
ptg

ptg

RAILS
™ ANTIPATTERNS

ptg

RAILS™ ANTIPATTERNS
Best Practice Ruby on Rails™ Refactoring

Chad Pytel
Tammer Saleh

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, market-
ing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress cataloging-in-publication data is on file with the Library of
Congress

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-60481-1
ISBN-10: 0-321-60481-4
Text printed in the United States on recycled paper at RR Donnelley

in Crawfordsville, Indiana.
First printing, November 2010

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Kitty Wilson

Indexer
The CIP Group

Proofreader
Linda Begley

Technical Reviewers
Jennifer Lindner
Pat Allen
Joe Ferris
Stephen Caudill
Tim Pope
Robert Pitts
Jim “Big Tiger” Remsik
Lar Van Der Jagt

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

ptg

To my wife, Rachel, and son, Noah.

Thanks for letting me steal away to get this book finished.

—Chad

To Heather, Ralph and Rochelle, James,

and my mother, Judith.

—Tammer

ptg

This page intentionally left blank

ptg

Contents

Foreword xi

Introduction xiii

Acknowledgments xvii

About the Authors xix

1 Models 1
AntiPattern: Voyeuristic Models 2

Solution: Follow the Law of Demeter 3
Solution: Push All find() Calls into Finders on the Model 7
Solution: Keep Finders on Their Own Model 10

AntiPattern: Fat Models 14
Solution: Delegate Responsibility to New Classes 15
Solution: Make Use of Modules 21
Solution: Reduce the Size of Large Transaction Blocks 24

AntiPattern: Spaghetti SQL 31
Solution: Use Your Active Record Associations and Finders Effectively 32
Solution: Learn and Love the Scope Method 36
Solution: Use a Full-Text Search Engine 42

AntiPattern: Duplicate Code Duplication 50
Solution: Extract into Modules 50
Solution: Write a Plugin 59
Solution: Make Magic Happen with Metaprogramming 64

2 Domain Modeling 73
AntiPattern: Authorization Astronaut 74

Solution: Simplify with Simple Flags 76
vii

ptg

AntiPattern: The Million-Model March 79
Solution: Denormalize into Text Fields 79
Solution: Make Use of Rails Serialization 82

3 Views 89
AntiPattern: PHPitis 91

Solution: Learn About the View Helpers That Come with Rails 92
Solution: Add Useful Accessors to Your Models 98
Solution: Extract into Custom Helpers 100

AntiPattern: Markup Mayhem 107
Solution: Make Use of the Rails Helpers 109
Solution: Use Haml 111

4 Controllers 117
AntiPattern: Homemade Keys 118

Solution: Use Clearance 119
Solution: Use Authlogic 121

AntiPattern: Fat Controller 123
Solution: Use Active Record Callbacks and Setters 123
Solution: Move to a Presenter 142

AntiPattern: Bloated Sessions 154
Solution: Store References Instead of Instances 154

AntiPattern: Monolithic Controllers 161
Solution: Embrace REST 161

AntiPattern: Controller of Many Faces 167
Solution: Refactor Non-RESTful Actions into a Separate Controller 167

AntiPattern: A Lost Child Controller 170
Solution: Make Use of Nested Resources 173

AntiPattern: Rat’s Nest Resources 180
Solution: Use Separate Controllers for Each Nesting 181

AntiPattern: Evil Twin Controllers 184
Solution: Use Rails 3 Responders 186

5 Services 189
AntiPattern: Fire and Forget 190

Solution: Know What Exceptions to Look Out For 190

viii Contents

ptg

AntiPattern: Sluggish Services 195
Solution: Set Your Timeouts 195
Solution: Move the Task to the Background 195

AntiPattern: Pitiful Page Parsing 197
Solution: Use a Gem 198

AntiPattern: Successful Failure 201
Solution: Obey the HTTP Codes 203

AntiPattern: Kraken Code Base 207
Solution: Divide into Confederated Applications 207

6 Using Third-Party Code 211
AntiPattern: Recutting the Gem 213

Solution: Look for a Gem First 213
AntiPattern: Amateur Gemologist 214

Solution: Follow TAM 214
AntiPattern: Vendor Junk Drawer 216

Solution: Prune Irrelevant or Unused Gems 216
AntiPattern: Miscreant Modification 217

Solution: Consider Vendored Code Sacrosanct 217

7 Testing 221
AntiPattern: Fixture Blues 223

Solution: Make Use of Factories 225
Solution: Refactor into Contexts 228

AntiPattern: Lost in Isolation 236
Solution: Watch Your Integration Points 238

AntiPattern: Mock Suffocation 240
Solution: Tell, Don’t Ask 241

AntiPattern: Untested Rake 246
Solution: Extract to a Class Method 248

AntiPattern: Unprotected Jewels 251
Solution: Write Normal Unit Tests Without Rails 251
Solution: Load Only the Parts of Rails You Need 254
Solution: Break Out the Atom Bomb 259

ixContents

ptg

8 Scaling and Deploying 267
AntiPattern: Scaling Roadblocks 268

Solution: Build to Scale from the Start 268
AntiPattern: Disappearing Assets 271

Solution: Make Use of the System Directory 271
AntiPattern: Sluggish SQL 272

Solution: Add Indexes 272
Solution: Reassess Your Domain Model 277

AntiPattern: Painful Performance 282
Solution: Don’t Do in Ruby What You Can Do in SQL 282
Solution: Move Processing into Background Jobs 286

9 Databases 291
AntiPattern: Messy Migrations 292

Solution: Never Modify the up Method on a Committed Migration 292
Solution: Never Use External Code in a Migration 293
Solution: Always Provide a down Method in Migrations 295

AntiPattern: Wet Validations 297
Solution: Eschew Constraints in the Database 298

10 Building for Failure 301
AntiPattern: Continual Catastrophe 302

Solution: Fail Fast 302
AntiPattern: Inaudible Failures 306

Solution: Never Fail Quietly 307

Index 311

x Contents

ptg

Foreword

It’s hard to believe that it will soon be three years since Zed Shaw published his infa-
mous (and now retracted) rant “Rails Is a Ghetto.” Even though Zed’s over-the-top
depiction of certain well-known people was wicked and pure social satire, the expres-
sion he coined has stuck like the proverbial thorn among certain higher echelons of
the community. It’s an especially piquant expression to use when we’re called on to fix
atrocious Rails projects. Occasionally, we’ll even use the phrase with regard to our own
messes. But most commonly, this expression is applied to code written by the unwashed
masses. The rapid ascension of Rails as a mainstream technology has attracted droves of
eager programmers from both outside and inside the wide sphere of web development.
Unfortunately, Rails doesn’t discriminate among newcomers. It offers deep pitfalls for
bearded wise men of the object-oriented world and PHP script kiddies alike.

Frankly, I would have written this book myself eventually, because there’s such a
need for it in the marketplace. At Hashrocket, we do a lot of project rescue work. Oh,
the agony! We’ve seen every AntiPattern detailed in this book rear its ugly face in real-
life projects. Sometimes we see almost every AntiPattern in this book in a single proj-
ect! My good friends and consultants extraordinaire Chad and Tammer have seen the
same horrors. Only fellow consultants like these two could write this book properly
because of the wide variety of coding challenges we face regularly. The solutions in this
book cover a wide range of sticky situations that we know any professional Ruby
developer will run into on a regular basis.

If you’re new to Rails (and, based on the demographics, you probably are), then
you’re now holding one of the most valuable resources possible for getting past the
chasm that separates an ordinary Rails developer from greatness. Congratulations and
good luck making the leap.

—Obie Fernandez
Author of The Rails 3 Way
Series editor of the Addison-Wesley Professional Ruby Series
CEO and founder of Hashrocket

xi

ptg

This page intentionally left blank

ptg

Introduction

As Rails consultants, we’ve seen a lot of Rails applications. The majority of the
AntiPatterns described in this book are directly extracted from real-world applications.
We hope that by formalizing their descriptions here, we can present you with the tools
you’ll need to identify these AntiPatterns in your own code, understand their causes,
and be able to refactor yourself out of the broken patterns.

What Are AntiPatterns?
AntiPatterns are common approaches to recurring problems that ultimately prove to
be ineffective.

The term AntiPatterns was coined in 1995 by Andrew Koenig, inspired by Gang
of Four’s book Design Patterns, which developed the concept of design patterns in the
software field. The term was widely popularized three years later by the book
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (William Brown,
Raphael Malveau, Skip McCormick, and Tom Mowbray). According to the authors of
AntiPatterns, there must be at least two key elements present to formally distinguish an
actual AntiPattern from a simple bad habit, bad practice, or bad idea:

• A repeated pattern of action, process, or structure that initially appears to be ben-
eficial but ultimately produces more bad consequences than beneficial results

• A refactored solution that is clearly documented, proven in actual practice, and
repeatable

What Is Refactoring?
Refactoring is the act of modifying an application’s code not to change its functional
behavior but instead to improve the quality of the application itself. These improvements

xiii

ptg

are intended to improve readability, reduce complexity, increase maintainability, and
improve the extensibility (that is, possibility for future growth) of the system.

This book makes extensive reference to the process of refactoring in order to fix
code that is exhibiting an AntiPattern. In an attempt to increase readability and under-
standability of the AntiPatterns and solutions in this book, we’ve left out the auto-
mated test suite that should accompany the code. We want to draw extra attention to
the fact that your code should be well tested. When you have tests in place, some of
the solutions we’ve presented will be much easier to implement with confidence.
Without tests, some of the solutions might not even be possible. Unfortunately, many
of the applications you encounter that exhibit these AntiPatterns will also be untested.

How to Read This Book
Each AntiPattern in this book outlines the mistakes we see in the wild and the nega-
tive effects they have on developer velocity, code clarity, maintenance, and other
aspects of a successful Rails project. We follow each AntiPattern with one or more
solutions that we have used in practice and that have been proven as proper fixes for
the AntiPattern.

While you can read this book straight through from front to back, we’ve taken
great pains to make each solution stand on its own. Therefore, this book is both a
strong technical publication as well as a quick source of reference for Rails developers
looking to hone their techniques in the trenches.

The following is a brief outline of what’s covered in each chapter:

• Chapter 1, “Models”: Because Rails encourages code to be pushed down the
Model-View-Controller (MVC) stack to the Model layer, it’s fitting that a chapter
on models is the largest chapter in the book. Here, we focus on a variety of
AntiPatterns that occur in Model layer code, from general object-oriented pro-
gramming violations to complex SQL and excessive code duplication.

• Chapter 2, “Domain Modeling”: Going beyond the nitty-gritty code at the
Model layer in a Rails project, this chapter focuses on overall schema and database
issues. This chapter covers issues such as normalization and serialization.

• Chapter 3, “Views”: The Rails framework gives developers a large number of
tools and conventions that make code in the Model and Controller layers consis-
tent and maintainable. Unfortunately, the required flexibility in the View layer

xiv Introduction

ptg

prevents this sort of consistency. This chapter shows how to make use of the View
layer tools Rails provides.

• Chapter 4, “Controllers”: Since the integration of a RESTful paradigm in the
Rails framework, the Controller layer has seen some significant improvements.
This chapter goes through the AntiPatterns we’ve seen in Controller-layer-related
Rails code.

• Chapter 5, “Services”: Dealing with and exposing APIs requires tenacity. This
chapter walks through all the common pitfalls we’ve seen, including timeouts,
exceptions, backgrounding, response codes, and more.

• Chapter 6, “Using Third-Party Code”: This short chapter reviews some of the
AntiPatterns that can come from incorporating community plugins and gems
into your applications.

• Chapter 7, “Testing”: One of the strengths of Rails is the strong push toward test-
driven development. Unfortunately, we’ve seen as many AntiPatterns inside test
suites as in production code. This chapter outlines these AntiPatterns and how to
address them.

• Chapter 8, “Scaling and Deploying”: Developing a Rails application locally is a
great experience, but there are many factors to consider once it’s time to release an
application to the world. This chapter will help you ensure that your applications
are ready for prime time.

• Chapter 9, “Databases”: This chapter outlines the common issues we’ve seen with
migrations and validations.

• Chapter 10, “Building for Failure”: Finally, the last chapter in the book gives
guidance on general best practices for ensuring that an application degrades grace-
fully once it encounters the real world.

xvIntroduction

ptg

This page intentionally left blank

ptg

Acknowledgments

As any published author will tell you, writing a book is a difficult task. It’s also one
that cannot be done in isolation. Two people deserve the majority of our gratitude.
Obie Fernandez was with us when the idea for this book formed, and he believed in us
enough to help us get it published. After that, it was up to Debra Williams Cauley, an
incredible editor, and now an incredible friend, to whip us into shape whenever
progress slowed. This book never would have been published without their help.

There were many other people who also had a hand in getting this book to our
readers. Both Pat Allan and Joe Ferris worked hard to contribute solutions involving
Thinking Sphinx and unit-testing techniques, respectively. Michael Thurston and
Jennifer Lindner worked hand-in-hand with us to make sure what we delivered to you
is as high caliber as possible. Special thanks also to Stephen Caudill for rounding up
the “volunteers” from Hashrocket and coordinating the review push.

Thanks also go to the entire crew at thoughtbot, who provided inspiration and
feedback throughout the writing of this book. Your passion for excellence and quality
in everything you do was the initial light shined upon many of these AntiPatterns.

Finally, we’d like to thank all the readers who gave us such incredibly useful feed-
back during the Safari beta program, as well as all the hardworking people at Addison-
Wesley who have made this book a reality.

xvii

ptg

This page intentionally left blank

ptg

About the Authors

Chad Pytel is the founder and CEO of thoughtbot, a software development firm spe-
cializing in Ruby on Rails, and creators of Paperclip, Shoulda, FactoryGirl, and
Hoptoad, among other projects. thoughtbot embraces both agile development
methodologies and a “getting real” project philosophy. Chad coauthored Pro Active
Record: Databases with Ruby and Rails (Apress, 2007) and has presented at various con-
ferences around the world. Chad lives with his wife and son in Boston. When not
managing projects and writing code, Chad enjoys spending time with his family. To
follow along with Chad and the rest of the thoughtbot team’s ideas on development,
design, technology, and business, visit their blog at http://robots.thoughtbot.com.

Tammer Saleh is the director of engineering at Engine Yard. He wrote the Shoulda
testing framework, was the primary developer and project manager for thoughtbot’s
fantastic Hoptoad service, and is an experienced Ruby on Rails trainer and speaker. In
previous lives, he’s done AI development for the NCSA and the University of Illinois,
as well as systems administration for both Citysearch.com and Caltech’s Earthquake
Detection Network. You can find him online at http://tammersaleh.com.

xix

ptg

This page intentionally left blank

ptg

CHAPTER 1
Models

The Model layer of your Rails application often provides the core structure of your
application. Especially if you’re following a RESTful application design pattern, the
structure that is initially laid out in your models will carry through to your controllers
and views.

The Model layer should also contain the business logic of your application.
Therefore, the models of your application will often receive the majority of developer
attention throughout a project’s lifecycle.

Because so much attention is paid to the models, and because so much responsi-
bility is contained within them, it’s relatively easy for things to get out of hand in the
models as an application grows and evolves. Also, because of the powerful nature of
the Model layer of Rails, and specifically the Active Record ORM, it’s fairly easy for
things to get out of hand.

Fortunately, Rails provides the structure and tools necessary to stop this slow (or
quick!) downward spiral, and it’s often just a matter of effectively using them in order
to keep the peace. In addition, it’s important to always keep your guard up. In partic-
ular, it’s incredibly important to have good unit test coverage of your models (and cov-
erage of your entire application) to not only ensure that they function properly but to
provide a test harness that will assist in maintenance, refactoring, and modification
down the road.

In this chapter, we will cover many of the common pitfalls that can occur in the
Model layer of the application, and we present proven techniques for recovering from
these issues—and avoiding them in the first place.

1

ptg

AntiPattern: Voyeuristic Models
If you’re reading this book, you’re probably familiar with what object-oriented pro-
gramming is and its basic tenets—such as encapsulation, modularity, polymorphism,
and inheritance—as well as some of its other core concepts, such as use of classes and
methods.

Both Ruby and the Ruby on Rails framework use these object-oriented program-
ming tenets and concepts. Let’s quickly review some of these concepts that you’ll use
as you build applications using the Ruby language and the Ruby on Rails framework:

• Class: A class defines the characteristics of an object, including the details of what
it is (its attributes) and what it can do (its methods).

• Method: A method exists on a class and defines what the class can do. For exam-
ple, a Post class can be published, and the method that is called to cause the class
to publish itself may be the publish() method.

• Encapsulation: A class provides the modularity and structure of an object-ori-
ented computer program, and often a class will be recognizable to a non-pro-
grammer familiar with the computer program’s problem domain. For example, a
banker would be familiar with most of the characteristics of a Bank class in a
banking computer program. Ideally, the code for a class should be relatively self-
contained through encapsulation, which is the concealment of functional details of
a class from the other objects that call its methods. This is typically done by limit-
ing the methods other objects are allowed to call and exposing a public interface
through which an object is exposed to the world. In Ruby, this is done with the
public, protected, and private keywords.

• Model: In the Ruby on Rails Active Record ORM library and the Model-View-
Controller (MVC) architecture to which Ruby on Rails subscribes, models are the
classes that make up a program and the classes that will be persisted to the pro-
gram’s database layer. We’ll continue to use the term model nearly interchangeably
with the word class throughout this book. It’s important to remember that a
model is merely a class and that it should also follow the core principles of object-
oriented programming.

The lifecycle functionality that Active Record provides with its callbacks and valida-
tions and the structure and organization in the View and Controller layers of the Ruby

2 Chapter 1. Models

ptg

on Rails framework provide an incredibly powerful set of tools with which to build
web applications. However, these powerful tools can be used to break down the prin-
ciples of object-oriented programming and to create code that is strongly coupled, not
encapsulated, and poorly organized. So remember that with great power comes great
responsibility.

A well-intentioned programmer may create an application that breaks the funda-
mental tenets of object-oriented programming for a variety of reasons. For example, if
the programmer is coming from a less structured web development framework (or un-
framework) such as Perl or PHP, she may simply not be aware of the structure that
Ruby on Rails, MVC, and object-oriented programming provide. She may apply what
she knows about her current environment to a program she’s building using Ruby on
Rails. Alternatively, a programmer very experienced with object-oriented program-
ming and MVC may first approach the Rails framework and be distracted by the
dynamic nature of the Ruby language and unfamiliar with what he might consider to
be unique aspects of the Ruby language, such as modules. Distracted by these things,
he might proceed to build a system without first considering the overall architecture
and principles with which he is familiar because he perceives Ruby on Rails to be dif-
ferent. Or perhaps a programmer is just overwhelmed by what the Ruby on Rails
framework provides—such as generators, lifecycle methods, and the Active Record
ORM—that she may get distracted by the immense capability and build a system too
quickly, too messily, and without foresight or engineering discipline.

Regardless of the reason a programmer might create an application that breaks the
fundamental tenets of object-oriented programming, without a doubt, it can happen.
Both experienced and inexperienced programmers alike may have this problem when
they come to this new framework for the first time.

The following sections present several scenarios that violate the core tenets of
MVC and object-oriented programming, and they present alternative implementa-
tions and procedures for fixing these violations to help produce more readable and
maintainable code.

Solution: Follow the Law of Demeter
An incredibly powerful feature of Ruby on Rails is Active Record associations, which
are incredibly easy to set up, configure, and use. This ease of use allows you to dive
deep down and across associations, particularly in views. However, while this func-
tionality is powerful, it can make refactoring tedious and error prone.

3AntiPattern: Voyeuristic Models

ptg

Say that you’ve properly encapsulated your application’s functionality inside dif-
ferent models, and you’ve been effectively breaking up functionality into small meth-
ods on the models. Now you have some models, and you have view code that looks
like the following:

class Address < ActiveRecord::Base

belongs_to :customer

end

class Customer < ActiveRecord::Base

has_one :address

has_many :invoices

end

class Invoice < ActiveRecord::Base

belongs_to :customer

end

This code shows a simple invoice structure, with a customer who has a single address.
The view code to display the address lines for the invoice would be as follows:

<%= @invoice.customer.name %>

<%= @invoice.customer.address.street %>

<%= @invoice.customer.address.city %>,

<%= @invoice.customer.address.state %>

<%= @invoice.customer.address.zip_code %>

Ruby on Rails allows you to easily navigate between the relationships of objects
and therefore makes it easy to dive deep within and across related objects. While this
is really powerful, there are a few reasons it’s not ideal. For proper encapsulation, the
invoice should not reach across the customer object to the street attribute of the
address object. Because if, for example, in the future your application were to change
so that a customer has both a billing address and a shipping address, every place in
your code that reached across these objects to retrieve the street would break and
would need to change.

To avoid the problem just described, it’s important to follow the Law of Demeter,
also known as the Principle of Least Knowledge. This law, invented at Northeastern
University in 1987, lays out the concept that an object can call methods on a related
object but that it should not reach through that object to call a method on a third

4 Chapter 1. Models

ptg

related object. In Rails, this could be summed up as “use only one dot.” For example,
@invoice.customer.name breaks the Law of Demeter, but @invoice.customer_name
does not. Of course, this is an over simplification of the principle, but it can be used as
a guideline.

To follow the Law of Demeter, you could rewrite the code above as follows:

class Address < ActiveRecord::Base

belongs_to :customer

end

class Customer < ActiveRecord::Base

has_one :address

has_many :invoices

def street

address.street

end

def city

address.city

end

def state

address.state

end

def zip_code

address.zip_code

end

end

class Invoice < ActiveRecord::Base

belongs_to :customer

def customer_name

customer.name

end

def customer_street

customer.street

end

5AntiPattern: Voyeuristic Models

ptg

def customer_city

customer.city

end

def customer_state

customer.state

end

def customer_zip_code

customer.zip_code

end

end

And you could change the view code to the following:

<%= @invoice.customer_name %>

<%= @invoice.customer_street %>

<%= @invoice.customer_city %>,

<%= @invoice.customer_state %>

<%= @invoice.customer_zip_code %>

In this new code, you have abstracted out the individual methods that were originally
being reached by crossing two objects into individual wrapper methods on each of the
models.

The downside to this approach is that the classes have been littered with many
small wrapper methods. If things were to change, now all of these wrapper methods
would need to be maintained. And while this will likely be considerably less work than
changing hundreds of references to invoice.customer.address.street throughout
your code, it’s still an annoyance that would be nice to avoid.

In addition, your public interface on Invoice has been polluted by methods that
arguably have nothing to do with the rest of your interface for invoices. This is a gen-
eral disadvantage of Law of Demeter, and it is not particularly specific to Ruby on
Rails.

Fortunately, Ruby on Rails includes a function that addresses the first concern.
This method is the class-level delegate method. This method provides a shortcut for
indicating that one or more methods that will be created on your object are actually
provided by a related object. Using this delegate method, you can rewrite your exam-
ple like this:

6 Chapter 1. Models

ptg

class Address < ActiveRecord::Base

belongs_to :customer

end

class Customer < ActiveRecord::Base

has_one :address

has_many :invoices

delegate :street, :city, :state, :zip_code, :to => :address

end

class Invoice < ActiveRecord::Base

belongs_to :customer

delegate :name,

:street,

:city,

:state,

:zip_code,

:to => :customer,

:prefix => true

end

In this situation, you don’t have to change your view code; the methods are exposed
just as they were before:

<%= @invoice.customer_name %>

<%= @invoice.customer_street %>

<%= @invoice.customer_city %>,

<%= @invoice.customer_state %>

<%= @invoice.customer_zip_code %>

Thanks to this helper provided by Rails, you have the benefit of following the Law of
Demeter without so much extra clutter in your models.

Solution: Push All find() Calls into Finders on the Model
Programmers who are not familiar with the MVC design pattern to which Rails
adheres, as well as those who are just unfamiliar with the general structures provided
by Ruby on Rails may find themselves with code living where it simply doesn’t belong.

7AntiPattern: Voyeuristic Models

ptg

This section shows several examples and illustrates proper technique for getting
knowledge of your domain model out of your views and controllers.

The code problem discussed in this section can present itself in all three layers of
the MVC design pattern, but it is most prevalent in its most blatant form in the view
or the controller. Any place where you directly call finders on a model, other than
inside the model itself, is a place that decreases readability and maintainability.

For example, if you wanted to create a web page that displays all the users in your
web application, ordered by last name, you might be tempted to put this call to find
directly in the view code, as follows:

<html>

<body>

<% User.find(:order => "last_name").each do |user| -%>

<%= user.last_name %> <%= user.first_name %>

<% end %>

</body>

</html>

While this may seem like a straightforward way to create the web page, you’ve put calls
directly in the view; this style may seem familiar to developers coming from PHP. In
PHP, it would not be uncommon to actually have SQL directly in the HTML page as
well, like this:

<html>

<body>

<?php

$result = mysql_query('SELECT last_name, first_name FROM users

ORDER BY last_name') or die('Query failed: ' . mysql_error());

echo "\n";

while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {

echo "\t$line[0] $line[1]\n";

}

echo "\n";

?>

</body>

</html>

8 Chapter 1. Models

ptg

Based on the PHP, the concise find method provided by Rails certainly is a step up!
However, both examples leave something to be desired.

At the very least, including the actual logic for what users will be displayed on this
page is a violation of MVC. At worst, this logic can be duplicated many times
throughout the application, causing very real maintainability issues. For example, it
will be problematic if you want the users in your application to be ordered by last
name whenever they appear in a list.

In order to get rid of the MVC violation, you need to move the logic for which
users are displayed on the page into the Users controller. When you do this, you end
up with something like the following:

class UsersController < ApplicationController

def index

@users = User.order("last_name")

end

end

The following is the corresponding index view:

<html>

<body>

<% @users.each do |user| -%>

<%= user.last_name %> <%= user.first_name %>

<% end %>

</body>

</html>

Now you don’t have any logic in the presentation layer about the collection of users
you’re displaying; now it’s just sitting in the controller.

At one time, when Rails was young and wild, many programmers would stop here,
content to remove the MVC violation. However, times have changed, and most devel-
opers now realize the benefits of going one step further and moving the direct find call
down into the model itself. With this change, the view doesn’t change at all. However,
you end up with a controller that calls a new ordered method on the User model:

class UsersController < ApplicationController

def index

9AntiPattern: Voyeuristic Models

ptg

@users = User.ordered

end

end

And the User model contains the call to find:

class User < ActiveRecord::Base

def self.ordered

order("last_name")

end

end

Having the definition of what it means to retrieve an ordered list of users in a cen-
tral location is beneficial. The Ruby on Rails community has embraced this concept so
strongly that it has been baked into the framework itself, with scope. We’ll go into the
use of scopes later, but for now suffice to say that they are shortcuts for defining meth-
ods on a model. For example, the named scope for the ordered method would be
written as follows:

class User < ActiveRecord::Base

scope :ordered, order("last_name")

end

Solution: Keep Finders on Their Own Model
Moving the find calls out of the Controller layer in your Rails application and into
custom finders on the model is a strong step in the right direction of producing main-
tainable software. A common mistake, however, is to move those find calls into the
closest model at hand, ignoring proper delegation of responsibilities.

Say that while working on the next great social networking application, you find
a complex find call in a controller:

class UsersController < ApplicationController

def index

@user = User.find(params[:id])

@memberships =

@user.memberships.where(:active => true).

limit(5).

order("last_active_on DESC")

end

end

10 Chapter 1. Models

ptg

Based on what you’ve learned from the last two solutions, you diligently move
that scope chain into a method on the User model. You think this seems like the best
place for it, since you’re dealing with the UsersController:

class UsersController < ApplicationController

def index

@user = User.find(params[:id])

@recent_active_memberships = @user.find_recent_active_memberships

end

end

class User < ActiveRecord::Base

has_many :memberships

def find_recent_active_memberships

memberships.where(:active => true).

limit(5).

order("last_active_on DESC")

end

end

This is definitely an improvement. UsersController is now much thinner, and
the method name reveals intent nicely. But you can do more. In the first example, the
UsersController knew far too much about the underlying implementation of the
Membership model. It was digging into the database columns, accessing the active
and last_active_on columns, and it was doing some other very SQL-like things.
You’ve improved the situation a bit, but as far as delegation of responsibilities goes,
you’ve simply moved the problem into the User model. The User model now knows
far too much about the Membership model’s implementation, which is a clue that you
still haven’t pushed the methods far enough.

AssociationProxy Magic

You’ll learn more about association flexibility in a later AntiPattern, but knowing
a bit about how Active Record associations work is important for this example.

When you access an Active Record association, what you get isn’t an array
but a proxy class of type ActiveRecord::Associations::AssociationProxy
that walks and talks like an array. This is a pretty nifty object, as it lets you

11AntiPattern: Voyeuristic Models

ptg

access all the class methods on the target class, but it limits them to the subset
defined by the association.

What that means is if you have a Membership.active method that
returns all active memberships, you can use that method through your associ-
ations. user.memberships.active will then return all active memberships
for that user. This is pretty neat—and definitely useful.

By making use of the power of Active Record associations, you can trim up this
example even further. You can define a finder on Membership, and you can then access
that finder through the User#memberships association, as follows:

class User < ActiveRecord::Base

has_many :memberships

def find_recent_active_memberships

memberships.find_recently_active

end

end

class Membership < ActiveRecord::Base

belongs_to :user

def self.find_recently_active

where(:active => true).limit(5).order("last_active_on DESC")

end

end

This is much better. The application now honors the MVC boundaries and delegates
domain model responsibilities cleanly. This is a fine place to stop your refactoring, but
you can also make use of Rails 3 scopes.

A Quick Rundown on Scopes

You’ll learn more about Active Record scopes later in this chapter, in the sec-
tion “AntiPattern: Spaghetti SQL,” but knowing a bit about how they work is
important for this example.

A scope is a close cousin to AssociationProxy, but instead of referencing
a separate model, a scope allows you to define a subset of the current model.

12 Chapter 1. Models

ptg

You can define a scope in your Active Record model by using the scope class
method:

class Car < ActiveRecord::Base

scope :red, where(:color => 'red')

end

You can now ask for all red cars by calling Car.red. Like the
AssociationProxy class, the scope that’s returned from Car.red allows you
to “chain on” other class methods or other named scopes. For example, calling
Car.red.where(:doors => 2) will return the scope for all red two-door cars.

You can make use of scopes here to produce a variety of finders on Membership
that you can then chain together to get the results you’re looking for:

class User < ActiveRecord::Base

has_many :memberships

def find_recent_active_memberships

memberships.only_active.order_by_activity.limit(5)

end

end

class Membership < ActiveRecord::Base

belongs_to :user

scope :only_active, where(:active => true)

scope :order_by_activity, order('last_active_on DESC')

end

By making the refactoring in this last step, you’ve generalized a lot of the code. Instead
of only having a Member#find_recently_active method, you now have three class
methods that you can mix and match to your heart’s desire.

There are downsides to this approach, including problems with readability and
simplicity, as well as abuse of the Law of Demeter. Whether you use this approach is a
judgment call on your part. Will you use the added flexibility? Is it better than defining
a handful of separate finders? Like many advanced refactorings, this one has no easy
answer and depends greatly on your tastes.

13AntiPattern: Voyeuristic Models

ptg

AntiPattern: Fat Models
One of the key themes of this book, and something we believe in firmly, is the impor-
tance of simplicity in application development. Complexity is the number-one killer
of projects today, and it comes into an application in many ways, including through
excitement over new features, overly clever developers, and unfamiliarity with the
Ruby on Rails framework.

This chapter deals with simplicity from a unique angle: simplifying the internals
of a model by moving that complexity to new units in the application—modules and
classes.

To illustrate a model that’s grown beyond its means, let’s examine a sample Order
model in an online store application. The Order model has class methods for finding
orders based on state or by using advanced and simple search interfaces. It also has
methods for exporting an order as XML, JSON, and PDF (and we’re sure more will
creep in as the application moves along). Here is the Order model for this online store
application:

app/models/order.rb

class Order < ActiveRecord::Base

def self.find_purchased

...

end

def self.find_waiting_for_review

...

end

def self.find_waiting_for_sign_off

...

end

def self.find_waiting_for_sign_off

...

end

def self.advanced_search(fields, options = {})

...

end

14 Chapter 1. Models

ptg

def self.simple_search(terms)

...

end

def to_xml

...

end

def to_json

...

end

def to_csv

...

end

def to_pdf

...

end

end

We’ve left the implementation of the various methods to your imagination
because this chapter isn’t concerned with them. (You might be able to refactor the
methods and reduce the number of methods by using one of the other techniques we
discuss in this book.) What we’re concerned with here is the location of these methods.

When considering that this is just a small sample of the Order class’s code, it’s easy
to see that models like this can quickly get out of hand. We wish we could say that it’s
been uncommon for us to see models like this surpassing 1,000 lines of code in a sin-
gle file. But model obesity tends to creep up on new Ruby on Rails developers. The
maintenance and readability issues created by these obese classes quickly become
apparent.

In the next solution, you’ll see how easy Ruby on Rails makes it for you to group
related methods into modules. After that, you’ll learn about the underlying domain
issues behind overweight classes and see why some methods should be moved into
another class of their own.

Solution: Delegate Responsibility to New Classes
In the last solution, we discussed the use of Ruby modules for separating out related
functionality. This is a useful technique for segregating code purely for reasons of

15AntiPattern: Fat Models

ptg

 readability. It’s also a technique that new Ruby on Rails developers often overuse. Let’s
take another look at the Order class, this time focusing on the conversion methods:

app/models/order.rb

class Order < ActiveRecord::Base

def to_xml

...

end

def to_json

...

end

def to_csv

...

end

def to_pdf

...

end

end

Often, the code you’re about to move into a module doesn’t fit in the original class
in the first place. The conversion methods above aren’t really part of an Order object
mandate. An Order object should be responsible for order-like processes: calculating
price, managing line items, and so on.

Keepin’ It Classy

When code doesn’t belong in the class that contains it, you should refactor the code
into a class of its own. This is an application of the Single Responsibility Principle.
While the spirit of this principle has always existed as part of object-oriented design,
the term was first coined by Robert Cecil Martin, in his paper “SRP: The Single
Responsibility Principle.”1 Martin summarized this rule as follows: “There should
never be more than one reason for a class to change.”

Having classes take on more than a single axis of responsibility leads to code that
is brittle in the face of changing requirements. Over time, the responsibilities of a class

16 Chapter 1. Models

1. You can find this paper, and many other great resources, at www.objectmentor.com.

ptg

begin to intermingle, and changing the conversion behavior in to_xml leads to
changes in the rest of the class as well.

