index(n))➤

count += 1
end

end
count

end

report erratum • discuss

Experimenting with a New Implementation • 103

http://media.pragprog.com/titles/achbd/code/cb/45/lib/codebreaker/marker.rb
http://media.pragprog.com/titles/achbd/code/cb/46/lib/codebreaker/marker.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the specs, and they should all pass—except for the pending example,
that is, so remove the pending statement from the previous example, and run
them all again. They should all pass, even the one that was pending!

Next, run the Cucumber scenarios, and they should pass, too. Great! We only
spent a few minutes thinking about a new implementation, tried it out, made
a small adjustment when a bunch of examples failed, and voila!

You Can Always Roll Back

Things don’t always work out quite this cleanly. Sometimes we’ll try to
experiment like this and run into failure after failure after failure.

When that happens to you, and it will, don’t let it go on too long before rolling
back to the last point at which all examples were passing. Then you can
proceed forward again in smaller steps.

One More Refactoring

Now that we have a new implementation, it can use a little bit of cleanup.
Rather than going through this together, we’ll show you where we ended up
after a bit of refactoring but leave the actual refactoring as an exercise for
you.

Here is the code we ended up with:

cb/47/lib/codebreaker/marker.rb
def total_match_count
secret = @secret.split('')
@guess.split('').inject(0) do |count, n|

count + (delete_first(secret, n) ? 1 : 0)
end

end

def delete_first(code, n)
code.delete_at(code.index(n)) if code.index(n)

end

There’s always more we can do, but at this point we have solved for duplicate
matches, and the code is well factored, readable, and maintainable.

A Bit of Glue

We are not going to develop any more Codebreaker implementation together,
but before we move on, here is some prototype code you can add to bin/code-
breaker so you can have some fun trying to break a randomly generated code:

Chapter 9. Feeding Back What We’ve Learned • 104

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cb/47/lib/codebreaker/marker.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cb/47/bin/codebreaker
#!/usr/bin/env ruby
$LOAD_PATH.unshift File.expand_path('../../lib', __FILE__)
require 'codebreaker'

def generate_secret_code➤

options = %w[1 2 3 4 5 6]➤

(1..4).map { options.delete_at(rand(options.length))}.join➤

end➤

game = Codebreaker::Game.new(STDOUT)
secret_code = generate_secret_code➤

at_exit { puts "\n***\nThe secret code was: #{secret_code}\n***" }➤

game.start(secret_code)➤

while guess = gets.chomp
game.guess(guess)

end

This adds a method to generate a random secret code so you can tease your
brain trying to break the code. We also added a little at_exit hook that prints
the code out at the end, so you can see what you were up against when you’re
unable to do so.

To be clear, this is not production code and is not intended to be shipped. It’s
just a prototype development aid we’re slapping in place so that we can enjoy
the fruits of our labors and do more exploratory testing.

9.3 What We’ve Learned

In this chapter, we took lessons that we learned from exploratory testing and
fed them back into the process. We documented the new requirements in
Cucumber scenarios and used them as our starting point for continued
development.

In the process of analyzing what we learned, we stepped back and thought
about a different implementation that might be superior to the one we had.
We experimented with the new implementation, using our existing scenarios
and code examples to ensure that we preserved behavior. When we ran the
code examples, we learned about the error we made in our implementation
right away and were able to quickly fix the error and continue progressing.

This is a small demonstration of how code examples serve as regression tests
over the life of an application. If we’ve written them well and kept them focused
on small, isolated bits of behavior, they run very fast and provide us with
practical feedback very quickly.

report erratum • discuss

What We’ve Learned • 105

http://media.pragprog.com/titles/achbd/code/cb/47/bin/codebreaker
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Note that our experiment was on a very small bit of lower-level functionality.
This would have been much more challenging if the marking algorithm were
still expressed in a single method in the Game.

This brings us to the end of this first part of the book. We hope that you now
have a sense of what it’s like to use Cucumber and RSpec together to discover
requirements, flesh them out at the high level, and design objects that provide
solutions for them. These are the daily practices of a developer working on a
Behaviour-Driven Development project, but developer practices are only one
component of BDD as a whole.

In the next part of the book, we’ll provide a bit of background on BDD,
including what came before and where we are today. You’ll learn about the
motivations for BDD and the basic principles behind the process that have
led us to the practices we just covered.

Chapter 9. Feeding Back What We’ve Learned • 106

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Part II

Behaviour-Driven Development

CHAPTER 10

The Case for BDD
Most of the software we write will never get used. It’s nothing personal—it’s
just that as an industry we are not very good at giving people what they want.
It turns out that the underlying reason for this is that traditional software
methods are set up to fail—they actually work against us. Heroic individuals
deliver software in spite of their development process rather than because of
it. In this chapter, we look at how and why projects fail and shine a spotlight
on some of the challenges facing Agile development.

10.1 How Traditional Projects Fail

Traditional projects fail for all sorts of reasons. A good way to identify the
different failure modes is to ask your project manager what keeps them up
at night. (It’s nice to do this from time to time anyway—it helps their self-
esteem.) It is likely your project manager will come up with a list of fears
similar to ours.

Delivering Late or Over Budget

We estimate, we plan, we have every contingency down to the nth degree, and
then much to our disappointment, real life happens. When we slip the first
date, no one minds too much. After all, it will only be a couple of weeks. If it
goes on for long enough—slipping week by week and month by month—enough
people will have left and joined that we can finally put the project out of its
misery. Eighteen months to two years is usually enough. This is software that
doesn’t matter.

Delivering the Wrong Thing

Most of us use software that was delivered late and over budget—on our
desktops, in our mobile phones, in our offices and homes. In fact, we have

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

become used to systems that update themselves with bug fixes and new fea-
tures in the form of service packs and system updates or websites that grow
new features over time. But none of us use software that doesn’t solve the
problem we have.

It is surprising how much project management effort is spent looking after
the schedule or budget when late software is infinitely more useful than
irrelevant software. This is software that doesn’t matter.

Unstable in Production

Hooray! The project came in on time and on budget, and the users looked at
it and decided they like it, so we put it into production. The problem is it
crashes twice a day. We think it’s a memory thing or a configuration thing or
a clustering thing or an infrastructure thing or—who are we kidding? We
don’t really know what’s causing it except that it’s rather embarrassing and
it’s costing us a lot of money. If only we had spent more time testing it. People
will use this once and then give up when it keeps crashing. This is software
that doesn’t matter.

Costly to Maintain

There are a number of things we don’t need to consider if we are writing dis-
posable software. Maintainability is one of them. However, if we expect to
follow Release 1 with a Release 2, Release 3, or even a Professional Super-
Cow Power Edition, then we can easily paint ourselves into a corner by not
considering downstream developers.

Over time, the rate at which they can introduce new features will diminish
until they end up spending more of their time tracking down unexpected
regressions and unpicking spaghetti code than actually getting work done.
At some point, the software will cost more to improve than the revenue it can
generate. This is software that doesn’t matter.

10.2 Why Traditional Projects Fail

Most of these failure modes happen with smart people trying to do good work.
For the most part, software people are diligent and well-intentioned, as are
the stakeholders they are delivering to, which makes it especially sad when
we see the inevitable “blame-storming” that follows in the wake of another
failed delivery. It also makes it unlikely that project failures are the results
of incompetence or inability—there must be another reason.

Chapter 10. The Case for BDD • 110

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

How Traditional Projects Work

Most software projects go through the familiar sequence of Planning, Analysis,
Design, Code, Test, Deploy. Your process may have different names, but the
basic activities in each phase will be fairly consistent. (We are assuming some
sort of business justification has already happened, although even that isn’t
always the case.)

We start with the Planning phase. How many people do we need? For how
long? What resources will they need? Basically, how much will it cost to
deliver this project, and how soon will we see anything?

Then we move into an Analysis phase. This is where we articulate in detail
the problem we are trying to solve, ideally without prescribing how it should
be solved, although this is almost never the case.

Then we have a Design phase. This is where we think about how we can use
a computer system to solve the problem we articulated in Analysis. During
this phase we think about design and architecture, large- and small-scale
technical decisions, and the various standards around the organization, and
we gradually decompose the problem into manageable chunks for which we
can produce functional specifications.

Now we move onto the Coding phase, where we write the software that is
going to solve the problem, according to the specifications that came out of
the Design phase. A common assumption by the program board at this stage
is that all the “hard thinking” has been done by this stage. This is why so
many organizations think it’s OK to have their programming and testing
carried out by offshore, third-party vendors.

Now, because we are responsible adults, we have a Testing phase where we
test the software to make sure it does what it was supposed to do. This phase
contains activities with names like user acceptance testing or performance
testing to emphasize that we are getting closer to the users now and the final
delivery.

Eventually, we reach the Deployment phase where we deploy the application
into production. With a suitable level of fanfare, the new software glides into
production and starts making us money!

All these phases are necessary. You can’t start solving a problem you haven’t
articulated, you can’t start implementing a solution you haven’t described,
you can’t test software that doesn’t exist, and you can’t (or at least shouldn’t)
deploy software that hasn’t been tested. Of course, in reality, you can do any
of these things, but it usually ends in tears.

report erratum • discuss

Why Traditional Projects Fail • 111

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

How Traditional Projects Really Work

We have delivered projects in pretty much this way since we first started
writing computer systems. There have been various attempts at improving
the process and making it more efficient and less error-prone, using docu-
ments for formalized hand-offs, creating templates for the documents that
make up those hand-offs, assembling review committees for the templates
for the documents, establishing standards and formalized accreditation for
the review committees, and so on. You can certainly see where the effort has
gone.

The reason for all this ceremony around hand-offs, reviews, and such is that
the later in the software delivery life cycle we detect a defect—or introduce a
change—the more expensive it is to put right. And it’s not just a little more;
in fact, empirical evidence over the years has shown that it is exponentially
more expensive the later you find out. With this in mind, it makes sense to
front-load the process. We want to make sure we have thought through all
the possible outcomes and covered all the angles early on so we aren’t sur-
prised by “unknown unknowns” late in the day.

But this isn’t the whole story. However diligent we are at each of the develop-
ment phases, anyone who has delivered software in a traditional way will
attest to the amount of work that happens “under the radar.”

The program team signs off the project plan, resplendent in its detail,
dependencies, resource models, and Gantt charts. Then the analysts start
getting to grips with the detail of the problem and say things like, “Hmm, this
seems to be more involved than we thought. We’d better replan; this is going
to be a biggie.”

Then the architects start working on their functional specifications, which
uncover a number of questions and ambiguities about the requirements.
What happens if this message isn’t received by that other system? Sometimes
the analysts can immediately answer the question, but more often it means
we need more analysis and hence more time from the analysts. Better update
that plan. And get it signed off. And get the new version of the requirements
document.

You can see how this coordination cost can rapidly mount up. Of course, it
really kicks off during the testing phase. When the tester raises a defect, the
programmer throws his hands in the air and says he did what was in the
functional spec, the architect blames the business analyst, and so on, right
back up the chain. It’s easy to see where this exponential cost comes from.

Chapter 10. The Case for BDD • 112

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

As this back-and-forth becomes more of a burden, we become more afraid of
making changes, which means people do work outside of the process and
documents get out of sync with one another and with the software itself.
Testing gets squeezed, people work late into the night, and the release itself
is usually characterized by wailing and gnashing of teeth, bloodshot eyes,
and multiple failed attempts at deciphering the instructions in the release
notes.

If you ask experienced software delivery folks why they run a project like that,
front-loading it with all the planning and analysis, then getting into the
detailed design and programming, and only really integrating and testing it
at the end, they will gaze into the distance, looking older than their years,
and patiently explain that this is to mitigate against the exponential cost of
change—the principle that introducing a change or discovering a defect
becomes exponentially more expensive the later you discover it. The top-down
approach seems the only sensible way to hedge against the possibility of
discovering a defect late in the day.

A Self-fulfilling Prophecy

To recap, projects become exponentially more expensive to change the further
we get into them, because of the cumulative effect of keeping all the project
artifacts in sync, so we front-load the process with lots of risk-mitigating
planning, analysis, and design activities to reduce the likelihood of rework.

Now, how many of these artifacts—the project plan, the requirements specifi-
cation, the high- and low-level design documents, the software itself—existed
before the project began? That’s right, exactly none! So, all that effort—that
exponentially increasing effort—occurs because we run projects the way we
do! So, now we have a chicken-and-egg situation, or a reinforcing loop in
systems thinking terminology. The irony of the traditional project approach
is that the process itself causes the exponential cost of change!

Digging a little deeper, it turns out the curve originates in civil engineering.
It makes sense that you might want to spend a lot of time in the design
phases of a bridge or a ship. You wouldn’t want to get two-thirds of the way
through building a hospital only to have someone point out it is in the wrong
place. Once the reinforced concrete pillars are sunk, things become very
expensive to put right!

However, these rules apply to software development only because we let them!
Software is, well, soft. It is supposed to be the part that’s easy to change, and
with the right approach and some decent tooling, it can be very malleable.

report erratum • discuss

Why Traditional Projects Fail • 113

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

So, by using the metaphor of civil engineering and equating software with
steel and concrete, we’ve done ourselves a disservice.

10.3 Redefining the Problem

It’s not all doom and gloom, though. There are many teams out there delivering
projects on time and within budget and delighting their stakeholders, and
they manage to do it again and again. It’s not easy. It takes discipline and
dedication and relies on a high degree of communication and collaboration,
but it is possible. People who work like this tend to agree it is also a lot of
fun!

Behaviour-Driven Development is one of a number of Agile methodologies.
Specifically, it is a second-generation Agile methodology, building on the work
of the really smart guys. Let’s look at how these Agile methods came about
and how they address traditional project risks, and then we can see how BDD
allows us to concentrate on writing software that matters.

A Brief History of Agile

Since we first started delivering software as projects, there have been software
professionals asking themselves the same questions. Why do so many software
projects fail? Why are we so consistently bad at delivering software? Why does
it seem to happen more on larger projects with bigger teams? And can anything
be done about it?

Independently they developed a series of lightweight methodologies whose
focus was on delivering working software to users, rather than producing
reams of documents or staging ceremonial reviews to show how robust their
processes were. They found they could cut through a lot of organizational red
tape just by putting everyone in the same room.

Then in early 2001 a few of these practitioners got together and produced a
short manifesto describing their common position. You might well have seen
it before, but it is worth reproducing here because it describes the common
ground so perfectly.1

The Agile Manifesto

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

1. You can find the Agile Manifesto online at http://agilemanifesto.org.

Chapter 10. The Case for BDD • 114

report erratum • discuss

http://agilemanifesto.org
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the things on the right, we value the things on
the left more.

The Agile Manifesto is empirical—it’s based on real experience: “We are
uncovering better ways…by doing it.” Also notice that it doesn’t dismiss tradi-
tional ideas like documentation and contracts—a criticism often leveled at
Agile methods—but rather it expresses a preference for something different:
something lighter weight and more directly relevant to the customer or
stakeholder.

How Agile Methods Address Project Risks

The authors of the manifesto go further than the few lines quoted previously.
They also documented the principles underpinning their thinking. Central to
these is a desire to “deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the shorter timescale.”

Imagine you could do this, namely, delivering production-quality software
every two weeks to your stakeholders, on your current project, in your current
organization, with your current team, starting tomorrow. How would this
address the traditional delivery risks we outlined at the start of the chapter?

No Longer Delivering Late or Over Budget

Since we are delivering the system in tiny, one- or two-week iterations or mini-
projects, using a small, fixed-size team, it is easy to calculate our project
budget: it is simply the burn rate of the team times the number of weeks,
plus some hardware and licenses.

Provided we start with a reasonable guess at the overall size of the project
(that is, how much we are prepared to invest in solving the business problem
in the first place) and we prioritize the features appropriately, then the team
can deliver the really important stuff in the early iterations. (Remember, we
are delivering by feature, not by module.) So, as we get toward the point when
the money runs out, we should by definition be working on lower-priority
features. Also, we can measure how much we actually produce in each itera-
tion, known as our velocity or throughput, and use this to predict when we
are really likely to finish.

report erratum • discuss

Redefining the Problem • 115

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

If, as we approach the deadline, the stakeholders are still having new ideas
for features and seeing great things happening, they may choose to fund the
project for a further few iterations. Conversely, they may decide before the
deadline that enough of the functionality has been delivered that they want
to finish up early and get a release out. This is another option they have.

No Longer Delivering the Wrong Thing

We are delivering working software to the stakeholders every two weeks (say),
which means we are delivering demonstrable features. We don’t have a two-
week “database schema iteration” or “middleware iteration.”

After each iteration, we can demonstrate the new features to the stakeholders,
and they can make any tweaks or correct any misunderstandings while the
work is still fresh in the development team’s mind. These regular, small-scale
micro-corrections ensure that we don’t end up several months down the line
with software that simply doesn’t do what the stakeholders wanted.

To kick off the next iteration, we can get together with the stakeholders to
reassess the priorities of the features in case anything has changed since last
time.2 This means any new ideas or suggestions can get scheduled, and the
corresponding amount of work can be descoped (or extra time added).

No Longer Unstable in Production

We are delivering every iteration, which means we have to get good at building
and deploying the application. In fact, we rely heavily on process automation
to manage this for us. It is not uncommon for an experienced Agile team to
produce more than 100 good software builds every week.

In this context, releasing to production or testing hardware can be considered
just another build to just another environment. Application servers are
automatically configured and initialized; database schemas are automatically
updated; code is automatically built, assembled, and deployed over the wire;
and all manner of tests are automatically executed to ensure the system is
behaving as expected. In fact, in an Agile environment, the relationship
between the development team and the downstream operations and DBA
folks is often much healthier and more supportive.

No Longer Costly to Maintain

This last one is one of the biggest tangible benefits of an Agile process. After
their first iteration, the team is effectively in maintenance mode. They are

2. In practice, the planning session often follows directly after the showcase for the pre-
vious iteration.

Chapter 10. The Case for BDD • 116

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

adding features to a system that “works,” so they have to be very careful.
Assuming they can solve the issues of safely changing existing code so as not
to introduce regression defects, their working practices should be exactly the
same as downstream support developers. It is not uncommon for an Agile
development team to be working on several versions of an application simul-
taneously, adding features to the new version, providing early live support to
a recently released version, and providing bug support to an older production
version (because we still make mistakes, and the world still moves on!).

10.4 The Cost of Going Agile

So, this is great news! By rethinking the way we approach project delivery,
we’ve managed to comprehensively address all our traditional project risks.
Instead of seeing a project as a linear sequence of activities that ends up with
a big delivery, we find things work better if we deliver frequently in short
iterations. So, why isn’t everyone doing this?

The obvious but unpopular answer is because it’s really hard! Or rather, it’s
really hard to do well. Delivering production-quality software week after week
takes a lot of discipline and practice. For all their systemic faults, traditional
software processes cause you to focus on certain aspects of a system at certain
times. In an Agile process, the training wheels come off, and the responsibil-
ity now lies with you. That autonomy comes at a cost!

If we want to deliver working software frequently—as often as every week on
many projects—there are a number of new problems we need to solve. Luck-
ily, Agile has been around for long enough that we have an answer to many
of these problems, or at least we understand them well enough to have an
opinion about them. Let’s look at some of the challenges of Agile, and then
we will see how BDD addresses them.

Outcome-Based Planning

The only thing we really know at the beginning of a project is that we don’t
know very much and that what we do know is subject to change. Much like
steering a car, we know the rough direction, but we don’t know every detailed
nuance of the journey, such as exactly when we will turn the steering wheel
or by how many degrees. We need to find a way to estimate the cost of
delivering a project among all this uncertainty and accept that the fine details
of the requirements are bound to change, and that’s OK.

report erratum • discuss

The Cost of Going Agile • 117

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Streaming Requirements

If we want to deliver a few features every week or two, we must start
describing requirements in a way that supports this. The traditional require-
ments process tends to be document-based, where the business analyst takes
on the role of author and produces a few kilos of requirements.

Instead of this batch delivery of requirements, we need to come up with a way
to describe features that we can feed into a more streamlined delivery process.

Evolving Design

In a traditional process, the senior techies would come up with The Design
(with audible capitals, most likely based on The Standards). Before we were
allowed to start coding, they would have produced high-level designs, detailed
designs, and probably class diagrams describing every interaction. Each stage
of this would be signed off. In an Agile world, the design needs to flex and
grow as we learn more about the problem and as the solution takes shape.
This requires rethinking the process of software design.

Changing Existing Code

Traditional programming is like building little blocks for later assembly. We
write a module and then put it to one side while we write the next one, and
so on, until all the modules are written. Then we bring all the modules
together in a (usually painful) process called integration. An Agile process
requires us to keep revisiting the same code as we evolve it to do new things.

Because we take a feature-wise approach to delivery rather than a module-
wise one, we will often need to add new behavior to existing code. This isn’t
because we got it “wrong” the first time but because the code is currently
exactly fit for purpose, and we need the application to do more now. Refactor-
ing, the technique of restructuring code without changing its observable
behavior, is probably the place where most advances have been made in terms
of tool support and automation, especially with statically typed languages
like Java and C#.

Frequent Code Integration

Integrating code ahead of a testing cycle is a thankless and fraught task. All
the individual modules “work”—just not together! Imagine doing this every
single month. Or every week. What about potentially several times every day?
This is the frequency of integration an iterative process demands: it’s frequent
enough that it is known as continuous integration.

Chapter 10. The Case for BDD • 118

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Continual Regression Testing

Whenever we add a new feature, it might affect many parts of the code base.
We are doing feature-wise development, so different parts of the code base
are evolving at different rates, depending on the kind of feature we are
implementing. When we have a single feature, the system is easy to test.
When we add the hundredth feature, we suddenly have to regression test the
previous ninety-nine. Imagine when we add the two hundredth feature—or
the one thousandth! We need to get really good at regression testing; otherwise,
we will become ever slower at adding features to our application.

Frequent Production Releases

This is one of the hardest challenges of Agile software delivery, because it
involves coordination with the downstream operations team. Things are
suddenly outside of the team’s control. All the other aspects—streaming
requirements, changing design and code, frequent integration, and regression
testing—are behaviors we can adopt ourselves.

Getting software into formally controlled environments puts us at odds with
the corporate governance structures. But if we can’t get into production fre-
quently, there is arguably little value in all the other stuff. It may still be
useful for the team’s benefit, but software doesn’t start making money until
it’s in production. Remember, we want to be writing software that matters!

Co-located Team

To make this all work, you can’t afford for a developer to be waiting around
for her manager to talk to someone else’s manager to get permission for her
to talk to them. The turnaround is just too slow. There are organizational and
cultural changes that need to happen in order to shorten the feedback cycles
to minutes rather than days or weeks.

The kind of interactions we require involve the whole team sitting together,
or at least as near one another as possible. It simply isn’t effective to have
the programmers in one office, the project managers in another, and the
testers elsewhere, whether along the corridor or in a different continent.

10.5 What We’ve Learned

There are a number of different ways in which traditional software projects
fail, and these failures are intrinsic to the way the projects are run. The result
of “process improvement” on traditional projects is simply to reinforce these
failure modes and ironically make them even more likely.

report erratum • discuss

What We’ve Learned • 119

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

An analysis of this approach to running software projects leads back to the
exponential cost curve that originated in the world of civil engineering, where
things are made of steel and concrete. Being aware of this, a number of
experienced IT practitioners had been spending some time wondering what
software delivery might look like if they ignored the constraints of thinking
like civil engineers.

They realized that taking an iterative, collaborative approach to software
delivery could systemically eliminate the traditional risks that project managers
worry about. They called this approach Agile.

It isn’t all plain sailing, however, and adopting an Agile approach introduces
its own challenges. There is no free lunch!

In the next chapter, we will see how BDD addresses these challenges and
where RSpec and Cucumber fit into the picture.

Chapter 10. The Case for BDD • 120

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 11

Writing Software That Matters
Although BDD started as a simple reframing of Test-Driven Development, it
has grown into a fully fledged software methodology in its own right. In this
chapter, we look at the mechanics of BDD and see how RSpec and Cucumber
fit into the picture.

11.1 A Description of BDD

Behaviour-Driven Development is about implementing an application by
describing its behavior from the perspective of its stakeholders.

This description of BDD implies a number of things. First, it suggests we need
to understand the world from the point of view of our stakeholders if we are
to deliver anything useful. We need to understand their domain, the challenges
and opportunities they face, and the words they use to describe the behavior
they want from an application. We use techniques from Domain-Driven Design
to help with this.

Second, it implies there is more than one stakeholder. We don’t just look at
the world from the point of view of an end user or the person paying the bills
but anyone with an interest in the project.

11.2 The Principles of BDD

When we describe BDD as writing “software that matters,” we mean software
that has value to a stakeholder, that is neither too little to solve the problem
nor over-engineered, and that we can demonstrate works.

We sum this up using the following three principles of BDD:

Enough is enough Up-front planning, analysis, and design all have a dimin-
ishing return. We shouldn’t do less than we need to get started, but any

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

more than that is wasted effort. This also applies to process automation.
Have an automated build and deployment, but avoid trying to automate
everything.

Deliver stakeholder value If you are doing something that isn’t either delivering
value or increasing your ability to deliver value, stop doing it, and do
something else instead.

It’s all behavior Whether at the code level, the application level, or beyond,
we can use the same thinking and the same linguistic constructs to
describe behavior at any level of granularity.

11.3 The Project Inception

Before we get into the day-to-day delivery of a project, we need to understand
what it is all about. To do this, we get all the stakeholders together to establish
a vision or purpose for the project: what is it we are trying to achieve here?
This should be a single pithy statement, something like this: improve our
supply chain or understand our customers better.

BDD defines a stakeholder as anyone who cares about the work we are
undertaking, whether they are the people whose problem we are trying to
solve—known as the core stakeholders—or the people who are going to help
solve it—who we call the incidental stakeholders. This latter group includes
the operations folk who will monitor the application, the support team who
will diagnose problems and add new features, the legal and security experts
who will ensure the application is fit for the purpose from an organizational
risk perspective, and in fact all the people representing what we usually call
nonfunctional requirements. From a BDD perspective, there is no such thing
as a nonfunctional requirement, just a feature with an incidental stakeholder.
Even the people in the delivery team are stakeholders. (Who would you say
is the stakeholder for having an automated build?)

It is the core stakeholders’ responsibility to define the vision and the incidental
stakeholders’ to help them understand what’s possible, at what cost, and
with what likelihood. This is the objective of the up-front thinking—that and
nothing more.

Now we can’t just go off and start coding improve our supply chain. We need
to understand what that means first, so we work with the core stakeholders
—the people whose vision it is—to identify outcomes or goals. How will they
know when this project has achieved its purpose? What will they be able to
do that they can’t do now? There should only be a few of these, or the project

Chapter 11. Writing Software That Matters • 122

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

will quickly lose its focus. If you find yourself looking at more than a handful
of outcomes, either you are going too low level too quickly or this may be a
bigger problem than you think and should be broken out into a program of
smaller projects.

For the supply chain example, some outcomes might be the ordering process
is easier or better access to suppliers’ information. Some people recommend
these outcomes should be SMART (see SMART Outcomes, on page 125), but
this becomes less important as you build trust between the core stakeholders
and the delivery team.

To achieve these outcomes, we are going to need some software. We describe
the sorts of things the software needs to do as feature sets or themes. The
terms are synonymous, so use whichever feels best for you. Themes are things
like reporting or customer registration, again too high level to start coding but
specific enough to have some useful conversations around.

Finally, we are in a position to talk about the specific features or stories that
make up these themes. (See Stories In, Features Out, on page 127 for a discus-
sion of stories and features.)

This is the level where we will actually be working day-to-day—these describe
the behavior we will implement in software.

You can see how this gives us traceability right back to a specific stakeholder
need. Each feature is there only because it is adding value to a feature set.
Each feature set is contributing to one or more of the outcomes, and each
outcome is part of the overall purpose of the project. Too often Agile teams
dive straight into the feature or story level without taking the time to think
about the overall shape of the delivery.

At this stage, you could be forgiven for thinking this looks a lot like traditional
top-down decomposition. The difference is that we stop before a traditional
analysis phase would, again remembering to only do just enough.

It is dangerous to get too hung up on the detail of features because it can
create false expectations with your stakeholders. Remember, they came to
us with a need or problem, so success for them will be if we can meet that
need and solve that problem. By focusing on the details, we inadvertently
shift their attention so that they now associate success with delivering the
features we drove out during the planning.

A better use of our efforts during an inception is to try to identify and mitigate
the “gotchas.” Where are the risky areas—in terms of technology or integration
points, an unknown business domain, access to key stakeholders, market

report erratum • discuss

The Project Inception • 123

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

conditions, external dependencies—that are likely to derail our nascent
project? Keeping a log of these risks and assumptions is at least as important
as the breakdown of the project objectives.

11.4 The Cycle of Delivery

The BDD delivery cycle starts with a stakeholder discussing a requirement
with a business analyst.1 The requirement might be a problem they want
solved or an idea they’ve had. The analyst helps the stakeholder articulate
the requirement in terms of features that make sense to the stakeholder—
using their own domain terms—and maybe further into small, verifiable
chunks known as stories, which represent no more than a few days work.

Next the stakeholder and business analyst work with a tester to determine
the stories’ scope. What does done look like for each story? We don’t want to
overdesign the solution because that’s a waste of effort, but likewise we don’t
want to do too little; otherwise, we won’t be meeting the stakeholder’s original
need.

Where the business analyst thinks in abstract terms (it should be possible to
withdraw money from a checking account), the tester is typically thinking in
terms of concrete scenarios. If I have $100 in an account and I withdraw $80,
what happens? What about if I try to withdraw $120? What happens if I have
an overdraft facility on the account? What if I try to go past my overdraft limit?

By identifying which scenarios are important to the story before development
starts, the stakeholder can specify exactly how much they want the program-
mers to do or how much development effort they want to invest in delivering
the feature. The developers will only implement enough to satisfy the agreed
scenarios, and no more.

The final task before the programmers start implementing the story is to
automate the scenarios where it makes sense to do so. In the same way, Test-
Driven Development2 uses code examples to drive the design; these automated
scenarios will drive the high-level direction of the development effort.

1. The terms stakeholder, business analyst, and so on, describe roles rather than individ-
uals. On a small team, the same person may take on more than one role at different
times. You can think of them as different hats people can wear.

2. BDD calls Test-Driven Development coding by example, which places the emphasis
on using examples to drive out the behavior of the code. The fact that these examples
become tests once the code is written is a secondary concern.

Chapter 11. Writing Software That Matters • 124

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

SMART Outcomes

The acronym SMART is used to describe outcomes or objectives that have certain
characteristics, namely, that they are Specific, Measurable, Achievable, Relevant, and
Timeboxed:

Specific means there is enough detail to know that something is done. Snappier user
experience is not specific, whereas Faster response time for the four most common
user journeys is.

Measurable means you can determine whether the objective was reached, for example
10 percent reduction in response times.

Achievable helps reduce unrealistic expectations. All credit card transactions should
be instantaneous is unlikely to happen.

Relevant manages the issue of people trying to cram in every conceivable feature just
in case. We want clear, concise reporting and a puppy.

Timeboxed simply means we know when to call time if we haven’t achieved an out-
come; otherwise, it could just trundle on forever or for as long as someone is
prepared to keep paying.

The emphasis on the SMARTness of objectives or outcomes happens a lot in command-
and-control cultures where success is measured in terms of reaching individual
targets. More enlightened companies focus on improving throughput and trusting
people to act with integrity.

Non-SMART, vaguely worded outcomes allow the participants—both the stakeholders
and the delivery team—to be adaptable in what they deliver so they can all focus on
doing the best they can with the resources and time they have. This allows the
stakeholders to invest incrementally in a project: as long as they are seeing value
delivered they continue to invest; otherwise, they can stop the project and assign the
team to solving another challenge.

One of the most important characteristics of BDD is that the scenarios are
easy to automate yet are still easily understandable to the stakeholder.
Defining and automating these scenarios is the realm of Cucumber.

Now at last we can finally get down to the coding part of the delivery cycle. A
developer—or ideally a pair of developers—uses RSpec to code by example to
get the scenario working. We start by writing a code example3 to describe the
behavior we want, then we implement the code to make that example work,

3. Agile testing expert Brian Marick refers to a code example as an exemplar, which is
technically a more correct term. An exemplar is an example intended to demonstrate
a specific point. We prefer calling them examples because it is a more familiar term.

report erratum • discuss

The Cycle of Delivery • 125

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

and then we refactor. The RSpec portions of this book describe exactly how
we do this, so we don’t need to say anything more here.

Eventually we end up with just enough software to make the scenario work,
and then we iterate through the other scenarios until we are done. This then
brings us full circle, such that we can demonstrate the working scenarios
back to the stakeholder, and the story is done.

Now imagine we could run a mini-project that just contained a single story—
something simple enough to develop in a couple of days—and do just enough
analysis to understand that story and then design an application to only do
that one thing! How hard could that be? We could easily implement it and
test that it works and then deploy it into an environment where we could
showcase it to the stakeholder who asked us for it.

It would mean we didn’t spend weeks poring over database schemas or entity-
relationship diagrams, we didn’t go to town with UML code generation tools,
and we certainly didn’t write down a detailed functional specification of every
last aspect of the feature. We also haven’t delivered very much yet!

OK, so now we are going to get a little ambitious. Instead of a single story,
we are going to deliver a handful of stories together. In fact, we are going to
try to deliver about as many as we think we could reasonably do in a week.
In effect, we are going to run a tiny one-week project that we call an iteration.4

As with any project, our estimates will most likely be wrong. Instead of
delivering the seven stories we planned, we might make only five. Or we might
have a great week and have capacity to spare for an extra bonus story! In any
event, we will know at the end of the week how much we actually did deliver,
and we can use this to predict our throughput for next week! But that comes
later.

Right now we are more interested in what our stakeholders think about the
work we’ve done, so we arrange a showcase. This feedback happens very close
to when the work occurred—because we are only showcasing the work we
completed in the last iteration—and usually involves the stakeholder saying,
“That’s very nearly exactly what I wanted, but can I change some stuff?”

4. You don’t have to work in iterations, and if you do, they don’t have to be one-week
long. We have seen teams using iterations lasting from half a day (no, really!) to four
weeks. Some teams don’t use iterations at all but have a constant flow of stories that
they track using techniques borrowed from Lean manufacturing, such as kanban flow
control and finger charts. The important thing is to ensure you have regular feedback
from your stakeholders and a way of measuring throughput.

Chapter 11. Writing Software That Matters • 126

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Stories In, Features Out

Many people use the words feature and story interchangeably, but there is a subtle
difference. A feature is something that delivers cohesive value to a stakeholder. A
story is a piece of demonstrable functionality that shouldn’t take more than a few
days to implement. So, the feature is more useful from the point of view of the
stakeholder, and the story is more useful from the point of view of the team delivering
the feature.

Often a feature can be delivered as a single story, but sometimes the feature doesn’t
naturally decompose to that level. For example, if we are capturing an email address,
there might be some validation around that address. This could get quite involved
and would take more than a few days of effort. In this case, we could separate out
the “happy path”—where all the data is valid—and the most important validation
cases into one story and some of the less common but still useful validations into
another story. Or we might separate out the security concerns into another story
(whose stakeholder would be the security folks), so we would look at cross-site
scripting or SQL injection attacks as different aspects of the same feature.

As long as your stories are roughly the same size, this decomposition of features into
stories provides the same kind of tracking data as having artificial constructs like
story points or ideal days, terms that can feel uncomfortable to your stakeholders.
It is more natural to say, “We’ve broken that feature into these three stories that
tackle different aspects,” rather than “This feature is seven points, and this one is
four points” or “This week we delivered nine ideal days” (to which the correct response
is “Eh?”).

It is important to remember that we still decompose along boundaries that make
sense to the stakeholder, so we wouldn’t break a feature into the database stuff, then
the UI stuff, and then the wiring-up stuff. Instead, we would deliver different groups
of scenarios.

As we deliver the stories, we arrange any artifacts—such as Cucumber scenario files
and step implementations—by feature, because over time it doesn’t really matter
which story the behavior was implemented in so much as which feature benefited
from that story. We call this arrangement “stories in, features out”: the input happens
to be delivered in stories, but the result is cohesive features.

And now we are ready to plan the next mini-project. We have feedback from
our stakeholders, a backlog of stories, and a priority order.

This then is how we work, from day to day and from week to week. We have
frequent, regular contact with our stakeholders who get to provide fine-grained
steering in the form of feedback and reprioritization. But what does a story
look like close up?

report erratum • discuss

The Cycle of Delivery • 127

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

11.5 What’s in a Story?

Up to now we haven’t said anything about the anatomy of a story—just about
how they fit into the delivery process. Now it’s time to take a look inside and
see how the structure of the story enables us to concentrate on writing soft-
ware that matters.

A story consists of a number of components:

A title so we know which story we are talking about.

A narrative that tells us what this story is about. There are a couple of common
formats for this, but you can use anything that captures the essentials.
At the very least, it should identify the stakeholder for this story, a
description of the feature they want, and the reason they want it—the
benefit they expect to gain by us delivering this behavior.

The most common format for this is known as the Connextra format, after
the company where it was first used: as a [stakeholder], I want [feature]
so that [benefit].

A recent variant that is becoming popular looks like this: in order to
[benefit], a [stakeholder] wants to [feature]. The content is exactly the same,
but there is a subtle shift in emphasis by putting the benefit first. It helps
keep the focus on the outcome rather than the detail of the feature.

Acceptance criteria so we know when we are done. In BDD, the acceptance
criteria take the form of a number of scenarios made up of individual
steps.

Before we can begin implementing a story, we need to drive out this level of
detail. As we mentioned earlier, this doesn’t need to happen during the
inception (and probably shouldn’t!), but it does need to happen before we do
anything that requires an understanding of “done,” such as scheduling work
during iteration/sprint planning. Some teams ensure they have one or two
iterations worth of stories prepared as they go; others drive out the detail of
scenarios during a weekly planning session. Our recommendation is to try
different approaches and go with what works for you and your team.

The business analyst (again remembering this is a role, not necessarily a
specific person) should ensure the story uses the language of the stakeholders
so everyone is using a consistent vocabulary. In his book Domain-Driven
Design [Eva03], Eric Evans uses the phrase ubiquitous language to describe
this shared vocabulary. The idea is that the domain words find their way right
into the code base, as the names of objects, methods, variables, and even

Chapter 11. Writing Software That Matters • 128

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

modules and namespaces. This allows the code to more accurately model the
domain, which in turn enables us to solve problems in that domain more
effectively.

Now we get into the acceptance criteria—the scenarios—that define “done”
for this story. Which ones do we care about (and by omission which ones
don’t we care about)? This discussion should be a team effort, but the
acceptance criteria are “owned” by the tester, or rather by someone in the
tester role.

Each scenario has a title. You can think of scenario names like the titles of
Friends episodes, so they are all “The one where...” for example [The one where]
the account is locked or [the one where] the password is invalid.5

We use the slightly artificial structure of givens, events, and outcomes to
describe these scenarios. This doesn’t mean that every scenario has exactly
one Given, When, and Then in that order. Rather, it means that each step is
either setting something up in a known state (a given) or exercising some
behavior (an event) or verifying something happened (an outcome). Trying to
do more than one of these in a single step usually ends up in confusion.

This separation is useful because it is only the event we care about. For the
setup, the givens, it doesn’t matter how we get the world into a known state.
We could poke values into a database, drive a UI, read values in from a flat
file—it doesn’t matter. What matters is that the event steps have no idea how
this happened and interact with the application in exactly the same way the
stakeholder would. Similarly, it doesn’t matter how you verify the outcomes,
just that you do. This might involve poking around in a DOM, checking
database values, or doing any manner of other checks. It is possible to get
hung up on thinking of scenarios as full-blown integration tests so that all
the setup steps need to use the same UI as the user might. Now there is def-
initely a benefit in having these integration tests, and tools like Cucumber
and constructs like scenarios are a pretty good way to do this, but this is not
the (primary) purpose of a BDD scenario.

11.6 What We’ve Learned

Behaviour-driven development has grown from an experiment in reframing
TDD to make it easier to understand into a fully fledged Agile methodology.

5. You don’t need to use the actual words “The one where...” in the scenario title; it just
helps with the names.

report erratum • discuss

What We’ve Learned • 129

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

BDD is based on three core principles, namely:

• Enough is enough. We should work to achieve the stakeholder’s expecta-
tions but avoid doing more than we need to do.

• Deliver stakeholder value. There are multiple stakeholders—both core and
incidental—and everything we do should be about delivering demonstrable
value to them.

• It’s all behavior. Just as we can describe the application’s behavior from
the perspective of the stakeholders, we can describe low-level code
behavior from the perspective of other code that uses it.

At the start of a project or a release, we carry out some sort of inception
activities to understand the purpose of the work we are doing and to create
a shared vision. This is about the deliberate discovery of risks and potential
pitfalls along the way.

The day-to-day rhythm of delivery involves decomposing requirements into
features and then into stories and scenarios, which we automate to act as a
guide to keep us focused on what we need to deliver. These automated sce-
narios become acceptance tests to ensure the application does everything we
expect.

BDD stories and scenarios are specifically designed to support this model of
working and in particular to be both easy to automate and clearly understand-
able by their stakeholders.

Chapter 11. Writing Software That Matters • 130

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Part III

RSpec

CHAPTER 12

Code Examples
In this part of the book, we’ll explore the details of RSpec’s built-in expecta-
tions, mock objects framework, command-line tools, IDE integration, and
extension points.

Our goal is to make Test-Driven Development a more joyful and productive
experience with tools that elevate the design and documentation aspects of
TDD to first-class citizenship. Here are some words you’ll need to know as
we reach for that goal:

subject code The code whose behavior we are specifying with RSpec.

expectation An expression of how the subject code is expected to behave.
You’ll read about state-based expectations in Chapter 13, RSpec::Expec-
tations, on page 153, and you’ll learn about interaction expectations in
Chapter 14, RSpec::Mocks, on page 173.

code example An executable example of how the subject code can be used
and its expected behavior (expressed with expectations) in a given context.
In BDD, we write the code examples before the subject code they
document.

The example terminology comes from Brian Marick, whose website is even
named http://exampler.com. Using example instead of test reminds us that
writing them is a design and documentation practice, even though once
they are written and the code is developed against them, they become
regression tests.

example group A group of code examples.

spec, aka spec file A file that contains one or more example groups.

report erratum • discuss

http://exampler.com
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

In this chapter, you’ll learn how to organize executable code examples in
example groups in a number of different ways, run arbitrary bits of code before
and after each example, and even share examples across groups.

Familiar Structure, New Nomenclature

If you already have some experience with Test::Unit or similar tools in other languages
and/or TDD, the words we’re using here map directly to words you’re already familiar
with:

• Assertion becomes expectation.
• Test method becomes code example
• Test case becomes example group

In addition to finding these new names used throughout this book, you’ll find them
in RSpec’s code base as well.

12.1 Describe It!

RSpec provides a domain-specific language for specifying the behavior of
objects. It embraces the metaphor of describing behavior the way we might
express it if we were talking to a customer or another developer. A snippet of
such a conversation might look like this:

You: Describe a new account.

Somebody else: It should have a balance of zero.

Here’s that same conversation expressed in RSpec:

describe "A new Account" do
it "should have a balance of 0" do

account = Account.new
account.balance.should == Money.new(0, :USD)

end
end

We use the describe() method to define an example group. The string we pass
to it represents the facet of the system that we want to describe (a new
account). The block holds the code examples that make up that group.

The it() method defines a code example. The string passed to it describes the
specific behavior we’re interested in specifying about that facet (should have
a balance of zero). The block holds the example code that exercises the subject
code and sets expectations about its behavior.

Chapter 12. Code Examples • 134

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Using strings like this instead of legal Ruby class names and method names
provides a lot of flexibility. Here’s an example from RSpec’s own code examples:

it "matches when actual < (expected + delta)" do
be_close(5.0, 0.5).matches?(5.49).should be_true

end

This is an example of the behavior of code, so the intended audience is
someone who can read code. With Test::Unit, we might name the method
test_matches_when_value_is_less_than_target_plus_delta, which is pretty readable, but
the ability to use nonalphanumeric characters makes the name of this
example more expressive.

To get a better sense of how you can unleash this expressiveness, let’s take
a closer look at the describe() and it() methods.

The describe Method

The describe() method takes an arbitrary number of arguments and an
optional block and returns a subclass of RSpec::Core::ExampleGroup. We typically
use only one or two arguments, which represent the facet of behavior that
we want to describe. They might describe an object, perhaps in a predefined
state or perhaps a subset of the behavior we can expect from that object. Let’s
look at a few examples, with the output they produce so we can get an idea
of how the arguments relate to each other:

describe "A User" { ... }
=> A User

describe User { ... }
=> User

describe User, "with no roles assigned" { ... }
=> User with no roles assigned

describe User, "should require password length between 5 and 40" { ... }
=> User should require password length between 5 and 40

The first argument can be either a reference to a class or module or a string.
The second argument is optional and should be a string. Using the
class/module for the first argument provides an interesting benefit: when we
wrap ExampleGroup in a module, we’ll see that module’s name in the output.
For example, if User is in the Authentication module, we could do something like
this:

module Authentication
describe User, "with no roles assigned" do

report erratum • discuss

Describe It! • 135

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The resulting report would look like this:

Authentication::User with no roles assigned

So, by wrapping the ExampleGroup in a module, we see the fully qualified name
Authentication::User, followed by the contents of the second argument. Together,
they form a descriptive string, and we get the fully qualified name for free.
This is a nice way to help RSpec help us understand where things live as
we’re looking at the output.

You can also nest example groups, which can be a very nice way of expressing
things in both input and output. For example, we can nest the input like this:

describe User do
describe "with no roles assigned" do
it "is not allowed to view protected content" do

This produces output like this:

User
with no roles assigned

is not allowed to view protected content

The context Method

The context() method is an alias for describe(), so they can be used interchange-
ably. We tend to use describe() for things and context() for context.

The User example, shown earlier, for example, could be written like this:

describe User do
context "with no roles assigned" do
it "is not allowed to view protected content" do

The output would be the same as when we used describe() on the second line,
but context() can make it easier to scan a spec file and understand what relates
to what.

What’s It All About?

Similar to describe(), the it() method takes a single string, an optional hash, and
an optional block. The string should be a sentence that, when prefixed with
“it,” represents the detail that will be expressed in code within the block.
Here’s an example specifying a stack:

describe Stack do
before(:each) do

@stack = Stack.new
@stack.push :item

end

Chapter 12. Code Examples • 136

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe "#peek" do
it "should return the top element" do
@stack.peek.should == :item

end
it "should not remove the top element" do

@stack.peek
@stack.size.should == 1

end
end
describe "#pop" do
it "should return the top element" do
@stack.pop.should == :item

end
it "should remove the top element" do

@stack.pop
@stack.size.should == 0

end
end

end

This is also exploiting RSpec’s nested example groups feature to group the
examples of pop() separately from the examples of peek().

When run with the --format documentation command-line option, this would pro-
duce the following output:

Stack
#peek

should return the top element
should not remove the top element

#pop
should return the top element
should remove the top element

Finished in 0.00154 seconds
4 examples, 0 failures

Looks a bit like a specification, doesn’t it? In fact, if we reword the example
names without the word should in them, we can get output that looks even
more like documentation:

Stack
#peek

returns the top element
does not remove the top element

#pop
returns the top element
removes the top element

Finished in 0.00157 seconds
4 examples, 0 failures

report erratum • discuss

Describe It! • 137

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

What? No should? Remember, the goal here is readable sentences. Should
was the tool that Dan North used to get people writing sentences but is not
itself essential to the goal.

The ability to pass free text to the it() method allows us to name and organize
examples in meaningful ways. As with describe(), the string can even include
punctuation. This is especially useful when we’re dealing with code-level
concepts in which symbols have important meaning that can help us under-
stand the intent of the example.

12.2 Pending Examples

In Test Driven Development: By Example [Bec02], Kent Beck suggests keeping
a list of tests that you have yet to write for the object you’re working on,
crossing items off the list as you get tests passing, and adding new tests to
the list as you think of them.

With RSpec, you can do this right in the code by calling the it() method with
no block. Let’s say that we’re in the middle of describing the behavior of a
newspaper:

describe Newspaper do
it "should be black" do
Newspaper.new.colors.should include('black')

end

it "should be white" do
Newspaper.new.colors.should include('white')

end

it "should be read all over"
end

RSpec will consider the example with no block to be pending. Running these
examples produces the following output:

Newspaper
should be black
should be white
should be read all over (PENDING: Not Yet Implemented)

Pending:
Newspaper should be read all over
Not Yet Implemented
./newspaper_spec.rb:17

Finished in 0.00191 seconds
3 examples, 0 failures, 1 pending

Chapter 12. Code Examples • 138

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

As you add code to existing pending examples and add new ones, each time
you run all the examples, RSpec will remind you how many pending examples
you have, so you always know how close you are to being done!

Another case for marking an example pending is when you’re in the middle
of driving out an object, you have some examples passing, and you add a new
failing example. You look at the code, see a change you want to make, and
realize that the design really doesn’t support what you want to do to make
this example pass.

so you can refactor There are a couple of different paths people choose at
this juncture. One is to comment out the failing example in the green and
then uncomment the example and continue.

This works great until you’re interrupted in the middle of this near the end
of the day on Friday, and three months later you look back at that file and
find examples you commented out three months ago.

Instead of commenting the example out, you can mark it pending like this:

describe "onion rings" do
it "should not be mixed with french fries" do
pending "cleaning out the fryer"
fryer_with(:onion_rings).should_not include(:french_fry)

end
end

In this case, even though the example block gets executed, it stops execution
on the line with the pending() declaration. The subsequent code is not run,
there is no failure, and the example is listed as pending in the output, so it
stays on your radar. When you’ve finished refactoring, you can remove the
pending declaration to execute the code example as normal. This is, clearly,
much better than commenting out failing examples and having them get lost
in the shuffle.

A third way to indicate a pending example can be quite helpful in handling
bug reports. Let’s say you get a bug report and the reporter is kind enough
to provide a failing example. Or you create a failing example yourself to prove
the bug exists. You don’t plan to fix it this minute, but you want to keep the
code handy. Rather than commenting the code, you could use the pending()
method to keep the failing example from being executed.

You can also, however, wrap the example code in a block and pass that to
the pending method, like this:

report erratum • discuss

Pending Examples • 139

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe "an empty array" do
it "should be empty" do
pending("bug report 18976") do
[].should be_empty

end
end

end

When RSpec encounters this block, it actually executes the block. If the block
fails or raises an error, RSpec proceeds as with any other pending example.

If, however, the code executes without incident, RSpec raises a Pending-Example-
FixedError, letting you know that you have an example that is pending for no
reason:

F

Failures:
1) an empty array should be empty FIXED

Expected pending 'bug report 18976' to fail. No Error was raised.
./pending_fixed.rb:4

Finished in 0.00088 seconds
1 example, 1 failure

The next step is to remove the pending wrapper and rerun the examples with
your formerly pending, newly passing example added to the total of passing
examples.

So, now you know three ways to identify pending examples, each of which
can be helpful in your process in different ways:

• Add pending examples as you think of new examples that you want to
write.

• Disable examples without losing track of them (rather than commenting
them out).

• Wrap failing examples when you want to be notified that changes to the
system cause them to pass.

Now that you know how to postpone writing examples, let’s talk about what
happens when you actually write some!

12.3 Hooks: Before, After, and Around

If we were developing a stack, we’d want to describe how a stack behaves
when it is empty, almost empty, almost full, and full. And we’d want to

Chapter 12. Code Examples • 140

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe how the push(), pop(), and peek() methods behave under each of those
conditions.

If we multiply the four states by the three methods, we’re going to be
describing twelve different scenarios that we’ll want to group together by
either state or method. We’ll talk about grouping by method later this chapter.
Right now, let’s talk about grouping things by initial state, using RSpec’s
before() hook.

before(:each)

To group examples by initial state, or context, RSpec provides a before() method
that can run either one time before :all the examples in an example group or
once before :each of the examples. In general, it’s better to use before(:each)
because that re-creates the context before each example and keeps state from
leaking from example to example. Here’s how this might look for the stack
examples:

describeit/stack.rb
describe Stack do

context "when empty" do
before(:each) do
@stack = Stack.new

end
end

context "when almost empty (with one element)" do
before(:each) do
@stack = Stack.new
@stack.push 1

end
end

context "when almost full (with one element less than capacity)" do
before(:each) do

@stack = Stack.new
(1..9).each { |n| @stack.push n }

end
end

context "when full" do
before(:each) do

@stack = Stack.new
(1..10).each { |n| @stack.push n }

end
end

end

report erratum • discuss

Hooks: Before, After, and Around • 141

http://media.pragprog.com/titles/achbd/code/describeit/stack.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

As we add examples to each of these example groups, the code in the block
passed to before(:each) will be executed before each example is executed, putting
the environment in the same known starting state before each example in
that group.

before(:all)

In addition to before(:each), we can also say before(:all). This gets run once and
only once in its own instance of Object,1 but its instance variables get copied
to each instance in which the examples are run. A word of caution in using
this: in general, we want to have each example run in complete isolation from
one another. As soon as we start sharing state across examples, unexpected
things begin to happen.

Consider a stack. The pop() method removes the top item from a stack, which
means the second example that uses the same stack instance is starting off
with a stack that has one less item than in the before(:all) block. When that
example fails, this fact is going to make it more challenging to understand
the failure.

Even if it seems to you that sharing state won’t be a problem right now in
any given example, this is sure to change over time. Problems created by
sharing state across examples are notoriously difficult to find. If we have to
be debugging at all, the last thing we want to be debugging is the examples.

So, what is before(:all) actually good for? One example might be opening a net-
work connection of some sort. Generally, this is something we wouldn’t be
doing in the isolated examples that RSpec is really aimed at. If we’re using
RSpec to drive higher-level examples, however, then this might be a good case
for using before(:all).

after(:each)

Following the execution of each example, before(:each)’s counterpart after(:each)
is executed. This is rarely necessary because each example runs in its own
scope, and the instance variables consequently go out of scope after each
example.

There are cases, however, when after(:each) can be quite useful. If you’re dealing
with a system that maintains some global state that you want to modify just
for one example, a common idiom for this is to set aside the global state in
an instance variable in before(:each) and then restore it in after(:each), like this:

1. In nested example groups in rspec-1.x, it gets run once per example group.

Chapter 12. Code Examples • 142

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

before(:each) do
@original_global_value = $some_global_value
$some_global_value = temporary_value

end

after(:each) do
$some_global_value = @original_global_value

end

after(:each) is guaranteed to run after each example, even if there are failures
or errors in any before blocks or examples, so this is a safe approach to
restoring global state.

after(:all)

We can also define some code to be executed after(:all) of the examples in an
example group. This is even more rare than after(:each), but there are cases in
which it is justified. Examples include closing down browsers, closing database
connections, closing sockets, and so on—basically, any resources that we
want to ensure get shut down but not after every example.

around(:each)

RSpec provides an around() hook to support APIs that require a block. The most
common use case for this is database transactions:

around do |example|
DB.transaction { example.run }

end

RSpec passes the current running example to the block, which is then
responsible for calling the example’s run() method. You can also pass the
example to a method within the block as a block itself:

around do |example|
DB.transaction &example

end

One pitfall of this structure is that the block is responsible for handling errors
and cleaning up after itself. In the previous example, we assume that the
transaction() method does this, but that is not always the case. Consider the
following:

around do |example|
do_some_stuff_before
example.run
do_some_stuff_after

end

report erratum • discuss

Hooks: Before, After, and Around • 143

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

If the example fails or raises an error, do_some_stuff_after() will not be executed,
and the environment may not be correctly torn down. We could get around
that with a begin/ensure/end structure, like this:

around do |example|
begin

do_some_stuff_before
example.run

ensure
do_some_stuff_after

end
end

But now this hook has a lot of responsibility, and the readability is starting
to wane. For cases like this, we recommend sticking to before and after hooks:

before { do_some_stuff_before }
after { do_some_stuff_after }

after hooks are guaranteed to run even if there is an error in an example or a
before, so this removes the burden of error handling we have in around hooks
and is arguably more readable.

So, we’ve now explored before and after :each and before and after :all. These
methods are very useful in helping to organize our examples by removing
duplication—not just for the sake of removing duplication but with the purpose
of improving clarity and making the examples easier to understand.

But sometimes we want to share things across a wider scope. The next two
sections will address that problem by introducing helper methods and shared
examples.

12.4 Helper Methods

Another approach to cleaning up our examples is to use helper methods that
we define right in the example group, which are then accessible from all the
examples in that group. Imagine that we have several examples in one
example group, and at one point in each example we need to perform some
action that is somewhat verbose.

describe Thing do
it "should do something when ok" do
thing = Thing.new
thing.set_status('ok')
thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)
...

end

Chapter 12. Code Examples • 144

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

it "should do something else when not so good" do
thing = Thing.new
thing.set_status('not so good')
thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)
...

end
end

Both examples need to create a new Thing and assign it a status. This can be
extracted out to a helper like this:

describe Thing do
def create_thing(options)
thing = Thing.new
thing.set_status(options[:status])
thing

end

it "should do something when ok" do
thing = create_thing(:status => 'ok')
thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)
...

end

it "should do something else when not so good" do
thing = create_thing(:status => 'not so good')
thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)
...

end
end

One idiom you can apply to clean this up even more is to yield self from initial-
izers in your objects. Assuming that Thing’s initialize() method does this and
set_status() does as well, you can write the previous like this:

describe Thing do
def given_thing_with(options)
yield Thing.new do |thing|

thing.set_status(options[:status])
end

end

it "should do something when ok" do
given_thing_with(:status => 'ok') do |thing|
thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)
...

end
end

it "should do something else when not so good" do
given_thing_with(:status => 'not so good') do |thing|

report erratum • discuss

Helper Methods • 145

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)
...

end
end

end

Obviously, this is a matter of personal taste, but you can see that this cleans
things up nicely, reducing the noise level in each of the examples. Of course,
with almost all benefits come drawbacks. In this case, the drawback is that
we have to look elsewhere to understand the meaning of given_thing_with. This
sort of indirection can make understanding failures quite painful when
overused.

A good guideline to follow is to keep things consistent within each code base.
If all the code examples in your system look like the earlier one, even your
new teammates who might not be familiar with these idioms will quickly learn
and adapt. If there is only one example like this in the entire code base, then
that might be a bit more confusing. So, as you strive to keep things clean, be
sure to keep them consistent as well.

Sharing Helper Methods

If we have helper methods we want to share across example groups, we can
define them in one or more modules and then include the modules in the
example groups we want to have access to them.

module UserExampleHelpers
def create_valid_user

User.new(:email => 'email@example.com', :password => 'shhhhh')
end

def create_invalid_user
User.new(:password => 'shhhhh')

end
end

describe User do
include UserExampleHelpers

it "does something when it is valid" do
user = create_valid_user
do stuff

end

it "does something when it is not valid" do
user = create_invalid_user
do stuff

end

Chapter 12. Code Examples • 146

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

If we have a module of helper methods that we’d like available in all of our
example groups, we can include the module in the configuration (see Section
16.2, Configuration, on page 216 for more information):

RSpec.configure do |config|
config.include(UserExampleHelpers)

end

So, now that we can share helper methods across example groups, how about
sharing examples?

12.5 Shared Examples

When we expect instances of more than one class to behave in the same way,
we can use a shared example group to describe it once and then include that
example group in other example groups. We declare a shared example group
with the shared_examples_for() method.

shared_examples_for "any pizza" do
it "tastes really good" do

@pizza.should taste_really_good
end
it "is available by the slice" do
@pizza.should be_available_by_the_slice

end
end

Once a shared example group is declared, we can include it in other example
groups with the it_behaves_like() method.

describe "New York style thin crust pizza" do
before(:each) do
@pizza = Pizza.new(:region => 'New York', :style => 'thin crust')

end

it_behaves_like "any pizza"

it "has a really great sauce" do
@pizza.should have_a_really_great_sauce

end
end

describe "Chicago style stuffed pizza" do
before(:each) do

@pizza = Pizza.new(:region => 'Chicago', :style => 'stuffed')
end

it_behaves_like "any pizza"

report erratum • discuss

Shared Examples • 147

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

it "has a ton of cheese" do
@pizza.should have_a_ton_of_cheese

end
end

That produces this:

New York style thin crust pizza
has a really great sauce
behaves like any pizza
tastes really good
is available by the slice

Chicago style stuffed pizza
has a ton of cheese
behaves like any pizza

tastes really good
is available by the slice

The it_behaves_like() method generates a nested example group named “behaves
like” followed by the first argument: “behaves like any pizza.” The block passed
to shared_examples_for() is then evaluated in the context of that group, so any
methods, examples, before hooks, and so on, that are defined in the block
are added to the group.

Like any other nested group, the one generated by it_behaves_like() inherits the
methods and hooks defined in the outer group. In this case, we get the before()
hooks that define @pizza in each of the groups.

The report shows “behaves like any pizza,” and its examples are nested in
each of the top-level groups.

This example also hints at a couple of other features that RSpec brings us to
help make the examples as expressive as possible: custom expectation
matchers and arbitrary predicate matchers. These will be explained in detail
in later chapters, so if you haven’t skipped ahead to read about them yet,
consider yourself teased.

12.6 Nested Example Groups

Nesting example groups is a great way to organize examples within one spec.
Here’s a simple example:

describe "outer" do
describe "inner" do
end

end

Chapter 12. Code Examples • 148

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

As we discussed earlier in this chapter, the outer group is a subclass of
ExampleGroup. In this example, the inner group is a subclass of the outer group.
This means that any helper methods and/or before and after declarations,
included modules, and so on, declared in the outer group are available in the
inner group.

If we declare before and after blocks in both the inner and outer groups, they’ll
be run as follows:

1. Outer before
2. Inner before
3. Example
4. Inner after
5. Outer after

To demonstrate this, copy this into a Ruby file:

describe "outer" do
before(:each) { puts "first" }
describe "inner" do

before(:each) { puts "second" }
it { puts "third"}
after(:each) { puts "fourth" }

end
after(:each) { puts "fifth" }

end

If you run that with the rspec command, you should see output like this:

first
second
third
fourth
fifth

Because they are all run in the context of the same object, we can share state
across the before blocks and examples. This allows us to do a progressive
setup. For example, let’s say we want to express a given in the outer group,
an event (or when) in the inner group, and the expected outcome in the
examples themselves. We could do something like this:

describe Stack do
before(:each) do
@stack = Stack.new(:capacity => 10)

end
describe "when full" do
before(:each) do

(1..10).each {|n| @stack.push n}
end

report erratum • discuss

Nested Example Groups • 149

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe "when it receives push" do
it "should raise an error" do
lambda { @stack.push 11 }.should raise_error(StackOverflowError)

end
end

end

describe "when almost full (one less than capacity)"
before(:each) do

(1..9).each {|n| @stack.push n}
end

describe "when it receives push" do
it "should be full" do

@stack.push 10
@stack.should be_full

end
end

end
end

At this point, you might be thinking, “w00t! Now that is DRY!” Or, perhaps,
“Oh my God, it’s so complicated!” Either way, you’re right. It is DRY, and it’s
so complicated. In the end, you have to find what works for you, and this
structure is one option that is available to you. Handle with care.

Nested examples, however, are quite useful for organization of concepts even
when we don’t use them to build up state. Consider this variation:

describe Stack do
describe "when full" do
before(:each) do

@stack = Stack.new(:capacity => 10)
(1..10).each {|n| @stack.push n}

end

describe "when it receives push" do
it "should raise an error" do
lambda { @stack.push 11 }.should raise_error(StackOverflowError)

end
end

end

describe "when almost full (one less than capacity)"
before(:each) do

@stack = Stack.new(:capacity => 10)
(1..9).each {|n| @stack.push n}

end

Chapter 12. Code Examples • 150

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe "when it receives push" do
it "should be full" do

@stack.push 10
@stack.should be_full

end
end

end
end

Or this one, with no setup:

describe Stack do
describe "when full" do
describe "when it receives push" do
it "should raise an error" do
stack = Stack.new(:capacity => 10)
(1..10).each {|n| stack.push n}
lambda { stack.push 11 }.should raise_error(StackOverflowError)

end
end

end

describe "when almost full (one less than capacity)"
describe "when it receives push" do
it "should be full" do

stack = Stack.new(:capacity => 10)
(1..9).each {|n| stack.push n}
stack.push 10
stack.should be_full

end
end

end
end

Now this is probably the most readable of all three examples. The nested
describe blocks provide documentation and conceptual cohesion, and each
example contains all the code it needs. The great thing about this approach
is that if you have a failure in one of these examples, you don’t have to look
anywhere else to understand it. It’s all right there.

On the flip side, this is the least DRY of all three examples. If we change the
stack’s constructor, we’ll have to change it in two places here and many more
in a complete example. So, you need to balance these concerns. Sadly, there’s
no one true way. And if there were, we’d all be looking for new careers, so
let’s be glad for the absence of the silver bullet.

report erratum • discuss

Nested Example Groups • 151

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

12.7 What We’ve Learned

In this chapter, we covered quite a bit about the approach RSpec takes to
structuring and organizing executable code examples. We learned that we
can do the following:

• Declare an example group using the describe() method

• Declare an example using the it() method

• Declare an example to be pending by either omitting the block or using
the pending() method inside the block

• Nest example groups for cohesive organization

• Declare code to be run before, after, and around examples with hooks

• Define helper methods within an example group that are available to each
example in that group

• Share examples across multiple groups

But what about the stuff that goes inside the examples? We’ve used a couple
of expectations in this chapter, but we haven’t really discussed them. The
next chapters will address these lower-level details, as well as introduce some
of the peripheral tooling that is available to help you nurture your inner BDD
child and evolve into a BDD ninja.

Chapter 12. Code Examples • 152

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 13

RSpec::Expectations
One of our goals in BDD is getting the words right. We want to derive language,
practices, and processes that support communication between all members
of a team, regardless of each person’s understanding of technical issues. This
is why we like to use nontechnical words like Given, When, and Then.

We also talk about expectations instead of assertions. The dictionary defines
the verb “to assert” as “to state a fact or belief confidently and forcefully.”
This is something we do in a courtroom. We assert that it was Miss Peacock
in the kitchen with a rope because that’s what we believe to be true.

In executable code examples, we are setting an expectation of what should
happen rather than what will happen. In fact, we’ve embedded the word
should right into RSpec’s expectation framework. For example, if we are
expecting the result of a calculation to be the number 5, here’s how we express
this in RSpec:

result.should equal(5)

This is an example of an RSpec expectation, a statement that expresses that
at a specific point in the execution of a code example, something should be
in some state. Here are some other expectations that come with RSpec:

message.should match(/on Sunday/)
team.should have(11).players
lambda { do_something_risky }.should raise_error(

RuntimeError, "sometimes risks pay off ... but not this time"
)

In this chapter, you’ll learn about all of RSpec’s built-in expectations and the
simple framework that RSpec uses to express them. You’ll also learn how to
extend RSpec with your own domain-specific expectations. With little effort,
you’ll be able to express things like this:

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

judge.should disqualify(participant)
registration.should notify_applicant("person@domain.com", /Dear Person/)

To better understand RSpec’s expectations, let’s get familiar with their different
parts. We’ll start off by taking a closer look at the should() and should_not()
methods, followed by a detailed discussion of various types of matchers. As
you’ll see, RSpec supports matchers for common operations that you might
expect, like equality, and some more unusual expressions as well.

13.1 should, should_not, and matchers

RSpec achieves a high level of expressiveness and readability by exploiting
open classes in Ruby to add the methods should() and should_not() to every object
in the system. Each method accepts either a matcher or a Ruby expression
using a specific subset of Ruby operators. A matcher is an object that tries
to match against an expected outcome.

Let’s take a look at an example using the equal matcher, which you can access
through the method equal(expected):

result.should equal(5)

When the Ruby interpreter encounters this line, it begins by evaluating equal(5).
This is an RSpec method that returns a matcher object configured to match
for equality with the value 5. The matcher then becomes the argument to
result.should.

Behind the scenes, the should() method calls matcher.matches?, passing self (the
result object) as the argument. Because should() is added to every object, it can
be any object. Similarly, the matcher can be any object that responds to
matches?(object).

If matches?(self) returns true, then the expectation is met and execution moves
on to the next line in the example. If matches?(self) returns false, should() asks the
matcher for a failure message and raises an ExpectationNotMetError with that
message.

should_not() works the opposite way. If matches?(self) returns false, then the
expectation is met, and execution moves on to the next line in the example.
If it returns true, then an ExpectationNotMetError is raised with a message returned
by matcher.failure_message_for_should_not.

Note that should() calls matcher.failure_message_for_should, while should_not() uses
matcher.failure_message_for_should_not, allowing the matcher to provide meaningful

Chapter 13. RSpec::Expectations • 154

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

messages in either situation. Clear, meaningful feedback is one of RSpec’s
primary goals.

The should() and should_not() methods can also take any of several operators
such as == and =~. You can read more about those in Section 13.6, Operator
Expressions, on page 168. Right now, let’s take a closer look at RSpec’s built-
in matchers.

13.2 Built-in Matchers

RSpec ships with several built-in matchers with obvious names that you can
use in your examples. In addition to equal(expected), others include the following:

include(item)
respond_to(message)
raise_error(type)

By themselves, they seem a bit odd, but in context they make a bit more
sense:

prime_numbers.should_not include(8)
list.should respond_to(:length)
lambda { Object.new.explode! }.should raise_error(NameError)

We will cover each of RSpec’s built-in matchers, starting with those related
to equality.

Equality: Object Equivalence and Object Identity

Although we’re focused on behavior, many of the expectations we want to set
are about the state of the environment after some event occurs. The two most
common ways of dealing with post-event state are to specify that an object
should have values that match our expectations (object equivalence) and to
specify that an object is the very same object we are expecting (object identity).

Most xUnit frameworks support something like assert_equal to mean that two
objects are equivalent and assert_same to mean that two objects are really the
same object (object identity). This comes from languages like Java, in which
there are really only two constructs that deal with equality: the == operator,
which, in Java, means the two references point to the same object in memory,
and the equals method, which defaults to the same meaning as == but is nor-
mally overridden to mean equivalence.

Note that you have to do a mental mapping with assertEqual and assertSame. In
Java, assertEqual means equal, and assertSame means ==. This is OK in languages

report erratum • discuss

Built-in Matchers • 155

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

with only two equality constructs, but Ruby is a bit more complex than that.
Ruby has four constructs that deal with equality.

a == b
a === b
a.eql?(b)
a.equal?(b)

Each of these has different semantics, sometimes differing further in different
contexts, and can be quite confusing.1 So, rather than forcing you to make a
mental mapping from expectations to the methods they represent, RSpec lets
you express the exact method you mean to express.

a.should == b
a.should === b
a.should eql(b)
a.should equal(b)

The most common of these is should ==, because the majority of the time we’re
concerned with value equality, not object identity. Here are some examples:

(3 * 5).should == 15

person = Person.new(:given_name => "Yukihiro", :family_name => "Matsumoto")
person.full_name.should == "Yukihiro Matsumoto"
person.nickname.should == "Matz"

In these examples, we’re only interested in the correct values. Sometimes,
however, we’ll want to specify that an object is the exact object that we’re
expecting.

person = Person.create!(:name => "David")
Person.find_by_name("David").should equal(person)

This puts a tighter constraint on the value returned by find_by_name(), requiring
that it must be the exact same object as the one returned by create!(). Although
this may be appropriate when expecting some sort of caching behavior, the
tighter the constraint, the more brittle the expectation. If caching is not a real
requirement in this example, then saying Person.find_by_name("David").should ==
person is good enough and means that this example is less likely to fail later
when things get refactored.

Do Not Use !=

Although RSpec supports the following:

1. See http://www.ruby-doc.org/core/classes/Object.html#M001057 for the official documentation about
equality in Ruby.

Chapter 13. RSpec::Expectations • 156

report erratum • discuss

http://www.ruby-doc.org/core/classes/Object.html#M001057
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

actual.should == expected

it does not support this:

unsupported
actual.should != expected

For the negative, you should use this:

actual.should_not == expected

The reason for this is that == is a method in Ruby, just like to_s(), push(), or
any other method named with alphanumeric characters. The result is that
the following:

actual.should == expected

is interpreted as this:

actual.should.==(expected)

This is not true for !=. Ruby interprets this:

actual.should != expected

as follows:

!(actual.should.==(expected))

This means that the object returned by should() receives == whether the
example uses == or !=. And that means that short of doing a text analysis of
each example, which would slow things down considerably, RSpec cannot
know that the example really means != when it receives ==. And because
RSpec doesn’t know, it won’t tell you, which means you’ll be getting false
responses. So, stay away from != in examples.

Floating-Point Calculations

Floating-point math can be a pain in the neck when it comes to setting
expectations about the results of a calculation. And there’s little more frus-
trating than seeing “expected 5.25, got 5.251” in a failure message, especially
when you’re only looking for two decimal places of precision.

To solve this problem, RSpec offers a be_close matcher that accepts an
expected value and an acceptable delta. So, if you’re looking for precision of
two decimal places, you can say the following:

result.should be_close(5.25, 0.005)

This will pass as long as the given value is within .005 of 5.25.

report erratum • discuss

Built-in Matchers • 157

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Multiline Text

Imagine developing an object that generates a statement. You could have one
big example that compares the entire generated statement to an expected
statement. Something like this:

expected = File.open('expected_statement.txt','r') do |f|
f.read

end
account.statement.should == expected

This approach of reading in a file that contains text that has been reviewed
and approved and then comparing generated results to that text is known as
the “Golden Master” technique and is described in detail in J.B. Rainsberger’s
JUnit Recipes [Rai04].

This serves very well as a high-level code example, but when we want more
granular examples, this can sometimes feel a bit like brute force, and it can
make it harder to isolate a problem when the wheels fall off.

Also, there are times that we don’t really care about the entire string, just a
subset of it. Sometimes we only care that it is formatted a specific way but
don’t care about the details. Sometimes we care about a few details but not
the format. In any of these cases, we can expect a matching regular expression
using either of the following patterns:

result.should match(/this expression/)
result.should =~ /this expression/

In the statement example, we might do something like this:

statement.should =~ /Total Due: \$37\.42/m

One benefit of this approach is that each example is, by itself, less brittle and
less prone to fail due to unrelated changes. RSpec’s own code examples are
filled with expectations like this related to failure messages, where we want
to specify certain things are in place but don’t want the expectations to fail
because of inconsequential formatting changes.

Ch, ch, ch, ch, changes

Ruby on Rails extends Test::Unit with some Rails-specific assertions. One such
assertion is assert_difference(), which is most commonly used to express that
some event adds a record to a database table, like this:

assert_difference 'User.admins.count', 1 do
User.create!(:role => "admin")

end

Chapter 13. RSpec::Expectations • 158

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This asserts that the value of User.admins.count will increase by 1 when you
execute the block. In an effort to maintain parity with the Rails assertions,
RSpec offers this alternative:

expect {
User.create!(:role => "admin")

}.to change{ User.admins.count }

You can also make that more explicit if you want by chaining calls to by(), to()
and from().

expect {
User.create!(:role => "admin")

}.to change{ User.admins.count }.by(1)

expect {
User.create!(:role => "admin")

}.to change{ User.admins.count }.to(1)

expect {
User.create!(:role => "admin")

}.to change{ User.admins.count }.from(0).to(1)

This does not work only with Rails. You can use it for any situation in which
you want to express a side effect of some event. Let’s say you want to specify
that a real estate agent gets a $7,500 commission on a $250,000 sale:

expect {
seller.accept Offer.new(250_000)

}.to change{agent.commission}.by(7_500)

Now you could express the change by explicitly stating the expected starting
and ending values, like this:

agent.commission.should == 0
seller.accept Offer.new(250_000)
agent.commission.should == 7_500

This is pretty straightforward and might even be easier to understand at first
glance. Using expect to change, however, does a nice job of identifying what the
event is and what the expected outcome is. It also functions as a wrapper for
more than one expectation if you use the from() and to() methods, as in the
previous examples.

So, which approach should you choose? It really comes down to a matter of
personal taste and style. If you’re working solo, it’s up to you. If you’re working
on a team, have a group discussion about the relative merits of each approach.

report erratum • discuss

Built-in Matchers • 159

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Expecting Errors

When first learning Ruby, you might get a sense that the language is reading
your mind. Say you need a method to iterate through the keys of a Ruby hash
so you type hash.each_pair {|k,v| puts k} just to see if it works, and, of course, it
does! And this makes you happy!

Ruby is filled with examples of great, intuitive APIs like this, and it seems
that developers who write their own code in Ruby strive for the same level of
obvious, inspired by the beauty of the language. We all want to provide that
same feeling of happiness to developers that they get just from using the Ruby
language directly.

Well, if we care about making developers happy, we should also care about
providing meaningful feedback when the wheels fall off. We want to provide
error classes and messages that provide context that will make it easier to
understand what went wrong.

Here’s a great example from the Ruby library:

$ irb
irb(main):001:0> 1/0
ZeroDivisionError: divided by 0

from (irb):1:in `/'

The fact that the error is named ZeroDivisionError probably tells you everything
you need to know to understand what went wrong. The message “divided by
0” reinforces that. RSpec supports the development of informative error
classes and messages with the raise_error() matcher.

If a checking account has no overdraft support, then it should let us know:

account = Account.new 50, :dollars
expect {

account.withdraw 75, :dollars
}.to raise_error(

InsufficientFundsError,
/attempted to withdraw 75 dollars from an account with 50 dollars/

)

The raise_error() matcher will accept zero, one, or two arguments. If you want
to keep things generic, you can pass zero arguments, and the example will
pass as long as any subclass of Exception is raised.

expect { do_something_risky }.to raise_error

The first argument can be any of a String message, a Regexp that should match
an actual message, or the class of the expected error.

Chapter 13. RSpec::Expectations • 160

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

expect {
account.withdraw 75, :dollars

}.to raise_error(
"attempted to withdraw 75 dollars from an account with 50 dollars"

)

expect {
account.withdraw 75, :dollars

}.to raise_error(/attempted to withdraw 75 dollars/)

expect {
account.withdraw 75, :dollars

}.to raise_error(InsufficientFundsError)

When the first argument is an error class, it can be followed by a second
argument that is either a String message or a Regexp that should match an
actual message.

expect {
account.withdraw 75, :dollars

}.to raise_error(
InsufficientFundsError,
"attempted to withdraw 75 dollars from an account with 50 dollars"

)

expect {
account.withdraw 75, :dollars

}.to raise_error(
InsufficientFundsError,
/attempted to withdraw 75 dollars/

)

Which of these formats you choose depends on how specific you want to get
about the type and the message. Sometimes you’ll find it useful to have sev-
eral code examples that get into details about messages, while others may
just specify the type.

If you look through RSpec’s own code examples, you’ll see many that look
like this:

expect {
@mock.rspec_verify

}.to raise_error(MockExpectationError)

Since there are plenty of other examples that specify details about the error
messages raised by message expectation failures, this example only cares
that a MockExpectationError is raised.

report erratum • discuss

Built-in Matchers • 161

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Expecting a Throw

Like raise() and rescue(), Ruby’s throw() and catch() allow us to stop execution
within a given scope based on some condition. The main difference is that we
use throw/catch to express expected circumstances as opposed to exceptional
circumstances.

Let’s say we’re writing an app to manage registrations for courses at a school,
and we want to handle the situation in which two students both try to register
for the last available seat at the same time. Both were looking at screens that
say the course is still open, but one of them is going to get the last seat, and
the other is going to be shut out.

We could handle that by raising a CourseFullException, but a full course is not
really exceptional. It’s just a different state. We could ask the Course if it has
availability, but unless that query blocks the database, that state could change
after the question is asked and before the request to grab the seat is made.

This is a great case for try/catch, and here’s how we can spec it:

expectations/course_full.rb
course = Course.new(:seats => 20)
20.times { course.register Student.new }
lambda {

course.register Student.new
}.should throw_symbol(:course_full)

Like the raise_error() matcher, the throw_symbol() matcher will accept zero, one,
or two arguments. If you want to keep things generic, you can pass zero
arguments, and the example will pass as long as anything is thrown.

The first (optional) argument to throw_symbol() must be a Symbol, as shown in
the previous example.

The second argument, also optional, can be anything, and the matcher will
pass only if both the symbol and the thrown object are caught. In our current
example, that would look like this:

expectations/course_full.rb
course = Course.new(:seats => 20)
20.times { course.register Student.new }
lambda {

course.register Student.new
}.should throw_symbol(:course_full, 20)

Chapter 13. RSpec::Expectations • 162

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/expectations/course_full.rb
http://media.pragprog.com/titles/achbd/code/expectations/course_full.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

13.3 Predicate Matchers

A Ruby predicate method is one whose name ends with “?” and returns a
Boolean response. One example that is built right into the language is
array.empty?. This is a simple, elegant construct that allows us to write code
like this:

do_something_with(array) unless array.empty?

When we want to set an expectation that a predicate should return a specific
result, however, the code isn’t quite as pretty.

array.empty?.should == true

Although that does express our intention, it doesn’t read that well. What we
really want to say is that the “array should be empty,” right? Well, say it then!

array.should be_empty

Believe it or not, that will work as you expect. The expectation will be met,
and the example will pass if the array has an empty? method that returns true.
If array does not respond to empty?, then we get a NoMethodError. If it does respond
to empty? but returns false, then we get an ExpectationNotMetError.

This feature will work for any Ruby predicate. It will even work for predicates
that accept arguments, such as the following:

user.should be_in_role("admin")

This will pass as long as user.in_role?("admin") returns true.

How They Work

RSpec overrides method_missing to provide this nice little bit of syntactic sugar.
If the missing method begins with “be_,” RSpec strips off the “be_” and appends
“?”; then it sends the resulting message to the given object.

Taking this a step further, there are some predicates that don’t read as fluidly
as we might like when prefixed with “be_”. instance_of?(type), for example,
becomes be_instance_of. To make these a bit more readable, RSpec also looks
for things prefixed with “be_a_” and “be_an_”. So, we also get to write
be_a_kind_of(Player) or be_an_instance_of(Pitcher).

Even with all of this support for prefixing arbitrary predicates, there will still
be cases in which the predicate just doesn’t fit quite right. For example, you
wouldn’t want to say parser.should be_can_parse("some text"), would you? Well, we
wouldn’t want to have to say anything quite so ridiculous, so RSpec supports

report erratum • discuss

Predicate Matchers • 163

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

writing custom matchers with a simple DSL that you’ll read about in Section
16.7, Custom Matchers, on page 220.

13.4 Be True in the Eyes of Ruby

In Ruby, there are two values that evaluate to false in a Boolean expression.
One of them is, of course, false. The other is nil. Every other value is evaluated
as true. Even 0:

puts "0 evals to true" if 0

RSpec’s be_true and be_false matchers can be used to specify methods that
should return values that Ruby will evaluate as true or false, as opposed to the
actual values true and false:

true.should be_true
0.should be_true
"this".should be_true

false.should be_false
nil.should be_false

For the rare cases in which we care that methods return the values true or
false, we can use the equal() matcher:

true.should equal(true)
false.should equal(false)

Up until now we’ve been discussing expectations about the state of an object.
The object should be_in_some_state. But what about when the state we’re inter-
ested in is not in the object itself but in an object that it owns?

13.5 Have Whatever You Like

A hockey team should have five skaters on the ice under normal conditions.
The word character should have nine characters in it. Perhaps a Hash should
have a specific key. We could say Hash.has_key?(:foo).should be_true, but what we
really want to say is Hash.should have_key(:foo).

RSpec combines expression matchers with a bit more method_missing goodness
to solve these problems for us. Let’s first look at RSpec’s use of method_missing.
Imagine that we have a simple RequestParameters class that converts request
parameters to a hash. We might have an example like this:

request_parameters.has_key?(:id).should == true

Chapter 13. RSpec::Expectations • 164

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This expression makes sense, but it just doesn’t read all that well. To solve
this, RSpec uses method_missing to convert anything that begins with have_ to a
predicate on the target object beginning with has_. In this case, we can say
this:

request_parameters.should have_key(:id)

In addition to the resulting code being more expressive, the feedback that we
get when there is a failure is more expressive as well. The feedback from the
first example would look like this:

expected true, got false

whereas the have_key example reports this:

expected #has_key?(:id) to return true, got false

This will work for absolutely any predicate method that begins with “has_”.
But what about collections? We’ll take a look at them next.

Owned Collections

Let’s say we’re writing a fantasy baseball application. When our app sends a
message to the home team to take the field, we want to specify that it sends
nine players out to the field. How can we specify that? Here’s one option:

field.players.select {|p| p.team == home_team }.length.should == 9

If you’re an experienced Rubyist, this might make sense right away, but
compare that to this expression:

home_team.should have(9).players_on(field)

Here, the object returned by have() is a matcher, which does not respond to
players_on(). When it receives a message, it doesn’t understand (like players_on()),
it delegates it to the target object, in this case the home_team.

This expression reads like a requirement and, like arbitrary predicates,
encourages useful methods like players_on().

At any step, if the target object or its collection doesn’t respond to the
expected messages, a meaningful error gets raised. If there is no players_on
method on home_team, you’ll get a NoMethodError. If the result of that method
doesn’t respond to length or size, you’ll get an error saying so. If the collection’s
size does not match the expected size, you’ll get a failed expectation rather
than an error.

report erratum • discuss

Have Whatever You Like • 165

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Unowned Collections

In addition to setting expectations about owned collections, there are going
to be times when the object you’re describing is itself a collection. RSpec lets
us use have to express this as well:

collection.should have(37).items

In this case, items is pure syntactic sugar. What’s happening to support this
is safe but a bit sneaky, so it is helpful for you to understand what is happen-
ing under the hood, lest you be surprised by any unexpected behavior. We’ll
discuss the inner workings of have a bit later in this section.

Strings

Strings are collections too! They’re not quite like arrays, but they do respond
to a lot of the same messages as collections do. Because strings respond to
length and size, you can also use have to expect a string of a specific length.

"this string".should have(11).characters

As in unowned collections, characters is pure syntactic sugar in this example.

Precision in Collection Expectations

In addition to being able to express an expectation that a collection should
have some number of members, you can also say that it should have exactly
that number, at least that number or at most that number.

day.should have_exactly(24).hours
dozen_bagels.should have_at_least(12).bagels
internet.should have_at_most(2037).killer_social_networking_apps

have_exactly is just an alias for have. The others should be self-explanatory.
These three will work for all the applications of have described in the previous
sections.

How It Works

The have method can handle a few different scenarios. The object returned by
have is an instance of RSpec::Matchers::Have, which gets initialized with the
expected number of elements in a collection. So, the following expression:

result.should have(3).things

is the equivalent of this expression:

result.should(Have.new(3).things)

Chapter 13. RSpec::Expectations • 166

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

In Figure 2, Have matcher sequence, on page 167, we can see how this all ties
together. The first thing to get evaluated is Have.new(3), which creates a new
instance of Have, initializing it with a value of 3. At this point, the Have object
stores that number as the expected value.

Figure 2—Have matcher sequence

Next, the Ruby interpreter sends things to the Have object. Then method_missing
is invoked because Have doesn’t respond to things. Have overrides method_missing
to store the message name (in this case things) for later use and then returns
self. So, the result of have(3).things is an instance of Have that knows the name
of the collection you are looking for and how many elements should be in that
collection.

The Ruby interpreter passes the result of have(3).things to should(), which, in
turn, sends matches?(self) to the matcher. It’s the matches? method in which all
the magic happens.

First, it asks the target object (result) if it responds to the message that it stored
when method_missing was invoked (things). If so, it sends that message and,
assuming that the result is a collection, interrogates the result for its length

report erratum • discuss

Have Whatever You Like • 167

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

or its size (whichever it responds to, checking for length first). If the object
does not respond to either length or size, then you get an informative error
message. Otherwise, the actual length or size is compared to the expected size,
and the example passes or fails based on the outcome of that comparison.

If the target object does not respond to the message stored in method_missing,
then Have tries something else. It asks the target object if it, itself, can respond
to length or size. If it will, it assumes that you are actually interested in the size
of the target object and not a collection that it owns. In this case, the message
stored in method_missing is ignored, the size of the target object is compared to
the expected size, and, again, the example passes or fails based the outcome
of that comparison.

Note that the target object can be anything that responds to length or size, not
just a collection. As explained in our discussion of strings, this allows you to
express expectations like “this string”.should have(11).characters.

In the event that the target object does not respond to the message stored in
method_missing, length, or size, then Have will send the message to the target object
and let the resulting NoMethodError bubble up to the example.

As you can see, there is a lot of magic involved. RSpec tries to cover all the
things that can go wrong and give you useful messages in each case, but
there are still some potential pitfalls. If you’re using a custom collection in
which length and size have different meanings, you might get unexpected results.
But these cases are rare, and as long as you are aware of the way this all
works, you should certainly take advantage of its expressiveness.

13.6 Operator Expressions

Generally, we want to be very precise about our expectations. We would want
to say that “2 + 2 should equal 4,” not that “2 + 2 should be greater than 3.”
There are exceptions to this, however. Writing a random generator for numbers
between 1 and 10, we would want to make sure that 1 appears roughly 1,000
in 10,000 tries. So, we set some level of tolerance, say 2 percent, which results
in something like “count for 1s should be greater than or equal to 980 and
less than or equal to 1,020.”

An example like that might look like this:

it "should generate a 1 10% of the time (plus/minus 2%)" do
result.occurrences_of(1).should be_greater_than_or_equal_to(980)
result.occurrences_of(1).should be_less_than_or_equal_to(1020)

end

Chapter 13. RSpec::Expectations • 168

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Certainly it reads like English, but it’s just a bit verbose. Wouldn’t it be nice
if, instead, we could use commonly understood operators like >= instead of
be_greater_than_or_equal_to? As it turns out, we can!

Thanks to some magic that we get for free from the Ruby language, RSpec is
able to support the following expectations using standard Ruby operators:

result.should == 3
result.should =~ /some regexp/
result.should be < 7
result.should be <= 7
result.should be >= 7
result.should be > 7

RSpec can do this because Ruby interprets these expressions like this:

result.should.==(3)
result.should.=~(/some regexp/)
result.should(be.<(7))
result.should(be.<=(7))
result.should(be.>=(7))
result.should(be.>(7))

RSpec exploits that interpretation by defining == and =~ on the object returned
by should() and <, <=, >, and >= on the object returned by be.

13.7 Generated Descriptions

Sometimes we end up with an example docstring that is nearly an exact
duplication of the expectation expressed in the example. Here’s an example:

describe "A new chess board" do
before(:each) do

@board = Chess::Board.new
end

it "should have 32 pieces" do
@board.should have(32).pieces

end
end

When we run this with the rspec command, the output looks like this:

A new chess board
should have 32 pieces

In this case, we can rely on RSpec’s automatic example-name generation to
produce the name you’re looking for:

report erratum • discuss

Generated Descriptions • 169

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe "A new chess board" do
before(:each) { @board = Chess::Board.new }
specify { @board.should have(32).pieces }

end

This produces the same output we saw earlier:

A new chess board
should have 32 pieces

This example uses the specify() method instead of it() because specify is more
readable when there is no docstring. Both it() and specify() are actually aliases
of the example() method, which creates an example.

Each of RSpec’s matchers generates a description of itself, which gets passed
on to the example. If the example (or it or specify) method does not receive a
docstring, it uses the last of these descriptions that it receives. In this example,
there is only one: “should have 32 pieces.”

It turns out that it is somewhat rare that the autogenerated names express
exactly what you would want to express in the descriptive string passed to
example. Our advice is to always start by writing exactly what you want to say
and only resort to using the generated descriptions when you actually see
that the string and the expectation line up precisely.

Here’s an example in which it might be clearer to leave the string in place:

it "should be eligible to vote at the age of 18" do
@voter.birthdate = 18.years.ago
@voter.should be_eligible_to_vote

end

Even though the autogenerated description would read “should be eligible to
vote,” the fact that he is eighteen today is very important to the requirement
being expressed. On the other hand, consider this example:

describe RSpecUser do
before(:each) do
@rspec_user = RSpecUser.new

end
it "should be happy" do

@rspec_user.should be_happy
end

end

This expectation would produce a string identical to the one that is being
passed to it, so this is a good candidate for taking advantage of autogenerated
descriptions.

Chapter 13. RSpec::Expectations • 170

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

13.8 Subjectivity

The subject of an example is the object being described. In the happy
RSpecUser example, the subject is an instance of RSpecUser, instantiated in the
before block.

RSpec offers an alternative to setting up instance variables in before blocks
like this, in the form of the subject() method. You can use this method in a few
different ways, ranging from explicit and consequently verbose to implicit
access that can make things more concise. First let’s discuss explicit interac-
tion with the subject.

Explicit Subject

In an example group, you can use the subject() method to define an explicit
subject by passing it a block, like this:

describe Person do
subject { Person.new(:birthdate => 19.years.ago) }

end

Then you can interact with that subject like this:

describe Person do
subject { Person.new(:birthdate => 19.years.ago) }
specify { subject.should be_eligible_to_vote }

end

Delegation to Subject

Once a subject is declared, the example will delegate should() and should_not() to
that subject, allowing you to clean that up even more:

describe Person do
subject { Person.new(:birthdate => 19.years.ago) }
it { should be_eligible_to_vote }

end

Here the should() method has no explicit receiver, so it is received by the
example itself. The example then calls subject() and delegates should() to it. Note
that we used it() in this case, rather than specify(). Read that aloud and compare
it to the previous example, and you’ll see why.

The previous example reads “Specify subject should be eligible to vote,”
whereas this example reads “It should be eligible to vote.” Getting more con-
cise, yes? It turns out that, in some cases, we can make things even more
concise using an implicit subject.

report erratum • discuss

Subjectivity • 171

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Implicit Subject

In the happy RSpecUser example, we created the subject by calling new on the
RSpecUser class without any arguments. In cases like this, we can leave out
the explicit subject declaration, and RSpec will create an implicit subject for
us:

describe RSpecUser do
it { should be_happy }

end

Now that is concise! Can’t get much more concise than this. Here, the subject()
method used internally by the example returns a new instance of RSpecUser.
Of course, this works only when all the pieces fit. The describe() method has
to receive a class that can be instantiated safely without any arguments to
new(), and the resulting instance has to be in the correct state.

One word of caution: seeing things so concise like this breeds a desire to
make everything else concise. Be careful to not let the goal of keeping things
concise get in the way of expressing what you really want to express. Delegat-
ing to an implicit subject takes a lot for granted, and it should be used only
when all the pieces really fit, rather than coercing the pieces to fit.

13.9 What We’ve Learned

In this chapter, we’ve covered the following:

• should() and should_not()
• RSpec’s built-in matchers
• Predicate matchers
• Operator expressions
• Generated descriptions
• Declaring an explicit subject()
• Using the implicit subject()

For most projects, you’ll probably find that you can express what you want
to using just the tools that come along with RSpec. But what about those
cases where you think to yourself, “If only RSpec had this one additional
matcher”? We’ll address that question in Chapter 16, Extending RSpec, on
page 215, along with a number of other techniques for extending RSpec and
tuning its DSL toward your specific projects.

In the meantime, there’s a lot more material to cover without extending things
at all. In the next chapter, we’ll introduce you to RSpec’s built-in mock objects
framework, a significant key to thinking in terms of behavior.

Chapter 13. RSpec::Expectations • 172

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 14

RSpec::Mocks
BDD developers specify what code does, not what it is. We do this from the
outside in, starting with Cucumber features to specify how an application
should behave when viewed from the outside. We write step definitions that
interact with objects that sit at the surface of the app and set expectations
about the responses they get back from those same objects.1

In all but the most trivial applications, these surface-level objects delegate
work to other objects below the surface. Those subsurface objects then dele-
gate some or all of the work to other objects, and they to more objects, and
so on, and so on.

From a design standpoint, this all makes perfect sense. We all understand
the value of separation of concerns and its impact on the maintainability of
an application. But this does present a bit of a chicken-and-egg problem from
a development standpoint. We want to progress in small, verifiable steps, but
how can we know that an individual object is properly executing its role if an
object it delegates work to doesn’t exist yet?

Enter test doubles.

A test double stands in for a collaborator in an example. If we want the
CheckingAccount object to log messages somewhere but we have yet to develop
a logger, we can use a double in its place.

We hear doubles referred to as mocks, stubs, fakes, imposters, or any number
of other names depending on how they are used, and there’s a lot of literature
describing different names and patterns and the differences between them.
Boil it all down, however, we end up with just a few underlying concepts:

1. You learned about step definitions in Section 4.1, Steps and Step Definitions, on page
36, and you can read more about them in Chapter 17, Intro to Cucumber, on page 233.

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Test Double Nomenclature

The terminology around test doubles has evolved over the years, and there is quite
a lot of overlap, which can be confusing. Some folks in the London XP community
had experimented with the idea of self-verifying expectations back in 1999. They
needed a name for it and coined the term mock object. Over time we’ve tended to use
mock to mean any sort of test double regardless of whether we’re using it to verify
expectations.

Gerard Meszaros introduced the term test double in his book XUnit Test Patterns
[Mes07], in which he also identified a number of test double patterns, including mock
objects, test stubs, fakes, spies, and so on. All of the patterns supported by RSpec
can be found in Meszaros’ writing.

As you learn about test doubles, mocks, stubs, fakes, spies, and so on, keep in mind
that we’re usually talking about methods rather than objects, and there are generally
only two kinds of objects we use: test doubles and test-specific extensions.a

All of the other patterns we’ll talk about and you’ll read about elsewhere are usually
variations of method stubs and method expectations and can be applied to either
test doubles or test-specific extensions.

a. See Section 14.4, Test-Specific Extensions, on page 178.

• Test doubles
• Test-specific extensions
• Method stubs
• Message expectations

Method stubs and message expectations are method-level concepts that we
can apply to either test doubles or test-specific extensions, which are both
object-level concepts. We’ll explore each of these in depth and talk about how
and when we use them.

14.1 Test Doubles

A test double is an object that stands in for another object in an example. We
often refer to them by names like mock objects, test stubs, fakes, and so on.
In fact, this chapter is called RSpec::Mocks because that’s the name of the RSpec
library that we use to generate test doubles. In spite of the fact that all these
names have different implications, they tend to get used somewhat interchange-
ably because the behavior that makes an object a mock as opposed to a stub
is expressed at the method level. See Test Double Nomenclature, on page 174
for more on this.

Chapter 14. RSpec::Mocks • 174

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

To create a double, just use the double() method, like this:

thingamajig_double = double('thing-a-ma-jig')

The string argument is optional but highly recommended because it is used
in failure messages. There are also stub() and mock() methods, which produce
the same kind of object:

stub_thingamajig = stub('thing-a-ma-jig')
mock_thingamajig = mock('thing-a-ma-jig')

We can use those to make the spec clearer when appropriate. We’ll discuss
what that means a bit later. For now, just know that all three methods provide
an instance of the RSpec::Mocks::Mock class, which provides facilities for generating
method stubs and message expectations.

14.2 Method Stubs

A method stub is a method that we can program to return predefined
responses during the execution of a code example. Consider the following:

describe Statement doLine 1

it "uses the customer's name in the header" do2

customer = double('customer')3

customer.stub(:name).and_return('Aslak')4

statement = Statement.new(customer)5

statement.generate.should =~ /^Statement for Aslak/6

end7

end8

This example specifies that a statement uses its customer’s name to generate
part of the statement. The customer double stands in for a real Customer.
Thanks to Ruby’s dynamic typing, the customer can be of any class, as long
as it responds to the right methods.

We create a test double using the double() method on line 3. On line 4, we
create a method stub using the stub() method. It takes a single argument: a
symbol representing the name of the method that we want to stub. We follow
that with a call to and_return(), which tells the double to return 'Aslak' in response
to the name() message.2

Here is a simple implementation that will pass this example:

2. This sort of method chaining is called a fluent interface and is quite common in all of
Ruby’s most common test double frameworks. In fact, earlier versions of RSpec used
fluent interfaces to set expectations like result.should.equal(4).

report erratum • discuss

Method Stubs • 175

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

class StatementLine 1

def initialize(customer)2

@customer = customer3

end4

def generate5

"Statement for #{@customer.name}"6

end7

end8

When the example is executed, the code on line 6 in the example sends the
generate() message to the Statement object. This is the object in development and
is a real Statement.

When the Statement executes the generate() method, it asks the @customer for its
name(). The customer is not the focus of this example. It is an immediate col-
laborator of the Statement, and we’re using a test double to stand in for a real
Customer in order to control the data in the example. We programmed it to
return 'Aslak', so the result is “Statement for Aslak,” and the example passes.

Of course, we could also implement the generate() method like this:

def generateLine 1

"Statement for Aslak"2

end3

That is, after all, the simplest thing we could do to get the example to pass.
This is what traditional TDD instructs us to do first. What it instructs us to
do next varies from practitioner to practitioner. One approach is to triangulate,
in other words, add another example that uses a different value, forcing the
implementation to generalize the value in order to pass both examples.

Another approach is to view the 'Aslak' in the implementation as duplication
with the 'Aslak' in the example. Following the DRY principle, we remove that
duplication by generalizing the implementation.

Neither of these approaches is ideal. Triangulation requires an extra example
that specifies the same essential behavior. DRY is certainly a worthy justifica-
tion, but it requires that we take that extra step. Experience shows that this
approach will periodically result in hard-coded values remaining in implemen-
tation code. There is, however, a third option!

14.3 Message Expectations

A message expectation, aka mock expectation, is a method stub that will raise
an error if it is never called. In RSpec, we create a message expectation using
the should_receive() method, like this:

Chapter 14. RSpec::Mocks • 176

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe Statement do
it "uses the customer's name in the header" do
customer = double('customer')
customer.should_receive(:name).and_return('Aslak')➤

statement = Statement.new(customer)
statement.generate.should =~ /^Statement for Aslak/

end
end

Using should_receive() instead of stub() sets an expectation that the customer
double should receive the name() message. The subsequent and_return() works
like before: it’s an instruction to return a specific value in response to name().

In this example, if the generate() method fails to ask the customer double for
its name, then the example will fail with Double "customer" expected :name with (any
args) once, but received it 0 times . If the generate() method calls customer.name(), then
the customer double returns the programmed value, execution continues,
and the example passes.

Tight Coupling

Clearly, this example is highly coupled to the implementation, but this
coupling is easily justified. We are specifying that the statement uses the
customer’s name! If that is the requirement that we are expressing in this
example, then setting a message expectation is perfectly reasonable.

On the flip side, we want to avoid setting message expectations that are not
meaningful in the context of an example. Generally speaking, we only want
to use message expectations to express the intent of the example. To explain
what we mean, let’s look at an example that uses both a method stub and a
message expectation.

Mixing Method Stubs and Message Expectations

Extending the statement examples, let’s add a requirement that any time a
statement is generated, a log entry gets created. Here’s one way we might
express that:

describe Statement do
it "logs a message on generate()" do
customer = stub('customer')
customer.stub(:name).and_return('Aslak')
logger = mock('logger')
statement = Statement.new(customer, logger)
logger.should_receive(:log).with(/Statement generated for Aslak/)
statement.generate

end
end

report erratum • discuss

Message Expectations • 177

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Now we have three participants in the example: the statement, which is the
subject of the example; the logger, which is the primary collaborator; and the
customer, which is a secondary collaborator. The logger is the primary collab-
orator because the example’s docstring states that the Statement logs a message
on generate().

By using the mock() method to generate the logger double and the stub() method
to generate the customer double, we’re helping to express that these objects
are playing different roles in the example. This is a wonderful technique,
embedding intent right in the code in the example.

Given, Then, When?

The logger.should_receive() statement is the only expectation in the example, and
it comes before the event, the When. The resulting flow is a bit different from
the Given, When, Then flow that we’re accustomed to seeing. Here it’s Given,
Then, When: Given a statement constructed with a customer and logger, Then
the logger should receive log() When the statement receives generate().

This change in flow can be a bit jarring for those experienced in writing code
examples yet new to message expectations, so much so that some in the
community are beginning to solve the problem with new libraries that take
different approaches. See Given, When, Then with Test Spies, on page 179 for
more on this.

Of course, what we don’t see is that there is an automatic and implicit verifi-
cation step that happens at the end of each example. This is facilitated by
the test double framework hooking into the life cycle of the examples, listening
for the end of each example, and then verifying that any expectations set in
the example were met. So, the flow is really Given, Expect, When, Then, but
since we never see the Then, it is admittedly a bit magical.

Thus far, we’ve only talked about setting method stubs and message expecta-
tions on test double objects. This is a useful technique when the collaborators
we need either don’t exist yet or are very expensive to set up or use in a code
example. But sometimes the collaborator we need already exists, requires
little or no setup, and exposes only trivial behavior. For cases like this, we
can add support for method stubs and message expectations directly to the
real object using a technique called test-specific extensions.

14.4 Test-Specific Extensions

As the name suggests, a test-specific extension is an extension of an object
that is specific to a particular test, or example in our case. We call them test-

Chapter 14. RSpec::Mocks • 178

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Given, When, Then with Test Spies

Libraries like RR and the ironically named not-a-mock use the Test Spy pattern to
provide a means of expressing message expectations in the past tense, thereby
maintaining the flow of expectations at the end of an example.a As of this writing,
RSpec::Mocks does not support test spies, but, luckily, both not-a-mock and RR plug
right into RSpec and can be used instead of RSpec::Mocks if spies are what you’re after.

Here’s what our statement, customer, logger example might look like using not-a-
mock:b

describe Statement do
it "logs a message when on generate()" do
customer = stub('customer')
customer.stub(:name)
logger = mock('logger')
logger.stub(:log)
statement = Statement.new(customer, logger)
statement.generate
logger.should have_received(:log)

end
end

And here it is with RR:c

describe Statement do
it "logs a message when on generate()" do
customer = Object.new
stub(customer).name
logger = Object.new
stub(logger).log
statement = Statement.new(customer, logger)
statement.generate
logger.should have_received.log

end
end

a. http://xunitpatterns.com/Test%20Spy.html
b. http://github.com/notahat/not_a_mock
c. http://github.com/btakita/rr

specific extensions because it is very similar to the test-specific subclasspattern
described by Meszaros, in which a subclass of a real class is used to extend
instances to support test-double-like behavior.

Thanks to Ruby’s metaprogramming model, we can get the same result by
extending existing objects. And because the resulting object is partially the
original object and partially a test double, we commonly refer to this technique
as partial mocking and stubbing.

report erratum • discuss

Test-Specific Extensions • 179

http://xunitpatterns.com/Test%20Spy.html
http://github.com/notahat/not_a_mock
http://github.com/btakita/rr
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Partial Stubbing

Consider a case in Ruby on Rails where we want to disconnect the system
we are working on from the database. We can use real objects but stub the
find() and save() methods that we expect to be invoked.

Here’s an example:

describe WidgetsController do
describe "PUT update with valid attributes"

it "redirects to the list of widgets"
widget = Widget.new()
Widget.stub(:find).and_return(widget)
widget.stub(:update_attributes).and_return(true)
put :update, :id => 37
response.should redirect_to(widgets_path)

end
end

end

There are a few things going on in this example:

• We stub the class-level find() method to return a known value, in this case,
the Widget object created on the previous line.

• We stub the update_attributes() method of the widget object, programming it
to return true.

• We invoke the put() method from the Rails functional testing API.3

• We set an expectation that the response object should redirect to the list
of widgets.

This example specifies exactly what the description suggests: Widgets-Controller
PUT update with valid attributes redirects to the list of widgets. That the attributes are valid
is a given in this example, and we don’t really need to know what constitutes
valid attributes in order to specify the controller’s behavior in response to
them. We just program the Widget to pretend it has valid attributes.

This means that changes to the Widget’s validation rules will not have any
impact on this example. As long as the controller’s responsibility does not
change, this example won’t need to change, nor will the controller itself.

There is also no dependency on the database in this example—well, no
explicit dependency. Rails will try to load up the schema for the widgets table
the first time it loads widget.rb, but that is the only database interaction. There

3. As you’ll learn about in Chapter 24, Rails Controllers, on page 329, the rspec-rails library
provides rspec-flavored wrappers around Rails’ built-in testing facilities.

Chapter 14. RSpec::Mocks • 180

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

are no additional database interactions as a result of this example. If we use
a Rails plug-in like NullDB,4 we can completely disconnect from the database,
and this example will still run.

Partial Mocking

In the WidgetsController example, it is possible to get it to pass without ever
actually finding a widget or updating its attributes. As long as the controller
method redirects to the widgets_path, that example passes. For this reason and
for the purposes of documentation, we may want separate examples that
specify these details. For these examples, we can set message expectations
on the Widget class and instance instead of method stubs. This is called partial
mocking.

Here’s what this might look like:

describe WidgetsController do
describe "PUT update with valid attributes"

it "finds the widget"
widget = Widget.new()
widget.stub(:update_attributes).and_return(true)
Widget.should_receive(:find).with("37").and_return(widget)
put :update, :id => 37

end

it "updates the widget's attributes" do
widget = Widget.new()
Widget.stub(:find).and_return(widget)
widget.should_receive(:update_attributes).and_return(true)
put :update, :id => 37

end
end

end

Note how we mix method stubs and message expectations in these examples.
The first example specifies that the WidgetsController finds the widget, so we set
an expectation that the Widget class should receive the find() method. We need
to program the widget to return true for update_attributes(), but we’re not speci-
fying that it is called in this example, so we just use a method stub.