You can apply SRP to the Order model by splitting those conversion methods
into an OrderConverter class:

app/models/order.rb

class Order < ActiveRecord::Base

def converter

OrderConverter.new(self)

end

end

app/models/order_converter.rb

class OrderConverter

attr_reader :order

def initialize(order)

@order = order

end

def to_xml

...

end

def to_json

...

end

def to_csv

...

end

def to_pdf

...

end

end

In this way, you give the conversion methods their own home, inside a separate and
easily testable class. Exporting the PDF version of an order is now just a matter of call-
ing the following:

@order.converter.to_pdf

17AntiPattern: Fat Models

ptg

In object-oriented circles, this is known as composition. The Order object is composed
of an OrderConverter object and any other objects it needs. The Rails association
methods (for example, has_one, has_many, belongs_to) all create this sort of compo-
sition automatically for database-backed models.

Breaking the Law of Demeter

Although the chaining introduced in the preceding section upholds the Single
Responsibility Principle, it violates the Law of Demeter. You can fix this by making
use of Ruby on Rails delegation support:

app/models/order.rb

class Order < ActiveRecord::Base

delegate :to_xml, :to_json, :to_csv, :to_pdf, :to => :converter

def converter

OrderConverter.new(self)

end

end

Now you can retain your @order.to_pdf calls, which are simply forwarded on to the
OrderConverter class. We discuss both the Law of Demeter and Rails delegation ear-
lier in this chapter, in the section “Solution: Follow the Law of Demeter.”

Crying All the Way to the Bank

The technique just described—of delegating functionality to a separate class that’s
included in the first class via composition—is fundamental enough to warrant a sec-
ond example. This time, we’ll borrow a bit from the Rails documentation, with some
modifications for clarity.

The following class represents a bank account:

app/models/bank_account.rb

class BankAccount < ActiveRecord::Base

validates :balance_in_cents, :presence => true

validates :currency, :presence => true

def balance_in_other_currency(currency)

currency exchange logic...

end

18 Chapter 1. Models

ptg

def balance

balance_in_cents / 100

end

def balance_equal?(other_bank_account)

balance_in_cents ==

other_bank_account.balance_in_other_currency(currency)

end

end

In addition to the normal bank account actions, such as transfer, deposit, with-
draw, open, and close, this class has methods for returning the balance in dollars, com-
paring the balances (<=>), and converting the balance to another currency. Clearly, this
class is doing too much. It’s taking on the behavior of bank accounts and of money in
general. To follow Martin’s reasoning, we would need to modify this class if there were
a change to how much would be charged for a transfer—or every time a currency rate
changed.

To improve the BankAccount class, you could move the balance logic into a com-
posed object that represents money. Using composition in this way is so common that
Rails provides the composed_of method as a shortcut.

composed_of takes three main options: the name of the method that will refer-
ence the new object, the name of the object’s class (:class_name), and the mapping of
database columns to attributes on the object (:mapping). When a model record is
loaded, Active Record creates a new composed object for you, using the database
columns in the constructor, and creates an accessor by which you can use it.

You can refactor the BankAccount class as follows to make use of the composed_of
method:

app/models/bank_account.rb

class BankAccount < ActiveRecord::Base

validates :balance_in_cents, :presence => true

validates :currency, :presence => true

composed_of :balance,

:class_name => "Money",

:mapping => [%w(balance_in_cents amount_in_cents),

%w(currency currency)]

end

19AntiPattern: Fat Models

ptg

app/models/money.rb

class Money

include Comparable

attr_accessor :amount_in_cents, :currency

def initialize(amount_in_cents, currency)

self.amount_in_cents = amount_in_cents

self.currency = currency

end

def in_currency(other_currency)

currency exchange logic...

end

def amount

amount_in_cents / 100

end

def <=>(other_money)

amount_in_cents <=>

other_money.in_currency(currency).amount_in_cents

end

end

Now you can convert the balance of a bank account to another currency by using
@bank_account.balance.in_currency(:usd). Likewise, you can compare the bal-
ances by using @bank_account.balance > @other_bank_account.balance, regard-
less of which currencies the bank accounts are using.

Warning
There is one issue to be aware of when using composed_of:
You cannot modify a composed object in place. If you do so,
depending on the version of Rails you’re using, either your
change will not persist when you save the parent record or
you’ll receive a frozen object exception.

Wrapping Up

In summary, it’s often not enough to reduce a model’s complexity by simply moving
methods into modules. If a class is taking on more than one responsibility, or if there

20 Chapter 1. Models

ptg

is more than one reason for the class to be modified, then it likely needs to be broken
up into composed classes. Each of these classes would then have its own distinct
responsibilities, which decreases coupling and increases maintainability.

Solution: Make Use of Modules
Let’s take another look at the Order object model, this time using Ruby modules to
slim it down:

app/models/order.rb

class Order < ActiveRecord::Base

def self.find_purchased

...

end

def self.find_waiting_for_review

...

end

def self.find_waiting_for_sign_off

...

end

def self.find_waiting_for_sign_off

...

end

def self.advanced_search(fields, options = {})

...

end

def self.simple_search(terms)

...

end

def to_xml

...

end

def to_json

...

end

21AntiPattern: Fat Models

ptg

def to_csv

...

end

def to_pdf

...

end

end

Modules allow you to extract behavior into separate files. This improves readabil-
ity by leaving the Order model file with just the most important Order-related code.
Modules also serve to group related information into labeled namespaces.

Divide and Conquer

If you examine the Order model in the preceding section, you can see three easy
groupings for the methods it contains: methods for finding all orders of a certain type,
methods for searching against all orders, and methods for exporting orders. You can
make those groups more obvious by moving those methods into modules, as in the
following example:

app/models/order.rb

class Order < ActiveRecord::Base

extend OrderStateFinders

extend OrderSearchers

include OrderExporters

end

lib/order_state_finders.rb

module OrderStateFinders

def find_purchased

...

end

def find_waiting_for_review

...

end

def find_waiting_for_sign_off

...

end

22 Chapter 1. Models

ptg

def find_waiting_for_sign_off

...

end

end

lib/order_searchers.rb

module OrderSearchers

def advanced_search(fields, options = {})

...

end

def simple_search(terms)

...

end

end

lib/order_exporters.rb

module OrderExporters

def to_xml

...

end

def to_json

...

end

def to_csv

...

end

def to_pdf

...

end

end

There is a difference between include and extend in this Order object model:
include puts the module’s methods on the calling class as instance methods, and
extend makes them into class methods.

23AntiPattern: Fat Models

ptg

24 Chapter 1. Models

Move and Shake

By moving related functionality into modules, you’ve reduced the Order model to
three lines. Of course, this “reduction” is not truly a reduction; you’ve simply moved
the code from one place to another. Nonetheless, moving this code reduces the appar-
ent complexity of the Order model and allows you to organize those methods into
convenient groups.

As of version 2.2.2, Rails () does not automatically require the modules under
lib. However, an initializer in the suspenders project template (see http://github.com/
thoughtbot/suspenders) takes care of this for you:

config/initializers/requires.rb

Dir[File.join(Rails.root, 'lib', '*.rb')].each do |f|

require f

end

Note
Using modules in this way only touches on their potential.
We’ll discuss modules in greater depth in the section
“AntiPattern: Duplicate Code Duplication,” later in this
chapter.

Solution: Reduce the Size of Large Transaction Blocks
Large transaction blocks are often unnecessary, whether they are in the controller or
the model, because Active Record supplies built-in transactions as part of the saving
process. These built-in transactions automatically wrap the entire save process, includ-
ing all callbacks and validations. By utilizing these built-in transactions, you can sig-
nificantly reduce code complexity.

The following is a significant transaction that takes place inside a custom method
on an Account model, setting several values, and creating several associated models the
first time an account is created.

class Account < ActiveRecord::Base

def create_account!(account_params, user_params)

transaction do

account = Account.create!(account_params)

first_user = User.new(user_params)

first_user.admin = true

ptg

first_user.save!

self.users << first_user

account.save!

Mailer.deliver_confirmation(first_user)

return account

end

end

end

This code bundles all the functionality for creating an account in a method called
create_account! on the Account model. This method will be used only for creating
accounts, and it contains the following functionality:

• Creates the first user for an account

• Makes the user an administrator

• Adds the user to the account

• Saves the account

• Sends a confirmation email to the user

All this functionality is wrapped inside a transaction so that if anything fails, the sub-
sequent actions are not performed, and the proceeding database changes are reverted.

Often, developers make special create or save methods to hold custom functional-
ity when they are new to Rails and do not have a strong understanding of the valida-
tion and callback functionality Active Record provides. By utilizing the built-in
functionality, however, you can remove the custom create_account! method, the
explicit transaction block, and the explicit call to save!.

Order Up

The callbacks and validations build into Active Record have a set order of operation. If
any callback or validation along the way is not successful, the model’s save process will
be halted, and the transaction will be rolled back.

Note
Prior to Rails 2.2, the transaction was rolled back only for calls
to save! and save, and the resulting callbacks that failed would
not be saved, but they did not trigger a database rollback.

25AntiPattern: Fat Models

ptg

26 Chapter 1. Models

The following is the order of the callbacks for a call to save (and save!) on a
record that has never been saved before:

before_validation

before_validation :on => :create

after_validation

after_validation :on => :create

before_save

before_create

after_create

after_save

This callback sequence provides enormous flexibility throughout the Active Record
lifecycle. In addition, because this sequence of events occurs within a transaction, it
often enables you to avoid manually starting and programming your own transactions.
With knowledge of the callback lifecycle in hand, you can now refactor your manual
transaction to fit nicely within the callbacks provided by Active Record.

Check the Controller

Although you’ll be primarily making changes to the model here, it’s beneficial to look
at the controller that calls the create_account! method so that you can understand
how this code is used:

class AccountsController < ApplicationController

def create

@account = Account.create_account!(params[:account],

params[:user])

redirect_to @account,

:notice => "Your account was successfully created."

rescue

render :action => :new

end

There are several ways you could improve this create action on its own, as discussed
in Chapter 4. However, as a result of the model changes you are going to be making,
the create action in this controller is going to be changed and improved. In the pre-
ceding controller code, the create_account! method is called, and if it fails due to a

ptg

raised exception, the user will be shown the account creation form again. If it suc-
ceeds, the user will be redirected to the show page for the newly created account.

Now that you have an understanding of how the create_account! method is
used and how it will affect the code, you can begin refactoring. You can start by mov-
ing all the functionality into callbacks and setters that occur before (and after, in the
case of email sending) the creation of a new account.

Nested Attributes

The create_account! method takes parameters for an account, and it takes parame-
ters for the first user for an account. However, the built-in save and create methods
allow for only a single hash of attributes and values to be passed in. You need to actu-
ally create a setter on the Account model for setting the attributes of what you can
consider the administrative user. You can do so by using the Rails method
accepts_nested_attributes_for, as shown here:

accepts_nested_attributes_for :users

With this in place, you can modify the form in the view or other application code that
builds the attributes for the Account object. You want this object to include a subhash
of the attributes for the admin user, nested under the attributes for Account, with the
key users_attributes. Then, any of the methods for creating or updating an
Account object (Account#new, Account#create, Account#update_attributes) can
then call the setter with a hash.

The following is the view code for this example:

<%= form_for(@account) do |form| -%>

<%= form.label :name, 'Account name' %>

<%= form.text_field :name %>

<% fields_for :user, User.new do |user_form| -%>

<%= user_form.label :name, 'User name' %>

<%= user_form.text_field :name %>

<%= user_form.label :email %>

<%= user_form.text_field :email %>

<%= user_form.label :password %>

<%= user_form.password_field :password %>

<% end %>

<%= form.submit 'Create', :disable_with => 'Please wait...' %>

<% end %>

27AntiPattern: Fat Models

ptg

In this code, the fields for a user are nested within the fields for the account. When
this form is submitted to the server, the hash for the User fields will be within the hash
of fields for an account with the key users_attributes.

Again, in order for the users_attributes method to be called with the attributes
for a user, you need no further code. When the hash for Account is passed to
Account#new, the users_attributes method will be called.

You still need to set the admin flag on the admin user to true. You can accomplish
this with a before_create callback on Account that sets this flag on all users before
they are created:

class Account < ActiveRecord::Base

before_create :make_admin_user

private

def make_admin_user

self.users.first.admin = true

end

There is no need to explicitly save the user or account within the users_attributes
method. Any newly created users that are added to the account’s users collection with
this method will be automatically saved when the account is saved.

Confirm That Email

In the create_account! method in the preceding section, a confirmation email is
sent to the created user after a successful call to save!. This can be accomplished by
moving the call to the mailer into an after_create callback. If the requirements of
the application specified that each user created should receive a confirmation email,
then this should actually be an after_create callback on the User model itself. For
our purposes, let’s assume that only the admin user, who is created along with the
account, receives a confirmation email, and therefore the callback should be in the
Account model. This callback will be a method named send_confirmation_email, as
shown here:

class Account < ActiveRecord::Base

after_create :send_confirmation_email

28 Chapter 1. Models

ptg

private

def send_confirmation_email

Mailer.confirmation(users.first).deliver

end

This causes the confirmation email to be sent to the first user on the account (the only
user at the point the account is created).

Back to Standard

With the changes you’ve already made to the Account model, you’ve actually dupli-
cated all the functionality that was originally contained in the create_account!
method. Let’s take a step back and look at how things are organized now:

class Account < ActiveRecord::Base

accepts_nested_attributes_for :users

before_create :make_admin_user

after_create :send_confirmation_email

private

def make_admin_user

self.users.first.admin = true

end

def send_confirmation_email

Mailer.confirmation(users.first).deliver

end

You now no longer have the create_account! method. The functionality is
instead encompassed by a normal call to Account#create (or Account#new, followed
by a call to save). Also notice that you no longer have to explicitly create a transaction,
as all of the actions taking place now occur within the transaction provided by account
creation. Let’s take a look at the controller code for creating an account:

class AccountsController < ApplicationController

def create

@account = Account.new params[:account]

29AntiPattern: Fat Models

ptg

if @account.save

flash[:notice] = "Your account was successfully created."

redirect_to account_url(@account)

else

render :action => :new

end

end

This controller has very little custom functionality occurring; it is essentially the
default scaffolding controller (with additional code actually removed from the default
scaffold). The majority of deliberate improvements here were made at the model level.
The changes to the controller and the view were made to facilitate the changes to the
model. However, the changes made to the controller are a side benefit, as the con-
troller is improved from its original version.

There will inevitably be times when you feel that the actions you need to perform
do not fit within the built-in process of creating or saving an object. In these circum-
stances, it’s likely that the domain model you are working with may be incorrectly
structured. In such cases, you should evaluate the different entities you are working
with and keep the Active Record lifecycle in mind. You may be able to reorganize your
models such that your seemingly custom transaction fits nicely within the lifecycle
provided by Active Record.

30 Chapter 1. Models

ptg

AntiPattern: Spaghetti SQL
Active Record is an incredibly powerful framework, and many new Rails developers
fail to use it to their advantage. Not taking advantage of the incredible utility of Active
Record associations is a perfect example.

Many times we’ve come across code like the following:

class PetsController < ApplicationController

def show

@pet = Pet.find(params[:id])

@toys = Toy.where(:pet_id => @pet.id, :cute => true)

end

end

One of the issues with this action is that it’s doing a custom find call that rightfully
belongs on the Toy model. You should fix this quickly so we can dig into the real
underlying issue:

class PetsController < ApplicationController

def show

@pet = Pet.find(params[:id])

@toys = Toy.find_cute_for_pet(@pet)

end

end

class Toy < ActiveRecord::Base

def self.find_cute_for_pet(pet)

where(:pet_id => pet.id, :cute => true)

end

end

You now have a well-named and intention-revealing method on Toy, and the con-
troller is no longer digging into the model’s implementation. But, if it wasn’t already,
the fundamental problem with this code should now be apparent: The person who
wrote this code wasn’t aware of or was uncomfortable with the full range of options
that Active Record associations provide.

31AntiPattern: Spaghetti SQL

ptg

Solution: Use Your Active Record Associations and
Finders Effectively
A common mistake we see in programmers working with all languages and frame-
works is that they fail to fully learn and make use of the libraries and tools they have at
their disposal. Ruby on Rails is an incredibly powerful framework that lets you build
applications at a phenomenal pace. But in order to reap the benefits, you must take
the time to master the framework and learn about all the time- and work-saving short-
cuts it offers.

Let’s take a look at some code for finding pet toys, using Active Record associations:

class PetsController < ApplicationController

def show

@pet = Pet.find(params[:id])

@toys = @pet.find_cute_toys

end

end

class Pet < ActiveRecord::Base

has_many :toys

def find_cute_toys

self.toys.where(:cute => true)

end

end

While Active Record associations give you accessors on your model that look and
act like instances or arrays of instances of the target model (for example, toy.pet,
pet.toys), in truth what they give you is a proxy class that has a good deal of extra
behavior on it. This allows you to call finder methods on the association array.

This code makes use of the tools that Rails gives you for free. The has_many line
gives you not only the Pet#toys proxy array but also all the power and functionality
that comes with it—more than we can outline here. See http://api.rubyonrails.org for
more information.

One issue with the code that still remains is that the Pet model now knows the
implementation details of the Toy model (specifically, the fact that Toy has a Boolean
“cute” column). Let’s look at a few ways we can clean it up by making good use of the
toys association.

32 Chapter 1. Models

ptg

The first way to clean up the preceding code is a relatively little-known trick that
involves placing methods on an association. If you give any association declaration a
block, it will extend the association with the contents of that block. In other words,
methods defined inside that block will become methods on the association. The fol-
lowing is an example of this:

class PetsController < ApplicationController

def show

@pet = Pet.find(params[:id])

@toys = @pet.toys.cute

end

end

class Pet < ActiveRecord::Base

has_many :toys do

def cute

where(:cute => true)

end

end

end

The toys association now has a method on it named cute. If you call
pet.toys.cute, Rails will combine the conditions into one, returning those toys that
have both the pet_id and cute fields set correctly. This happens in a single SQL call
and is implemented using an internal Active Record tool called scope.

While this is an interesting trick, it’s of dubious utility. For one thing, this doesn’t
actually solve the issue outlined above; the Pet model still knows of the internals of the
Toy model. Another issue is that this trick can lead to repetitive code. Say that the con-
cept of a Toy owner is introduced:

class Owner < ActiveRecord::Base

has_many :toys do

def cute

where(:cute => true)

end

end

end

The definition of the cute method is now repeated in both the Pet and Owner
models. The second method for adding behavior to the Active Record associations

33AntiPattern: Spaghetti SQL

ptg

works around both of these issues. All the association declarations allow you to specify
a module via the :extend option, which will be mixed into the association. Any meth-
ods on that module will then become methods on the association, much as with the
block format. You add :extend to the association definition, as shown in the follow-
ing module and class definitions:

module ToyAssocationMethods

def cute

where(:cute => true)

end

end

class Pet < ActiveRecord::Base

has_many :toys, :extend => ToyAssocationMethods

end

class Owner < ActiveRecord::Base

has_many :toys, :extend => ToyAssocationMethods

end

This encapsulates the behavior of the Toy model in a single location, and it arguably
keeps the Toy implementation at least close to the Toy model (if you consider the
module to be an extension of that model).

While this technique is useful in some very specific circumstances (which we will
explain shortly), it is usually much more complex than necessary. As mentioned ear-
lier, the toys array is really an association proxy that allows you to call all and find
on it as if it were the Toy class. In fact, that proxy allows you to call any class method
on Toy and scopes it properly to the subset of toys that belong to that pet.2

With all this in mind, you can refactor the code once again:

class PetsController < ApplicationController

def show

@pet = Pet.find(params[:id])

@toys = @pet.toys.cute

end

end

34 Chapter 1. Models

2. This is actually true only as long as you don’t use find_by_sql in your finder methods. The
mechanism by which the SQL statements are combined (scope) breaks down when a full raw
SQL statement is used.

ptg

class Toy < ActiveRecord::Base

def self.cute

where(:cute => true)

end

end

class Pet < ActiveRecord::Base

has_many :toys

end

After you define Toy#cute, you can also make use of it through your association
methods. This keeps the implementation details directly on the Toy model, where they
belong, and makes them available to any model that is associated with it. In fact,
because all methods are proxied along with the Toy model, you can make use of scopes
as well:

class PetsController < ApplicationController

def show

@pet = Pet.find(params[:id])

@toys = @pet.toys.cute.paginate(params[:page])

end

end

class Toy < ActiveRecord::Base

scope :cute, where(:cute => true)

end

class Pet < ActiveRecord::Base

has_many :toys

end

Here you have the @pet.toys.cute.paginate(params[:page]) line as a single SQL
call.

As mentioned earlier, there are certain times when you actually want to use one of
the first two ways of extending association behavior. Both the block and the :extend
forms allow you to access the details of the underlying proxy object directly from
within your finder methods. Specifically, you have access to proxy_owner, which
points back to the owner of the association. While this is rarely needed, it can be a life-
saver in some circumstances, such as the following:

35AntiPattern: Spaghetti SQL

ptg

class Toy < ActiveRecord::Base

has column :minimum_age

end

class Pet < ActiveRecord::Base

has column :age

has_many :toys do

def appropriate

where(["minimum_age < ?", proxy_owner.age])

end

end

end

The pet.toys.appropriate method now returns a different set of toys, based on the
state of the pet (specifically, all the toys whose minimum age is less than the pet’s age).
Again, this is not commonly needed functionality, but it can really come in handy in
some cases.

Like any other craftsman with his or her tools, a programmer who doesn’t take the
time to learn all the powers of libraries is neglectful in his or her trade.

Solution: Learn and Love the Scope Method
One of the greatest headaches of Rails application development involves writing com-
plex finder methods—usually to back an advanced search interface. One way you can
minimize the complexity of these methods while increasing the opportunity for code
reuse is by leveraging the Active Record scoping methods.

Before we dive into more complex examples, let’s take on a smaller refactoring to
get acquainted with the Active Record scope helpers. Say that while working on a user
interface for managing the processes running on your servers, you come across the fol-
lowing finder method:

class RemoteProcess < ActiveRecord::Base

def self.find_top_running_processes(limit = 5)

find(:all,

:conditions => "state = 'Running'",

:order => "percent_cpu desc",

:limit => limit)

end

36 Chapter 1. Models

ptg

def self.find_top_running_system_processes(limit = 5)

find(:all,

:conditions => "state = 'Running' and

(owner in ('root', 'mysql')",

:order => "percent_cpu desc",

:limit => limit)

end

end

Finders like this are incredibly common. If a model has one or two of them, you may
be inclined to avoid refactoring them. But finders like this reproduce like rabbits. By
the end of the application lifetime, you’ll likely see one finder for every combination of
RemoteProcess state, owner, order, and so on.

We can clean up this method and make the components reusable by employing
named scopes. The scope method defines class methods on your model that can be
chained together and combined into one SQL query. A scope can be defined by a hash
of options that should be merged into the find call or by a lambda that can take argu-
ments and return such a hash.

When you call a scope, you get back an ActiveRecord::Relation object, which
walks and talks just like the array you would have gotten back from find. The crucial
difference is that the database lookup is lazy-evaluated—that is, it’s not triggered until
you actually try to access the records in the array. In the meantime, you can chain on
more scope calls to further refine your eventual result set.

Scopes are an implementation of the Virtual Proxy design pattern, which means
they act as a proxy for the result set returned from find. However, they do not initial-
ize that result set until an actual record is accessed.

You could use scopes as follows to rewrite the preceding finder:

class RemoteProcess < ActiveRecord::Base

scope :running, where(:state => 'Running')

scope :system, where(:owner => ['root', 'mysql'])

scope :sorted, order("percent_cpu desc")

scope :top, lambda {|l| limit(l) }

end

RemoteProcess.running.sorted.top(10)

RemoteProcess.running.system.sorted.top(5)

37AntiPattern: Spaghetti SQL

ptg

Not only does this reduce the code size, which is a good goal in itself, but it also allows
you to produce a much wider variety of finders by chaining named scope calls. Each of
these last two lines is executed using a single SQL query, and this is just as efficient as
using a normal finder call.

While using the scope method as shown above is popular with Rails 3 applica-
tions, the readability benefit is negligible compared to using simple class methods.
Therefore, we recommend using the following less subtle and more traditional version:

class RemoteProcess < ActiveRecord::Base

def self.running

where(:state => 'Running')

end

def self.system

where(:owner => ['root', 'mysql'])

end

def self.sorted

order("percent_cpu desc")

end

def self.top(l)

limit(l)

end

end

These class methods act identically to the methods generated by the scope calls in the
first example, but they are much easier for a general Ruby developer to understand.
They also allow normal parameter passing, without the need for lambdas. That being
said, as the scope calls are more idiomatic, we continue to use them in some of the
simpler code examples throughout the book.

The sprinkling of periods in the last two lines may trigger a code smell involving
a Law of Demeter violation. This isn’t actually the case: All the methods being called
here are on the RemoteProcess model, so we aren’t digging into the implementation
of associated classes. Nonetheless, that call chain can get pretty unwieldy and is still a
source of code duplication, if it’s called often. You can shore this up nicely by wrap-
ping the chain in a descriptive class method:

38 Chapter 1. Models

ptg

class RemoteProcess < ActiveRecord::Base

scope :running, where(:state => 'Running')

scope :system, where(:owner => ['root', 'mysql'])

scope :sorted, order("percent_cpu desc")

scope :top, lambda {|l| limit(l) }

def self.find_top_running_processes(limit = 5)

running.sorted.top(limit)

end

def self.find_top_running_system_processes(limit = 5)

running.system.sorted.top(limit)

end

end

This version gives you the best of both worlds. You can now construct arbitrary finders
by using the scopes you’ve defined, and you have consistent and well-named methods
for the most common scope chains.

This technique is also useful in testing scope calls while using mocking in your
tests. Mocking out a chain of method calls like this is difficult with almost every exist-
ing Ruby mocking framework. Consolidating these chains in a method on the model
allows you to mock out just that method.

Now that we’ve taken a quick look at basic scope usage, let’s return to the original
problem of writing advanced search methods. In this case, you need to create an
advanced search implementation for an online music database. This is a typical exam-
ple of the hoops you have to jump through to make advanced searches work correctly.
The complexity and size of the following method makes it a definite maintenance
problem, and you’ve been tasked with finding a way of cleaning it up:

class Song < ActiveRecord::Base

def self.search(title, artist, genre,

published, order, limit, page)

condition_values = { :title => "%#{title}%",

:artist => "%#{artist}%",

:genre => "%#{genre}%"}

case order

when "name": order_clause = "name DESC"

when "length": order_clause = "duration ASC"

39AntiPattern: Spaghetti SQL

ptg

when "genre": order_clause = "genre DESC"

else

order_clause = "album DESC"

end

joins = []

conditions = []

conditions << "(title LIKE ':title')" unless title.blank?

conditions << "(artist LIKE ':artist')" unless artist.blank?

conditions << "(genre LIKE ':genre')" unless genre.blank?

unless published.blank?

conditions << "(published_on == :true OR

published_on IS NOT NULL)"

end

find_opts = { :conditions => [conditions.join(" AND "),

condition_values],

:joins => joins.join(' '),

:limit => limit,

:order => order_clause }

page = 1 if page.blank?

paginate(:all, find_opts.merge(:page => page,

:per_page => 25))

end

end

This technique of building up the conditions, joins, and other find options inside a
series of conditionals was considered a fine way of implementing methods before
scopes came into play.3

You can clean up the preceding method by employing scopes as follows:

class Song < ActiveRecord::Base

def self.top(number)

limit(number)

end

40 Chapter 1. Models

3. …or before has_finder and named_scope, the predecessors to scope.

ptg

def self.matching(column, value)

where(["#{column} like ?", "%#{value}%"])

end

def self.published

where("published_on is not null")

end

def self.order(col)

sql = case col

when "name": "name desc"

when "length": "duration asc"

when "genre": "genre desc"

else "album desc"

end

order(sql)

end

def self.search(title, artist, genre, published)

finder = matching(:title, title)

finder = finder.matching(:artist, artist)

finder = finder.matching(:genre, genre)

finder = finder.published unless published.blank?

return finder

end

end

Song.search("fool", "billy", "rock", true).

order("length").

top(10).

paginate(:page => 1)

While this re-implementation using scopes reduces the code size somewhat, the real
benefits are elsewhere.

The new implementation separates the tasks of searching for songs from those of
ordering, limiting, and paginating the results. These tasks are different from one
another and were originally implemented in a single method only because of the limi-
tations of ActiveRecord::Base#find. Now that those methods have been refactored
out of the find method, they can be reused throughout the application.

Furthermore, we might argue that implementing pagination inside the model is a
violation of the Model-View-Controller (MVC) pattern. The controller should be

41AntiPattern: Spaghetti SQL

ptg

responsible for determining when pagination is appropriate (that is, when rendering
the index page) and when it isn’t (for example, when sending the results via XML,
JSON, and so on).

You may be squeamish about creating named scope class methods if they would
be used only as part of a single finder method on the model. For example, let’s assume
that the published and matching class methods would never be used outside the
search method. You can still implement the search method cleanly, using the where
method. In the following example, where acts just like find(:all) but returns a
Scope object instead of a results array:

class Song < ActiveRecord::Base

has_many :uploads

has_many :users, :through => :uploads

top and order are implemented the same as before,

using named_scope...

def self.search(title, artist, genre, published)

finder = where(["title like ?", "%#{title}%"])

finder = finder.where(["artist like ?", "%#{artist}%"])

finder = finder.where(["genre like ?", "%#{genre}%"])

unless published.blank?

finder = finder.where("published_on is not null")

end

return finder

end

end

This implementation cleanly hides the logic of finding matching and published songs
inside the search method, but it still returns a Scope object. It is just as “chainable” as
the scope version, and it involves much less code than the original method.

Scopes show what can be done with some ingenuity combined with the flexibility
of a language like Ruby. They provide a means of expressing complicated SQL queries
in a clean and beautiful manner, allowing you to write readable and maintainable code.

Solution: Use a Full-Text Search Engine
An effective search feature is critical to most modern web applications. Adding the
ability to search for phrases in a single column isn’t difficult, either. It’s when things get
a bit more complex that the headaches begin.

42 Chapter 1. Models

ptg

To smooth things out again, it’s often worth adding a full-text search engine to
your toolkit. The Rails world certainly doesn’t lack options in that arena; some possi-
bilities are Ferret (http://ferret.davebalmain.com), Sphinx (http://sphinxsearch.com),
Solr (http://lucene.apache.org/solr), and Xapian (http://xapian.org). For the purpose
of this chapter, though, we’ll be focusing on Sphinx and the Active Record plugin
Thinking Sphinx (http://ts.freelancing-gods.com).

This leads to the caveat that the solution is valid only if you’re using MySQL or
PostgreSQL. While Microsoft SQL Server and SQLite 3 aren’t options yet, support for
them is on the horizon.

Simplify Search

The following is an example of a common search approach that involves searching for
results that match any of the words provided in any of the specified columns:

app/models/user.rb

class User < ActiveRecord::Base

def self.search(terms, page)

columns = %w(name login location country)

tokens = terms.split(/\s+/)

if tokens.empty?

conditions = nil

else

conditions = tokens.collect do |token|

columns.collect do |column|

"#{column} LIKE '%#{connection.quote(token)}%'"

end

end

conditions = conditions.flatten.join(" OR ")

end

paginate :conditions => conditions, :page => page

end

end

app/controllers/users_controller.rb

class UsersController < ApplicationController

def index

@users = User.search(params[:search], params[:page])

end

end

43AntiPattern: Spaghetti SQL

ptg

44 Chapter 1. Models

Active Record doesn’t lend itself to this type of search particularly well, given that
implicit conditions are joined by AND logic, and the comparisons are exact. The
example therefore has untidy looping around each word token and column possibility
to ensure that the tokens are escaped (something Active Record normally takes care of
for us) and pattern-matched (using MySQL’s syntax). After all this, you could paginate
the search results by using the will_paginate (http://wiki.github.com/mislav/
will_paginate) library.

You can slim down this example considerably. First, you need to install Sphinx.
If you’re using Windows, you need an installer (available for download at http://
sphinxsearch.com/downloads.html), and it should be a piece of cake. If you’re using
package systems such as apt, port, and yum, you may have options available as well.

If you need (or prefer) to compile by source, though, you need to pay attention to
the following pretty standard steps:

./configure

make

sudo make install

Note
The default configure setup excludes PostgreSQL support.
To enable it, you need to use the following flag instead:

./configure --with-pgsql=`pg_config

--pkgincludedir`

Next, you need to install the Thinking Sphinx gem:

gem install thinking-sphinx

Note
Before you get caught up with the specifics of the sample
application, you need to understand the basic process for
using Sphinx. It runs as a daemon that is controlled by the
thinking_sphinx:start and thinking_sphinx:stop rake
tasks. You need to index your data regularly (via a cron job
or similar method), and the task for this is thinking_
sphinx:index (or ts:in, to save some typing).

ptg

In most cases, you do not need to stop Sphinx while the
indexing occurs. The only exception to this rule is when
you’ve changed your Sphinx setup by adding, editing, or
removing indexes within models.

You need to tell Sphinx what data you want indexed—in this case, the columns
you were searching against in your controller:

class User < ActiveRecord::Base

define_index do

indexes name, login, location, country

end

end

Essentially, all you’re doing is requesting that text columns be indexed as fields for your
searches. Don’t forget to index your data and then get that daemon running:

rake ts:in

rake ts:start

Now you can clean up your controller:

class UsersController < ApplicationController

def index

User.search(params[:search],

:page => params[:page],

:match_mode => :any

)

end

end

This is it, really. There’s no need to change the view, as Thinking Sphinx works nicely
with will_paginate collections.

The one difference between the custom-defined search method and the new one
provided by Thinking Sphinx is that the new code will match any full words provided in
the search query against any full words in the indexed data. If you want pattern match-
ing, then that requires a little bit of tweaking. First, you need to ask Sphinx to index
infixes and allow for star syntax. You do this by editing the config/sphinx.yml file:

45AntiPattern: Spaghetti SQL

ptg

development:

enable_star: true

min_infix_len: 1

test:

enable_star: true

min_infix_len: 1

production:

enable_star: true

min_infix_len: 1

Next, because you’ve changed your Sphinx setup, you need to stop the daemon,
re-index, and then restart:

rake ts:stop

rake ts:in

rake ts:start

Finally, you need to change the search query to auto-star each word in the search
query (for example, changing “rail job” to “*rail* *job*”):

def index

@users = User.search(params[:search],

:page => params[:page],

:match_mode => :any,

:star => true)

end

Advanced Functionality

With Thinking Sphinx, a lot of Sphinx’s advanced features are kept off to the side;
they’re still there and usable, but only when you want them. The following sections
describe a few options you might want to keep in mind.

Match Modes, Conditions, and Filters

Sometimes you’ll want to limit a search to a particular field. For this, imitating Active
Record’s find method works fine:

User.search :conditions => {:location => "Melbourne"}

46 Chapter 1. Models

ptg

Don’t expect Thinking Sphinx to handle anything beyond strings within the
conditions hash, though, because Sphinx itself understands only text.

Note that the match mode is changed from the default, ALL, to EXTENDED to allow
for single field matching. Earlier examples show the use of ANY to match any single
word; another common mode is PHRASE. It might be worth visiting the Sphinx docu-
mentation site (http://sphinxsearch.com/docs/current.html#matching-modes) to get
a solid understanding of how these different match modes work.

If you want to limit searches by integers, dates, Booleans, or floats, then what
you’re after is an attribute—which in Sphinx is a separate concept than text fields.
Attributes are useful for filtering, sorting, and grouping, and you can set them up in
your models as follows:

class User < ActiveRecord::Base

define_index do

field definitions

has deleted, created_at

end

end

Obviously, you wouldn’t want deleted users appearing in most search results, so
you need to filter them out:

User.search params[:search], :with => {:deleted => false}

Filters are a bit more flexible than normal text conditions. You can use ranges and
arrays as well as single values:

User.search(params[:search],

:with => {:created_at => 1.week.ago..Time.now}

)

Sorting

As mentioned earlier, attributes are the key to sorting. For example, sorting by when
users were created is pretty simple:

User.search params[:search], :order => :created_at

47AntiPattern: Spaghetti SQL

ptg

Or you could reverse things:

User.search params[:search], :order => "created_at DESC"

What if you wanted to sort by name, though? That’s a field, not an attribute. Luckily,
Sphinx can create attributes for strings, by translating them to ordinal integers. This
simply means that you can sort but not filter. Thinking Sphinx abstracts this for you
to keep things even simpler: You just mark a field as sortable:

class User < ActiveRecord::Base

define_index do

indexes name, :sortable => true

indexes login, location, country

has deleted, created_at

end

end

And searching becomes a simple task again:

User.search params[:search], :order => :name

or maybe something like:

User.search params[:search], :order => "name ASC, created_at DESC"

Searching Across All Models

In a site-wide search, you might want to have a mixture of model instances returned—
users, articles, links, and so on. As long as they’ve all being indexed for Sphinx, you can
grab them all in a single call:

ThinkingSphinx::Search.search params[:search],

:page => params[:page]

The same arguments on a model level apply here as well. However, if you’re filtering or
sorting, you need to make sure all the indexes have attributes with the same names.

Delta Indexes

One final trick to keep up your sleeve is tied to a limitation of Sphinx: Sphinx doesn’t
automatically update your indexed data when you create or edit your model instances.

48 Chapter 1. Models

ptg

This means your search results ignore anything that’s changed since you last ran the
index rake task.

Understandably, this isn’t ideal. The easiest way around it is to track those changes
in a delta index, which—due to its tiny size—can be re-indexed as every change is
made. To get this running, you want to first flag the relevant models to use the delta
approach:

class User < ActiveRecord::Base

define_index do

fields and attributes

set_property :delta => true

end

end

Don’t forget to do the stop-index-start shuffle:

rake ts:stop

rake ts:in

rake ts:start

Now your changes will be promptly reflected in your search results.
You still need to run the normal index task regularly, though. Otherwise, the delta

index itself will become large and slow to index, which in turn slows down your appli-
cation. The extra overhead here can be inappropriate for some high-traffic sites, so it may
be worth investigating deltas via the delayed job plugin (http://freelancing-gods.com/
posts/thinking_sphinx_delta_changes).

49AntiPattern: Spaghetti SQL

ptg

AntiPattern: Duplicate Code Duplication
Andy Hunt and Dave Thomas originally coined the term DRY (Don’t Repeat
Yourself) Principle in The Pragmatic Programmer. The DRY Principle, which is consis-
tently misunderstood, is fundamentally not about reducing lines of code. The basis of
the DRY Principle, say Hunt and Thomas, is that “every piece of knowledge must
have a single, unambiguous, authoritative representation within a system.” Therefore,
the DRY Principle is about reducing both the opportunity for developer error and the
effort required to make business logic changes in the application.

The DRY Principle is something that we’ve all understood fundamentally as being a
quality of “good code.” Likely half of the history of computer engineering has gone into
supporting this principle, but it still takes practice and know-how to use it effectively.

For example, a very poorly written sales application may calculate the shipping in
the HTML confirmation screen, in the receipt email, and in the credit card transac-
tion module. It’s clear that this calculation, which is both complex and likely to
change, should be performed in a single place. The key question that we will be exam-
ining in the next three solutions is what is the simplest, most readable, and most gen-
erally effective way of applying the DRY Principle to your code. How you do this is
highly dependent on the problem at hand.

The following sections cover three of the most powerful DRY Principle tech-
niques available to a Ruby on Rails developer, in order of simplicity and locality. The
first solution explains how to extract code into modules for use across multiple classes.
The second solution takes you through the development of a Ruby on Rails plugin,
allowing you to keep behavior DRY across multiple applications—with the added
benefit (and responsibility) of having a self-contained package suitable for contribution
to the Ruby on Rails community at large. The third solution shows the power of sim-
ple metaprogramming tricks when DRYing up fairly localized and small pieces of code.

Solution: Extract into Modules
Ruby modules are designed to centralize behavior among classes, and using them is
possibly the simplest way of DRYing up your code. A module is essentially the same as
a Ruby class, except that it cannot be instantiated, and it is intended to be included
inside other classes or modules. When a class includes a module via include
ModuleName, all the methods on that module become instance methods on the class.
Although less commonly done, a class can also choose to add a module’s methods as
class-level methods by using extend instead of include: extend ModuleName.

50 Chapter 1. Models

ptg

Let It Ride!

Let’s consider a Ruby on Rails driving game in which two models are defined: Car and
Bicycle. Both of these models can accelerate, brake, and turn, and the code for these
methods is identical:

class Car << ActiveRecord::Base

validates :direction, :presence => true

validates :speed, :presence => true

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = speed + 10

end

Other, car-related activities...

end

class Bicycle << ActiveRecord::Base

validates :direction, :presence => true

validates :speed, :presence => true

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = speed + 10

end

Other, bike-related activities...

end

51AntiPattern: Duplicate Code Duplication

ptg

Clearly, this code is not DRY. There are a number of ways to extract and centralize
these methods, but the most natural technique is to move them into a module that’s
included by both classes:

lib/drivable.rb

module Drivable

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = speed + 10

end

end

class Car << ActiveRecord::Base

validates :direction, :presence => true

validates :speed, :presence => true

include Drivable

Other, car-related activities...

end

class Bicycle << ActiveRecord::Base

validates :direction, :presence => true

validates :speed, :presence => true

include Drivable

Other, bike-related activities...

end

With the Drivable module, both Car and Bicycle share a common definition
for the accelerate, brake, and turn methods. You place modules like this under the
/lib directory and require those files inside an initializer, like this:

#config/initializers/requires.rb

Dir[File.join(Rails.root, 'lib', '*.rb')].each do |f|

require f

end

52 Chapter 1. Models

ptg

This way, all modules defined under /lib are automatically available to your Ruby
classes.

The Drivable module centralizes the method implementations, but you still have
duplication in the validation for direction and speed. You can push the validation
into the module as well, by making use of the ActiveSupport::Concern module.
This provides a method named included that will be run when the module is
included in a Ruby class.

This hook lets you make use of the Active Record validation macros, which are not
available for you to use when the module is defined. The included method on Drivable
now opens the class that included the module and calls the validation method there:

lib/drivable.rb

module Drivable

extend ActiveSupport::Concern

included do

validates :direction, :presence => true

validates :speed, :presence => true

end

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = speed + 10

end

end

class Car << ActiveRecord::Base

include Drivable

Other, car-related activities...

end

class Bicycle << ActiveRecord::Base

include Drivable

Other, bike-related activities...

end

53AntiPattern: Duplicate Code Duplication

ptg

Many developers coming from other object-oriented languages will notice that
this use of modules is functionally identical to using a common superclass. It’s our
opinion, however, that there are very few times when it’s appropriate to use a common
superclass instead of modules.

Modules are more flexible than superclasses because a class can include as many
different modules as it needs to incorporate different sets of behavior. This is akin to
multiple inheritance, but without much of the complication introduced by that
model. Using superclasses also promotes proper code organization by allowing you to
group related methods into well-defined sets of behavior. The Car model, for instance,
may include a Drivable module for driving behavior, a Sluggable module to produce
friendlier URLs, and a Searchable module to support standard advanced searches.

Because the class-level behavior inside a module isn’t evaluated until the module is
included, that behavior can introspect on the including model—modifying that behav-
ior based on the class’s name, database columns, other associations, and so on. Class-level
behavior defined on a superclass is executed when the superclass is evaluated. Because of
this, it cannot examine the characteristics of the subclass. This leads to overly complicated
code that uses the Rails read/write_inherited_variable or Class#inherited methods.

Finally, a useful trait of modules is that they can be added to a class after the class
is defined. You’ll make use of this trait shortly, in order to add behavior to
ActiveRecord::Base.

I Can’t Drive 55!

When centralized behavior needs to be adapted somewhat for each class using it, a
good technique is to make use of the template pattern from Design Patterns: Elements
of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson,
and John M. Vlissides.

The template pattern was originally designed for classic object-oriented lan-
guages, and it therefore used a single superclass for the implementation. A template is
simply a superclass that implements shared behavior and allows modification of that
behavior through overriding of helper methods. The template may provide default
behavior by implementing those methods itself, or it may require that the subclasses
implement them when there is no sensible default. It’s more natural to use modules
than to use a common superclass to implement the template pattern in Ruby. You see
what this looks like by changing the initial constraints on our driving game.

In your new version of the Car and Bicycle models, you should add a top speed.
A Car object cannot accelerate past 100 miles per hour, and a Bicycle object cannot

54 Chapter 1. Models

ptg

go faster than 20 miles per hour. These two objects also accelerate at different rates—
Car at 10 miles per hour and Bicycle at 1 mile per hour. The important fact is that
the behavior is not completely identical between the two models. The initial, non-
DRY version might look like the following:

class Car << ActiveRecord::Base

validates :direction, :presence => true

validates :speed, :presence => true

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

Cars accelerate quickly, and can go 100mph (in Los Angeles).

self.speed = [speed + 10, 100].min

end

Other, car-related activities...

end

class Bicycle << ActiveRecord::Base

validates :direction, :presence => true

validates :speed, :presence => true

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

Bikes accelerate slower, and can only go 20mph

self.speed = [speed + 1, 20].min

end

55AntiPattern: Duplicate Code Duplication

ptg

Other, bike-related activities...

end

The differences in the shared behavior between the Car and Bicycle models are
in the rate of acceleration and the top speed. To implement this behavior using the
template pattern, you extract the shared behavior as before, but you move those values
into helper methods. You then define those methods on each class that includes the
module:

lib/drivable.rb

module Drivable

extend ActiveSupport::Concern

included

validates :direction, :presence => true

validates :speed, :presence => true

end

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = [speed + acceleration, top_speed].min

end

end

end

class Car << ActiveRecord::Base

include Drivable

def top_speed

100

end

56 Chapter 1. Models

ptg

def acceleration

10

end

Other, car-related activities...

end

class Bicycle << ActiveRecord::Base

include Drivable

def top_speed

20

end

def acceleration

1

end

Other, bike-related activities...

end

Template Snags

You need to consider a few design decisions when using the pattern described in the
preceding section. Why do you use methods, instead of constants, for top_speed and
acceleration? The values are constant in Car and Bicycle, so a constant would be a
natural first choice. However, it’s better to implement a template with methods even
in cases like this, because it’s possible this way to dynamically modify the behavior. An
amphibian vehicle class may want to return a different top speed, based on whether it
is on land or in water. Using methods gives you this flexibility, with little cost in code
complexity. Using methods instead of constants also eases the burden on the unit tests
for the module. A test case can modify the method (or use mocking and stubbing) for
each test. This is possible but much less natural when using constants.

When using the template pattern with a dynamic language like Ruby, a developer
who is writing including classes needs to know to implement those methods. C++ and
Java address this in their use of purely virtual and abstract methods. Classes derived
from a superclass that defines an abstract method must implement that method before
being instantiated. Ruby has no such concepts, however, and will happily allow you to
define and execute a class that is missing implementations of template methods. At
best, a bug like this will cause a quick runtime exception. At worst, it could go unno-
ticed for months.

57AntiPattern: Duplicate Code Duplication

ptg

One way to ease a programmer’s confusion when such an error occurs is to define
those methods on the module and have them raise exceptions with helpful explanations:

lib/drivable.rb

module Drivable

extend ActiveSupport::Concern

class TemplateError < RuntimeError; end

included

validates :direction, :presence => true

validates :speed, :presence => true

end

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = [speed + acceleration, top_speed].min

end

def top_speed

raise TemplateError, "The Drivable module requires the " +

"including class to define a " +

"top_speed method"

end

def acceleration

raise TemplateError, "The Drivable module requires the " +

"including class to define an " +

"acceleration method"

end

end

A challenge, when applying the template pattern, is in determining what aspects of
the shared behavior are likely candidates for change. Refactoring every method into a

58 Chapter 1. Models

ptg

tangle of trivially implemented helper methods quickly leads to unreadable code. That
path is never ending, as there is no way of telling how much configurability could be
needed for future modifications. For example, you could have refactored the call to
Array#min into a limit_speed template method. Likewise, you could have refactored
the code for speed + acceleration into an add_acceleration_to_current_speed
method.

Developers new to the template pattern tend to want to err on the side of flexibil-
ity. This is a form of future-proofing, and it’s a mistake—especially when working in a
language as geared toward agile development and the refactoring cycle as Ruby.

Modules are one of the most simple, and most powerful, of Ruby’s language fea-
tures. They give a developer all the benefits of using a common superclass, without the
limitations that most languages enforce on that technique. Furthermore, they add to
the readability of your code by grouping and partitioning off different types of behavior.

Solution: Write a Plugin
So far, we’ve described methods of removing code duplication in models both through
using metaprogramming and by extracting into modules.

The metaprogramming technique we described is useful for reducing duplication in
a single class. Modules take this a step further, allowing reduction of duplication across
a number of classes in the same application. This solution introduces the use of Rails
plugins, which allow you to share duplication-busting code across applications,
including those of the community at large.

We present the following three sections as possible solutions, in the recommended
order of application in your own refactoring. In these solutions, as in the rest of this
book, we continue to embrace a theme of simplicity. Using a simple metaprogram-
ming loop, when it suits the purpose, is better than extracting to a module. Likewise,
using a module, if it gets the job done, trumps the work required to create a plugin.
Only when you need to share the code across applications or when you feel the code is
valuable to others should you proceed down the plugin path. Satchel Paige summed
this up with his famous quote: “Never run when you can walk, never walk when you
can stand, never stand when you can sit, and never sit when you can lie down.” With
this concept firmly in mind, let’s see what is required to move the drivable behavior
from the last solution into a standalone Rails plugin.

Recall the Car class, which contains the behavior you’d like to extract:

59AntiPattern: Duplicate Code Duplication

ptg

app/models/car.rb

class Car < ActiveRecord::Base

validates_presense_of :direction, :speed

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = [speed + 10, 100].min

end

Other, car-related activities...

end

By the end of this solution, you will have produced a plugin that reduces this behavior
in the class to a simple call to drivable. The existing Car unit tests should still pass
swimmingly, which will be your main indication of success. Later in this chapter, in
the section “Gems Fightin’ Words!” we’ll discuss how they should be refactored and
moved into the plugin itself.

Plug It In!

When you first write a plugin, it’s almost always best to extract it from within an exist-
ing application. This way, you have access to the generator and a testbed through which
you can experiment along the way. Only after you’ve gotten the plugin to a somewhat
stable state should you move that code into its own source control repository.

Getting started with a plugin is fairly easy, due to the generators that come with
Rails. To build the framework for your new plugin, simply run ./script/rails
generate plugin drivable:

./script/rails generate plugin drivable

create vendor/plugins/drivable

create vendor/plugins/drivable/init.rb

create vendor/plugins/drivable/install.rb

create vendor/plugins/drivable/MIT-LICENSE

60 Chapter 1. Models

ptg

create vendor/plugins/drivable/Rakefile

create vendor/plugins/drivable/README

create vendor/plugins/drivable/uninstall.rb

create vendor/plugins/drivable/lib

create vendor/plugins/drivable/lib/drivable.rb

invoke test_unit

inside vendor/plugins/drivable

create test

create test/drivable_test.rb

create test/test_helper.rb

You can see from this output that the generator produces a good number of files;
you can ignore most of them for now. The README, Rakefile, install.rb, and
uninstall.rb files, for example, have little bearing on this solution. You can read
more about the purpose of the rest of the files produced by the generator in the
“Creating Plugins” guide at http://guides.rubyonrails.org/plugins.html.

At this point, you’re mainly concerned with the contents of the init.rb file and
the lib directory. A typical pattern for organizing the files in a plugin involves having
a file under lib named after the plugin and a subdirectory by the same name, which
holds the rest of the code. This pattern is designed to nest the files for each module in
parallel with the nesting of the modules themselves. To follow this pattern, you should
create the following files and directories:

lib/drivable.rb

lib/drivable/active_record_extensions.rb

The lib/drivable/active_record_extensions.rb contains the bulk of the code for
the drivable plugin. It holds the Drivable::ActiveRecordExtensions module, which
is responsible for extending the ActiveRecord::Base class with the new behavior.

Following another pattern in Ruby module composition, the Drivable::
ActiveRecordExtensions module contains two submodules, which hold class and
instance methods:

lib/drivable/active_record_extensions.rb

module Drivable

module ActiveRecordExtensions

module ClassMethods

def drivable

validates_presence_of :direction, :speed

61AntiPattern: Duplicate Code Duplication

ptg

include ActiveRecordExtensions::InstanceMethods

end

end

module InstanceMethods

def turn(new_direction)

self.direction = new_direction

end

def brake

self.speed = 0

end

def accelerate

self.speed = [speed + 10, 100].min

end

end

end

end

The only class method that this extension introduces is the drivable method. This
method is responsible for introducing the rest of the behavior. This ensures that you
don’t add the turn, brake, and accelerate methods to every Active Record model in
the application.

But you still haven’t hooked the extension code into ActiveRecord::Base. That’s
the job of the drivable.rb file:

lib/drivable.rb

require "drivable/active_record_extensions"

class ActiveRecord::Base

extend Drivable::ActiveRecordExtensions::ClassMethods

end

By opening the ActiveRecord::Base class and extending it with the Drivable::
ActiveRecordExtensions::ClassMethods module, you’ve added the drivable
method as a class method to all the models in your application.

Finally, you need to help Rails load your plugin. When Rails initializes, it evalu-
ates the file init.rb in every plugin it finds. This is where you place your hook to
require the drivable file:

62 Chapter 1. Models

ptg

init.rb

require File.join(File.dirname(__FILE__), "lib", "drivable")

At this point, your plugin is basically complete. The turn, accelerate, and break
methods can be removed from the Car model and replaced with the call to drivable.

Everything in Its Right Place

This chain of require statements may seems convoluted, but each separate file serves
a purpose. A mistake beginning Rails developers often make when producing a new
plugin is to include the majority of the code in the init.rb file. While this method
may work, it promotes bad form and has an important technical drawback. Here’s
what the Rails plugin creation guide has to say on this issue:

When Rails loads plugins it looks for the file named init.rb. However, when
the plugin is initialized, init.rb is invoked via eval (not require) so it has
slightly different behavior.

Under certain circumstances if you reopen classes or modules in init.rb
you may inadvertently create a new class, rather than reopening an existing class.
A better alternative is to reopen the class in a different file, and require that file
from init.rb….

This is why we only use the init.rb file to bootstrap the lib/drivable.rb file. In
addition, all the code in lib/drivable/active_record_extensions.rb could be
placed in this lib/drivable.rb file. Maintaining this separation from the offset is
useful in keeping organization for future growth of the plugin. It’s also such a common
pattern that following it helps other Rails developers understand and contribute to
your plugin.

Gems Fightin’ Words!

Ruby had the RubyGems packaging system well before the Rails framework existed.
In fact, Rails itself is distributed as a collection of gems. The fact that Rails decided to
“reinvent” the packaging of reusable pieces of code in a new plugin format has
annoyed some Ruby developers.

There are some reasons for writing a plugin instead of a gem. The most obvious is
simplicity: It’s easier to produce a plugin. That being said, gems have a lot of features,
which we encourage you to explore. For example, you can use gems outside a Rails
application, and they come with versioning support. Now with Bundler and Rails 3,
and the new http://rubygems.org, gems are easier to distribute and have all the features

63AntiPattern: Duplicate Code Duplication

ptg

of plugins. It’s easy to get up and running with a quick plugin, but when it’s time to pack-
age up and distribute your code to others, you should consider converting it to a gem.

Solution: Make Magic Happen with Metaprogramming
Metaprogramming is a wonderful tool for producing DRY code in highly dynamic
languages. We use the term metaprogramming as a nod to cultural convention, but not
without some reservation. Metaprogramming is commonly defined as “code that pro-
duces code,” and it usually encompasses static code generation, runtime introspection,
and other clever tricks. Metaprogramming in most languages involves the use of lan-
guage facilities designed explicitly for a particular task. In a language such as Ruby,
where class definitions are evaluated as regular code, there is technically nothing that
makes metaprogramming distinct from regular programming.

Case in Point

To illustrate the benefits of using metaprogramming to keep your application DRY,
let’s take a look at the Purchase model from a storefront application. In good test-
driven development (TDD) fashion, let’s first examine a sample of the tests for that
model.

class PurchaseTest < Test::Unit::TestCase

context "Given some Purchases of each status" do

setup do

%w(in_progress submitted approved

shipped received canceled).each do |s|

Factory(:purchase, :status => s)

end

end

context "Purchase.all_in_progress" do

setup { @purchases = Purchase.all_in_progress }

should "not be empty" do

assert !@purchases.empty?

end

should "return only in progress purchases" do

@purchases.each do |purchase|

assert purchase.in_progress?

64 Chapter 1. Models

ptg

end

end

should "return all in progress purchases" do

expected = Purchase.all.select(&:in_progress?)

assert_same_elements expected, @purchases

end

end

end

end

A Purchase object can have many statuses: in_progress, submitted, approved,
shipped, received, and canceled. It also defines class methods to find all Purchase
objects of a particular status, as well as predicates for each status. This is a decent API,
and one that we see repeated very often.

A First Attempt

A correct but naïve implementation of the Purchase model would be to define each
pair of methods for every status (for example, the all_submitted and submitted?
methods) by hand:

class Purchase < ActiveRecord::Base

validates_presence_of :status

validates_inclusion_of :status,

:in => %w(in_progress submitted approved

shipped received canceled)

Status Finders

def self.all_in_progress

where(:status => "in_progress")

end

def self.all_submitted

where(:status => "submitted")

end

def self.all_approved

where(:status => "approved")

end

65AntiPattern: Duplicate Code Duplication

ptg

def self.all_shipped

where(:status => "shipped")

end

def self.all_received

where(:status => "received")

end

def self.all_canceled

where(:status => "canceled")

end

Status Accessors

def in_progress?

status == "in_progress"

end

def submitted?

status == "submitted"

end

def approved?

status == "approved"

end

def shipped?

status == "shipped"

end

def received?

status == "received"

end

def canceled?

status == "canceled"

end

end

It’s immediately obvious that this is a code maintenance issue in the making. For
now you can ignore the fact that this is a very large amount of code for this feature
(more on that in a bit) because the real issue is that the code isn’t DRY.

66 Chapter 1. Models

ptg

Shim Shim Shazam!

What happens when a client says to you three months down the road that she needs
Purchase objects to go through “partially shipped” and “fully shipped” statuses
instead of just “shipped”? You now have to edit the states in three distinct places: the
validation, the finders, and the accessors. DRY encourages you to hold that type of
information in a single, authoritative place. You can accomplish this with a bit of
metaprogramming:

class Purchase < ActiveRecord::Base

STATUSES = %w(in_progress submitted approved shipped received)

validates_presence_of :status

validates_inclusion_of :status, :in => STATUSES

Status Finders

class << self

STATUSES.each do |status_name|

define_method "all_#{status_name}"

where(:status => status_name)

end

end

end

Status Accessors

STATUSES.each do |status_name|

define_method "#{status_name}?"

status == status_name

end

end

end

The issue most beginner Ruby programmers have with metaprogramming like
this is the complexity introduced; this is a completely valid point, and we address it
shortly. Before we get to that, let’s walk through this implementation and discuss a bit
of what’s going on.

The most important aspect of this code is that the list of statuses is clearly held in
the Purchase::STATUSES array. This is the singular, authoritative location of the sta-
tuses list, and changing the list will immediately change the code as needed.

67AntiPattern: Duplicate Code Duplication

ptg

The class then loops through the STATUSES array and uses define_method to cre-
ate the finder and accessor methods. This bit of code often confuses developers com-
ing from static languages. The key to understanding this implementation is that in
Ruby, and unlike in C++ or Java, class definitions are just code. Local variables, loops,
and all other Ruby constructs are all valid inside a class definition.

In fact, most if not all of the libraries you use every day make use of the incredibly
dynamic nature of Ruby. Active Record, for example, uses this flexibility to define set-
ters and accessors at runtime, based on an inspection of the table’s columns when a
class inherits from ActiveRecord::Base.

DRY Is Not Only About Lines of Code

We hinted earlier that the solution in this section would not be the shortest solution in
terms of lines of code. We firmly believe that less code is good code, and we would
almost definitely refactor the original implementation to use named scopes instead. If
you refactored, the resulting code would look something like this:

class Purchase < ActiveRecord::Base

validates :status,

:presence => true,

:inclusion => { :in => %w(in_progress submitted approved

shipped received canceled) }

Status Finders

scope :all_in_progress, where(:status => "in_progress")

scope :all_submitted, where(:status => "submitted")

scope :all_approved, where(:status => "approved")

scope :all_shipped, where(:status => "shipped")

scope :all_received, where(:status => "received")

scope :all_canceled, where(:status => "canceled")

Status Accessors

def in_progress?

status == "in_progress"

end

def submitted?

status == "submitted"

end

68 Chapter 1. Models

ptg

def approved?

status == "approved"

end

def shipped?

status == "shipped"

end

def received?

status == "received"

end

def canceled?

status == "canceled"

end

end

We show this implementation to illustrate the point that DRY is not only about
reducing lines of code. Though the techniques used to combat the various issues tend to
overlap, it’s important to keep the issues clearly differentiated. This example, suffers from
the same flaw of not giving the developer a single place to manage the list of statuses.

Whazawho?

The metaprogramming example in the preceding section certainly suffers from some
readability issues. You can address them by extracting the loops into a macro, which in
Ruby is simply a class method that’s intended to be called at class definition time:

lib/extensions/statuses.rb

class ActiveRecord::Base

def self.has_statuses(*status_names)

validates :status,

:presence => true,

:inclusion => { :in => status_names }

Status Finders

status_names.each do |status_name|

scope "all_#{status_name}", where(:status => status_name)

end

69AntiPattern: Duplicate Code Duplication

ptg

Status Accessors

status_names.each do |status_name|

define_method "#{status_name}?" do

status == status_name

end

end

end

end

class Purchase < ActiveRecord::Base

has_statuses :in_progress, :submitted, :approved, :shipped,

:received

end

This example points out the power of Ruby’s open classes. Unlike C++ or Java,
where a class definition is a static template for the compiler, it’s common behavior in
Ruby to reopen a class to add new behavior. You need to do this to add the has_statuses
method to ActiveRecord::Base. Doing so both simplifies and increases the readabil-
ity of the Purchase model. It also allows the implementation of statuses to be used in
other models throughout the application. Furthermore, it’s a short step to move this
code from lib/statuses.rb into a plugin so that you can use this same pattern across
applications.

One of These Things Is Not Like the Other…

An often-underappreciated benefit of DRY code is that it helps in highlighting aspects
of code that are exceptional. When you jump into a bit of code with 100 lines of
almost identical code, it can be very difficult to figure out which one of those lines
doesn’t follow the pattern of the rest (if you even know you should be looking for such
deviations). If you DRY up the common code, the exceptional code stands out nicely.

Consider a Purchase model with the fully_shipped and partially_shipped
statuses. Say that you want to add a virtual status of not_shipped, which corresponds
to records whose status is neither of the two shipped statuses. The all_not_shipped
and not_shipped? methods in the naïve implementation would quickly become lost
in the noise of the rest of the status methods.

The DRY version, however, makes those exceptional methods as clear as possible:

class Purchase < ActiveRecord::Base

has_statuses %w(in_progress submitted approved

partially_shipped fully_shipped)

70 Chapter 1. Models

ptg

scope :all_not_shipped, where(:status => ["partially_shipped",

"fully_shipped"])

def not_shipped?

!(partially_shipped? or fully_shipped?)

end

end

Don’t Fear the Reaper

Metaprogramming is a topic that tends to intimidate beginning Ruby programmers.
The advanced nature of the code, coupled with the illusion of magic that surrounds
the term is daunting. Be that as it may, any Ruby developers who avoid these tech-
niques do themselves a great disservice. Metaprogramming is a fundamental tool for
writing DRY and reusable Ruby code. If it’s not one that’s in your toolbox now, you
should make a point of adding it.

71AntiPattern: Duplicate Code Duplication

ptg

This page intentionally left blank

ptg

CHAPTER 2
Domain Modeling

The Active Record pattern used in the ORM built into Rails was an innovation to
many in the web development community. Because of Active Record, developers no
longer have to specify details of the object-relational mapping in great detail, nor do
they have to duplicate them in the models and the configuration files. In short, Active
Record simplified things and allows developers to work faster.

In addition, the Active Record library also introduced further conventions and
innovations that influence the strategy used with domain modeling in the Ruby on
Rails framework. For example, has_many :through has pretty much supplanted the
more traditional has and belongs to many relationships in Rails domain modeling; it
successfully extracted and simplified the complexities and deficiencies in the implicit
join model present in a has, and it belongs to many relationships.

When working to effectively model an application’s domain in the Rails frame-
work, it’s important to keep the Rails principle of simplicity in mind. Many domain-
modeling problems merely over-engineer the simple web application you’re actually
building. It’s also important to keep in mind the small shortcuts that the Rails frame-
work provides. Your domain modeling decisions will become more clear as you begin
to work with the framework rather than against it.

73

ptg

AntiPattern: Authorization Astronaut
Many applications contain user authorization code, typically represented as user roles.
Oftentimes these are programmed based on a specification or in anticipation of future
requirements. As a result, typical user authorization might feature a User model like
the following:

class User < ActiveRecord::Base

has_and_belongs_to_many :roles, :uniq => true

def has_role?(role_in_question)

self.roles.first(:conditions => { :name => role_in_question }) ?

true : false

end

def has_roles?(roles_in_question)

roles_in_question =

self.roles.all(:conditions => ["name in (?)",

roles_in_question])

roles_in_question.length > 0

end

def can_post?

self.has_roles?(['admin',

'editor',

'associate editor',

'research writer'])

end

def can_review_posts?

self.has_roles?(['admin', 'editor', 'associate editor'])

end

def can_edit_content?

self.has_roles?(['admin', 'editor', 'associate editor'])

end

def can_edit_post?(post)

self == post.user ||

self.has_roles?(['admin', 'editor', 'associate editor'])

end

end

74 Chapter 2. Domain Modeling

ptg

In this User model, a user has a relationship to many different roles. There are two
utility methods: the singular has_role? that takes a single role and checks to see
whether the user has that role and the plural has_roles? that takes multiple roles and
does the same. In anticipation of the different actions that the roles need to have per-
formed, this example provides several convenience methods for checking to see
whether the user can perform specific actions.

There are a number of issues with this code. The has_role? method isn’t used;
only the has_roles? method is used, and not just in the User model but in the rest of
the application as well. This method was written in anticipation of being needed.

Providing these can_* convenience methods is a slippery slope. At the very least
there is a question about when to provide these methods, and there is a vague and
inconsistent interface. At the worst, these methods are actually written ahead of any
need, based on speculation about what authorization checks may be needed in the
future of the application.

Finally, the User model is hardcoding all the strings used to identify the individ-
ual roles. If one or more of these were to change, you would need to change them
throughout the application. And, most importantly, if one or more of these changes
were missed, the model would essentially fail silently.

You can accompany the preceding User model with the following Role model:

class Role < ActiveRecord::Base

has_and_belongs_to_many :users

validates_presence_of :name

validates_uniqueness_of :name

def name=(value)

write_attribute("name", value.downcase)

end

def self.[](name) # Get a role quickly by using: Role[:admin]

self.find(:first, :conditions => ["name = ?", name.id2name])

end

def add_user(user)

self.users << user

end

75AntiPattern: Authorization Astronaut

ptg

def delete_user(user)

self.users.delete(user)

end

end

Like the User model before it, this Role model has several problems. In the applica-
tion that this Role code is from, there is no plan to allow administrative users to add
or remove roles. Therefore, the overridden setter for name is questionable.

Also questionable is the overridden getter for roles to make it work like a hash.
While something like this could potentially be used to solve the problem of changing
identifiers mentioned earlier, it’s not written with that intention and therefore doesn’t
work. This method of retrieving the role isn’t actually used anywhere, and it is clearly
written as a convenience and in anticipation of a use that hasn’t arisen.

Finally, the convenience methods add_user and delete_user, which would be
used for adding and removing users from a role are not a good interface. Therefore,
they aren’t actually used within the application anywhere.

In short, these two models were written in a vacuum. They were written before
the application really existed, in anticipation of what might be needed in the future.
This seems to happen quite a bit with authorization code. Perhaps this is because
while “real planning” is happening, the authorization code is perceived as something
that developers can get started on ahead of time. This is a false supposition and leads
to code that is over-engineered, provides a vague or inconsistent interface, and ends up
being not used properly or at all.

Solution: Simplify with Simple Flags
In order to address the problems of complexity described in the preceding section, you
can refactor the User and Role models as follows:

class User < ActiveRecord::Base

end

With this sweeping change, you can get rid of the Role model entirely. You have given
the User model admin, editor, and writer Booleans. With these Booleans, Active Record
gives you nice admin?, editor?, and writer? query methods. Finally, the user interface
for giving these roles to users is a straightforward check box that sets the associated
Boolean.

76 Chapter 2. Domain Modeling

ptg

This simplification of the User roles provides all the same functionality as the pre-
vious overly complicated User and Role models, but it effectively uses the tools pro-
vided by the Ruby framework and uses the best kind of code: no code.

In the future, it may be necessary to add additional authorization roles to the
application. If you need to add just one or two roles, it’s not unreasonable to add the
additional Booleans to the User model.