Message expectations on the real model objects allow us to specify how the
controller interacts with them, rather than a specific outcome. These two
examples, combined with the redirect example in which we used only method
stubs on the model objects, produce the following output:

4. http://avdi.org/projects/nulldb/

report erratum • discuss

Test-Specific Extensions • 181

http://avdi.org/projects/nulldb/
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

WidgetsController
PUT update with valid attributes

finds the widget
updates the widget's attributes
redirects to the list of widgets

As you can see just from the output, these techniques help us specify what
the WidgetsController does. And by using different techniques in different
examples, we are able to keep each example focused on a specific granular
facet of the behavior.

Partial stubbing/mocking isn’t risk free. We must take care not to replace
too much of the real objects with stub/mock methods. This is especially
important for the subject of the example, because we end up not working
with the object we thought we were. So, keep partial mocking to an absolute
minimum.

14.5 More on Method Stubs

The examples we saw before only touch the surface of the API for test doubles.
In this section and the next, we’ll take a deeper look at the utilities supported
by RSpec::Mocks.

One-Line Shortcut

Most of the time that we use method stubs, we simply return a stubbed value.
For these cases, RSpec offers a simple shortcut:

customer = double('customer', :name => 'Bryan')

The double(), mock(), and stub() methods each accept a hash after the optional
name. Each key/value pair in the hash is converted to a stub using the key
as the method name and the value as the return value. The previous example
is a shortcut for this:

customer = double('customer')
customer.stub(:name).and_return('Bryan')

The hash can be of any length, so if we have more than one method we want
to stub, we just add key/value pairs for each method:

customer = double('customer',
:name => 'Bryan',
:open_source_projects => ['Webrat','Rack::Test']

)

Chapter 14. RSpec::Mocks • 182

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Implementation Injection

From time to time we might stub a method that ends up getting called more
than once in an example and we want to supply different return values for it
based on the arguments. One way to handle this is to supply a block to the
stub() method, like this:

ages = double('ages')
ages.stub(:age_for) do |what|

if what == 'drinking'
21

elsif what == 'voting'
18

end
end

This is essentially what Meszaros calls the Fake pattern, in which a real
method is replaced by a lightweight implementation. We’re just injecting the
implementation with a block, rather than defining a method directly on the
object.

This is especially useful in cases in which we want to define the stub in a
before() block and use it in several examples. The downside of this is that we
separate the data and calculation from the example, so we recommend using
that approach only for cases in which the returned value (21, 18, or nil in this
case) is not part of what’s being specified in the examples.

Stub Chain

Let’s say we’re building an educational website with Ruby on Rails, and we
need a database query that finds all the published articles written in the last
week by a particular author. Using a custom DSL built on ActiveRecord named
scopes, we can express that query like so:

Article.recent.published.authored_by(params[:author_id])

Now let’s say that we want to stub the return value of authored_by() for an
example. Using standard stubbing, we might come up with something like
this:

recent = double()
published = double()
authored_by = double()
article = double()
Article.stub(:recent).and_return(recent)
recent.stub(:published).and_return(published)
published.stub(:authored_by).and_return(article)

report erratum • discuss

More on Method Stubs • 183

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

That’s a lot of stubs! Instead of revealing intent, it does a great job of hiding
it. It’s complex, it’s confusing, and if we should ever decide to change any
part of the chain, we’re in for some pain changing this. For these reasons,
many people simply avoid writing stubs when they’d otherwise want to. Those
people don’t know about RSpec’s stub_chain() method, which allows us to write
this:

article = double()
Article.stub_chain(:recent, :published, :authored_by).and_return(article)

Much nicer! Now this is still quite coupled to the implementation, but it’s also
quite a bit easier to see what’s going on and map this to any changes we might
make in the implementation.

14.6 More on Message Expectations

Message expectations tend to be more tightly bound to implementation details
of the method in development than method stubs. In the logger example, if
the statement fails to log a message, the example fails. Had we only stubbed
the log() method, we would not get a failure.

RSpec offers a number of utilities we can use to specify more focused aspects
of implementation. Keep in mind that all of these utilities we’re about to dis-
cuss increase the coupling between the spec and the object in development,
which increases the likelihood that subsequent changes to the object in
development will force changes in the specs. We recommend, therefore, that
these only be used to express specific requirements.

Counts

Test doubles often stand in for objects with expensive operations like database
and network calls. When we’re optimizing, we may want to specify that a
given message is not sent to the double any more times than is necessary for
the operation. By default, should_receive() sets an expectation that a message
should be received once, and only once. We can set this expectation explicitly
like this:

mock_account.should_receive(:withdraw).exactly(1).times

Using the same syntax, we can specify any number:

mock_account.should_receive(:withdraw).exactly(5).times

Sometimes we may want to make sure that an operation is repeated no more
than some number of times. Consider a double that is standing in for a col-
laborator that establishes network connections. If it can’t get a connection,

Chapter 14. RSpec::Mocks • 184

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

we want it to retry it five times, but no more. In this case, we can set an upper
bound:

network_double.should_receive(:open_connection).at_most(5).times

Similarly, we can set a lower bound for a situation in which we want to
specify that a call is made at least some number of times:

network_double.should_receive(:open_connection).at_least(2).times

RSpec includes a couple of convenience methods to handle the cases where
the count is one or two. These are recommended, because they read a bit
better than exactly(1).times:

account_double.should_receive(:withdraw).once
account_double.should_receive(:deposit).twice

Negative Expectation

Sometimes we want to specify that a specific message is never received during
an example. Imagine a requirement that we only try to make connections
after pinging a server. Here’s one way we can express that requirement:

network_double.stub(:ping).and_return(false)
network_double.should_not_receive(:open_connection)

If the network_double receives open_connection(), the example will fail. Here are two
more ways to express that a message should not be received:

network_double.should_receive(:open_connection).never
network_double.should_receive(:open_connection).exactly(0).times

These both work fine, but should_not_receive() is the most commonly used.

Specifying Expected Arguments

In cases in which we expect specific arguments, we can use the with method
to constrain the expectation. For literal values, we can just pass them
directly to the with() method:

account_double.should_receive(:withdraw).with(50)

If the account_double receives the withdraw() method with any value besides 50, it
will raise an error saying it was expecting 50 but got the other value instead.
We can pass any number of arguments to with(), and it will fail if any of the
received arguments fail to match the expectation arguments:

checking_account.should_receive(:transfer).with(50, savings_account)

report erratum • discuss

More on Message Expectations • 185

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This example will pass only if the checking_account receives transfer() with argu-
ments matching 50 and savings_account in the correct order. The arguments are
evaluated using ==(), so in this example they have to ==(50) and ==(sav-
ings_account).

Argument Matchers

Sometimes we don’t care about the specific values of all the arguments. When
specifying a transfer operation as in the previous example, we might have
separate examples for the two different arguments. In the example focused
on the account, we need the second argument in the example, or the double
would raise an error saying it got only one argument. But we don’t care what
that argument is, since this example is focused on the first argument.

instance_of()

We can address this using an argument matcher: a method that returns an
object that can match against the real arguments received during the example.
In this case, we want the second argument to be an instance of Fixnum, but
we don’t care what it is. We can use the instance_of() argument matcher to
address this:

describe Transfer doLine 1

it "passes the target account to the source account" do-

source_account = double()-

target_account = double()-

transfer = Transfer.new(5

:source_account => source_account,-

:target_account => target_account,-

:amount => 50-

)-

source_account.should_receive(:transfer).10

with(target_account, instance_of(Fixnum))-

transfer.execute()-

end-

end-

On line 11, we specify that the first argument should ==(target_account) and
that the second argument can be any Fixnum. Of course, we know it’s going to
be 50, because that is what is supplied on line 8, but we don’t care about
that in this example.

When we do this, we’re coupling the example to a specific type, which is
usually not recommended. Remember, these facilities are available, but we
want to use them only when they help express the intent of the example.

Chapter 14. RSpec::Mocks • 186

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

anything()

When we want to specify that an argument is received but we really don’t
care what it is, we can use the anything() matcher, like this:

describe Transfer doLine 1

it "passes the submitted amount to the source account" do-

source_account = stub()-

target_account = stub()-

transfer = Transfer.new(5

:source_account => source_account,-

:target_account => target_account,-

:amount => 50-

)-

source_account.should_receive(:transfer).10

with(anything(), 50)-

transfer.execute()-

end-

end-

any_args()

As mentioned earlier, a message expectation without the with() method will
accept any arguments. If you want, you can use the any_args() method to
explicitly specify that any arguments are acceptable:

source_account.should_receive(:transfer).
with(any_args())

no_args()

Now imagine we have an API that can accept zero or more arguments, and
we want to specify that under certain conditions it should receive a message
with no arguments. We can do that too, using the no_args() argument matcher:

collaborator.should_receive(:message).
with(no_args())

hash_including()

If the expected argument is a Hash, we can specify the expected key/value
pairs like this:

mock_account.should_receive(:add_payment_accounts).
with(hash_including('Electric' => '123', 'Gas' => '234'))

The hash argument in this example is expected to include keys for 'Electric'
and 'Gas' with the corresponding values 123 and 234, respectively.

hash_not_including()

We can also specify that those values should not be in the hash like this:

report erratum • discuss

More on Message Expectations • 187

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

mock_account.should_receive(:add_payment_accounts).
with(hash_not_including('Electric' => '123', 'Gas' => '234'))

In this case, an acceptable argument value would be a hash that does not
have the specified key-value pairs.

Regular Expressions

For String arguments, we can expect just a part of the string using a Regexp
that will be matched against it, like this:

mock_atm.should_receive(:login).with(/.* User/)

As you can see, RSpec comes with a range of useful argument matchers built
in, but sometimes we need to express more specific constraints. In these
cases, it’s easy to extend RSpec with our own.

Custom Argument Matchers

Let’s say we want to be able to expect a Fixnum argument that is greater than
three. With a custom argument matcher, we can express this expectation like
this:

calculator.should_receive(:add).with(greater_than_3)

An argument matcher is simply an object supporting a specific interface. The
only method that is required is ==(actual), which acts as a match operation
(not equality). It should return true if the actual argument matches (or conforms
to) the matcher.

class GreaterThanThreeMatcher
def ==(actual)
actual > 3

end
end

We can return an instance of GreaterThanThreeMatcher from a greater_than_3() method,
like this:

def greater_than_3
GreaterThanThreeMatcher.new

end

Using an argument matcher like this, the should_receive() method will give you
failure messages like this:

Mock 'calculator' expected :add with (#<RSpec::Mocks::ArgumentMatchers::
GreaterThanThreeMatcher:0x5e7af4>) but received it with (3)

Chapter 14. RSpec::Mocks • 188

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We can improve on that message by adding a description method to the
matcher:

def description
"a number greater than 3"

end

Now, the message will be as follows:

Mock 'calculator' expected :add with (a number greater than 3)
but received it with (3)

We can generalize this a bit by parameterizing the method and the matcher
object like this:

class GreaterThanMatcher

def initialize(expected)
@expected = expected

end

def description
"a number greater than #{@expected}"

end

def ==(actual)
actual > @expected

end
end

def greater_than(floor)
GreaterThanMatcher.new(floor)

end

Now we can use this matcher for any situation in which we expect a number
greater than some other number:

calculator.should_receive(:add).with(greater_than(37))

Returning Consecutive Values

Sometimes we want the subject to send the same message to the collaborator
more than once, and we want to set up different return values each time in
order to trigger a particular behavior in the subject.

Consider a gateway_client, which depends on a network object to connect to the
real gateway. We want to specify that the gateway client will ask the network to
try to open a connection up to three times before it gives up. Here are a few
examples we might write to specify this:

report erratum • discuss

More on Message Expectations • 189

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe GatewayClient, "#connect" doLine 1

before(:each) do-

@network = stub()-

@gateway_client = GatewayClient.new(@network)-

end5

-

it "returns true if network returns connection on first attempt" do-

@network.should_receive(:open_connection).-

and_return(Connection.new)-

@gateway_client.connect.should be_true10

end-

-

it "returns true if network returns connection on third attempt" do-

@network.should_receive(:open_connection).-

and_return(nil, nil, Connection.new)15

@gateway_client.connect.should be_true-

end-

-

it "returns false if network fails to return connection in 3 attempts" do-

@network.should_receive(:open_connection).20

and_return(nil, nil, nil)-

@gateway_client.connect.should be_false-

end-

-

end25

On line 9 in the first example, we program the @network to return a Connection
the first time open_connection() is called. This is how we normally set return
values for a method stub or message expectation.

The second example is a bit different. On line 15, we program the @network to
expect open_connection(), returning nil the first two times and a Connection the
third. We do so by passing nil, nil, and Connection.new to the and_return() method.
With three arguments passed to and_return(), we’re implicitly telling the @network
to expect open_connection() three times.

The third example programs open_connection() to return nil three times in a row.
We’re implicitly telling @network to expect open_connection() three times. We could
get the same behavior by explictly telling the @network to expect open_connection()
three times and return nil:

it "returns false if network fails to return connection in 3 attempts" doLine 1

@network.should_receive(:open_connection).2

exactly(3).times.3

and_return(nil)4

@gateway_client.connect.should be_false5

end6

Chapter 14. RSpec::Mocks • 190

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

In that variation, we only pass nil (once) to and_return() because we’re already
telling the @network to expect open_connection() three times on line 3. The @network
in each of these variations behaves in exactly the same way.

Throwing or Raising

To specify an object’s behavior in response to errors, we want to have our
collaborator throw a symbol or raise an error in response to a specific message.
RSpec::Mocks provides several ways to do this. The most common approach is
to simply raise an exception:

account_double.should_receive(:withdraw).and_raise

With no arguments, the and_raise() method tells the account_double to raise an
instance of Exception when it receives the withdraw() message. To raise a specific
type of exception, we can pass and_raise an exception class, like this:

account_double.should_receive(:withdraw).and_raise(InsufficientFunds)

RSpec will create an instance of InsufficientFunds by calling InsufficientFunds.new. If
the exception class we need requires any arguments to its constructor, we
can create an instance in the example and pass that instead:

the_exception = InsufficientFunds.new(:reason => :on_hold)
account_double.should_receive(:withdraw).and_raise(the_exception)

We can also throw symbols instead of raising errors. As you might expect,
this is done with the and_throw() method instead of and_raise:

account_double.should_receive(:withdraw).and_throw(:insufficient_funds)

Ordering

When specifying interactions with a test double, the order of the calls is rarely
important. In fact, the ideal situation is to specify only a single call. But
sometimes, we need to specify that messages are sent in a specific order.

Consider an implementation of a database-backed class roster in which we
want the roster to ask the database for the count of students registered for
a given class before adding any new students for that class. We can specify
this using the ordered() method and specifying the message expectations in the
order in which we expect them:

describe Roster do
it "asks database for count before adding" do
database = double()
student = double()
database.should_receive(:count).with('Roster', :course_id => 37).ordered
database.should_receive(:add).with(student).ordered

report erratum • discuss

More on Message Expectations • 191

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

roster = Roster.new(37, database)
roster.register(student)

end
end

This example will pass only if the count() and add() messages are sent with the
correct arguments and in the same order. Here is a possible implementation:

mocking/ordering.rb
class Roster
def initialize(id, database)
@id = id
@database = database

end

def register(student)
@database.count('Roster', :course_id => @id)
@database.add(student)

end

end

Note that ordering has an effect only within the context of a single object. You
can specify ordering of expectations for multiple objects in an example, but
the order is not enforced across objects.

Also note that ordering ignores any messages besides the ones assigned as
ordered. For example, the following implementation would still pass the previous
example, provided that we told the database double to act as_null_object().

mocking/ordering.rb
def register(student)
@database.count('Roster', :course_id => @id)
@database.begin
@database.add(student)
@database.commit

end

The fact that the database receives begin() and commit() is ignored by the ordering
mechanism. As long as the ordered messages are received in the correct order,
the example will pass.

Overriding Method Stubs

In the statement examples earlier this chapter, we looked at examples speci-
fying that the statement uses the customer’s name in the header and that it
logs a message on generate(). We never really looked at those together at the
point that the statement supports both. Here’s what that looks like without
any refactoring:

Chapter 14. RSpec::Mocks • 192

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/mocking/ordering.rb
http://media.pragprog.com/titles/achbd/code/mocking/ordering.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe Statement do
it "uses the customer's name in the header" do
customer = double('customer')
customer.stub(:name).and_return('Aslak')
logger = double('logger')
logger.stub(:log)
statement = Statement.new(customer, logger)
statement.generate.should =~ /^Statement for Aslak/

end

it "logs a message on generate()" do
customer = stub('customer')
customer.stub(:name).and_return('Aslak')
logger = mock('logger')
statement = Statement.new(customer, logger)
logger.should_receive(:log).with(/Statement generated for Aslak/)
statement.generate

end
end

As you can see, there is a lot of noise and a lot of duplication. We can reduce
this significantly by exploiting the fact that message expectations can override
stubs:

describe Statement do
before(:each) do
@customer = double('customer')
@logger = double('log', :log => nil)
@statement = Statement.new(@customer, @logger)

end

it "uses the customer's name in the header" do
@customer.should_receive(:name).and_return('Aslak')
@statement.generate.should =~ /^Statement for Aslak/

end

it "logs a message on generate()" do
@customer.stub(:name).and_return('Aslak')
@logger.should_receive(:log).with(/Statement generated for Aslak/)
@statement.generate

end
end

Now the code in each example is very well aligned with their docstrings, with
no unnecessary noise. By setting the log() stub on the @logger double in the
before() block, we don’t need to set that stub in the first example. In the second
example, we override that stub with the expectation. Once the expectation is
met, any subsequent calls to log() are caught by the stub and essentially
ignored.

report erratum • discuss

More on Message Expectations • 193

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

14.7 When to Use Test Doubles and Test-Specific Extensions

Now that we know how to use test doubles and test-specific extensions, the
next question is when to use them! There are a lot of opinions about this,
and we’re not going to be able to cover every topic (this could easily fill an
entire book), but let’s look at some guidelines that can help you navigate your
way.

Isolation from Dependencies

Even the most highly decoupled code has some dependencies. Sometimes
they are on objects that are cheap and easy to construct and have no complex
state. These generally don’t present a problem, so there is no need to create
stubs for them.

The problematic dependencies are the ones that are expensive to construct,
involve external systems (network, servers, even the file system), have
dependencies on other expensive objects, or function slowly. We want to isolate
our examples from these dependencies because they complicate setup, slow
down runtimes, and increase potential points of failure.

Consider the system depicted in Figure 3, External dependencies, on page
195, with dependencies on a database and a network connection. We can
replace the dependencies with test doubles, as shown in Figure 4, Stubbed
dependencies, on page 195, thereby removing the real dependencies from the
process. Now we are free of any side effects arising from external systems.

Isolation from Nondeterminism

Depending on external systems can also be a source of nondeterminism.
When we depend on components with nondeterministic characteristics, we
may find that files get corrupted, disks fail, networks time out, and servers
go down in the middle of running specs. Because these are things that we
have no control over, they can lead to inconsistent and surprising results
when we run our specs.

Doubles can disconnect our examples from real implementations of these
dependencies, allowing us to specify things in a controlled environment. They
help us focus on the behavior of one object at a time without fear that
another might behave differently from run to run.

Nondeterminism can also be local. A random generator may well be local but
is clearly a source of nondeterminism. We would want to replace the real
random generator with stable sequences to specify different responses from

Chapter 14. RSpec::Mocks • 194

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Figure 3—External dependencies

Figure 4—Stubbed dependencies

our code. Each example can have a pseudo-random sequence tailored for the
behavior being specified.

Consider a system that uses a die, like the one shown Figure 5, Dependency
on a random generator, on page 196. Because a die is a random generator,
there is no way to use it to write a deterministic example. Any specifications
would have to be statistical in nature, and that can get quite complicated.
Statistical specs are useful when we’re specifying the random generators
directly, but when we’re specifying their clients, all that extra noise takes
focus away from the behavior of the object we should be focused on.

report erratum • discuss

When to Use Test Doubles and Test-Specific Extensions • 195

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Figure 5—Dependency on a random generator

If we replace the die with something that generates a repeatable sequence,
as shown in Figure 6, Dependency on a repeatable sequence, on page 196, then
we can write examples that illustrate the system’s behavior based on that
sequence. A stub is perfect for this, because each example can specify a dif-
ferent sequence.

Figure 6—Dependency on a repeatable sequence

Making Progress Without Implemented Dependencies

Sometimes we are specifying an object whose collaborators haven’t been
implemented yet. Even if we’ve already designed their APIs, they might be on
another team’s task list and they just haven’t gotten to it yet.

Rather than break focus on the object we’re specifying to implement that
dependency, we can use a test double to make the example work. Not only
does this keep us focused on the task at hand, but it also provides an
opportunity to explore that dependency and possible alternative APIs before
it is committed to code.

Interface Discovery

When we’re implementing the behavior of one object, we often discover that
it needs some service from another object that may not yet exist. Sometimes

Chapter 14. RSpec::Mocks • 196

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

it’s an existing interface with existing implementations, but it’s missing the
method that the object we’re specifying really wants to use. Other times, the
interface doesn’t even exist at all yet. This process is known as interface dis-
covery and is the cornerstone of mock objects.

In cases like these, we can introduce a mock object, which we can program
to behave as the object we are currently specifying expects. This is a very
powerful approach to writing object-oriented software, because it allows us
to design new interfaces as they are needed, making decisions about them
as late as possible, when we have the most information about how they will
be used.

Focus on Role

In 2004, Steve Freeman, Nat Pryce, Tim Mackinnon, and Joe Walnes presented
a paper entitled “Mock Roles, not Objects.”5 The basic premise is that we
should think of roles rather than specific objects when we’re using mocks to
discover interfaces.

In the logging example in Mixing Method Stubs and Message Expectations, on
page 177, the logger could be called a logger, a messenger, a recorder, a
reporter, and so on. What the object is doesn’t matter in that example. The
only thing that matters is that it represents an object that will act out the
role of a logger at runtime. Based on that example, in order to act like a logger,
the object has to respond to the log() method.

Focusing on roles rather than objects frees us up to assign roles to different
objects as they come into existence. Not only does this allow for very loose
coupling between objects at runtime, but it provides loose coupling between
concepts as well.

Focus on Interaction Rather Than State

Object-oriented systems are all about interfaces and interactions. An object’s
internal state is an implementation detail and not part of its observable
behavior. As such, it is more subject to change than the object’s interface.
We can therefore keep specs more flexible and less brittle by avoiding refer-
ence to the internal state of an object.

Even if we already have a well-designed API up front, mocks still provide value
because they focus on interactions between objects rather than side-effects
on the internal state of any individual object.

5. http://mockobjects.com/files/mockrolesnotobjects.pdf

report erratum • discuss

When to Use Test Doubles and Test-Specific Extensions • 197

http://mockobjects.com/files/mockrolesnotobjects.pdf
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This may seem to contradict the idea that we want to avoid implementation
detail in code examples. Isn’t that what we’re doing when we specify what
messages an object sends? In some cases, this is a perfectly valid observation.
Consider this example with a method stub:

describe Statement do
it "uses the customer's name in the header (with a stub)" do
customer = stub("customer", :name => "Dave Astels")
statement = Statement.new(customer)
statement.header.should == "Statement for Dave Astels"

end
end

Now compare that with the same example using a message expectation
instead:

describe Statement do
it "uses the customer's name in the header (with a mock)" do
customer = mock("customer")
customer.should_receive(:name).and_return("Dave Astels")
statement = Statement.new(customer)
statement.header.should == "Statement for Dave Astels"

end
end

In this case, there is not much value added by using a message expectation
in the second example instead of the method stub in the first example. The
code in the second example is more verbose and more tightly bound to the
underlying implementation of the header() method. Fair enough. But consider
the logger example earlier this chapter. That is a perfect case for a message
expectation, because we’re specifying an interaction with a collaborator, not
an outcome.

A nice way to visualize this is to compare the left and right diagrams in Figure
7, Focus on state vs. interaction, on page 199. When we focus on state, we
design objects. When we focus on interaction, we design behavior. There is
a time and place for each approach, but when we choose the latter, mock
objects make it much easier to achieve.

14.8 Risks and Trade-Offs

In this section, we’ll look at some of the common pitfalls related to test dou-
bles, things that we should avoid, and things that can alert us to design
problems.

Chapter 14. RSpec::Mocks • 198

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Figure 7—Focus on state vs. interaction

Over-specification

Mock objects should make it easy to set up the context for our examples. If
we need a bunch of mocks in one example, we end up with a long and confus-
ing setup.

Specify only what is absolutely necessary for the current example. If that
turns out to be a lot, it’s time to reevaluate the design; it may be more coupled
than previously thought.

Nested Doubles

Doubles should not only be simple to set up; they should be shallow as well.
Although not all methods that we specify on doubles need to return values,
many do. When they do, it’s generally best if the return value is a simple
value, such as a language primitive or a value object.

One exception to this guideline is when we want to introduce a double through
a query, as we demonstrated in Section 14.4, Test-Specific Extensions, on
page 178. In this case, we can stub the query method to return the double.

When we do find it necessary to nest doubles, it’s quite often a sign that we’re
working with a preexisting design that may have some coupling problems. A
general rule of thumb is that if the code is hard to use in examples, it’s going
to be hard to use everywhere else.

Absence of Coverage

One goal of BDD (and TDD) is to develop confidence in the system by taking
small, verifiable steps and building up a suite of regression tests as we go.
When we’re using mock objects in dynamic languages like Ruby, it is possible
to change an object’s API and forget to change the examples that mock that
same API.

report erratum • discuss

Risks and Trade-Offs • 199

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The result can be that all of our examples pass, yet when we start up the
application, the wheels fall off right away because one object is sending the
wrong message to another. There is little that can knock our confidence in
our system more than finding such a gaping hole in our regression test suite.

One remedy for this situation is to have some higher level of automated testing
in place. In BDD, we start with automated acceptance criteria before we even
start developing objects, so this should not be an issue. Even if we forget to
change the API on a mock, the automated scenarios should catch any prob-
lems we’ve introduced very shortly after we introduce them.

But, to the extent that we do not follow this practice, we also increase the
risk of getting false-positive feedback from our specs.

Brittle Examples

The biggest pitfall of over-use of mocks is that examples can become brittle.
The more we specify about interactions with dependencies in an example,
the more likely that example will be impacted by changes to other code in the
system. This is the same impact that any highly coupled code has on a
system.

This brittleness is more likely to emerge when back-filling examples onto
existing code that is already highly coupled. Mocks can be helpful in this
situation if we listen to them. If mocks are painful to set up, it’s a red flag
that the design might be too highly coupled.

When we’re using mocks as intended, to discover new roles and APIs, there
is a natural tendency for them to be simple and usable because we’re working
from the client perspective. This becomes somewhat of a self-fulfilling
prophecy. We want our mocks to be simple to set up, and so they are. And
when they are simple to set up, the resulting code is generally more highly
decoupled.

14.9 Choosing Other Test Double Frameworks

In RSpec’s early days, we felt that including a test double framework was
crucial. There were other frameworks we could have used, but they were all
still young, and we wanted to experiment with our own ideas.

Fast-forward four years, and the landscape has changed. As RSpec’s user
base grew, so did the range of preferences. The existing test double frameworks
matured, and new ones appeared, and their maintainers were all willing to
support RSpec’s runner as well as that of Test::Unit.

Chapter 14. RSpec::Mocks • 200

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Built-in Support

RSpec uses its own test double framework unless we tell it otherwise. We
can, however, choose any other framework provided that it has an adapter
for RSpec’s runner. RSpec ships with adapters for Mocha, Flexmock, and RR,
three of the most popular Ruby test double frameworks. To select one of those
frameworks, we just add a little bit of configuration.

RSpec::configure do |config|
config.mock_with <framework id>

end

The framework id is one of :rspec, :mocha, :flexmock, or :rr. RSpec’s own framework
is used unless you specify something else, but you can set it explicitly if you
choose.

Custom Adapters

To use a mock framework that doesn’t have built-in support, we need to write
a custom adapter. Assuming that the framework has the necessary extension
points, this is a trivial exercise. As an example, here is the built-in adapter
we use for Flexmock:

require 'flexmock/rspec'Line 1

module RSpec-

module Core-

module MockFrameworkAdapter-

include FlexMock::MockContainer5

def setup_mocks_for_rspec-

No setup required-

end-

def verify_mocks_for_rspec-

flexmock_verify10

end-

def teardown_mocks_for_rspec-

flexmock_close-

end-

end15

end-

end-

The setup_mocks_for_rspec() method on line 6 is called before each example is run.
Flexmock doesn’t have anything to set up, so in this case it’s a no-op. Other
frameworks do things like attach behavior to Object to support transparent
access to test-specific extensions or simply create a global storage area to
record test double activity.

report erratum • discuss

Choosing Other Test Double Frameworks • 201

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

At the end of each example, RSpec calls verify_mocks_for_rspec() on line 9. In the
Flexmock adapter, this delegates to flexmock_verify(), which verifies any message
expectations.

The teardown_mocks_for_rspec() on line 12 is guaranteed to be called, even in the
event of a failure or error. In this example, it delegates to Flexmock’s flex-
mock_close() method, which removes test double extensions from any classes
or other global objects, restoring them to their state before the example.

That’s all there is to writing an adapter. Once we have one to use, we can
pass its module name directly to the mock_with() method, like this:

RSpec::Runner.configure do |config|
config.mock_with MyMockFrameworkAdapter

end

We encourage you to explore the other frameworks. The concepts that we’ve
discussed in this chapter can generally be applied to any test double frame-
work, each of which has its own personality and, in some cases, may offer
additional behavior that RSpec::Mocks does not support, like test spies in RR.

One at a Time

The one caveat for using the other frameworks is that you can use only one
framework in a suite of examples. We enforce this to avoid collisions. RSpec
and Mocha both expose the mock() and stub() methods to each example. Also,
both frameworks add behavior to Object, and even with RSpec enforcing one
test-double framework per suite, we have seen cases in which RSpec::Mocks was
being used, but failure messages were coming from Mocha because another
library involved was implicitly using Mocha if it happened to be loaded.

This is something we plan to improve in the future. For the time being,
however, you can still get a lot of flexibility by using different test double
frameworks in different suites.

14.10 What We’ve Learned

In this chapter, we explored method stubs and message expectations on test
doubles and test-specific extensions of real objects. We learned that there are
a lot of different names for test doubles, but we can usually use the same
kind of object to enact several different patterns.

We took a look at some of the risks involved with method stubs and message
expectations and some pitfalls that we can keep our eyes out for. We also

Chapter 14. RSpec::Mocks • 202

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

looked at some of the underlying motivations for method stubs and message
expectations, including the following:

• Focusing on roles
• Focusing on interaction
• Interface discovery
• Making progress without implemented dependencies
• Isolation from dependencies
• Isolation from nondeterminism

We’ve now covered the different libraries that are part of RSpec. In the
remaining chapters in this section, we’ll explore the RSpec ecosystem
including peripheral tooling and techniques for extending RSpec.

report erratum • discuss

What We’ve Learned • 203

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 15

Tools and Integration
In the Codebreaker tutorial in Part I, we used the rspec command to run specs
from a command-line shell. In this chapter, we’ll show you a number of
command-line options that you may not have tried yet, as well as how RSpec
integrates with other command-line tools such as Rake and Autotest and
GUI editors like TextMate.

15.1 The rspec Command

The rspec command is installed when you install the rspec-core gem; it provides
a number of options that let you customize how RSpec works. You can print
a list of these options by asking for help:

rspec --help

Most of the options have a long form using two dashes and a shorthand form
using one dash. The help option, for example, can be invoked with --help or -h.
We recommend using the long form if you put it in a script such as a Rakefile
(for clarity) and the short form when you run it directly from the command
line (for brevity).

Run One Spec File

Running a single file is a snap. To try it, enter the following into simple_math_
spec.rb:

describe "simple math" do
it "provides a sum of two numbers" do

(1 + 2).should == 3
end

end

Now run that file with the rspec command:

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rspec simple_math_spec.rb

You should see output like this:

.

Finished in 0.00064 seconds
1 example, 0 failures

This is RSpec’s default output format, the progress bar format. It prints out
a dot for every example that is executed and passes (only one in this case).
If an example fails, it prints an F. If an example is pending, it prints an *.
These dots, F’s, and *’s are printed after each example is run, so when you
have many examples, you can actually see the progress of the run, which is
why it’s called a “progress” bar.

After the progress bar, it prints out the time it took to run and then a sum-
mary of what was run. In this case, we ran one example, and it passed, so
there are no failures.

Run Several Specs at Once

Running individual files directly is handy for some cases, but in most cases
you really want to run many of them in one go. To do this, just pass the
directory containing your spec files to the rspec command. So, if your spec
files are in the spec directory (they are, aren’t they?), you can just do this:

rspec spec

...or if you’re in a Rails project, you can do this:

bundle exec rspec spec

In either case, the rspec command will load all the spec files in the spec direc-
tory and its subdirectories. By default, the rspec command only loads files
ending with _spec.rb. Although this is the convention, you can configure RSpec
to load files based on any pattern you choose. We’ll explore that later in this
chapter.

Executing files is only the tip of the iceberg. The rspec command offers several
options, so let’s take a closer look at them.

Modify the Output with –format

By default, RSpec reports results to the console’s standard output by printing
something like ...F......F.... followed by a backtrace for each failure. This is usu-
ally okay, but sometimes we want a more expressive form of output. RSpec
has several built-in formatters that provide different output formats.

Chapter 15. Tools and Integration • 206

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

TestDox

In 2003, Chris Stevenson, who was working with Aslak in ThoughtWorks at the time,
created a little Java tool called TestDox (http://agiledox.sourceforge.net/). What it did was
simple: it scanned Java source code with JUnit tests and produced textual documen-
tation from it. The following Java source code:

public class AccountDepositTest extends TestCase {
public void testAddsTheDepositedAmountToTheBalance() { ... }

}

would produce the following text:

Account Deposit
- adds the deposited amount to the balance

It was a simplistic tool, but it had a profound effect on the teams that were introduced
to it. They started publishing the TestDox reports for everyone to see, encouraging
the programmers to write real sentences in their tests, lest the TestDox report look
like gibberish.

Having real sentences in their tests, the programmers started to think about behavior
and what the code should do, and the BDD snowball started to roll.

The documentation formatter, for example, can be used to print out the results
in a documentation format inspired by TestDox (see TestDox, on page 207).
You activate it simply by telling the rspec command the following:

rspec path/to/my/specs --format documentation

The output will look something like the following:

Stack (empty)
should be empty
should not be full
should add to the top when sent #push
should complain when sent #peek
should complain when sent #pop

Stack (with one item)
should not be empty
should return the top item when sent #peek
should NOT remove the top item when sent #peek
should return the top item when sent #pop
should remove the top item when sent #pop
should not be full
should add to the top when sent #push

If you use nested example groups, like this:

report erratum • discuss

The rspec Command • 207

http://agiledox.sourceforge.net/
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Several Formatters?

RSpec lets you specify several formatters simultaneously by using several --format
options on the command line. Now why would anyone want to do that? Maybe you’re
using a continuous integration (CI) environment to build your code on every check-
in. If both you and the CI use the same rake tasks to run RSpec, it can be convenient
to have one progress formatter that goes to standard output and one HTML formatter
that goes to a file.

This way, you can see the CI RSpec result in HTML and your own in your console—
and share the rake task to run your specs.

describe Stack do
context "when empty" do
it "should be empty" do

then the output will look like this:

Stack
when empty

should be empty
should not be full
should add to the top when sent #push
should complain when sent #peek
should complain when sent #pop

with one item
should not be empty
should return the top item when sent #peek
should NOT remove the top item when sent #peek
should return the top item when sent #pop
should remove the top item when sent #pop
should not be full
should add to the top when sent #push

RSpec also bundles a formatter that can output the results as HTML. You
probably don’t want to look at the HTML in a console, so you should tell RSpec
to output the HTML to a file:

rspec path/to/my/specs --format html:path/to/my/report.html

RSpec treats whatever comes after the colon as a file and writes the output
there. Of course, you can omit the colon and the path and redirect the output
to a file with >, but using the --format flag supports output of multiple formats
simultaneously to multiple files, like this:

rspec path/to/my/specs --format progress \
--format nested:path/to/my/report.txt \
--format html:path/to/my/report.html

Chapter 15. Tools and Integration • 208

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

After you’ve done this and opened the resulting HTML file in a browser, you
should see something like this:

You can see a full list of all the built-in formatters with RSpec’s --help option.

Load Extensions with –require

If you’re developing your own extensions to RSpec, such as a custom --formatter,
you must use the --require option to load the code containing your extension.

The reason you can’t do this in the spec files themselves is that when they
get loaded, it’s already too late to hook in an RSpec plug-in, because RSpec
is already running.

Get the Noise Back with –backtrace

Most of the time, most of the backtrace is just noise. By default, RSpec shows
you only the frames from your code. The entire backtrace can, however, be
useful from time to time, such as when you think you may have found a bug
in RSpec or when you just want to see the whole picture of why something
is failing. You can get the full backtrace with the --backtrace flag:

rspec spec --backtrace

Colorize Output with –color

If you’re running the specs all the time (you are, aren’t you?), it requires some
focus to notice the difference between the command-line output from one run
and the next. One thing that can make it easier on the eyes is to colorize the
output, like this:

rspec spec --color

report erratum • discuss

The rspec Command • 209

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

With this option, passing examples are indicated by a green dot (.), failing
examples by a red F, and pending examples by a yellow asterisk (*). Error
reports for any failing examples are red.

The summary line is green if there are no pending examples and all examples
pass. If there are any failures, it is red. If there are no failures, but there are
pending examples, it is yellow. This makes it much easier to see what’s going
on by just looking at the summary.

Store Options in .rspec

Commonly used options can be stored in either of two files: ~/.rspec (in the
current user’s home directory) and ./.rspec (in the project root directory). You
can list as many options as you want, with one or more words per line. As
long as there is a space, tab, or newline between each word, they will all be
parsed and invoked. Here’s an example:

--color
--format documentation

Options that are stored in ./.rspec take precedence over options stored in ~/.rspec,
and any options declared directly on the command line will take precedence
over those in either file.

15.2 TextMate

The RSpec development team maintains a TextMate bundle that provides a
number of useful commands and snippets. The bundle has been relatively
stable for some time now, but when we add new features to RSpec, they are
sometimes accompanied with an addition or a change to the TextMate bundle.

See http://github.com/rspec/rspec-tmbundle for installation details.

15.3 Autotest

Autotest monitors changes to files in your project. Based on a set of internal
mappings, each time you save a test file, Autotest will run that test file. And
every time you save a library file, Autotest will run the corresponding test file.

RSpec provides an Autotest extension with mappings that make sense in an
RSpec project. To tell Autotest to load this extension, create an autotestdirectory
in the project root directory, and then create a discover.rb file in the autotest
directory with the following content:

Autotest.add_discovery { "rspec2" }

Chapter 15. Tools and Integration • 210

report erratum • discuss

http://github.com/rspec/rspec-tmbundle
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

To try this, add that file to the codebreaker directory that you created in Chapter
4, Automating Features with Cucumber, on page 35. If you use command-line
editors such as Vim or Emacs, open a second shell to the same directory;
otherwise, open the project in your favorite text editor.

In the first shell, type the autotest command. You should see it start up and
execute a command that loads up some number of spec files and runs them.
Now, go to one of the spec files and change one of the code examples so it will
fail and save the file. When you do, Autotest will execute just that file and
report the failure to you. Note that it only runs that file, not all of the code
example files.

Now reverse the change you just made so the example will pass, and save the
file again. What Autotest does now is quite clever. First it runs the one file,
which is the one with failures from the last run and sees that all the examples
pass. Once it sees that the previous failures are now passing, it loads up the
entire suite and runs all of the examples again.

15.4 Rake

Rake is a great automation tool for Ruby, and RSpec ships with custom tasks
that let you use RSpec from Rake. You can use this to define one or several
ways of running your examples. For example, rspec-rails ships with several
different tasks:

rake spec # Run all specs in spec directory
rake spec:controllers # Run the code examples in spec/controllers
rake spec:helpers # Run the code examples in spec/helpers
rake spec:models # Run the code examples in spec/models
rake spec:requests # Run the code examples in spec/requests
rake spec:routing # Run the code examples in spec/routing
rake spec:views # Run the code examples in spec/views

This is only a partial list. To see the full list, cd into the root directory of any
Rails project you have using RSpec, and type rake -T spec. All of these tasks are
defined using the RSpec::Core::RakeTask.

RSpec::Core::RakeTask

The RSpec::Core::RakeTask class can be used in your Rakefile to define a task that
lets you run your specs using Rake.1 The simplest way to use it is to put the
following code in your Rakefile:

1. Spec::Rake::SpecTask in RSpec-1.

report erratum • discuss

Rake • 211

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

require 'rspec/core/rake_task'

RSpec::Core::RakeTask.new

This creates a task named spec that runs all the specs in the spec directory
(relative to the directory Rake is run from—typically the directory where
Rakefile lives). To run the task from a command window, just type this:

rake spec

Simple, no? And that’s only the beginning. The RakeTask exposes a collection
of useful configuration options that let you customize the way the command
runs. To begin with, you can declare any of the command-line options. If you
want to have the SpecTask colorize the output, for example, you would do this:

RSpec::Core::RakeTask.new do |t|
t.rspec_opts = ["--color"]

end

spec_opts takes an array of strings, so if you also wanted to format the output
with the specdoc format, you could do this:

RSpec::Core::RakeTask.new do |t|
t.rspec_opts = ["--color", "--format", "specdoc"]

end

Check RDoc for RSpec::Core::RakeTask to see the full list of configuration options.

15.5 RCov

RCov is a code coverage tool. The idea is that you run your specs, and RCov
observes what code in your application is executed and what is not. It then
provides a report listing all the lines of code that were never executed when
you ran your specs and a summary identifying the percentage of your code
base that is covered by specs.

About Code Coverage

Code coverage is a very useful metric, but be careful, because it can be misleading.
It is possible to have a suite of specs that execute 100 percent of your code base
without ever setting any expectations. Without expectations, you’ll know that the
code will probably run, but you won’t have any way of knowing whether it behaves
the way you expect it to behave.

So, although low code coverage is a clear indicator that your specs need some work,
high coverage does not necessarily indicate that everything is hunky-dory.

Chapter 15. Tools and Integration • 212

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

There is no command-line option to invoke RCov with RSpec, so you have to
set up a rake task to do it. Here’s an example (this would go in Rakefile):

require 'rake'
require 'rspec/core/rake_task'
namespace :spec do

desc "Run specs with RCov"
RSpec::Core::RakeTask.new('rcov') do |t|

t.pattern = 'spec/**/*_spec.rb'
t.rcov = true
t.rcov_opts = ['--exclude', '\/Library\/Ruby']

end
end

This is then invoked with rake spec:rcov and produces a report that excludes
any file with /Library/Ruby as part of its path. This is useful if your library
depends on other gems, because you don’t want to include the code in those
gems in the coverage report. See RCov’s documentation for more information
on the options it supports.

15.6 What We’ve Learned

In this chapter, we learned how to use the rspec command to run specs in a
single file or a directory. We discussed many of the command-line options we
can use to further tailor a spec run. We also talked about a few of the many
tools that are supported by RSpec or that support RSpec:

• Autotest monitors changes we make in spec and implementation files and
runs the appropriate specs when we make them.

• RCov observes implementation code that gets executed during a spec run
and reports on any lines that were not executed and therefore may need
our attention.

• RSpec’s RakeTask allows us to configure any number of Rake tasks targeted
at different subsets of a suite.

• RSpec’s TextMate bundle lets TextMate users run their specs right from
their favorite editor.

As we’ve been writing this, support for RSpec has also emerged in other editors
such as Vim and Emacs, as well as IDEs such as Aptana and RubyMine.

Now that we’ve seen some of the tools that are available out of the box, in the
next chapter we’ll look at tools and techniques we can use to extend the
behavior of RSpec.

report erratum • discuss

What We’ve Learned • 213

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 16

Extending RSpec
RSpec provides a wealth of generic functionality out of the box, but sometimes
we want to express things in more domain-specific ways or modify the output
format to better serve as documentation for a specific audience. In this
chapter, we’ll explore the extension points and utilities that RSpec provides
to satisfy these needs.

16.1 Metadata

Every example group and each example within has rich metadata associated
with it. To see what this metadata looks like, type the following into a file
named metadata.rb:

describe "something" do
it "does something" do

p example.metadata
end

end

Now run that file with the rspec command:

rspec metadata.rb

The output contains the contents of a hash with keys such as:example_group,
:description,:location,:caller, and so on. RSpec uses this metadata internally for
things such as reporting and filtering. Additionally, we can add arbitrary
metadata by passing a Ruby hash to the describe() and it() methods like this:

describe "something", :a => "A" do
it "does something", :b => "B" do

puts example.metadata[:a]
puts example.metadata[:b]

end
end

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run that with rspec, and you’ll see A and B printed in the output. OK, great!
But now you must be wondering what we can actually do with this ability.
We’ll get to that soon, but first we need to introduce another concept:
configuration.

16.2 Configuration

RSpec exposes a configuration object that supports the definition of global
before, after, and around hooks, as well as hooks to include modules in examples
or extend example group classes. We can access it like this:

rspec-2
RSpec.configure {|config| ... }

rspec-1
Spec::Runner.configure {|config| ... }

The config block argument is the configuration object, and it exposes several
methods we use to filter which examples are run and extend their behavior
in a variety of ways. Let’s start by talking about filtering.

16.3 Filtering

Sometimes we want to run just one or two examples, or perhaps a group,
that relate to the work in process. We can accomplish this using methods
provided to us by the Configuration class, combined with metadata we add to
the examples or groups we’re interested in.

Inclusion

To see this in action, type the following into a file, focused_example.rb:

extending_rspec/focused_example.rb
RSpec.configure do |c|
c.filter = { :focus => true }

end

describe "group" do
it "example 1", :focus => true do
end

it "example 2" do
end

end

Now run that with rspec focused_example.rb, and you should see output like this:

Chapter 16. Extending RSpec • 216

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/extending_rspec/focused_example.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run filtered using {:focus=>true}

group
example 1

Finished in 0.00066 seconds
1 example, 0 failures

As you can see, the example with :focus => true in the metadata passed to it()
gets run, but the other example does not. Now try it with a group. Type the
following into focused_group.rb:

extending_rspec/focused_group.rb
RSpec.configure do |c|
c.filter = { :focus => true }

end

describe "group 1", :focus => true do
it "example 1" do
end

it "example 2" do
end

end
describe "group 2" do

it "example 3" do
end

it "example 4" do
end

end

Run that with rspec group_example.rb, and you should see this:

Run filtered using {:focus=>true}

group 1
example 1
example 2

group 2

Finished in 0.00092 seconds
2 examples, 0 failures

Both group names are reported, but only the examples in the group with :focus
=> true are run (2 examples, 0 failures). We see the name of the second group
because RSpec reports the group name before it looks to see whether it has
any examples to run. In this case, it does not find any in the second group,
so it continues and finishes up the run.

report erratum • discuss

Filtering • 217

http://media.pragprog.com/titles/achbd/code/extending_rspec/focused_group.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Exclusion

When there are one or two examples that run very slowly, we tend to try to
disable them so we can run rest of the suite faster while we’re working in
other areas. We can use an exclusion filter combined with metadata to
accomplish this:

extending_rspec/exclusion_filter.rb
RSpec.configure do |c|
c.exclusion_filter = { :slow => true }

end

describe "group" do
it "example 1", :slow => true do
end

it "example 2" do
end

end

Run that with rspec exclusion_filter.rb, and you should see this:

extending_rspec/exclusion_filter.out
group

example 2

Finished in 0.00067 seconds
1 example, 0 failures

This time, the example we added metadata to was excluded from the run,
while the other example was run as expected.

Lambdas

Inclusion and exclusion filters can accept lambdas with arbitrarily complex
code for more sophisticated filtering. This gives us much more power than
primitive values give us.

Imagine an app that connects to an external service. Most of the examples
stub out the service, but there is one example that really talks to the service
as a sanity check. The problem is that this example can run only when the
computer is connected to a network, and we don’t want to have to worry about
disabling it when there is no network available.

We can use an exclusion filter with a lambda for this, like so:

extending_rspec/network.rb
require 'ping'

RSpec.configure do |c|

Chapter 16. Extending RSpec • 218

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/extending_rspec/exclusion_filter.rb
http://media.pragprog.com/titles/achbd/code/extending_rspec/exclusion_filter.out
http://media.pragprog.com/titles/achbd/code/extending_rspec/network.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

c.exclusion_filter = {
:if => lambda {|what|

case what
when :network_available

!Ping.pingecho "example.com", 10, 80
end

}
}

end

describe "network group" do
it "example 1", :if => :network_available do
end
it "example 2" do
end

end

Try running this example with your computer connected to a network and
then again while not connected. You should see that the first example runs
only when you’re connected.

16.4 Extension Modules

In addition to the filter methods, the Configuration object exposes two methods
we can use to extend the behavior of individual example groups. Both of these
accept options, which are matched against metadata in each group in order
to filter the groups to which the extension applies.

include(*modules, options={}) Includes the submitted module or modules in
selected example groups, making their methods available to the examples
in each group.

extend(*modules, options={}) Extends selected example groups with the sub-
mitted module or modules. This is the recommended way to make macros
(see Section 16.8, Macros, on page 224) available to example groups.

16.5 Global Hooks

The Configuration object also has hooks you can use to add blocks that are
evaluated before, after, or around examples:

before(scope = :each, options={}, &block) Adds the submitted block to the end
of a list of blocks that get evaluated before examples that match the
submitted scope and options. scope can be any of :each,:all, or :suite. If :each,
the block is run before each matching example. If :all, the block is run

report erratum • discuss

Extension Modules • 219

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

once per group, before any matching examples have been run. If :suite,
the block is run once before any example groups have run.

after(scope = :each, options={}, &block) Adds the submitted block to the
beginning of the list of after blocks that get run by every example group.
See before(), earlier, for notes about scope and filtering.

around(options={}, &block) Allows you to wrap behavior around examples by
passing the example to the supplied block. This is especially useful when
working with a library that exposes facilities through methods that accept
a block. The most obvious example is database transactions. Here’s an
example using the Sequel library with Rails 3:

RSpec.configure do |config|
config.around { |example| DB.transaction &example }

end

Every example is passed to this block, which executes the example in the
context of a Sequel transaction. This leaves Sequel responsible for man-
aging the details of the transaction and keeps the configuration nice and
clean.

16.6 Mock Framework

RSpec uses its own mocking framework by default. You can, however, config-
ure RSpec to use virtually any framework:

RSpec.configure do |c|
c.mock_with(:rr)

end

The mock_with() method can accept a Symbol or a module reference. If it’s a
symbol, it can be any of :rspec (default), :mocha, :flexmock, and :rr. These are all
reference adapters that ship with RSpec.

If you use a different mock framework or perhaps you’ve written your own,
you can write an adapter module for it and then pass that module to mock_with().
See Chapter 14, RSpec::Mocks, on page 173 for more information about writing
your own adapter.

16.7 Custom Matchers

RSpec’s built-in matchers support most of the expectations we’d like to write
in our examples out of the box. There are cases, however, in which a subtle
change would allow us to express exactly what we want to say rather than

Chapter 16. Extending RSpec • 220

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

almost exactly what we want to say. For those situations, we can easily write
our own custom matchers.

You’re already using some of these if you’re using the rspec-rails gem. render_tem-
plate(), for example, is a Rails-domain-specific matcher for expecting that a
specific template gets rendered by a controller action. Without that matcher,
we’d write expectations such as this:

response.rendered_template.should == "accounts/index"

With this custom matcher, we are able to write examples using language
closer to the domain:

response.should render_template("accounts/index")

All of RSpec’s built-in matchers follow a simple protocol, which we use to
write our own custom matchers from scratch. We’ll go over the protocol in a
bit, but first let’s take a look at RSpec’s Matcher DSL for defining custom
matchers in just a few lines of code.

Matcher DSL

RSpec’s Matcher DSL makes defining custom matchers a snap.1 Let’s say
we’re working on a personnel application, and we want to specify that joe.should
report_to(beatrice).

To get there, we would probably start off with something like
joe.reports_to?(beatrice).should be_true. That’s a good start, but it presents a couple
of problems. If it fails, the failure message says expected true, got false. That’s
accurate but not very helpful.

Another problem is that it just doesn’t read as well as it could. We really want
to say joe.should report_to(beatrice). And if it fails, we want the message to tell us
we were expecting an employee who reports to Beatrice.

We can solve the readability and feedback problems using RSpec’s Matcher
DSL to generate a report_to() method, like this:

RSpec::Matchers.define :report_to do |boss|
match do |employee|
employee.reports_to?(boss)

end
end

1. The Matcher DSL is based on suggestions from Yehuda Katz.

report erratum • discuss

Custom Matchers • 221

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The define() method on RSpec::Matchers defines a report_to() method that accepts
a single argument.2 We can then call report_to(beatrice) to create an instance of
RSpec::Matchers::Matcher configured with beatrice as the boss, and the match decla-
ration stored for later evaluation.

Now when we say that joe.should report_to(beatrice), the report_to() method creates
an instance of RSpec::Matchers::Matcher that will call the block with joe.

The match block should return a boolean value. True indicates a match,
which will pass if we use should() and fail if we use should_not(). False indicates
no match, which will do the reverse: fail if we use should() and pass if we use
should_not().

In the event of a failure, the matcher generates a message from its name and
the expected and actual values. In this example, the message would be
something like this:

expected <Employee: Joe> to report to <Employee: Beatrice>

The representation of the employee objects depends on how to_s() is implement-
ed on the Employee class, but the matcher gleans “report to” from the Symbol
passed to define().

In the event of a failure using should_not(), the generated message would read
like this:

expected <Employee: Joe> not to report to <Employee: Beatrice>

These default messages generally work well, but sometimes we’ll want a bit
of control over the failure messages. We can get that by overriding them, and
the description, with blocks that return the messages we want.

RSpec::Matchers.define :report_to do |boss|
match do |employee|
employee.reports_to?(boss)

end
failure_message_for_should do |employee|

"expected the team run by #{boss} to include #{employee}"
end

failure_message_for_should_not do |employee|
"expected the team run by #{boss} to exclude #{employee}"

end
description do
"expected a member of the team run by #{boss}"

end
end

2. Spec::Matchers in RSpec-1

Chapter 16. Extending RSpec • 222

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The block passed to failure_message_for_should() will be called, and the result will
be displayed in the event of a should() failure. The block passed to failure_mes-
sage_for_should_not() will be called, and the result will be displayed in the event
of a should_not() failure. The description() will be displayed when this matcher is
used to generate its own description.