If you eventually need more roles, you can add a Role model back into the appli-
cation, but without using a has_and_belongs_to_many. Instead, you would just add a
has_many to the Role model with a denormalized role_type that stores the type of
role the user has, as shown here:

class User < ActiveRecord::Base

has_many :roles

end

class Role < ActiveRecord::Base

TYPES = %w(admin editor writer guest)

validates :name, :inclusion => { :in => TYPES }

class << self

TYPES.each do |role_type|

define_method "#{role_type}?" do

exists?(:name => role_type)

end

end

end

end

To facilitate the change from individual Booleans to a Role model, you use
define_method to provide a query method for each role type that allows you to call
user.roles.admin?. It is also possible to put these defined methods right on the User
model itself, so that user.admin? can be called. That would look as follows:

class User < ActiveRecord::Base

has_many :roles

Role::TYPES.each do |role_type|

define_method "#{role_type}?" do

roles.exists?(:name => role_type)

end

77AntiPattern: Authorization Astronaut

ptg

end

end

class Role < ActiveRecord::Base

TYPES = %w(admin editor writer guest)

validates :name, :inclusion => {:in => TYPES}

end

One of the arguments for the former method is that it keeps all the Role-related
code encapsulated in the Role model. While this is a legitimate point, putting the
query method for roles isn’t a particularly egregious violation, especially considering
the fact that the roles and the methods for asking about them were previously directly
on the User model. In the end, where you put the query method definitions is a mat-
ter of personal preference, and this solution is successful regardless of the choice. It’s
successful because it eliminates needless code, is not over-engineered, and provides a
consistent interface that leaves no question about how to work with the User roles.

The concepts outlined here do not apply just to User roles. They are also applica-
ble to many other circumstances when modeling the application domain and defining
the interfaces provided by models. The following simple guidelines will stop you from
over-engineering and help you provide simple interfaces that stand up in the face of
both underdefined specifications and changes in an application:

• Never build beyond the application requirements at the time you are writing the
code.

• If you do not have concrete requirements, don’t write any code.

• Don’t jump to a model prematurely; there are often simple ways, such as using
Booleans and denormalization, to avoid using adding additional models.

• If there is no user interface for adding, removing, or managing data, there is no
need for a model. A denormalized column populated by a hash or array of possi-
ble values is fine.

78 Chapter 2. Domain Modeling

ptg

AntiPattern: The Million-Model March
While there isn’t necessarily anything wrong with Active Record models, overusing
them adds unnecessary complexity and overhead. Many developers don’t realize the
amount of new code that “just one more model” creates. You don’t have just the model
class itself, but also the database migrations to create the table for the model, the unit
tests for the model, the factories or fixtures for those tests, and the inevitable finders
and validations that go along with a model. A domain model that has individual mod-
els for each separate piece of information is known as a normalized domain model.

Solution: Denormalize into Text Fields
Take a look at the following Article model and the associated State and Category
models:

class Article < ActiveRecord::Base

belongs_to :state

belongs_to :category

validates :state_id, :presence => true

validates :category_id, :presence => true

end

class State < ActiveRecord::Base

has_many :articles

end

class Category < ActiveRecord::Base

has_many :articles

end

Given these models, the specific set of available states and categories would be
loaded into the production application’s respective database tables, and code for work-
ing with these associations would be as follows:

@article.state = State.find_by_name("published")

Of course, repeating the finder and the string for the published state is bad practice, so
it might be wise to abstract that out into a custom finder on the State model:

79AntiPattern: The Million-Model March

ptg

@article.state = State.published

Checking whether an article is in a current state might look like this:

@article.state == State.published

The code for dynamically defining these custom finder methods might be as follows:

class State < ActiveRecord::Base

validates :name, :presence => true

class << self

all.each do |state|

define_method "#{state}" do

first(:conditions => { :name => state })

end

end

end

end

You could also dynamically define methods directly on Article; for example, to
check whether an article is published, you use @article.published?. The API for
using and querying article state doesn’t matter too much; the important thing is to not
hardcode the strings or foreign keys that represent the individual states.

Very often, there is quite a bit of functionality associated with these types of mod-
els (states, categories, and so on) and, therefore, it’s not desirable to allow end users—
or even administrators—to add or remove available states in the database. For
example, if the article publication workflow changes and a new state needs to be
added, it’s unlikely that an administrator can simply add the state to the database and
have everything as desired. Therefore, when you’re building lean, agile applications, it
doesn’t make sense to spend time and effort programming an administrative interface
for states. And if there isn’t a user interface for adding and removing states, then it sim-
ply isn’t worthwhile to store the states in the database. Instead, you can just store the
states in the code itself. To do this, you would denormalize the data from the state and
category tables into the article table itself, and you would remove the State and
Category models. When you do all this, the Article model looks as follows:

80 Chapter 2. Domain Modeling

ptg

class Article < ActiveRecord::Base

STATES = %w(draft review published archived)

CATEGORIES = %w(tips faqs misc)

validates :state, :inclusion => {:in => STATES}

validates :category, :inclusion => {:in => CATEGORIES}

STATES.each do |state|

define_method "#{state}?" do

self.state == state

end

end

CATEGORIES.each do |category|

define_method "#{category}?" do

self.category == category

end

end

class << self

STATES.each do |state|

define_method "#{state}" do

state

end

end

CATEGORIES.each do |category|

define_method "#{category}" do

category

end

end

end

end

As you can see, the total code shown here for the normalized version is very similar
to the code for the denormalized version. The dynamic methods are still being defined,
but the difference here is that the Article model now has state and category
columns that contain a string representing the state instead of foreign key columns to
hold the ID of the State and Category. The most important thing is the complexity
and code that it not represented here. You’ve completely removed the possibility of a

81AntiPattern: The Million-Model March

ptg

user interface to manage states and categories without refactoring. Such a refactoring
would be perfectly fine if the application requirements warranted it, but it is unneces-
sary when they don’t.

Solution: Make Use of Rails Serialization
Earlier in this chapter, we listed the following tenets, which bear repeating:

• Never build beyond the application requirements at the time you are writing the
code.

• If you do not have concrete requirements, don’t write any code.

• Don’t jump to a model prematurely; there are often simple ways, such as using
Booleans and denormalization, to avoid using adding additional models.

• If there is no user interface for adding, removing, or managing data, there is no
need for a model. A denormalized column populated by a hash or array of possi-
ble values is fine.

These guidelines will help you keep your code lean and agile. This will, in turn, allow
you to more easily change your application as requirements either become more
defined or change completely.

Take a look at the user interface in Figure 2.1.

Figure 2.1 A form that enables a user to select multiple values for an item, including Other.

Figure 2.1 shows a registration form where the user is asked to select the one or
more ways he or she heard about the organization. A user who selects Other should fill
in the “other” text input field. This is a fairly common interface, and you can model it
in a few different ways, using Active Record models.

82 Chapter 2. Domain Modeling

ptg

“Has” and “Belongs to Many”

The first way to model the user interface shown in Figure 2.1 is to normalize the pos-
sible “heard about” values into a Referral model that is related to the user with a “has
and belongs to many” relationship:

class User < ActiveRecord::Base

has_many :referral_types

end

class Referral < ActiveRecord::Base

has_and_belongs_to_many :users

end

In addition, User has a string attribute, referral_other, that stores the value typed
into the “other” input field.

“Has Many”

The second way to model the user interface shown in Figure 2.1 would be to not join the
User and Referral models together with a “has many” relationship and not normal-
ize the content of the Referral model. The model code for this would look as follows:

class User < ActiveRecord::Base

has_many :referral_types

end

class Referral < ActiveRecord::Base

VALUES = ['Newsletter', 'School', 'Web',

'Partners/Events', 'Media', 'Other']

validates :value, :inclusion => {:in => VALUES}

belongs_to :user

end

In addition, the User model would once again have a string attribute, referral_
other, used for storing the value typed into the “other” input field.

Nothing at All

Both of the approaches just described introduce another model. Let’s refer to the
tenets listed earlier and evaluate these two approaches.

83AntiPattern: The Million-Model March

ptg

There is no user interface for anyone to add or remove possible Referral values.
The “has and belongs to many” modeling makes sense if this ability is necessary. The
denormalized version attempts to address the final two guidelines by denormalizing
and avoiding a secondary lookup table that would be needed by the “has and belongs
to many” relationships. However, is there a way to take this one step further and
remove the necessity for the Referral model altogether?

Yes, there is! There are, in fact, two possible ways. The first would be just to have
an individual Boolean column for each check box and then the referral_other col-
umn that the other solutions had. This would involve using six Boolean attributes on
the model. Now that they are Booleans, the naming could be adjusted, so these Boolean
attributes might be called heard_through_newsletter, heard_through_school,
heard_through_web, heard_through_partners, heard_through_media, and heard_
through_other.

This approach is perfectly valid, but it will be strained with six check boxes and an
Other option. For two to three check boxes, though, this might be a good solution.
The amount of code necessary is greatly reduced, the view code is incredibly straight-
forward, and the attributes are easy to work with.

There is another way you can do this that does not introduce a model: You can
use Ruby on Rails serialization to store which one of the many check boxes is checked.
The model code for this solution would look like the following:

class User < ActiveRecord::Base

HEARD_THROUGH_VALUES = ['Newsletter', 'School', 'Web',

'Partners/Events', 'Media', 'Other']

serialize :heard_through, Hash

end

The serialize method declares that the specified attribute. In this case,
:heard_through stores a serialized instance of the Ruby class specified in the second
argument (in this case, a Hash).

Now each of the check boxes will be either checked or unchecked, resulting in a
Hash of the checked values being submitted. The view code that makes this possible
looks as follows:

<%= fields_for :heard_through, (form.object.heard_through||{})

do |heard_through_fields| -%>

<% User::HEARD_THROUGH_VALUES.each do |heard_through_val| -%>

<%= heard_through_fields.check_box "field %>

84 Chapter 2. Domain Modeling

ptg

<%= heard_through_fields.label :heard_through,

heard_through_val %>

<% end -%>

<% end -%>

Like the Boolean method, this solution results in less code, fewer database tables,
and less overall complexity. However, it does have some disadvantages. Once you
begin serializing data into individual attributes, you lose the ability to efficiently
search and aggregate the data by using the normal find calls. You can simulate this by
using partial string matching on the serialized data, but that will get you only so far.
Therefore, as with many other solutions, you should serialize data only when it is the
right solution.

Another scenario where serialization of data into attributes can be the correct
solution is when the data you will be storing is open ended. For example, say that you
have an application that takes in data from other applications and stores it, or you
have a complicated series of forms or user-generated content, and the exact format and
parameters of the data will not be known. In these circumstances, it may not be
worthwhile to attempt to come up with a data model using Active Record models that
can effectively store this data. While it can be done, the overhead and complexity
introduced by these models are not necessarily worth it.

Instead of using the models just described, it may be possible to store this data in
serialized attributes on the parent model. Take, for example, the plugin Acts As
Revisionable (http://actsasrevisions.rubyforge.org). This plugin allows you to declare
that any model in your application should be versioned. This plugin provides func-
tionality to the ActsAsVersioned program, but it solves the same problem in a different
way. The ActsAsVersioned plugin requires an additional, identical table for each model
for which you have versioning functionality. So, for example, if the Document model
should save each previous version, the application must have a document_versions
table where the old values can be stored.

However, the Acts As Revisionable plugin provides the versioning functionality by
using serialization (not the serialization provided by Ruby on Rails) to store the old
values. With this technique, one table can be used to store multiple models, regardless
of the attributes and associations they each contain.

Another example of open-ended data for which the format is not known is
thoughtbot’s web-based error catching application Hoptoad (http://hoptoadapp.com).
Hoptoad receives data—typically Ruby exceptions—from client applications, saves
them, identifies duplicate exceptions, and aggregates like exceptions together. Along

85AntiPattern: The Million-Model March

ptg

with an exception, Hoptoad takes in other open-ended data, including details about
the request that caused the exception, the session data of the application and the envi-
ronment of the web server when the exception occurred, and the full backtrace of the
application for the exception. The request and session data, in particular, can be com-
posed of any number of other Ruby objects (which have all been serialized for commu-
nication to Hoptoad over HTTP).

To further complicate matters, Ruby and Ruby on Rails are not the only sup-
ported platforms for Hoptoad. The service accepts any data, from any application, as
long as it’s formatted as Hoptoad expects. While it would certainly be possible to nor-
malize some of the data Hoptoad receives into associated models, the incredibly open-
ended nature of this data begs you to just keep it simple and serialize the data into the
database. This is precisely what you do. The model code for doing this is straightfor-
ward—which is one of the reasons serialization of the data is an attractive solution:

Notices represent the exceptions sent in from other applications

class Notice < ActiveRecord::Base

serialize :request, Hash

serialize :session, Hash

serialize :environment, Hash

serialize :backtrace, Array

end

Because Ruby and Rails are the primary supported language and framework of
Hoptoad, and because you do want to aggregate the data and easily present some data
in the user interface, you should take the opportunity to read some of this serialized
data and store it specifically into attributes on the notice. For example, data such as
the Rails environment in which the error occurred, the controller and action from the
request, and the file and line number from the backtrace are all stored specifically in
attributes. These attributes are extracted from the serialized backtrace, request, and
environment in before_create callbacks on Notice:

before_validation :extract_backtrace_info, :on => :create

before_validation :extract_request_info, :on => :create

before_validation :extract_environment_info, :on => :create

private

def extract_backtrace_info

unless backtrace.blank?

86 Chapter 2. Domain Modeling

ptg

self.file, self.line_number = backtrace.first.split(':')

end

end

def extract_request_info

unless request.blank? or request[:params].nil?

self.controller = request[:params][:controller]

self.action = request[:params][:action]

end

end

def extract_environment_info

unless environment.blank?

self.rails_env = environment['RAILS_ENV']

end

end

As previously mentioned, the primary downside of serialization of data is that you
lose the ability to search through the serialized data. However, in some cases, such as
with versioning or simply the storage of complex, open-ended data such as in Hoptoad,
searching past data is not a concern, and serialization is a valid—or even preferred—
technique over attempting to normalize all the data into individual models.

87AntiPattern: The Million-Model March

ptg

This page intentionally left blank

ptg

CHAPTER 3
Views

The V in MVC—View in a Ruby on Rails application—is the presentation layer. The
default view-rendering engine built into Ruby on Rails is ERb, and when Rails was
first released, standard ERb templates were the only built-in supported type of tem-
plate. As Rails has evolved, so has the capability of the View layer, expanding to
include the ability to render different views based on MIME type and to include a new
technology called RJS, among other changes.

Like the rest of the Rails framework, views follow convention over configuration.
Rails encourages standard names and locations for view files, standard locations for
helpers, conventions for common DOM elements, and so on. With this organization,
everything has a place and can be easily found.

For our purposes, we consider the entire presentation stack to be the View layer of
Rails. This includes the view template files and view helpers, as well as JavaScript and
CSS. This holistic approach to the View layer allows you, as a developer, to keep your
sights on the overall picture of the presentation layer, establishing and following con-
ventions that address the needs of the entire presentation layer rather than just a small
portion of it.

Despite the relatively straightforward nature of Rails views, developers often face
challenges in using the View layer of Rails effectively. While the holistic approach just
described is beneficial, the fact that the View layer is a mix of different technologies
and languages living together—JavaScript, HTML, CSS, and Ruby (often in the same
file)—stands in contrast to the rest of the Rails framework. This can lead to confusion,
disorganization, and often completely incorrect implementations.

89

ptg

The views in an application may also have the added benefit of being edited by
non-Ruby programmers, such as designers and HTML/CSS wranglers. Ultimately, it’s
just as important to practice restraint and organization in the views as in the models and
controllers. Unfortunately, for many reasons, developers often overlook this practice.

Throughout this chapter, we show practical, best-practice techniques for main-
taining the organization and tidiness that will ultimately lead to more straightforward
code that is easier to test and maintain.

90 Chapter 3. Views

ptg

AntiPattern: PHPitis
The View layer of the MVC framework can vary widely in the technologies it con-
tains, depending on the nature of the framework. For example, an MVC framework
for desktop applications may deal in binary representations of buttons and widgets on
the screen, while the Ruby on Rails framework primarily uses ERb. Regardless of the
technology, the purpose of the View layer is to deal only with presentation, and while
it can often be overlooked by Ruby on Rails developers more concerned with the back
end, the View layer of a Rails application is ultimately just as important, if not more
so, to the overall success of an application than the Model and Controller layers.

The View layer of Ruby on Rails consists of the view template files, view helpers,
JavaScript, and CSS. The view templates are kept in the /app/views directory, which
contains multiple subdirectories, one for each controller and mailer, as well as the
layouts directory. The layouts directory contains the global templates that encapsu-
late the individual templates in the other directories and often contains other pieces of
the view, such as partials, that are used across multiple controllers or mailers. In addi-
tion, view helpers are stored in /app/helpers, which by convention contains one file
for each controller. Finally, CSS and JavaScript are stored in /public/stylesheets
and /public/javascripts, respectively.

The view templates in a default Rails installation can be one of three types—an
ERb template, an RJS template, or a builder template—and each template can also be
used for rendering for a specific format.

While the individual components of the Rails View layer are stored in an organized
fashion, the components are in different locations, and they have many permutations.

In addition, because a mix of technologies is used, it’s very easy—especially as
development of an application progresses—for HTML, CSS, JavaScript, and Ruby to
become coupled and intermingled.

Perhaps the most egregious intermingling that can occur is pure Ruby in the view
template. There are several reasons this is undesirable:

• The Ruby in the view could be domain logic instead of presentation logic. There
is a difference, and following the MVC pattern, domain logic never belongs in the
view.

• The Ruby could be presentation logic but could be so complex as to overly com-
plicate the view, make it hard to maintain or change, and make it difficult to test.

91AntiPattern: PHPitis

ptg

• The view templates are primarily HTML (or XML or RJS). If this is not the case,
and too much pure Ruby is contained in the template, then concerns regarding
the template itself may be masked. For example, properly formatted, validating
HTML will be harder to achieve and debug if the View template is littered with
excess Ruby.

The PHP language is not, out of the box, an MVC framework and doesn’t provide the
rigid structure that Rails provides. Many PHP applications commingle the domain
logic, complex presentation logic, and controller code all in one file. For this reason,
when lots of code, including domain logic, is included in a Rails view, the view starts
to look very much like PHP code. For many PHP programmers coming to Rails, this
might feel comfortable, but it’s a false comfort.

In the following sections, we discuss some very effective measures you can take to
address the problem of excess Ruby in your view templates. Doing so will result in
clean templates that are a joy to work in, are well tested, and can be easily maintained
and changed.

Solution: Learn About the View Helpers That Come with Rails
Ruby on Rails provides hundreds of helper methods that are direct extractions of com-
mon view-centric tasks. From displaying alternating rows of data to building complex
forms, many common tasks for a web application are already handled, or partially
handled, by existing Rails helpers. While it may be impossible to learn them all, let
alone the details about the individual options each helper takes, a working knowledge
of the helpers available, and the ability to find new ones and the customization of
each, is an important skill that will assist in the creation of svelte, maintainable view
code.

In addition, Ruby on Rails continues to adapt its extractions even further, based
on the traditional Rails values of convention over configuration and DRY principals.
Keeping up with these changes will allow you to reduce the amount of Ruby on a view
even further.

Take, for example, the following view code. This code used to be necessary to out-
put a form to the update action of a RESTful UsersController:

<%= form_for :user,

:url => user_path(@user),

:html => {:method => :put} do |form| %>

92 Chapter 3. Views

ptg

This code outputs the following HTML:

<form action="/users/5" method="post">

<div style="margin:0;padding:0">

<input name="_method" type="hidden" value="put" />

</div>

The following is the corresponding code for the new form for a user.

<%= form_for :user, :url => users_path do |form| %>

This code outputs the following HTML:

<form action="/users" method="post">

Notice that both of these methods have a lot of redundant information, and the edit
form needs to specify the HTTP method to be used for editing an existing user.

In Rails 2.1, this was reduced to the simple, consistent method call:

<%= form_for @user do |form| %>

This one signature for a form_for call can be used for both the edit and new forms.
When the @user is not yet saved, the code outputs the form for an unsaved user, as
 follows:

<form action="/users" method="POST" class="new_user" id="new_user">

And when @user contains a User record that is already saved to the database, the code
outputs the form for editing that existing user as shown here:

<form action="/users/5" method="post" class="edit_user"

id="edit_user_5">

<div style="margin:0;padding:0">

<input name="_method" type="hidden" value="put" />

</div>

Notice that this leaner form_for call also adds additional class and id attributes
to the form tag. The HTML required for adding these other classes made it unwieldy

93AntiPattern: PHPitis

ptg

to do before, but now that it’s done automatically, this consistency enables ease of pro-
gramming in both JavaScript and CSS.

Similarly, the mechanism for rendering a collection of elements in a view has been
revised. The “manual” way of rendering a collection of posts in a view would be as follows:

<!-- posts/index.html.erb -->

<% @posts.each do |post| %>

<h2><%= post.title %></h2>

<%= format_content post.body %>

<p>

<%= link_to 'Email author', mail_to(post.user.email) %>

</p>

<% end %>

This code loops over the collection of posts and outputs the content for each post in
the collection. You can clean this up in the view by moving the template code for each
individual post into a post partial, as shown here:

<!-- posts/index.html.erb -->

<% @posts.each do |post| %>

<%= render :partial => 'post', :object => :post %>

<% end %>

<!-- posts/_post.erb -->

<h2><%= post.title %></h2>

<%= format_content post.body %>

<p>

<%= link_to 'Email author', mail_to(post.user.email) %>

</p>

Now, for each post in the loop, the partial is rendered. Fortunately, this was
abstracted, and the Rails render method can handle collections of objects on its own,
as follows:

<!-- posts/index.html.erb -->

<%= render :partial => 'post', :collection => @posts %>

<!-- posts/_post.erb -->

<h2><%= post.title %></h2>

<%= format_content post.body %>

94 Chapter 3. Views

ptg

<p>

<%= link_to 'Email author', mail_to(post.user.email) %>

</p>

In this example, the manual looping through the collection is no longer needed.
Instead, the Rails render method does this on its own, rendering the post partial for
each item in the collection.

Finally, Rails developers noticed that it was incredibly common for the partial to
be named the same thing all the time (that is, using the class name of the items in the
collection). Therefore, a further abstraction was made, allowing for the following sim-
plified render call:

<!-- posts/index.html.erb -->

<%= render @posts %>

<!-- posts/_post.erb -->

<h2><%= post.title %></h2>

<%= format_content post.body %>

<p>

<%= link_to 'Email author', mail_to(post.user.email) %>

</p>

If the view code for an application was originally written in an earlier version of Ruby
on Rails, or if the developer was simply not aware of these improvements, the result
would be overly verbose view code that could be improved by these shortcuts.

An additional view helper provided by Rails but often overlooked by developers is
the content_for helper. This helper is a powerful tool that can introduce additional
organization into your view files without the need for custom methods.

You use the content_for method to insert content into various sections of a lay-
out. For example, consider the following view layout:

<html>

<body>

<ul class="nav">

<%= link_to "Home", root_url %>

<%= link_to "Maps", maps_url %>

<%= yield :nav %>

<div class="main">

95AntiPattern: PHPitis

ptg

<%= yield %>

</div>

</body>

</html>

The yield method in this application is a companion to the content_for method.
Envision a website where the content of the nav can change, depending on the view
being rendered to the visitor. An accompanying view would call content_for and give
it the content for the nav. Any view content not handed to a specific named section is
given to the default, unnamed yield. For example, a view that populates the nav and
the main section of the view would appear as follows:

<% content_for :nav do %>

<%= link_to "Your Account", account_url %>

<%= link_to "Your Maps", user_maps_url(current_user) %>

<% end %>

This is the content for the main section of the website. Go <%=

link_to "Home", root_url %>

When this view is rendered, the call will render the additional content for the nav to
yield :nav.

Many developers who are not familiar with content_for will accomplish this
functionality by assigning the content for various sections to instance variables, either
in the controller or the view itself, using the render_to_string or render :inline
methods. It’s almost never necessary to assign for use in the view instance variables that
are content and not specific Ruby objects and collections. Any time you find yourself
doing so, you should reevaluate your approach to the problem you’re attempting to
solve.

Developers seem to overlook using content_for for smaller pieces of content. For
example, it’s a fairly common user interface design technique to place an id or class
attribute on the BODY tag of an HTML page. It’s possible to use the content_for
helper for this as well. For example, the BODY tag in the layout would be as follows:

<body class="<%= yield :body_class %>">

96 Chapter 3. Views

ptg

And the view would contain a call to content_for:

<% content_for :body_class, "home" %>

In addition, using content_for to populate page titles and breadcrumbs is a conven-
ient technique:

<head>

<title>Acme Widgets : <%= yield :title %></title>

</head>

Finally, it’s possible to only conditionality yield content if that content is supplied.
This has two common use cases: to provide default content and to not include sur-
rounding tags if there is no content. For example, if you want a default page title if no
title is supplied in the view, you would use the title tag and yield as follows:

<head>

<title>

Acme Widgets : <%= yield(:title) || "Home" %>

</title>

</head>

In this example, if no title is supplied by the view, and therefore, yield(:title)
returns nil, the default title "Home" will be used.

This same technique can be used to conditionally include surrounding tags only if
content is supplied. For example, given a layout with a sidebar, if a view does not
provide content for the sidebar, the sidebar should not be included in the view, and
because the style for the page is flexible, this would cause the main content to extend
the full width of the page. It’s possible to accomplish this by including the entire con-
tent of the sidebar, including the sidebar itself, in the call to content_for, as shown
here:

<% content_for :sidebar do %>

<div class="sidebar">

This is content for the sidebar.

<%= link_to "Your Account", account_url %>

</div>

<% end %>

97AntiPattern: PHPitis

ptg

However, <div class="sidebar"> is repeated in each view with a sidebar. This can
lead to errors, and if the class or markup needs to change for the sidebar, then it must
be changed in every view where it appears. <div class="sidebar"> should be in the
layout, and it should be conditionally rendered only if the view is providing content
for the sidebar. This is accomplished as follows:

<% if content_for?(:sidebar) %>

<div class="sidebar">

<%= yield :sidebar %>

</div>

<% end %>

Solution: Add Useful Accessors to Your Models
When refactoring your view code to remove Ruby, or when creating view helpers right
off the bat, it’s important to keep in mind that not all Ruby code that’s in the views
may belong in a helper method. Instead, it’s possible that this code is actual domain
logic and belongs in the model instead. You shouldn’t move code into a helper, and
you shouldn’t create helpers for logic that doesn’t really have anything to do with the
view at all and instead has to do with the model itself. For example, if a link to edit a
post is conditional, based on several circumstances, the non-ideal view code might
look something like the following:

<% if current_user &&

(current_user == @post.user ||

@post.editors.include?(current_user)) &&

@post.editable? &&

@post.user.active? %>

<%= link_to 'Edit this post', edit_post_url(@post) %>

<% end %>

It might be tempting to move all this conditional logic into a view helper, like
post_editable_by?. However, this logic actually should be on the post model itself,
in a method called editable_by?, so your view would then contain the following:

<% if @post.editable_by?(current_user) %>

<%= link_to 'Edit this post', edit_post_url(@post) %>

<% end %>

98 Chapter 3. Views

ptg

Generally, whether a method belongs in a view helper or in the model is decided by
where the method will be used. The editable_by? method will be used both in the
view to conditionally present an edit link and also in the controller edit and update
actions to enforce the post editing permissions. Because this method is used both in
the view and the controller, and it relates specifically to permissions to take action on
a model, these are indicators that this method belongs on the model itself.

On the other hand, methods that are used only in the view for presentation con-
cerns, even though they directly relate to the model, are best kept as view helper meth-
ods. Take, for example, a web-based job board application with a Job model that has a
title attribute. Frequently, the available jobs are listed in the sidebar of the application,
which is of limited width. One day, a bug report is filed, reporting that when a Job is
entered where the title contains slashes (for example, "Software Developer/Ruby/
Washington, D.C."), the text wrapping in the limited-width sidebar is not broken on
the slashes, causing the content to overrun the width of the box, throwing off the look
of the page. After attempting various CSS and HTML solutions to get the text to wrap
properly, you determine that no cross-browser solution is available to cause the job
title to be wrapped on the slashes, and the only solution is to add a space on either side
of each slash, so that the title become "Software Developer / Ruby / Washington,
D.C."

In the preceding scenario, there are a few different ways to solve this problem.
First, it would be possible to transform the data being input into the title field to
ensure that slashes are surrounded by spaces. One major downside to this is that the
original data the user entered is not preserved. It’s not possible to know what the user
originally typed in, and you lose the flexibility to deal with future requirements
changes regarding the title attribute. In addition, this solution works only for newly
entered job titles. A data migration would need to be performed to transform existing
job titles in this same way.

Another solution would be to override the getter method for the title attribute on
the model so that when the title is requested, it is modified in the desired way. While
this addresses most of the problems with the first proposed solution, it does not
address the additional issue that this concern is strictly limited to view presentation of
the data entered by the user. An excellent place to deal with this requirement is in a
view helper used for the presentation of job titles:

def display_title(job)

job.title.split(/\s*\/\s*/).join(" / ")

end

99AntiPattern: PHPitis

ptg

As you approach view helpers, it’s important that you keep in mind MVC concerns
and ensure that your methods are in the appropriate places.

Solution: Extract into Custom Helpers
The most obvious way to deal with excess Ruby code in your views is to remove it.
Rails provides the facility to do this by enabling you to move this code into methods
called helpers. You can then call the helper methods from the view. Helpers increase
readability and maintainability of your views, and because helpers are methods on a
Helper class, it’s possible to unit test your helper methods, which is typically much
easier than doing more complex functional tests in order to test logic that’s contained
within a view.

For example, the following is an example of view code in the index view of an
AlertsController:

<div class="feed">

<% if @project %>

<%= link_to "Subscribe to #{@project.name} alerts.",

project_alerts_url(@project, :format => :rss),

:class => "feed_link" %>

<% else %>

<%= link_to "Subscribe to these alerts.",

alerts_url(format => :rss),

:class => "feed_link" %>

<% end %>

</div>

In this application, AlertsController can either show all alerts across all proj-
ects, or it can be limited to show just the alerts of one project. If it’s showing alerts for
all projects, the text of the link will be “Subscribe to these alerts”; otherwise, the link
text will include the specific project name.

Deprecation of Formatted URL Helpers

In Rails 2.0 through 2.2, to output the URL of a “formatted” route—that is,
one with an extension, such as /projects/alerts.rss—you would use the
formatted URL helpers (for example, formatted_project_alerts_

url(@project, :rss)). Starting with Rails 2.3, these methods were depre-
cated in favor of the :format option to the regular URL helpers (for example,

100 Chapter 3. Views

ptg

project_alerts_url(@project, :format => :rss)). These extra helpers
were taking up a lot of extra memory in Rails applications and served mini-
mal purpose.

The view code above can be moved into a helper named rss_link, as shown here:

def rss_link(project = nil)

if project

link_to "Subscribe to #{project.name} alerts.",

project_alerts_url(project, :format => :rss),

:class => "feed_link"

else

link_to "Subscribe to these alerts.",

alerts_url(:format => :rss),

:class => "feed_link"

end

end

The rss_link method shown here is essentially the view code moved into a helper
method. You can continue to improve this method. There are two reasons you need a
conditional in this method: you need to include the project name in the text of the
link, and you need a different URL helper. By creating a second helper method for the
determination of the URL helper, you can simplify the rss_link method. You can call
this method alerts_rss_url:

def alerts_rss_url(project = nil)

if project

project_alerts_url(project, :format => :rss)

else

alerts_url(:rss)

end

end

With this new helper method in place, you can simplify the rss_link method:

def rss_link(project = nil)

link_to "Subscribe to these #{project.name if project} alerts.",

alerts_rss_url(project),

:class => "feed_link"

end

101AntiPattern: PHPitis

ptg

You have cleaned up the view by using this method. It’s now as simple as the following:

<div class="feed">

<%= rss_link(@project) %>

</div>

Markup Helpers

Helpers are used for more than just cleaning up Ruby code in your views. You can also
include the markup surrounding your code in the helpers. Because the div surround-
ing the link will always be present and is an implementation detail that distracts from
the view code as a whole, it’s an ideal candidate for inclusion in the helper. Also, to fur-
ther structure the markup produced by a helper, and to facilitate inclusion of addi-
tional markup in helper methods, you should use the content_tag method.

The content_tag method takes an HTML tag as its first argument and a hash as
its second argument (with the keys and values used as the attributes of the resulting
HTML tag). In addition, content_tag takes an optional block, which is then used to
provide further subtags. By using content_tag and including the surrounding div in
rss_link, the helper now looks as follows:

def rss_link(project = nil)

content_tag :div, :class => "feed" do

link_to "Subscribe to these #{project.name if project} alerts.",

alerts_rss_url(project),

:class => "feed_link"

end

end

It’s worth considering consistent use of the content_tag method as an alternative to
the link_to helper. This can lead to a more readable structure when you have more
complex markup. For more information on this technique, see the section
“AntiPattern: Markup Mayhem,” later in this chapter. If you change to using the
content_tag method instead of the link_to helper, the rss_link method appears as
follows:

def rss_link(project = nil)

content_tag :div, :class => "feed" do

content_tag :a,

"Subscribe to these

102 Chapter 3. Views

ptg

#{project.name if project} alerts.",

:href => alerts_rss_url(project),

:class => "feed_link"

end

end

By making effective use of helpers that are self-contained (in that they include the
surrounding markup), your views will be significantly easier to read. However, as with
any other technique, it’s good only in moderation. If you need to include a lot of
markup, you should probably just use a view partial instead.

Everything in Its Place

When using view helpers effectively, it’s important not to just put all your helper
methods in application_helper.rb. While this is “easy” because they are then auto-
matically available in all your controllers and views, ApplicationHelper quickly
becomes a dumping ground for everything, resulting is a confusing mess of uncon-
nected code. In this scenario, it’s not unsurprising to find old helpers in
ApplicationHelper that aren’t even used in the application anymore.

You should provide structure to your helpers by putting them in the helper files of
the resource they are related to. You should even feel free to abandon the convention
of strictly sticking to a helper file for each resource (controller) and instead create new
helper files, organized by functional area. Your helpers are available throughout your
entire application, and you can focus on keeping them organized logically, without
worrying about how to call them appropriately.

Test Rails View Helpers

Traditionally, unlike the rest of the framework, the view helper portion of Rails lacked
built-in support for testing. Therefore, at worst, many helper methods written by Rails
developers would go completely untested, and at best, the strategy for testing helper
methods was inconsistent from application to application, or even within a single
application.

Fortunately, Rails 2.1 introduced a built-in mechanism for testing view helpers
that incorporates many of the setup conventions that have made helper testing partic-
ularly challenging in the past. Now, there is no reason your helper methods should
remain untested.