As with the stock matchers, RSpec’s Matcher DSL will probably cover 80
percent of the remaining 20 percent. Still, there are cases where you’ll want
even more control over certain types of things. As of this writing, for example,
there is no support for passing a block to the matcher itself. RSpec’s built-in
change() matcher needs that ability to express expectations like this:

account = Account.new
lambda do

account.deposit(Money.new(50, :USD))
end.should change{ account.balance }.by(Money.new(50, :USD))

We can’t easily define a matcher that accepts a block with the DSL because
Ruby won’t let us pass one block to another without first packaging it as a
Proc object. We probably could do it with some gymnastics, but in cases like
this, it is often simpler to just write some clear code using RSpec’s Matcher
protocol.

Matcher Protocol

A matcher in RSpec is any object that responds to a specific set of messages.
The simplest matchers only need to respond to these two:

matches? The should() and should_not() methods use this to decide whether the
expectation passes or fails. Return true for a passing expection or false for
a failure.

failure_message_for_should The failure message to be used when you use
should() and the matches?() method returns false.

Here’s the report_to() matcher we used in Matcher DSL, on page 221, written
using these two methods:

class ReportTo
def initialize(manager)
@manager = manager

end

def matches?(employee)
@employee = employee
employee.reports_to?(@manager)

end

report erratum • discuss

Custom Matchers • 223

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

def failure_message_for_should
"expected #{@employee} to report to #{@manager}"

end
end

def report_to(manager)
ReportTo.new(manager)

end

This is clearly more verbose than the Matcher DSL, because we have to define
a class and a method. We also have to store state in order to generate the
failure message, which is not necessary in the DSL because it delivers the
actual and expected objects to the match and message declaration blocks.
Still, if writing a matcher this way is more expressive than using the DSL in
a given circumstance, then a custom matcher from scratch is the way to go.

The following methods are also part of the protocol, supported by the should()
and should_not() methods, but they’re completely optional:

failure_message_for_should_not Optional. The failure message to be used
when you use should_not() and the matches?() method returns true.

description Optional. The description to be displayed when you don’t provide
one for the example (in other words, it { ... } instead of it "should ... " do ... end).

does_not_match? Optional. On rare occasions it can be useful for the
matcher to know if it’s being called by should() or should_not(). In these cases,
we can implement a does_not_match?() method on the matcher.

The should_not() method will call does_not_match?() if it is implemented. When
it does, it considers a response of true to be a success and false to be a
failure.

If the matcher does not respond to does_not_match?(), should_not() will call
matches?() and consider a response of false to be a success and true to be a
failure.

With just these few methods and the expressive support of the Ruby language,
we can create some sophisticated matchers. While we recommend using the
Matcher DSL first, this simple protocol offers a robust backup plan.

16.8 Macros

Custom matchers can help us build up domain-specific DSLs for specifying
our code, but they still require a bit of repetitive ceremony. In rspec-rails, for
example, it is quite common to see examples like this:

Chapter 16. Extending RSpec • 224

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

describe Widget do
it "requires a name" do

widget = Widget.new
widget.valid?
widget.should have(1).error_on(:name)

end
end

With a custom matcher, we can clean that up a bit:

describe Widget do
it "requires a name" do

widget = Widget.new
widget.should require_attribute(:name)

end
end

We can even get more terse by taking advantage of the implicit subject, which
you read about in Implicit Subject, on page 172, like this:

describe Widget do
it { should require_attribute(:name) }

end

Now that is terse, expressive, and complete all at the same time. But for the
truly common cases like this, we can do even better. In 2006, the shoulda
library emerged as an alternative to RSpec for writing more expressive tests.3

One of the innovations that came from shoulda was macros to express the
common, redundant things we want to express in tests. Here’s the widget
example with a shoulda macro instead of a custom matcher:

class WidgetTest < Test::Unit::TestCase
should_require_attributes :name

end

In late 2007, Rick Olsen introduced his own rspec-rails extension library
named rspec_on_rails_on_crack,4 which added macros to rspec-rails. In rspec
_on_rails_on_crack, the widget example looks like this:

describe Widget do
it_validates_presence_of Widget, :name

end

Macros like this are great for the things that are ubiquitous in our applica-
tions, like Rails’ model validations. They’re a little bit like shared example
groups, which you read about in Section 12.5, Shared Examples, on page 147,

3. http://www.thoughtbot.com/projects/shoulda
4. http://github.com/technoweenie/rspec_on_rails_on_crack

report erratum • discuss

Macros • 225

http://www.thoughtbot.com/projects/shoulda
http://github.com/technoweenie/rspec_on_rails_on_crack
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

but they are more expressive because they have unique names, and unlike
shared examples, they can accept arguments.

Macros are also quite easy to add to RSpec. Let’s explore a simple example.
Here is some code that you might find in a typical controller spec:

describe ProjectsController do
context "handling GET index" do

it "should render the index template" do
get :index
controller.should render_template("index")

end

it "should assign @projects => Project.all" do
Project.should_receive(:all).and_return(['this array'])
get :index
assigns[:projects].should == ['this array']

end
end

end

This would produce output like this:

ProjectsController handling GET index
should render the index template
should assign @projects => Project.all

Using macros inspired by rspec_on_rails_on_crack and shoulda, we can
express the same thing at a higher level and get the same output like this:

extending_rspec/macro_example/spec/controllers/projects_controller_spec.rb
describe ProjectsController do

get :index do
should_render "index"
should_assign :projects => [Project, :all]

end
end

The underlying code is quite simple for the experienced Rubyist:

extending_rspec/macro_example/spec/spec_helper.rb
module ControllerMacros

def should_render(template)
it "should render the #{template} template" do

do_request
response.should render_template(template)

end
end
def should_assign(hash)
variable_name = hash.keys.first
model, method = hash[variable_name]
model_access_method = [model, method].join('.')

Chapter 16. Extending RSpec • 226

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/extending_rspec/macro_example/spec/controllers/projects_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/extending_rspec/macro_example/spec/spec_helper.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

it "should assign @#{variable_name} => #{model_access_method}" do
expected = "the value returned by #{model_access_method}"
model.should_receive(method).and_return(expected)
do_request
assigns[variable_name].should == expected

end
end
def get(action)

define_method :do_request do
get action

end
yield

end
end

RSpec.configure do |config|
config.use_transactional_fixtures = true
config.use_instantiated_fixtures = false
config.fixture_path = RAILS_ROOT + '/spec/fixtures/'
config.extend(ControllerMacros, :type => :controller)

end

The get() method defines a method that is used internally within the macros
named do_request() and yields to the block that contains the other macros,
giving them access to the do_request() method.

The should_assign() method seems a bit complex, but it goes out of its way to
provide you with nice feedback so when you’re writing the examples first (as
I trust you are), you’ll get a failure message like this:

expected: "the value returned by Project.all",
got: nil (using ==)

We exposed these macros to controller specs by extending all controller
example groups with the ControllerMacros module in the last line of the configu-
ration. If we didn’t want them in all controller specs, we could also explicitly
extend individual groups inline, like this:

describe ProjectsController do
extend ControllerMacros
...

At this point, we’ve explored a number of ways to make RSpec code examples
more expressive, but all these techniques apply only to the input: the code
we write and read in our examples. This is great if you’re a developer, but
part of RSpec’s value-add is its ability to customize output for different audi-
ences. We’ll explore how RSpec does this and how we can customize it in the
next section.

report erratum • discuss

Macros • 227

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

16.9 Custom Formatters

RSpec uses message formatters to generate the output you see when running
a suite of specs. These formatters receive notification of events, such as when
an example group is about to be run or an individual example fails.

RSpec ships with a number of built-in formatters designed to generate plain-
text output, an all-purpose HTML formatter, and a TextMate-specific HTML
formatter as well. You’re probably already familiar with the progress bar for-
matter, which is the default formatter when you run the rspec command with
no options. Run rspec --help to see a full listing of all the built-in formatters.

If none of the built-in formatters satisfies your specific reporting needs, you
can easily create a custom formatter. This can be very useful for building out
custom spec reports for co-workers or a client. And if you happen to be an
IDE developer, custom formatters are definitely your friend.

In this section, we’ll review the APIs for the various parts of the puzzle that
RSpec uses to write all of its built-in formatters and anybody can use to write
a custom formatter.

Formatter API

The simplest way to write a custom formatter is to subclass RSpec::Core::Format-
ters::BaseFormatter, which implements all the required methods as no-ops. This
allows us to implement only the methods we care about and reduces the risk
that changes in future versions of RSpec will impact the formatter.

Here is a list of all the required methods as of this writing, but be sure to look
at the documentation for RSpec::Core::Formatters::BaseFormatter to ensure that you
have the latest information:

initialize(output) The output is STDOUT by default but can be overridden on the
command line to be a filename, in which case a File object is passed to
initialize().

To handle either possibility, RSpec’s built-in formatters write to the output
object with output << "text", which works for any IO object.

start(example_count) This is the first method that is called. example_count is
the total count of examples that will be run, allowing the formatter to
keep track of progress (how many examples have run compared to how
many there are altogether).

Chapter 16. Extending RSpec • 228

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

example_group_started(example_group) Called as an example group is started.
The example_group includes metadata that can be used for reporting,
including its description, location, and so on.

example_started(example) Called as an example is started. The example
includes an execution_result in its metadata.

example_passed(example) Called when an example passes. The example is the
same object that was passed to example_started().

example_pending(example) Called when an example is declared pending. The
example is the same object that was passed to example_started().

example_failed(example) Called when an example fails. The example is the
same object that was passed to example_started().

start_dump() Called after all of the code examples have been executed.

pending_count) duration is the total time it took to run the suite. example_count
is the total number of examples that were run. failure_count is the number
of examples that failed. pending_count is the number of examples that are
pending.

dump_failures() Trigger to output messages about failures. It is up to the
formatter to collect information about failed examples and generate the
appropriate output.

dump_pending() Trigger to output messages about pending examples. It is
up to the formatter to collect information about pending examples and
generate the appropriate output.

close() Called once at the very end of the run, signaling the formatter to clean
up any resources it still has open.

Invoking a Custom Formatter

Once we’ve put in all of the energy to write a formatter using the APIs we’ve
discussed, we’ll probably want to start using it! Invoking a custom formatter
couldn’t be much simpler. We just need to require the file in which it is defined
and then add its class to the command line.

Let’s say we have a PDF formatter that generates a PDF document that we
can easily ship around to colleagues. Here is the command we’d use,
assuming that it is named PdfFormatter and defined in formatters/pdf_formatter.rb:

rspec spec --require formatters/pdf_formatter --format PdfFormatter:report.pdf

report erratum • discuss

Custom Formatters • 229

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The structure of the --format argument is FORMAT[:WHERE]. FORMAT can be any of
the built-in formatters or the name of the class of a custom formatter. WHERE
is STDOUT by default or a filename. Either way, that’s what gets submitted to
the initialize() method of the formatter.

16.10 What We’ve Learned

In this chapter, we explored the utilities and extension points that RSpec
provides to support extending RSpec to meet your specific needs. These
include the following:

• Metadata associated with every group and example is used internally by
RSpec for reporting. It can also be extended with arbitrary key/value pairs
passed to the describe() and it() methods. This can then be used to filter
examples to run.

• Global configuration lets us assign before and after blocks to every
example group. We can also use it to add methods to example groups by
extending them with custom modules, and we can add methods to indi-
vidual examples by including custom modules.

• We can use custom matchers to build up a DSL for expressing code
examples.

• Macros also support DSLs but with a different flavor than the custom
matchers. Because they generate code themselves, we can also use them
to express groups of expectations in a single command.

• Custom formatters let us control the output that RSpec provides so we
can produce different spec reports for different purposes and audiences.

In practice, we find that the global configuration, custom matchers defined
with the Matcher DSL, and macros tend to be the most common ways that
we extend RSpec. There are already numerous matcher and macro libraries
for RSpec that are targeted at Rails development. Custom formatters tend to
be the domain of IDEs that support RSpec, such as NetBeans and RubyMine.

Chapter 16. Extending RSpec • 230

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Part IV

Cucumber

CHAPTER 17

Intro to Cucumber
A common understanding of done is crucial to the success of any project.
How do we know when we’re done if we can’t agree on what done means?
Such agreement is pretty easy to find in many kinds of projects. A cake is
done when it reaches the right consistency. A building is done when the city
inspector says it meets code. If we apply the right tests and they pass, we’ll
know when we’re done. But with software, there’s a catch.

We use software because we long ago recognized that requirements for com-
puter programs evolve and that changing programs with a soldering iron to
meet changing requirements is not very pragmatic.

The notion of evolving requirements is central to the very existence of software.

That brings up a very interesting question: if software requirements are
evolving, how can we know what the right tests are? How can we know when
we’re done?

Enter Cucumber.

Cucumber supports collaboration and communication between stakeholders
and the delivery team. It uses a simple language for describing scenarios that
can be written and read with ease by both technical and nontechnical people.
These scenarios represent customer acceptance tests and are used to automate
the system we’re developing.

Thanks to the simple format, Cucumber scenarios are very easy to modify as
we learn more about the needs of the software throughout the development
cycle. And thanks to Cucumber’s tagging feature, which you’ll read about
later in Section 17.11, Tags, on page 245, we can easily build workflows around
scenarios, identifying them as works in progress, regression tests, or both
(scenarios that we’re revisiting because of changes in requirements).

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

17.1 From 20,000 Feet

At a high level, there are three parts to Cucumber: features, the cucumber
command, and step definitions.

We write features in a simple language called Gherkin. A feature has a title,
a free-form narrative, and an arbitrary number of scenarios, each of which
contains an arbitrary number of steps.

We write step definitions in the language of the system that we’re developing.
In our case that’s Ruby, but there are helper libraries that support step defi-
nitions in other languages as well.1

When we run the cucumber command, Cucumber parses the steps in each
scenario and tries to map them to one of the step definitions we’ve written in
Ruby. If it finds one, it executes it, at which point our step definition takes
over in automating our application through its APIs.

In this chapter, we’ll look at the role that Cucumber plays in a BDD project.
We’ll examine the Gherkin syntax we use in Cucumber’s feature files and
explore some higher-level concepts such as style and organization.

In the next chapter, we’ll learn how to hook them up to the code we’re writing
and explore some of the options we have to configure and execute features.

17.2 Features

In Cucumber, a feature is a high-level requirement expressed from the per-
spective of a person or another computer using the system. Features play a
role similar to that of user stories in XP, but we take things a step further.

Like user stories, Cucumber features have a title and a brief narrative. In
addition, Cucumber features include automated scenarios that serve as
acceptance criteria.

Feature Title

The title of a Cucumber feature is typically just a few words that represent
an activity for which a user might engage the system. Here are a few examples:

• Stock clerk adds inventory item
• Anonymous visitor adds blog comment
• Code-breaker submits guess

1. See the Cucumber wiki at http://wiki.github.com/aslakhellesoy/cucumber/ for more about support
for Cucumber in different programming languages.

Chapter 17. Intro to Cucumber • 234

report erratum • discuss

http://wiki.github.com/aslakhellesoy/cucumber/
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

When putting together an initial list of features, keeping them terse like this
makes it easy to assemble a big picture quickly without getting mired down
with too much detail. Sooner or later, we’ll need more detail if we’re going to
understand what we’re developing. But even after we’ve written the detail,
the title provides us a clear and simple way to refer to the stories in written
and verbal communication.

We will be adding two levels of detail: a brief narrative and detailed scenarios.
Let’s start with the narrative.

Narrative

We use a short narrative to provide context for the executable scenarios we’ll
be writing. These narratives are just like the narratives we write in user stories.
In Extreme Programming Installed [JAH02], which was published in 2001, Ron
Jeffries provides some example user stories that vary slightly in size and detail
but are generally small and simple, like “When the code-breaker submits a
guess, the game displays a mark that indicates how close the guess is to the
secret code.”

From that single sentence, we can glean the role of the user (the code-breaker),
the action the user takes (submit a guess), and the expected response to the
action (display a mark).

It also exposes a wealth of questions. How does one submit a guess? How
does the system present the mark? What are the rules about marking a guess?
This is a good thing, since a user story is a token for a conversation.

It also leaves out one important question: what is the goal? Why is the code-
breaker submitting a guess? What value does the system provide by marking
the guess?

In recent years, there has been a lot of exploration into standardized formats
or templates that focus on three properties of every story: the role of the user,
the action that user takes, and, most importantly, the value provided to the
business in return for investing in writing code to support this action.

The Connextra Format

The format that is probably the most well known one originated in an Agile
project at Connextra and is featured in Mike Cohn’s User Stories Applied
[Coh04]:

As a <role>
I want <feature>
So that <business value>

report erratum • discuss

Features • 235

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The Connextra Format

In 2000, Peter Marks and John Nolan at Connextra hired Tim Mackinnon to help
them with Agile. They hit upon the story card format for user stories shown in Figure
8, Connextra card, on page 237.

It didn’t use the terms role, feature, and business value, but the intent was very much
the same. They noticed that matching the “requirement” with the “reason” fostered
more discussion with the users and a deeper understanding of the requirement.

When Tim joined ThoughtWorks, this format caught on with Dan North, Chris Matts,
and Liz Keogh. From there it became the “official” narrative format in BDD stories
and was the most commonly used format for Cucumber features.

More recently, Liz Keogh has been exploring similar templates that reorder the points
of focus and solve problems related to expressing business value. For example, when
a narrative suggests “As a visitor to the site, I want to log in,” it’s unlikely that a real
visitor actually wants to log in. It’s the security manager who wants the visitor to log
in, so that’s the role that provides context for business value, even though the visitor
is the active role in the narrative. See Liz’s blog for more on this.a

a. http://lizkeogh.com

This template helps us focus on the answers to those three very important
questions: Who is using the system? What is he/she doing? Why does he/she
care? Almost all expressions of user stories express the what, but adding the
who and the why can provide context for a lot of very important discussion.

Let’s take an example from a photo-editing system. A professional photogra-
pher is going to want much more detail and complexity from a photo-editing
system than the casual red-eye remover/cropper sort of user. Being clear
about the target user for a feature is going to impact the decisions you make
about user interaction with the system.

The why is about business value and really gets to the heart of any Agile
development process. We want to minimize waste by keeping focus on features
that will provide some meaningful benefit and will therefore actually be used.
We say that BDD is about writing software that matters—this focus on features
that will be used is directly related to that.

Although this template is recommended, it is certainly not a requirement of
BDD or of Cucumber. The narrative of a feature can be expressed in completely
free form with virtually no restrictions.2 The important thing is that we have

2. The only restriction is that a narrative cannot include a line that begins with a Gherkin
keyword.

Chapter 17. Intro to Cucumber • 236

report erratum • discuss

http://lizkeogh.com
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Figure 8—Connextra card

a conversation that covers the role and business value and not just the
functionality itself. This template can be helpful in that regard but is not a
necessity.

With a title and a narrative, we have a lot to go on to make decisions about
when to tackle which features, but before we move on to develop code for
them, we’re going to need even more detail. This detail will be in the form of
scenarios that represent executable customer acceptance tests.

17.3 Customer Acceptance Tests

A customer acceptance test represents an agreement between the stakeholder
and delivery team. It specifies how a feature should behave. When the devel-
opers deliver code that passes the test, the stakeholder accepts that feature
as done.

We consider acceptance in the context of the current iteration. If a new idea
emerges mid-iteration, we can talk about it without changing the acceptance
criteria for features for the current iteration and add new stories to the
backlog for future consideration. The work that was done in the iteration is
still valued and accepted as meeting the agreed-upon criteria. This is good
for morale, as well as tracking.

report erratum • discuss

Customer Acceptance Tests • 237

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The new stories can be prioritized intelligently, without the gravity of unfin-
ished work getting more weight than it may deserve. Maybe it makes sense
to add a story for the next iteration, but maybe it makes more sense to add
the story to the backlog and not introduce it right away.

Considering acceptance to be contextual is not without its costs. Sometimes
an idea is sufficiently game-changing as to render any further work on a
related story a complete waste of time. Just beware that the disruption of
changing a story mid-stream is often a bigger waste of time than simply fin-
ishing the story and keeping things moving.

17.4 Gherkin

Cucumber is an interpreter. Just like the ruby executable interprets Ruby code
in .rb files, the Cucumber executable interprets Gherkin code in .feature files.

Internationalization

The Gherkin keywords are translated into thirty-five different languages. This means
you can write features in your own native language. All you need to do is to have a
header in your .feature file with the language you’re using. For example, if you want
to use Portuguese, the first two lines might look like this:

language: pt
Ele é português

Or in English:

language: en
Feature: Addition

If you don’t provide a language header, Cucumber will default to English.

To see what languages are available, just run this:

cucumber --i18n help

To see the translations for a particular language, specify the language code. Here’s
an example:

cucumber --i18n fr

The Gherkin grammar consists of a few keywords that you must use when
you write a feature file:

• Feature
• Background
• Scenario

Chapter 17. Intro to Cucumber • 238

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

• Scenario outline
• Scenarios (or examples)
• Given
• When
• Then
• And (or but)
• | (which is used to define tables)
• """ (which is used to define multiline strings)
• # (which is used for comments)

You can write whatever you want after a keyword. The keywords Given, When,
Then, And, and But indicate steps in a scenario, which we use to build up a
domain-specific language for a project.

Every feature file must start with the Feature keyword, followed by a colon and
a description. The description can be on several lines, and the most common
pattern is to have a short name followed by a brief narrative on the next few
lines, like this:

language: en
Feature: Compute distance

In order to calculate fuel consumption
As a driver
I want to see the total distance of a trip

It is important to point out that Cucumber does not care what you write here.
It will simply ignore everything from the top of the file until it sees one of the
keywords Background, Scenario, or Scenario Outline. The only reason we write this
text is for communication purposes.

Now that we have seen how to start a feature, let’s dive into the interesting
parts. We’ll start with scenarios and cover the other keywords later.

17.5 Scenarios

Scenarios are concrete examples of how we want the software to behave. They
are more explicit than some traditional ways to describe requirements and
help us raise and answer questions that we might miss otherwise. Consider
this requirement: it shouldn’t be possible to book a room if the hotel is full.

This leaves a lot of open questions. If the hotel is full, is it still possible to try
to book and get an error if we try? Is the booking option disabled? Or is it
hidden? What do we display?

report erratum • discuss

Scenarios • 239

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Scenarios allow us to answer these questions by describing exactly what
should happen under what circumstances. The first part of a scenario is the
Scenario keyword, followed by a colon and then a name that describes the
scenario in one sentence. Here is the beginning of a feature, with a title, a
narrative, and the introductory line of a scenario:

Feature: Traveler books room
In order to reduce staff
As a hotel owner
I want travelers to book rooms on the web

Scenario: Successful booking

Each scenario is made up of steps that appear below the Scenario keyword and
are typically indented two spaces. We’ll talk about steps in the next section.

When you start writing a new feature, it’s generally easiest to start with a
scenario that describes the most common “happy path.” Once you are done
with that, you can add more scenarios that describe different edge cases:

Feature: Traveler books room
In order to reduce staff
As a hotel owner
I want travelers to book rooms on the web

Scenario: Successful booking

Scenario: Hotel is full

Scenario: Visitor forgets to enter email

Let’s take a closer look at the first scenario, Successful booking. What does a
successful booking look like? We have to fill in some steps to make this a
concrete example.

17.6 Steps

Scenarios each use an arbitrary number of steps to describe everything that
happens within a scenario. A step is generally a single line of text that starts
with one of the step keywords: Given, When, Then, And, and But.

Let’s write some steps for the Successful booking scenario. First, create the
directories hotel/features/ in an empty directory, and open a command prompt
in the hotel directory. Create features/book_room.feature and paste the following
code:

Chapter 17. Intro to Cucumber • 240

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cucumber/01/features/book_room.feature
language:en
Feature: Traveler books room
In order to reduce staff
As a hotel owner
I want travelers to book rooms on the web

Scenario: Successful booking
Given a hotel with "5" rooms and "0" bookings

17.7 The cucumber Command

Once we have a file with a feature in it, we can run it with the cucumber
command:3

cucumber

The cucumber command runs all the *.feature files below the features directory.
In our case, we have only one, so Cucumber runs it and prints the following:

language:en
Feature: Traveler books room

In order to reduce staff
As a hotel owner
I want travelers to book rooms on the web

Scenario: Successful booking # features/book_room.feature:7
Given a hotel with "5" rooms and "0" bookings # features/book_room.feature:8

1 scenario (1 undefined)
1 step (1 undefined)
0m0.001s

You can implement step definitions for undefined steps with these snippets:

Given /^a hotel with "([^"]*)" rooms and "([^"]*)" bookings$/ do |arg1, arg2|
pending # express the regexp above with the code you wish you had

end

The output is very similar to the text in features/booking.feature, with some extra
information. The first thing we notice is that the Scenario and Step lines each
have comments at the end of the line, which display the location of the sce-
nario as a filename and line number. This is particularly useful if you want
to execute a single scenario. Copy the location and try running it again:

cucumber features/book_room.feature:7

3. Run gem install cucumber if you haven’t already.

report erratum • discuss

The cucumber Command • 241

http://media.pragprog.com/titles/achbd/code/cucumber/01/features/book_room.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

You should see exactly the same output as before. You’ll find yourself using
this technique often as you write more features and scenarios—if you run all
of the features and only a few of them fail, you only want to run the failing
ones while you are working yourself back to green.

The next thing we notice is a couple of lines summarizing how many scenarios
and steps we have and the result of running them. Cucumber reports that
we had an undefined step. This is Cucumber’s way of telling us that it recog-
nizes a step, but it doesn’t know what to do with it. We need a step definition
to move on.

Cucumber always tries to be helpful and tell you the next thing to do, so it
will suggest how you can implement a step definition whenever it encounters
an undefined step. We’ll talk about step definitions in Section 18.1, Step
Definitions, on page 249, but, for now, let’s talk about the step keywords.

17.8 Given/When/Then

“Given I have $100 in my checking account, When I withdraw $70, Then I
should have $30 left.” That’s how anybody might describe a real-life scenario
in conversation. This is why we use Given, When, and Then in BDD, whether
we’re talking about application behavior or object-level behavior. It’s all
behavior!

This is also why Cucumber uses Given, When, and Then as keywords in
scenarios. We can also use And and But as synonyms for whichever of Given,
When, or Then appeared before. If we say “Given x, And y,” then And means
Given. If we say “Then x, But not y,” then But means Then.

Given indicates something that we accept to be true in a scenario: Given I
have $20 in my checking account; Given the world is round; Given today
is a holiday; and so on. These statements provide context for the events
and outcomes that we talk about later in the scenario.

Given is often misconstrued to mean preconditions, but that is a different
concept. Preconditions are part of a contract that indicates we can go no
further unless a precondition is met. Givens are not bound by precondition
contracts and can explicitly violate them in order to specify how an app
should behave under conditions it should, in theory, never be in (Given
the world is flat).

When indicates the event in a scenario: When I withdraw $15; When I fly in
a perfectly straight line perpendicular to the earth’s axis; and so on. We
generally prefer to have a single event in any scenario, because this makes

Chapter 17. Intro to Cucumber • 242

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

it easier to understand the intent of each scenario and what may have
gone wrong when it fails.

Then indicates an expected outcome: Then I should have $5 remaining; Then
I should be at a higher altitude than when I started; and so on. It’s OK
to have more than one outcome in a scenario (hence And and But), but
we want to make sure they are cohesive.

Consider a scenario in which we transfer money from one account to
another, and we have two outcomes: Then I should have $20 in checking,
And I should have $30 in savings. If we add, Then I should earn $0.04
interest in my savings account, while that may be a legitimate outcome
of the scenario, it is not related to the other outcomes and becomes a
source of confusion. Better to put that in a separate scenario.

17.9 Declarative and Imperative Scenario Styles

Although there are many different approaches to writing steps and scenarios,
we can talk about two general approaches that offer different costs and ben-
efits: declarative and imperative.

To illustrate the difference between these two styles, consider the following
two scenarios:

Scenario: transfer money (declarative)
Given I have $100 in checking
And I have $20 in savings
When I transfer $15 from checking to savings
Then I should have $85 in checking
And I should have $35 in savings

Scenario: transfer money (imperative)
Given I have $100 in checking
And I have $20 in savings
When I go to the transfer form
And I select "Checking" from "Source Account"
And I select "Savings" from "Target Account"
And I fill in "Amount" with "15"
And I press "Execute Transfer"
Then I should see that I have $85 in checking
And I should see that I have $35 in savings

These two scenarios tell the same story but at different levels of abstraction.
The imperative scenario has five When steps that go step-by-step through
filling in and submitting a form, whereas the declarative scenario wraps all

report erratum • discuss

Declarative and Imperative Scenario Styles • 243

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

that activity up into a single step. These two approaches impact different
parts of the process in different ways.

Imperative steps are more composable, which means we can generally support
more scenarios with fewer step definitions. This means we spend more time
in the early iterations building generic step definitions, and more of the long-
term maintenance burden is borne by the plain-text features.

Conversely, declarative steps tend to be more customized to each scenario,
which means that the work of writing step definitions spreads out more
throughout the development of an app. It also means that more of the main-
tenance burden is borne by the step definitions, in Ruby.

If you’re on a larger team with dedicated business analysts who can manage
the plain-text scenarios, then the imperative style puts more power in their
hands and makes it easy for them to compose new scenarios with little
developer involvement. If you’re on a smaller team in which the developers
are responsible for business analysis and testing tasks as well as development
tasks, then the declarative style might make more sense.

We also need to consider the communication value of the scenarios and the
needs of the customer team. Imperative scenarios are more verbose, which
makes some customers very happy, while it makes the eyes of others glaze
over because there is so much more to read. We want to specify business
value, but those words mean different things to different people and in different
contexts.

Many people report that the right answer is a balance of imperative and
declarative scenarios in the same project. In our money transfer example, we
could have a single scenario with the imperative approach and then a series
of declarative scenarios to cover common alternative paths.

17.10 Organizing Features

When you run the cucumber command with no options, Cucumber will look for
all of the .rb and .feature files below the ./features directory, load all of the .rb files,
and then run all of the .feature files. For very small projects, the simplest way
to organize the feature files is to keep them in the root of the ./features directory.
If you want to run subsets of features, you can easily manage that with tags
(see Section 17.11, Tags, on page 245) and profiles (see Section 18.9, Configu-
ration, on page 260).

For larger projects or for features with lots of scenarios, we can create subdi-
rectories for each feature, with multiple files in each subdirectory and with

Chapter 17. Intro to Cucumber • 244

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cohesive subsets of scenarios in each file. One good way to determine that a
group of scenarios is cohesive is if they share a background, as described in
Section 18.5, Background, on page 255.

We can also go to a higher level of abstraction with feature sets, or themes,
each in its own subdirectory of ./features. Consider an HR benefits management
application that has general functional areas like insurance and personal
time off (PTO). This might result in a directory structure like this:

features
insurance

medical
dental
life
disability

pto
accrual
usage

With a structure like this, we can easily choose what to run when using the
directory/feature argument to the cucumber command. Given a directory,
Cucumber runs all the features in that directory and its subdirectories. In
the HR example, we could run all features with cucumber features, all insurance-
related features with cucumber features/insurance, or only medical insurance
features with cucumber features/insurance/medical.

Now we could get similar groupings using tags, but we suggest using tags for
workflow (@wip,@current,@passing,@iteration_12,@in_browser, and so on) and use di-
rectories for organization.

17.11 Tags

Once we get a scenario passing, any subsequent failure is considered a
regression. We want to fix it quickly, ideally before committing code. The life
cycle before a scenario passes the first time, however, is a different matter.

The Life of a Scenario

Before work commences on a feature, each scenario may go through an
approval process in which developers and customers collaborate to write a
scenario that expresses the right requirements at the right level of abstraction,
and so on. During this time, a scenario might be considered to be pending
approval, for example.

Once all parties agree and we’re ready to commence work, the feature becomes
a work in progress. Even after we have one scenario passing, we might have

report erratum • discuss

Tags • 245

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

other scenarios in the same feature that are still works in progress or pending
approval to start work.

We therefore want to run controlled subsets of a full suite. When we’re
working on a scenario, we might want to run only that scenario until we get
it passing. Our continuous integration build might run only scenarios that
should be passing and ignore all of the works in progress or scenarios pending
approval.

Cucumber supports running selected subsets of features and scenarios with
tags.

Tags to the Rescue

A tag in Cucumber looks like an instance variable in Ruby. It starts with an
@ symbol followed by an alpha character or an underscore, followed by an
arbitrary number of alphanumeric characters and underscores. Examples
include @wip (work in progress), @iteration_12, @approved, and so on.

Any number of tags can be applied to any feature or scenario by typing them
on the line before the Feature or Scenario keyword:

@approved @iteration_12
Feature: patient requests appointment

@wip
Scenario: patient selects available time

A Scenario inherits tags specified on the Feature, so in the previous example, the
Scenario will have the tags @approved @iteration_12 @wip.

With scenarios tagged, we can now run all of the scenarios tagged with a
specific tag with the --tags command-line argument. For example, this command
would run all of the scenarios tagged with @wip:

cucumber --tags @wip

The --tags option can accept a complex tag expression, including conditional
AND, OR, and NOT expressions. Here are some examples:

cucumber --tags @foo,@bar
@foo || @bar
runs all of the scenarios tagged with @foo OR @bar

cucumber --tags @foo --tags @bar
@foo && @bar
runs all of the scenarios tagged with @foo AND @bar

Chapter 17. Intro to Cucumber • 246

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cucumber --tags ~@dev
!@dev
runs all of the scenarios NOT tagged with @dev

cucumber --tags @foo,~@bar --tags @baz
(@foo || !@bar) && @baz
runs all of the scenarios (tagged with @foo OR NOT tagged with @bar) AND
tagged with @baz

Type cucumber --help for more information about tags.

Other Uses for Tags

In addition to using tags to manage the life cycle of a scenario, we can also
use tags to do the following:

• Identify scenarios only to be run in a certain environment

• Identify scenarios that represent different sorts of testing, like workflow
vs. business rules

• Run only scenarios that run fast

• Run scenarios related to a feature set or theme

17.12 What We’ve Learned

Cucumber provides a standard format for expressing requirements in the
form of features and scenarios that we can use to automate the systems we
write. The Gherkin language provides a common basic structure and a variety
of tools for describing features.

A Cucumber feature is made up of a title, a narrative, and an arbitrary
number of scenarios. Scenarios are composed of steps beginning with Given,
When, or Then. We use Given steps to create context, When steps to describe
an event that occurs within that context, and Then steps to describe the
expected outcomes.

We can also use And or But, each of which take on the quality of the previous
step. An And step preceded by a When step is considered another When step.

We use two common styles for composing steps into scenarios: declarative
and imperative. Declarative scenarios tend to be shorter and more specific,
putting the maintenance burden in the step definitions that are written in
Ruby. Imperative scenarios tend to be longer and more detailed, but with
more generic steps. This pushes the maintenance burden more toward the
plain-text scenarios themselves.

report erratum • discuss

What We’ve Learned • 247

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

We typically group features in subdirectories of the features directory named
for the each feature.

We can choose which features to run under given conditions using tags in
the feature files themselves and referencing those tags from the command
line.

In the next chapter, we’ll look more closely at the Ruby code we use to connect
the plain-text scenarios to the code we’re driving out.

Chapter 17. Intro to Cucumber • 248

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 18

Cucumber Detail
In the previous chapter, we learned about Cucumber’s Gherkin language for
expressing features and scenarios in plain text. In this chapter, we’ll take a
look at the Ruby code we write to connect the plain-text scenarios to the code
we’re writing.

We’ll also take a look at some more advanced techniques we can use in the
scenarios to manage complexity as our suite of scenarios grows. But before
we can get into that, we’ll begin with the basic bit of glue that we use to con-
nect scenario steps to code: step definitions.

18.1 Step Definitions

Step definitions are Cucumber’s equivalent of method definitions or function
declarations in a conventional programming language. We define them in
Ruby,1 and they are invoked when Cucumber parses steps in the plain-text
features.

We wrote a scenario with a single step earlier in Section 17.6, Steps, on page
240. Open a command prompt to the hotel directory again, and type the cucumber
command. Here’s the output:

language:en
Feature: Traveler books room

In order to reduce staff
As a hotel owner
I want travelers to book rooms on the web

Scenario: Successful booking # features/book_room.feature:7
Given a hotel with "5" rooms and "0" bookings # features/book_room.feature:8

1. The Cuke4Duke project at http://wiki.github.com/aslakhellesoy/cuke4duke also lets you define
step definitions in other programming languages such as Java, Groovy, and Scala.

report erratum • discuss

http://wiki.github.com/aslakhellesoy/cuke4duke
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

1 scenario (1 undefined)
1 step (1 undefined)
0m0.001s

You can implement step definitions for undefined steps with these snippets:

Given /^a hotel with "([^"]*)" rooms and "([^"]*)" bookings$/ do |arg1, arg2|
pending # express the regexp above with the code you wish you had

end

Cucumber-Provided Code Snippets

The last part of the output is a snippet of code we can use to build a step
definition. Create a step_definitions subdirectory in features, and add a file named
room_steps.rb. Copy the snippet into that file, and modify it as follows:

cucumber/02/features/step_definitions/room_steps.rb
Given /^a hotel with "([^"]*)" rooms and "([^"]*)" bookings$/ do

|room_count, booking_count|
end

The code that hooks up to the application code goes in the block passed to
the Given() method. For demo purposes, we’re leaving the block empty. Run
your feature again as before, and look at the output. Everything should be
passing in nice green color:

language:en
Feature: Book room
In order to attract more people
Travelers should be able to book on the web

Scenario: Successful booking
features/book_room.feature:6

Given a hotel with "5" rooms and "0" bookings
features/step_definitions/hotel_steps.rb:1

1 scenario (1 passed)
1 step (1 passed)
0m0.002s

Several things changed when we added the step definition. First, the scenario
and step are no longer pending, but passing. This means that for each of our
steps, Cucumber found a matching step definition. Each step definition con-
sists of a regular expression and a block. Whenever Cucumber executes a
step, it will look for a step definition with a matching regular expression, and
if it finds one, it will execute the block.

Chapter 18. Cucumber Detail • 250

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cucumber/02/features/step_definitions/room_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Arguments

If a step definition’s regular expression contains one or more capture groups,
it will treat them as arguments to the step definition’s block. The step defini-
tion has the regular expression /^a hotel with "([^\"]*)" rooms and "([^\"]*)" bookings$/,
and when that is matched with the plain-text step a hotel with "5" rooms and "0"
bookings, it extracts the strings 5 and 0 and passes them as arguments to the
block.

Note that arguments are always passed as Strings, so if we want to treat an
argument as a different type, we have to manage that explicitly. More about
that in a little while.

18.2 World

Every scenario runs in the context of a new instance of an object that we call
World. By default, World is just an instance of Object that Cucumber instantiates
before each scenario. All of the step definitions for a scenario will execute
their blocks in the context of this same instance.

In some cases, it can be handy to invoke helper methods from step definitions.
To make such methods available, we can customize World using the World()
method, which takes one or more Ruby modules as arguments:

module MyHelper
def some_helper

...
end

end

World(MyHelper)

This makes the some_helper method available from our step definitions. We can
configure World in any Ruby file in features or its subdirectories, but we recom-
mend doing it in a file called features/support/world.rb, because this makes it easier
to remember where the code lives.

In addition to mixing Ruby modules into the World object (which by default is
an instance of Object), we can also change the default behavior so that the
World is an instance of some other class. This is done with the same World()
method, passing a block:

class MyWorld
def some_helper
...

end
end

report erratum • discuss

World • 251

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

World do
MyWorld.new

end

These techniques for altering World can also be used by Cucumber “plug-ins”
such as cucumber-rails, which configures World to be an instance of ActionCon-
troller::IntegrationTest. It also mixes in various modules from RSpec and Webrat
so that those libraries’ helper methods are available from within your step
definitions.

18.3 Calling Steps Within Step Definitions

We often find ourselves repeating a series of steps across scenarios. One
approach to reducing this duplication is to define a higher-level step that
encapsulates several steps.

Consider the following scenario steps for transferring money from one account
to another:

When I select checking as the source account
And I select savings as the target account
And I set $20.00 as the amount
And I click transfer

That’s fine if it appears in one scenario, but if it appears in several, we might
want to condense these four steps into one, like this:

When I transfer $20.00 from checking to savings

Cucumber makes it easy for us to do this, by allowing us to invoke steps from
within step definitions. Assuming that we already have the four-step definitions
for the four-step version earlier, we can write a step definition for the one-
step version like this:

When /I transfer (.*) from (.*) to (.*)/ do |amount, source, target|
When "I select #{source} as the source account"
When "I select #{target} as the target account"
When "I set #{amount} as the amount"
When "I click transfer"

end

This can also be expressed like this, using some additional sugar provided
by Cucumber:

When /I transfer (.*) from (.*) to (.*)/ do |amount, source, target|
steps %Q{
When I select #{source} as the source account
And I select #{target} as the target account
And I set #{amount} as the amount

Chapter 18. Cucumber Detail • 252

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

And I click transfer
}

end

Both approaches have the same result, so pick the one that you find easiest
to read, write, and maintain.

Calling steps from step definitions can help keep things DRY, but they add
additional layers of indirection. If we’re calling steps that call steps that call
steps, it can become difficult to understand failures.

This technique also results in different levels of abstraction across step defi-
nitions: some with simple Ruby statements, and some with calls to other
steps, which we typically do from within the feature files.

We recommend that you experiment with the different approaches and decide
for yourself which work better based on the balance between readability and
maintainability.

Joe asks:

When Should I Quote Arguments?
There are two common styles for steps that take arguments. First is the implicit style,
where you can’t see where the argument is:

When I select checking as the source account

The second is explicit:

When I select "checking" as the source account

There are a couple of benefits to using the explicit style. First, the double quotes give
us a hint that this might be an argument, which might make it easier to reuse a step
definition. The second benefit is that Cucumber will be extra helpful when generating
snippets for undefined steps that use quotes and suggest the capture groups for you.
This doesn’t mean you should always use the explicit style; it also adds “noise.” Dis-
cuss the pros and cons with your team.

18.4 Hooks

For most nontrivial applications, it becomes necessary to perform common
operations before and after each scenario. For example, cucumber-rails starts
a database transaction before each scenario and rolls it back when it has
finished, ensuring that the database is in a pristine state for each scenario.

In Cucumber, we do this with hooks. Here is a simple example of a Before hook:

report erratum • discuss

Hooks • 253

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Before do
puts "This will run before each scenario"

end

Cucumber supports three different kinds of hooks:

• Before: Executed before every scenario
• After: Executed after every scenario
• AfterStep: Executed after every step

We can configure hooks in any of the Ruby files below features/, but we recom-
mend doing it in a file called features/support/hooks.rb, because this makes it easier
to remember where the code lives.

Hooks can be defined any number of times. If there are ten different things
we need to do before each scenario, we can define ten Before hooks. They’ll be
run in the order in which they are defined.

When we do have multiple hooks, we sometimes find that we don’t need to
run all of them for every single scenario. When we do, we can use tagged
hooks.

Tagged Hooks

A tagged hook behaves just like a regular hook, but it runs only for certain
scenarios. When we declare a hook, we can also pass one or more tag
expressions. Consider this example:

Before("@foo") do
puts "This will run before each scenario tagged with @foo"

end

For more fine-grained control, we can use more complex tag expressions, just
like we can do on the command line with --tags, as described in Section 17.11,
Tags, on page 245.

Before("@foo,~@bar", "@zap") do
puts "This will run before each scenario tagged with @foo or not @bar AND @zap"

end

Visibility

Although hooks can be practical for common operations that need to happen
before and after a scenario, they do have one drawback. They cannot be read
by nontechnical people on your team. Hooks are defined in Ruby code, and
you will never see any evidence of their existence (unless you have a failure,
in which case the backtrace will show it).

Chapter 18. Cucumber Detail • 254

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Sometimes it’s OK that nontechnical people can’t see it. Take the case with
Ruby on Rails, where Cucumber starts a transaction in a Before hook and rolls
it back in an After hook. This is low-level technical stuff that nontechnical
people don’t care about (and shouldn’t have to care about).

In other situations, there might be some common setup that also provides
important context in order for a scenario to make logical sense. For those sit-
uations, we can use a Background.

18.5 Background

Backgrounds let us write steps once that will be invoked before every scenario
in a given feature. We use them instead of Before hooks when we want the
steps to be visible in the feature file because they create logical context for
each scenario.

Consider the act of logging in to a website. Many websites offer a limited set
of functionality to users who are not logged in and more functionality for
those who are.

When writing features for such a system, we often find it necessary to start
every scenario with either Given I am logged in or Given I am logged out (or some
variants of this). For cases like this, Cucumber allows us to define common
steps in a Background:

Feature: invite friends

Background: Logged in
Given I am logged in as "Aslak"
And the following people exist:

name	friend?
David	yes
Vidkun	no

Scenario: Invite someone who is already a friend

Scenario: Invite someone who is not a friend

Scenario: Invite someone who doesn't have an account

A Background will run before each of our scenarios, just like a Before hook in
code. If there are any Before hooks, they will run before the Background.

When we have a common setup, we usually have a choice whether to use
Before or Background. Which one to use boils down to whether it is valuable to
be explicit about it in the feature.

report erratum • discuss

Background • 255

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

18.6 Multiline Text

For software that uses text files as either input or output, Cucumber lets us
embed their content right into features with multiline text. RSpec, for example,
reads text files. In RSpec’s own Cucumber scenarios, we see examples that
look like this:

Scenario: pending implementation
Given a file named "example_without_block_spec.rb" with:

"""
describe "an example" do
it "has not yet been implemented"

end
"""

When I run "spec example_without_block_spec.rb"
Then the exit code should be 0
And the stdout should include

"""
Pending:

an example has not yet been implemented \(Not Yet Implemented\)
.\/example_without_block_spec.rb:2

Finished in ([\d\.]*) seconds

1 example, 0 failures, 1 pending
"""

In this scenario, the Given and And (Then) steps take Python-style multiline
strings as their arguments. This gives us a lot of flexibility because we can
represent input and output data (almost) exactly as it would appear in a file.
The margin is determined by the position of the first double quote, so the
words describe and end are left aligned, and the word it on the second line is
indented only two spaces.

The regular expression in the step definition does not need to capture this
text. It should end on the last character of the step’s sentence. Here are the
step definitions for the steps in the previous example:

Given /^a file named "([^\"]*)" with:$/ do |filename, text|
...

end

Then /^the stdout should include$/ do |text|
...

end

Chapter 18. Cucumber Detail • 256

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Cucumber delivers the text to the step definition as the last block argument.
In the previous Given step definition, the filename block argument contains
the value of the regular expression capture, and the text variable holds the
multiline text. The Then step definition has no capture groups defined, so
the one and only block argument contains the multiline text.

The step definition behind the And step compiles a regexp and compares it
to the expected output, which is why we see a group with a character class
and the parentheses around “Not Yet Implemented” are escaped.

18.7 Tables in Steps

Sentences that begin with Given, When, and Then are great for expressing
activities and interactions that users have with a software system. They are
not, however, very useful for tabular data. It turns out that the best thing for
tables is…tables! Cucumber supports tabular data in steps with a wiki-style
table format that is well suited for both Given and Then steps.

Imagine we’re writing a poker hand evaluator. Here’s how we might describe
the cards in the hand using tables:

Scenario: three of a kind beats two pair
Given a hand with the following cards:
rank	suit
2	H
2	S
2	C
4	D
A	H

And another hand with the following cards:
rank	suit
2	H
2	S
4	C
4	D
A	H

Then the first hand should beat the second hand

When Cucumber sees a | at the beginning of a line following a line with a Step
keyword, it parses that and all subsequent lines beginning with | and stores
the cell values in a Cucumber::Ast::Table object, which exposes the data as an
array of hashes via a hashes() method.

Each hash in the array uses the column headers in the first row as keys, like
this:

report erratum • discuss

Tables in Steps • 257

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

[
{ :rank => '2', :suit => 'H' },
{ :rank => '2', :suit => 'S' },
{ :rank => '4', :suit => 'C' },
{ :rank => '4', :suit => 'D' },
{ :rank => 'A', :suit => 'H' }

]

Cucumber delivers the Cucumber::Ast::Table to the block as the last (and only, in
this case) block argument. The step definition for the first step might look
like this:

Given /^a hand with the following cards:$/ do |cards_table|
hands << Hand.new do |hand|
cards_table.hashes.each {|hash| hand << Card.new(hash)}

end
end

The step definition guides us to write the initialize method on Card such that
it can set its internal state from a hash with the keys :rank, and :suit.

The Cucumber::Ast::Table offers several other utilities. See the RDoc for more
information.2

18.8 Scenario Outlines

For cases that involve several similar cases, Cucumber gives us scenario
outlines. We saw this in the Codebreaker tutorial in Part I of the book, where
we had several scenarios that involved the same three steps with different
values each time.

Given the secret code is 1234
When I guess 1234
Then the mark should be bbbb

Given the secret code is 1234
When I guess 1235
Then the mark should be bbb

etc, etc

After about three or four scenarios like that, they become very hard to scan
through and get a sense of the relationship between them and the rules that
they are trying to express.

2. http://wiki.github.com/aslakhellesoy/cucumber/rdoc

Chapter 18. Cucumber Detail • 258

report erratum • discuss

http://wiki.github.com/aslakhellesoy/cucumber/rdoc
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Scenario outlines solve this problem by letting us define an outline for a sce-
nario once, with placeholders for the values that might change from scenario
to scenario. Then we can express the values in a tabular format that is very
easy to scan and get the whole picture:

Scenario Outline: submit guess
Given the secret code is "<code>"
When I guess "<guess>"
Then the mark should be "<mark>"

Scenarios: all numbers correct
code	guess	mark
1234	1234	++++
1234	1243	++--
1234	1423	+---
1234	4321	----

The Scenarios keyword identifies a table of input data for the outline.3 See how
the column headers in the table match up to the placeholders in the outline?
Cucumber processes the outlined scenario once for each row in the table after
the first row with the column headers. In this case, we get four scenarios.

The substitutions in scenario outlines also work with multiline text and tab-
ular input. Here’s an example:

Scenario Outline:
Given a discount of <discount>
When I order the following book:
| title | price |
| Healthy eating for programmers | <price> |

Then the statement should read:
"""
Statement for David
Total due: <total>
"""

Scenarios:
discount	price	total
10%	$29.99	$26.99
15%	$29.99	$25.49

In the first scenario, <discount> is replaced with 10%, <price> in the table in the
When step becomes $29.99, and <total> in the multiline text in the Then step
becomes $26.99.

3. Cucumber supports Scenarios and Examples keywords to identify tabular data for a scenario
outline. Some users prefer to use Scenarios to avoid using words we use in RSpec, but
many people like to use Examples in order to better differentiate from the Scenario keyword.
Both do exactly the same thing, so the choice is a subjective one and yours to make.

report erratum • discuss

Scenario Outlines • 259

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

18.9 Configuration

Cucumber offers a wide array of command-line switches and options, but
nobody wants to type all those options every time we run cucumber. To that
end, Cucumber offers us a simple configuration mechanism in the form of
profiles defined in a cucumber.yml or config/cucumber.yml file.

The most common use for profiles is selecting sets of scenarios to run based
on associated tags. For example, it is conventional to tag the scenarios that
we’re currently working with @wip for work in progress. We can add the follow-
ing line to cucumber.yml in the project root directory:

wip: --tags @wip features

The wip: at the beginning of the line identifies the name of the profile. The
--tags@wip is the command-line option we learned about in the previous section
and it tells Cucumber to run the scenarios tagged with @wip. With that profile
defined, we can type the following command to invoke it:

cucumber -p wip

We can set up as many profiles as we want, which gives us tremendous flex-
ibility in our ability to manage what to run when. We can have profiles we
use locally in our minute-to-minute development. We can set up profiles to
run on our build servers. We can set up profiles we want to use temporarily
because we’re working on a specific area of the application.

We can also use this to create custom workflows and life cycles for scenarios.
Consider a scenario that’s been passing, but we’re about to make it obsolete
with a new feature we’re working on now. We can identify that scenario as
ready to be phased out but keep running it until we’re ready to remove it.

18.10 What We’ve Learned

In this chapter, we learned how to write step definitions to connect plain-text
steps to the Ruby code we are developing. Each scenario is run in its own
World, allowing us to share state between step definitions without leaking state
across scenarios.

We learned that we can call steps from inside step definitions. This can help
keep things DRY but also introduces a different level of abstraction within
step definitions. Some like this, some don’t. The choice is yours.

Chapter 18. Cucumber Detail • 260

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

There are three kinds of hooks: Before and After hooks are run before and after
each scenario, and AfterStep hooks are run after each step. We can limit which
scenarios and steps these hooks apply to by adding tags to their declarations.

When several scenarios involve the same series of steps with different data,
scenario outlines allow us to express the steps once and feed in data using
a succinct tabular format.

We also learned about multiline text and tables in steps. These offer us clean
ways to express more complicated data in our plain-text scenarios.

This brings us to the end of our journey through the finer details of RSpec
and Cucumber. In the next part of the book, we’ll show you how we approach
BDD for Ruby on Rails projects. We’ll build on the material we’ve covered so
far and add some new ideas and tools like Webrat and Selenium to the mix.

report erratum • discuss

What We’ve Learned • 261

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Part V

Behaviour-Driven Rails

CHAPTER 19

BDD in Rails
Ruby on Rails lit the web development world on fire by putting developer
happiness and productivity front and center. Concepts such as convention
over configuration, REST, declarative software, and the Don’t Repeat Yourself
principle are first-class citizens in Rails and have had a profound impact on
the Ruby community and the wider web development community.

In the context of this book, the single most important concept expressed
directly in Rails is that automated testing is a crucial component in the
development of web applications. Rails was the first web development
framework to ship with an integrated full-stack testing framework. This low-
ered the barrier to entry for those new to testing and, in doing so, raised the
bar for the rest of us.

RSpec’s extension library for Rails, rspec-rails, extends the Rails testing
framework by offering separate classes for spec’ing Rails models, views, con-
trollers, and even helpers, in complete isolation from one another.1 All of that
isolation can be risky if not accompanied by automated end-to-end functional
testing to make sure all the pieces work together. For that we use Cucumber
and supporting tools such as Webrat and Selenium.

Although these tools are great additions to any web developer’s arsenal of
testing tools, in the end, tools are tools. RSpec and Cucumber are optimized
for BDD, but using them doesn’t automatically mean you’re doing BDD, nor
does using other tools mean you are not!

1. Early versions of the rspec-rails plug-in were built on ZenTest (http://www.zenspider.com/
ZSS/Products/ZenTest/), which offered support for testing models, views, controllers, and
helpers separately. We later decided that we wanted more runtime component isolation
than ZenTest provided, so we rolled our own, but we owe a debt of gratitude to ZenTest’s
author, Ryan Davis, for paving the way.

report erratum • discuss

http://www.zenspider.com/ZSS/Products/ZenTest/
http://www.zenspider.com/ZSS/Products/ZenTest/
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

In the chapters that follow, we’ll show you how to use rspec-rails in conjunc-
tion with tools such as Cucumber, Webrat, and Selenium, to drive application
development from the outside in with a powerful tool set.

19.1 Outside-In Rails Development

Outside-in Rails development means starting with views and working our way
in toward the models. This approach lets customer-defined acceptance criteria
drive development and puts us in a position to discover objects and interfaces
earlier on in the process and make design decisions based on real need.

The BDD cycle with Rails is the same outside-in process we use with any
other framework (or no framework), web, desktop, command line, or even an
API. The cycle (depicted in Figure 9, The BDD cycle in Rails, on page 267) is
the same cycle depicted in Figure 1, The BDD cycle, on page 9; however,
we’ve added some detail to help map it to Rails.

1. Start with a scenario. Make sure you have a clear understanding of the
scenario and the expected outcomes, including how the UI should support
a user interacting with the app.

2. Run the scenario with Cucumber. This reveals which steps are undefined,
or pending. Most, if not all, of the steps will be pending at first.

3. Write a step definition for the first step. Run the scenario with Cucumber,
and watch it fail.

4. Drive out the view implementation using the red/green/refactor cycle
with RSpec. You’ll discover assigned instance variables, controllers, con-
troller actions, and models that the view will need in order to do its job.

5. Drive out the controller with RSpec, ensuring that the instance variables
are properly assigned. With the controller in place, you’ll know what
models it needs to do its job.

6. Drive out those objects with RSpec, ensuring that they provide the
methods needed by the view and the controller. This typically leads to
generating the required migrations for fields in the database.

7. Once you have implemented all of the objects and methods that you have
discovered are needed, execute the scenario with Cucumber again to make
sure the step is satisfied.

Once the step is passing, move on to the next unimplemented step, and
continue working outside in. When a scenario is done, move on to the next

Chapter 19. BDD in Rails • 266

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Figure 9—The BDD cycle in Rails

report erratum • discuss

Outside-In Rails Development • 267

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

scenario or, better yet, ask the nearest customer to validate that it’s working
as expected and then move on to the next scenario.

This is outside-in Rails development—implementing a scenario from its out-
ermost-point down and building what we discover is needed to make it work.

Now that you have a high-level view of the outside-in process in Rails, let’s
get started by setting up a Rails project with the necessary tools. This will let
us explore ground zero in the following chapters.

19.2 Setting Up a Rails 3 Project

Rails 3 makes configuring an application for use with RSpec and Cucumber
a trivial operation. In the next few chapters, we’ll be working with an applica-
tion for publishing movie schedules, which we’ll call Showtime. Let’s set up
the skeleton for this app now. Start by generating a new Rails app:

$ rails new showtime

This creates a showtime directory and generates the skeleton for a Rails app
inside it. Now cd into that directory, and take a look around:

$ cd showtime

One of the generated files is the Gemfile we use to configure the gems we want
bundled with our app using Bundler. Open the Gemfile, and modify it as follows:

rails_bdd/01/Gemfile
source 'http://rubygems.org'

gem 'rails', '3.0.0'
gem 'sqlite3-ruby', :require => 'sqlite3'
group :development, :test do➤

gem "rspec-rails", "2.0.0"➤

gem "cucumber-rails", "0.3.2"➤

gem "webrat", "0.7.2"➤

end➤

We add these to the :development group so that their generators and rake tasks
are available without having to type RAILS_ENV=test. We add them to the :test
group to make sure that their code is available when running in the test
environment.

Now we’ll use Bundler to install those gems and all of their dependencies:

$ bundle install

Now we’ll use the rspec:install generator to install a few files we’ll need in the
app:

Chapter 19. BDD in Rails • 268

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_bdd/01/Gemfile
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

$ script/rails generate rspec:install
create .rspec
create spec
create spec/spec_helper.rb
create autotest
create autotest/discover.rb

Here’s a description of each file and directory that was generated:

• spec: The directory where you place specs for your Rails app.

• .rspec: Add options to this file that you want rspec to utilize when running
any of the rake spec tasks.

• spec/spec_helper.rb: This file is used to load and configure rspec. It is also
where you would require and configure any additional helpers or tools
that your project utilizes when running specs.

• autotest/discover.rb: Used by Autotest to discover what type of Auto-test class
to load.

Now we’ll use the cucumber:install generator to install files Cucumber needs:

$ script/rails generate cucumber:install
create config/cucumber.yml
create script/cucumber
chmod script/cucumber

create features/step_definitions
create features/step_definitions/web_steps.rb
create features/support
create features/support/env.rb
create features/support/paths.rb
exist lib/tasks

create lib/tasks/cucumber.rake
gsub config/database.yml
gsub config/database.yml

force config/database.yml

Cucumber adds a few more files than RSpec does. Let’s take a look at each
one:

• config/cucumber.yml: Used to store profiles that provide control over what
features and scenarios to run. See Section 18.9, Configuration, on page
260.

• script/cucumber: The command-line feature runner.

• features/step_definitions: All of your step definitions will go in this directory.

report erratum • discuss

Setting Up a Rails 3 Project • 269

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

• features/step_definitions/web_steps.rb: Contains step definitions that are commonly
used with web apps. We’ll learn more about this file in Chapter 21, Simu-
lating the Browser with Webrat, on page 281.

• features/support: This directory holds any Ruby code that needs to be loaded
to run your scenarios that are not step definitions, like helper methods
shared between step definitions.

• features/support/env.rb: Bootstraps and configures the Cucumber runner
environment.

• features/support/paths.rb: Support for mapping descriptive page names used
in scenario steps to their URLs.

• lib/tasks/cucumber.rake: Adds the rake cucumber task, which prepares the test
database and runs all of your application’s features.

And that’s it! To make sure everything is wired up correctly, run these
commands:

$ rake db:migrate
$ rake db:test:prepare
$ rake spec
$ rake cucumber

You should see output like this when you run rake spec:2

No examples matching ./spec/**/*_spec.rb could be found

And you should see output like this when you run rake cucumber:

0 scenarios
0 steps

19.3 Setting Up a Rails 2 Project

To set up a Rails 2 project, we need to first install all of the gems we need:

$ [sudo] gem install rails --version 2.3.10
$ [sudo] gem install rspec-rails --version 1.3.3
$ [sudo] gem install cucumber-rails --version 0.3.2
$ [sudo] gem install database_cleaner --version 0.5.0
$ [sudo] gem install webrat --version 0.7.1
$ [sudo] gem install selenium-client --version 1.2.18
$ [sudo] gem install sqlite3-ruby --version 1.3.1

Now run the following commands:

2. Later versions of rspec may say 0 examples, 0 failures.

Chapter 19. BDD in Rails • 270

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

$ rails showtime
$ cd showtime
$ script/generate rspec
$ script/generate cucumber --webrat --rspec
$ rake db:migrate
$ rake db:test:prepare

At this point, you can run the rake spec and rake cucumber commands, and you
should see output similar to that which we saw previously in the Rails 3 app.

19.4 What We’ve Learned

So far, we explored the concepts of BDD in Rails at a high level and set up a
project with the recommended tools. In the next chapter, we’ll take a look at
how Cucumber and Rails work together to help us drive application develop-
ment from the outside in. Turn the page, and let’s begin.

report erratum • discuss

What We’ve Learned • 271

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 20

Cucumber with Rails
Cucumber supports collaboration between project stakeholders and application
developers, with the goal of developing a common understanding of require-
ments and providing a backdrop for discussion. The result of that collaboration
is a set of plain-text descriptions of features and automated scenarios that
application code must pass to be considered done. Once passing, the scenarios
serve as regression tests as development continues.

As with any BDD project, we use Cucumber in a Rails project to describe
application-level behavior. In this chapter, we’ll look at how Cucumber inte-
grates with Rails, exploring a variety of approaches to setting up context,
triggering events, and specifying expected outcomes as we describe the features
of our web application.

20.1 Step Definition Styles

Step definitions connect the natural-language steps in a plain-text feature
file to Ruby code that interacts directly with the application. Since Cucumber
helps us describe behavior in business terms, the steps shouldn’t express
technical details. Given I'm logged in as an administrator could apply to a CLI, client-
side GUI, or web-based application. It’s within the step definitions that the
rubber meets the road and code is created to interact with the application.

When building step definitions for a Rails application, we typically deal with
three step definition styles for interacting with a web-based system in order
to specify its behavior:

• Automated Browser: Access the entire Rails MVC stack in a real web
browser by driving interactions with the Webrat API and its support for
piggybacking on Selenium. This style is fully integrated but is the slowest
to run and can be challenging to maintain.

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

• Simulated Browser: Access the entire MVC stack using Webrat, a DSL for
interacting with web applications. This style provides a reliable level of
integration while remaining fast enough for general use, but it doesn’t
exercise JavaScript.

• Direct Model Access: Access ActiveRecord models directly, bypassing routing,
controllers, and views. This is the fastest but least integrated style.

When writing Cucumber scenarios, integration and speed are opposing forces,
as illustrated in Figure 10, Comparing step definition styles, on page 274. Fast
is better than slow, of course, but integrated is better than isolated when
we’re looking for confidence that an app will work in the hands of users once
it is shipped. So, what’s the best approach to take?

Figure 10—Comparing step definition styles

Recommendations

We recommend using Simulated Browser with Webrat for Whens and Thens.
This helps drive out the pieces that a user will interact with, providing confi-
dence that the component parts are working well together but still produces
a suite that can be executed relatively quickly and without depending on a
real web browser.

We generally recommend using direct model access in Givens, but there are
a few exceptions. For anything that needs to set up browser session state,
such as logging in, you should use Simulated Browser.

If there is any JavaScript or Ajax, add scenarios that use the Automated
Browser approach in their Whens and Thens for the happy path and critical

Chapter 20. Cucumber with Rails • 274

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

less common paths. The added value we get from doing this is exercising
client-side code, so when no client code is necessary, there is no reason to
use the browser.

Edge Cases

For features that produce many edge cases, it can be useful to drive a few
through the Rails stack and the rest using just Direct Model Access for
everything. This may seem more like a unit test, but keep in mind that sce-
narios are about communication. We want to make sure that we’re writing
the right code. If the customer asks for specific error messages depending on
a variety of error conditions, then it’s OK to go right to the model if that’s the
source of the message, as long as the relevant slice of the full stack is getting
sufficient coverage from other scenarios.

In this chapter, we’ll start with the simplest style, Direct Model Access, and
walk through implementing a feature. Then we’ll explore using Webrat for
the Simulated Browser style in Chapter 21, Simulating the Browser with
Webrat, on page 281 and Automated Browser in Chapter 22, Automating the
Browser with Webrat and Selenium, on page 303.

20.2 Direct Model Access

Direct Model Access (DMA) step definitions execute quickly, but that speed
and isolation comes at a price. They don’t provide much assurance that the
application works, and they are unlikely to catch bugs beyond those that
should be caught by granular RSpec code examples that we’ll be writing in a
few chapters.

They do, however, facilitate conversation between the customer and developers
and will catch regressions if the logic inside the models is broken in the future.
In this way, DMA step definitions are useful for exercising fine-grained
behaviors of a system, when driving all of them through the full stack would
be too cumbersome.

To see this in action, let’s look at some scenarios for a movie box office system
we’ll call Showtime. Start by bootstrapping a Rails app as we did in Section
19.2, Setting Up a Rails 3 Project, on page 268.

The customer wants the structured movie schedule data to be distilled into
a human-readable one-line showtime description for display on a website.
Create a feature file named showtime_descriptions.feature in the features directory,
and add the following text to it:

report erratum • discuss

Direct Model Access • 275

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

cucumber_rails/01/features/showtime_descriptions.feature
Feature: Showtime Descriptions

So that I can find movies that fit my schedule
As a movie goer
I want to see accurate and concise showtimes

@wip
Scenario: Show minutes for times not ending with 00

Given a movie
When I set the showtime to "2007-10-10" at "2:15pm"
Then the showtime description should be "October 10, 2007 (2:15pm)"

Scenario: Hide minutes for times ending with 00
Given a movie
When I set the showtime to "2007-10-10" at "2:00pm"
Then the showtime description should be "October 10, 2007 (2pm)"

Now run the feature with one of the rake tasks that Cucumber installed when
we ran the cucumber:install generator:

rake cucumber:wip

This task runs all the scenarios with the @wip tag. Right now we have just
two scenarios and only one tagged with @wip, so that is the only scenario that
gets run. You should see that all of the steps are undefined and that
Cucumber has provided code snippets for the missing step definitions:

1 scenario (1 undefined)
3 steps (3 undefined)
0m0.317s

You can implement step definitions for undefined steps with these snippets:

Given /^a movie$/ do
pending # express the regexp above with the code you wish you had

end

When /^I set the showtime to "([^"]*)" at "([^"]*)"$/ do |arg1, arg2|
pending # express the regexp above with the code you wish you had

end

Then /^the showtime description should be "([^"]*)"$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Getting the First Scenario to Pass

We’ll implement the step definitions for the first scenario using the Direct
Model Access style.

Chapter 20. Cucumber with Rails • 276

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cucumber_rails/01/features/showtime_descriptions.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Create a file named showtime_steps.rb in the features/step_definitions directory, copy
in the snippets Cucumber supplied, and modify them as follows:

cucumber_rails/02/features/step_definitions/showtime_steps.rb
Given /^a movie$/ do
@movie = Movie.create!

end

When /^I set the showtime to "([^"]*)" at "([^"]*)"$/ do |date, time|
@movie.update_attribute(:showtime_date, Date.parse(date))
@movie.update_attribute(:showtime_time, time)

end

Then /^the showtime description should be "([^"]*)"$/ do |showtime|
@movie.showtime.should eq(showtime)

end

The step definitions are executed in the context of a Rails environment, so
we can use any techniques that work in Rails unit tests or RSpec model specs,
which you’ll read about in Chapter 25, Rails Models, on page 349. This includes
creating models in the database and using RSpec’s Expectations API.

The steps are all run in the same object, so the @movie instance variable cre-
ated in the Given() step is available to all subsequent steps.

Now run rake cucumber:wip, and you should see the following in the output:

@wip
Scenario: Show minutes for times not ending with 00

Given a movie
uninitialized constant Movie (NameError)
./features/step_definitions/showtime_steps.rb:2:in `/^a movie$/'
features/showtime_descriptions.feature:9:in `Given a movie'

The first step is failing because it references a Movie object that we have yet
to create. Go ahead and create that using the Rails model generator, and then
run the migration for the development and test environments.

$ script/rails generate model movie showtime_date:date showtime_time:time
invoke active_record
create db/migrate/xxxxxxxxxxxxxx_create_movies.rb
create app/models/movie.rb
invoke rspec
create spec/models/movie_spec.rb

$ rake db:migrate
$ rake db:test:prepare

The model generator creates a movie_spec.rb because RSpec registered itself as
the test framework when we ran script/rails generate rspec:install.

report erratum • discuss

Direct Model Access • 277

http://media.pragprog.com/titles/achbd/code/cucumber_rails/02/features/step_definitions/showtime_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Now run rake db:migrate and rake cucumber:wip, and you should see that the first
and second steps are passing, but we get an undefined method `showtime' for the
third step. To get that to pass, go ahead and modify movie.rb as follows:

cucumber_rails/04/app/models/movie.rb
class Movie < ActiveRecord::Base

def showtime
"#{formatted_date} (#{formatted_time})"

end

def formatted_date
showtime_date.strftime("%B %d, %Y")

end

def formatted_time
showtime_time.strftime("%l:%M%p").strip.downcase

end

end

Now run rake cucumber:wip again, and the output should include the following:

1 scenario (1 passed)
3 steps (3 passed)
0m0.263s

Joe asks:

Where Does RSpec Fit into This Picture?
In this example, we go straight from a Cucumber scenario to the Rails model code
without any more granular code examples written in RSpec. This is really just to keep
things simple and focused on Cucumber for this chapter.

We have yet to introduce you to the other styles of step definitions or the Rails-spe-
cific RSpec contexts provided by the rspec-rails library. As you learn about them in
the coming chapters, you’ll begin to get a feel for how all these puzzle pieces fit
together and how to balance the different tools and approaches.

That’s looking much better, isn’t it? This would probably be a good time to
commit to a version control system. Working scenario by scenario like this,
we get the benefit of ensuring we don’t break previously passing scenarios as
we continue to add behavior and refactor.

Chapter 20. Cucumber with Rails • 278

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/cucumber_rails/04/app/models/movie.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Completing the Feature

Now that we have the first scenario passing, let’s see how we’re doing on the
second one. Run both scenarios with rake cucumber (without :wip), and you
should see this in the output:

1 scenario (1 failed)
3 steps (1 failed, 2 skipped)
0m0.515s

Now we can go back to our Movie model and enhance the logic of the format-
ted_time() method.

cucumber_rails/05/app/models/movie.rb
def formatted_time
format_string = showtime_time.min.zero? ? "%l%p" : "%l:%M%p"
showtime_time.strftime(format_string).strip.downcase

end

That should be enough to get us to green:

2 scenarios (2 passed)
6 steps (6 passed)
0m0.233s

Success! We’ve completed our work on the “Showtime Descriptions” feature.
Our passing scenarios tell us that we’ve written the right code and that we’re
done. Before we leap into the next chapter, let’s take a second to consider
what we learned.

20.3 What We’ve Learned

Like most important development decisions, when choosing a step definition
style, there are opposing forces on each side that need to be considered and
balanced. Direct Model Access step definitions offer the speed and flexibility
of model specs at the cost of reduced confidence that the application is
working for its users.

For most situations, it makes more sense to create a more integrated set of
step definitions that ensure the models, views, and controllers are working
together correctly, even though they will execute a bit slower. Next we’ll take
a look at how we can use Webrat to implement either the Simulated Browser
or Automated Browser style to do just that.

report erratum • discuss

What We’ve Learned • 279

http://media.pragprog.com/titles/achbd/code/cucumber_rails/05/app/models/movie.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 21

Simulating the Browser with Webrat
Even though we call Rails an MVC framework, there are really more than
three layers in a Rails app. In addition to the model, view, and controller, we
also have a routing layer, a persistence layer (the class methods in Rails
models), and a database, and we want to ensure that all of these layers work
well together.

In the previous chapter, we introduced Direct Model Access step definitions
and used them to implement Givens, Whens, and Thens. This approach can
be useful to specify fine-grained model behaviors, but running those scenarios
doesn’t give us any confidence that the different layers of our application are
working well together.

We rarely use DMA-only scenarios in practice, and when we do, it’s to augment
a strong backbone of coverage established by Simulated Browser scenarios
exercising the full Rails stack. We covered DMA first because it’s the simplest
style, but the primary role of DMA step definitions is to help keep our Simu-
lated and Automated Browser scenarios focused by quickly setting up
repeated database state in Givens, as we’ll see later in this chapter.

We consider the Simulated Browser style to be the default approach for
implementing Whens and Thens for a Rails app because it strikes a good
balance between speed and integration. We can count on the software to work
correctly in the hands of our end users when we ship, and we can execute
the scenarios quickly as the requirements and code evolve.

If you’re building an application without much JavaScript, the Simulated
Browser (combined with DMA for Givens) is likely all you’ll need. It’s a fast,
dependable alternative to in-browser testing tools like Selenium and Watir.
Even when JavaScript is important to the user experience, we like to start
with a set of Simulated Browser scenarios and then add Automated Browser

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

scenarios (which we’ll cover in Chapter 22, Automating the Browser with
Webrat and Selenium, on page 303) to drive client-side interactions.

If you’ve ever written a Rails integration test, you’ve probably used the Simu-
lated Browser style of testing. In that context, methods such as get_via_redirect()
and post_via_redirect() build confidence because they simulate requests that
exercise the full stack, but they don’t make it easy to express user behaviors
clearly. In this chapter, we’ll explore how Webrat builds on this approach to
help us bridge the last mile between page loads and form submissions and
the behavior our applications provide to the real people whose lives they
touch.

21.1 Writing Simulated Browser Step Definitions

We’re going to focus on Cucumber with Webrat and Selenium, so we’re going
to skip over some of the low-level details that we use RSpec for in practice.
We’ll cover all of that in Chapter 23, Rails Views, on page 315; Chapter 24,
Rails Controllers, on page 329; and Chapter 25, Rails Models, on page 349. If
you plan to follow along and run the examples, we recommend you download
the code examples from http://pragprog.com/titles/achbd/source_code, cd into the simu-
lated_browser directory, and work in the numbered directories within. That way,
you can type the parts we focus on here, but you don’t have to worry about
the parts we don’t.

We’ll be building on the web-based movie box-office system from the previous
chapter, so you can, alternatively, continue to use the same code base. If you
do, however, you’ll be on your own a couple of times during this chapter. We’ll
let you know when we get there, and you can always choose to download the
code later.

Now let’s walk through implementing a few step definitions for a simple sce-
nario using the Simulated Browser technique. The next requirement is that
administrators should be able to assign a movie to a genre so that customers
can later browse by genre. We start by creating a file named create_movie.feature
in the features directory with the following content:

simulated_browser/01/features/create_movie.feature
Feature: Create movie

So that customers can browse movies by genre
As a site administrator
I want to create a movie in a specific genre

Scenario: Create movie in genre

Chapter 21. Simulating the Browser with Webrat • 282

report erratum • discuss

http://pragprog.com/titles/achbd/source_code
http://media.pragprog.com/titles/achbd/code/simulated_browser/01/features/create_movie.feature
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Given a genre named Comedy
When I create a movie Caddyshack in the Comedy genre
Then Caddyshack should be in the Comedy genre

If you’re following with the downloaded code, this is already created for you
in simulated_browser/01/. As usual, we’ll begin by running the feature with rake
cucumber to show us the step definitions we need to implement:

You can implement step definitions for undefined steps with these snippets:

Given /^a genre named Comedy$/ do
pending # express the regexp above with the code you wish you had

end

When /^I create a movie Caddyshack in the Comedy genre$/ do
pending # express the regexp above with the code you wish you had

end

Then /^Caddyshack should be in the Comedy genre$/ do
pending # express the regexp above with the code you wish you had

end

The Given a genre named Comedy step could be implemented using either DMA or
the Simulated Browser style. Using a Simulated Browser would ensure that
the views and controllers used to create genres are working with the models
properly. DMA won’t go through those layers of the stack, but it provides a
bit more convenience, simplicity, and speed. So, which style should we use?

Choosing Between DMA and Simulated Browser

If we already have scenarios that thoroughly exercise the interface to manage
genres using the Simulated Browser style, then we get no benefit from exer-
cising those interfaces in this scenario. In that case, we can benefit from the
DMA style without reducing our confidence in the application. If not, then we
either want to use Simulated Browser here or want to add separate scenarios
specifically for managing genre in which we do.

As we add features throughout the evolution of an application, we see a pattern
emerge in which we implement DMA Givens for a model that has its own
Simulated Browser scenarios elsewhere in the Cucumber suite.

We’ll imagine that those genre scenarios are already in place, but we’re still
going to have to create a Genre model and migration. Use the Rails model
generator to do that, like this:

script/rails generate model genre name:string
rake db:migrate && rake db:test:prepare

report erratum • discuss

Writing Simulated Browser Step Definitions • 283

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Now we add a genre_steps.rb file in features/step_definitions/ with the following code
(in simulated_browser/02/ in the code download):

simulated_browser/02/features/step_definitions/genre_steps.rb
Given /^a genre named Comedy$/ do
@comedy = Genre.create!(:name => "Comedy")

end

Run the scenario, and you’ll see this first step pass. All it needed was the
Genre model and table that we just created. Now let’s move on to the When
step.

The wireframe for the Add Movie screen, shown in Figure 11, Creating a movie
with a form, on page 284, shows that a user will need to provide a movie’s title,
release year, and genres to add it to the system. Since our When step specifies
the main action of the scenario, we’ll use the Simulated Browser to drive this
interaction through the full Rails stack.

Figure 11—Creating a movie with a form

Before we look at how Webrat can help us with this, let’s see what Rails pro-
vides out of the box.

Rails Integration Testing

If you were to implement the When I create a movie Caddyshack in the Comedy genre step
with the Rails integration testing API, you might end up with something like
the following:

When /^I create a movie Caddyshack in the Comedy genre$/ do
get_via_redirect movies_path
assert_select "a[href=?]", new_movie_path, "Add Movie"

get_via_redirect new_movie_path

Chapter 21. Simulating the Browser with Webrat • 284

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/simulated_browser/02/features/step_definitions/genre_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

assert_select "form[action=?][method=post]", movies_path do
assert_select "input[name=?][type=text]", "movie[title]"
assert_select "select[name=?]", "movie[release_year]"
assert_select "input[name=?][type=checkbox][value=?]", "genres[]", @comedy.id

end

post_via_redirect movies_path, :genres => [@comedy.id], :movie =>
{ :title => "Caddyshack", :release_year => "1980" }

assert_response :success
end

This gets the job done, but a lot of implementation details such as HTTP
methods, form input names, and URLs have crept up into our step definition.
These sorts of details will change through the life span of an application, and
that can make scenarios quite brittle. We could mitigate some of that risk by
extracting helper methods for specifying forms and posts that might appear
in multiple scenarios, but that still leaves a significant issue.

With the generated HTML being specified separately from the post, it is
entirely possible to assert_select "input[name=?]", "movie[name]" and then post to
movies_path, :movie => { :title => "Caddyshack"}. This specifies that the form display
an input for movie[name], but then the step posts movie[title]. If the form is
incorrectly displaying a movie[name] field, this step will pass, but the application
will not work correctly.

Webrat

Like the Rails integration testing API, Webrat works like a fast, invisible
browser. It builds on that functionality by providing a simple, expressive DSL
for manipulating a web application. We can use Webrat to describe the same
interaction at a high level, using language that is similar to how you might
explain using the application to a nontechnical friend:

simulated_browser/04/features/step_definitions/movie_steps.rb
When /^I create a movie Caddyshack in the Comedy genre$/ do

visit movies_path
click_link "Add Movie"
fill_in "Title", :with => "Caddyshack"
select "1980", :from => "Release Year"
check "Comedy"
click_button "Save"

end

This is obviously more readable than the first version. Webrat lets us focus
on exactly the details an end user would experience without concern for how
it will be built. The only implementation detail left is to use the movies_path()
route as an entry point.

report erratum • discuss

Writing Simulated Browser Step Definitions • 285

http://media.pragprog.com/titles/achbd/code/simulated_browser/04/features/step_definitions/movie_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

In addition to being more expressive, Webrat also catches regressions without
the false positives described earlier. Don’t worry about the details of how this
works just yet. That will become clear throughout the rest of this chapter.

Run the scenario with Cucumber again (from simulated_browser/04/ in the code
download), and it will show us what to implement first:

Scenario: Create movie in genre
Given a genre named Comedy
When I create a movie Caddyshack in the Comedy genre

undefined local variable or method `movies_path' for
#<Cucumber::Rails::World:0x81ac9a64> (NameError)
./features/step_definitions/movie_steps.rb:2:in

We need to make a number of changes and additions to get this first step
passing, including new routes, controllers, views, models, and migrations.
This is all done for you in the simulated_browser/05 directory of the code download.
If you prefer to try it yourself, start with the code in the simulated_browser/04/
directory, run rake cucumber, and follow the failure messages until this step
passes.

Once you have this step passing, rake cucumber tells us that we have one step
remaining:

3 scenarios (1 undefined, 2 passed)
9 steps (1 undefined, 8 passed)
0m0.355s

To browse movies by genre, a site visitor would click over to the Comedy page,
which displays one movie entitled Caddyshack. The Webrat step definition
for our Then reflects this:

simulated_browser/06/features/step_definitions/movie_steps.rb
Then /^Caddyshack should be in the Comedy genre$/ do

visit genres_path
click_link "Comedy"
response.should contain("1 movie")
response.should contain("Caddyshack")

end

Once again, we’ll learn later how to use RSpec to drive out the routes, con-
trollers, views, models, and migrations that this Cucumber step needs to
pass. You can either try this on your own, starting with the simulated_browser/05/
directory in the code download, or cd into simulated_browser/06/ and it’s already
done for you. In either case, when you’re finished, run rake cucumber, and
everything should pass:

Chapter 21. Simulating the Browser with Webrat • 286

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/simulated_browser/06/features/step_definitions/movie_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

3 scenarios (3 passed)
9 steps (9 passed)
0m0.439s

Great. The passing scenario tells us that we’re done. By leveraging the DMA
style for Givens and combining it with the Simulated Browser style with
Webrat for Whens and Thens, we’ve reached a good balance of expressive
specification, speed, and coverage. We can read the scenario to understand
what we should expect from the application at a high level, and we can be
confident that it will work for our users when we ship it.

Throughout the rest of the chapter, we’ll dive into the details of Webrat’s
features and how they work. Let’s start by looking at how Webrat lets you
navigate from page to page in your application.

21.2 Navigating to Pages

Just as a user can’t click any links or submit any forms until he has typed
a URL into his browser’s address bar and requested a web page, Webrat can’t
manipulate a page until you’ve given it a place to start. The visit() method lets
you open a page of your application.

Inside each scenario, visit() must be called before any other Webrat methods.
Usually you’ll call it with a routing helper, like we did in our When step defi-
nition from the previous section:

When /^I create a movie Caddyshack in the Comedy genre$/ do
visit movies_path
...

end

Behind the scenes, Webrat leverages Rails’ integration testing functionality
to simulate GET requests and layers browser-like behavior on top. Like other
Webrat methods that issue requests, it looks at the response code returned
to figure out what to do next:

Successful (200–299) or Bad Request (400–499) Webrat stores the response
so that subsequent methods can fill out forms, click links, or inspect its
content.

Redirection (300–399) If the redirect is to a URL within the domain of the
application, Webrat issues a new request for the destination specified by
the redirect, preserving HTTP headers and including a proper Location
header. If the redirect is external, Webrat saves it as the response for
later inspection but won’t follow it.

report erratum • discuss

Navigating to Pages • 287

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Server Error (500–599) Webrat raises a Webrat::PageLoadError. If you want to
specify that making a request produces an error, you can use RSpec’s
raise_error() to catch it.

Clicking Links

Once you’ve opened a page of your application using visit(), you’ll often want
to navigate to other pages. Rather than using visit() to load each URL in suc-
cession, it’s convenient to simulate clicking links to jump from page to page.

click_link() lets you identify a link by its text and follows it by making a request
for the URL it points to. To navigate to the URL in the href, wherever that may
be, of a Comedy link, we wrote this:

Then /^Caddyshack should be in the Comedy genre$/ do
...
click_link "Comedy"
...

end

click_link() can lead to a more natural flow in your step definitions and has the
advantage that your step definitions are less bound to your routing scheme.
On the other hand, each page load takes a little bit of time, so to keep your
scenarios running quickly, you’ll want to avoid navigating through many
pages of the site that aren’t directly related to what you’re testing. Instead,
you could pick an entry point for visit() closer to the area of the application
you’re concerned with.

In addition to clicking links based on the text between the <a> tags, Webrat
can locate links by their id and title values. For example, if we have the follow-
ing HTML:

Back to homepage

then the following step definitions would all be equivalent:

When /^I click to go back to the homepage$/ do
Clicking the link by its title
click_link "Example.com Home"

end

When /^I click to go back to the homepage$/ do
Clicking the link by its id
click_link "home_link"

end

Chapter 21. Simulating the Browser with Webrat • 288

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

When /^I click to go back to the homepage$/ do
Clicking the link by its text
click_link "Back to homepage"

end

click_link() has rudimentary support for handling JavaScript links generated
by Rails’ link_to() for non-GET HTTP requests. Since it can’t actually run any
JavaScript, it relies on matching the onclick value with regular expressions.
This functionality, though limited, can be useful when dealing with RESTful
Rails applications that aren’t implemented with unobtrusive JavaScript
techniques.

web_steps.rb
You might be looking at the step definitions used throughout this chapter and won-
dering whether you’ll be forced to write step definitions for every When and Then step
in each of your app’s scenarios. After all, maintaining separate step definitions for
both When I click the Save button and When I click the Delete button (and more) would get tedious
pretty quickly.

Fortunately, Cucumber has just the feature to help us out of this: parameterized step
definitions. Instead of maintaining a step definition for each button, we can write one
that’s reusable by wrapping the Webrat API:

When /^I click the "(.+)" button$/ do |button_text|
click_button button_text

end

In fact, Cucumber ships with a bunch of these sort of step definitions in a web_steps.rb
file. It was added to your project’s step_definitions directory when you ran the Cucumber
generator.

Be sure to take a look at what’s in there. It can save you quite a bit of time as you’re
implementing new scenarios.

Let’s say the box-office application requires that a moderator approves movie
listings before they are visible on the site. Here’s how you might express that
with Webrat:

When /^I approve the listing$/ do
click_link "Approve"

end

And here’s the likely implementation:

<%= link_to "Approve", approve_movie_path(movie), :method => :put %>

report erratum • discuss

Navigating to Pages • 289

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

When clicked, the link would normally generate a PUT request to the
approve_movie_path. You can disable this functionality by passing the :javascript
=> false option to click_link():

When /^I approve the listing$/ do
click_link "Approve", :javascript => false

end

Instead of sending a PUT request, this tells Webrat to issue a GET request as
if the JavaScript were not present. This can be useful when you want to
specify the app works correctly for users without JavaScript enabled.

Now that we’re comfortable navigating to pages within our application, we
can take a look at how to use Webrat to submit forms.

21.3 Manipulating Forms

Once we’ve reached a page of interest, we’ll want to trigger actions before we
can specify outcomes. In the context of a web-based application, that usually
translates to filling out and submitting forms. Let’s take a look at Webrat’s
methods to do that. They’ll serve as the bread and butter of most of our When
step definitions.

fill_in()

You will use fill_in() to type text into text fields, password fields, and <textarea>s.
We saw an example of this in the When step definition of our box-office
example:

When /^I create a movie Caddyshack in the Comedy genre$/ do
...
fill_in "Title", :with => "Caddyshack"
...

end

fill_in() supports referencing form fields by id, name, and <label> text. Therefore,
if we have a conventional Rails form with proper label tags like this:

<dl>
<dt>

<label for="movie_title">Title</label>
</dt>
<dd>

<input type="text" name="movie[title]" id="movie_title" />
</dd>

</dl>

then all of the following would be functionally equivalent:

Chapter 21. Simulating the Browser with Webrat • 290

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

When /^I fill in the movie title Caddyshack$/ doLine 1

using the field's label's text-

fill_in "Title", :with => "Caddyshack"-

end-

5

When /^I fill in the movie title Caddyshack$/ do-

using the field's id-

fill_in "movie_title", :with => "Caddyshack"-

end-

10

When /^I fill in the movie title Caddyshack$/ do-

using the field's name-

fill_in "movie[title]", :with => "Caddyshack"-

end-

In practice, referencing fields by label text is preferred. That way, we can avoid
coupling our step definitions to class and field names, which are more likely
to change as we evolve the application. In the previous example, if we renamed
the Movie class to Film, we’d have to change line 8, which uses the field id, and
line 13, which uses the field name, but line 3 would continue to work just
fine. Unless otherwise noted, Webrat’s other form manipulation methods
support targeting fields using these three strategies.

Beyond making your step definitions easier to write and maintain, providing
active form field labels is a good habit to get into for accessibility and usabil-
ity purposes.

check() and uncheck()

check() lets you click a checkbox that was not selected by default or had been
previously not selected. Here’s an example:

When /^I create a movie Caddyshack in the Comedy genre$/ do
...
check "Comedy"
...

end

To deselect a checkbox that was selected by default or has been previously
selected, you’d write this:

When /^I uncheck Save as draft$/ do
uncheck "Save as draft"

end

report erratum • discuss

Manipulating Forms • 291

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

choose()

You’ll use choose() to manipulate radio form fields. Just like a browser with a
GUI, Webrat ensures that only one radio button of a given group is checked
at a time.

Let’s say we wanted to select “Premium" from a list of plan levels on a signup
page. You might write the following:

When /^I choose to create a Premium plan$/ do
choose "Premium"

end

select()

You’ll use select() to pick options from select drop-down boxes.

When /^I create a movie Caddyshack in the Comedy genre$/ do
...
select "1980"
...

end

By default, Webrat will find the first option on the page that matches the text.
This is usually fine. If you’d like to be more specific or you have multiple
selects with overlapping options, you can provide the :from option. Then,
Webrat will look for the option only inside selects matching the label, name,
or ID. Here’s an example:

When /^I create a movie Caddyshack in the Comedy genre$/ do
...
select "1980", :from => "Release Year"
...

end

select_date(), select_time(), and select_datetime()

When rendering a form, Rails typically exposes date and time values as a
series of <select> fields. Each individual select doesn’t get its own <label>, so
filling in a date using Webrat’s select() method is a bit cumbersome:

When /^I select October 1, 1984 as my birthday$/ do
select "October", :from => "birthday_2i"
select "1", :from => "birthday_3i"
select "1984", :from => "birthday_1i"

end

To ease this pain, Webrat now supports filling out conventional Rails date
and time fields with the select_date(), select_time(), and select_datetime() methods.

Chapter 21. Simulating the Browser with Webrat • 292

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

They act like a thin layer on top of select() to hide away the Rails-specific
implementation details. Here’s how you might use them:

When /^I select April 26, 1982$/ do
Select the month, day and year for the given date
select_date Date.parse("April 26, 1982")

end

When /^I select 3:30pm$/ do
Select the hour and minute for the given time
select_time Time.parse("3:30PM")

end

When /^I select January 23, 2004 10:30am$/ do
Select the month, day, year, hour and minute for the given time
select_datetime Time.parse("January 23, 2004 10:30AM")

end

All three of the methods also support Strings instead of Date or Time objects, in
which case they’ll do the required parsing internally.

attach_file()

To simulate file uploads, Webrat provides the attach_file() method. Instead of
passing a file field’s value as a string, it stores an ActionController::TestUploadedFile
in the params hash that acts like a Tempfile object a controller would normally
receive during a multipart request.

When you use it, you’ll want to save the fixture file to be uploaded somewhere
in your app’s source code. We usually put these in spec/fixtures. Here’s how you
could implement a step definition for uploading a photo:

When /^I attach my Vacation photo$/ do
attach_file "Photo", "#{Rails.root}/spec/fixtures/vacation.jpg"

end

By default, Rails’ TestUploadedFile uses the text/plain MIME type. When that’s
not right, you can pass in a specific MIME type as a third parameter to
attach_file():

When /^I attach my Vacation photo$/ do
attach_file "Photo",

"#{Rails.root}/spec/fixtures/vacation.jpg",
"image/jpeg"

end

set_hidden_field

Occasionally, it can be useful to manipulate the value of a hidden form field
when using the Simulated Browser approach. The fill_in() method, like an app’s

report erratum • discuss

Manipulating Forms • 293

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

real users, will never manipulate a hidden field, so Webrat provides a set_hid-
den_field() specifically for this purpose:

When /^I select Bob from the contact list dialog$/ do
set_hidden_field "user_id", :to => @bob.id

end

Use this method with caution. It’s interacting with the application in a different
way than any end user actually would, so not all of the integration confidence
normally associated with the Simulated Browser style applies, but it can help
in a pinch.

click_button

After you’ve filled out your fields using the previous methods, you’ll submit
the form.

If there’s only one submit button on the page, you can simply use this:

When /^I click the button$/ do
click_button

end

If you’d like to be a bit more specific or there is more than one button on the
page, click_button() supports specifying the button’s value, id, or name. Let’s
say you have the following HTML on your page:

<input type="submit" id="save_button" name="save" value="Apply Changes" />

There are three ways you could click it using the Webrat API:

When /^I click the button$/ do
Clicking a button by id
click_button "save_button"

end

When /^I click the button$/ do
Clicking a button by the name attribute
click_button "save"

end

When /^I click the button$/ do
Clicking a button by its text (value attribute)
click_button "Apply Changes"

end

Just like when navigating from page to page, when Webrat submits a form,
it will automatically follow any redirects and ensure the final page did not
return a server error. There’s no need to check the response code of the request

Chapter 21. Simulating the Browser with Webrat • 294

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

by hand. The returned page is stored, ready to be manipulated or inspected
by subsequent Webrat methods.

submit_form()

Occasionally, you might need to submit a form that doesn’t have a submit
button. The most common example is a select field that is enhanced with
JavaScript to autosubmit its containing form. Webrat provides the submit_form()
method to help in these situations. To use it, you’ll need to specify the <form>’s
id value:

When /^I submit the quick navigation form$/ do
submit_form "quick_nav"

end

reload

Real browsers provide a reload button to send another request for the current
page to the server. Webrat provides the reload() method to simulate this action:

When /^I reload the page$/ do
reload

end

You might find yourself using this if you want to ensure that refreshing a
page after an important form submission behaves properly. Webrat will repeat
the last request, resubmitting forms and their data.

21.4 Specifying Outcomes with View Matchers

Simply by navigating from page to page and manipulating forms in Whens,
you’ve been implicitly verifying some behavior of your application. If a link
breaks, a server error occurs, or a form field disappears, your scenario will
fail. That’s a lot of coverage against regressions for free. In Then steps, we’re
usually interested in explicitly specifying the contents of pages, and Webrat
provides three custom RSpec matchers to help with this.

contain()
The simplest possible specification of a page is to ensure it displays the right
words. Webrat’s contain() takes a bit of text and ensures it’s in the response’s
content:

Then /^I should see Thank you!$/ do
response.should contain("Thank you!")

end

report erratum • discuss

Specifying Outcomes with View Matchers • 295

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

contain() also works with regular expressions instead of strings:

Then /^I should see Hello$/ do
response.should contain(/Hello/i)

end

You will find that you can accommodate almost all of your day-to-day uses
of the contain() matcher with a couple of reusable step definitions from
Cucumber’s generated web_steps.rb file described in web_steps.rb, on page 289:

Then /^I should see "(.+)"$/ do |text|
response.should contain(text)

end

Then /^I should not see "(.+)"$/ do |text|
response.should_not contain(text)

end

contain() will match against the HTML-decoded text of the document, so if you
want to ensure “Peanut butter & jelly” is on the page, you’d type just that in
the string, not “Peanut butter & jelly”.

have_selector()

Imagine you’re building an online photo gallery. Specifying the text on the
page probably isn’t good enough if you’re looking to make sure the photo a
user uploaded is being rendered in the album view. In this case, it can be
quite useful to ensure the existence of a CSS selector using Webrat’s
have_selector():

Then /^I should see the photo$/ do
response.should have_selector("img.photo")

end

As you’d expect, that specifies there is at least one element on the page
with a class of photo. Webrat supports the full set of CSS3 selectors like the
:nth-child pseudo-class, giving it lots of flexibility. The image’s src is particularly
important in this case, so we might want to check that too:

Then /^I should see the photo$/ do
response.should have_selector("img.photo", :src => photo_path(@photo))

end

Webrat will take any keys and values specified in the options hash and
translate them to requirements on the element’s attributes. It’s just a more
readable way to do what you can do with CSS’s img[src=...] syntax but saves
you from having to worry about escaping strings.

Chapter 21. Simulating the Browser with Webrat • 296

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Occasionally the number of elements matching a given selector is important.
It’s easy to imagine a scenario that describes uploading a couple photos and
specifying the number of photos in the album view should increase. This is
supported via the special :count option:

Then /^I should see the photo$/ do
response.should have_selector("img.photo", :count => 5)

end

When we don’t care where on the page a piece of text might be, contain() gets
the job done, but in some cases the specific element the text is in may be
important. A common example would be ensuring that the correct navigation
tab is active. To help in these cases, Webrat provides the :content option. Here’s
how you use it:

Then /^the Messages tab should be active$/ do
response.should have_selector("#nav li.selected", :content => "Messages")

end

This tells Webrat to make sure that at least one element matching the selector
contains the specified string. Like contain(), the provided string is matched
against the HTML decoded content, so there’s no need to use HTML escaped
entities.

Finally, for cases when you need to get fancy, have_selector() supports nesting.
If you call it with a block, the block will be passed an object representing the
elements matched by the selector, and within the block you can use any of
Webrat’s matchers. Here’s how you might check that the third photo in an
album is being rendered with the right image tag and caption:

Then /^the Vacation photo should be third in the album$/ do
response.should have_selector("#album li:nth-child(3)") do |li|

li.should have_selector("img", :src => photo_path(@vacation_photo))
li.should contain("Vacation Photo")

end
end

By combining the power of CSS3 selectors with a few extra features, Webrat’s
have_selector() should provide all you need to write expectations for the vast
majority of your step definitions. For the rare cases where CSS won’t cut it,
let’s take a look at the have_xpath() matcher, which lets you go further.

have_xpath

When CSS just isn’t powerful enough, Webrat exposes have_xpath() as a
matcher of last resort. It’s infinitely powerful, but because of the nature of
XPath, it’s usually not the most expressive.

report erratum • discuss

Specifying Outcomes with View Matchers • 297

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Here’s an example from a recent project:

Then /^the page should not be indexable by search engines$/ do
response.should have_xpath(
".//meta[@name = 'robots' and @content = 'noindex, nofollow']"

)
response.should_not have_xpath(".//meta[@name = 'robots' and @content = 'all']")

end

Under the hood, have_selector() actually works by translating CSS selectors to
XPath and using the have_xpath() implementation. That means all the
have_selector() features we explored work with have_xpath() too.

This implementation strategy hints at an interesting rule about CSS and
XPath: all CSS selectors can be expressed as XPath, but not all XPath selectors
can be expressed as CSS. There are a lot of occasionally useful features XPath
supports that CSS does not, such as traversing up the document tree (for
example, give me all <div>s containing a <p>). Although an overview of XPath
is outside the scope of this book, it’s a good thing to get familiar with if you
find yourself wanting more power than CSS selectors can provide.

21.5 Building on the Basics

Now that we’ve seen how to manipulate forms and specify page content with
Webrat, we’ll take a look at some of Webrat’s more advanced, less commonly
used features. You probably won’t need them day to day, but it’s helpful to
have a rough idea of what’s available so you can recognize cases when they
might come in handy.

Working Within a Scope

Sometimes targeting fields by a label isn’t accurate enough. Going back to
our box-office example application, we might want a form where a user can
add multiple genres at once. Each row of the form would have its own <label>
for the genre name, but using Webrat’s fill_in() method would always manipulate
the input field in the first row.

For these cases, Webrat provides the within() method. By providing a CSS
selector, you can scope all of the contained form manipulations to a subset
of the page. Here’s how you could fill out the second genre name field:

When /^I fill in Horror for the second genre name$/ do
within "#genres li:nth-child(2)" do

fill_in "Name", :with => "Horror"
end

end

Chapter 21. Simulating the Browser with Webrat • 298

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

If no elements matching the CSS selector are found on the page, Webrat will
immediately raise a Webrat::NotFoundError. Like most other Webrat methods, if
multiple elements match, it will use the first one in the HTML source.

Locating Form Fields

When a form is rendered with prefilled values, you may want to check that
the proper values are present when the page loads. To help with this, Webrat
exposes methods that return objects representing fields on the page, which
include accessors for their values. Here’s a simple example based on
field_labeled(), which looks up input fields based on their associated <label>s:

Then /^the email address should be pre-filled$/ do
field_labeled("Email").value.should == "robert@example.com"

end

Checkboxes also provide a checked?() method for convenience:

Then /^the Terms of Service checkbox should not be checked$/ do
field_labeled("I agree to the Terms of Service").should_not be_checked

end

When <label>-based lookups won’t work, you can use field_named(), which
matches against the field’s name value, or field_with_id(), which matches against
the field’s id:

Then /^the email address should be pre-filled$/ do
field_named("user[email]").value.should == "robert@example.com"

end

Then /^the email address should be pre-filled$/ do
field_with_id("user_email").value.should == "robert@example.com"

end

Dropping Down to HTTP

To keep our scenarios as expressive and maintainable as possible, we gener-
ally try to avoid tying them to implementation details. For example, our users
aren’t concerned with the URL of the page they end up on, just that it’s
showing them the right information. Building our specifications of the app’s
behavior on page content rather than URLs aligns our executable specifications
with our users’ interactions.

For the rare cases where the lower-level operation of the application is
important to the customers or it’s the only available option for specifying a
behavior, Webrat provides a few methods that expose these details. To check
the current URL of the session after the last request (and following redirects),
you can use the current_url() method:

report erratum • discuss

Building on the Basics • 299

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Then /^the page URL should contain the album SEO keywords$/ do
current_url.should =~ /vacation-photos/

end

If your application does some form of browser sniffing or you’re building a
REST API, you might be interested in specifying the behavior of an app in the
presence of a specific HTTP header. You can set any request header for the
duration of the test with Webrat’s header() method:

Given /^I'm browsing the site using Safari$/ do
header "User-Agent", "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_6; en-us)"

end

When /^I request the users list using API version 2.0$/ do
header "X-API-Version", "2.0"
visit users_path

end

When the MIME type should affect the behavior of the application, you can
use the http_accept() method as a shortcut to set the Accept header. It can be
called with a small set of symbols that map to MIME types or a MIME type
string:

Given /^my web browser accepts iCal content$/ do
http_accept :ics

end

Given /^my user agent accepts MP3 content$/ do
http_accept "audio/mpeg"

end

Finally, if you’re going to use the HTTP protocol’s built-in Basic authentication
mechanism, Webrat includes a basic_auth() method for setting the HTTP_AUTHO-
RIZATION header to the encoded combination of a username and password:

Given /^I am logged in as "robert" with the password "secret"$/ do
basic_auth "robert", "secret"

end

When Things Go Wrong

Every once in a while, you’ll hit a point where you think a step should be
passing, but it’s failing. It might raise a Webrat::NotFoundError about a field that’s
not present or complain that an expected element is missing. Before diving
into your test.log or the Ruby debugger, it’s good to take a look at the page as
Webrat is seeing it, to check whether it matches your understanding of what
should be rendered.

Chapter 21. Simulating the Browser with Webrat • 300

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

You can use the save_and_open_page() method to capture the most recent response
at any point in your scenario and open it up in a web browser as a static
HTML file on your development machine.

Just drop it in before any line that seems to be misbehaving:

When /^I uncheck Save as draft$/ do
save_and_open_page
uncheck "Save as draft"

end

Now when you rerun the scenario, you’ll be able to see the page response as
Webrat captured it. If you’re on Mac OS X, the file is opened automatically
in your default browser. Otherwise, you can find it in the tmp directory below
the project root.

21.6 What We’ve Learned

Before we move on to looking at how the Automated Browser style of step
definitions can be used to exercise interactions that are dependent on Java-
Script, let’s take a moment to consider what we’ve learned.

• Webrat simulates a browser by building on the functionality of the Rails
integration testing API, providing an expressive language to describe
manipulating a web application.

• By specifying behavior at a high level and avoiding coupling our tests to
implementation details, we can build expressive and robust step definitions
that give us confidence that the full Rails stack stays working while
avoiding brittle scenarios.

• Leveraging the DMA style for Givens can provide convenience, simplicity,
and speed without reducing confidence. We use this approach when the
actions required to get to a specific database state have already been
exercised through the full Rails stack in their own Simulated Browser
scenarios.

• Through the course of describing the actions in our scenarios in our When
steps, Webrat implicitly ensures that requests are successful and the
right links and form elements are on the page. In our Then steps, we
specify the outcomes from our scenarios in terms of expected text and
elements using Webrat’s view matchers.

report erratum • discuss

What We’ve Learned • 301

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 22

Automating the Browser with Webrat and
Selenium

In the previous chapter, we explored how Webrat can simulate the core
functionality of a web browser that you need when building a web application
—navigating to pages, filling out forms, and submitting them to the server.
This will allow you to specify 80 percent of the behavior for most applications
without ever loading up Firefox.

This simulated approach doesn’t help when you depend on rich client-side
interactions built with JavaScript, however, and for that we look to Selenium.1

Selenium is a software testing tool originally developed at ThoughtWorks that
can automate most modern web browsers. Webrat supports a Selenium mode
that translates the Webrat API calls to Selenium calls, allowing you to run
the exact same Cucumber feature with and without running a real web
browser.

By writing your step definitions with the Webrat API, you don’t have to rewrite
them as your application evolves to include more client-side enhancements.
You can always use whichever execution mode is appropriate for a given
scenario (or run the same scenario in both modes) without having to use dif-
ferent tools.

Before we get started, we need to install a couple of new gems. Add the
database_cleaner and selenium_client gems to your Gemfile:

automated_browser/01/Gemfile
group :development, :test do

gem "rspec-rails", "2.0.0"

1. http://seleniumhq.org/

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/automated_browser/01/Gemfile
http://seleniumhq.org/
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

gem "cucumber-rails", "0.3.2"
gem "webrat", "0.7.2"
gem "database_cleaner", "0.5.2"➤

gem "selenium-client", "1.2.18"➤

end

Now run bundle install, and we’re all set to proceed.