103AntiPattern: PHPitis

ptg

The class ActionView::TestCase provides the setup harnesses for effectively test-
ing helper methods, but it is not included in your tests by default, so you need to
require it when your tests are run. You do this by including require

'action_view/test_case' in your test/test_helper.rb file.
ActionView::TestCase provides a TestController, with test request

(ActionController::TestRequest), test response (ActionController::TestResponse),
and empty params. ActionView::TestCase also sets up your helper tests so that when
they run and you call one of your helper methods in your tests, the helper is executed
within the TestController. In this way, your helpers have access to the test request,
response, and params from your helper tests.

Finally, the standard location for helper tests is in test/unit/helpers, and the
filenames follow the standard Rails unit test naming conventions. For example, if you
have PlansHelper, its unit tests would live in test/unit/helpers/plans_helper_
test.rb.

Now that you have the relevant background and setup information, you can run
the following tests for the rss_link and alerts_rss_url methods:

require 'test_helper'

class ProjectsHelperTest < ActionView::TestCase

context "the rss_link method" do

setup do

@result = rss_link(@project)

end

should "include a link to the alerts_rss_url" do

assert_match /href="#{alerts_rss_url}"/, @result

end

should "include a div with the class feed" do

assert_match /div class="feed"/, @result

end

should "include an A tag with the class feed_link" do

assert_match /a class="feed_link"/, @result

end

end

104 Chapter 3. Views

ptg

context "with a project" do

setup do

@project = Factory(:project)

end

context "the rss_link method" do

setup do

@result = rss_link(@project)

end

should "have the project name in the rss link" do

assert_match /Subscribe to these #{@project.name} alerts/,

@result

end

should "include a link to the rss for the project" do

assert_match /href="#{alerts_rss_url(@project)}"/,

@result

end

end

end

context "the alerts_rss_url method" do

setup do

@result = alerts_rss_url

end

should "return the rss alerts url" do

assert_equal alerts_url(:rss), @result

end

end

context "with a project" do

setup do

@project = Factory(:project)

end

context "the alerts_rss_url method" do

setup do

@result = alerts_rss_url(@project)

end

105AntiPattern: PHPitis

ptg

should "return the rss project alerts url" do

assert_equal project_alerts_url(@project,

:format => :rss),

@result

end

end

end

end

106 Chapter 3. Views

ptg

AntiPattern: Markup Mayhem
As all good designers know (and are more than willing to expound upon at length over
a beer), semantic markup is king.

Semantic markup is a fancy term for separating content and presentation in your
HTML. From a practical point of view, this means three things:

• Every element in the page that wraps specific content should have a class or id
attribute applied to it that identifies that content.

• The right tags should be used for the right content.

• Styling should be done at the CSS level and never on the element directly.

Some tags have intrinsic semantic meaning. A <p> tag represents a paragraph, an <h1>
the main header, and so on. Some other common tags, such as <div> and , do
not have intrinsic semantic meaning.

The following is an example of HTML markup that’s likely to get you into a bar
fight with a designer (they’re a rough crowd):

<div>

<div>

I love kittens!

</div>

<div>

I love kittens because they're

soft and fluffy!

</div>

</div>

This is the epitome of non-semantic markup. The <div> and tags have no
meaning and are unadorned with class or id attributes. And the styles are applied
directly on the elements. The following is a much better example:

<div id="posts">

<div id="post_1" class="post">

<h2>

107AntiPattern: Markup Mayhem

ptg

I love kittens!

</h2>

<div class="body">

I love kittens because they're

soft and fluffy!

</div>

</div>

</div>

Isn’t this better? This example uses the <h2> and tags correctly, and it tags the var-
ious divs to identify the content they represent. Another way of evaluating the seman-
tic nature of a page is by considering how much sense the page makes when the
content is stripped out and only the tags are left. Consider the following:

<div>

<div>

</div>

<div>

</div>

</div>

Now look at the more semantic version:

<div id="posts">

<div id="post_1" class="post">

<h2/>

<div class="body">

</div>

</div>

</div>

It’s clear what the general form of the content would be in the second version, even
without seeing it.

The holy grail of web design is a site that can be completely restyled without mod-
ifying any HTML content; only CSS changes would be allowed. While this is a lofty

108 Chapter 3. Views

ptg

goal, sites such as http://csszengarden.com have shown that it is possible. Keeping
your HTML semantic is a major step toward this goal. Not only are you no longer
required to find and modify every , but you can target
your elements in your CSS files as .posts .post .body, which makes the CSS much
more maintainable.

Another hallmark of modern web development is the concept of unobtrusive
JavaScript. A full treatise on this concept is beyond the scope of this solution, but the
basic concept is simple: JavaScript should not be included inline in a page, but should
be separated into external JavaScript files and attached to the relevant pieces of the
DOM at runtime. Targeting the DOM is much easier when the proper id and class
attributes are used.

The next two solutions describe ways of keeping the views in your Rails applica-
tion semantic and well structured, without adding extra programmer overhead.

Solution: Make Use of the Rails Helpers
Say that you are a fearless Ruby on Rails developer who believes in progress, quality,
and the importance of keeping current on best practices. You have bought into the
importance of semantic markup, and you want to keep your designer as happy as pos-
sible. To that end, you’ve been trying to keep all the views in your latest Ruby on Rails
project semantically correct. You’ve been making use of all the right tags and adding id
and class attributes wherever they make sense. This is one of your ERb views:

<div class="post" id="post_<%= @post.id %>">

<h2 class="title">Title</h2>

<div class="body">

Lorem ipsum dolor sit amet, consectetur...

</div>

<ol class="comments">

<% @post.comments.each do |comment| %>

<li class="comment" id="comment_<%= comment.id %>">

<%= comment.body %>

<% end %>

</div>

After spending the last few hours going through your views, though, you’re starting to
lose faith. The outcome of semantic HTML is a definite win for your project, but the

109AntiPattern: Markup Mayhem

ptg

maintenance costs of having all this Ruby code littering your views is starting to out-
weigh all those benefits.

You can remove some of this complexity if you’ve used the built-in semantic view
helpers included in Rails. Specifically, you can get rid of the terribly ugly <div class=
"post" id="post_<%= @post.id %>"> and <li class="comment" id="comment_
<%= comment.id %>"> lines by making use of the div_for and content_tag_for
helpers:

<%= div_for @post do %>

<h2 class="title">Title</h2>

<div class="body">

Lorem ipsum dolor sit amet, consectetur...

</div>

<ol class="comments">

<% @post.comments.each do |comment| %>

<%= content_tag_for :li, comment do %>

<%= comment.body %>

<% end %>

<% end %>

<% end %>

This not only helps with keeping the ERb readable, but it also enforces consis-
tency in the class and id scheme. This helps avoid CSS cruft as the project matures.
div_for and content_tag_for helpers both use dom_class and dom_id internally.
Therefore, using these helpers also gives you a single place to make changes if you need
to change the CSS class for all posts.

Money for Nothin’

While you must explicitly use the div_for and content_tag_for helpers, some other
parts of Rails automatically produce semantic HTML. For example, form_for and
related helpers produce forms with semantically correct class and id attributes:

<%= form_for @user do |f| %>

<%= f.label :first_name %>

<%= f.text_field :first_name %>

<%= f.label :last_name %>

<%= f.text_field :last_name %>

110 Chapter 3. Views

ptg

<%= submit_tag 'Create' %>

<% end %>

<form action="/users/4" method="post" class="edit_user"

id="edit_user_4">

...

<label for="user_first_name">First Name</label>

<input id="user_first_name" name="user[first_name]" type="text" />

<label for="user_last_name">Last Name</label>

<input id="user_last_name" name="user[last_name]" type="text" />

<input name="commit" type="submit" value="Create" />

</form>

CSS authors and JavaScript developers can now target selectors such as form.edit_
user or input#user_first_name, resulting in a much more clear and maintainable
front end.

Using the freely available Rails helpers in your ERb views is a great step toward
creating semantic and maintainable code, but you can take it a major leap further. The
next solution shows how using Haml in your application can make it even easier to
produce semantic HTML and also to create well-structured HTML in general.

Solution: Use Haml
We discussed in the last solution how to make use of the built-in Rails helpers to produce
semantic HTML. They make semantic HTML easier to produce from an ERb tem-
plate, but they don’t remove all the pain. Take this example from the preceding solution:

<div id="blawg">

<%= div_for @post do %>

<h2 class="title">

<%= @post.title %>

</h2>

<div class="body">

Lorem ipsum dolor sit amet, consectetur...

</div>

<ol class="comments">

<% @post.comments.each do |comment| %>

<%= content_tag_for :li, comment do %>

<%= comment.body %>

<% end %>

111AntiPattern: Markup Mayhem

ptg

<% end %>

<% end %>>

</div>

While this code is quite familiar to anyone comfortable with HTML and ERb, if you
look at this snippet with a fresh eye, you can see some issues. The very nature of XML-
based syntax means there is a good amount of gibberish going on. If you distill this to
just the pertinent information, you begin to realize just how much boilerplate you’ve
been writing. Here’s a fanciful version that would convey exactly the same information
in roughly half the lines:

div#blawg

div for @post

h2.title

output @post.title

div.body

"Lorem ipsum dolor sit amet, consectetur..."

ol.comments

for each @post.comments as comment

li for comment

output comment.body

Thanks to the work of Hampton Catlin and his Haml gem, this made-up syntax
isn’t too far off the mark of what you can do today. In many ways, because of some
basic assumptions that Haml makes, you can make this example even more concise:

#blawg

%div[@post]

%h2.title= @post.title

.body

Lorem ipsum dolor sit amet, consectetur...

%ol.comments

- @post.comments.each do |comment|

%li[comment]

= comment.body

Install Haml

Haml is packaged as a Ruby gem, so installing it in your application is as simple as
adding a gem 'haml' line to your gemfile. Haml can live side-by-side with ERb tem-

112 Chapter 3. Views

ptg

plates. In fact, just installing Haml should not change the behavior of your application
at all.

To make use of the Haml format, you simply name your view template with a
.haml extension instead of .erb. For example, the UsersController#show template
would be named app/views/users/show.html.haml instead of app/views/users/
show.html.erb. Remember not to leave the old .erb file in place, as Rails will give it
precedence over the .html file.

Anything in a Haml template follows the rules described in the following section.

Whitespace Sensitivity

Haml, much like Python, is known as a “whitespace-sensitive” language. This means
that indentation is syntactically important. In other words, the snippets below will
result in very different results:

#parent-tag

#child-tag

#grandchild-tag

This Haml example will output the following HTML, with each div nested inside the
next:

<div id="parent-tag">

<div id="child-tag">

<div id="grandchild-tag"/>

</div>

</div>

On the other hand, the following Haml snippet will produce HTML with the two
divs side-by-side:

#brother-tag

#sister-tag

Here is the HTML produced by the Haml above:

<div id="brother-tag"/>

<div id="sister-tag"/>

113AntiPattern: Markup Mayhem

ptg

HTML, being a highly hierarchical language, is well suited to Haml’s whitespace-
sensitive syntax. Not only does this remove the necessity for closing tags, but it
enforces correct indentation, for which good designers are already sticklers.

Haml achieves its refreshing brevity through the use of some special shorthand
characters. While these can be a bit overwhelming when you first encounter them, it
won’t be long until you’re reading Haml faster than HTML.

Classes, IDs, Elements, and Embedded Ruby

Haml borrows the use of the . and # characters from CSS to represent id and class
attributes. Specifying an element in Haml as #foo.biz.baz, for example, results in
<div id="foo" class="biz baz">.

Notice that, by default, Haml assumes that a bare id or class attribute is being
applied to a <div> element. While this is definitely the most common case, you can
override it by using the % character to specify an element type. For example, you can
easily specify an <h1 id="title"> element as %h1#title.

Haml was written to replace ERb and has the same Ruby constructs. A Ruby
snippet can be included silently with the - operator or printed inline with the rest of
the output, using =. For example, the following loops through a status_updates of a
@user rendering each one in turn and then rendering a footer partial:

- @user.status_updates.each do |status_update|

= render status_update

= render :partial => "footer"

You may have noticed a subtle point, here: In Haml, even the Ruby code is whitespace
aware. Haml recognizes the fact that you have nested the first call to render under the
start of the block, and it adds an implicit end statement to close off the block.

Another shortcut that Haml gives you is inline text. If you follow an element def-
inition with any text, that text is assumed to be the text for that element. Similarly,
putting a = after the element tells Haml to interpret the rest of the line as Ruby code:

#page-title This is my blawg.

%p

There are

%span#post-count= Post.count

posts.

114 Chapter 3. Views

ptg

Semantic Sugar

One of the best and most underused features of Haml is the [] operator. When given
an object, such as [record], [] acts as a combination of div_for and content_for,
outputting a tag with the id and class attributes set by that record. Here’s an example:

%div[bike]

%ul.wheels

- bike.wheels.each do |wheel|

%li[wheel]

= wheel.position

This will produce the following semantic and cleanly formatted HTML:

<div class="bike" id="bike_3">

<ul class="wheels">

<li class="wheel" id="wheel_1">

Front

<li class="wheel" id="wheel_2">

Rear

</div>

Sass and CSS

Haml comes with a sister library named Sass, which does for your CSS files what
Haml does for HTML. While we won’t go too far into the details of Sass, it’s worth a
quick preview to whet your appetite. A Sass snippet looks something like this:

#footer

:border-top 3px solid black

:color = $primary_color

:font-size .8em

:font-weight bold

.citation

:text-align right

*

:padding-left 1px

115AntiPattern: Markup Mayhem

ptg

Like Haml, Sass is whitespace sensitive. Sass allows nesting of CSS selectors, use of
variables (such as $primary_color), and many other conveniences. If you’re using
Haml, you’ll almost definitely want to use Sass as well. Sass is part of the Haml gem,
so once you’ve installed Haml in your application, you can start using Sass as well.

The Haml Takeover

Haml is quickly gaining converts in the Ruby on Rails world. The concise syntax,
enforced indentation, and focus on making semantic output as easy as possible makes
it a clear winner. That being said, there are some issues to be aware of. For one, it can
be difficult and time-consuming to convert an existing code base to Haml (or back
again). Haml comes with some tools to assist with migration, but they are really 80%
solutions. Also, while the Haml syntax can be learned very quickly, adoption can be
thwarted when orthodox designers are uninterested in learning a new technology. This
is especially true of designers who are used to using their favorite HTML generation
tools, such as Dreamweaver. However, the benefits of Haml are well worth a devel-
oper’s perseverance when trying to gain Haml adoption among a team.

116 Chapter 3. Views

ptg

CHAPTER 4
Controllers

Controllers put the C in MVC and are a fundamental part of the Rails framework.
However, the relationship that many Rails programmers have with controllers is
 complex.

On one hand, controllers are categorically loathed, with most Rails programmers
having the goals that as little code as possible should go into controllers and that con-
trollers should all be pretty much the same auto-generated scaffolding.

On the other hand, there is an intense focus on controllers—so much so that the
aforementioned goals have been an immense source of abstraction and innovation in
Rails, allowing programmers to write more functionality with less code.

In fact, in the 2.x Rails releases, the most fundamental changes came to con-
trollers and things they touch, such as routes and rendering. Whether the motivation
for this focus is loathing or love doesn’t really matter, as you can hardly say that Rails
isn’t a better framework for the improvements that have been made to the Controller
layer.

Of course, with improvements come challenges. The need to stay up to date with
controller best practices as they change from Rails version to Rails version and the
need to deliver continuing business value and improvements in applications while
keeping them maintainable and agile can put a significant burden on Rails developers.

In the following AntiPatterns, we explore several pitfalls that you may face in your
application controllers. The solutions range from the well-known “skinny controller,
fat model” approach to the application of RESTful principles to non-RESTful
 applications.

117

ptg

AntiPattern: Homemade Keys
Many applications contain user authentication code. Authentication is the manage-
ment of the user session (sign-in and sign-out) and the existence of users in the system
(sign-up). This is different from user authorization, which defines what users can and
cannot do in a system once they log in.

Because the great majority of applications require user authentication, this has
been an area of collaboration on open-source plugins for some time in the Rails com-
munity. Unfortunately, many of the user authentication plugins in the past have had a
few problems. Having been around for some time, they often contain old, outdated
code that is not up to current best practices and may be difficult to understand. In
addition, plugins tend to try to be all things to all people. They frequently have con-
figuration options for various ways of doing things, such as password encryption,
optional user parameters, different login or user creation flows, and so on.
Unfortunately, this results in an overly complex login system that can be confusing to
a developer. You can sometimes overlook such downsides when your authentication
system needs to look and behave exactly like what is provided by the plugin. However,
if you need to customize or improve something, it can be very difficult to do so in the
context of the framework provided by the plugin.

What are you to do when faced with the need to add user authentication to an appli-
cation? You may think that your only options are to use a plugin and have potential
pain down the road or to take the time upfront to write your own, thereby potentially
reinventing the wheel and potentially ending up with a system just as poorly written as
the plugin, if not more so.

First, you should not write your own plugin. Rolling your own authentication sys-
tem requires time and effort for something that is now effectively a solved problem.
There are simply too many pitfalls involved in writing your own. Consider the addi-
tional functionality that will inevitably be part of any production authentication system:
password resets, “remember me,” email confirmations, and so on. What might start off
as a simple task eventually turns into custom written code that is inevitably a liability.

Fortunately, there are now several newer gems that take new, cleaner approaches
to user authentication, are written using current best practices, and have limited scope
in order to provide a solid basic authentication system without providing so much that
it becomes a burden.

In the following solutions to this AntiPattern, we present the two of these newer
gems, Clearance and Authlogic. Which gem you should use depends on the exact

118 Chapter 4. Controllers

ptg

needs of the application. However, the choice to write your own authentication code
should no longer be considered an option except in the most extreme circumstances.
The gems described in this chapter have been used successfully in many different types
of applications.

Solution: Use Clearance
One of the gems that has emerged as an antidote to overly complex authentication
plugins is Clearance. It includes sign-up, sign-in, sign-out, and password reset func-
tionality—and nothing more.

It seeks to provide a clean, straightforward authentication system while providing
a test suite that can be integrated into your own application’s test suite to ensure that
its functionality, as well as any functionality you have customized, is well tested.

You can obtain the Clearance source code from http://github.com/thoughtbot/
clearance. While you can install Clearance into an existing application, it’s usually bet-
ter to have user authentication added as one of the first things in your new applica-
tion. It’s easier to understand what’s going on and manage the changes that way.

Clearance is a Rails engine. Rails engines, in contrast to generators, enable plugins
to provide actual functionality to an application without copying the source code for
models, controllers, and views directly within the application’s source code. Engines
stay inside the gem. The benefit to this is that you can upgrade a gem and get the new
functionality, such as bug and security fixes, in a relatively straightforward manner.

View the README for Clearance for the full, up-to-date installation instructions, as
well as more information on specific advanced Clearance topics. Here we highlight a
few important topics that will hopefully give you an idea of the strategy that Clearance
takes, contrast it with the other gem presented in this AntiPattern, and allow you to
get started with it.

To install the Clearance gem, bundle the clearance gem into your Rails applica-
tion. Next, from within your Rails application, you run script/generate clearance
to configure your application for Clearance. You need to insert Clearance into the
appropriate places in your controllers and routes, and you need to generate the migra-
tions for your database. After running the generator and following any additional
instructions given, Clearance is ready to go in your application. You should now have
/sign_in, /sign_up, /sign_out, shortcut URLs, and a functioning authentication
system.

If you want to require users to be logged in to access a specific controller or con-
troller action, you accomplish this with the :authenticate before filter:

119AntiPattern: Homemade Keys

ptg

class class WidgetsController < ApplicationController

before_filter :authenticate

def index

@widgets = Widget.all

end

end

To change any of the actions provided by Clearance, you simply subclass the controller
provided by Clearance. For example, to change the behavior of the new action of the
sign-in controller, you redefine it in your subclass as shown here:

class SessionsController < Clearance::SessionsController

def new

your special new behavior

end

end

Then you add the route for your new controller before the Clearance routes in con-
fig/routes.rb, as shown here:

map.resource :session, :controller => 'sessions'

You can override actions that redirect (create, update, and destroy) in
Clearance controllers by redefining url_after_(action) methods as shown here:

class SessionsController < Clearance::SessionsController

def url_after_create

your_special_path

end

end

One of the features that sets Clearance apart from other gems is that it provides
complete Cucumber integration tests for your application to use as base tests for the
authentication logic Clearance provides. A generator put these in place, and they run
along with the rest of your integration tests. To generate the Cucumber features, you
simply run the following command:

script/rails generate clearance_features

120 Chapter 4. Controllers

ptg

If you modify existing functionality, you can modify the Cucumber features accord-
ingly. This should make adding or customizing functionality easier, without introduc-
ing regressions to the authentication logic.

Solution: Use Authlogic
Another gem that was specifically created to address the perceived deficiencies in the
older, more complex, and messy authentication libraries is Authlogic. Authlogic takes
an entirely different approach than any previous authentication library. It pushes the
majority of authentication functionality down into the Model layer, using additional
model types and callbacks to existing models. This approach leads to a very clean and
unobtrusive implementation for an application.

You can obtain Authlogic source code from http://github.com/binarylogic/
authlogic. Then you bundle the authlogic gem into your Rails application.

View the README for Authlogic for the full, up-to-date installation instructions, as
well as more information on specific advanced Authlogic topics. Here we highlight a
few important topics that will hopefully give you an idea of the strategy that Authlogic
takes, contrast it with the other gem presented in this AntiPattern, and allow you to
get started with it.

To perform authentication, Authlogic introduces a new type of model,
Authlogic::Session::Base. You can have as many Session models as you want, and
you can name them whatever you want, just as you can your other models. Say that
you want to authenticate with the User model, which is inferred by the name:

class UserSession < Authlogic::Session::Base

specify configuration here

end

Any of the following examples log in the specified user:

UserSession.create(:login => "bjohnson",

:password => "my password",

:remember_me => true)

session = UserSession.new(:login => "bjohnson",

:password => "my password",

:remember_me => true)

session.save

121AntiPattern: Homemade Keys

ptg

requires the authlogic-oid "add on" gem

UserSession.create(:openid_identifier => "identifier",

:remember_me => true)

skip authentication and log the user in directly,

the true means "remember me"

UserSession.create(my_user_object, true)

For most applications, you will create a UserSessionsController that uses the
UserSession model, just like a normal model.

In contrast to Clearance, Authlogic doesn’t provide controllers and views in its
standard distribution. You have to create them by hand or copy them from the sample
application provided by Authlogic. Because Authlogic provides no application-specific
functionality, it also doesn’t provide integration tests for your application to use.

You can mix in the authentication functionality directly into your User model:

class User < ActiveRecord::Base

acts_as_authentic

end

This provides validations as well as additional functionality for password and user
 creation.

The Choice Is Yours

The implementation strategies that Clearance and Authlogic use may be different, but
their goals are the same: to have a cleanly written, well-architected authentication gem
that limits its scope in order to stay focused on those goals. As long as you use one of
these well-written gems as a base for your authentication system, rather than using one
of the older, outdated plugins or rolling your own, your application will be well
served. Which one you choose to use is up to you.

122 Chapter 4. Controllers

ptg

AntiPattern: Fat Controller
The concept of the fat controller is one of the most popularized AntiPatterns in the
Rails community. It’s a fundamental problem that affects many Rails applications, and
frankly, it’s likely popular because fixing it is not only an extremely effective improve-
ment, it’s also typically a straightforward one to make.

A fat controller typically includes business logic that properly belongs in the model.
In addition, by moving code to the model, you can unit test the code. Many Rails
developers agree that writing unit tests is often easier than writing functional tests.

Faced with the concept of cleaner code that is easier to test (and, therefore, likely
better tested), the choice is clear: The fat controller is out, and the skinny controller is in.

The following solutions provide extensive examples of how to refactor your fat
controllers to remove the business logic and place it properly in the model. Features
provided by Active Record, such as callbacks, setters, and database defaults, make an
important set of tools for this task. In addition, there are other patterns, such as the
Presenter Pattern, that we can call on to provide effective measures for encapsulating
complex behavior when our normal models aren’t enough.

Solution: Use Active Record Callbacks and Setters
One of the core organizational structures of Rails is the Model-View-Controller
(MVC) pattern. The blurring of the lines between these three components is a com-
mon mistake that takes place for many reasons, including inexperience, confusion,
coping with complex or changing requirements, and mere laziness. Let’s take a look at
an offending controller action:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter_id = current_user.id

begin

Article.transaction do

@version = @article.create_version!(params[:version],

current_user)

end

rescue ActiveRecord::RecordNotSaved,

ActiveRecord::RecordInvalid

render :action => :index and return false

123AntiPattern: Fat Controller

ptg

end

redirect_to article_path(@article)

end

The code for this ArticlesController#create action was taken from an actual pro-
duction application. To be clear, this code works. However, it’s poorly structured, has
minor MVC violations, and makes use of several techniques that are either incorrect
or are not Rails best practices.

Next, we walk through a complex refactoring of this controller action, in an attempt
to rectify each of the problems. Before we begin, there are a few things to note.

It’s simply not effective to perform refactoring on a production application with-
out having an adequate test suite in place. Very often, you are not the original author
of code you’re working on. The test suite will assist you in understanding the intention
of the code, and it will help you prevent regressions as you dramatically alter the code.
For these reasons, you will have the added benefit of being able to perform refactorings
such as the ones outlined here more quickly than you would otherwise.

The next thing to note is that at 14 lines, this controller action is too long. While
a 14-line controller action may not seem very long to you, it’s very important to keep
your guard up against doing too much in your controller. Doing too much is a sign
that you are performing logic that would be better done in the Model layer of your
application. If you’re not careful to keep your guard up against this, your applications
will end up with controller actions that are hundreds of lines long. We know. We’ve
seen several Rails applications where this is the case.

Now, let’s take a look at the create action again, paying particular attention to
the elements that are bold:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter_id = current_user.id

begin

Article.transaction do

@version = @article.create_version!(params[:version],

current_user)

end

rescue ActiveRecord::RecordNotSaved, ActiveRecord::RecordInvalid

render :action => :new and return false

end

124 Chapter 4. Controllers

ptg

redirect_to article_path(@article)

end

The first bold item is Article.transaction do, a statement that starts a database
transaction. Database transactions are used to ensure that all the statements executed
within them are reverted, or rolled back, if any one of them fails. For a few reasons, it’s
very unlikely that a database transaction needs to be started in the controller. The first
of these reasons is that you should never be doing so much in a controller that you
have multiple statements that depend on each other. The second is that the normal
Active Record lifecycle methods are wrapped in transactions themselves. As you can
see in this controller, and as highlighted by the second bold item, a standard Active
Record lifecycle method, such as save, is never called.

Without a doubt, there are times when multiple actions that are dependent on
each other must occur. Clearly, because the save method is wrapped in a transaction,
simply calling save in the controller without any other model methods surrounding it
would be ideal. But how should multiple actions then be accomplished? The answer is
through callbacks and setters on the model itself—in this case the Article and the
Version models.

Finally, the third bold statement is rescuing the ActiveRecord::RecordNotSaved
and ActiveRecord::RecordInvalid exceptions. It’s preferable to not use exceptions
as flow control because exceptions should be used only in exceptional circumstances.
A record not being found, or a record being invalid because of user input, in most web
applications, is not an exceptional circumstance and therefore should be handled a lit-
tle more gracefully. Used as flow control, these exceptions are little more than glorified
GOTO statements.

Here is a conceptualization of how this create action might ideally look:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter_id = current_user.id

if @article.save

redirect_to article_path(@article)

else

render :action => :new

end

end

125AntiPattern: Fat Controller

ptg

In this ideal create action, you can see that the normal Active Record save
method is now being used to save the article. This method returns true when the save
has been successful, which causes the user to be redirected to the article show page.
However, if save returns false because the save has not been successful, the page to
create a new article is rendered to the user again. The only additional step that is
occurring in the controller action is the assignment of the ID of the user who is creat-
ing the article. Generally, for security purposes, these types of actions should occur in
the controller rather than in hidden form fields. Doing this guards against users tam-
pering with the form values to create an article as if it were created by another user.
We’ll discuss the nature of these assignments later in this chapter, but you should keep
them as is for now.

The First Step

Let’s explore how to achieve the ideal controller described in the preceding section.
The change from calling a create_version! method to calling the save method on
Article is the biggest conceptual difference, so let’s take a look at the create_
version! method:

def create_version!(attributes, user)

if self.versions.empty?

return create_first_version!(attributes, user)

end

mark old related links as not current

if self.current_version.relateds.any?

self.current_version.relateds.each { |rel|

rel.update_attribute(:current, false) }

end

version = self.versions.build(attributes)

version.article_id = self.id

version.written_at = Time.now

version.writer_id = user.id

version.version = self.current_verison.version + 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

126 Chapter 4. Controllers

ptg

The first thing that occurs in this method is that create_first_version! is
called with the same parameters that were passed in if self.versions.empty? is true.
Before taking a look any further, let’s review the create_first_version! method:

def create_first_version!(attributes, user)

version = self.versions.build(attributes)

version.written_at = Time.now

version.writer_id = user.id

version.state ||= "Raw"

version.version = 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

As you can see, create_first_version! is strikingly similar to the eight closing
lines of the create_version! method. Therefore, your first refactoring task will be to
remove the create_first_version! method altogether. You want to do this because
the less custom things that can happen, the more likely it is that you’ll be able to just
call the save method on the article.

Built-in Rails Functionality

The two bolded lines in the following code, which are identical in the two methods,
are assigning the current time to the written_at attribute of the version:

def create_version!(attributes, user)

if self.versions.empty?

return create_first_version!(attributes, user)

end

mark old related links as not current

if self.current_version.relateds.any?

self.current_version.relateds.each { |rel|

rel.update_attribute(:current, false) }

end

version = self.versions.build(attributes)

version.article_id = self.id

version.written_at = Time.now

version.writer_id = user.id

127AntiPattern: Fat Controller

ptg

version.version = self.current_verison.version + 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

def create_first_version!(attributes, user)

version = self.versions.build(attributes)

version.written_at = Time.now

version.writer_id = user.id

version.state ||= "Raw"

version.version = 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

Upon inspection, you see that the Version model does not have either an
updated_at or created_at attribute. Therefore, the written_at attribute should be
renamed created_at, and Active Record will automatically populate it with the cur-
rent time when the record is saved to the database. After that attribute is renamed,
these two lines of code can be removed.

Default Values

The bold code below is causing the version state to be set to "Raw" if the state is not
already set. This occurs only for the first version and not in any other versions.
However, in all other versions after the first, the state is set via the forms in the view to
the state of the version before it. Therefore, this effectively amounts to a default value
for all versions.

def create_version!(attributes, user)

if self.versions.empty?

return create_first_version!(attributes, user)

end

mark old related links as not current

if self.current_version.relateds.any?

self.current_version.relateds.each { |rel|

rel.update_attribute(:current, false) }

end

128 Chapter 4. Controllers

ptg

version = self.versions.build(attributes)

version.article_id = self.id

version.writer_id = user.id

version.version = self.current_verison.version + 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

def create_first_version!(attributes, user)

version = self.versions.build(attributes)

version.writer_id = user.id

version.state ||= "Raw"

version.version = 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

The recommended way to set default values on Active Record models is by using
a database default. Note that this does not apply to constraints, which are best handled
by validations. Rails introspects on the schema when returning a new, unsaved record,
and it populates the attributes with any default values set in the database. This type of
integration isn’t supported for validations.

You change the default value of the state column by using a migration like the
following:

class AddRawDefaultToState < ActiveRecord::Migration

def self.up

change_column_default :article_versions, :state, "Raw"

end

def self.down

change_column_default :article_versions, :state, nil

end

end

Effective Callback Use

Once your migration is in place and has been run, the code looks as follows:

129AntiPattern: Fat Controller

ptg

def create_version!(attributes, user)

if self.versions.empty?

return create_first_version!(attributes, user)

end

mark old related links as not current

if self.current_version.relateds.any?

self.current_version.relateds.each { |rel|

rel.update_attribute(:current, false) }

end

version = self.versions.build(attributes)

version.article_id = self.id

version.writer_id = user.id

version.version = self.current_verison.version + 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

def create_first_version!(attributes, user)

version = self.versions.build(attributes)

version.writer_id = user.id

version.version = 1

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

The two bold lines here set the version number. The first version of an article is
assigned the version number 1, and all other versions are assigned the version number
of the current version incremented by 1.

The best way to accomplish this functionality is in a callback method on the
Version model, as shown here:

class Version < ActiveRecord::Base

before_validation :set_version_number, :on => :create

validates :version, :presence => true

private

130 Chapter 4. Controllers

ptg

def set_version_number

self.version =

(article.current_version ?

article.current_version.version : 0) + 1

end

This callback occurs before validation, every time a version is created, so that a valida-
tion can ensure that a version always has a version number. This callback, named
set_version_number, takes the current version number, or 0 if there is no current ver-
sion number, and increments it by 1.

Identification of Unnecessary Code

Once the set_version_number callback is in place on your Version model, your
create_version! and create_first_version! methods are as follows:

def create_version!(attributes, user)

if self.versions.empty?

return create_first_version!(attributes, user)

end

mark old related links as not current

if self.current_version.relateds.any?

self.current_version.relateds.each { |rel|

rel.update_attribute(:current, false) }

end

version = self.versions.build(attributes)

version.article_id = self.id

version.writer_id = user.id

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

def create_first_version!(attributes, user)

version = self.versions.build(attributes)

version.writer_id = user.id

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

131AntiPattern: Fat Controller

ptg

The bold code is the only difference now between the final lines of the create_
version! method and the create_first_version! method. Fortunately, this line of
code is completely unnecessary because calling versions.build on the article already
populates the article_id on the version. Therefore, this is redundant and can be
removed. Therefore, the two code blocks are identical.