22.1 Getting Started

To demonstrate just how easy it is to get started with Webrat’s Selenium
support, we’ll walk through updating one of our Cucumber features from the
previous chapter to use it. Here’s what it says:

simulated_browser/06/features/create_movie.feature
Feature: Create movie

So that customers can browse movies by genre
As a site administrator
I want to create a movie in a specific genre

Scenario: Create movie in genre
Given a genre named Comedy
When I create a movie Caddyshack in the Comedy genre
Then Caddyshack should be in the Comedy genre

And here are the three step definitions that make it executable:

simulated_browser/06/features/step_definitions/genre_steps.rb
Given /^a genre named Comedy$/ do
@comedy = Genre.create!(:name => "Comedy")

end

simulated_browser/06/features/step_definitions/movie_steps.rb
When /^I create a movie Caddyshack in the Comedy genre$/ do

visit movies_path
click_link "Add Movie"
fill_in "Title", :with => "Caddyshack"
select "1980", :from => "Release Year"
check "Comedy"
click_button "Save"

end

Then /^Caddyshack should be in the Comedy genre$/ do
visit genres_path
click_link "Comedy"
response.should contain("1 movie")
response.should contain("Caddyshack")

end

Chapter 22. Automating the Browser with Webrat and Selenium • 304

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/simulated_browser/06/features/create_movie.feature
http://media.pragprog.com/titles/achbd/code/simulated_browser/06/features/step_definitions/genre_steps.rb
http://media.pragprog.com/titles/achbd/code/simulated_browser/06/features/step_definitions/movie_steps.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

And here’s the env.rb file used by Cucumber to set up the environment (com-
ments removed for brevity):

simulated_browser/06/features/support/env.rb
ENV["RAILS_ENV"] ||= "test"
require File.expand_path(File.dirname(__FILE__) + '/../../config/environment')

require 'cucumber/formatter/unicode'
require 'cucumber/rails/world'
require 'cucumber/rails/active_record'
require 'cucumber/web/tableish'

require 'webrat'
require 'webrat/core/matchers'

Webrat.configure do |config|
config.mode = :rack
config.open_error_files = false

end

World(Rack::Test::Methods)
World(Webrat::Methods)

ActionController::Base.allow_rescue = false

Cucumber::Rails::World.use_transactional_fixtures = true

if defined?(ActiveRecord::Base)
begin

require 'database_cleaner'
DatabaseCleaner.strategy = :truncation

rescue LoadError => ignore_if_database_cleaner_not_present
end

end

To get this feature file to run through Selenium, we have to make three
changes to env.rb. First, set use_transactional_fixtures to false:

automated_browser/01/features/support/env.rb
Cucumber::Rails::World.use_transactional_fixtures = false

When using Selenium, Cucumber runs in a separate process than the Rails
application. This means they’ll be using different database connections, and
that means we can’t wrap each of our scenarios with a transaction in our
Cucumber process. If we did, the Rails process would never see the data we
set up for it.

report erratum • discuss

Getting Started • 305

http://media.pragprog.com/titles/achbd/code/simulated_browser/06/features/support/env.rb
http://media.pragprog.com/titles/achbd/code/automated_browser/01/features/support/env.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The downside of turning off transactions is we’ll now be responsible for
ensuring a “clean” database state is provided for each test on our own. We’ll
look at strategies for doing that a bit later in this chapter.

Next, we’ll configure the Rails ActionController::Integration::Session#host() so that it
generates URLs pointing to localhost:3001:

automated_browser/01/features/support/env.rb
class ActiveSupport::TestCase
setup do |session|
session.host! "localhost:3001"

end
end

By default, if you use a routing helper like users_url() in a step definition, you’ll
get a URL in the form of http://test.host/.... With these lines, generated URLs will
point to http://localhost:3001 instead, which is where Webrat will automatically
boot an instance of your application.

Finally, we change Webrat’s configuration as follows:

automated_browser/01/features/support/env.rb
Webrat.configure do |config|

config.mode = :selenium # was :rack➤

config.application_framework = :rack➤

config.open_error_files = false
end

Let’s give that a run and see what happens:

$ rake cucumber
..
==> Waiting for Selenium RC server on port 4444... Ready!
==> Waiting for rails application server on port 3001... Ready!
..
Finished in 11.679288 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

While the previous output was appearing on your terminal, Firefox opened,
loaded up your app, and ran through our Cucumber scenario like an invisible
user following a script. As you accumulate more scenarios to run through
Selenium, it can be pretty fun to watch.

Now that we’ve seen how to configure Webrat, Cucumber, and Rails to work
with Selenium, we’ll explore the nitty-gritty details of writing Selenium-driven
scenarios to describe your application’s behavior.

Chapter 22. Automating the Browser with Webrat and Selenium • 306

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/automated_browser/01/features/support/env.rb
http://media.pragprog.com/titles/achbd/code/automated_browser/01/features/support/env.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

22.2 Writing Step Definitions for Selenium

Fortunately, most of the techniques for writing and maintaining step defini-
tions for simulating the browser apply equally well when automating the
browser with Selenium. There are a few things to watch out for and also some
new tricks we can use.

Setting Up Database State in Givens

Just like when simulating the browser (as we saw in Section 21.1, Writing
Simulated Browser Step Definitions, on page 282), it’s useful to use Direct
Model Access to set up models in the Given steps of a Selenium scenario. By
specifying the behavior associated with creating those models in separate
Cucumber features, we can do this to speed up our suite without sacrificing
confidence in our coverage.

Unlike when simulating the browser, we have to turn off Rails’ transactional
fixture setting so the records we write to the database from our test process
are visible to the application process. As a side effect, we have to worry about
ensuring that each scenario starts off with a clean database state.

There are a couple ways to achieve that goal. The simplest is to manually
destroy all the records in an After hook declared in features/support/env.rb:

After do
Movie.destroy_all
Genre.destroy_all
...

end

As you might guess, this technique can get a bit cumbersome and error prone
as the application grows. Eventually, you might want something that can
quickly remove all the records in the database without needing to list all your
model classes. Ben Mabey’s database_cleaner2 plug-in is a handy little library
to give you just that. To install it, run the following command:

rails plugin install git://github.com/bmabey/database_cleaner.git

Now add the following lines to features/support/env.rb:

require 'database_cleaner'
require 'database_cleaner/cucumber'
DatabaseCleaner.strategy = :truncation

2. http://github.com/bmabey/database_cleaner

report erratum • discuss

Writing Step Definitions for Selenium • 307

http://github.com/bmabey/database_cleaner
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Setting DatabaseCleaner.strategy to :truncation tells the plug-in to run a TRUNCATE
TABLE statement for each table in the database. TRUNCATE TABLE has the same
effect as a DELETE statement that removes all rows, but it can be much faster.3

Manipulating the Application in Whens

Like Givens, Whens work mostly the same with Selenium as they do when
simulating a browser, but there are a few key new concepts to explore.

Dropping Down to the selenium-client API

Occasionally, you might want to perform an action in your Selenium scenario
that has no analog in a simulated, non-JavaScript environment. For example,
you might want to drag and drop a photo in a gallery or double-click a <div>
element. One of Webrat’s goals is to ensure the programmer maintains the
full power of its underlying tools, so it tries to make this as easy as possible.

Under the hood, Webrat’s Selenium support is built on the selenium-client
Ruby library maintained by Philippe Hanrigou. When you call a Webrat method
such as fill_in(), it’s translated to the appropriate call on an instance of Seleni-
um::Client::Driver. Webrat exposes this instance through the selenium() method so
you can easily leverage the full selenium-client API:

selenium.dragdrop("id=#{dom_id(@photo1)}", "+350, 0")

An explanation of the full selenium-client API is outside the scope of this
chapter, but good documentation is available at http://selenium-client.rubyforge.org/.

Waiting

Each of the Webrat API methods covered in Chapter 21, Simulating the
Browser with Webrat, on page 281, such as click_link() and fill_in(), work similarly
in Selenium mode, but there’s one additional concern intrinsic to the Selenium
environment you need to watch out for: waiting.

When simulating a browser, everything happens in one Ruby process. A call
to click_button() causes your scenario to pause while your application code
processes the request before returning control to your step definition to verify
the response. When using Selenium, however, Cucumber and the Rails
application server run in separate processes, so we have to worry about con-
currency issues such as race conditions.

The typical solution to this involves instructing Selenium to wait for various
conditions at points where the server or browser must do some work before

3. You can read more about the minor differences between TRUNCATE TABLE and DELETE at
http://dev.mysql.com/doc/refman/5.1/en/truncate.html.

Chapter 22. Automating the Browser with Webrat and Selenium • 308

report erratum • discuss

http://selenium-client.rubyforge.org/
http://dev.mysql.com/doc/refman/5.1/en/truncate.html
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

the scenario can proceed. Webrat tries to make this seamless by implicitly
waiting inside each action or expectation. Here’s an example of how it works
from Webrat::SeleniumSession:

def check(label_text)
locator = "webrat=#{label_text}"
selenium.wait_for_element locator, :timeout_in_seconds => 5
selenium.click locator

end

Selenium uses various locators to find elements on the page. Webrat waits
for the element to be available in the DOM before clicking it. In this way,
Webrat’s API means you don’t have to think about concurrency very much.
It doesn’t do any waiting until your code interacts with the page, and then it
waits for exactly what you’re trying to manipulate.

So, with Webrat handling the waiting for you, why do you need to worry about
it at all? There are three primary use cases:

• The Webrat’s default timeout of five seconds is not long enough for the
application code to finish. In this case, one option is to add your own
explicit wait at that spot before the Webrat call:

When /^I agree to the Terms of Service$/ do
selenium.wait_for_element "id=tos_checkbox", :timeout_in_seconds => 10
check "I agree to the Terms of Service"

end

• You need to wait for something other than the element’s presence. In this
case, you can simply add an additional wait for whatever you need before
the Webrat call:

When /^I agree to the Terms of Service$/ do
selenium.wait_for_condition "window.Effect.Queue.size() == 0", 10
check "I agree to the Terms of Service"

end

• You’re not using the Webrat API. If you’re using the technique described
in Dropping Down to HTTP, on page 299, you have to add your own waits.
Webrat provides the wait_for() method to help in these situations.

It takes a block:

wait_for(:timeout => 3) do
selenium.dragdrop("id=#{dom_id(@photo1)}", "+350, 0")

end

The wait_for() name will execute the block repeatedly until it runs without
raising a Selenium, Webrat, or RSpec ExpectationNotMetError error, or it times

report erratum • discuss

Writing Step Definitions for Selenium • 309

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

out. In this way, it’s a wait in the Cucumber process rather than the
browser. You can also take a look at selenium-client’s API documentation
to get an idea of the features it provides for waiting inside the web
browser, which can be better for some situations.

Executing Arbitrary JavaScript

Sometimes, for maximum flexibility, you might find yourself wanting to execute
a snippet of JavaScript in the browser during the scenario execution. For
example, we’ve used this technique to replace a third-party Flash component
with a fake in order to specify that our integration with it works properly. The
selenium-client library offers a get_eval() method for this:

When /^the Google API call returns no results$/ do
selenium.get_eval(<<-JS)

var currentWindow = selenium.browserbot.getCurrentWindow();
currentWindow.onGoogleRequestComplete({});

JS
end

JavaScript executed with get_eval() runs in the context of the Selenium window.
To get access to the window where your application is open, we have to use
the special selenium.browserbot.getCurrentWindow() call.

Specifying Outcomes in Thens

Webrat’s three RSpec matchers are all available in Selenium mode: contain(),
have_selector(), and have_xpath(). Like the methods for manipulating the applica-
tion, they all implicitly wait for the expected content to appear (or disappear).

It’s worth noting that in simulated mode Webrat uses the excellent libxml2
C library for XPath lookups, but in Selenium mode it leverages the browser’s
XPath implementation. This can vary a bit across browser versions (and, not
surprisingly, is most error prone in Internet Explorer).

When Webrat’s API doesn’t have what you need, you can leverage the seleni-
um-client API for more flexibility. It has about a dozen methods (prefixed with
“is_”) that check the state of the browser and return booleans:

Then /^the first photo should be first in the album$/ do
wait_for do
selenium.is_ordered(
"id=#{dom_id(@photo1)}",
"id=#{dom_id(@photo2)}"

).should be_true
end

end

Chapter 22. Automating the Browser with Webrat and Selenium • 310

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Finally, you can use the power to execute arbitrary code in the browser to
craft Thens based on anything you can access from JavaScript. For example,
if our site kept track of the number of Ajax requests fired by a page in
ajax.requestCounter, we could write a step definition like this:

Then /^three AJAX requests should have executed$/ do
ajax_requests = selenium.get_eval(<<-JS)
var currentWindow = selenium.browserbot.getCurrentWindow();
currentWindow.ajax.requestCounter;

JS
ajax_requests.to_i.should == 3

end

get_eval() returns strings, so in this example we have to call to_i() on ajax_requests
if you want to compare it as an integer.

22.3 Debugging Selenium Issues

The highly integrated nature of Selenium-backed scenarios is a double-edged
sword. On one hand, it gives us the power to work with our application in an
environment very similar to how it will be deployed. On the other hand, with
so many layers involved, from Selenium and Firefox all the way down to the
database, there’s a much bigger chance that problems in your test environment
itself will lead to programmers tearing their hair out while debugging failures.

Before we wrap up, we’ll take a look at a few general problems you might run
into and some ways to approach solutions. With any luck, we’ll be able to
save some of your hair along the way.

Server Errors

When using a simulated browser, server errors are easy to spot. The exception
bubbles up, and the scenario fails immediately with a message and a back-
trace. When using Selenium, however, that’s a luxury we don’t get out of the
box.

When investigating a Selenium failure, one of the first things you should
always do is verify in the Rails log that no unexpected server errors (500s or
404s) occurred. If an Ajax request triggered an exception in your application,
the information you get from the Rails log will be a lot more helpful to tracking
down the root cause than the timeout exception printed to your console.

Isolation Issues

Isolation issues can cause problems with any sort of automated testing process
but are particularly common in Selenium environments. They’ll usually

report erratum • discuss

Debugging Selenium Issues • 311

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

manifest themselves as scenarios that produce a different result when running
on their own compared to when run as part of a suite.

Unfortunately, there’s no catchall solution here. Be aware of any state that
might carry from one scenario to the next, and isolate as much as you can.
Use (or build) tools and abstractions that make keeping that isolation simple,
such as database_cleaner. If you’re using data stores beyond the database
(like the file system or memcached), consider how they should be “cleaned” as
well.

You’ll also want to be careful to isolate your Selenium suite from external
dependencies. If your scenarios fail when a third-party web service hiccups,
it will erode your team’s confidence in your build results.

One way we like to root out these sorts of issues is by running the Selenium
suite with a computer that has its network connection turned off. If anything
behaves differently, it’s a pointer to an inadvertent external dependency that
has crept in.

Timing Issues

The last class of Selenium trouble spots to keep an eye out for is timing issues.
Because the Rails application server is running in a separate process, it’s
impossible for your Cucumber step definitions to know how long it will take
for anything to complete. This leads to concurrency bugs such as race condi-
tions that cause erratic results. When you run into a scenario that fails one
out of ten times, this is probably the culprit.

Webrat does its best to combat this by using generous timeouts and waiting
for the specific conditions it needs before continuing. If you tell Webrat to
click a button, for example, it will first wait for the button to exist on the page.
It’s a simple technique, but Selenium does not handle it automatically, so
you should consider using it whenever you access the selenium-client API
directly.

Despite its best efforts, Webrat’s waiting behavior is not perfect. Webrat can
check only for the existence of an element before proceeding. While your page
is loading, it might have a button in the DOM before all JavaScript events
have been registered. In these cases, Webrat might see the button and proceed
to click it too early. The fix will depend on the specifics of your situation but
usually involves adding additional wait statements before you call the Webrat
API.

Chapter 22. Automating the Browser with Webrat and Selenium • 312

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

22.4 What We’ve Learned

Automating a browser with Selenium is a deep topic, with a lot of tiny details.
Let’s take a second to review what we’ve just learned.

• Webrat allows you to migrate from simulated scenarios to Selenium when
it becomes appropriate for your application. There’s no need to worry that
you’ll have to rewrite all your existing step definitions if and when that
day comes.

• Running in a Selenium environment involves multiple Ruby processes,
so we need to turn off the per-scenario transactions that helped ensure
the database state stayed isolated. Without this convenience, we have to
take steps to ensure our scenarios clean up after themselves.

• The Webrat API works with Selenium, but we’re not limited to it. It’s easy
to drop down to the selenium-client API as needed. For maximum flexibil-
ity, selenium-client allows executing arbitrary JavaScript inside the
browser window.

• The fully integrated nature of Selenium-backed scenarios is a double-
edged sword. With many moving parts, the chance of obscure bugs
creeping in increases. Although there are no silver bullets to many of
these issues, being aware of what you might run into will save you some
trouble down the line.

report erratum • discuss

What We’ve Learned • 313

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 23

Rails Views
The user interface is subject to more change than just about any other part
of an application. These changes are driven by usability concerns, design
aesthetics, and evolving requirements. Clearly, this makes producing simple,
flexible views desirable and beneficial, but there is more.

We use views to display data provided by models that are, in turn, provided
by controllers. As such, these views are clients of controllers and models. By
focusing on views first, writing the code we wish we had, we are able to keep
the views simple and lean on them to tell us what they need from the rest of
the stack. This leads to controllers and models with targeted APIs that are
well aligned with the application behavior.

23.1 Writing View Specs

A view spec is a collection of code examples for a particular view template.
Unlike examples for plain old Ruby objects (POROs), view examples are
inherently state-based. We provide data to the view and then set expectations
about the rendered content.

In most cases, we’re interested in the semantic content as it pertains to
requirements of the application, as opposed to the syntactical correctness of
the markup. The main exception to this is forms, in which case we do want
to specify that form elements are rendered correctly within a form tag.

Now you may be thinking that we’ve already covered these same details with
Cucumber and Webrat in the past couple of chapters, so why should we also
have isolated view specs? This question is being asked quite a lot as we prepare
to print this book, so you’re not alone if you’re asking it. We’ll address this
question at the end of the chapter, in Section 23.4, When Should I Write View

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Specs?, on page 326, but that will make more sense after you get a feel for how
view specs work and the benefits they provide.

Getting Started

We need to generate a fresh Rails app and configure it to use rspec-rails: Start
by generating the app:

rails new messages
cd messages

Next, copy the following to the Gemfile:

group :development, :test do
gem "rspec-rails", "2.0.0"
gem "webrat", "0.7.2"

end

Lastly, install the bundle and run the rspec:install generator:

bundle install
script/rails generate rspec:install
rake db:migrate

That’s it! RSpec is ready to go.

We’re going to build a view that displays a message, and we’ll drive it out with
a spec. Create a ./spec/views/messages/ directory, and add a show.html.erb_spec.rb file
with the following content:

rails_views/messages/01/spec/views/messages/show.html.erb_spec.rb
require 'spec_helper'

describe "messages/show.html.erb" do
it "displays the text attribute of the message" do
render
rendered.should contain("Hello world!")

end
end

render(), rendered(), and contain()

Given no arguments, the render() method on the first line in the example renders
the file passed to the outermost describe() block, “messages/show.html.erb” in
this case. The rendered() method returns the rendered content, which is passed
to the contain() matcher on the second line. If the rendered content contains
the text “Hello world!” the example will pass. Note that this looks only at
rendered text. If “Hello world!” is embedded in a comment or in a JavaScript
document.write statement, for example, it would not be recognized by contain().

Chapter 23. Rails Views • 316

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_views/messages/01/spec/views/messages/show.html.erb_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The rspec:install generator we ran earlier added some rake tasks we can use to
run specs. Go ahead and run this:

rake spec

You should see the following failure:

Missing template messages/show.html.erb

The template doesn’t exist yet, so add show.html.erb to the app/views/messages/
directory (which you’ll need to create), and run the spec again. Now we get
this output:

expected the following element's content to include "Hello world!"

This time it failed because there’s nothing in the show.html.erb template.
Observing the practice of temporary sins to get to the green bar, add “Hello
world!” to the show.html.erb file, run the spec again, and watch it pass. Now we
know that the example is correctly wired up to the view implementation.

The sin was creating duplication between the spec and the implementation.
Let’s see what we can do about washing that away. The example says that
messages/show.html.erb displays the text of the supplied message, but the implementation
is simply hard-coded. Based on the example, here’s the code we wish we had
in show.html.erb:

rails_views/messages/03/app/views/messages/show.html.erb
<%= @message.text %>

Add that to the file and run the example again, and now you should see
undefined method `text' for nil:NilClass, referencing the line we just added. The view
expects an @message variable to be set up for it. This will be the controller’s
responsibility once we get there, but in this case there is no controller yet.
This puts the responsibility on the view spec itself.

assign()

View specs expose an assign method, which we use to provide data to the view.
Modify the spec as follows:

rails_views/messages/04/spec/views/messages/show.html.erb_spec.rb
describe "messages/show.html.erb" do

it "displays the text attribute of the message" do
assign(:message, double("Message", :text => "Hello world!"))
render
rendered.should contain("Hello world!")

end
end

report erratum • discuss

Writing View Specs • 317

http://media.pragprog.com/titles/achbd/code/rails_views/messages/03/app/views/messages/show.html.erb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/04/spec/views/messages/show.html.erb_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The new first line of the example creates a test double, which stubs the text()
method with a return value of “Hello world!” and assigns it to an @message
instance variable on the view.

Run rake spec again, and it should pass. And that’s it for the first example.
Pretty simple, right?

Although this example didn’t do justice to the intricacies views are often
composed of, it did give us just enough to start us with a foundation on which
to build.

In addition to understanding the basics of a view spec, here are a few more
things we can glean from what we just did:

Directory organization The directory structure for view specs mimics the
directory structure found in app/views/. For example, specs found in
spec/views/messages/ will be for view templates found in app/views/messages/.

File naming View specs are named after the template they provide examples
for, with an _spec.rb appended to the filename. For example, index.html.erb
would have a corresponding spec named index.html.erb_spec.rb.

Always require spec_helper.rb Every view spec will need to require the
spec_helper.rb file. Otherwise, you’ll get errors about core rspec or rspec-rails
methods not existing.

Describing view specs The outer describe() block in a view spec uses the path
to the view minus the app/views/ portion. This is used by the render() method
when it is called with no arguments, keeping things clean and DRY.

Now that you have the basics down, let’s explore a little deeper.

23.2 Mocking Models

When working outside-in, we often discover the need for a model that doesn’t
exist yet. Rather than switch focus to the model, we can create a mock_model()
and remain focused on the view we’re working on.

Mock Example

Building on the messages example, we’ll introduce the need for a model and
continue driving the view.

Following the convention we learned about earlier this chapter, add a spec
named new.html.erb_spec.rb in the spec/views/messages/ directory with the content
shown on the next page.

Chapter 23. Rails Views • 318

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rails_views/messages/05/spec/views/messages/new.html.erb_spec.rb
require 'spec_helper'

describe "messages/new.html.erb" do
it "renders a form to create a message" do
assign(:message, double("Message"))
render
rendered.should have_selector("form",

:method => "post",
:action => messages_path

) do |form|
form.should have_selector("input", :type => "submit")

end
end

end

Run the spec, and you should see a familiar Missing template error. Go ahead
and create a new.html.erb template in app/views/messages with the following code:

rails_views/messages/05-1/app/views/messages/new.html.erb
<%= form_for @message do |f| %>
<%= f.submit "Save" %>

<% end %>

Run the spec, and now the MissingTemplate error is gone, but the spec still fails
with a new error:

undefined method `model_name' for RSpec::Mocks::Mock:Class

The form_for() method used in the view interacts with the object it’s given as
though it were an ActiveRecord model. We’re using a stock test double, which
doesn’t know how to respond to the different messages it gets from form_for().

We can use the mock_model() method to provide a mock object that is configured
to respond in this context as though it were an ActiveRecord model.

Update the example to use mock_model() instead of double():

rails_views/messages/06/spec/views/messages/new.html.erb_spec.rb
it "renders a form to create a message" do

assign(:message, mock_model("Message"))
render
rendered.should have_selector("form",

:method => "post",
:action => messages_path

) do |form|
form.should have_selector("input", :type => "submit")

end
end

report erratum • discuss

Mocking Models • 319

http://media.pragprog.com/titles/achbd/code/rails_views/messages/05/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/05-1/app/views/messages/new.html.erb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/06/spec/views/messages/new.html.erb_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the spec again, and you’ll see this:

undefined method `message_path'

At this point, the example is failing because there are no routes set up for
messages. But that’s not all. Do you notice something odd about the route
it’s looking for?

By default, mock_model produces a mock that acts like an existing record (for
example, persisted() returns true). When form_for gets an existing record, it
produces a form that posts to the update action, which lives at message_path
(singular) as opposed to messages_path (plural). We want a form that posts to
the create action at messages_path. We can do this by telling the mocked model
to act like a new record:

rails_views/messages/07/spec/views/messages/new.html.erb_spec.rb
it "renders a form to create a message" do

assign(:message, mock_model("Message").as_new_record)
render
rendered.should have_selector("form",

:method => "post",
:action => messages_path

) do |form|
form.should have_selector("input", :type => "submit")

end
end

Now the spec fails with this:

undefined method `messages_path'

This is the failure message we’re looking for, and we can resolve it by adding
the appropriate declaration to config/routes.rb:

rails_views/messages/08/config/routes.rb
Messages::Application.routes.draw do
resources :messages

end

After adding the route declaration, run the spec, and you should see one
example and zero failures. Now that we have the form working, let’s add some
input fields. We’ll start with a text field for the message title:

rails_views/messages/09/spec/views/messages/new.html.erb_spec.rb
it "renders a text field for the message title" do
assign(

:message,
mock_model("Message", :title => "the title").as_new_record

)
render

Chapter 23. Rails Views • 320

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_views/messages/07/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/08/config/routes.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/09/spec/views/messages/new.html.erb_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rendered.should have_selector("form") do |form|
form.should have_selector("input",

:type => "text",
:name => "message[title]",
:value => "the title"

)
end

end

Run that, watch it fail, and then implement the view to resolve that failure:

rails_views/messages/10/app/views/messages/new.html.erb
<%= form_for @message do |f| %>
<%= f.text_field :title %>➤

<%= f.submit "Save" %>
<% end %>

Run the spec again, and this example passes, but now the first example is
failing with the following:

Model Message does not respond to title

By default, an RSpec mock object will return false when asked if it responds
to a method that it hasn’t been told to expect. In this case, the text_field() helper
in the view asks @message if it responds to title(). When the @message returns
false, Rails raises the error shown earlier.

The first example doesn’t care about the message title, so we don’t want to
have to tell the mock to expect title(). What we can do is tell the mocked mes-
sage to ignore any messages it’s not expecting by acting as a null object. This
will let us write focused examples without introducing unnecessary verbosity
in other examples. Go ahead and add as_null_object():

rails_views/messages/11/spec/views/messages/new.html.erb_spec.rb
it "renders a form to create a message" do

assign(
:message,
mock_model("Message").as_new_record.as_null_object

)
render
rendered.should have_selector("form",

:method => "post",
:action => messages_path

) do |form|
form.should have_selector("input", :type => "submit")

end
end

Run the spec, and you should see that it passes. We had red, and now we
have green. Time to refactor. At this point, the view implementation is pretty

report erratum • discuss

Mocking Models • 321

http://media.pragprog.com/titles/achbd/code/rails_views/messages/10/app/views/messages/new.html.erb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/11/spec/views/messages/new.html.erb_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

clean, but we do have some duplication we can remove from the two examples.
Modify new.html.erb_spec.rb as follows:

rails_views/messages/12/spec/views/messages/new.html.erb_spec.rb
require 'spec_helper'

describe "messages/new.html.erb" do
let(:message) do➤

mock_model("Message").as_new_record.as_null_object➤

end➤

before do➤

assign(:message, message)➤

end➤

it "renders a form to create a message" do
render
rendered.should have_selector("form",

:method => "post",
:action => messages_path

) do |form|
form.should have_selector("input", :type => "submit")

end
end
it "renders a text field for the message title" do
message.stub(:title => "the title")➤

render
rendered.should have_selector("form") do |form|

form.should have_selector("input",
:type => "text",
:name => "message[title]",
:value => "the title"

)
end

end
end

Run the specs again, and they should still be passing.

Now let’s specify that the form has a text area for the text of the message. We
can stub text() on message just as we stubbed title in the previous example:

rails_views/messages/13/spec/views/messages/new.html.erb_spec.rb
it "renders a text area for the message text" do

message.stub(:text => "the message")
render
rendered.should have_selector("form") do |form|

form.should have_selector("textarea",
:name => "message[text]",
:content => "the message"

)
end

end

Chapter 23. Rails Views • 322

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_views/messages/12/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/13/spec/views/messages/new.html.erb_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This should fail with this:

expected following output to contain a
<textarea name='message[text]'>the message</textarea> tag;

Add <%= f.text_area :text %> to the view, and the example should pass. Note that
adding a new field to the form doesn’t cause other examples to fail this time.
This is because we used as_null_object() in the before() block. This will hold true
for any additional fields we describe in specs later, so this one-time refactoring
will have benefits throughout the development of this view.

Mock models that act as_null_object keep view specs lean and simple, allowing
each example to be explicit about only the things it cares about. They also
save us from unwanted side effects being introduced in other examples. Now
let’s take a closer look at mock_model.

mock_model

The mock_model() method sets up an RSpec mock with common ActiveRecord
methods stubbed out. In its most basic form, mock_model can be called with a
single argument, which is the class you want to represent as an ActiveRecord
model. The class must exist, but it doesn’t have to be a subclass of ActiveRe-
cord::Base. Here are the default stubs on a mocked model:

new_record? Returns false since mocked models represent existing records by
default

id Returns an autogenerated number to represent an existing record

to_param Returns a string version of the id

Just like standard mocks/stubs in RSpec, additional methods can be stubbed
by passing in an additional Hash argument of method name/value pairs. Here’s
an example:

user = mock_model(User,
:login => "zdennis",
:email => "zdennis@example.com"

)

When we don’t want the mock to represent an existing record, we can tell it
to be a new record by sending it the as_new_record() message:

new_user = mock_model(User).as_new_record

This will change the default values stubbed by mock_model to the following:

new_record? Will return true just like a new ActiveRecord object

id Will return nil just like a new ActiveRecord object

report erratum • discuss

Mocking Models • 323

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

to_param Will return nil just like a new ActiveRecord object

Mock models are particularly useful when the model we need doesn’t exist
yet. The trade-off is that we have to use as_null_object() to keep them quiet. Once
the model exists, however, rspec-rails offers us an alternative: stub_model().

stub_model

The stub_model() method is similar to mock_model() except that it creates an
actual instance of the model. This requires that the model has a corresponding
table in the database.

You create a stub_model just like a mock_model: the first argument is the model
to instantiate, and the second argument is a Hash of method/value pairs to
stub.

user = stub_model(User)

user = stub_model(User,
:login => "zdennis",
:email => "zdennis@example.com"

)

Similar to mock_model, a stubbed model represents an existing record by default,
and we can tell it to act like a new record with as_new_record(). In fact, stub_model
is a lot like mock_model, with just a couple of exceptions.

Because stub_model creates an ActiveRecord model instance, we don’t need to tell
it to act as_null_object() to keep it quiet when asked for its attributes. ActiveRecord
will just return nil in those cases, as long as the attribute is defined in the
schema.

The other difference is that stub_model() prohibits the model instance from
accessing the database. If it receives any database-related messages, such
as save() or update_attributes(), it will raise an error.

RSpec::Rails::IllegalDataAccessException: stubbed models are not allowed to \
access the database

This can be a good indicator that the view is doing something it should not
be doing or that the method in question should really be stubbed out in the
example.

Neither mock_model() nor stub_model() is restricted to view specs. As you’ll see
later this chapter and in the following chapter on controller specs, they can
be very helpful throughout the spec suite.

Chapter 23. Rails Views • 324

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

23.3 Specifying Helpers

Rails helpers keep model transformations, markup generation, and other
sorts of view logic cleanly separated from erb templates. This makes templates
clean and maintainable and makes it easier to reuse little display nuggets
that have a habit of reappearing throughout our applications.

Consider the common problem of displaying parts of a view only to adminis-
trators. One nice solution is to use a block helper, like this:

<%- display_for(:admin) do -%>
Only admins should see this

<%- end -%>

The rspec-rails plug-in provides a specialized ExampleGroup for specifying helpers
in isolation. To see this in action, create a spec/helpers/application_helper_spec.rb file.
Assuming that views have access to a current_user() method, here’s an example
for the case in which the current_user is in the given role:

rails_views/roles/01/spec/helpers/application_helper_spec.rb
require 'spec_helper'

describe ApplicationHelper do
describe "#display_for(:role)" do

context "when the current user has the role" do
it "displays the content" do
user = stub('User', :in_role? => true)
helper.stub(:current_user).and_return(user)
content = helper.display_for(:existing_role) {"content"}
content.should == "content"

end
end

end
end

The helper() method returns an object that includes the helper module passed
to describe(). In this case, that’s the ApplicationHelper. If you run that spec now,
you should see it fail with this:

undefined method `display_for' for #<ActionView::Base:0x103367190>

Here’s the implementation that gets this to pass:

rails_views/roles/02/app/helpers/application_helper.rb
module ApplicationHelper

def display_for(role)
yield

end
end

report erratum • discuss

Specifying Helpers • 325

http://media.pragprog.com/titles/achbd/code/rails_views/roles/01/spec/helpers/application_helper_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/roles/02/app/helpers/application_helper.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Now add another example for the negative case:

rails_views/roles/03/spec/helpers/application_helper_spec.rb
context "when the current user does not have the role" do

it "does not display the content" do
user = stub('User', :in_role? => false)
helper.stub(:current_user).and_return(user)
content = helper.display_for(:existing_role) {"content"}
content.should == nil

end
end

That example fails with this:

expected: nil,
got: "content" (using ==)

And here’s the modified display_for() method that passes both examples:

rails_views/roles/04/app/helpers/application_helper.rb
module ApplicationHelper

def display_for(role)
yield if current_user.in_role?(role)

end
end

As you can see, helper specs make it easy to drive out presentation logic in
granular, reusable chunks.

So now that we know how to write view and helper specs, let’s explore the
question we posed at the beginning of the chapter.

23.4 When Should I Write View Specs?

While we’ve been working on this book, the BDD tool set has been evolving
at lightning speed. With the increasing capability of Cucumber + Webrat, the
overlap between Cucumber step definitions and view specs increases as well,
as the boundaries of what belongs where become more and more gray.

So, how can you know whether view specs make sense for you and your
project? Here are a few questions you can ask yourself to help make that
decision:

Am I using Cucumber and Webrat? If you’re not using Cucumber and Webrat,
then view specs are going to provide a lot of value you’re probably not
getting otherwise.

Will a Cucumber failure give me the right message? Sometimes the failure
message we get from Cucumber points us directly to a clean point of

Chapter 23. Rails Views • 326

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_views/roles/03/spec/helpers/application_helper_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/roles/04/app/helpers/application_helper.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

failure. A missing template error, for example, is very specific. When the
message doesn’t tell us exactly what we need to do next, however, that’s
a good case for a view spec.

Is there any functionality beyond basic CRUD actions/views?
View specs provide us with an opportunity to discover APIs that we need
from the controllers and models. This is not that valuable when the APIs
are following the most standard conventions. The value increases, however,
as we stray from them.

In general, our recommendation is to err on the side of too many view specs
rather than too few. The only way to really get a feel for the benefits of them
is to learn to write them well. And only once you really understand how they
fit in the flow are you going to be able to make well-grounded decisions about
if and when to use them.

23.5 What We’ve Learned

The user interface changes more often than just about anything else in an
application. View specs help us specify the details that should remain stable
through markup changes and help discover the requirements of other compo-
nents further down the stack. In this chapter, we discussed these facts as
well as the following:

• View specs use a custom example group provided by the rspec-rails library.

• View specs live in a directory tree parallel to the views themselves and
follow a naming convention of spec/path/to/view.html.erb_spec.rb for app/path/
to/view.html.erb.

• Use Webrat’s have_xpath() and have_selector() matchers for view specs.

• Use mock_model() and stub_model() to isolate view specs from the database
and underlying business logic of your models.

• Helpers have their own specs that live in the spec/helpers directory.

As we mentioned earlier, view specs help us identify the instance variables
that our controllers will need to supply. In the next chapter, we’ll take a look
at specifying controllers in isolation from views and take a look at models.

report erratum • discuss

What We’ve Learned • 327

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 24

Rails Controllers
The restaurant metaphor does a great job describing the role of controllers
in a Rails application. Just as a waiter doesn’t need to know how to prepare
a steak dinner, a controller doesn’t need to know the details of building a
model. Keeping these details out of the controller provides a natural separation
of concerns between the controller and the model, which makes the models
easier to change, extend, and reuse.

This chapter will show you how to develop controllers outside in using con-
troller specs as the driving force.

24.1 Controller Specs

A controller spec is a collection of examples of the expected behavior of actions
on a single controller. Whereas views are inherently state-based, controllers
are naturally interaction-based. They wait at the edges of a Rails app to
mediate interaction between models and views, given an incoming request.
We therefore set expectations about interactions, process the action, and look
at assigned instance variables and flash messages made available for the
view.

By default, controller specs don’t render views.1 Combine that fact with judi-
cious use of mocks and stubs for interaction with the model, and now we can
specify controller interactions in complete isolation from the other components.
This pushes us to build skinny controllers and helps us discover objects with
well-named methods to encapsulate the real work.

A simple guideline for a controller is that it should know what to do but not
how to do it. Controllers that know too much about how to do things become

1. See Isolation from View Templates, on page 344 for more about isolation from views.

Rails’ controllers are like waiters in a restau-
rant. A customer orders a steak dinner from a
waiter. The waiter takes the request and tells
the kitchen that he needs a steak dinner. When
the steak dinner is ready, the waiter delivers it
to the customer for her enjoyment.

 ➤ Craig Demyanovich

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

responsible for too many things and as a result become bloated, messy, and
hard to understand. This will become clear as we work through an example.

MessagesController

In the previous chapter, we built up the view that contained the form to create
a message. Now we’re going to develop a controller action responsible for
processing that form submission and creating the message.

If you haven’t been through Chapter 23, Rails Views, on page 315 yet, that’s
OK. Just bootstrap a new Rails app as described in Getting Started, on page
316. Once you’ve done that, generate a MessagesController and its spec:

script/rails generate controller Messages --no-helper
create app/controllers/messages_controller.rb
invoke erb
create app/views/messages
invoke rspec
create spec/controllers/messages_controller_spec.rb

With Rails 3, RSpec is able to register itself as the test framework, so specs
get generated instead of test/unit tests. By default, the controller generator
generates a helper and its spec as well, so we disabled that with the --no-helper
flag. Now update messages_controller_spec.rb so it reads like this:

rails_controllers/messages/01/spec/controllers/messages_controller_spec.rb
require 'spec_helper'

describe MessagesController do
describe "POST create" do
it "creates a new message"
it "saves the message"

end
end

Run rake spec:controllers, and you’ll see that we have two pending examples:

2 examples, 0 failures, 2 pending

You read about several approaches to generating pending examples in Section
12.2, Pending Examples, on page 138. These examples are pending because
they have no blocks. The first example specifies that the create() action builds
a new message, so let’s add a block that sets that expectation.

rails_controllers/messages/02/spec/controllers/messages_controller_spec.rb
it "creates a new message" do

Message.should_receive(:new).with("text" => "a quick brown fox")
post :create, :message => { "text" => "a quick brown fox" }

end

Chapter 24. Rails Controllers • 330

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/01/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/02/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

This fails with uninitialized constant Message. Remember that we didn’t have to
create the Message when we were writing view specs, so there has been no need
until now.

Time to Introduce the Model

Now that we need to interact with a model class in a spec, generate it and its
spec using the Rails generator:

script/rails generate model Message
invoke active_record
create db/migrate/20100723170657_create_messages.rb
create app/models/message.rb
invoke rspec
create spec/models/message_spec.rb

rake db:migrate

Run rake spec:controllers again, and you’ll see one of two failures. If you created
a new Messages app at the beginning of this chapter, you’ll see this:

No route matches {:message=>{"text"=>"a quick brown fox"},
:controller=>"messages", :action=>"create"}

In this case, we’re missing the route, so add it to config/routes.rb to resolve this
error:

rails_controllers/messages/04/config/routes.rb
Messages::Application.routes.draw do
resources :messages

end

If you’re using the same Messages app we created in Chapter 23, Rails Views,
on page 315, then you probably already added these routes. Whether you added
them in the previous chapter or just added them now, run rake spec:controllers
again, and now you’ll see that the example fails with No action responded to create,
so add the create action now, implementing just enough code to change the
error message we’re getting:

rails_controllers/messages/05/app/controllers/messages_controller.rb
def create
end

Now we get a new error: Missing template messages/create. We don’t, however, want
to add a template for this. The conventional approach is to redirect to a
resource’s index after a successful create. Let’s shift gears for a second and
get that in place.

report erratum • discuss

Controller Specs • 331

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/04/config/routes.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/05/app/controllers/messages_controller.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Joe asks:

Doesn’t Message.should_receive(:new) Specify
Implementation?

At some level, yes it does, but it’s not the same as specifying internal implementation
details that occur only within the object being spec’d. We’re specifying the interaction
with other objects in order to isolate this example from anything that might go wrong
or that does not yet exist in the other objects. That way, when a controller spec fails,
you know that it’s because the controller is not behaving correctly and can quickly
diagnose the problem.

One of the motivations for this approach in Rails controller specs is that we don’t
have to worry about changes to model validation rules causing failures in controller
specs. Rails fixtures can also help solve that problem if you use them judiciously.
Test data builders like Fixjour, Factory Girl, Object Daddy, and Machinist can also
help. But fixtures and test data builders all use a database, which slows down the
specs, even if they maintain rapid fault isolation.

Temporarily Pending

While we work on introducing the redirect, let’s make the example we’ve been
working on pending. Once we get the redirect working, we’ll remove the pending
declaration. Until then, we can work without having to worry about this
example failing.

Update spec/controllers/messages_controller_spec.rb as follows:

rails_controllers/messages/06/spec/controllers/messages_controller_spec.rb
require 'spec_helper'

describe MessagesController do
describe "POST create" do
it "creates a new message" do
pending("drive out redirect")➤

Message.should_receive(:new).with("text" => "a quick brown fox")
post :create, :message => { "text" => "a quick brown fox" }

end

it "saves the message"

it "redirects to the Messages index" do➤

post :create➤

response.should redirect_to(:action => "index")➤

end➤

end
end

Chapter 24. Rails Controllers • 332

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/06/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run rake spec:controllers, and you’ll see the same message about missing a tem-
plate for messages/create. To get it to pass, modify app/controllers/messages_controller.rb
as follows:

rails_controllers/messages/07/app/controllers/messages_controller.rb
def create
redirect_to :action => "index"

end

That’s enough to get that example to pass. Run rake spec:controllers, and you
should see 3 examples, 0 failures, 2 pending. Now let’s remove the pending declaration
from the first example:

rails_controllers/messages/08/spec/controllers/messages_controller_spec.rb
it "creates a new message" do

Message.should_receive(:new).with("text" => "a quick brown fox")
post :create, :message => { "text" => "a quick brown fox" }

end

Run rake spec:controllers, and you should see this:

Failure/Error: Message.should_receive(:new).with("text" => "a quick brown fox")
(<Message(id: integer, created_at: datetime, updated_at: datetime) (class)>).

new({"text"=>"a quick brown fox"})
expected: 1 time
received: 0 times

This is the logical failure we’ve been aiming for, and we are now in a position
to get this example to pass. Add the following to app/controllers/messages_controller.rb:

rails_controllers/messages/09/app/controllers/messages_controller.rb
def create
Message.new(params[:message])➤

redirect_to :action => "index"
end

Success! We now have two passing examples, leaving only one remaining
pending example. This one specifies that the controller saves the message.
Again, add a block to express the expectation:

rails_controllers/messages/10/spec/controllers/messages_controller_spec.rb
it "saves the message" do
message = mock_model(Message)
Message.stub(:new).and_return(message)
message.should_receive(:save)
post :create

end

The example should fail with the following message:

report erratum • discuss

Controller Specs • 333

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/07/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/08/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/09/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/10/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Failure/Error: message.should_receive(:save)
(Mock "Message_1001").save(any args)

expected: 1 time
received: 0 times

To get this to pass, all we need to do is call save() on the message:

rails_controllers/messages/11/app/controllers/messages_controller.rb
def create
message = Message.new(params[:message])➤

message.save➤

redirect_to :action => "index"
end

Run the spec again, and you’ll see the second example is now passing, but
we broke the first example in the process: 3 examples, 1 failure. There is no message
object in the first example, and there needs to be one for the code in the action
to run.

We can get the first example to pass without impacting the second example
by introducing a mock message:

rails_controllers/messages/12/spec/controllers/messages_controller_spec.rb
it "creates a new message" do

message = mock_model(Message)➤

Message.should_receive(:new).
with("text" => "a quick brown fox").
and_return(message)➤

post :create, :message => { "text" => "a quick brown fox" }
end

Here we create a mock message and then tell the Message class to return it in
response to new(). Run the examples, and…the example is still failing, but this
time for a different reason. The create action calls message.save, but the
mock_model is not expecting it. We can use as_null_object, which we discussed in
Mock Example, on page 318, to tell the mock message to ignore any unexpected
messages:

rails_controllers/messages/13/spec/controllers/messages_controller_spec.rb
it "creates a new message" do

message = mock_model(Message).as_null_object➤

Message.should_receive(:new).
with("text" => "a quick brown fox").
and_return(message)

post :create, :message => { "text" => "a quick brown fox" }
end

Run rake spec:controllers again, and you’ll see 3 examples, 0 failures. No failures, no
more pending.

Chapter 24. Rails Controllers • 334

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/11/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/12/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/13/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Tidy Up

We’ve made progress, but we’ve also introduced some duplication between
the two examples. We can clean that up by extracting the common bits to a
let() and a before(:each) hook:

rails_controllers/messages/14/spec/controllers/messages_controller_spec.rb
require 'spec_helper'

describe MessagesController do
describe "POST create" do
let(:message) { mock_model(Message).as_null_object }

before do
Message.stub(:new).and_return(message)

end

it "creates a new message" do
Message.should_receive(:new).

with("text" => "a quick brown fox").
and_return(message)

post :create, :message => { "text" => "a quick brown fox" }
end

it "saves the message" do
message.should_receive(:save)
post :create

end

it "redirects to the Messages index" do
post :create
response.should redirect_to(:action => "index")

end
end

end

The let(), which we introduced in let(:method) {}, on page 55, defines a message()
that returns and caches the value of the block the first time it is called in any
one example and then returns the cached value on subsequent calls. The
before() hook then instructs the Message class to return the message object.

Looks cleaner, yes? And it looks like we’re done, yes? No! We’ve only specified
how the create action should behave when it successfully saves a message. But
what about when the save fails?

report erratum • discuss

Controller Specs • 335

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

24.2 Context-Specific Examples

Controllers typically do different things depending on whether the work they
delegate succeeds or fails. We started with the happy path, in which a save
succeeds. But what happens when it fails? Before we address that, let’s wrap
the success path examples in a context:

When save() Succeeds

rails_controllers/messages/15/spec/controllers/messages_controller_spec.rb
require 'spec_helper'

describe MessagesController do
describe "POST create" do
let(:message) { mock_model(Message).as_null_object }

before do
Message.stub(:new).and_return(message)

end

it "creates a new message" do
Message.should_receive(:new).

with("text" => "a quick brown fox").
and_return(message)

post :create, :message => { "text" => "a quick brown fox" }
end

it "saves the message" do
message.should_receive(:save)
post :create

end

context "when the message saves successfully" do➤

it "sets a flash[:notice] message"➤
➤

it "redirects to the Messages index" do➤

post :create➤

response.should redirect_to(:action => "index")➤

end➤

end➤

end
end

The only example that we already have that is specific to the happy path is
the one that specifies the redirect to index, so that’s the only one we move to
the next context. We’ll also want a flash notice, so that’s added as a pending
example. Now let’s fill that one in.

Chapter 24. Rails Controllers • 336

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rails_controllers/messages/16/spec/controllers/messages_controller_spec.rb
it "sets a flash[:notice] message" do

post :create
flash[:notice].should eq("The message was saved successfully.")

end

Run that, and watch it fail:

Failure/Error: flash[:notice].should eq("The message was saved successfully.")
expected "The message was saved successfully."

got nil

It fails because the flash[:notice] is nil, so update the create action to add a flash
message when the save succeeds:

rails_controllers/messages/17/app/controllers/messages_controller.rb
def create
message = Message.new(params[:message])
if message.save➤

flash[:notice] = "The message was saved successfully."➤

end➤

redirect_to :action => "index"
end

Run that, and you’ll see that it passes. Now we have two passing examples
that specify the happy path, so let’s move on to examples of what should
happen when the save fails.

When save() Fails

Instead of redirecting to the index, we’ll want to rerender the new template,
which will need an @message instance variable assigned. Add a new context
with pending examples for these requirements:

rails_controllers/messages/18/spec/controllers/messages_controller_spec.rb
context "when the message fails to save" do
it "assigns @message"
it "renders the new template"

end

Now fill in the first example:

rails_controllers/messages/19/spec/controllers/messages_controller_spec.rb
it "assigns @message" do

message.stub(:save).and_return(false)
post :create
assigns[:message].should eq(message)

end

report erratum • discuss

Context-Specific Examples • 337

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/16/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/17/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/18/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/19/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

The assigns() method returns a hash representing instance variables that were
assigned to the view by the controller. Run rake spec:controllers, and the new
example fails with this:

expected #<Message:0x81b0b900 @name="Message_1005">
got nil

Now convert the local message variables to instance variables to make it pass:

rails_controllers/messages/20/app/controllers/messages_controller.rb
def create
@message = Message.new(params[:message])➤

➤

if @message.save➤

flash[:notice] = "The message was saved successfully."
end

redirect_to :action => "index"
end

Run rake spec:controllers, and you’ll see no failures and one pending example
remaining. Fill that one in as follows:

rails_controllers/messages/21/spec/controllers/messages_controller_spec.rb
it "renders the new template" do
message.stub(:save).and_return(false)
post :create
response.should render_template("new")

end

Run rake spec:controllers again, and you’ll see this fail with the following:

Failure/Error: response.should render_template("new")
expecting <"new"> but rendering with <"">

Update the controller action as follows to get that to pass:

rails_controllers/messages/22/app/controllers/messages_controller.rb
def create
@message = Message.new(params[:message])

if @message.save
flash[:notice] = "The message was saved successfully."
redirect_to :action => "index"➤

➤

else➤

render :action => "new"➤

end➤

end

Chapter 24. Rails Controllers • 338

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/20/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/21/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/22/app/controllers/messages_controller.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run rake spec:controllers one more time, and you should see that all the examples
are passing:2

MessagesController
POST create

creates a new message
saves the message
when the message saves successfully

sets a flash[:notice] message
redirects to the Messages index

when the message fails to save
assigns @message
renders the new template

Finished in 0.03591 seconds
6 examples, 0 failures

Learn from the Output

Reviewing this output, it’s easy to spot that we have a bit of redundancy in
the examples. We have an example that specifies that the controller action
tries to save the message, but we also have two contexts that describe what
happens when we try to save the message.

There’s really no need for the “saves the message” example anymore, so go
ahead and delete it.

Tidy Up

Now let’s look for any opportunities to clean up the spec:

rails_controllers/messages/23/spec/controllers/messages_controller_spec.rb
require 'spec_helper'

describe MessagesController do
describe "POST create" do
let(:message) { mock_model(Message).as_null_object }

before do
Message.stub(:new).and_return(message)

end

it "creates a new message" do
Message.should_receive(:new).

with("text" => "a quick brown fox").

2. If you started with a fresh Rails app in this chapter, instead of continuing with the
app from the previous chapter, you’ll probably get a missing template error on
messages/new at this point. If that happens, just create an empty app/views/messages/
new.html.erb file, and everything should pass.

report erratum • discuss

Context-Specific Examples • 339

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/23/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

and_return(message)
post :create, :message => { "text" => "a quick brown fox" }

end

context "when the message saves successfully" do
it "sets a flash[:notice] message" do

post :create
flash[:notice].should eq("The message was saved successfully.")

end

it "redirects to the Messages index" do
post :create
response.should redirect_to(:action => "index")

end
end

context "when the message fails to save" do
it "assigns @message" do

message.stub(:save).and_return(false)➤

post :create
assigns[:message].should eq(message)

end

it "renders the new template" do
message.stub(:save).and_return(false)➤

post :create
response.should render_template("new")

end
end

end
end

The most obvious bit is the duplication in the past two examples, so let’s
extract that to a before hook inside the failure context:

rails_controllers/messages/24/spec/controllers/messages_controller_spec.rb
context "when the message fails to save" do
before do➤

message.stub(:save).and_return(false)➤

end➤

it "assigns @message" do
post :create
assigns[:message].should eq(message)

end

it "renders the new template" do
post :create
response.should render_template("new")

end

Chapter 24. Rails Controllers • 340

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/24/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Once that’s in place, there is an imbalance between the success and failure
contexts. The success context has no code in it that explicitly shows the
successful save. It doesn’t need it to run, because as_null_object() causes the
message to return a truthy value in response to save().3 Even so, we can make
the spec clearer by adding a before hook to the success context, and then if
we remove as_null_object() later, those examples should still pass. Go ahead and
update as follows:

rails_controllers/messages/24/spec/controllers/messages_controller_spec.rb
context "when the message saves successfully" do
before do➤

message.stub(:save).and_return(true)➤

end➤

it "sets a flash[:notice] message" do
post :create
flash[:notice].should eq("The message was saved successfully.")

end

it "redirects to the Messages index" do
post :create
response.should redirect_to(:action => "index")

end
end

Now everything is balanced and clear. The “creates a message” example is
outside of either the contexts because that should happen in any case. The
before hooks in the two contexts are balanced and make perfectly clear what
the contexts mean in code.

What We Just Did

The create() action we just implemented is typical in Rails apps. The controller
passes the params it receives to the model, delegating the real work. By
specifying the interactions with the model instead of the result of the model’s
work, we are able to keep the spec and the implementation simple and
readable.

This is what it means to have a controller know what to do without knowing
the details of how to do it. Any complexity related to building a message will
be specified and implemented in the Message model.

The spec we used to drive this action into existence can be used to illustrate
some basic conventions we like to follow for controller specs:

3. Rubyists use the term truthy to indicate any value other than false or nil.

report erratum • discuss

Context-Specific Examples • 341

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/24/spec/controllers/messages_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Directory organization The directory structure for controller specs parallels
the directory structure found in app/controllers/.

File naming Each controller spec is named after the controller it provides
examples for, with _spec.rb appended to the filename. For example, sessions_
controller_spec.rb contains the specs for sessions_controller.rb.

Always require spec_helper.rb Each controller spec should require the
spec_helper.rb file, which sets up the environment with all the right example
group classes and utility methods.

Example group names The docstring passed to the outermost describe() block
in a controller spec typically includes the type of request and the action
the examples are for.

While driving out the create() action, we focused on one example at a time.
Once each example passed, we looked for and extracted any duplication to a
before block, allowing each example to stay focused, clear, and DRY. And when
we found examples that pertained to a given context, we used context blocks
with clear descriptions to organize them.

This spec also introduced a number of methods that provide a good foundation
for writing controller specs. Many of these methods come directly from Action-
Controller::TestCase, which Rails uses for functional tests. Let’s look closer at
each of the methods we used.

assigns[]

We use assigns to access a hash, which we use to specify the instance variables
that we expect to be assigned in the view.

Note that the assigns hash in controller specs is different from the one in view
specs. In view specs, we use assigns to set instance variables for a view before
rendering the view. In controller specs, we use assigns to set expectations about
instance variables assigned for the view after calling the controller action.

flash[]

We use flash to access a hash, which we use to specify messages we expect to
be stored in the flash. It uses the same API to access flash in the spec as you
would use in the controller, which makes it convenient and easy to remember
when working with flash.

post

We use the post() method to simulate a POST request. It can take three argu-
ments. The first argument is the name of the action to call. The second

Chapter 24. Rails Controllers • 342

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

argument (optional) is a hash of key/value pairs to make up the params. The
third argument (also optional) is a hash of key/value pairs that make up the
session hash for the controller.

no params or session data
post :create

with params
post :create, :id => 2

with params and session data
post :create, { :id => 2 }, { :user_id => 99 }

The post() method comes directly from ActionController::TestCase, which offers
similar methods for get, put, delete, head, and even xml_http_request requests. All
but the xml_http_request and its alias, xhr, have the same signature as the post()
method.

The xml_http_request() and xhr() methods introduce one additional argument to
the front: the type of request to make. Then the other arguments are just
shifted over. Here’s an example:

no params or session data
xhr :get, :index

with params
xhr :get, :show, :id => 2

with params and session data
xhr :get, :show, { :id => 2 }, { :user_id => 99 }

render_template

We use the render_template() method to specify the template we expect a controller
action to render. It takes a single argument—the path to the template that
we are rendering.

The path argument can take on either of two forms. The first is the path to
the template minus the app/views/ portion:

response.should render_template("messages/new")

The second is a shorthand form of the first. If the template being rendered is
part of the controller being spec’d, you can pass in just the template name:

this will expand to "messages/new" in a MessagesController spec
response.should render_template("new")

report erratum • discuss

Context-Specific Examples • 343

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Isolation from View Templates

By default, controller specs do not render view templates. When we stub out the
model layer as well, we can drive out controllers in complete isolation from the code
in our views and models. This keeps the controller specs lean and reduces the noise
involved with managing a web of dependencies in the view or the model. It also provides
quick fault isolation. You’ll always know that a failing controller spec means that the
controller is not behaving correctly.

The one slight rub is that the view templates do need to exist even though we don’t
render them. This was not the case with RSpec-1/Rails-2, but the way in which
ActionView locates templates changed sufficiently in Rails 3 that it didn’t make sense
to try to support isolation from even the existence of templates.

If you’re more comfortable with the views being rendered, you can tell the spec to do
so with the render_views() method:a

describe MessagesController do
render_views
...

In this mode, controller specs are like Rails functional tests—one set of examples for
both controllers and views. The benefit of this approach is that you get wider coverage
from each spec. Experienced Rails developers may find this an easier approach to
begin with; however, we encourage you to explore using the isolation mode and revel
in its benefits.

a. integrate_views() in rspec-rails-1

redirect_to

We use the redirect_to() method to specify that the action should redirect to a
predefined location.

It has the same API as its Rails’ counterpart, assert_redirected_to().

relying on route helpers
response.should redirect_to(messages_path)

relying on ActiveRecord conventions
response.should redirect_to(@message)

being specific
response.should redirect_to(:controller => "messages", :action => "new")

24.3 Specifying ApplicationController

We typically specify controller behavior directly through controller actions,
but sometimes we want behavior applied to every controller and invoked

Chapter 24. Rails Controllers • 344

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

indirectly. Perhaps we want to log every incoming request or add application-
wide error handling. We don’t want to specify this over and over again on
every action, so let’s explore a technique that allows us to specify these sorts
of behaviors just once.

AccessDenied!

Let’s add uniform error handling for AccessDenied exceptions. We’ll start by
creating spec/controllers/application_controller_spec.rb with the following content:

rails_controllers/messages/25/spec/controllers/application_controller_spec.rb
require 'spec_helper'

describe ApplicationController do
describe "handling AccessDenied exceptions" do
it "redirects to the /401.html (access denied) page" do
get :index
response.should redirect_to('/401.html')

end
end

end

This should fail with the following:

Failure/Error: get :index
No route matches {:controller=>"application"}

In most controller specs, we write examples for controllers used directly in
the app. Here we specify behavior of every controller’s superclass, Application-
Controller, which isn’t exposed to the app.

controller DSL

To help us out with this situation, RSpec provides a simple DSL for creating
an anonymous subclass of ApplicationController right in a spec. We need an index
action, so we’ll add that to the controller, programming it to raise the Access-
Denied error that we’re expecting in the example.

rails_controllers/messages/26/spec/controllers/application_controller_spec.rb
require 'spec_helper'

describe ApplicationController do
controller do➤

def index➤

raise AccessDenied➤

end➤

end➤

describe "handling AccessDenied exceptions" do
it "redirects to the /401.html (access denied) page" do

report erratum • discuss

Specifying ApplicationController • 345

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/25/spec/controllers/application_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/26/spec/controllers/application_controller_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

get :index
response.should redirect_to('/401.html')

end
end

end

The controller() method also defines implicit routes for the controller so you
don’t have to set those up either. Now run the specs, and you should see this:

uninitialized constant AccessDenied

We can get past this by defining an AccessDenied exception. Create a file named
lib/access_denied.rb with this content:

rails_controllers/messages/27/lib/access_denied.rb
class AccessDenied < StandardError
end

Now add this line to config/application.rb:

rails_controllers/messages/27/config/application.rb
config.autoload_paths += %W(#{config.root}/lib)

This tells Rails to autoload classes defined in files in the lib directory.

Now the spec fails with AccessDenied, which is the logical failure we want. All
that’s left to do is to rescue from the AccessDenied error and redirect to
“/401.html” in ApplicationController:

rails_controllers/messages/28/app/controllers/application_controller.rb
class ApplicationController < ActionController::Base

rescue_from AccessDenied, :with => :access_denied

protected

def access_denied
redirect_to "/401.html"

end

end

Success! We now have 1 example, 0 failures.

24.4 What We’ve Learned

In this chapter, we learned the following:

• Controllers coordinate the interaction between the user and the application
and should know what to do but not how to do it.

Chapter 24. Rails Controllers • 346

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/27/lib/access_denied.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/27/config/application.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/28/app/controllers/application_controller.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

• Specifying the desired interaction helps us to discover objects with well-
named methods to encapsulate the real work.

• Controller specs use a custom example group provided by the rspec-rails
library.

• Controller specs live in a directory tree parallel to the controllers them-
selves and follow a naming convention of spec/controllers/my_controller_spec.rb
for app/controllers/my_controller.rb.

• Use the redirect_to() matcher to confirm redirects.

• Use the render_template() matcher to confirm the template being rendered.

• Use the assigns() method to confirm the instance variables assigned for the
view.

• Use the flash() method to confirm the flash messages stored for the view.

• Use mock_model() and stub_model() to isolate controller specs from the database
and underlying business logic of your models.

Until this point we’ve been specifying the behavior of the Rails parts of our
applications and using that process to discover the needs of our model. Well,
here’s where the rubber hits the road. In the next and final chapter of our
exploration of RSpec and Rails, we’ll take a close look at specifying the
behavior of Rails’ models.

report erratum • discuss

What We’ve Learned • 347

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

CHAPTER 25

Rails Models
Rails models reflect the problem domain for which we’re providing a software
solution, and they vary significantly from app to app and from model to
model. Some models will be rich objects with complex behavior, while others
may be simple data containers.

When we work outside in, we discover model interfaces in Cucumber step
definitions, view specs and views, and controller specs and controllers. These
are the places we write the code we wish we had, and letting them guide us
results in model interfaces that best suit the needs of the application.

Once we’ve learned what models we need, we can drive them out just as we
would any type of object. In this chapter, we’re going to do just that, building
on the messaging application we’ve been working on in Chapter 24, Rails
Controllers, on page 329 and Chapter 23, Rails Views, on page 315, using RSpec
model specs to drive out the behavior of our models.

25.1 Writing Model Specs

Rails models are a lot closer to POROs1 than Rails controllers and views. We
can create them using new(), and we can call methods on them directly. This
makes specs for Rails models a lot more straightforward. As you’ll see, we
approach them just like we did in the Codebreaker example in Part I of this
book.

There are some differences between Rails models and POROs, however, so
RSpec offers a specialized ExampleGroup for specifying models. Similar to the
ExampleGroups for controllers and views, the ModelExampleGroup wraps the behavior
defined in ActiveRecord::TestCase. This gives us access to facilities like fixtures

1. Plain old Ruby objects

If Rails controllers are like waiters in a restau-
rant, Rails models are the kitchen staff. They
know how to cook a steak to order.

 ➤ Zach Dennis

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

and, by default, wraps each example in a transaction so that our database
is always in a known state at the beginning of each example.

We won’t be able to answer every question about specifying Rails models in
a single chapter, because there is certainly enough material here for an entire
book. Our goal is to demonstrate some basic principles and guidelines that
you can use as you work on your own applications. And with that, let’s write
some code.

Making It Real

In Chapter 23, Rails Views, on page 315, we used mock_model() to provide views
with the code we wish we had. Now it’s time to take what we learned about
the requirements of the model and make it real. We know from the view specs
that we need text and title attributes for instances of Message. Let’s imagine they
also lead us to want a recipient_id to represent the user who receives the message
and that all of these fields are required for a Message to be considered valid.

We left off with a Message class that does not have any attributes, so we need
a new migration. Rather than building up a migration by hand, let’s roll back
the database:

$ rake db:rollback

Now delete the create_messages migration (db/migrate/XXXXXXXXXXXXXX_create_mes-
sages.rb) and regenerate the model, like this:

$ script/rails generate model message title:string text:text recipient_id:integer
invoke active_record
create db/migrate/20100725145316_create_messages.rb

identical app/models/message.rb
invoke rspec

identical spec/models/message_spec.rb
$ rake db:migrate
$ rake db:test:prepare

Specifying Validations

Since we know what fields are required, we’ll create pending examples for
each of them to start.

Go ahead and replace the generated code in message_spec.rb with the following:

rails_models/messages/01/spec/models/message_spec.rb
require 'spec_helper'

describe Message do
it "is valid with valid attributes"

Chapter 25. Rails Models • 350

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_models/messages/01/spec/models/message_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

it "is not valid without a title"

it "is not valid without text"

it "is not valid without a recipient"
end

The first example will make clear what it takes to produce a valid message
and provide context for the other examples. Run that spec with rake spec:models
or rspec spec/models, and you should see 4 examples, 0 failures, 4 pending. All four
examples are pending, so let’s implement the first example as follows:

rails_models/messages/01/spec/models/message_example1_spec.rb
it "is valid with valid attributes" do
Message.new.should be_valid

end

Run the spec again, and you should see 4 examples, 0 failures, 3 pending this time.
The first example is passing without making any changes, because the model,
by default, does not validate the presence of any attributes. Now implement
the second example as follows:

rails_models/messages/01/spec/models/message_example2_spec.rb
it "is not valid without a title" do
message = Message.new :title => nil
message.should_not be_valid

end

Now we have 4 examples, 1 failure, 2 pending, with the example we just implemented
failing. Modify the model as follows to get it to pass:

rails_models/messages/02/app/models/message.rb
class Message < ActiveRecord::Base
validates_presence_of :title

end

The new example passes with that change, but we still have 4 examples, 1 failure,
2 pending. The is valid with valid attributes example is failing because we changed
what it means for a Message to be valid. We’ll need to update the example so
that it constructs the Message with a title:

rails_models/messages/02/spec/models/message_example1_spec.rb
it "is valid with valid attributes" do
Message.new(:title => "foo").should be_valid

end

Now we have 4 examples, 0 failures, 2 pending. The first two examples are both
passing, so we’ve made some progress. Of course, we still have two pending
examples, so implement the next example as follows:

report erratum • discuss

Writing Model Specs • 351

http://media.pragprog.com/titles/achbd/code/rails_models/messages/01/spec/models/message_example1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/01/spec/models/message_example2_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/02/app/models/message.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/02/spec/models/message_example1_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rails_models/messages/02/spec/models/message_example2_spec.rb
it "is not valid without text" do
message = Message.new :text => nil
message.should_not be_valid

end

Run the spec, and we get 4 examples, 0 failures, 1 pending. Only one example
pending means that we now have three examples passing. But wait a minute.
Weren’t we expecting this new example to fail? We were, but we’re getting a
false positive. The example passes because the model is invalid, but the
model is invalid because it’s missing the title attribute, not the text attribute
that is the subject of the example. To expose this, update the example to
supply a title:

rails_models/messages/02/spec/models/message_example3_spec.rb
it "is not valid without text" do
message = Message.new :text => nil, :title => "foo"➤

message.should_not be_valid
end

With that change, the third example now fails as expected, so make it pass
by validating the presence of text in the model. Of course, once you do that,
the is valid with valid attributes example will fail again because we only set it up
with a title and it’s validating the presence of text now as well. Update that
example to provide both the title and text as follows:

rails_models/messages/02/spec/models/message_example4_spec.rb
it "is valid with valid attributes" do
Message.new(:title => "foo", :text => "bar").should be_valid

end

Now we have 4 examples, 0 failures, 1 pending.

Looking back at the is not valid without text example, it seems odd that we have
to specify a title attribute in an example for the text attribute. If we don’t add
a text attribute to the example for the title, we can never be certain that it’s
passing for the right reason. The examples are leaking! Let’s refactor a bit
before we move on to the last pending example.

Refactoring Leaky Examples

Each example is setting up the model in the appropriate state by supplying
the proper attributes. This worked fine when we had only one attribute to
worry about, but as soon as we added the second attribute, we ran into issues.
If we keep heading down this path, we’ll end up with verbose examples that
are brittle and time-consuming to maintain.

Chapter 25. Rails Models • 352

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_models/messages/02/spec/models/message_example2_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/02/spec/models/message_example3_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/02/spec/models/message_example4_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Let’s take the approach of setting up a valid message once, in a before(:each)
block. This allows each example to configure the message with the appropriate
state without having to worry about additional criteria used to set up a valid
message.

The first example, is valid with valid attributes, is already building a valid message,
so we can borrow its implementation. Create a before(:each) block, which assigns
a valid Message to an @message instance variable:

rails_models/messages/03/spec/models/message_example1_spec.rb
describe Message do

before(:each) do➤

@message = Message.new(:title => "foo", :text => "bar")➤

end➤

it "is valid with valid attributes" do
Message.new(:title => "foo", :text => "bar").should be_valid

end

Run the spec, and you should see 4 examples, 0 failures, 1 pending. Now update the
first example to rely on the @message instance variable instead of constructing
its own message:

rails_models/messages/03/spec/models/message_example2_spec.rb
describe Message do

before(:each) do
@message = Message.new(:title => "foo", :text => "bar")

end

it "is valid with valid attributes" do
@message.should be_valid➤

end

The spec should still be passing, with one pending example. Update the second
example also to rely on the @message instance variable:

rails_models/messages/03/spec/models/message_example3_spec.rb
it "is not valid without a title" do
@message.title = nil➤

@message.should_not be_valid➤

end

The spec should still have 4 examples, 0 failures, 1 pending. As we’ve refactored,
we’ve made several changes that have not changed the result. Let’s do a
sanity check to make sure that everything is still wired up correctly. Comment
out @message.title = nil in the second example, rerun the spec, and watch it fail
with expected valid? to return false, got true.

report erratum • discuss

Writing Model Specs • 353

http://media.pragprog.com/titles/achbd/code/rails_models/messages/03/spec/models/message_example1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/03/spec/models/message_example2_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/03/spec/models/message_example3_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

With the second example failing for the right reason, uncomment that line,
update the third example to rely on the @message instance variable, and then
run the spec. With a green bar and three clean examples, we can implement
the pending example, is not valid without a recipient:

rails_models/messages/03/spec/models/message_example4_spec.rb
it "is not valid without a recipient" do
@message.recipient = nil➤

@message.should_not be_valid➤

end

The example fails with undefined method 'recipient='. Although we have a recipient_id
attribute on the Message model, we want recipient to be an association pointing
to the user who’s receiving the message. Let’s define the association in the
Message model:

rails_models/messages/04/app/models/message.rb
class Message < ActiveRecord::Base
belongs_to :recipient, :class_name => "User"➤

validates_presence_of :title, :text
end

Run the spec again, and now it’s failing with the expected message: expected
valid? to return false, got true. Update the Message model to require a recipient:

rails_models/messages/05/app/models/message.rb
class Message < ActiveRecord::Base
belongs_to :recipient, :class_name => "User"

validates_presence_of :title, :text, :recipient➤

end

The example we just wrote is passing now, but the first example is valid with
valid attributes is failing again because it doesn’t account for the recipient. We
can fix this by giving the @message instance variable a recipient:

rails_models/messages/05/spec/models/message_example1_spec.rb
before(:each) do

@message = Message.new(➤

:title => "foo",➤

:text => "bar",➤

:recipient => mock_model("User")➤

)➤

end

We use mock_model() so we don’t have to worry about generating the User yet.
Now all examples are passing: 4 examples, 0 failures. Here’s the full message_spec.rb:

Chapter 25. Rails Models • 354

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_models/messages/03/spec/models/message_example4_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/04/app/models/message.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/05/app/models/message.rb
http://media.pragprog.com/titles/achbd/code/rails_models/messages/05/spec/models/message_example1_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rails_models/messages/05/spec/models/message_example2_spec.rb
require 'spec_helper'

describe Message do
before(:each) do
@message = Message.new(

:title => "foo",
:text => "bar",
:recipient => mock_model("User")

)
end

it "is valid with valid attributes" do
@message.should be_valid

end

it "is not valid without a title" do
@message.title = nil
@message.should_not be_valid

end

it "is not valid without text" do
@message.text = nil
@message.should_not be_valid

end

it "is not valid without a recipient" do
@message.recipient = nil
@message.should_not be_valid

end

end

Joe asks:

Should I Spec Associations?
Generally speaking, no. Well, not directly, anyhow. Associations should not be added
unless they are serving the needs of some behavior. Consider an Order that calculates
its total value from the sum of the cost of its Items. We might introduce a has_many :items
association to satisfy the relevant examples. Since the association is being added to
support the calculation that is being specified, there is no need to spec it directly.

The same applies to association options. The :foreign_key or the :class_name options are
structural, not behavioral. They’re just part of wiring up the association, and an
association that requires them won’t work correctly without them, so there is no need
to spec them directly either.

report erratum • discuss

Writing Model Specs • 355

http://media.pragprog.com/titles/achbd/code/rails_models/messages/05/spec/models/message_example2_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

What We Just Did

We started with a migration for the messages table that included attributes we
learned about while specifying other parts of the application. Then we drove
the validation requirements of the Message model one example at a time. When
the examples started to leak, we stopped adding functionality and refactored
them so we could easily add the next example. This not only kept the examples
DRY, but more importantly it kept them clear and focused.

In addition to the examples we wrote, we can use the spec to illustrate some
basic conventions about model specs:

Directory organization The directory structure for model specs mimics the
directory structure found in app/models/. For example, specs in spec/models/
will be for models in app/models/.

File naming Model specs are named after the model they provide examples
for, with an _spec.rb appended to the filename. Thus, message.rb would have
a corresponding spec named message_spec.rb.

require ’spec_helper’ Every model spec will need to require the spec_helper.rb
file. Otherwise, you will get errors about core rspec or rspec-rails methods
not existing.

Now that we have the basic behavior of the Message model specified, let’s
introduce some business rules into the application.

25.2 Specifying Business Rules

In his article “Skinny Controller, Fat Model,”2 Jamis Buck recommends
pushing business logic down to the model, keeping views and controller
actions lean. This guideline helps us to follow the Single Responsibility Prin-
ciple by keeping controllers and views focused on application logic and
keeping the models focused on business logic.

Express Business Rules in Models

Our message app works well for sending unlimited messages, but our customer
wants users to sign up for subscriptions that limit the number of messages
they can send in a month. We’ll imagine that we’ve already expressed these
new requirements in Cucumber scenarios, and we’re ready to start driving
out code that will satisfy them.

2. http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model

Chapter 25. Rails Models • 356

report erratum • discuss

http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

If you’ve been following along since Chapter 24, Rails Controllers, on page 329,
the app has a MessagesController with a create() action that looks like this:

def create
@message = Message.new(params[:message])
if @message.save

flash[:notice] = "The message was saved successfully."
redirect_to :action => "index"

else
render :action => "new"

end
end

In this design, the MessagesController is responsible for building and then saving
a message. Because we are about to add some complexity to this functionality,
now would be a good time to push that responsibility down to the model. We
can do that by modifying the create() action so that it tells the current_user to
send a message, rather than creating it directly in the action.

We’re not going to make that change now, because we’d need to divert our
focus to the controller and its specs, but here’s an example of how it might
look if we did make the change now:

For discussion purposes only
def create

@message = current_user.send_message(params[:message])➤

if @message.new_record?➤

flash[:notice] = "The message was saved successfully."
redirect_to :action => "index"

else
render :action => "new"

end
end

The line that sends the message not only helps push the logic to the model
but is also a much better expression of what’s really going on in the action.
We’re not just creating a message; we’re sending one from the current user.
This clarity is a small win, but as the code base grows, these little wins make
an application much easier to understand and evolve.

Before we press forward, create a User model using the Rails’ model generator:

script/rails generate model User login:string
rake db:migrate
rake db:test:prepare

User models usually need more than just a login attribute, like passwords,
but we’re not concerned with those aspects of a user right now. Now we’re
ready to drive out these new business rules.

report erratum • discuss

Specifying Business Rules • 357

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Focus on Behavior

When thinking about models, it’s tempting to jump ahead and think of all of
the relationships and functionality we just know they’re going to need.
Developing models this way can lead to inconsistent APIs with far too many
public methods and relationships, which then become hard to maintain.

Focusing on the behavior first leads to clean, cohesive models, so that’s what
we’re going to do. Create a spec for the User model, which describes the
behavior of send_message.

rails_models/rules/01/spec/models/user_example1_spec.rb
require 'spec_helper'

describe User do
describe "#send_message" do➤

it "sends a message to another user"➤

end➤

end

The happy path for send_message is that the user has not gone over the
monthly limit and will be able to send a message to another user. Let’s move
this pending example into a new context() to better express this:

rails_models/rules/01/spec/models/user_example2_spec.rb
require 'spec_helper'

describe User do
describe "#send_message" do
context "when the user is under their subscription limit" do➤

it "sends a message to another user"➤

end➤

end
end

Now fill in the example with what we expect to happen when one user sends
a message to another:

rails_models/rules/01/spec/models/user_example3_spec.rb
describe "#send_message" do

context "when the user is under their subscription limit" do
it "sends a message to another user" do➤

msg = zach.send_message(➤

:recipient => david➤

)➤

david.received_messages.should == [msg]➤

end➤

end
end

Chapter 25. Rails Models • 358

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_models/rules/01/spec/models/user_example1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/01/spec/models/user_example2_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/01/spec/models/user_example3_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Now that we’ve defined a clean interface for sending messages, we’ve run the
spec, and it fails with undefined local variable or method 'zach'. With the expectation
clear, let’s supply the necessary setup for the example to run, starting with
zach and david as local variables:

rails_models/rules/01/spec/models/user_example4_spec.rb
describe "#send_message" do

context "when the user is under their subscription limit" do
it "sends a message to another user" do
zach = User.create!➤

david = User.create!➤

msg = zach.send_message(
:recipient => david

)
david.received_messages.should == [msg]

end

end

end

Run the spec again, and the example fails with undefined method 'send_message'.
Add an empty send_message() method to the User model:

rails_models/rules/02/app/models/user.rb
class User < ActiveRecord::Base

def send_message(message_attrs)➤

end➤

end

The example still fails, but now it’s because of undefined method 'received_messages'
on User. We need a received_messages association, so add that and run the spec:

rails_models/rules/03/app/models/user.rb
class User < ActiveRecord::Base
has_many :received_messages, :class_name => Message.name,➤

:foreign_key => "recipient_id"➤

def send_message(message_attrs)
end

end

Now the example fails because it expects david.received_messages() to return [msg]
but got [] instead. To get this to pass, modify send_message() such that it creates
a message using the message_attrs parameter. This is :recipient => david in our
example.

report erratum • discuss

Specifying Business Rules • 359

http://media.pragprog.com/titles/achbd/code/rails_models/rules/01/spec/models/user_example4_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/02/app/models/user.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/03/app/models/user.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rails_models/rules/04/app/models/user.rb
class User < ActiveRecord::Base
has_many :received_messages, :class_name => Message.name,

:foreign_key => "recipient_id"

def send_message(message_attrs)
Message.create! message_attrs➤

end

end

Run the spec, and it fails with Validation failed: Text can't be blank, Title can't be blank.
This is happening because the Message validates the presence of the title and
text attributes. Because send_message() is just passing the attributes hash to
the Message constructor, we can include those attributes directly in the
example:

rails_models/rules/04/spec/models/user_example1_spec.rb
it "sends a message to another user" do

zach = User.create!
david = User.create!
msg = zach.send_message(

:title => "Book Update",
:text => "Beta 11 includes great stuff!",
:recipient => david

)
david.received_messages.should == [msg]

end

Voila! The spec is now passing with 1 example, 0 failures. We’ve added the title and
text attributes to get the sends a message to another user example to pass, but what
should happen to those attributes? Let’s add an example that specifies that
those values make their way to the Message:

rails_models/rules/04/spec/models/user_example2_spec.rb
it "creates a new message with the submitted attributes" do
zach = User.create!
david = User.create!
msg = zach.send_message(

:title => "Book Update",
:text => "Beta 11 includes great stuff!",
:recipient => david

)
msg.title.should == "Book Update"
msg.text.should == "Beta 11 includes great stuff!"

end

This passes right away, but that’s OK in this case, because the example
communicates a requirement of this method.

Chapter 25. Rails Models • 360

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_models/rules/04/app/models/user.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/04/spec/models/user_example1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/04/spec/models/user_example2_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Additional Outcomes

At this point, a user can send a message to a recipient, but the sender has
no way to review the messages he or she sent. We need to add an expectation
that the sender is associated with the message as well as the recipient. Add
an example to express that expectation:

rails_models/rules/04/spec/models/user_example3_spec.rb
context "when the user is under their subscription limit" do

it "adds the message to the sender's sent messages"➤

end

This example is similar to the example we just got passing, so let’s copy its
example body into the new example and change the expectation to look at
the sender’s sent_messages:

rails_models/rules/04/spec/models/user_example4_spec.rb
it "adds the message to the sender's sent messages" do
zach = User.create!
david = User.create!
msg = zach.send_message(

:title => "Book Update",
:text => "Beta 11 includes great stuff!",
:recipient => david

)
zach.sent_messages.should == [msg]➤

end

Running the spec results in the example failing with an undefined meth-od
'sent_messages'. We’ll need to add an association to make this pass. Also, the
messages table doesn’t have a sender_id field, so be sure to make a migration
that adds it. Here’s what the model should end up looking like:

rails_models/rules/05/app/models/user.rb
class User < ActiveRecord::Base
has_many :received_messages, :class_name => Message.name,

:foreign_key => "recipient_id"
has_many :sent_messages, :class_name => Message.name,➤

:foreign_key => "sender_id"➤

def send_message(message_attrs)
Message.create! message_attrs

end

end

Execute the spec, and the example is still failing because it expects an array
with one message but found an empty array. Now let’s update the send_message()

report erratum • discuss

Specifying Business Rules • 361

http://media.pragprog.com/titles/achbd/code/rails_models/rules/04/spec/models/user_example3_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/04/spec/models/user_example4_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/05/app/models/user.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

method implementation to use the sent_messages association to create the
message:

rails_models/rules/06/app/models/user.rb
class User < ActiveRecord::Base
has_many :received_messages, :class_name => Message.name,

:foreign_key => "recipient_id"
has_many :sent_messages, :class_name => Message.name,
:foreign_key => "sender_id"

def send_message(message_attrs)
sent_messages.create! message_attrs➤

end

end

And we’re back to green with 3 examples, 0 failures.

Tidy Up

Now we can safely clean up the duplication between the examples. To start,
let’s consolidate the creation of zach and david in one spot. Pull up the assign-
ments of zach and david into a before(:each) block as instance variables:

rails_models/rules/06/spec/models/user_example1_spec.rb
describe "#send_message" do

before(:each) do➤

@zach = User.create!➤

@david = User.create!➤

end➤

it "creates a new message with the submitted attributes" do

The spec should still be green, although we’re not using the new instance
variables. Update the first example, creates a newmessage with the submitted attributes,
to rely on the instance variables:

rails_models/rules/06/spec/models/user_example2_spec.rb
it "creates a new message with the submitted attributes" do
msg = @zach.send_message(➤

:title => "Book Update",
:text => "Beta 11 includes great stuff!",
:recipient => @david➤

)
msg.title.should == "Book Update"
msg.text.should == "Beta 11 includes great stuff!"

end

Chapter 25. Rails Models • 362

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_models/rules/06/app/models/user.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/06/spec/models/user_example1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/06/spec/models/user_example2_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the spec, make sure it’s still green, and then update the other two
examples to use the instance variables. When you’re done, the spec should
still be at a green bar, 3 examples, 0 failures.

With specs for the happy path passing with the supporting code implemented,
now it’s time to start exploring the edge cases. We’ll begin with what happens
when the user exceeds their subscription’s monthly limit.

Edge Cases

When we tell a User to send a message, a record is created in the messages table.
We can use that knowledge to specify what happens when a message is not
sent: it should not create a record in the messages table. Let’s express that in
a new example in user_spec.rb:

rails_models/rules/06/spec/models/user_example3_spec.rb
context "when the user is over their subscription limit" do

it "does not create a message" do
lambda {

@zach.send_message(
:title => "Book Update",
:text => "Beta 11 includes great stuff!",
:recipient => @david

)
}.should_not change(Message, :count)

end
end

Run the spec, and watch that new example fail with count should not have changed,
but did. We need to set up the example so the user has already reached their
subscription limit. Writing the code we wish we had, we might end up with
something like this in send_message():

def send_message(message_attrs)
if subscription.can_send_message?

sent_messages.create message_attrs
end

end

This lets the subscription dictate whether a message can be sent on a user-
by-user basis. Run that, and you’ll see four failures with undefined local variable
or method `subscription'. We have a few different things to do to get this to pass,
so let’s back that change out and run the examples again to make sure they’re
all passing.

Introduce a before(:each) block inside the context that utilizes a stub to ensure
a user can’t send a message:

report erratum • discuss

Specifying Business Rules • 363

http://media.pragprog.com/titles/achbd/code/rails_models/rules/06/spec/models/user_example3_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

rails_models/rules/06/spec/models/user_example4_spec.rb
context "when the user is over their subscription limit" do

before(:each) do➤

@zach.subscription = Subscription.new➤

@zach.subscription.stub(:can_send_message?).and_return false➤

end➤

it "does not create a message" do
lambda {

@zach.send_message(
:title => "Book Update",
:text => "Beta 11 includes great stuff!",
:recipient => @david

)
}.should_not change(Message, :count)

end
end

Now the latest example fails with uninitialized constant Subscription. We need a Sub-
scription model and a migration that generates the subscriptions table and a sub-
scription_id on the users table. Go ahead and add all that, run rake db:migrate &&
rake db:test:prepare, and then the example should fail with an undefined method
'subscription=' . Now let’s add a Subscription association to the User model:

rails_models/rules/08/app/models/user.rb
belongs_to :subscription➤

The spec should be back to the original failure, count should not have changed, but
did. Update send_message to rely on the stubbed can_send_message?() method:

rails_models/rules/09/app/models/user.rb
def send_message(message_attrs)➤

if subscription.can_send_message?➤

sent_messages.create! message_attrs➤

end➤

end➤

The does not create amessage example should now be passing, but the other three
are failing. We’re relying on the subscription to determine when messages can
be sent, so we’ll need to update @zach to be able to send messages for the
failing examples.

Add the following before block to the context for the failing examples:

rails_models/rules/10/spec/models/user_spec.rb
context "when the user is under their subscription limit" do

before(:each) do➤

@zach.subscription = Subscription.new➤

@zach.subscription.stub(:can_send_message?).and_return true➤

end➤

Chapter 25. Rails Models • 364

report erratum • discuss

http://media.pragprog.com/titles/achbd/code/rails_models/rules/06/spec/models/user_example4_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/08/app/models/user.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/09/app/models/user.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/10/spec/models/user_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Run the spec; you should have 4 examples, 0 failures. Right now the two inner
before blocks give @zach a Subscription. Let’s remove the duplication by pulling
up the subscription assignment to the outer before block:

rails_models/rules/10/spec/models/user_example1_spec.rb
describe "#send_message" do

before(:each) do
@zach = User.create! :subscription => Subscription.new➤

@david = User.create!
end

context "when the user is under their subscription limit" do
before(:each) do

@zach.subscription.stub(:can_send_message?).and_return true
end

Run the spec again; it should still be green with 4 examples, 0 failures. This wraps
up the User model, given our current needs. Next up: specify the can_send_mes-
sage?() method on the Subscription model.

25.3 Exercise

As you can see from the work we’ve done so far, model specs are not all that
different from the kind of specs we would write for any PORO. We have a little
bit of work left to satisfy the requirement of limiting the number of messages
sent in a month, and we’re going to leave this work as an exercise for you.

All that remains to satisfy the requirement is to implement the can_send_mes-
sage?() method on Subscription. To control how many messages can be sent in a
month, the subscription will need to know how many messages have already
been sent. We can build two different sets of examples from this information:

• When a user has not exceeded the limit for the month
• When a user has exceeded the limit for the month

Assume, for now, that Subscription.has_one(:user). Create a Subscription spec with
these contexts for the can_send_message?() method.

rails_models/rules/11/spec/models/subscription_example2_spec.rb
describe "#can_send_message?" do

context "when a user has not reached the subscription limit for the month" do
it "returns true"➤

end

context "when a user has reached the subscription limit for the month" do
it "returns false"➤

end
end

report erratum • discuss

Exercise • 365

http://media.pragprog.com/titles/achbd/code/rails_models/rules/10/spec/models/user_example1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_models/rules/11/spec/models/subscription_example2_spec.rb
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Now go forth and write failing examples, get them to pass, and refactor your
code! Be sure to keep the cycles small and keep the example and implemen-
tation code clean and readable. Don’t worry too much about whether you get
the perfect examples or code. The important thing is that you use the oppor-
tunity to get more comfortable with the red/green/refactor cycle of TDD.

25.4 Useful Tidbits

In addition to what we’ve just gone through, here are a few more pieces of
useful information you can employ when writing model specs.

DB or Not DB

The model specs we’ve written have all relied on interaction with a database.
This is one way to write model specs, but it’s not the only way. We can also
disconnect model specs from a database. You may be wondering why would
you want to do that. Well, speed!

Hitting a database for each example takes time. Connections need to be made,
queries need to be sent/parsed/optimized/executed, and results need to be
returned. Over time, a project accumulates more models and more behavior,
and models specs can easily go from taking a few seconds to several minutes.
And the longer they take, the less we tend to run them. This works against
our effort to produce quality code quickly.

There are many cases in which we write examples for business logic that
happens to belong in a model but doesn’t require a database. Removing the
database bottleneck when we don’t need it can speed things up considerably.

The rspec-rails library doesn’t provide a way to do this natively, but we can
look to libraries such as Dan Manges’ UnitRecord3 and Avdi Grimm’s NullDb4

for help. They both disconnect specs from the database by using the schema.rb
to supply information about the tables and attributes that models rely on.

There are times, however, when we want to interact with the database to
expose behavior or to boost confidence that an example is actually exercising
something. UnitRecord and NullDb both provide ways for examples to interact
with a database for these cases. This gives us the best of both worlds. Speed
takes priority by default, but we can access a database when we need it.

3. http://github.com/dan-manges/unit-record/tree/master
4. http://nulldb.rubyforge.org

Chapter 25. Rails Models • 366

report erratum • discuss

http://github.com/dan-manges/unit-record/tree/master
http://nulldb.rubyforge.org
http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Test Data Builders

Test data builders give us a centralized mechanism we can use to construct
objects in code examples. They allow for variability in the test data being
created, which in Rails typically means accepting overriding values via a hash.

The Test Data Builder pattern separates the construction of an object from
its representation so the construction process can be reused. This can turn
an overly verbose and obfuscated example into a clear, easy-to-read example.

Here’s an overly verbose example that obfuscates the important part of the
example. It’s hard to tell that the :text attribute is important:

it "is not valid ..." do
message = Message.create!(

:title => "some title",
:text => "some text",
:recipient => User.create!(

:login => "bob",
:password => "password",
:password_confirmation => "password"

)
)
...

end

Here’s what the construction of the message in this example would look like
using test data builder libraries designed specifically to work with ActiveRe-
cord. They all remove unnecessary verbosity, increase readability, and make
it immediately apparent that the :text attribute is important to the example:

Fixjour and FixtureReplacement
message = create_message(:text => "some text")

FactoryGirl
message = Factory(:message, :text => "some text")

ObjectDaddy
message = Message.generate(:text => "some text")

Machinist
message = Message.make(:text => "some text")

Fixjour, FixtureReplacement, FactoryGirl, Machinist, and ObjectDaddy are
all battle-tested and offer mature APIs, relying on convention and offering
namespaces, declarative methods, sequences, association support, and DSL-
like definitions.

report erratum • discuss

Useful Tidbits • 367

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Custom Macros

We can write custom macros for model specs using the same techniques we
employed in Chapter 24, Rails Controllers, on page 329.

• Identify an example or group of examples to pull into a macro
• Extract the example(s) into a method on a module
• Update spec/spec_helper.rb to include the module
• Update the spec to use the macro

Matchers

rspec-rails provides some additional matchers that can be useful in model
specs.

be_valid

The be_valid() matcher is used to set the expectation that your model is or is
not valid:

model.should be_valid
model.should_not be_valid

error_on and errors_on

The error_on() and errors_on() methods extend RSpec’s have() matcher for use with
ActiveRecord models in order to set an expectation that a particular attribute
has an error or not. It will call valid?() on the model in order to prepare the
errors.

model.should have(:no).errors_on(:title)
model.should have(1).error_on(:body)
model.should have(2).errors_on(:caption)

record and records

The record() and records() methods also extend the have() matcher for use with
ActiveRecord models. These let us set an expectation of the number of records.
It calls find(:all) on the model in order to determine the count.

ModelClass.should have(:no).records
ModelClass.should have(1).record

Writing Your Own

You can always write your own matchers when you find yourself duplicating
the same expectation in multiple examples or in a more verbose way than
you’d like. The techniques to write custom matchers for ActiveRecord models
are the same that you learned in Section 16.7, Custom Matchers, on page 220.

Chapter 25. Rails Models • 368

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

25.5 What We’ve Learned

Throughout this chapter we focused on the behavior of models by setting
clear expectations through examples. By combining the outside-in approach
with our knowledge of Rails, we were able to write good clean specs while still
taking advantage of ActiveRecord benefits in our implementation.

• Models reflect the problem domain for which you’re providing a software
solution, and they vary significantly from model to model and from app
to app.

• Models house the domain logic for an application.

• Models in Rails usually refer to ActiveRecord models, although you may find
you create models that are straight-up POROs.

• Model specs use a custom example group provided by the rspec-rails
library.

• Model specs live in a directory tree parallel to the models themselves and
follow a naming convention of spec/model/my_model_spec.rb for app/model/my_mod-
el.rb.

• Focusing on model behavior while taking advantage of ActiveRecord-provided
features can save time and effort.

• Use mock_model() and stub_model() to isolate controller specs from the database
and underlying business logic of your models.

• Test data builder libraries can be used to reduce unneeded verbosity and
improve clarity, maintainability of specs, and even step definitions for
Cucumber scenarios.

• You can extract duplication and common patterns in your model specs
into custom macros and matchers using the same techniques you’d use
for view specs and controller specs.

• rspec-rails provides a few helpful ActiveRecord matchers to make writing
model examples more expressive: be_valid(), errors_on(), and records().

report erratum • discuss

What We’ve Learned • 369

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

APPENDIX 1

RubySpec
by Brian Ford

Ruby is a fabulous language. The first time I encountered it was around 1997
in response to a friend who was singing the praises of Python. I missed the
part about blocks in the README and read the part about the Perl-ish globals.
I had recently tried to learn Perl and I hated it, so I closed the file and went
back to Python. Fortunately, when I found Programming Ruby on the Web, I
gave it another try and was smitten after the first couple chapters. Maybe it
was all the Python.

As great as Ruby is, there were two things that bothered me. It wasn’t that
fast, a fact that others never tire of pointing out. And the implementation was
not very sophisticated. Early on, I signed up to the YARV English-language
developer mailing list but never got past checking out the source and building.

Then I heard about Rubinius, a project attempting to write a Ruby implemen-
tation from scratch and to write as much of it as possible in Ruby. Further,
this guy Evan Phoenix talked about test-driving the development. I was
intrigued.

On another front, I had been eagerly following RSpec since Dave Astels’ blog
post, “A New Look at Test-Driven Development,” and Steven Baker’s first
implementation. I was convinced it was an excellent way to test Ruby code,
and I was using it almost exclusively for all the Rails projects I worked on.

These two threads came together in the question, How do you write a com-
pletely new implementation of Ruby and ensure that it performs exactly as
the existing one? In my mind, there was only one answer. I asked Evan in
the #rubinius IRC channel if it was acceptable to write RSpec specs for
Rubinius. Ever adventurous, he replied, “Sure, go ahead.”

RubySpec was born.

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

A1.1 The Project

The goal of RubySpec is to write a complete, executable specification for the
Ruby programming language. RubySpec attempts to capture the behavior of
the reference implementation of Ruby, generally referred to as MRI for Matz’s
Ruby Implementation. RubySpec intends to support compatibility, develop-
ment, and experimentation among the alternative Ruby implementations.

Compatibility among the Ruby implementations is essential to prevent frag-
mentation in the community. There will inevitably be some incompatibilities,
but they will be small. There is no reason that the vast majority of Ruby lan-
guage features, and hence the vast majority of programs, cannot perform the
same on different implementations.

There are sure to be pros and cons for each implementation, but those will
not have the same importance during the life of a Ruby application. Consider
developing an application and then determining that a particular client would
benefit from integrating a .NET library. You simply install IronRuby and
launch the application on it. How do you know it will work? Because IronRuby
passes the RubySpecs. Granted, this is somewhat idealized right now, but
that is the intent of the project.

RubySpec aids development immensely. How else would you know what works
and what does not? The tens of thousands of expectations in the RubySpecs
indicate exactly what to do. And when there are regressions, you know about
it immediately.

Finally, the RubySpecs encourage experimentation. To experiment, you need
code examples that are sufficiently decoupled from the implementation. Since
RubySpec is run by every major implementation, there is continual pressure,
assuring that the examples truly spec the interface of the Ruby language
features.

A1.2 Syntax

One of the most important goals of a test suite is communication. This is also
one of the greatest challenges. Indeed, communication is always a challenge.
Anything that helps the process is welcome. For RubySpec, we have the four
C’s to describe the quality of the specs: correct, clear, consistent, and concise.
These are ordered by priority. The specs must be correct above all. The next
most important characteristic is clarity. Consistency is an invaluable aid to
communication, but consistency will be trumped by clarity. Conciseness is

Appendix 1. RubySpec • 372

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

also an aid to communication, but a slightly more verbose spec will be pre-
ferred if it is more consistent with similar specs.

The RSpec syntax provides an essential tool for communication through the
specs. The describe block avoids the pressure of choosing a descriptive test
subclass name while the string for the block provides essential documentation
about the purpose of the grouping. The it block string reads naturally in
English with normal punctuation. Even the simplest code examples may have
semantic nuances that can be explained only with natural language. The
combination of example block strings and the code they contain provide the
optimum information from two perspectives to communicate the meaning
and purpose of the spec.

Not only is the syntax of RSpec better for communicating, but the implemen-
tation of a very simplistic harness for running specs is quite straightforward.
It requires defining methods on classes and calling those methods. There is
no need for the reflective methods that a Test::Unit-like harness requires.

The following is the actual code for the first minispec runner that we used in
Rubinius:

minispec
#
Very minimal set of features to support specs like this:
#
context "Array" do
specify "should respond to new" do
Array.new.should == []
end
end

class PositiveSpec
def initialize(obj)
@obj = obj

end

def ==(other)
if @obj != other

raise Exception.new("equality expected")
end

end
end

class NegativeSpec
def initialize(obj)
@obj = obj

end

report erratum • discuss

Syntax • 373

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

def ==(other)
if @obj == other

raise Exception.new("inequality expected")
end

end
end

class Object
def should
PositiveSpec.new(self)

end

def should_not
NegativeSpec.new(self)

end
end

def specify(msg)
print '.'
begin

yield
rescue Exception => e

print msg
print " FAILED\n"
print e.message
print "\n"

end
end
def context(msg)

yield
end

This simple code uses no advanced Ruby language features and requires
almost no support from the Ruby core library. It relies only on the ability to
create classes and define methods, instantiate objects, call methods with
arguments, yield to blocks, and raise exceptions. It is also quite limited,
providing only for checking equality or inequality. However, this tiny set of
features enabled us to write a very large number of specs.

A1.3 Guards

In an ideal world, there would be a single version of Ruby that runs identically
on any hardware platform and operating system and, of course, has no bugs.
For better or worse, we don’t inhabit an ideal world. And neither does
RubySpec. Consequently, there must exist some method for dealing with
different byte orderings, word sizes, operating system services, versions, bugs,
and implementations.

Appendix 1. RubySpec • 374

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

For this purpose, RubySpec provides block-based helpers called guards. There
are four basic categories of guard. These are document platform, version,
implementation differences, and bugs in MRI.

The guards function by yielding to the block based on the environment in
which the specs are executing. The guards also provide visually consistent
documentation as an essential part of the code examples that comprise the
specs. Since the guards function by yielding or not, they work fine with RSpec
without it knowing anything about them.

The following spec illustrates using the ruby_bug guard. Since bugs in MRI
are discovered after a particular version of MRI has been released, RubySpec
needs a way to prevent those specs from running on MRI as well as ensuring
that the correct behavior is implemented both in later versions of MRI and in
all alternative implementations. The ruby_bug guard requires a ticket number
and a version string. The guard will yield on all alternative implementations
and on any version of MRI greater than the versions listed.

describe "Array#==" do
ruby_bug "#11585", "1.8" do
it "calls to_ary on its argument" do
obj = mock('to_ary') obj.should_receive(:to_ary).and_return([1, 2, 3])
[1, 2, 3].should == obj

end
end

end

There are a variety of other guards for platform differences and for features
that alternative implementations comply with, deviate from, or extend. The
guards essentially permit multiple, mutually exclusive versions of RubySpec
to be combined in one place. This aids in understanding all the variations of
behavior of a particular Ruby feature.

A1.4 Extensibility

As useful and as simple as the describe/it syntax is, there are situations
where a more suitable syntax is possible. The subtle simplicity of the block-
based structure of the RSpec syntax was illustrated in the RubySpec guards.
The Rubinius compiler specs are another example.

Basically, a compiler is a formal transformation from one data form to
another that preserves meaning. An ideal syntax allows for juxtaposing the
various forms while verification occurs behind the scenes. This maintains the
declarative nature of the specs and minimizes visual noise.

report erratum • discuss

Extensibility • 375

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Currently, the Rubinius compiler specs contain three forms: the Ruby source
code, the parsed s-expression, and a representation of the stack-based
instruction set. The additional syntax correlates or groups these forms. The
word chosen for the grouping block is relates.

The following examples show the Ruby code in both double-quoted string
format and as a heredoc. The describe block groups as normal, while the relates
block introduces the Ruby code and groups the various representations.

describe "A Call node" do
relates "self.method" do
parse do

[:call, [:self], :method, [:arglist]]
end

compile do |g|
g.push :self g.send :method, 0, false

end
end

end
describe "A Class node" do

relates <<-ruby do
class X < Array
end

ruby

parse do
[:class, :X, [:const, :Array], [:scope]]

end

compile do |g|
g.push_const :Array
g.open_class :X

end
end

end

The parse and compile helpers are creating examples programmatically. This is
apparent when running the specs with specdoc output.

A Class node
- is parsed from

class X < Object
end

- is compiled from
class X < Object
end

In the future, we will likely extend these examples with, for example, helpers
such as ast, llvm, or asm that represent the abstract syntax tree (AST) nodes,

Appendix 1. RubySpec • 376

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

LLVM IR, or machine code from the JIT compiler. The format provides for
visually comparing the various forms as well as easily writing them.

A1.5 MSpec

MSpec is a simple, modular, event-driven, and purpose-built framework that
supports the RSpec syntax for code examples, commonly known as specs.

RSpec, like Ruby itself, is both an implementation and a standard. RSpec
presents a particular syntax for writing specs. MSpec replaces the implemen-
tation while conforming to the syntax.

MSpec is purpose built. It has to be because it must be able to run in a hostile
proto-environment where many beloved Ruby language features don’t yet
exist. MSpec makes assumptions that are reasonable for its use but not rea-
sonable for general Ruby applications. MSpec is not intended to, nor does it
aspire to, serve as an alternative to RSpec—unless you’re running the
RubySpecs.

MSpec provides a number of command-line scripts for working with RubySpec.
The mspec script runs the specs and provides options for choosing which
implementation to run the specs, selecting which specs to run, and selecting
how to format the output. There is also the mspec-ci script that excludes from
running the specs tagged as failing, and the mspec-tag script that aids in
adding and removing tag metadata.

A1.6 Tags

Implementing Ruby is a long and arduous road. Along the way, it would be
nice to know precisely which specs are expected to pass. However, that
information is metadata, and it has nothing to do with the correctness of a
spec. One implementation may fail a spec that other implementations pass.
Constantly editing the specs to add and remove this sort of metadata would
severely limit the utility of RubySpec by introducing too much churn and
confusion in the specs.

The need to associate metadata with the specs prompted the idea of tags. The
tags are contained in files in a different directory where each tag file corre-
sponds to a particular spec file. By locating the tag files in a different directory
tree, the various Ruby implementations can share the specs but maintain
their own set of tags.

report erratum • discuss

MSpec • 377

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Tags have three components: name, comment, and description. The comment
is the part inside (and including) the parentheses. The comment is optional.
The comment is any arbitrary textual data to associate with the tag. It could
be a bug number, platform note, or benchmark time. The name is the part
preceding the comment. It is essentially a category, and certain names have
special meaning for the runner scripts.

For example, fails and critical are tags that will cause mspec-ci to exclude specs
tagged by these names from running. The description is a string that is con-
catenated from the strings for the describe block and the it block. For example,
the following is a failing spec tag:

fails(#538):Array#at returns the item at an index

The one limitation of this approach to adding metadata to the specs is that
if the spec strings are changed, existing tags are no longer related to the spec
whose string changed. In practice, this has not been a significant issue. The
mspec-tag script has an option to purge tags that no longer refer to specs.

A1.7 Community

We have been using RubySpec in Rubinius for nearly four years. During that
time, the development of Rubinius has progressed at a high velocity. The
stability provided by RubySpec has unequivocally contributed to that velocity.
RubySpec has also provided an easy path for many people to begin contribut-
ing to Rubinius.

The Ruby community in general benefits from the availability of numerous
alternative implementations. In almost every environment niche today, there
is a working Ruby implementation, whether it is Java or .NET, Windows or
Linux, or traditional desktop/laptop computers or mobile phones. Ruby
developers benefit from each of these implementations behaving the same.
Users of software written in Ruby benefit from software that performs correctly,
and such software is easier to write when there are not arbitrary implemen-
tation differences. Despite the fact that some competition exists between
implementations, RubySpec reminds us that we are all working toward a
higher goal, bringing the beauty of the Ruby language to as many developers
as want to use it.

That being said, there is still a significant amount of work to do. Ruby is still
evolving, and there are still many rather arbitrary platform differences that
unnecessarily complicate developers’ lives. For example, the differences
between Ruby on Windows and Ruby on other platforms can be painful. Also,

Appendix 1. RubySpec • 378

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

there are pressures on some platforms to prize special features over compat-
ibility with MRI, the Ruby standard implementation. These pressures can
lead to fragmentation of the Ruby community. RubySpec provides a means
to keep these forces in check but only if the Ruby community widely prizes
a consistent definition of Ruby and is vocal about requiring that Ruby
implementers faithfully adhere to the standard specification.

Everyone has a role to play in making Ruby an even better language. RubySpec
has a part to play in that endeavor. Those of us working on RubySpec hope
you will join us in improving both RubySpec and Ruby.

report erratum • discuss

Community • 379

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

APPENDIX 2

RSpec’s Built-in Expectations
Here is a summary of all the expectations that are supported directly by
RSpec.

Equality

Passes If...Expression

actual.equal?(expected)actual.should equal(expected)
actual.eql?(expected)actual.should eql(expected)
actual == expectedactual.should == expected
Passes Unless...Expression

actual.equal?(expected)actual.should_not equal(expected)
actual.eql?(expected)actual.should_not eql(expected)
actual == expectedactual.should_not == expected

Arbitrary Predicates

Passes If...Expression

actual.predicate?actual.should be_[predicate]
actual.predicate?actual.should be_a_[predicate]
actual.predicate?actual.should be_an_[predicate]
Passes If...Expression

actual.predicate?(*args)actual.should be_[predicate](*args)
actual.predicate?(*args)actual.should be_a_[predicate](*args)
actual.predicate?(*args)actual.should be_an_[predicate](*args)
Passes Unless...Expression

actual.predicate?actual.should_not be_[predicate]
actual.predicate?actual.should_not be_a_[predicate]
actual.predicate?actual.should_not be_an_[predicate]

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Arbitrary Predicates (continued)

Passes Unless...Expression

actual.predicate?(*args)actual.should_not be_[predicate](*args)
actual.predicate?(*args)actual.should_not be_a_[predicate](*args)
actual.predicate?(*args)actual.should_not be_an_[predicate](*args)

Regular Expressions

Passes If...Expression

actual.match?(expected)actual.should match(expected)
actual =~ expectedactual.should =~ expected
Passes Unless...Expression

actual.match?(expected)actual.should_not match(expected)
actual =~ expectedactual.should_not =~ expected

Comparisons

Passes If...Expression

actual < expectedactual.should be < expected
actual <= expectedactual.should be <= expected
actual >= expectedactual.should be >= expected
actual > expectedactual.should be > expected

Collections

Passes If...Expression

actual.include?(expected)actual.should include(expected)
actual.items.length == n or actual.items.size == nactual.should have(n).items
actual.items.length == n or actual.items.size == nactual.should have_exactly(n).items
actual.items.length >= n or actual.items.size >= nactual.should have_at_least(n).items
actual.items.length <= n or actual.items.size <= nactual.should have_at_most(n).items

Collections (continued)

Passes Unless...Expression

actual.include?(expected)actual.should_not include(expected)
actual.items.length == n or actual.items.size == nactual.should_not have(n).items
actual.items.length == n or actual.items.size == nactual.should_not have_exactly(n).items

Errors

Passes If...Expression

proc raises any errorproc.should raise_error

Appendix 2. RSpec’s Built-in Expectations • 382

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Errors

raises specified type of errorproc.should raise_error(type)
raises error with specified messageproc.should raise_error(message)
raises specified type of error with specified messageproc.should raise_error(type, message)

Passes Unless...Expression

proc raises any errorproc.should_not raise_error
raises specified type of errorproc.should_not raise_error(type)
raises error with specified messageproc.should_not raise_error(message)
raises specified type of error with specified messageproc.should_not raise_error(type, message)

Symbols

Passes If...Expression

proc throws any symbolproc.should throw_symbol
proc throws specified symbolproc.should throw_symbol(type)
Passes Unless...Expression

proc throws any symbolproc.should_not throw_symbol
proc throws specified symbolproc.should_not throw_symbol(type)

Floating-Point Comparisons

Passes If...Expression

actual > (expected - delta) and < (expected + delta)actual.should be_close(expected, delta)

Passes Unless...Expression

actual < (expected + delta) and > (expected - delta)actual.should_not be_close(expected, delta)

Contracts

Passes If...Expression

messages.each { |m| actual.respond_to?(m) }actual.should respond_to(*messages)

Passes Unless...Expression

messages.each { |m| actual.respond_to?(m) }actual.should_not respond_to(*messages)

When All Else Fails...