Another Callback

Now the only difference between the create_version! and create_first_version!
methods is the code that is marking all related links to an article as no longer current:

def create_version!(attributes, user)

if self.versions.empty?

return create_first_version!(attributes, user)

end

mark old related links as not current

if self.current_version.relateds.any?

self.current_version.relateds.each { |rel|

rel.update_attribute(:current, false) }

end

version = self.versions.build(attributes)

version.writer_id = user.id

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

def create_first_version!(attributes, user)

version = self.versions.build(attributes)

version.writer_id = user.id

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

As a programmer who is new to this code base, you’re probably thankful for this
comment, as you’d otherwise have no idea of the purpose of this code in the context of
the domain. That being said, this code happens only if you’re not creating the first ver-

132 Chapter 4. Controllers

ptg

sion of an article, so you can wrap it in a conditional that will be executed only if
you’re not creating the first version so that you can remove the create_first_
version! method entirely, as follows:

def create_version!(attributes, user)

unless self.versions.empty?

mark old related links as not current

if self.current_version.relateds.any?

self.current_version.relateds.each { |rel|

rel.update_attribute(:current, false) }

end

end

version = self.versions.build(attributes)

version.writer_id = user.id

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

Now it’s clear that this logic can be moved to another callback on the Version
model, as shown here:

class Version < ActiveRecord::Base

before_validation_on_create :set_version_number

before_create :mark_related_links_not_current

private

def set_version_number

self.version = (article.current_version ?

article.current_version.version : 0) + 1

end

def mark_related_links_not_current

unless article.versions.empty?

mark old related links as not current

if article.current_version.relateds.any?

article.current_version.relateds.each do |rel|

rel.update_attribute(:current, false)

133AntiPattern: Fat Controller

ptg

end

end

end

end

Notice that the callback has been named mark_related_links_not_current. This
method name is detailed in the same way as the comment. Therefore, you can now
remove the comment. Descriptive method naming is always important, especially for
callbacks, because it ensures that the intention and function of what can eventually be
many callbacks on a model is always clear.

Simplified Callbacks

The bold code below is unnecessary because the loop below it will just be skipped if
there are no elements:

class Version < ActiveRecord::Base

before_validation_on_create :set_version_number

before_create :mark_related_links_not_current

private

def set_version_number

self.version = (article.current_version ?

article.current_version.version : 0) + 1

end

def mark_related_links_not_current

unless article.versions.empty?

if article.current_version.relateds.any?

article.current_version.relateds.each do |rel|

rel.update_attribute(:current, false)

end

end

end

end

Active Record relationship collections on models never return nil if there are no records
found. Instead, they return an empty collection. You can simply remove this code.

134 Chapter 4. Controllers

ptg

You can now focus on the bold line below:

class Version < ActiveRecord::Base

before_validation_on_create :set_version_number

before_create :mark_related_links_not_current

private

def set_version_number

self.version = (article.current_version ?

article.current_version.version : 0) + 1

end

def mark_related_links_not_current

unless article.versions.empty?

article.current_version.relateds.each do |rel|

rel.update_attribute(:current, false)

end

end

end

The unless conditional keyword tends to be confusing, especially to developers
looking at code for the first time. In addition, what this code is checking is whether
the article has any previous versions. However, it then doesn’t use the versions collec-
tion at all to perform the action of this callback. The developer’s intention is actually
to check whether there is a current_version, to ensure that it’s not nil. It’s always
best to do the simplest, most straightforward, and intentionally revealing check as pos-
sible, so you can now change this conditional to look like this:

class Version < ActiveRecord::Base

before_validation_on_create :set_version_number

before_create :mark_related_links_not_current

private

def set_version_number

self.version =

(article.current_version ?

article.current_version.version : 0) + 1

end

135AntiPattern: Fat Controller

ptg

def mark_related_links_not_current

if article.current_version

article.current_version.relateds.each do |rel|

rel.update_attribute(:current, false)

end

end

end

The four occurrences of article.current_version in bold above bring atten-
tion to the fact that within a version, you’re calling article.current_version several
times. This duplication alone should prompt you to refactor it, so that the concept of
what a current version is to a Version is encapsulated. This allows for ease of mainte-
nance down the road. One of the principles behind this refactoring is the Law of
Demeter. (To read more about the Law of Demeter and how it can be applied in Rails
applications, see Chapter 1.)

To perform this refactoring, you create a new method on Version that returns the
current version. You can name this method current_version, as shown here:

class Version < ActiveRecord::Base

before_validation_on_create :set_version_number

before_create :mark_related_links_not_current

private

def current_version

article.current_version

end

def set_version_number

self.version = (current_version ? current_version.version : 0) + 1

end

def mark_related_links_not_current

if current_version

current_version.relateds.each do |rel|

rel.update_attribute(:current, false)

end

end

end

136 Chapter 4. Controllers

ptg

137AntiPattern: Fat Controller

The bold line of code above is fairly typical once you begin to abstract common
behavior into callbacks on your models, as you are doing here. What is actually being
conveyed by a callback that is entirely wrapped in a conditional statement is that there
are times when the callback shouldn’t be executed at all. This was so common, in fact,
that in Rails 2.1 this concept was integrated directly into Active Record, with the addi-
tion of conditional callbacks. Here the callback has been refactored to use conditional
callbacks:

class Version < ActiveRecord::Base

before_validation :set_version_number, :on => :create

before_create :mark_related_links_not_current,

:if => :current_version

private

def current_version

article.current_version

end

def set_version_number

self.version = (current_version ? current_version.version : 0) + 1

end

def mark_related_links_not_current

current_version.relateds.each do |rel|

rel.update_attribute(:current, false)

end

end

This new callback definition, denoted with bold, says “Before create, mark related
links not current if there is a current version,” and now the callback method performs
exactly the action stated in its method name, unconditionally.

Yet Another Callback

You’ve successfully moved the functionality for marking related links not current into
a callback, and you’ve also reduced the number of lines for the method from eight to
three. Now you can go back and take a look at where the create_version! method
stands:

ptg

def create_version!(attributes, user)

version = self.versions.build(attributes)

version.writer_id = user.id

self.save!

self.update_attribute(:current_version_id, version.id)

version

end

Notice (see the bold above) that after each new version is successfully created, it
replaces the current version on the article. This, too, can be a callback on the Version
model, as shown here:

class Version < ActiveRecord::Base

before_validation :set_version_number, :on => :create

before_create :mark_related_links_not_current,

:if => :current_version

after_create :set_current_version_on_article

private

def set_current_version_on_article

article.update_attribute :current_version_id, self.id

end

This callback occurs after the creation of an article, and it uses exactly the same logic
as the code in the create_version! method.

Cleaned-up Code

Now that you’ve created the additional callback, you can return to the create_
version! method again, as you’ve eliminated nearly everything from it:

def create_version!(attributes, user)

version = self.versions.build(attributes)

version.writer_id = user.id

self.save!

version

end

138 Chapter 4. Controllers

ptg

139AntiPattern: Fat Controller

Aside from the two lines at the top of the method, in bold, this create_version!
method is only a call to save!. Notice that these two lines use the two arguments that
are passed into this method from the controller. Given those facts, you can actually
move these two lines back up into the controller itself, to eliminate this additional
argument passing, and to reach the goal of making the create_version! method a
simple call to save!:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter_id = current_user.id

@version = @article.versions.build(params[:version])

@version.writer_id = current_user.id

begin

Article.transaction do

@version = @article.create_version!(params[:version],

current_user)

end

rescue ActiveRecord::RecordNotSaved, ActiveRecord::RecordInvalid

render :action => :index and return false

end

redirect_to article_path(@article)

end

With the two bold lines moved into the controller (adjusted to use the instance
variables and params available in the controller), the create_version! method is now
just a call to save!, so it can be eliminated and replaced with the call to save!, as
shown here:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter_id = current_user.id

@version = @article.versions.build(params[:version])

@version.writer_id = current_user.id

begin

Article.transaction do

@article.save!

end

ptg

rescue ActiveRecord::RecordNotSaved,

ActiveRecord::RecordInvalid

render :action => :index and return false

end

redirect_to article_path(@article)

end

Now that the Active Record save! method is the only thing inside the transaction
block, a transaction does not need to be manually started at all. The transaction, in
bold above, can now be removed:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter_id = current_user.id

@version = @article.versions.build(params[:version])

@version.writer_id = current_user.id

begin

@article.save!

rescue ActiveRecord::RecordNotSaved,

ActiveRecord::RecordInvalid

render :action => :index and return false

end

redirect_to article_path(@article)

end

Recall that the use of save is preferable to the use of save! when the action being
performed is based on user input. Therefore, exceptions for not found and invalid
records wouldn’t be considered exceptional circumstances. Rewritten to use the nor-
mal save method, which returns true or false, the controller action is as follows:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter_id = current_user.id

@version = @article.versions.build(params[:version])

@version.writer_id = current_user.id

if @article.save

render :action => :index

140 Chapter 4. Controllers

ptg

else

redirect_to article_path(@article)

end

end

It’s accepted best practice to set the actual association proxy of an Active Record
relationship than the _id method, as highlighted above. The following example shows
this change:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter = current_user

@version = @article.versions.build(params[:version])

@version.writer = current_user

if @article.save

render :action => :index

else

redirect_to article_path(@article)

end

end

This new create action, which is very close to the ideal presented earlier in this chap-
ter, performs exactly the same functionality as the old one, but now it’s cleaner,
shorter, and more precise.

As you can see, this controller is still explicitly referencing the params[:version]
hash and building a new version. This functionality can be pushed into the Article
model, making it responsible for creating a new version. You can accomplish this by
creating a new_version getter and setter on the Article model. You can then nest the
form inputs for a version underneath the form elements for an article so that they appear
in the params as params[:article][:new_version] instead of params[:version].
If you name the nested params in this way, the params values will be passed directly to
the new_version setter by the call to Article.new. This new setter is as follows:

class Article < ActiveRecord::Base

def new_version=(version_attributes)

@new_version = versions.build(version_attributes)

end

141AntiPattern: Fat Controller

ptg

def new_version

@new_version

end

end

With these two new methods in place, you can now revise the
ArticlesController#create controller action to the following:

class ArticlesController < ApplicationController

def create

@article = Article.new(params[:article])

@article.reporter = current_user

@article.new_version.writer = current_user

if @article.save

render :action => :index

else

redirect_to article_path(@article)

end

end

The technique of using callbacks and setters on models to perform complex opera-
tions while keeping your controllers skinny and clean is very powerful. However, it can
be overused as well. Complex callbacks can be a source of confusion or bugs when used
in inappropriate ways. While adding additional setters is a great and straightforward
solution to the problem at hand, it can become overkill when you’ve created several of
them. Therefore, moderation is a good principle when using this technique. The
Presenter Pattern can also be used with similar effectiveness when the interactions
become overly complex, as outlined in the next section.

Solution: Move to a Presenter
While staying within the confines of the RESTful model when developing Rails appli-
cations can make life much easier for a programmer, there may be times when it seems
impossible to do so. Often, it seems that a controller action must perform more tasks
than just what’s necessary to create or update a single record. As we’ve discussed, such
an increase in responsibilities increases the overall complication of a controller.

We discussed earlier how to move some of that extra logic into callbacks on the
primary model. That is a fine solution when the extra functionality is simple and is

142 Chapter 4. Controllers

ptg

part of a primary model’s responsibility. Once the complexity increases, however, the
complication in the callbacks can quickly get out of hand.

Sign Me Up!

One basic example of the type of complexity just discussed is when a controller must
create multiple models at the same time. Consider an application with accounts and
users. When a new user signs up, you must create both an account with a subdomain
and a user with an email address and a password.

A naïve approach to this requirement would be to just modify the #new and #create
methods in the controller to deal with both an @account and a @user record simulta-
neously. The functional test for such a controller might be as follows:

test/functionals/account_controller_test.rb

class AccountsControllerTest < ActionController::TestCase

context "on GET to #new" do

setup { get :new }

should assign_to(:account)

should assign_to(:user)

should render_template(:new)

should "render form for account and user" do

assert_select "form[action$=?]", accounts_path do

assert_select "input[name=?]", "account[subdomain]"

assert_select "input[name=?]", "user[email]"

assert_select "input[name=?]", "user[password]"

end

end

end

context "on POST to #create with good values" do

setup do

post :create,

:account => {:subdomain => "foo"},

:user => {:email => "foo@bar.com",

:password => "issekrit?"}

end

should set_the_flash.to(/created/i)

should_change "User.count", :by => 1

should_change "Account.count", :by => 1

143AntiPattern: Fat Controller

ptg

should "assign the user to the account" do

assert_equal assigns(:account).id, assigns(:user).account_id

end

end

context "on POST to #create with bad account values" do

setup do

post :create,

:account => { },

:user => {:email => "foo@bar.com", :password => "issekrit?"}

end

should assign_to(:account)

should assign_to(:user)

should render_template(:new)

end

context "on POST to #create with bad user values" do

setup do

post :create,

:account => { :subdomain => "foo" },

:user => { }

end

should assign_to(:account)

should assign_to(:user)

should render_template(:new)

end

end

Implementing the controller and view for this functional test is fairly easy. For the
controller, you simply instantiate and save both an account and a user record in the
two actions. In addition, you make sure to assign the new user to the account before
saving both of them:

app/controllers/account_controller.rb

class AccountsController < ApplicationController

def new

@account = Account.new

@user = User.new

end

144 Chapter 4. Controllers

ptg

def create

@account = Account.new(params[:account])

@user = User.new(params[:user])

@user.account = @account

if @account.save and @user.save

flash[:notice] = 'Account was successfully created.'

redirect_to(@account)

else

render :action => "new"

end

end

end

The form within new.html.erb below must deal with sending two sets of param-
eters to the controller—one for the account and one for the user. You use form_for’s
cousin, the fields_for helper, to accomplish this.

app/views/accounts/new.html.erb

<h1>New account</h1>

<%= form_for(@account) do |f| %>

<%= f.error_messages %>

<p>

<%= f.label :subdomain %>

<%= f.text_field :subdomain %>

</p>

<%= fields_for(@user) do |u| %>

<%= u.error_messages %>

<p>

<%= u.label :email %>

<%= u.text_field :email %>

</p>

<p>

<%= u.label :password %>

<%= u.text_field :password %>

</p>

<% end %>

145AntiPattern: Fat Controller

ptg

<p>

<%= f.submit "Create" %>

</p>

<% end %>

A Subtle Bug

The implementation in the preceding section contains a somewhat subtle bug. The
#create action first tries to save the account record. If that succeeds, it then tries to
save the user record. If the client sends in valid account parameters and invalid user
parameters, the system will be left with a saved account record without an associated
user—an undesirable situation. Obviously, reordering the calls to #save won’t help
here, as that would only allow the client to create an orphaned user record instead.

The following example shows a modified functional test to illustrate this bug:

test/functionals/account_controller_test.rb

class AccountsControllerTest < ActionController::TestCase

...

context "on POST to #create with good values" do

setup do

post :create,

:account => {:subdomain => "foo"},

:user => {:email => "foo@bar.com", :password => "issekrit?"}

end

should set_the_flash.to(/created/i)

should_change "User.count", :by => 1

should_change "Account.count", :by => 1

should "assign the user to the account" do

assert_equal assigns(:account).id, assigns(:user).account_id

end

end

context "on POST to #create with bad account values" do

setup do

post :create,

:account => { },

:user => {:email => "foo@bar.com", :password => "issekrit?"}

end

146 Chapter 4. Controllers

ptg

should_not_change "User.count"

should_not_change "Account.count"

should assign_to(:account)

should assign_to(:user)

should render_template(:new)

end

context "on POST to #create with bad user values" do

setup do

post :create,

:account => { :subdomain => "foo" },

:user => { }

end

should_not_change "User.count"

should_not_change "Account.count"

should assign_to(:account)

should assign_to(:user)

should render_template(:new)

end

...

end

In Rails 2.2 and Rails 2.3, when dealing with transactions in an application, it’s
important to turn off transactional fixtures. In these releases, Active Record does not
handle nested transactions correctly. Rails 3 has fixed this problem. In Rails 2.2 and
Rails 2.3, however, you need to ensure that use_transactional_fixtures is set to
false in your test_helper.rb file:

test/test_helper.rb

class Test::Unit::TestCase

self.use_transactional_fixtures = false

end

Running this functional test will reveal that posting to #create with valid account
parameters and invalid user parameters will still create an account record. The only
way to deal with this situation correctly is to make use of database transactions. By
wrapping your database statements in a call to ActiveRecord::Base.transaction,
you can ensure that either both of the two #save operations happen or neither hap-
pens. If an exception is raised inside the transaction block, the whole transaction is

147AntiPattern: Fat Controller

ptg

rolled back. The exception is also raised again in order to allow the application to grab
it and act accordingly.

Modifying the #create action to use transactions requires touching most of that
code. You need to use #save! to ensure that the failed save operations will trigger an
exception, thus rolling back the transaction. Also, you must use the frowned-upon
begin ... rescue ... end pattern instead of simple conditionals because you’re
using exceptions on failed saves:

app/controllers/account_controller.rb

class AccountsController < ApplicationController

def new

@account = Account.new

@user = User.new

end

def create

@account = Account.new(params[:account])

@user = User.new(params[:user])

@user.account = @account

ActiveRecord::Base.transaction do

@account.save!

@user.save!

end

flash[:notice] = 'Account was successfully created.'

redirect_to(@account)

rescue ActiveRecord::RecordInvalid, ActiveRecord::RecordNotSaved

render :action => "new"

end

end

You’re Doing It Wrong

At this point, we’ve introduced enough code smells into the #create action that we
should step back and reevaluate the path we’re taking.

One of the general guidelines we’re breaking is “Exceptions should be excep-
tional.” We’re now using exceptions to handle validation failures—a common and
expected situation for a web application.

Another guideline we’re breaking is that we’ve introduced transactions, a low-level
database concept, into the Controller layer. Typically, anytime a controller is making
explicit use of transactions, you’ve gone down the wrong path.

148 Chapter 4. Controllers

ptg

Finally, a less pungent smell is introduced by the very fact that your actions aren’t
identical to those in the rest of your RESTful controllers. While small changes can be
unavoidable at times, you should approach any large deviation with caution.

Presenting...

In the example from the preceding section, you can preserve the RESTful nature of
the controller by making use of the Presenter Pattern.

The Model-View-Presenter (MVP) pattern was originally developed by Taligent
and used extensively in some Smalltalk variants. One thing to keep in mind is that no
two descriptions of MVP seem to be able to agree on exactly what the presenter’s role
is. We will be adhering closely to the version of the MVP pattern made recently pop-
ular by Jay Fields, who wrote about it extensively at http://blog.jayfields.com. In
this merger of MVC and MVP, the presenter sits between the Model layer and the
View and Controller layers.

A presenter is simply a plain old Ruby class that orchestrates the creation of multi-
ple models. It can also take on the responsibility of sending emails or triggering other
events that would normally be shoehorned into a controller action.

As much as possible, a presenter should mimic a single Active Record model.
While people were experimenting with presenters in Rails applications, they wrote
about a variety of ways of doing this. It seemed that building a good presenter was
replacing building a new data structure library as the yak shaving hobby of choice.
Luckily, James Golick released a fantastic gem, Active Presenter, which we discuss in
this section. You can find Active Presenter, with installation instructions, at http://
github.com/jamesgolick/active_presenter.

A presenter named Signup encapsulates the creation and association of the
Account and User models. You should start with the unit test to describe how you
expect it to behave:

test/unit/signup_test.rb

class SignupTest < ActiveSupport::TestCase

should validate_presence_of :account_subdomain

should validate_presence_of :user_email

should validate_presence_of :user_password

should "be a presenter for account and user" do

assert_contains Signup.new.presented.keys, :account

assert_contains Signup.new.presented.keys, :user

end

149AntiPattern: Fat Controller

ptg

should "assign the user to the account on save" do

signup = Signup.new(:account_subdomain => "subdomain",

:user_email => "e@mail.com",

:user_password => "passw0rd")

assert signup.save

assert user = signup.user

assert account = signup.account

assert_equal account.id, user.account_id

end

end

The first few macros here ensure that the Signup presenter is sending validations cor-
rectly and that the fields are named as you expect them to be named. Active Presenter
maps the fields on the models to the presenter by prepending the model name to each
field. User#email becomes Signup#user_email, and Account#subdomain becomes
Signup#account_subdomain.

The first should statement ensures that the Signup class is an Active Presenter
class and that it is responsible for the User and Account classes. You don’t want to
retest the library itself (Active Presenter is well tested in its own right), but you do need
to ensure that you are using it correctly. Finally, a test ensures that the Signup presen-
ter associates the user and the account with each other on save.

The following class definition is all that’s necessary to make these tests pass:

app/models/signup.rb

class Signup < ActivePresenter::Base

before_save :assign_user_to_account

presents :user, :account

private

def assign_user_to_account

user.account = account

end

end

The simplicity of this class is possible because it descends from ActivePresenter::Base.
Active Presenter takes care of all the details, including running the before_save callback.

Now that you have what looks like a single Active Record model, the rest of the code
is much simpler. For example, the view now looks like a normal single-model view:

150 Chapter 4. Controllers

ptg

app/views/signups/new.html.erb

<h1>Signup!</h1>

<%= form_for(@signup) do |f| %>

<%= f.error_messages %>

<p>

<%= f.label :account_subdomain %>

<%= f.text_field :account_subdomain %>

</p>

<p>

<%= f.label :user_email %>

<%= f.text_field :user_email %>

</p>

<p>

<%= f.label :user_password %>

<%= f.text_field :user_password %>

</p>

<p>

<%= f.submit "Create" %>

</p>

<% end %>

Our functional test is also almost boilerplate. You leave in the tests for ensuring
that neither record is created if either is invalid just to verify that everything is working
as expected:

test/functional/signup_controller_test.rb

class SignupsControllerTest < ActionController::TestCase

context "on GET to #new" do

setup { get :new }

should assign_to(:signup)

should render_template(:new)

should "render form for signup" do

assert_select "form[action$=?]", signups_path do

assert_select "input[name=?]", "signup[account_subdomain]"

assert_select "input[name=?]", "signup[user_email]"

assert_select "input[name=?]", "signup[user_password]"

151AntiPattern: Fat Controller

ptg

end

end

end

context "on POST to #create with good values" do

setup do

post :create,

:signup => {:account_subdomain => "foo",

:user_email => "foo@bar.com",

:user_password => "issekrit?"}

end

should set_the_flash.to(/thank you/i)

should_change "User.count", :by => 1

should_change "Account.count", :by => 1

end

context "on POST to #create with bad account values" do

setup do

post :create,

:signup => {:user_email => "foo@bar.com",

:user_password => "issekrit?"}

end

should_not_change "User.count"

should_not_change "Account.count"

should assign_to(:signup)

should render_template(:new)

end

context "on POST to #create with bad user values" do

setup do

post :create, :signup => {:account_subdomain => "foo"}

end

should_not_change "User.count"

should_not_change "Account.count"

should assign_to(:signup)

should render_template(:new)

end

end

152 Chapter 4. Controllers

ptg

Finally, the moment you’ve been waiting for. The controller itself no longer con-
tains any domain-specific logic, but it looks like a normal RESTful controller:

app/controllers/signup_controller.rb

class SignupsController < ApplicationController

def new

@signup = Signup.new

end

def create

@signup = Signup.new(params[:signup])

if @signup.save

flash[:notice] = 'Thank you for signing up!'

redirect_to root_url

else

render :action => "new"

end

end

end

And Remember to Tip Your Waitress

While you can move extra logic from your controllers into setters and callbacks on the
primary model, there are times when that’s not the right path to take. Doing too much
work in Active Record setters and callbacks can lead to unexpected behavior and con-
voluted callback chains between different models. At times like these, it’s useful to
introduce a third-party object whose job is to manage the complexity on behalf of
your controller and models. The beauty of the Presenter Pattern is that it mimics and
Active Record model while fulfilling that role, requiring little or no change in the
RESTful controller.

153AntiPattern: Fat Controller

ptg

AntiPattern: Bloated Sessions
The general philosophy for the Rails framework and Rails applications is that each
request to the application should be relatively stateless. This means that each request is
independent of prior and future requests and contains all the information needed to
perform that request.

For example, if an application features a multistep wizard, the server doesn’t
record internally which step a user is on as he or she moves through the wizard.
Instead, the client itself communicates which step it’s on and provides all the informa-
tion necessary to process the request.

This stateless methodology is the Rails ideal, and following it helps to produce
clean, straightforward applications that are easier to maintain. That being said, there
are times when storing something in a stateful manner greatly improves either the ease
of implementation or the end-user experience. One such example is storing the user
the client is currently signed in as. Rails provides the concept of the session store, a
place where information can be placed so it can persist between requests by the same
client.

Strictly speaking, a default Ruby on Rails session is now mostly stateless as well, as
all the data in the session is stored on the client side, in cookies. This fact has only
exacerbated a problem that has been present in many Rails applications that have for-
gone the stateless methodology and instead stored a lot of information in the session.

The default Rails session store, the cookie store, stores a maximum of 4K of data.
In a typical application, this will be just the current user id and any flash messages that
are being presented to the user. Attempting to store more than 4K of data in the ses-
sion store will result in an exception.

Other session stores allow you to store more than 4K of data. However, if your
application needs one of them, it’s likely that it is suffering from too much informa-
tion being stored in the session, most of which is likely unnecessary.

Fortunately, unless there have been fundamental flaws in application design, tran-
sitioning an existing application that is abusing the session into one that is barely using
it at all is a relatively straightforward exercise. Even better, you can avoid getting into
that situation in the first place by following a few simple rules.

Solution: Store References Instead of Instances
You should never put entire models into a session. Instead, if you absolutely must keep
track of an entity across requests, you should place a reference to that entity, such as the

154 Chapter 4. Controllers

ptg

id, into the session. Then, when the entity is needed again, it can be reinstantiated for
the request. Take, for example, the following controller actions for multistep wizard:

class OrdersController < ApplicationController

def new

session[:order] = Order.new

end

def billing

session[:order].attributes = params[:order]

if !session[:order].valid?

render :action => :new

end

end

def shipping

session[:order].attributes = params[:order]

if !session[:order].valid?

render :action => :billing

end

end

def payment

session[:order].attributes = params[:order]

if !session[:order].valid?

render :action => :shipping

end

end

def create

if session[:order].save

flash[:success] = "Order placed successfully"

redirect_to order_path(session[:order])

else

render :action => :payment

end

end

def show

@order = Order.find params[:id]

end

end

155AntiPattern: Bloated Sessions

ptg

In this OrderController class, the order being worked on is stored in the session
and used in each step of the wizard. At each step, the in-progress order is validated to
ensure that it’s being filled out correctly. After the order is submitted in the final step,
it is saved to the database. It’s then retrievable as a normal object, as illustrated in the
show action. There is no order id passed to each step of the wizard, so the routes for
this controller appear as follows:

resources :posts do

collection do

post :shipping

post :billing

posft :payment

end

end

The URLs as a user moves through this process appear as follows:

/orders/new

/orders/shipping

/orders/billing

/orders/payment

/orders/1

While this method works, it’s an abuse of the session object. It would not work in the
default Rails session store and is a poor design. Instead, you can store the order in the
database in each step, as shown in the following OrdersController example:

class OrdersController < ApplicationController

def new

@order = Order.new

end

def billing

@order = Order.find(params[:id])

if !@order.update_attributes(params[:order])

render :action => :new

end

end

156 Chapter 4. Controllers

ptg

def shipping

@order = Order.find(params[:id])

if !@order.update_attributes(params[:order])

render :action => :billing

end

end

def payment

@order = Order.find(params[:id])

if !@order.update_attributes(params[:order])

render :action => :shipping

end

end

def create

@order = Order.find(params[:id])

if @order.update_attributes(params[:order])

flash[:success] = "Order placed successfully"

redirect_to order_path(session[:order])

else

render :action => :payment

end

end

def show

@order = Order.find params[:id]

end

end

In this example, the in-progress order is stored in the database instead of the ses-
sion. Because a specific Order instance is being operated on in this example, the steps
for the wizard are member actions, as follows:

resources :posts do

member do

post :shipping

post :billing

post :payment

end

end

157AntiPattern: Bloated Sessions

ptg

The order wizard steps now have the following URLs:

/orders/new

/orders/1/shipping

/orders/1/billing

/orders/1/payment

/orders/1

One of the main reasons a developer might choose to store the in-progress order
in the session rather than in the database is that once in-progress and incomplete
orders are stored in the database, they must be distinguished from orders that com-
pleted the wizard in all future database queries across the system. This can be tedious
as well as a source for bugs. Therefore, it might be attractive to attempt to address this
by storing an in-progress order in a session before saving it to the database.

A better way to address this is to store the information about the Order entirely
on the client side. It can then be transmitted to the server with each request; at the
server, it is processed, and action is taken accordingly. With each step of the wizard,
the order details can be written to the client. The order details can be represented to
the client in different ways, the most straightforward of which is perhaps in hidden
form fields on each step of the wizard. For example, the following controller imple-
ments this strategy:

class OrdersController < ApplicationController

def new

@order = Order.new

end

def billing

@order = Order.new(params[:order])

if !@order.valid?

render :action => :new

end

end

def shipping

@order = Order.new(params[:order])

if !@order.valid?

render :action => :billing

end

end

158 Chapter 4. Controllers

ptg

def payment

@order = Order.new(params[:order])

if !@order.valid?

render :action => :shipping

end

end

def create

@order = Order.new(params[:order])

if @order.save

flash[:success] = "Order placed successfully"

redirect_to order_path(session[:order])

else

render :action => :payment

end

end

def show

@order = Order.find params[:id]

end

end

This controller is very similar to the original session-based OrdersController, and
the routes are the same. However, instead of storing the order in the session, it places
the order in an instance variable that will be available to the view.

Next, let’s take a look at the order billing entry view:

<h2>Shipping Address</h2>

<%= form_for @order,

:url => shipping_order_path,

:html => { :method => :post } do |form| %>

<%= form.label :shipping_address %>

<%= form.text_field :shipping_address %>

<%= form.label :shipping_city %>

<%= form.text_field :shipping_city %>

<%= form.label :shipping_state %>

<%= form.text_field :shipping_state %>

<%= form.label :shipping_zip %>

<%= form.text_field :shipping_zip %>

<%= submit_tag %>

159AntiPattern: Bloated Sessions

ptg

<%= form.hidden_field :billing_address %>

<%= form.hidden_field :billing_city %>

<%= form.hidden_field :billing_state %>

<%= form.hidden_field :billing_zip %>

<% end %>

In this view code, the fields that the user is filling out in the current step are presented
to the user, and the fields that the user has already filled out are hidden on the form for
the current step.

The strategy you choose depends on the needs of your application. Storing every-
thing on the client typically works best for smaller flows, typically not exceeding two
or three steps, or for applications where it is absolutely critical that in-progress and
incomplete orders not be stored to the database. Persisting everything to the database
is usually the best solution for more complex sequences involving multiple objects or
many steps.

160 Chapter 4. Controllers

ptg

AntiPattern: Monolithic Controllers
Ruby on Rails 2.0 embraced a RESTful structure and never looked back. In the con-
text of Rails, a RESTful structure simply means mapping the “standard” controller
actions index, new, create, edit, update, show, and destroy to the HTTP verbs
POST, PUT, GET, and DELETE rather than strictly adhering to all the ideas in REST
(REpresentation State Transfer, a term coined by Roy Fielding).

There are two telltale signs of an application that doesn’t use RESTful practices.
One is extra parameters in URLs used to identify what additional actions are per-
formed by the controller action. The other is nonstandard controller actions (actions
that are not one of index, new, create, edit, update, show, and destroy).

The seven Rails actions have been fairly standard in Rails for some time, but there
are still applications that don’t use them, let alone worry about mapping them to the
HTTP verbs. This may be because of developer inexperience with Rails, the age of the
application, or determination to do something the wrong way. Fortunately, the course
of action for fixing this flaw is the same, regardless of the cause.

Solution: Embrace REST
RESTful controllers have only recently been introduced, and as a result, we still see
many examples of non-RESTful, monolithic controllers in the wild. Take, for exam-
ple, the following snippet of code from an AdminController object:

def users

per_page = Variable::default_pagination_value

@users = User.find(:all)

First, check to see if there

was an operation performed

if not params[:operation].nil? then

if (params[:operation] == "reset_password") then

user = User.find(params[:id])

user.generate_password_reset_access_key

user.password_confirmation = user.password

user.email_confirmation = user.email

user.save!

flash[:notice] = user.first_name + " " +

user.last_name + "'s password has been reset."

end

161AntiPattern: Monolithic Controllers

ptg

This AdminController object has a users action. The users action expects an addi-
tional parameter, operation, which takes values that determine what functionality
occurs within the action.

Controller naming is very important, and the name of the controller in this case
may indicate a problem. In a RESTful structure, the controller is named for the
resource that is being operated on. An AdminController object, then, would be
expected to operate on Admins. This is not the case.

The following code is the remainder of the controller action, for the sake of clar-
ity and thoroughness:

if (params[:operation] == "delete_user") then

user = User.find(params[:id])

user.item_status = ItemStatus.find_deleted()

user.password_confirmation = user.password

user.email_confirmation = user.email

user.save!

flash[:notice] = user.first_name + " " +

user.last_name + " has been deleted"

end

if (params[:operation] == "activate_user") then

user = User.find(params[:id])

user.item_status = ItemStatus.find_active()

user.password_confirmation = user.password

user.email_confirmation = user.email

user.save!

flash[:notice] = user.first_name + " " +

user.last_name + " has been activated"

end

if (params[:operation] == "show_user") then

@user = User.find(params[:id])

render :template => show_user

return true

end

end

user_order = 'username'

if not params[:user_sort_field].nil? then

user_order = params[:user_sort_field]

if !session[:user_sort_field].nil? &&

user_order == session[:user_sort_field] then

user_order += " DESC"

end

162 Chapter 4. Controllers

ptg

session[:user_sort_field] = user_order

end

@user_pages, @users = paginate(:users,

:order => user_order,

:conditions => ['item_status_id <> ?',

ItemStatus.find_deleted().id],

:per_page => per_page)

end

As you can see, this one action is using the operation parameter to provide the same
functionality that would normally be present within the index, show, and destroy
actions of a UsersController, as well as additional actions for resetting a user’s pass-
word and activating a user, with URLs that looked something like the following:

/admin/users?operation=reset_password?id=x

/admin/users?operation=delete_user?id=x

/admin/users?operation=activate_user?id=x

/admin/users?operation=show_user?id=x

/admin/users

Before we go any further in identifying the changes and solutions to this problem,
we need to note the importance of using an automated test suite when making large
refactorings like this. If this application didn’t have a test suite (it probably wouldn’t),
then it’s recommended that one be written. The most appropriate types of tests would
be integration tests using a tool such as Cucumber. These tests allow you to prevent
regressions because it should be possible to write the integration tests such that they
don’t fail if you haven’t broken anything. This is because integration tests operate on
the links that are clicked, the fields that are typed in, and so on, rather than on the
internal controller organization of the application.