Passes If...Expression

the block returns trueactual.should satisfy { |actual| block }

Passes Unless...Expression

the block returns trueactual.should_not satisfy { |actual| block }

report erratum • discuss

Appendix 2. RSpec’s Built-in Expectations • 383

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Bibliography
[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley, Reading,

MA, 2002.

[Coh04] Mike Cohn. User Stories Applied: For Agile Software Development. Addison-
Wesley Professional, Boston, MA, 2004.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Longman, Reading, MA, First, 2003.

[FBBO99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading,
MA, 1999.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Jour-
neyman to Master. Addison-Wesley, Reading, MA, 2000.

[JAH02] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme Programming
Installed. Addison-Wesley, Reading, MA, 2002.

[MRB97] Robert C. Martin, Dirk Riehle, and Frank Buschmann. Pattern Languages
of Program Design 3. Addison-Wesley, Reading, MA, 1997.

[Mes07] Gerard Meszaros. xUnit Test Patterns. Addison-Wesley, Reading, MA, 2007.

[Rai04] J. B. Rainsberger. JUnit Recipes: Practical Methods for Programmer Testing.
Manning Publications Co., Greenwich, CT, 2004.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby: The
Pragmatic Programmer’s Guide. The Pragmatic Bookshelf, Raleigh, NC and
Dallas, TX, Second Edition, 2005.

[TFH09] David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby: The
Pragmatic Programmer’s Guide. The Pragmatic Bookshelf, Raleigh, NC and
Dallas, TX, Third Edition, 2009.

report erratum • discuss

http://pragprog.com/titles/achbd/errata/add
http://forums.pragprog.com/forums/achbd

Index
SYMBOLS
!=, 157

""", 239

#, 239

*, 206, 210

==, 156, 186, 188

===, 156

?, 163

@, 246

|, 239, 257

A
abstractions, 72

isolation in testing, 312

Accept header, 300

acceptance criteria, 26, 31,
33

adding, 26–27
automated, 43, 200
components of, 128
customer-defined, 266
scenarios to define done,

129
tester role, 129

Acceptance Test–Driven Devel-
opment, 25

Acceptance Test–Driven Plan-
ning, 7, 25, 33

Acceptance Test-Driven Devel-
opment, 6

acceptance tests, 25, 31

access_denied.rb file, 346

AccessDenied error, 345

achievable outcome, 125

ActionController::Integration::Ses-
sion#host, 306

ActionController::IntegrationTest
class, 252

ActionController::TestCase class,
342–343

ActionController::TestUploadedFile
class, 293

actions, triggering, 290

ActionView, 344

ActiveRecord, 274, 319, 368
mock_model, 323
stub chain, 183
test data builders, 367

ActiveRecord::Base class, 323

ActiveRecord::TestCase class, 349

==(actual), 188

adapters, 220

add() method, 192

after(:all) method, 143

after(:each) method, 142

After hooks, 144, 254, 307

after(scope = :each, options={},
&block) method, 220

AfterStep hooks, 254

Agile, 109–119
Manifesto, 114

Agile 2006 Conference, 21

Agile methodology, 6

Ajax, 274, 311

ajax.requestCounter, 311

ajax_requests, 311

algorithms, 59, 67–77

:all scope, 219

analysis phase, programming
projects, 111

AND, 246

And() method, 38

and_raise() method, 191

and_return() method, 175, 177,
190

and_throw() method, 191

And keyword, 27, 239

any_args() method, 187

anything() method, 187

APIs, 160, 234

application behavior, 6, 121,
242

application code, 56, 61

application features, 25

application level, 45

application-code-file, 46

application.rb file, 346

application_helper_spec.rb
template, 325

ApplicationController class, 344,
346

ApplicationHelper class, 325

arbitrary predicate matchers,
148

argument error, 62

argument matchers, 186, 188

ArgumentError, 61

arguments, 251, 253, 256

around(:each) method, 143

Around hooks, 143–144

around(options={}, &block)
method, 220

Array collection, 4

array.empty? method, 163

as_new_record() method, 323–
324

as_null_object() method, 53, 68,
192, 321, 323, 334

Aslak, Hellesøy, 7, 207

assert_difference assertion, 158

assert_equal assertion, 155

assert_redirected_to() method, 344

assert_same assertion, 155

assertions, 134, 153

assign() method, 317

assigns() method, 338

associations, 355

Astels, Dave, 3, 5

at_exit hook, 105

attach_file() method, 293

Authentication module, 135

Authentication::User class, 136

autogenerated descriptions,
170

autogenerated names, 170

Automated Browser style, 273

automated scenarios, 234

automated testing, 200, 265

automatic example-name
generation, 169

Autotest, 205, 210

autotest, 269

autotest command, 211

autotest directory, 210

B
Background keyword, 238

Backgrounds, 255

backtrace, 206, 254, 311

--backtrace flag, 83, 209

Bad Request (400–499) HTTP
Status Code, 287

Baker, Steven, 5, 371

Basic authentication mecha-
nism, 300

basic_auth() method, 300

be_ prefix, 163

be_a prefix, 163

be_an prefix, 163

be_close matcher, 157

be_empty() method, 6

be_false matcher, 164

be_true matcher, 164

be_valid() method, 368

before(:all) method, 142

before blocks, 54, 171, 183

before(:each) method, 141

Before hooks
around hook, 144
Backgrounds, 255
balanced, 341
method types, 141
nested example groups,

148
overview, 253
removing duplication,

335

before() method, 54, 220

before(scope = :each, options={},
&block) method, 219

begin() method, 192

begin/ensure/end structure, 144

behavior
adding, 43
application level, 273
applications, 5–6, 8, 11
in BDD, 5
benefit, 128
changing, 54
describing, 45, 122, 134–

138
designing, 198
distinguishing from con-

text, 54
documenting, 92
example, 135
expectations, 134
expressing, 282
facet, 135
granular facet, 182
granular level, 45
objects, 8, 11, 134
preserving, 80, 102
subset, 135
unexpected, 166
without changing, 70, 79
wrapping, 220

Behaviour-Driven Develop-
ment (BDD)

acceptance criteria, 128
benefits, 109–120
coding by example, 124
Cucumber role, 234
cycle, 8
delivery cycle, 124–127
description, 121
easy to automate scenar-

ios, 125
getting started, 19
Given, When, Then triad,

5, 242
integration tests, 129
mechanics, 121
one-to-one mapping, 46
outside-in philosophy, 40

practices, 25
principles, 20, 121–122
role in communication, 5
Ruby on Rails, 265
software methodology,

121–129
testing practice, 94

Big Design Up Front, 20, 94

bin directory, 56, 104

block, 38, 41, 47, 54, 371

Boolean expressions, 164

brittleness, 4, 197

browsers, automating, 303

Buck, Jamis, 356

bug reports, 139

bugs, 4, 80, 95, 374

built-in expectations, 153

built-in formatters, 228

built-in matchers, 155–162
protocol, 221

Bundler, 268

business analysts, 124, 128,
244

business rules, 356

business value, 67, 235, 244

business-facing scenarios, 57

But() method, 38

But keyword, 27, 239

by() method, 159

C
4 C’s, 372

caching
behavior, 156
method return value, 55
technique, 42

calculation methods, 86

:caller key, 215

can_send_message? method, 364

capture groups, 251, 253

Carrier, Patricia, 7

catch() method, 162

cd command, 13–14

chaining calls, 159

change matcher, 223

changes, 158

check() method, 291

checked? method, 299

choose() method, 292

civil engineering metaphor,
114

Index • 388

clarity, 372

Class object, 135

:class_name option, 355

click_button() method, 294, 308

click_link() method, 288, 290,
308

close() method, 229

co-located team, 119

code
changing existing code,

118
code we wish we had, 64
dependencies, 194
development, 7
expected behavior, 6
external behavior, 53
frequent integration, 118
high quality, 4
highly coupled, 200
integrated, 118
internal structure, 53
maintainability, 80, 104
production, 105
prototype, 104
responsibilities, 3
tests for, 3
well aligned, 193
well-factored, 104

code coverage, 212

code examples
 as regression tests, 105
as a safety net, 102
definition, 125
description methods, 134
executable, 133–134,

152–153
expressive, 227
formatting, 158
groups, 133, 141, 147–

148
helper methods, 144–147
hooks overview, 140–144
implementation detail,

198
it() method, 134, 136
less brittle, 158
missing, 94
noise level, 146
organizing, 138, 144, 148

code smells, 79–80
Large Class smell, 86
new, 95

code snippets, 250

code-breaker, 235

codebreaker command, 26

codebreaker file, 56

Codebreaker game, user sto-
ries, 20

Codebreaker module, 41, 46–
47, 89

codebreaker project, root di-
rectory, 47

codebreaker.bat script, 56, 93

codebreaker.rb file, 40, 47, 89

Codebreaker::Game class, 39, 47

codebreaker_starts_game scenario,
63

codebreaker_steps.rb file, 42

codebreaker_submits_guess scenar-
ios, 63

codebreaker_submits_guess.feature,
98

Codebreaker constant, 39

codebreaker directory, 27,
37, 40, 45, 89, 211

coding by example, 124

coding phase, programming
projects, 111

cohesion, 30, 89, 151, 244

cohesive models, 358

Cohn, Mike, 21

collaboration, 97–101

collaborators
immediate, 176
interactions with, 198
nonexistent, 178
nonimplemented, 196
primary and secondary,

178
return values, 189
test double stand in,

173, 184

collections, 165

collisions, avoiding, 202

--color option, 209

command line, tools, 205

command shell, 11, 13, 36

command-and-control cul-
tures, 125

commit() method, 192

communication, 153, 233,
244, 372

community, Ruby, 378

compatibility, Ruby implemen-
tations, 372

compile helpers, 376

complexity
adding, 73–75
procedural code, 80

concentric cycles, 43

conceptual cohesion, 151

conciseness, 171, 372

concurrency, 308, 312

config block argument, 216

Configuration object, 216, 219

Connextra format, 28, 128,
235

consistency, 372

contain matcher, 295, 310

contain() method, 316

:content option, 297

context() method, 136
acceptance, 238
BDD role of, 6
vs. behavior, 54
controllers, 336
different, 92
groups, 141
providing, 39
Rails-specific, 278
test doubles, 199

continuous integration, 118,
208, 246

controlled context, 6

controller() method, 345

ControllerMacros class, 227

controllers, 266, 329
context-specific exam-

ples, 336–344
Rails views, 315
specs, 227, 329–335, 341

convenience methods, 185

conversation, 235, 237

core stakeholders, 122

correctness, 372

cost of maintenance, 110, 116

count() method, 192

:count option, 297

count variable, 85

counts, 184

coupling, 184, 186

coverage, confidence, 307

create action, 331, 335, 341,
357

create! method, 156

create_messages migration, 350

CRUD actions/views, 327

CSS3 selectors, 296–297

Ctrl+C, 23

Ctrl+Shift+Down, 46

Index • 389

Cucumber, 6–8
application features, 7,

26–33
automating features, 35–

43
automating scenarios,

125
BDD software methodolo-

gy, 121
for collaboration, 97–101
configuration, 260
DRY principle, 33
etymology, 7
Given, When, Then triad,

5, 242
installation, 11–12
overview, 233–248
plug-ins, 252
Rails, 273–279
scenario outlines, 30, 59–

61
Selenium, 305
tagging feature, 233

cucumber command
argument, 38
loading step definitions,

15
output, 37
passing scenarios, 16
running all features, 63
running the scenarios, 99
running without argu-

ments, 63
step definitions, 234
usage, 12
workings of, 241

Cucumber cycle, 8

cucumber features command, 14–
16

Cucumber gem, 11

Cucumber scenarios, 57, 65

cucumber-rails plug-in, 252–253

cucumber.rake file, 270

cucumber.yml file, 260, 269

Cucumber::Ast::Table class, 257–
258

cucumber:install generator, 269

CucumberGreeter class, 16

Cuke4Duke project, 249

Cunningham, Ward, 31

@current tag, 245

current_url() method, 299

current_user() method, 325

custom adapters, 201–202

custom expectation matchers,
148

custom formatters, 228–230

custom macros, 368

custom matchers, 164, 220–
224, 368

custom tasks, 211

customer acceptance tests,
233, 237

customer tests in XP, 25

D
database

around hook for transac-
tions, 143–144

dependency on, 180

database_cleaner gem, 303, 307,
312

DatabaseCleaner.strategy, 308

Date class, 293

Davis, Ryan, 265

debugging, Selenium, 311

declarative scenarios, 243

declarative steps, 244

decoupling of concepts, 89

default output format, 206

default parameter, 65

Deliver stakeholder value
principle, 122

delivery cycle, 124–127

delivery team, 122, 233

Demyanovich, Craig, 329

Dennis, Zach, 349

dependencies, 194

deployment phase, program-
ming projects, 111

describe() method, 134, 172,
318

RSpec role of, 46–47

describe block, 47, 373

description() method, 189

:description key, 215

descriptive string, 136

design
evolving, 4, 84, 118
improving, 70
missing an abstraction,

86
naive, 94
practices, 94, 133
in TDD, 4

design phase, programming
projects, 111

detailed scenarios, 235

development environment, 43

development process, snap-
shot, 37

Direct Model Access, 274

directory structure, 14, 43

discover.rb file, 210, 269

display tables, 31

display_for() method, 326

do_request macros, 227

docstrings, 170, 193

documentation
consistent, 375
in Cucumber, 8
describe blocks, 151
formatter, 207
new requirements, 97
practices, 133
readable executable, 32
responsibilities, 93
in TDD, 4
TestDox, 207

does_not_match? method, 224

Domain-Driven Design, 25,
121

domain-specific expectations,
153

Domain-Driven Design (Evans,
Eric), 128

done, 233, 273

dot, 13, 206, 210

double() method, 175, 182

double object, 55

double-quoted string, 376

DRY principle
Cucumber scenario out-

lines, 59–65
definition, 30
implementing, 51
method stub, 176
nested examples, 150
steps, 253
view specs, 318
violation, 89

DSLs, 11, 164, 224, 239, 274

dump_failures() method, 229

dump_pending() method, 229

duplication
checking for, 50
eliminating, 54
introducing, 84

Index • 390

reducing, 31, 84, 193
removing, 3, 70, 176,

252, 335

duration parameter, 229

dynamic test double, 48

dynamic typing, 175

E
:each scope, 219

edge cases, 19, 275, 363

else branch, 74

Emacs editor, 211

emergent design, 4

empty() method, 82

empty string, 68

empty? method, 163

Enough Is Enough principle,
20, 122

env.rb file, 36, 41, 47, 270,
305

environment, set up, 11

eql? method, 156

equal matcher, 154, 164

equal(expected) matcher, 154–
155

equal? method, 156

equality
documentation, 156
matchers, 155
operation, 154
RSpec syntax, 374

equals() method, 155

erb templates, 325

error_on() method, 368

errors
handling, 345
and logical failures, 43,

49
raising, 191
reports, 210

errors_on() method, 368

events, 27, 129, 149

exact_match?() method, 72

exact_match?() method, 88

exact_match_count() method, 81–
84, 86, 100

example groups
controller, 227
declaring, 12
describe() method, 134
helper methods, 144
inner group, 149

nested, 68, 136–137,
142, 148, 207

organizing, 134
outer group, 149
shared, 147, 225
test cases, 134

example method, aliases, 170

example object, 229

example_count parameter, 228

example_failed(example) method,
229

example_group object, 229

:example_group key, 215

example_group_started(exam-
ple_group) method, 229

example_passed(example) method,
229

example_pending(example) method,
229

example_started(example) method,
229

ExampleGroup class, 149, 325,
349

ExampleGroup object, 46, 135

examples
brittle, 200
coding for passing, 49–

53, 175
count, 47
coupling to a type, 186
declaring, 12
exact matches, 69
failure count, 47
intent, 177
locations, 47
run count, 13, 47
simplest example, 67
stopping points, 46

Examples keyword, 239, 259

Exception class, 160, 191

exceptions, 43, 65
raising, 191

exclusion filter, 218

executable example, 133

executable scenarios, 235

execution_result, 229

ExpectationNotMetError class error,
154, 163, 309

expectations, 41
assertions, 134
blocks, 134
brittle, 156
built-in, 153
definition, 153

domain-specific, 153
duplication, 169
failure messages, 158
false, 123
floating point calcula-

tions, 157
interaction, 133
negative, 185
object state, 164
ordering, 192
post-event state, 155
precision, 168
RubySpecs, 372
self-verifying, 174
setting, 46
state-based, 133
target object, 168
test doubles, 52

Expectations API, 277

expected arguments, 185,
187

expected behavior, 6, 45–46,
133

expected outcomes, 27, 149,
159

expected statement, 158

expected values, 31

explicit receiver, 171

explicit subject, 171

exploratory testing, 93–94

exponential cost curve, 112–
113

expressive tests, 225

expressiveness, 85, 135, 154,
168, 299

extend(*modules, options={})
method, 219

extensibility, 375

extension modules, 219

extension points, 201, 215

extensions, loading, 209

external behavior, 53

external dependencies, 312

external systems, 194

Extract Class class, 90

Extract Class refactoring, 86

Extract Method method, 90

Extract Method refactoring,
72, 82

Extreme Programming, 6

Extreme Programming In-
stalled (Jeffries, Ron), 21,
235

Index • 391

F
F (in output), 206, 210

*.feature extension, 241

facet, 134–135

FactoryGirl, 332, 367

FAILED message in summary,
49

failing code example, 47–49

failing examples
--backtrace, 210
changing to pass, 52, 70
commenting out, 139
disabling, 102
exact vs. number match,

71
indicators of, 49
marking as pending, 139

failing scenarios, 39, 73–74,
99, 242

failing step, 8, 39, 50

failure contexts, 341

failure messages
default, 222
matcher.failure_mes-
sage_for_should, 154

matcher.failure_mes-
sage_for_should_not, 154

Mocha, 202
readability, 221
string argument, 175
unexpected, 52

failure modes, 109–110

failure_count parameter, 229

failure_message_for_should()
method, 223

failure_message_for_should_not()
method, 223

failures, 43
context, 76
count, 13
full backtrace, 83
hooks, 254
logical, 63
logical errors, 49
minus signs, 74
numbered, 49
output format, 206
preventing introducing

new, 102
previous, 211
rapid feedback, 84
runtime errors, 63
summary line, 210

fake object, 41

Fake pattern, 183

fakes, 42

false value, 164

feature files, 35

.feature files, 38

feature sets, 123, 245

feature-wise development,
119

Feature keyword, 238, 246

features
adding, 77
adding a feature, 59–65
as requirements, 124
automating, 35
definition, 234
delivering, 123
difference with stories,

127
Direct Model Access, 275
DRY principle, 33
expressiveness, 33
organizing, 244
parts, 234
required, 21
running all, 63
title, 234

.features file extension, 35

features directory, 14, 35,
37, 244, 250

feedback
how to use, 97–106
meaningful, 155, 160
rapid, 76–77, 84, 92

field_labeled() method, 299

field_named() method, 299

field_with_id() method, 299

File object, 228

file systems, 194

fill_in() method, 290, 308

filtering, 215–219

find() method, 180–181

find_by_name() method, 156

finger charts, 126

Firefox, 303, 306, 311

first iteration, 25, 33–35

first-person form, 27

Fixjour, 332, 367

FixtureReplacement, 367

fixtures, 349

fixtures directory, 293

flash[:notice], 337

flexibility, 135, 256, 260

:flexmock symbol, 220

floating point calculations,
157–172

flow control, 126

fluent interfaces, 175

:foreign_key option, 355

form_for() method, 319

--format, 206, 208

--format argument, 230

--format documentation option,
137

--formatter, 209

Formatter API, 228

formatters, 206, 208–209
custom, 228–230

forms, 298–299

4 C’s, 372

Fowler, Martin, 53, 79

fragmentation, 372

Framework for Integration
Test, 31

free-form format, 29

free-form narrative, 234

Freeman, Steve, 197

frequent code integration, 118

from() method, 159

:from option, 292

full backtrace, 83

functional specifications,
112, 126

G
Game class, 42–43, 61, 86

@game instance variable, 63

Game object, 45, 48, 52, 63,
92

Game responsibilities, 67

game.rb file, 40, 47, 64

Game.start() method, 62

game_spec.rb file, 45, 54, 73

Gemfile file, 268, 316

generated URLs, 306

generated descriptions, 169–
170

generated statement, 158

GET requests, 287

get() method, 227

get_eval() method, 310–311

get_via_redirect() method, 282

Gherkin, 234, 236, 238

Given() method, 15, 31, 38,
250

Index • 392

Given framework element
definition, 12
Direct Model Access style,

287, 307
events, 129
example, 180
outer group, 149
steps, 63

Given keyword, 27, 239, 242

Given, When, Then frame-
work, 5, 43, 98, 129, 178,
242

global hooks, 219

global state, 142

global storage area, 201

Golden Master technique, 158

granular examples, 158

GreaterThanThreeMatcher class,
188

green coding, 40, 49

green dot, 210

greet() method, 12

greeting variable, 12

Grenning, James, 40

Grimm, Avdi, 366

Groovy, step definitions, 249

guards, 375

guess() method, 63, 68, 70,
73, 79–80, 85–86

@guess instance variable, 87,
103

guess, submitting for Code-
breaker game, 28–29

H
Hanrigou, Philippe, 308

hard-coded values, 176

has_ prefix, 165

Hash object, 4, 136

hash_including() method, 187

hash_not_including() method, 187

hashes() method, 257

have matcher, 368

have matcher sequence, 167

have() method, 166

Have object, 167

have_ prefix, 165

have_exactly() method, 166

have_selector matcher, 310

have_selector() method, 296

have_xpath matcher, 297, 310

header() method, 300

Hello Cucumber example, 14–
17

hello directory, 14

Hello RSpec example, 12–13

Hello World example, 11, 13

--help, 205

help option, 205

helper() method, 325

helper methods, 144–147,
251

helper specs, 326

helpers, 325

heredoc, 376

highly coupled code, 200

hooks, 140–144, 148, 216,
253

global, 219

hooks.rb file, 254

HTML decoded content, 297

HTML formatter, 208, 228

HTML Report, 209

http_accept() method, 300

HTTP_AUTHORIZATION header, 300

I
ideal days, 127

idioms, 146

if, elsif, else structure, 76

imperative scenarios, 243

imperative steps, 244

implementations, 102–103,
183, 378

implicit subject, 171–172,
225

@in_browser tag, 245

incidental stakeholders, 122

include(*modules, options={})
method, 219

include(item) matcher, 155

inclusion, 216–217

incremental approach, 76,
80, 104

index action, 345

index cards, 22

infrastructure, 56

initial state, 141

initialize() method, 145, 228,
258

initializers, 86, 145

inject() method, 84

inner circle, 57

inner cycle, 8

inner group, 149

instance variables, 54, 142,
171

instance_of() method, 163, 186

integrate_views() method, 344

integration testing, 129, 284

intent
embedding, 178
expressing, 72–77, 186
hiding, 184

inter-module call, 40

interactions, 133, 197, 257,
329

interface discovery, 196

internal structure, 4–5

Internet Explorer, 310

IO object, 228

IronRuby, 372

is_ prefix, 310

isolated code examples, 65

isolation issues in testing,
311

it() method, 46–47
as alias for example(), 170
delegating should, 171
description, 136
expressiveness, 135
free text argument, 138
RSpec code example, 6,

12, 102

it_behaves_like() method, 147

It’s all behavior principle, 122

@iteration_12 tag, 245

iteration planning, 25

iteration planning meeting,
33

iterations, 33, 75, 115, 126,
237

iterative development, 94

iterators, 80

J
Java, 249, 378

JBehave library, 7

JUnit tests, 207

JUnit Recipes (Rainsberger,
J.B.), 158

Index • 393

K
kanban, 126

Katz, Yehuda, 221

Keogh, Liz, 236

Koss, Bob, 25

L
lambdas, 218

Large Class code smell, 86

Lean manufacturing, 126

length property, 165, 167

let() method, 55, 68, 335

lib directory, 40, 56, 346

libxml2 library, 310

link_to() method, 289

links, simulating clicking, 288

$LOAD_PATH variable, 46

:location key, 215

locators, 309

logger, 173, 178, 197

logical error, 43

logical failure, 43, 49, 57, 63,
65, 346

login attribute, 357

London XP community, 174

Long Method code smell, 80

long methods
definition, 80
improving, 82

M
Mabey, Ben, 307

Mac OS X, 301

Machinist, 332, 367

Mackinnon, Tim, 197, 236

macros, 219, 224–227, 368

maintainability, 104, 110,
173

calling steps, 253
cost of, 116

Manges, Dan, 366

Marick, Brian, 125, 133

mark variable, 74, 80, 82

Marker class, 86, 90, 100

Marker object, 87, 89, 97

Marker.new constructor, 100

marker.rb file, 89, 103

marker_spec.rb file, 90, 100

marking algorithm
Codebreaker guessing

game, 67–77, 92

efficiency of, 59
flaws, 94
implementation, 22, 77
modifying, 99
single method, 106

Marks, Peter, 236

match operation, 188

Matcher DSL, 221

Matcher Protocol, 223

matcher.failure_message_for_should
failure message, 154

matcher.failure_mes-
sage_for_should_not failure
message, 154

matcher.matches? method, 154

matchers, 223, 368
built-in, 220
custom, 164, 220
definition, 154
description, 170
failure messages, 222

matches
all, count, 101
duplicate matches, 97
exact matches, 69, 71,

75, 80
new matches, 104
no matches, 69, 71
number matches, 69, 71,

75, 80
one match, 69
total matches, count, 102

matches? matcher, 223

matches? method, return value,
154

matches?(object) method, 154

matches?(self) method, 154, 167

Matts, Chris, 236

Matz’s Ruby Implementation,
372

Measurable outcome, 125

memcached, 312

memoization, 42, 55

Message class, 331
Rails models, 350

message expectations, 176–
178

in Codebreaker game, 48
creating, 176
Given, Then, What, 177
implementation details,

184
mixing with method

stubs, 177

ordering, 191
Widget class, 181

message formatters, 228

message routes, 320

@message variable, 317, 337,
353

message_attrs parameter, 359

message_spec.rb file, 350

message parameter, 41

messages, 41

messages collection, 42

messages empty array, 45

messages table, 363

messages_controller.rb file,
333

messages_controller_spec.rb
file, 330

MessagesController class, 330,
357

Meszaros, Gerard, 174

metadata, 215, 377

metaprogramming model, 179

method calls, 37

method chaining, 175

method definitions, 37

method stubs, 177–178, 181,
192

creating, 175
generating, 175–176

method-level concepts, 174

method_missing() method, 164,
167

metrics, 212

migrations, 266

MIME type, application behav-
ior and, 300

minus sign, 70, 74, 80, 89,
99

MissingTemplate error, 319, 339

:mocha symbol, 220

mock() method, 175, 178, 182,
202

mock models, 318–324

mock objects, 321

mock_model() method, 318–324,
354

mock_with() method, 202, 220

MockExpectationError class, 161

Mock Roles, not Objects (Free-
man, Steve et al.), 197

mocks, 41, 182, 220

Index • 394

model objects, 181

Model View Controller (MVC),
273

ModelExampleGroup class, 349

models
business rules, 356–365
custom macros, 369
Db, 366–368
exercise, 365–366
generating, 331
matches, 369
Rails views, 315
specs, 349–356

Module object, 135

modules, 146, 216

MSpec, 377

mspec script, 377

mspec-ci script, 377–378

mspec-tag script, 377–378

multiline text, 158, 256, 259

multiple concerns, 86

MVC (Model View Controller),
273

N
.NET library, 372, 378

NameError, 39

names, abstractions, 72

narratives, 25–29, 235

Nathan, Sobo, 7

negative expectations, 185

nested doubles, 199

nested example groups, 68,
142, 148–151, 207

nested scopes, 68

nesting, 297

network, 194, 218, 312

network calls, 184

network_double() method, 185

new() method, 334, 349

new operator, 172

new template, 337

new.html.erb template, 319

new.html.erb_spec.rb file, 318

new_record? stub, 323

A New Look at Test-Driven
Development (Astels, Dave),
3, 371

nil value, 164

*nix system, 56

*nix users, 93

--no-helper flag, 330

no_args() method, 187

noise, 146, 193, 195, 209

Nolan, John, 236

nomenclature, 134

NoMethodError class, 163, 165,
168

non-GET requests, 289

non-alphanumeric charac-
ters, 135

non-numeric characters, 94

nondeterminism, 194

nonfunctional requirements,
122

nonheader row, 61

North, Dan, 3, 7, 138, 236

NOT, 246

not-a-mock library, 179

Null Object design pattern, 52

NullDb library, 366

NullDB plug-in, 181

number_match?() method, 73,
76, 101

number_match?() method, 88

number_match_count() method,
84–86, 99

numbered directories, 37

O
object

behavior, 4, 134
designing, 198
equivalence, 155
fake, 41
identity, 155
interactions, 5
real, 41
receiving the message, 40
specification, 6
structure, 5, 80

Object class, 201

Object Mentor, 25, 40

Object object, 251

object-level behavior, 242

object-level concepts, 174

object-oriented software, 197

object-oriented systems, 197

ObjectDaddy, 332, 367

odors, 87

Olsen, Rick, 225

onclick, 289

one-to-one mapping, 46

open classes, 154

operator expressions, 168–
169

options, 210, 212

OR, 246

ordered() method, 191

ordered messages, 192

organizational risk perspec-
tive, 122

Outcome-Based Planning,
117

outcomes, 125, 129, 290, 295

outer circle, 57

outer cycle, 8

outer group, 149

Output object, 42, 48

output() method, 42, 55
colorizing, 209, 212
mark variable, 80
summary, 49

output format, 206
modifying, 215

@output variable, 42

outside-in development, 40,
57

P
parallel spec file, 45

parameterized step defini-
tions, 289

parameterizing, 189

partial mocking, 179, 181

partial stubbing, 180

passing code examples, 49–
53, 56, 140, 339

passing scenarios, 250

passing specs, 62–63

passing steps, 38–39, 63

@passing tag, 245

paths.rb file, 270

Pattern Languages of Program
Design 3 (Martin, Robert et
al.), 53

PDF formatter, 229

pdf_formatter.rb file, 229

PdfFormatter class, 229

peek() method, 137

PENDING: Not Yet Implement-
ed message, 47

pending() method, 139

pending examples, 102
colorized output, 210

Index • 395

identifying, 140
it() method for, 138–140
MessagesController, 330
notification of, 49
temporarily pending, 332
validation specs, 350

pending statement, 102, 104

pending steps, 266

pending wrapper, 140

pending_count parameter, 229

PendingExampleFixedError class,
140

Perl, 371

Perl-ish globals, 371

persisted? method, 320

persistence layer, 281

Phoenix, Evan, 371

placeholders, 259

plain-text format, 25, 33–35,
228, 249, 273

planning phase, programming
projects, 111

plus signs, 74, 80, 89

points of failure, 194

pop() method, 137

POROs, 315, 349

post() method, 342

post-event state, 155

post_via_redirect() method, 282

predicate matchers, 163–164

predicate methods, 163

presentation logic, 326

primary collaborator, 178

Proc class, 223

procedural code, 80

process automation, 116, 122

production code, 105, 119
stable, 116
unstable, 110

profiles, Cucumber, 260

Programming Ruby: The Prag-
matic Programmer’s Guide
(Thomas, Dave with Chad
Fowler and Andy Hunt),
11, 84, 371

progress bar formatter, 206,
208, 228

progressive setup, 149

project
failures, 109–110
inception, 122–124
management, 110

purpose, 122
risks, 115
root, 14, 37
root directory, 56

prototype, 104–105

Pryce, Nat, 197

pseudo-random sequences,
195

punctuation, 138

push() method, 157

PUT request, 290

put() method, 180

puts message, 48

puts() method, 42, 48, 52, 68

Python, 371

Q
query method, stubbing, 199

R
race conditions, 308, 312

Rails
BDD cycle, 266
Cucumber, 273–279
helpers, 325
introduction, 265–266
outside-in development,

266–268
running spec files, 206
Selenium, 303–313

Rails 2, 270

Rails 3, 220, 268–270, 330

Rainsberger, J. B., 158

raise() method, 162

raise_error matcher, 160, 162

raise_error() method, 288

raise_error(type) matcher, 155

Rake, 205, 208, 211, 213,
317

rake cucumber command, 270

Rakefile, 205
RSpec::Core::RakeTask class,

211

rake spec command, 269–270

rake spec:controllers command,
330

RakeTask tool, 211–212

random generators, 194

.rb file extension, 36

RBehave, 7

RCov, 212

readability, 144, 151, 154,
221, 253

real objects, 41, 178, 180,
182

received_messages() method, 359

recipient_id attribute, 350, 354

record() method, 368

records() method, 368

red F, 210

red coding, 8, 40, 49

red/green/refactor cycle, 4,
57

model specs, 366
Rails, 266
refactoring step, 77
role in BDD cycle, 8

redirect_to() method, 344

Redirection (300–399) HTTP
Status Code, 287

redundancy, 339

Refactoring (Fowler, Martin),
53, 79

refactoring
code smells, 79–80, 90–

93
coding with RSpec, 53–56
definition, 53, 79
eliminating duplication,

54, 70–72
example, 50
to express intent, 72–73
Extract Class, 86
Extract Method, 72, 82
in the green, 54, 139
incremental approach,

80–89
leaky examples, 352
linearity, 81
in moderation, 93
new implementation, 104
in the red, 54
summary, 94–95
testing, 54, 93–94

Regexp class, 15

Regexp class, 38

Regexp error messages, 160

Regexp object, 61, 188

register() method, 4

registrations collection, 4

Registry, 4

regression tests, 105, 119,
133, 200, 233, 273

regressions, 110, 245, 286,
295, 372

Index • 396

regular expressions
Codebreaker game, 61,

63
Cucumber step defini-

tions, 250, 256
multiline text in RSpec,

158
String arguments, 188

reinforcing loop, 113

Relevant outcome, 125

reload() method, 295

render() method, 316, 318

render_template() method, 221,
343–344

render_views() method, 344

rendered() method, 316

repeatable sequence, 196

report_to() method, 222–223

reporting, 215

RequestParameters class, 164

--require, 209

require statements, 56

requirements
batch delivery, 118
expressing, 184
reason, 236
stakeholders, 124
streaming, 118
in terms of features, 124

rescue() method, 162

respond_to(message) matcher,
155

response object, 180

REST API, 300

RESTful, 289

result.should() method, 154

return values, 189

risk-mitigating planning, 113

roles, mock, 197, 200

rolling back code, 104

root directory, 47, 56, 210

routes, implicit, 346

routes.rb file, 320

routing layer, 281

RR library, 179

:rr symbol, 220

RSpec
adding behavior, 43
API, 46
application behavior, 6
Autotest, 205, 210
--backtrace, 83

BDD software methodolo-
gy, 121

before hooks, 141, 216
built-in expectations,

133, 381–383
code base, 134
command-line tools, 133
configuration, 216
custom formatters, 228–

230
custom matchers, 220–

224
cycle, 8
describing behavior, 45
Domain-Specific Lan-

guage, 134
drilling down to, 65
DSL, 11
extending, 133, 215
filtering, 216–219
getting started, 45–46
IDE integration, 133
installation, 11–12
macros, 224–227
outputting strings, 47
overview, 5–6
passing example, 13
patterns, 174
pending examples, 102,

138
Rake, 205, 208, 211,

213, 317
RCov, 212
specifying behavior, 133
Story Runner, 7
structures and syntax, 6
TextMate bundle, 46, 205
underlying objects , 57

rspec gem, 11, 47
--backtrace flag, 83
--color flag, 48
duplications, 169
failure coding, 100
–format doc option, 47
help, 11
options, 205
overview, 6
usage example, 11, 13,

17

.rspec file, 210, 269

:rspec symbol, 220

RSpec-1, 211, 222

rspec-1.x, 142

rspec-core gem, 205

rspec-rails plug-in
helper specification, 325
macros, 221, 225

matchers, 368
Rails contexts, 278
Rails views, 316
Rake, 211
testing of, 265

RSpec::Core::ExampleGroup class,
46, 135

RSpec::Core::Formatters::BaseFormat-
ter class, 228

RSpec::Core::RakeTask class, 211–
212

RSpec::Expectations module, 153

RSpec::Matchers class, 222

RSpec::Matchers::Have constant,
166

RSpec::Matchers::Matcher class,
222

RSpec::Mocks class, 48, 179,
182, 202

RSpec::Mocks::Mock class, 175

rspec:install generator, 268, 317

rspec_on_rails_on_crack library,
225

RSpecGreeter class, 12–13

Rubinius, 371, 373, 375, 378

#rubinius IRC channel, 371

Ruby, 11
class names, 135
code, 249, 376
community, 378
directory layout, 43
dynamic typing, 175
implementations, 371,

378
inject() method, 84
interpreter, 40, 154, 167
introduction, 5
iterators, 85
JBehave port, 7
metaprogramming model,

179
method names, 135
module, 46
recognition by Cucumber,

27, 36
specification, 372
speed, 371
step definitions, 234
versions, 11

Ruby on Rails, 158, 180,
255, 265

ruby_bug guard, 375

Rubygems, 11

RubySpec, 371–379

Index • 397

run() method, 143

runtime errors, 63

S
@secret instance variable, 103

save() method, 180, 324, 334,
336–337

save_and_open_page() method,
301

Scala, step definitions, 249

scenario outlines, 30–31, 33,
59–61, 98, 258

scenario tables, 31

Scenario keyword, 27, 31, 239–
240, 246

Scenario Outline keyword, 239

scenarios, 7
adding, 29–30
artificial structure, 129
as integration tests, 129
automating, 124
BDD, 128
customizing, 260
declarations, 8, 30
expressiveness, 33
failed, 16
getting to pass, 15
grouping, 32
implementing, 281
life cycle, 245
maintainability, 299
missing, 94
passing, 67, 71
plain text, 7
relationships, 258
repetitive, 31
Ruby, 7
Selenium, 311
separate scenarios, 63
steps, 7–8
styles, 243
tables, 60, 63
undefined, 15, 61–62

Scenarios keyword, 239, 259

schema.rb file, 366

scope, 142, 219, 298

secondary collaborator, 178

@secret instance variable, 86

select() method, 292

select_date() method, 292

select_datetime() method, 292

select_time() method, 292

Selenium, 273, 281, 303–313

selenium() method, 308

selenium-client API, 308

selenium.browserbot.getCurrentWin-
dow() method, 310

Selenium::Client::Driver class, 308

selenium_client gem, 303

self-documenting code, 73

self-verifying expectations,
174

semantic nuances, 373

send_message() method, 358–
359

sender_id field, 361

sent_messages() method, 361

Sequel library, 220

sequences, 195

Server Error (500–599) HTTP
Status Code, 288

server errors, 311

servers, 194

service packs, 110

session hash, 343

set_hidden_field() method, 293

set_status() method, 145

setup_mocks_for_rspec() method,
201

shared examples, 144, 147–
148, 225

shared_examples_for() method,
147–148

shortcuts, 182

should expectation, 153

should() method, 154–155,
167, 171, 223

should() method, 154

should tool, 138

should== method, 156–157

should=== method, 156

should_assign() method, 227

should_not() method, 154–155,
171, 222–223

should_not== method, 157

should_not_receive() method, 185

should_receive() method, 176,
184, 188

shoulda library, 225

should eql() method, 156

shouldequal() method, 156

show.html.erb template, 317

simplest example, 67–70

Simulated Browser style,
274, 281, 283, 294

single iterator, breaking into
two, 76

Single Responsibility Principle
(SRP), 80, 86, 356

size property, 165, 168

“Skinny Controller, Fat Mod-
el” (Buck, Jamis), 356

Smalltalk, 5

SMART outcomes, 123, 125

snapshots, 37

software
delivery challenges and

successes, 109–110,
114–119

design, 118
development of, 110–111
internal structure, 79
understandability, 79

some_helper() method, 251

source() method, 82

spec directory, 206, 212, 269

spec files, 205–206
loading extensions, 209

spec task, 212

spec-file, 46

_spec.rb suffix, 206, 318,
341, 356

Spec::Matchers class, 222

Spec::Rake::SpecTask class, 211

spec_helper.rb file, 46–47,
269, 318, 341, 356, 368

spec_opts() method, 212

spec directory, 14, 45, 47

specdoc format, 212

Specific outcome, 125

specifications, 137, 199

specify() method, 170

specs
benefits, 102
churn and confusion,

377
code coverage, 212
communication, 373
connecting to the code,

46–47
declarative nature, 375
definition, 133
flexibility, 197
less brittle, 197
metadata, 377
passing, 69
statistical, 195
updating after refactor-

ing, 90–93

Index • 398

SpecTask class, 212

speculative code, 70

speed, 283, 287, 307, 366

stable sequences, 194

stack example, 140

stack-based instruction set,
376

stakeholders, 121–124, 233
feedback, 126
language, 128
working scenarios, 126

start message, 48

start() method, 40, 61–62, 68

start(example_count) method, 228

start_dump() method, 229

state, sharing, 142, 149

state-based expectations, 133

STDOUT, 41, 48, 228, 230

step definitions, 249–251
arguments, 251
Backgrounds, 255
block, 15
calling steps, 252–253
code snippets, 250
decoupling, 291
definition, 15
example, 42
helper methods, 251
implementing, 282
invocation, 8
methods, 37–41
model interfaces, 349
multiline text, 256–257
overlap with view specs,

326
overview, 234
reusable, 289
scenario outlines, 61
Selenium, 307
Simulated Browser style,

282
storing, 15
styles, 273–275
Webrat API, 303

step_definitions directory, 15,
37, 250, 269

steps, 15, 36–37, 240
calling within step defini-

tions, 252–253
skipped, 16
undefined, 15

Stevenson, Chris, 207

stories, 124–129

Stories In, Features Out ar-
rangement, 127

storing() method, 4

streaming requirements, 118–
119

String arguments, 251

String object, 136, 138

String object, 188

string variables, 103

Strings, 135, 160, 166

structural discrepancies, 63

structural error, 65

stub() method, 175, 177–178,
182–183, 202

stub chains, 183

stub_chain() method, 184

stub_model() method, 324

stubbed dependencies, 195

subject, 171–172

subject code, 133–134

subject() method, 171

submit_form() method, 295

Subscription class, 364

success contexts, 341

success path examples, 336

Successful (200–299) HTTP
Status Code, 287

sudo command, 11–12

:suite scope, 219

summary line, 210

supply chain example, 123

support directory, 36, 270

Symbol object, 162, 220, 222

symbols, 138, 191

syntactic sugar, 163, 166,
252

pure, 166

systemic faults, 117

systems thinking terminology,
113

T
--tags argument, 246

tables in steps, 61, 63, 257

tabular data, 31–33

tagged hooks, 254

tags, 245–247, 260, 377

target() method, 82

target object, 167

TDD (Test-Driven Develop-
ment), 3–5, 25

design and documenta-
tion, 133

teardown_mocks_for_rspec()
method, 202

Tempfile object, 293

Temporary Variable code
smell, 80

Temporary Variables, 80–82,
85

test data builders, 332, 367

test doubles
advantages in code, 52
in automated Cucumber

features, 41–43
built-in support, 201
choosing other frame-

works, 200–202
creating, 175
custom adapters, 201–

202
definition, 174
dynamic, 48
method stubs, 175–178
nomenclature, 174
one-at-a-time rule, 202
risks and trade-offs, 198–

200
as stand-ins, 184
test-specific extensions,

174, 178–182
views, 318
when to use, 194–198

test files, Autotest, 210

test methods, 134

Test Spy pattern, 179

test suites, 4

Test-Driven Design, tradition-
al, 176

test-specific extensions, 174,
178–182

when to use, 194–198

test.log file, 300

Test::Unit class, 46, 134, 158,
200

TestCase class, 46

TestDox, 207

Test Driven Development: By
Example (Beck, Kent), 138

tester role, 129

testers, 4–5

testing
list, 138
overview, 3
practices, 94
Rails, 265

Index • 399

Simulated Browser style,
282

types, 247

testing phase, programming
projects, 111

test-specific subclass pattern,
179

TestUploadedFile class, 293

text attribute, 350

text() method, 322

text() method, 318

text/plain MIME type, 293

text_field() method, 321

TextMate, 205, 210, 228

themes, 123, 245

Then() method, 15, 31, 38, 41
steps, 64

Then framework element
definition, 12
implementing, 281
passing, 50
Simulated Browser Style,

287
specifying outcomes, 310

Then keyword, 27, 239, 243

ThoughtWorks, 207, 236, 303

throughput, 115, 125–126

throw() method, 162

throw/catch, 162

throw_symbol matcher, 162

ticket number, 375

tight coupling, 177

Time class, 293

Timeboxed outcome, 125

title attribute, 350, 352

tmp directory, 301

to() method, 159

to_i() method, 311

to_param stub, 323

to_s() method, 157, 222

top-level groups, 148

traceability, 123

traditional projects, 109–114

traditional top-down decompo-
sition, 123

transaction() method, 143

transactional fixtures, 307

transactions, turning off, 306

Treetop library, 7

triangulation, 176

true value, 164

TRUNCATE TABLE, 308

:truncation, 308

truthy, 341

try/catch, 162

U
ubiquitous language, 128

uncheck() method, 291

uninitialized constant, 39

uninitialized constant message,
331

unit testing, 4

UnitRecord library, 366

up-front approach, 122

update_attributes() method, 324

use_transactional_fixtures, 305

User class, 357, 364

User example, 136

user interfaces, 315

user stories, 234–235
as a planning tool, 24–25
characteristics, 25
commercial distribution,

23
context, 24
as conversation token,

21–23
generating, 21
properties, 235
selecting, 33

user_spec.rb file, 363

users, 257
role, 235

users_url() method, 306

User Stories Applied (Cohn,
Mike), 21, 235

utilities, 184, 215, 258

V
valid? method, 368

validation rules, 180

validations, specifying, 350

variable data placeholders, 30

velocity, 115

verbosity, 321

verify_mocks_for_rspec() method,
202

version string, 375

view logic, 325

view matchers, 295

view specs
directory structure, 318

helpers, 325–326
mock models, 318–324
naming conventions, 318
summary, 326–327
writing, 315–318

view templates, 344

Vim editor, 211

visibility, 254

visit() method, 288

W
wait_for() method, 309

Walnes, Joe, 197

Watir, 281

web_steps.rb file, 270, 289,
296

Webrat, 326
API, 273
DOM, 312
forms, 289–295, 299
functional testing, 265
HTTP, 299
introduction, 281–282
page navigation, 287–290
RSpec matchers, 295–

298
scope, 298
Selenium, 303–313
step definitions, 282–287
summary, 301
timeouts, 312
troubleshooting, 300–301
view specs, 326

Webrat library, 252

Webrat::NotFoundError error, 299–
300

Webrat::PageLoadError error, 288

Webrat::SeleniumSession class,
309

well-factored code, 104

When() method, 15, 31, 38–41,
63

When framework element,
12, 281, 287, 308

When keyword, 27, 239, 242

Widget class, 180–181

WidgetsController class, 181

@wip tag, 245

wip: prefix, 260

with() method, 185, 187

within() method, 298

World() method, 251

World object, 251

Index • 400

world.rb file, 251

wrappers, rspec-flavored, 180

X
xUnit, 46, 155

xml_http_request() method, 343

XPath, 297, 310

XUnit Test Patterns (Meszaros,
Gerard), 174

Y
YARV mailing list, 371

yellow asterisk, 210

yield self, 145

Z
ZenTest, 265

ZeroDivisionError class, 160

Index • 401

More on Cucumber
Go further into the depth and breadth of Cucumber!

Your customers want rock-solid, bug-free software that
does exactly what they expect it to do. Yet they can’t
always articulate their ideas clearly enough for you to
turn them into code. The Cucumber Book dives straight
into the core of the problem: communication between
people. Cucumber saves the day; it’s a testing, commu-
nication, and requirements tool – all rolled into one.

Matt Wynne and Aslak Hellesøy
(250 pages) ISBN: 9781934356807. $30
http://pragprog.com/titles/hwcuc

You can test just about anything with Cucumber. We
certainly have, and in Cucumber Recipes we’ll show
you how to apply our hard-won field experience to your
own projects. Once you’ve mastered the basics, this
book will show you how to get the most out of Cucum-
ber—from specific situations to advanced test-writing
advice. With over forty practical recipes, you’ll test
desktop, web, mobile, and server applications across
a variety of platforms. This book gives you tools that
you can use today to automate any system that you
encounter, and do it well.

Ian Dees, Matt Wynne, Aslak Hellesoy
(250 pages) ISBN: 9781937785017. $33
http://pragprog.com/titles/dhwcr

http://pragprog.com/titles/hwcuc
http://pragprog.com/titles/dhwcr

Seven Databases, Seven Languages
There’s so much new to learn with the latest crop of NoSQL databases. And instead of
learning a language a year, how about seven?

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond a basic tutorial to explore the
essential concepts at the core of each technology.

Eric Redmond and Jim Wilson
(330 pages) ISBN: 9781934356920. $35
http://pragprog.com/titles/rwdata

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(328 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/titles/btlang

http://pragprog.com/titles/rwdata
http://pragprog.com/titles/btlang

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/titles/achbd
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/titles/achbd

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/titles/achbd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/achbd
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Foreword
	About the Authors
	Acknowledgments
	Preface
	Ruby and Gem Versions
	Downloading the Code Examples
	What's in This Book

	Part I—Getting Started with RSpec and Cucumber
	1. Introduction
	Test-Driven Development: Where It All Started
	Behaviour-Driven Development: The Next Step
	RSpec
	Cucumber
	The BDD Cycle

	2. Hello
	Installation
	Hello RSpec
	Hello Cucumber

	3. Describing Features
	Introducing Codebreaker
	Planning the First Release
	Planning the First Iteration
	What We've Learned

	4. Automating Features with Cucumber
	Steps and Step Definitions
	Step Definition Methods
	Test Double
	What We've Learned

	5. Describing Code with RSpec
	Getting Started with RSpec
	Red: Start with a Failing Code Example
	Green: Get the Example to Pass
	Refactor
	What We've Learned

	6. Adding New Features
	Scenario Outlines in Cucumber
	Responding to Change
	What We've Learned

	7. Specifying an Algorithm
	Begin with the Simplest Example
	Refactor to Remove Duplication
	Refactor to Express Intent
	What We've Learned

	8. Refactoring with Confidence
	Sniffing Out Code Smells
	One Step at a Time
	Updating Specs After Refactoring
	Exploratory Testing
	What We've Learned

	9. Feeding Back What We've Learned
	Use Cucumber for Collaboration
	Experimenting with a New Implementation
	What We've Learned

	Part II—Behaviour-Driven Development
	10. The Case for BDD
	How Traditional Projects Fail
	Why Traditional Projects Fail
	Redefining the Problem
	The Cost of Going Agile
	What We've Learned

	11. Writing Software That Matters
	A Description of BDD
	The Principles of BDD
	The Project Inception
	The Cycle of Delivery
	What's in a Story?
	What We've Learned

	Part III—RSpec
	12. Code Examples
	Describe It!
	Pending Examples
	Hooks: Before, After, and Around
	Helper Methods
	Shared Examples
	Nested Example Groups
	What We've Learned

	13. RSpec::Expectations
	should, should_not, and matchers
	Built-in Matchers
	Predicate Matchers
	Be True in the Eyes of Ruby
	Have Whatever You Like
	Operator Expressions
	Generated Descriptions
	Subjectivity
	What We've Learned

	14. RSpec::Mocks
	Test Doubles
	Method Stubs
	Message Expectations
	Test-Specific Extensions
	More on Method Stubs
	More on Message Expectations
	When to Use Test Doubles and Test-Specific Extensions
	Risks and Trade-Offs
	Choosing Other Test Double Frameworks
	What We've Learned

	15. Tools and Integration
	The rspec Command
	TextMate
	Autotest
	Rake
	RCov
	What We've Learned

	16. Extending RSpec
	Metadata
	Configuration
	Filtering
	Extension Modules
	Global Hooks
	Mock Framework
	Custom Matchers
	Macros
	Custom Formatters
	What We've Learned

	Part IV—Cucumber
	17. Intro to Cucumber
	From 20,000 Feet
	Features
	Customer Acceptance Tests
	Gherkin
	Scenarios
	Steps
	The cucumber Command
	Given/When/Then
	Declarative and Imperative Scenario Styles
	Organizing Features
	Tags
	What We've Learned

	18. Cucumber Detail
	Step Definitions
	World
	Calling Steps Within Step Definitions
	Hooks
	Background
	Multiline Text
	Tables in Steps
	Scenario Outlines
	Configuration
	What We've Learned

	Part V—Behaviour-Driven Rails
	19. BDD in Rails
	Outside-In Rails Development
	Setting Up a Rails 3 Project
	Setting Up a Rails 2 Project
	What We've Learned

	20. Cucumber with Rails
	Step Definition Styles
	Direct Model Access
	What We've Learned

	21. Simulating the Browser with Webrat
	Writing Simulated Browser Step Definitions
	Navigating to Pages
	Manipulating Forms
	Specifying Outcomes with View Matchers
	Building on the Basics
	What We've Learned

	22. Automating the Browser with Webrat and Selenium
	Getting Started
	Writing Step Definitions for Selenium
	Debugging Selenium Issues
	What We've Learned

	23. Rails Views
	Writing View Specs
	Mocking Models
	Specifying Helpers
	When Should I Write View Specs?
	What We've Learned

	24. Rails Controllers
	Controller Specs
	Context-Specific Examples
	Specifying ApplicationController
	What We've Learned

	25. Rails Models
	Writing Model Specs
	Specifying Business Rules
	Exercise
	Useful Tidbits
	What We've Learned

	A1. RubySpec
	The Project
	Syntax
	Guards
	Extensibility
	MSpec
	Tags
	Community

	A2. RSpec's Built-in Expectations
	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