When your integration tests have been addressed, you can refactor the monolithic
controller into one or more RESTful controllers. Fortunately, non-RESTful controller
actions are very often given the name that your controllers should have. Let’s start by
mapping out what the new URLs will be:

POST /admin/users/:id/password

DELETE /admin/users/:id

POST /admin/users/:id/activation

GET /admin/users/:id

GET /admin/users

163AntiPattern: Monolithic Controllers

ptg

You need to rename AdminController to UsersController (or create a new one)
and create new PasswordsController and ActivationsController objects. Next,
you simply take the existing code from the if statements in the existing controller and
move it into the corresponding new controller actions:

class UsersController < ApplicationController

def index

per_page = Variable::default_pagination_value

user_order = 'username'

if not params[:user_sort_field].nil? then

user_order = params[:user_sort_field]

if !session[:user_sort_field].nil? &&

user_order == session[:user_sort_field] then

user_order += " DESC"

end

session[:user_sort_field] = user_order

end

@user_pages, @users = paginate(:users,

:order => user_order,

:conditions => ['item_status_id <> ?',

ItemStatus.find_deleted().id],

:per_page => per_page)

end

def destroy

user = User.find(params[:id])

user.item_status = ItemStatus.find_deleted()

user.password_confirmation = user.password

user.email_confirmation = user.email

user.save!

flash[:notice] = user.first_name + " " +

user.last_name + " has been deleted"

end

def show

@user = User.find(params[:id])

render :template => show_user

end

end

164 Chapter 4. Controllers

ptg

class PasswordsController < ApplicationController

def create

user = User.find(params[:id])

user.generate_password_reset_access_key

user.password_confirmation = user.password

user.email_confirmation = user.email

user.save!

flash[:notice] = user.first_name + " " +

user.last_name + "'s password has been reset."

end

end

class ActivationsController < ApplicationController

def create

user = User.find(params[:id])

user.item_status = ItemStatus.find_active()

user.password_confirmation = user.password

user.email_confirmation = user.email

user.save!

flash[:notice] = user.first_name + " " +

user.last_name + " has been activated"

end

end

end

Now, with functionality organized into these new controllers, the routes for these
controllers would be as follows:

namespace :admin do

resources :users do

resource :passwords

resource :activations

end

end

As you review this code in more detail, you’re likely to see many other things that
could be improved in it. While fixing this example is fairly straightforward, it’s important
that you tackle only one issue at a time. You should refactor to a RESTful controller
first and then continue improving the code from there. Making a controller RESTful
often exposes better improvements and keeps things easier to organize. In addition, by
tackling one item at a time, you lessen the risk of getting lost or overwhelmed.

165AntiPattern: Monolithic Controllers

ptg

Finally, monolithic controllers often have many non-RESTful actions. Suppose
that instead of the operation parameter and if statements, the monolithic controller
above had index, reset_password, delete_user, activate_user, and show_user
actions. The changes outlined would be the same: Rename the delete_user and
show_user actions and break the reset_password and activate_user actions into
their own RESTful controllers. For more related details, read see the next section.

166 Chapter 4. Controllers

ptg

AntiPattern: Controller of Many Faces
As applications grow, RESTful controllers often take on some non-RESTful trap-
pings. This situation should be avoided whenever possible, and it often make sense to
extract these extra, non-RESTful actions into their own RESTful resource.

Solution: Refactor Non-RESTful Actions into a Separate
Controller
A common example of a RESTful controller taking on too much responsibility is in
authentication. Far too often, we see authentication shoehorned into the
UsersController, like this:

class UsersController < ApplicationController

def login

if request.post?

if session[:user_id] = User.authenticate(params[:user][:login],

params[:user][:password])

flash[:message] = "Login successful"

redirect_to root_url

else

flash[:warning] = "Login unsuccessful"

end

end

end

def logout

session[:user_id] = nil

flash[:message] = 'Logged out'

redirect_to :action => 'login'

end

... RESTful actions ...

end

What Is a Resource?

It may seem at first glance that authentication is under the mandate of the
UsersController, but with authentication, you’re really managing the concept of a
user’s session. Once you begin to view a controller for a representation of a resource,

167AntiPattern: Controller of Many Faces

ptg

you realize that the resource doesn’t have to correspond directly to an Active Record
model.

Let’s look at what happens when you extract the UsersController#login and
UsersController#logout methods into their own resource. First, you must add the
route to your config/routes.rb file. You can also add a couple named URL helpers
for convenience and the sake of using prettier URLs:

resource :sessions, :only => [:new, :create, :destroy]

match "/login" => "user_sessions#new", :as => :login

match "/logout" => "user_sessions#destroy", :as => :logout

Note that you should use the singular version, resource. A session is a great example
of a singular resource, as it makes no sense to ask for a listing of sessions, and sessions
have no concept of a unique identifier.

You’re going to implement three actions on your SessionsController: new,
create, and destroy:

class SessionsController < ApplicationController

def new

Just render the sessions/new.html.erb template

end

def create

if session[:user_id] = User.authenticate(params[:user][:login],

params[:user][:password])

flash[:message] = "Login successful"

redirect_to root_url

else

flash.now[:warning] = "Login unsuccessful"

render :action => "new"

end

end

def destroy

session[:user_id] = nil

flash[:message] = 'Logged out'

redirect_to login_url

end

end

168 Chapter 4. Controllers

ptg

This is a much cleaner design than the original. It separates the concerns of ses-
sion management from the concerns of user profile management; the consistent set of
RESTful actions will help with overall maintainability; and, as an added bonus, it
removes the ugly if request.post? call.

When RESTful Actions Aren’t RESTful

While this solution is about identifying and extracting non-RESTful actions in a
RESTful controller, there are some exceptions to this solution to be aware of. If asked
to list the RESTful actions on a Rails controller, most developers would be able to
recite them from memory: index, new, create, show, edit, update, and destroy.
This is almost correct, but it’s also useful when trying to really understand the philos-
ophy of REST. You see, new and edit are not really RESTful actions. At its core,
REST asks for only the index, create, show, update, and destroy actions. The new
and edit actions are really just different ways of representing the show action.

A good way of thinking about this is “What actions would you implement when
writing an XML-only controller?” Clearly, when consuming an API, there is no reason
to request the edit action. It simply serves as a user interface enhancement for us
lowly humans.

You can decide for yourself whether a preview action belongs on a RESTful
PostsController.

Simply Strong OOP

Viewing each controller as a class is really just an application of the Single
Responsibility Principle discussed in Chapter 1. Each controller should contain only
the logic that pertains to the resource it represents. Failing to abide by this principle
will lead you down the slippery slope that ends in the monolithic controller problem
we discussed earlier in this chapter, in the section “AntiPattern: Monolithic
Controllers.” Furthermore, this type of refactoring can reveal code smells at the Model
layer. In fact, the Authlogic gem was written precisely because of this pattern of using
a SessionsController object. We discussed Authlogic in more detail in this chapter,
in the section “AntiPattern: Homemade Keys.”

169AntiPattern: Controller of Many Faces

ptg

AntiPattern: A Lost Child Controller
RESTful resources generally parallel the models they represent, which is part of the
reason you’re able to gain such a fantastic productivity increase when developing appli-
cations in an entirely RESTful fashion. You no longer need to imagine different ways
of dividing your problem space for the Model, View, and Controller layers. Once
you’ve determined the division of responsibilities in the underlying domain, the
Controller and View layers follow along nicely.

That being said, mapping controllers and the URL paradigm on top of the com-
plex and powerful capabilities of the Model layer is sometimes a challenge. Take, for
example, representing one-to-many associations in a RESTful manner. Consider an
application that manages Songs and Albums. As a modern Rails developer, you want
to represent this system RESTfully. With that in mind, you can create Song and Album
resources:

$ rails generate scaffold Album title:string artist:string

invoke active_record

create db/migrate/20100522002832_create_albums.rb

create app/models/album.rb

invoke test_unit

create test/unit/album_test.rb

create test/fixtures/albums.yml

route resources :albums

invoke scaffold_controller

create app/controllers/albums_controller.rb

invoke erb

create app/views/albums

create app/views/albums/index.html.erb

create app/views/albums/edit.html.erb

create app/views/albums/show.html.erb

create app/views/albums/new.html.erb

create app/views/albums/_form.html.erb

invoke test_unit

create test/functional/albums_controller_test.rb

invoke helper

create app/helpers/albums_helper.rb

invoke test_unit

create test/unit/helpers/albums_helper_test.rb

invoke stylesheets

create public/stylesheets/scaffold.css

170 Chapter 4. Controllers

ptg

$ rails generate scaffold Song title:string genre:string

invoke active_record

create db/migrate/20100522003017_create_songs.rb

create app/models/song.rb

invoke test_unit

create test/unit/song_test.rb

create test/fixtures/songs.yml

route resources :songs

invoke scaffold_controller

create app/controllers/songs_controller.rb

invoke erb

create app/views/songs

create app/views/songs/index.html.erb

create app/views/songs/edit.html.erb

create app/views/songs/show.html.erb

create app/views/songs/new.html.erb

create app/views/songs/_form.html.erb

invoke test_unit

create test/functional/songs_controller_test.rb

invoke helper

create app/helpers/songs_helper.rb

invoke test_unit

create test/unit/helpers/songs_helper_test.rb

invoke stylesheets

identical public/stylesheets/scaffold.css

Clearly, an Album object can have many Song objects, and a Song object can
belong to an Album object. You can add the album_id attribute to the Song model and
set up the associations as follows:

$ rails generate migration add_album_id_to_songs album_id:integer

invoke active_record

create db/migrate/20100522003327_add_album_id_to_songs.rb

class Album < ActiveRecord::Base

has_many :songs

end

class Song < ActiveRecord::Base

belongs_to :album

end

171AntiPattern: A Lost Child Controller

ptg

Now that you have the basic Model layer associations set up, you have to present the
album and its songs to the user. The AlbumsController#show view, which is mapped
to /albums/123, might look something like the following:

<h2> <%= @album.title %> </h2>

<p> By: <%= @album.artist %> </p>

<% @album.songs.each do |song| %>

<%= link_to song.title, song %>

<% end %>

<%= link_to "Add song", new_song_url(:album_id => @album.id) %>

The interesting bit in this view is the :album_id parameter passed to the "Add
song" link. You’d like the user to be able to add songs for this album without having
to choose the album from a dropdown. The other components for making this work
lie in catching the value of params[:album_id] as it comes into the
SongsController#new action:

class SongsController < ApplicationController

def new

@song = Song.new(:album_id => params[:album_id])

Then, you add an album_id hidden field to the songs form in app/views/songs/
_form.html.erb:

<%= form_for(@song) do |f| %>

<%= f.hidden_field :album_id %>

...

While this works, it’s not ideal. Passing the parent ID around like a hot potato is
a definite code smell. Furthermore, the "Add song" link takes the user to the new song
form with a URL like /songs/new?album_id=123. While it might seem somewhat
nitpicky to worry about the quality of the URL, these small details can erode the con-
fidence users have in an application.

To make matters worse, your ideal SongsController object would be able to han-
dle the addition of an album_id for all the actions. When given an album_id, the

172 Chapter 4. Controllers

ptg

index action would list only songs for that album, the show action would show the
song only if it exists for that album, and so on. This can quickly get out of hand.

Solution: Make Use of Nested Resources
Rails provides an answer to the problem of having to explicitly pass around parent IDs
in the form of nested resources. Since Rails 2, it’s been possible to specify in a routes
file that one resource should be accessible as a nested URL under another resource. For
your application, that routes declaration would be as simple as this:

MyApp::Application.routes.draw do

resources :albums do

resources :songs

end

...

To see how this affects the URLs your application now responds to, take a look at the
output of the rake routes task:

$ rake routes | grep song

...

GET /albums/:album_id/songs(.:format)

album_songs POST /albums/:album_id/songs(.:format)

new_album_song GET /albums/:album_id/songs/new(.:format)

GET /albums/:album_id/songs/:id(.:format)

PUT /albums/:album_id/songs/:id(.:format)

album_song DELETE /albums/:album_id/songs/:id(.:format)

edit_album_song GET /albums/:album_id/songs/:id/edit(.:format)

...

As you can see, all access to your songs controller is now scoped under
/albums/:album_id. This means it’s no longer possible to access a song directly,
which may or may not be the desired behavior. For now, let’s assume that’s fine, and
we’ll look at a more complex alternative later.

SongsController will now always have access to params[:album_id]. Keep in
mind that this does not necessarily have to be a valid album_id; it’s your job to ensure
that it’s valid. You can use before_filter to grab the album from this parameter
before each action. And you can place that album in the @album instance variable to
make it available to all actions:

173AntiPattern: A Lost Child Controller

ptg

class SongsController < ApplicationController

before_filter :grab_album_from_album_id

...

private

def grab_album_from_album_id

@album = Album.find(params[:album_id])

end

end

Now that you have the parent album to work with, you need to ensure that all
your actions make use of it. There are two fundamental changes that you have to
make. The first is to replace all references to the Song class in SongsController with
@album.songs. The second is to make sure you’re generating the correct URLs with
the new album_song_url helpers. It’s cleaner to just pass the instance variables into
redirect_to or link_to instead of using the helpers whenever possible. Here’s the
full controller after these changes are made:

class SongsController < ApplicationController

before_filter :grab_album_from_album_id

def index

@songs = @album.songs.all

end

def show

@song = @album.songs.find(params[:id])

end

def new

@song = @album.songs.new

end

def edit

@song = @album.songs.find(params[:id])

end

def create

@song = @album.songs.new(params[:song])

174 Chapter 4. Controllers

ptg

if @song.save

redirect_to([@album, @song],

:notice => 'Song was successfully created.')

else

render :action => "new"

end

end

def update

@song = @album.songs.find(params[:id])

if @song.update_attributes(params[:song])

redirect_to([@album, @song],

:notice => 'Song was successfully updated.')

else

render :action => "edit"

end

end

def destroy

Song.find(params[:id]).destroy

redirect_to(album_songs_url(@album))

end

private

def grab_album_from_album_id

@album = Album.find(params[:album_id])

end

end

You have to make similar changes to the views. The new _form.html.erb partial
is shown next. Note that you use [@album, @song] as the argument to form_for so
that it knows to post the results to the fully nested URL:

<%= form_for([@album, @song]) do |f| %>

...

<% end %>

Similarly, the new edit.html.erb view is shown next. You have to modify the
'Show' and 'Back' links to account for the nesting under /albums/:album_id:

175AntiPattern: A Lost Child Controller

ptg

<h1>Editing song</h1>

<%= render 'form' %>

<%= link_to 'Show', [@album, @song] %> |

<%= link_to 'Back', @album %>

Nested and Un-nested

Allowing a controller to be accessed as a nested and an un-nested resource can be com-
plicated. Your main challenge is to get the controller to respond appropriately to both
/albums/:album_id/songs/... and /songs/.... The first step is to tell the router
that you want to be able to access the songs controller via either route. You do this by
duplicating the :songs resources definition—once nested under :albums and once by
itself:

MyApp::Application.routes.draw do

resources :albums do

resources :songs

end

resources :songs

To simplify the problem a bit, you can assume that a song does not require an
album and that the un-nested URL is the canonical version. You can therefore redirect
the user to the same place (/songs/:id) after creating or updating the song. If you
were not able to make this assumption, you would need to override the songs_url
and song_url(song) helpers to detect whether the song has an album and return the
correct URL string.

The first main change to the controller is that you’re calling Album.find only if
the :album_id parameter is available. The second, subtler, change is that you’re adding
a songs private method, which returns either @album.songs or Song, depending on
whether @album is set. You use this helper wherever you would have accessed the Song
class by itself:

class SongsController < ApplicationController

before_filter :grab_album_from_album_id

def index

@songs = songs.all

end

176 Chapter 4. Controllers

ptg

def show

@song = songs.find(params[:id])

end

def new

@song = songs.new

end

def edit

@song = songs.find(params[:id])

end

def create

@song = songs.new(params[:song])

if @song.save

redirect_to(@song,

:notice => 'Song was successfully created.')

else

render :action => "new"

end

end

def update

@song = songs.find(params[:id])

if @song.update_attributes(params[:song])

redirect_to(@song,

:notice => 'Song was successfully updated.')

else

render :action => "edit"

end

end

def destroy

Song.find(params[:id]).destroy

redirect_to(songs_url)

end

private

177AntiPattern: A Lost Child Controller

ptg

def songs

@album ? @album.songs : Song

end

def grab_album_from_album_id

@album = Album.find(params[:album_id]) if params[:album_id]

end

end

Now that you’re done with the controller, you need to face the easier task of mak-
ing the views work. Because you’re considering the un-nested /songs/:id routes to
be canonical, you remove all links to the nested versions. For example, the
edit.html.erb template looks like the following:

<h1>Editing song</h1>

<%= render 'form' %>

<%= link_to 'Show', @song %> |

<%= link_to 'Back', :back %>

Notice the use of link_to with the :back option, a convenient Rails helper that uses
JavaScript to return the user to the referring page.

Finally, the _form.html.erb partial now includes a new conditional to determine
whether to show the albums dropdown when editing a song:

<%= form_for([@album, @song]) do |f| %>

...

<% unless @album %>

<div class="field">

<%= f.label :album %>

<%= f.select(:album_id,

options_from_collection_for_select(Album.all,

:id,

:title,

@song.album_id),

{ :include_blank => true }) %>

</div>

<% end %>

...

178 Chapter 4. Controllers

ptg

Cleanup

From the example in the preceding section, you can see that correctly creating a
resource that responds to both the nested and un-nested URLs can be a challenge, and
it can add a bit of complication to an application. The complication becomes worse
when the user interface differs significantly between the two situations. In that case,
you should use two completely separate controllers for the different types of access.
While this introduces duplication between the controllers, the savings in simplicity is
well worth it. We discuss that refactoring in the next AntiPattern.

Models that have a distinct parent/child relationship are best represented by using
the nested resource feature introduced in Rails 2. Doing so gives you very readable and
predicable URLs, as well as all the same forms of syntactic sugar that RESTful
resources give you above regular controllers. Being able to use link_to "new song",
new_album_song_url(album) instead of the messier link_to "new song", song_
url(song, :album_id => album.id) is a big improvement in making an application
predictable and maintainable.

179AntiPattern: A Lost Child Controller

ptg

AntiPattern: Rat’s Nest Resources
Nesting controllers so that the parameters to the controllers are managed and under-
stood by the application routes is a powerful technique. However, imagine that a web-
site lists all messages posted by all users and has the ability to list all the messages
posted by a single user. If the controllers for these two lists were the same controller,
the index action of that controller would look something like the following:

class MessagesController < ApplicationController

def index

if params[:user_id]

@user = User.find(params[:user_id])

@messages = @user.messages

else

@messages = Message.all

end

end

end

And the routes for the above controller would be as shown here:

resources :messages

resources :users do

resources :messages

end

Finally, the view for this MessagesController#index action might be something like
the following:

<h1>Messages<% if @user %> for <%= @user.name %><% end %></h1>

<% @messages.each do |message| %>

<%= content_tag_for :li, @message do %>

<%= message.subject %>

<% if !@user %>

Posted by <%= message.user.name

%>

<% end %>

<%= message.body %>

180 Chapter 4. Controllers

ptg

<% end %>

<% end %>

In this example, you can see that the view is altered based on whether the instance
variable @user is defined. If it is not, then you know the view is showing all messages.
When the view is showing messages for a specific user, the header of the page is differ-
ent, and the author of each message is not shown because it would be redundant.

In this example, the existence of two possible nestings with minor difference
between the views is somewhat manageable. However, imagine if this system actually
grouped Messages into Projects as well. A user might have this global view of all
messages across all projects, the messages of just one project, the messages of just one
user across all projects, or the messages of just one user in one project. The conditional
logic in the controller and views would be overwhelming.

Or, imagine if the differences between the views for nested and un-nested versions
of this controller were drastic. It would become tedious and error prone to maintain
one view with so much conditional logic.

Solution: Use Separate Controllers for Each Nesting
At some point—a point that comes more quickly than you might think—it becomes
beneficial not to try to keep the same controller for each different resource path but to
instead create a new controller for each nesting.

You store each of these individual controllers in a directory with the same name as
its parent controller. The new controllers for the earlier messages controller would be
laid out like this:

controllers/messages_controller.rb

controllers/users/messages_controller.rb

And the accompanying routes would be as shown here:

resources :messages

resources :users do

resources :messages, :controller => ‘users/messages’

end

181AntiPattern: Rat’s Nest Resources

ptg

Now, each version of the messages path would have its own controller and views, as
shown here:

controllers/messages_controller.rb

class MessagesController < ApplicationController

def index

@messages = Message.all

end

end

controllers/users/messages_controller.rb

class MessagesController < ApplicationController

def index

@user = User.find(params[:user_id])

@messages = @user.messages

end

end

<!-- views/messages/index.html.erb -->

<h1>Messages</h1>

<% @messages.each do |message| %>

<%= content_tag_for :li, @message do %>

<%= message.subject %>

Posted by <%= message.user.name %>

<%= message.body %>

<% end %>

<% end %>

<!-- views/users/messages/index.html.erb -->

<h1>Messages for <%= @user.name %></h1>

<% @messages.each do |message| %>

<%= content_tag_for :li, @message do %>

<%= message.subject %>

<%= message.body %>

<% end %>

<% end %>

182 Chapter 4. Controllers

ptg

Using this strategy, you might find that there is some confusion if some nested
controllers are not in subdirectories and others are. Therefore, you might find it helpful
to keep all your nested controllers in subdirectories that match their nested URLs so
that the locations of the controllers are consistent.

The technique of using separate controllers for these nested routes is less DRY,
but in the right situations, it will ultimately lead to cleaner and easier-to-maintain
code. If you find yourself swimming in conditional logic based on alternate nested ver-
sions of the same controller, give it a try.

183AntiPattern: Rat’s Nest Resources

ptg

AntiPattern: Evil Twin Controllers
As an application grows and matures, the number of things that occur in its con-
trollers increases. Even if you remain diligent and move as much functionality from
the controllers into the models as possible, there will inevitably be functionality that
remains in the controllers, such as alternative formats available for APIs (JSON, XML,
and so on). For example, examine the following controller for Songs, which exposes
an XML API:

class SongsController < ApplicationController

before_filter :grab_album_from_album_id

def index

@songs = songs.all

respond_to do |format|

format.html

format.xml { render :xml => @songs }

end

end

def show

@song = songs.find(params[:id])

respond_to do |format|

format.html

format.xml { render :xml => @song }

end

end

def new

@song = songs.new

respond_to do |format|

format.html

format.xml { render :xml => @song }

end

end

def edit

@song = songs.find(params[:id])

end

184 Chapter 4. Controllers

ptg

def create

@song = songs.new(params[:song])

respond_to do |format|

if @song.save

format.html do

redirect_to(@song,

:notice => 'Song was successfully created.')

end

format.xml do

render :xml => @song,

:status => :created,

:location => @song

end

else

format.html { render :action => "new" }

format.xml do

render :xml => @song.errors,

:status => :unprocessable_entity

end

end

end

end

def update

@song = songs.find(params[:id])

respond_to do |format|

if @song.update_attributes(params[:song])

format.html do

redirect_to(@song,

:notice => 'Song was successfully updated.')

end

format.xml { head :ok }

else

format.html { render :action => "edit" }

format.xml do

render :xml => @song.errors,

:status => :unprocessable_entity

end

end

end

end

185AntiPattern: Evil Twin Controllers

ptg

def destroy

Song.find(params[:id]).destroy

respond_to do |format|

format.html { redirect_to(songs_url) }

format.xml { head :ok }

end

end

private

def songs

@album ? @album.songs : Song

end

def grab_album_from_album_id

@album = Album.find(params[:album_id]) if params[:album_id]

end

end

This Songs controller actually isn’t doing much more than the normal controller,
generated by the Rails scaffold, would do. However, it is already much longer than a
normal controller without the XML API. In addition, imagine if one of the actions
had extra functionality. There is so much other code that it might not be apparent.

The primary issue here is that this controller is not DRY. Another controller in
the application doing everything the same only with a different model will have just as
much code. Then, when differences are introduced between the controllers, those
important differences are harder to spot because the “unimportant” code gets in the way.

Solution: Use Rails 3 Responders
Rails 3 introduced a new set of methods called responders that abstract the boilerplate
responding code so that the controller becomes much simpler. In the following exam-
ple, the preceding Songs controller is rewritten using responders:

class SongsController < ApplicationController

respond_to :html, :xml

before_filter :grab_album_from_album_id

def index

@songs = songs.all

186 Chapter 4. Controllers

ptg

respond_with(@songs)

end

def show

@song = songs.find(params[:id])

respond_with(@song)

end

def new

@song = songs.new

respond_with(@song)

end

def edit

@song = songs.find(params[:id])

respond_with(@song)

end

def create

@song = songs.new(params[:song])

if @song.save

flash[:notice] = 'Song was successfully created.'

end

respond_with(@song)

end

def update

@song = songs.find(params[:id])

if @song.update_attributes(params[:song])

flash[:notice] = 'Song was successfully updated.'

end

respond_with(@song)

end

def destroy

@song = Song.find(params[:id])

@song.destroy

respond_with(@song)

end

private

187AntiPattern: Evil Twin Controllers

ptg

def songs

@album ? @album.songs : Song

end

def grab_album_from_album_id

@album = Album.find(params[:album_id]) if params[:album_id]

end

end

The entire respond_to block is now gone, abstracted away in the respond_with
method, which does the right response behavior, depending on the state of the object
given to it and the action in which it is called. This new controller is smaller and eas-
ier to read. The ways that it differs from other controllers in the application will now
be more obvious because they will not be hidden away. You can therefore focus on the
true business logic of the application rather than the repetitive “scaffolding.”

188 Chapter 4. Controllers

ptg

CHAPTER 5
Services

Services are an incredibly important part of the Internet now, and their importance, as
well as our dependence on them—with the rise of software as a service (SaaS) and the
cloud—is only increasing.

More services are being launched that can be used to both run a business and to
offload many of the pieces of an application that are not core business logic, such as
billing, logging, performance, and user messaging. These functions would tradition-
ally have been built for an application and resided within the application’s code base.
Now, they are external components, run by disparate service providers. Furthermore,
most applications now expose APIs. And in today’s Internet-dependent world, essen-
tially everything can be considered a service. As an author of a website, you may need
to provide numerous APIs and services that are exposed to either partner websites or
the Internet at large.

Both consuming and publishing services have common pitfalls and issues. This chap-
ter covers both sides of the equation, ensuring that your interactions with services—
both those that you consume and those that you build—are clean, reliable, and enjoyable.

189

ptg

AntiPattern: Fire and Forget
When dealing with external services, there are three main response strategies:

• Check the response, catching any and all errors, and gracefully handle each poten-
tial case.

• Check the response for simple success or failure and don’t gracefully handle any-
thing else.

• Don’t check the response at all; either assume that the request always succeeds or
simply don’t care if it fails.

The third strategy, which we call “fire and forget,” may be valid in rare circumstances,
but in most cases, it’s insufficient. For example, if you’re providing status updates to a
noncritical service such as Facebook, it may simply not matter if the update never
makes it to Facebook. The following code sample is an illustration of this strategy. It
uses the Facebooker library to post to the Facebook feed:

def post_to_facebook_feed(message, action_links)

facebook_session.user.publish_to(facebook_session.user,

:message => message,

:action_links => action_links)

end

Unfortunately, the publish_to method can raise a number of exceptions. Even if you
don’t care if this feed item was successfully posted, if you don’t rescue those exceptions,
an uncaught exception is thrown, resulting in a 500 error being presented to the user.

Solution: Know What Exceptions to Look Out For
You could solve the problem of exceptions being thrown by using a heavy hand and
rescuing all exceptions as shown in the following rewritten method:

def post_to_facebook_feed(message, action_links)

facebook_session.user.publish_to(facebook_session.user,

:message => message,

:action_links => action_links)

rescue

end

190 Chapter 5. Services

ptg

Unfortunately, rescuing all errors is a very bad practice to get into; frankly, you
should never do it. When you rescue all errors, you run the risk of squelching poten-
tially important information. For a more in-depth discussion of handling failure, see
Chapter 10.

The proper solution here is to understand the actual exceptions that will be raised
by the Facebook communication and rescue those, even if you decide not to do any-
thing with them. This can be difficult to do if you’re using a poorly documented
library, but it’s worth it in the long run.

It turns out that Facebooker can potentially raise 17 different individual errors.
These can be stored in an array and splatted on the rescue in order to increase read-
ability and reusability:

def post_to_facebook_feed(message, action_links)

facebook_session.user.publish_to(facebook_session.user,

:message => message,

:action_links => action_links)

rescue *FACEBOOK_ERRORS => facebook_error

HoptoadNotifier.notify facebook_error

end

The FACEBOOK_ERRORS constant contains the following exceptions:

FACEBOOK_ERRORS = [Facebooker::NonSessionUser,

Facebooker::Session::SessionExpired,

Facebooker::Session::UnknownError,

Facebooker::Session::ServiceUnavailable,

Facebooker::Session::MaxRequestsDepleted,

Facebooker::Session::HostNotAllowed,

Facebooker::Session::MissingOrInvalidParameter,

Facebooker::Session::InvalidAPIKey,

Facebooker::Session::CallOutOfOrder,

Facebooker::Session::IncorrectSignature,

Facebooker::Session::SignatureTooOld,

Facebooker::Session::TooManyUserCalls,

Facebooker::Session::TooManyUserActionCalls,

Facebooker::Session::InvalidFeedTitleLink,

Facebooker::Session::InvalidFeedTitleLength,

Facebooker::Session::InvalidFeedTitleName,

Facebooker::Session::BlankFeedTitle,

Facebooker::Session::FeedBodyLengthTooLong]

191AntiPattern: Fire and Forget

ptg

In this code, you manually send the error to the error service Hoptoad. You do this so
that potential problems, even if you don’t really care about them, can be logged and
bigger problems can be identified. Again, for a more in-depth discussion of handling
failures, see Chapter 10.

The preceding examples are third-party libraries, but what happens with normal
HTTP requests? It turns out that a number of errors could potentially be raised when
making an HTTP request using the standard Net::HTTP library:

HTTP_ERRORS = [Timeout::Error,

Errno::EINVAL,

Errno::ECONNRESET,

EOFError,

Net::HTTPBadResponse,

Net::HTTPHeaderSyntaxError,

Net::ProtocolError]

You would then use the following:

begin

req = Net::HTTP::Post.new(url.path)

req.set_form_data({'xml' => xml})

http = Net::HTTP.new(url.host, url.port).start

response = http.request(req)

rescue *HTTP_ERRORS => e

HoptoadNotifier.notify e

end

Note that you shouldn’t rescue all errors with rescue => e, and there is a gotcha
if you try to. Timeout::Error doesn’t descend from StandardError, and rescue with
no exception classes specified rescues only exceptions that descend from
StandardError. Therefore, timeouts aren’t caught, and they result in total failure.

Message in a Bottle

In a very common scenario—email sending—most Rails applications are using a “fire
and forget strategy” and don’t even realize it. Most applications specify the following
in their environment:

config.action_mailer.raise_delivery_errors = false

192 Chapter 5. Services

ptg

With this setting, no errors can be raised, including those for both connection errors
and bad email addresses.

But when sending an email with ActionMailer via SMTP, two possible types of
exceptions can occur. The first type can be considered server errors: exceptions caused
because of network problems or incorrect SMTP configuration. The second class of
exceptions are user errors, such as the user typing in an invalid email address.

The user can do nothing about server errors. Therefore, you could silently rescue
these errors if you’d like to fire and forget email sending. The following array shows all
these errors:

SMTP_SERVER_ERRORS = [TimeoutError,

IOError,

Net::SMTPUnknownError,

Net::SMTPServerBusy,

Net::SMTPAuthenticationError]

Client-side errors are issues that a user sending an email message could potentially
correct. You wouldn’t want to fire and forget these errors because they shouldn’t fail
silently. The client errors are shown in the following array:

SMTP_CLIENT_ERRORS = [Net::SMTPFatalError,

Net::SMTPSyntaxError]

Take, for example, a system in which when a user performs some action, an email alert
is sent to a list the user has specified. If one of those email addresses is incorrect, it
might be nice if the user were told to correct it. However, if there is some communi-
cation issue, you don’t want to do anything. Here’s how this would look:

def notify_of_action(user, action)

begin

Mailer.action_notification(user, action).deliver

rescue *SMTP_CLIENT_EXCEPTIONS

flash[:warning] = "There was an issue delivering your

notification. Please check the

notification list settings."

rescue *SMTP_SERVER_EXCEPTIONS => e

HoptoadNotifier.notify e

end

end

193AntiPattern: Fire and Forget

ptg

You Don’t Know What You Don’t Know

Knowing what exceptions you need to rescue can be difficult, particularly when you’re
working with third-party libraries and unknown systems. Oftentimes, you simply
don’t know you should have been rescuing an exception until it occurs. The exceptions
in the preceding section were identified over time or through close investigation of the
libraries used.

The strategy you should use is to under-rescue in the beginning rather than rescue
too much and risk hiding legitimate issues. When new exceptions that should be res-
cued are discovered, you can add them to the rescue list. An important part of this
strategy is to have an effective error logging mechanism. The preceding examples use
Hoptoad, a popular error logging service for Rails applications. However, there are a
number of other services and plugins, including exception_notification (http://
github.com/rails/exception_notification), Exceptional (www.getexceptional.com), and
New Relic (www.newrelic.com).

Once again, for more information about strategies for handling failures, including
exceptions, see Chapter 10.

194 Chapter 5. Services

ptg

AntiPattern: Sluggish Services
A big concern in interacting with remote services is how they might affect application
performance. If a network connection is slow or has issues, or even if the remote serv-
ice itself is slow or is currently having issues, the performance of an application may be
severely affected.

Solution: Set Your Timeouts
The problem of unreliable or unavailable remote services is often exacerbated by the
fact that the default timeout of the standard Net::HTTP library is 60 seconds.

If you have a remote service and you ultimately don’t want to wait for it, and you
don’t care if the communication goes through (because you’ll retry it or it’s not impor-
tant enough), setting the timeout to a lower value may be a simple fix that solves the
problem. The following example shows how to change the timeout from the default of
60 seconds down to 3:

request = Net::HTTP::Post.new(url.path)

request.set_form_data({'xml' => xml})

http = Net::HTTP.new(url.host, url.port).start

http.read_timeout = 3

response = http.request(req)

In this case, you set read_timeout on the http object. read_timeout takes a value
that is the number of seconds for the timeout.

Solution: Move the Task to the Background
There may be times when simply decreasing the timeout is not an option. For exam-
ple, if the remote service is simply too slow to respond within a shorter time period, or
if it’s so critical that it must be retried if the initial interaction with the remote service
fails, then a more robust solution must be used.

In such cases, the proper solution may be to move the interaction with the remote
service into a background task. Of course, this works only if the user doesn’t need
immediate feedback from the action. If the user doesn’t need immediate feedback,
most remote tasks can be put into the background.

195AntiPattern: Sluggish Services

ptg

196 Chapter 5. Services

Note
We recommend delayed_job and Resque for background
queue systems. For full instruction and things to consider
when implementing background processing, read the section
“AntiPattern: Painful Performance” in Chapter 8.

If you’re using delayed_job for your background needs, you’ll likely want to move
all your interaction with the third-party service into job objects. The following is an
example of a job class that submits an order record to a remote service:

class SendOrderJob < Struct.new(:message, :action_links)

def perform(order)

OrderSender.send_order(order)

end

end

Note that the only aspect of this class that makes it compatible with delayed_job is the
perform method, which will be triggered by a worker process after it’s been submitted
to the job queue. You can add the job object to the job queue with the following:

def create

Delayed::Job.enqueue SendOrderJob.new(order)

end

Keep Things Quick

When interacting with remote services, your system becomes intimately intertwined
with them, and the performance of a remote service can adversely affect your own
application. By decreasing timeouts and/or moving communication into background
tasks, you should be able to build an application that integrates with remote systems
and performs well.

ptg

AntiPattern: Pitiful Page Parsing
Sometimes the remote systems that your application must interact with simply don’t
expose a nice API. Instead, you must manually parse the web page to get the data you
want. Take the following web page, for example:

<html>

<body>

<p>Welcome to the Awesome Hosting Company, Inc. website.</p>

<div class="sidebar">

All systems are currently

<img

src="/images/normal.png">normal

</div>

</body>

</html>

Say that you want to parse the status text normal out of that web page, so you turn
to your trusted friend the regular expression and write some code that looks something
like the following:

require 'uri'

require 'open-uri'

url = 'http://theurlofthewebpage.com'

html = open(url).read

if html =~ /class="status"><img

src="\/images\/.*\.png">(.*)<\/span/

status = $1

end

This works and gets the string "normal" in the status variable.
Say that the remote site makes seemingly innocuous changes to its markup, as

shown here:

<html>

<body>

<p>Welcome to the Awesome Hosting Company, Inc. website.</p>

197AntiPattern: Pitiful Page Parsing

ptg

<div class="sidebar">

All systems are currently

normal

</div>

</body>

</html>

The change here is only to add additional newlines and spacing to the HTML.
Unfortunately, you didn’t take this into account in your regular expression, and now
the status can’t be read, even though the site didn’t change any of the actual markup.

You can fix this problem by modifying the regular expression and making it more
robust and flexible. In the somewhat trivial example above, this may seem relatively
straightforward. With more complicated examples in the real world, that’s less feasible.
Even if you decide to take on the task, you then essentially enter into an arms race
with the developers of the remote site. When the actual markup of the page changes,
you’ll need to completely rewrite your very resilient (and probably very large) regular
expressions to match the new markup.

Solution: Use a Gem
The proper solution for parsing web pages is to use one of the available gems that are
made for just that purpose.

Using a gem that actually parses the HTML ensures that small changes such as
adding or removing new lines won’t break your parsing. Using a gem also makes it eas-
ier to change your parsing script when actual markup changes occur.

We recommend two gems for doing this type of work. If you need to parse a sin-
gle web page, as in the preceding example, you can use Nokogiri (http://nokogiri.org).
Nokogiri is an HTML and XML parser that, among other things, features the ability
to search documents via XPath or CSS3 selectors. If you actually need to scrape mul-
tiple pages on the same site, following links, preserving cookies, and so on, you can use
Mechanize (http://mechanize.rubyforge.org) to automate interaction with websites.
Mechanize can automatically store and send cookies, follow redirects, follow links, and
submit forms. It can also populate and submit form fields. Mechanize also keeps track
of the sites you have visited. Mechanize uses Nokogiri as its actual parsing engine.

198 Chapter 5. Services

ptg

Here’s what you need in order to parse a status web page with Nokogiri:

require 'rubygems'

require 'nokogiri'

require 'open-uri'

url = 'http://theurlofthewebpage.com'

doc = Nokogiri::HTML(open(url))

status = doc.css('.status').first.content

In this example, Nokogiri actually parses the HTML of the web page and allows you
to select the appropriate container, based on its CSS class. If the spacing or the markup
changes in several small ways (for example, changing a span to a div), it won’t break
the parsing. Nokogiri also gives you the content method, which provides the text
content of any node. You can use content to reliably get the text from the status con-
tainer, even though it also contains an image tag.

And Now for Something a Little More RESTful

What if an application is parsing or interacting with more structured data from a
remote service such as XML? In many cases, Nokogiri is also the best tool for this type
of job. You can just tell it to parse XML, not HTML, and the same selectors and
methods are available to you:

doc = Nokogiri::XML(open(url))

However, if the XML is coming from a RESTful remote system and you need to
perform multiple actions, such as GET and POST, then RestClient (http://github.com/
archiloque/rest-client) is a better choice than Mechanize. RestClient is a simple HTTP
and REST client for Ruby. It allows you to perform RESTful actions such as the fol-
lowing more easily:

require 'rest_client'

RestClient.get 'http://example.com/resource'

199AntiPattern: Pitiful Page Parsing

ptg

RestClient.post 'http://example.com/resource',

:param1 => 'one',

:nested => { :param2 => 'two' }

RestClient.delete 'http://example.com/resource'

200 Chapter 5. Services

ptg

AntiPattern: Successful Failure
Using RESTful URLs is only part of the practice you should be using to build a
RESTful service. Consider the following RESTful API:

class SongsController < ApplicationController

before_filter :grab_album_from_album_id

def index

@songs = songs.all

respond_to do |format|

format.xml { render :xml => @songs }

end

end

def show

@song = songs.find(params[:id])

respond_to do |format|

format.xml { render :xml => @song }

end

end

def new

@song = songs.new

respond_to do |format|

format.xml { render :xml => @song }

end

end

def create

@song = songs.new(params[:song])

respond_to do |format|

if @song.save

format.xml { render :xml => @song,

:location => @song }

else

format.xml { render :xml => @song.errors }

end

end

end

201AntiPattern: Successful Failure

ptg

def update

@song = songs.find(params[:id])

respond_to do |format|

if @song.update_attributes(params[:song])

format.xml { head :ok }

else

format.xml { render :xml => @song.errors }

end

end

end

def destroy

respond_to do |format|

format.xml { head :ok }

end

end

private

def songs

@album ? @album.songs : Song

end

def grab_album_from_album_id

@album = Album.find_by_id(params[:album_id])

end

end

This API for songs is RESTful because it exposes a song resource and responds to the
normal RESTful actions.

Now take a closer look at the create action:

def create

@song = songs.new(params[:song])

respond_to do |format|

if @song.save

format.xml { render :xml => @song,

:location => @song }

else

format.xml { render :xml => @song.errors }

202 Chapter 5. Services

ptg

end

end

end

In this create action, if the saving of the record fails, the error details are returned to
the client as XML. The client would then check for the presence of the errors ele-
ment in the response to see if the save was successful. Parsing the response to deter-
mine failure is less than ideal because it is more work and is potentially more error
prone than if the client could essentially just check a flag to see if the response was
 successful.

In a truly RESTful API, clients would never have to rely on parsing the response
body to determine success or failure. HTTP, upon which the REST concept is based,
provides a built-in mechanism for this, one that essentially provides that flag for the
client to check: HTTP status codes.

Solution: Obey the HTTP Codes
Fortunately, Rails has built-in support for HTTP status codes. Here is the same API
controller as in the preceding section, modified here to return proper status codes:

class SongsController < ApplicationController

before_filter :grab_album_from_album_id

def index

@songs = songs.all

respond_to do |format|

format.xml { render :xml => @songs }

end

end

def show

@song = songs.find(params[:id])

respond_to do |format|

format.xml { render :xml => @song }

end

end

def new

@song = songs.new

respond_to do |format|

203AntiPattern: Successful Failure

ptg

format.xml { render :xml => @song }

end

end

def create

@song = songs.new(params[:song])

respond_to do |format|

if @song.save

format.xml { render :xml => @song,

:status => :created,

:location => @song }

else

format.xml {

render :xml => @song.errors,

:status => :unprocessable_entity

}

end

end

end

def update

@song = songs.find(params[:id])

respond_to do |format|

if @song.update_attributes(params[:song])

format.xml { head :ok }

else

format.xml {

render :xml => @song.errors,

:status => :unprocessable_entity

}

end

end

end

def destroy

respond_to do |format|

format.xml { head :ok }

end

end

204 Chapter 5. Services

ptg

private

def songs

@album ? @album.songs : Song

end

def grab_album_from_album_id

@album = Album.find_by_id(params[:album_id])

end

end

Rails provides several symbols for common HTTP statuses, including :created and
:unprocessable_entity, which should be used for create and update actions,
respectively. Rails also allows you to provide a number for the :status option that is
any of the HTTP status codes.

The HTTP status codes are a fun and interesting playground of potential
responses for an API. When designing and programming an API, very often there will
be an HTTP status code that meets your needs that you didn’t realize existed. You can
find a list of these codes at www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

By using the HTTP status codes, you’ll be a friendlier web citizen, and your con-
sumers will thank you for making their code cleaner and more reliable.

Go the Distance

It’s entirely possible to take the concept of HTTP status codes and extend it to non-
API services. After all, in today’s Internet-dependent world, everything is a service.
Applying this concept to non-API-only actions will have the same effect as for API
actions: cleaning up and standardizing your responses to be more straightforward and
predictable.

For example, consider the HTTP status code 401, Unauthorized. The HTTP
spec says this code is used for “when authentication is possible but has failed or not yet
been provided.” If your application provides a sign-in page, you can render it when a
user is not allowed to perform an action with the appropriate 401 status, as follows:

class UsersController < ApplicationController

before_filter :ensure_user_is_admin

def create

@user = User.new(params[:user])

205AntiPattern: Successful Failure

ptg

206 Chapter 5. Services

if @user.save

flash[:success] = "User successfully created."

redirect_to users_path

else

render :action => :new

end

end

protected

def ensure_user_is_admin

if !current_user.admin?

flash.now[:failure] = "You do not have permission to perform

this action"

render :template => 'sessions/new', :status => :unauthorized

end

end

In this example, a user who is not an administrator will be presented with a sign-in
page. The bonus here is that the sign-in page is rendered with the proper unauthorized
status.

Clarity Is King

The goal with using HTTP status codes to communicate status is to make your sys-
tems and services as clear as possible. That way, consumers and users can expect your
system to behave in a reliable, expected way. This is not the case when you use ad hoc
methods that are custom to your particular service. HTTP gives you these status
codes, and you should use them.

ptg

AntiPattern: Kraken Code Base
Even if you’re part of a conscientious development team that tirelessly pushes back on
profitless features, it’s inevitable that you’ll find yourself working on the dreaded behe-
moth code base.

A good rule of thumb for measuring application size and complexity is the num-
ber of models it contains. We’ve seen applications from 2 to 200 models, and we’ve
learned from experience that the maintenance costs never scale linearly with the size of
the application. Instead, developers end up drudging through 20-minute test runs,
thousand-line models, and other issues as an application grows.

Solution: Divide into Confederated Applications
Reducing the size of the code base is a crucial goal during development. Doing so
without reducing the feature set can be a difficult task. One solution that can often
work quite well is to split the code into entirely separate applications.

Low-Hanging Fruit

On some applications, where some functional concerns are clearly disconnected from
the others, the decision to chop out those pieces of the code base into separate appli-
cations is easy to make.

Consider a time-tracking application that also contains a blog and a shiny
brochure section to attract new users. The blog and brochure sections require little to
no interaction with the rest of the application. There are no user accounts to worry
about, so splitting those into separate applications is a relatively simple task.

Once the applications have been extracted, you can make changes to them with-
out needing to run the full test suite for the main application. In addition, you can
deploy and scale the applications separately, saving on costs. Finally, downtime for the
blog or brochure will have no effect on the primary time-tracking application.

We recommend going with a hosted, packaged solution for these type of sections
whenever possible. There are thousands of high-quality hosted blog solutions out
there, and there’s very little reason to actually develop one yourself.

Higher Fruit

More complicated extractions, where the separate applications must interact with each
other, are also feasible. Consider a simple ticket-tracking application. This application

207AntiPattern: Kraken Code Base

ptg

allows users to create and manage tickets such as in Lighthouse (http://lighthouseapp.com)
or Pivotal Tracker (http://pivotaltracker.com). Each ticket has a unique email address
that allows users to comment on the ticket via email.

Figure 5.1 shows the main parts of the ticket-tracking application.

208 Chapter 5. Services

Admin Emails ControllerTickets Controller

Ticket Email

Local Mail
Server

Lists Received
EmailsTicket CRUD

CreatesUpdates

Sends Email
Internet

Figure 5.1 A monolithic application.

You have a Ticket model, a TicketsController model for managing tickets, an
Email model for accepting incoming emails via SMTP, and an EmailsController
model for the administrator to inspect those email messages. You can accept incoming
emails because you’ve configured a local SMTP server to “deliver” the emails to a Ruby
script, which, in turn, creates Email records in the application. The Email model then
finds and updates the Ticket record, possibly adding the body as a new comment.

Even though the email functionality must be able to trigger an update of the
Ticket model, it’s possible to extract this area of the application into a separate appli-
cation altogether. Figure 5.2 shows this new system.

Here, EmailsController, the Email model, and the SMTP mechanism are moved
into another application. This application could reside on another server altogether,
allowing it to be maintained and scaled separately from the main application.

The major difference in this new system is that instead of accessing the database
to find and modify the ticket associated with that email message, the Email model
does an HTTP Post to the main application. (A likely entry point would be /tickets/

ptgupdate_via_email.) The main application then finds and updates the ticket on its
own. All the logic for receiving, parsing, and monitoring email deliveries would be
contained in that separate application, significantly reducing the complexity of the
ticket tracker.

Decouple for Resiliency

There is a small drawback to the system outlined in the preceding section. When the
ticket tracking application is down for some reason (whether regular scheduled main-
tenance or simple error on your part), the email catching application will simply drop
incoming emails. This is considered a small drawback because it is likely what would
have happened before the extraction as well. However, as you move toward a loose
confederation of applications, this sort of inter-application reliance can cause serious
uptime issues. Just as we discussed in the section “AntiPattern: Sluggish Services,” ear-
lier in this chapter, if every application is using HTTP to connect to every other appli-
cation, downtime in any one of them can cause the whole engine to grind to a halt.

To protect against this grinding to a halt, it’s necessary to decouple the various
applications from each other via queues and buffers. For the application we’ve been
discussing, you can use a queue system (possibly using Resque) to solve the problem
nicely. Figure 5.3 illustrates this set of loosely coupled confederated applications.

209AntiPattern: Kraken Code Base

Figure 5.2 Confederated applications.

Admin Emails Controller

Tickets Controller

Ticket

Email

Local Mail
Server

CreatesHTTP Post

Sends Email
Internet

ptg

Now, instead of immediately doing an HTTP Post to the main application, the
Email model shoves the email into the queue and finishes execution. Another worker
process, possibly spawned every few minutes via cron, examines the queue and
attempts to post any of the emails there to the main application. If a post fails, the
email is left in the queue until the worker is spawned again.

You have now decoupled the email processing side of things from the primary
ticket tracker. Now, either side can incur downtime without affecting the other. This
gives you a graceful degradation curve and a much more maintainable system as a
whole.

Can’t We All Just Get Along?

It’s not always easy to pinpoint isolated parts of an application that can be extracted
entirely. However, when it’s possible, isolating parts can greatly improve an applica-
tion. Not only does it reduce the code size and overall complexity of each application,
it also helps reduce downtime and provide gracefully degrading services for larger
 systems.

210 Chapter 5. Services

Figure 5.3 Loosely coupled confederated applications.

Admin Emails Controller

Tickets Controller

Ticket

Email

Worker

Local Mail
Server

HTTP Post

Creates

Sends Email
Internet

Queue

ptg

CHAPTER 6
Using Third-Party Code

The Ruby on Rails gem and plugin ecosystem is a vibrant and ever-changing commu-
nity of innovation and collaboration. Indeed, this is probably one of the main con-
tributing factors to the success and popularity of Rails. In addition, the rise of GitHub
has accelerated this pace of innovation and collaboration even further and ushered in
a new era of “social coding.” This environment is to be embraced not shunned. This
chapter discusses how to situate yourself in this ecosystem by using GitHub effectively.

Note
The Rails community has been moving to a preference for
gems over Rails plugins. Especially since the release of Rails
3, it is now possible to do with a gem everything you could
do with a plugin—and more. Therefore, we now recom-
mend that all new third-party addons be written as gems and
that existing ones be converted. Throughout this chapter, we
refer to gems instead of plugins, but everything noted applies
to both.

Gems are an extremely powerful tool for Rails developers. They allow you to get up
and running with applications more quickly, and they allow you to accomplish more
complex functionality in a shorter period of time than would otherwise be possible.

However, sometimes the sheer number of gems can be overwhelming. How do
you know which one to choose? How do you know if there is a gem that already solves

211

ptg

your problem? Also, is it always worth using an existing gem to solve problems? Once
you choose to use a gem, what recourse do you have when you need to make changes
to how it works?

The AntiPatterns in this chapter answer these questions for you, ensuring that
your application code stays clean and well tested as you incorporate third-party code.

212 Chapter 6. Using Third-Party Code

ptg

AntiPattern: Recutting the Gem
If you work on several Rails applications, at once or in sequence, or even if you work
on one sufficiently large Rails application, you may find yourself repeating a common
pattern or functionality.

This functionality could be anything, at any level of the Rails stack. If you’ve done
it more than once, you’ve repeated yourself. And you’re probably not the only one in
the world to need a solution to that particular problem.

Solution: Look for a Gem First
You’ll generally want to identify whether there is an existing gem that provides the
functionality you need before you get started. It’s not good to spend a bunch of time
writing code, only to discover that there is an existing plugin that does exactly what
you need. The following are some useful guidelines for when to look for an existing
plugin:

• You begin to write or plan a piece of functionality and think “hey, this could be
useful to other people.” Someone might have thought the same thing and already
written it.

• You begin to write or plan any piece of functionality that you’ve seen on the
Internet before.

• You do the same thing twice in two consecutive applications or within the same
application. Note that this doesn’t mean you should make the gem yourself after
you’ve repeated yourself; it’s just a flag that you should look to see if someone else
has already made it.

Once you find that an existing gem does what you need, how do you know that you
should use it? Read the next section, “AntiPattern: Amateur Gemologist,” for a solu-
tion for evaluating third-party code.

213AntiPattern: Recutting the Gem

ptg

AntiPattern: Amateur Gemologist
You should not assume that just because an existing gem appears to provide the func-
tionality you need, you will automatically use it. If it actually does what you need with
minimal configuration, you still need to consider some important factors before
deciding to use third-party code.

Solution: Follow TAM
There are three guidelines to use when evaluating third-party tools: tests, activity, and
maturity (which we refer to as TAM).

Check for Tests

The most important thing to look for when evaluating a gem is that it comes with an
automated test suite. Without one, there is little guarantee that it works at all or won’t
repeatedly break down the road.

If a gem seems truly valuable and doesn’t have tests, then you should write tests for
the code and contribute them to the project.

Check for Activity

It’s not enough to know that a gem just exists. You also want the comfort of knowing
that it is actively being used by the community. If there is very little activity in a gem’s
source code, trouble tickets, and mailing list, this could be a red flag that the code is
out of date or not well supported. You don’t want to start using inactive code unless
you’re prepared to make an investment in supporting it yourself.

Check for Maturity

The preceding two guidelines are closely tied to the maturity of the third-party code.
However, tests and activity are not the only measures of maturity. In fact, it’s entirely
possible for a very new, unstable gem to have both tests and a lot of interest and activ-
ity. Time and usage are the real measures of maturity. If a gem has been around for a
while, is well maintained, and has many users, it can be considered mature.

There can be consequences associated with using immature code. It’s likely that
your application will break or have bugs in the current release or future releases. As
with inactive code, you’ll want to shy away from immature code unless you’re willing
to make an investment in contributing to supporting it yourself.

214 Chapter 6. Using Third-Party Code

ptg

Something Wicked This Way Comes

We don’t want to discount the benefits of the wide array of third-party code available,
much of it incredibly useful and good. However, using third-party code in an applica-
tion is not something to take lightly. Relying on third-party code involves the same
sort of liability as writing custom code yourself. You need to stay up to date with the
software and be aware of discovered bugs and fixes. In addition, there may come a time
where the needs of your application may differ slightly from the precise functionality
provided by the gem. In that case, you will either need to work with the plugin or
replace it. This is not an insurmountable task, but you also shouldn’t take it lightly.

215AntiPattern: Amateur Gemologist

ptg

AntiPattern: Vendor Junk Drawer
When first encountering the wide selection of gems and plugins available, it’s com-
mon for new Rails developers to grab any and all of these third-party tools that will
help reduce the amount of code they have to write by hand.

In general, this is a good habit, and erring too far in the opposite direction results
in the clearly unwanted “not invented here” syndrome. However, the open nature of
Ruby means that any one of the gems and plugins you use could modify the base Ruby
or Rails classes, resulting in unpredictable code. Clearly, care must be taken when
adding gems, and unused gems must be removed aggressively.

The “vendor junk drawer” AntiPattern results when this care is not taken to keep
the number of gems and plugins in an application manageable.

Solution: Prune Irrelevant or Unused Gems
When the number of gems and plugins an application uses becomes unmanageable,
it’s time to reevaluate the worth of each one. Each gem and plugin may be actively
used within the application, but this is unlikely to be the case. When someone adds a
gem to an application and writes code that can use it, the code may later be refactored,
with the code that used the gem removed. It can be difficult to identify when all of the
code that uses an installed gem gets removed and that gem is no longer needed.

Aside from judicious use of gems in the first place, it’s best to not allow your third-
party code (the lib and vendor dirs, and your application’s Gemfile) to become an
overgrown garden. You should constantly tend this garden to ensure that it stays tidy.

216 Chapter 6. Using Third-Party Code

ptg

AntiPattern: Miscreant Modification
When using third-party code, it’s incredibly important that you know what version
you are using. Traditionally, Rails plugins had no versioning mechanism built in and
were installed within the application in the vendor/plugins directory. Gems that
have versioning built in are unpacked into vendor/gems, though with bundler and
Rails 3.0, it is now considered best practice not to vendor gems at all.

There may come a time when a gem or plugin you’re using either has a bug or
doesn’t work the way you need it to work for your application. In such a case, you
need to modify the gem or plugin.

Solution: Consider Vendored Code Sacrosanct
You should never modify the files for a gem or plugin directly within your applica-
tion’s vendor directory. If you were to do so, your code would not match the released
version of the third-party code, and there would be no readily apparent record of the
fact that it doesn’t match. It’s incredibly easy to forget that such an in-place modifica-
tion has happened, especially on teams with multiple developers. Furthermore, when
you upgrade the gem or plugin, the in-place changes you’ve made will be lost.

Monkey patching and forking are two techniques for making necessary modifica-
tions to third-party code.

Monkey Patching

Monkey patching is a programming technique you can use in dynamic languages.
With monkey patching, you modify or extend existing code at runtime, without mod-
ifying the original source code. In Ruby, you typically do this by reopening a class or
module and providing an alternate definition for some or all original code.

You should place a monkey patch in an application’s lib directory and name the
file something that makes it clear what is being patched. For example, a monkey patch
for the Validatable plugin might be located in lib/validatable_extensions.rb.

For example, the following code for validating the numericality of an attribute
was originally located within vendor/gems/durran-validatable-2.0.1:

module Validatable

class ValidatesNumericalityOf < ValidationBase #:nodoc:

option :only_integer

def valid?(instance)

value = value_for(instance)

217AntiPattern: Miscreant Modification

ptg

return true if allow_nil && value.nil?

return true if allow_blank && value.blank?

value = value.to_s

regex = self.only_integer ? /\A[+-]?\d+\Z/ : /^\d*\.{0,1}\d+$/

not (value =~ regex).nil?

end

def message(instance)

super || "must be a number"

end

private

def value_for(instance)

before_typecast_method = "#{self.attribute}_before_typecast"

value_method =

instance.respond_to?(before_typecast_method.intern) ?

before_typecast_method : self.attribute

instance.send(value_method)

end

end

end

This code has a problem: The regular expression in the valid? method does not work
for negative floating-point numbers.

You can monkey patch this problem in the lib/validatable_extensions.rb
file with the following code:

module Validatable

class ValidatesNumericalityOf < ValidationBase

def valid?(instance)

value = value_for(instance)

return true if allow_nil && value.nil?

return true if allow_blank && value.blank?

value = value.to_s

regex = self.only_integer ? /\A[+-]?\d+\Z/ : /\A[+-

]?\d*\.{0,1}\d+$/

not (value =~ regex).nil?

end

218 Chapter 6. Using Third-Party Code

ptg

end

end

Notice that the module definition is exactly the same as it was earlier. This way, you
can effectively reopen the existing module and redefine it. When monkey patching,
you only need to specify the actual code you want to override; there is no need to
duplicate all the other code in the original module because it will remain defined.

In addition, you should attempt to override as little as you possibly can when
monkey patching. This will make your patches less brittle.

Forking

When monkey patching existing open source code as outlined in the preceding sec-
tion, especially if you’re fixing bugs, you should contribute your changes back to the
open source project to be incorporated into the official release. This used to be a rela-
tively tedious process, but GitHub has become a well-organized and efficient mecha-
nism for sharing and contributing code with other developers. Therefore, you can fork
the original code on GitHub, make your patch (with tests), and submit it back to the
original author by using a GitHub pull request.

You don’t have to wait for your modifications to be accepted by the original
author, however. Bundler now has the ability to point directly to a git repository
instead of requiring an actual gem, as shown in the following:

gem 'gemname', :git => "git://github.com/githubuser/gemname.git"

Using this technique, you can then maintain a separate git repository that tracks your
changes in detail. You can also either contribute to this git repository or track the
original repository.

Share and Share Alike

When you don’t modify original third-party source code in place, your changes are
more clearly defined and less likely to be lost. You also gain the added benefit of being
able to more easily contribute your changes to the original author of the third-party
code. By taking this one step further and hosting your fork on a public git repository,
you can dramatically increase the visibility of your modifications and help improve the
Rails gem community even further.

219AntiPattern: Miscreant Modification

ptg

This page intentionally left blank

ptg

CHAPTER 7
Testing

One of the strengths of the Ruby on Rails platform is that it gives you a solid testing
infrastructure as part of your base project. Because of this, and because of the agile
nature of most Ruby on Rails development shops, the community has rallied behind
test-driven development (TDD) and behavior-driven development (BDD) with a pas-
sion unheard of in other programming circles.

TDD and BDD didn’t actually begin with the Rails culture; they were around
long before Ruby on Rails emerged. TDD and BDD arguably started with Kent Beck’s
publication “Simple Smalltalk Testing: With Patterns,” and in general they have their
roots in the test-first philosophy espoused by the Extreme Programming movement.

Ruby on Rails projects come preconfigured with the Test::Unit framework,
which is the second Ruby testing framework and possibly still the most popular.
Test::Unit follows the xUnit Pattern outlined by Kent Beck. Tests are methods that
are grouped into classes called test cases. Any method whose name starts with test_
and that is defined in a subclass of Test::Unit::TestCase will be run as a test
method. A test case can have a setup method that is run before each test method and
does the job of initializing instance variables and preparing other states on which the
tests depend. Each test method is composed of assert statements that compare the
output of the code to be tested against the expected state.

Ruby is a highly dynamic language and is therefore highly adaptable to any given
task. This has been a great benefit to the testing community, as it has allowed the cre-
ation of much more readable and powerful testing frameworks. These new frame-
works—such as RSpec, Shoulda, Dust, and Test::Spec, to name a few—all attempt to

221

ptg

make it easier to produce and understand an application’s tests. Most of the new
frameworks do this by allowing tests to have names that are full, readable sentences
and by introducing the concept of contexts as a way of grouping similar tests.

Throughout this book, we use the Shoulda library to illustrate the power of these
next-generation testing frameworks. The techniques are almost identical between the
various frameworks, and the Shoulda syntax should be easy to pick up from the exam-
ples in this book. We encourage you to explore the framework further at
http://github.com/thoughtbot/shoulda.

222 Chapter 7. Testing

ptg

AntiPattern: Fixture Blues
Fixtures, as a concept, have been a part of unit testing since its inception, and their
analog stems from pre-computing days. When building something as complex and
error prone as a car, it’s important to test each piece in isolation in addition to taking
the finished car for a test drive.

So that they don’t need an engine in order to test a car’s tires, the technicians build
a physical fixture to simulate the rest of the car and road—for example, an arm to hold
the tire and a high-speed treadmill for the road. Building fixtures with different arm
resistances and treadmill surfaces allows the technicians to test a tire against every
combination of chassis and road conditions. This exposes the tire design to a much
wider range of conditions and saves days of the test driver’s time.

At the time that unit testing was becoming a focus of software engineering, it was
borrowing a lot from industrial techniques like this. These fixtures were translated to
the software world as a set of predefined object scenarios against which to test other
classes. An application that deals with calendar dates, for example, might have an
event fixture with a date range that spans February 29, one that lasts only a day, one
that lasts more than a year, a repeating event, and so on.

In the Ruby on Rails world, fixtures are kept in the /test/fixtures directory.
You specify which fixtures you want preloaded into the database for all the tests in a
test class by calling the fixtures class method:

class UserTest < ActiveSupport::TestCase

fixtures :users, :teams, :challenges

tests using the records defined in the users fixtures

end

The files under the fixtures directory can be YAML or Ruby files, with YAML
being by far the most common. Each entry in a YAML file represents one of the
records to load. For example, the /test/fixtures/users.yml file might look some-
thing like this:

bonnie:

name: Bonnie Jones

email: bonnie@jones.com

billy:

name: Billy Jones

email: billy@jones.com

223AntiPattern: Fixture Blues

ptg

You would reference one of these preloaded records in your test methods by calling
users(:billy). Typically, the fixture for Billy would be associated with a variety of
other fixture records. Billy may belong to a team and may have taken a number of
challenges, all of which would be useful for some subset of tests. Bonnie would also
have a variety of traits that would allow other tests to use her record to stress those
parts of the application.

Unfortunately, the fixture analogy breaks down in the translation between indus-
trial engineering and software development. It can take weeks to produce a good set of
physical fixtures for testing an aircraft wing, so it makes sense to reuse those fixtures as
much as possible: The same fixtures would be used for testing a wide variety of wings.

With software, on the other hand, it takes relatively little time to adapt to the
needs at hand. This is especially the case when using dynamic languages such as Ruby.
Reusing a set of fixtures to test multiple classes in this environment leads to unneces-
sarily brittle and unreadable tests. We’ve all worked on applications where changing a
detail of an existing fixture breaks tens or hundreds of seemingly unrelated tests. The
common practice is then to treat existing fixtures as sacrosanct and to add new fixtures
for every new set of tests. This leads to an explosion in the size of a fixture as well as
duplication, as the purpose of each fixture becomes lost to posterity.

Say that developer writing new functionality involving user accounts wants to
modify Billy’s fixture slightly to suit his tests. In a test framework that relies on fix-
tures, doing this can easily break a large number of tests. The developer’s only alterna-
tive is to add a new user fixture, with its own order and post associations. If you think
about repeating this process with each new feature added to an application, you can
see how the fixture explosion happens.

Another problem is that the definition for the network of records created by fix-
tures is spread out across a number of different fixture files in a test directory. Not only can
you not see exactly what defines a fixture such as users(:sally) in your test method,
but you have to examine each fixture file that may be associated with Sally to under-
stand the entire object graph that your test is working with. This is a huge burden in
terms of test readability and ultimately in terms of the developer’s trust in the test suite.

Another issue with fixtures in Ruby on Rails is that fixture records are imported
directly into the test database, without any validations. This is done for speed reasons
but opens the door for having invalid seed data throughout your tests. This is most likely
to happen when a new validation is added to a model in a fixture-based application.

Finally, fixtures do not go through the normal Active Record lifecycle. For exam-
ple, columns that would be populated by after_save callbacks must be entered into

224 Chapter 7. Testing

ptg

a YAML file by hand. A common example of this is a hashed_password field in a User
model. The cryptographic hash algorithm is generally repeated in the User model and
in the users.yml fixture file. This is tedious and error prone, and it’s a potential main-
tenance problem.

The following solutions discuss some very effective alternatives to fixtures that
overcome these problems: using factories and modern BDD testing frameworks.

Solution: Make Use of Factories
Many patterns for creating related objects were formalized in the seminal work Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson,
and Vlissides. The factory is probably one of the most popular and well understood of
those patterns.

A Factory class is responsible for creating objects of other classes. By encapsulat-
ing and centralizing the steps required to create associated objects, the Factory class
allows you to keep the concerns of the rest of your classes pure and gives you a single
place to make changes to that process when the class definitions change.

A Fixture Replacement

Factories can be a wonderful alternative to fixtures and all their related problems.
Before we discuss how factories can help with the fixture blues, let’s look at a simple
factory implementation. A first attempt at introducing factories into a code base
might look something like this:

file: test/test_helper.rb

class Test::Unit::TestCase

require File.expand_path(File.dirname(__FILE__) + "/factory")

...

end

file: test/factory.rb

module Factory

class << self

def create_published_post

post = Post.new(:body => "lorem ipsum",

:title => "Published post title",

:published => true)

post.save!

225AntiPattern: Fixture Blues

ptg

return post

end

def create_unpublished_post

post = Post.new(:body => "lorem ipsum",

:title => "Unpublished post title",

:published => false)

post.save!

return post

end

end

end

This defines a Factory module with class methods for creating different types of
Post models. The Factory module would also have methods for every other type of
model in the application. You would use Factory in your tests like this:

class PostTest < ActiveSupport::TestCase

should "find all published posts on Post.published" do

Factory.create_published_post

Factory.create_unpublished_post

Post.published.each do |post|

assert post.published?

end

end

end

This is a great first step in using factories to DRY up your tests. Now when adding
validations to your models, you only have to make changes to the methods in
Factory. In addition, because the Factory methods use ActiveRecord#save!, you
can be assured that the records are valid and that any computed attributes have been
set correctly.

Unfortunately, you still have to create a new Factory method for every different
type of Post you want to work with. This is much better than having to maintain the
different fixture entries, but you can still improve on it. For one thing, it would be nice
to be able to pass in the parameters to Post.new while maintaining the defaults speci-
fied in the Factory method. Also, this implementation doesn’t have any implicit
understanding of associations or unique constraints on columns.

226 Chapter 7. Testing

ptg

Enter the FactoryGirl gem (http://github.com/thoughtbot/factory_girl). FactoryGirl
makes factory definitions both easier and much more powerful. (You can find the full
documentation for FactoryGirl on GitHub.) The following is an example of how you
can use FactoryGirl in an application:

Factory.sequence :title { |n| "Title #{n}" }

Factory.define :post do |post|

post.body "lorem ipsum"

post.title { Factory.next(:title) }

post.association :author, :factory => :user

post.published true

end

The accessors on post in the Factory#define block are interesting beasts. They
define the default for each attribute on the model and can take values or blocks that
are lazily evaluated. The Factory#sequence and Factory#next statements let you
deal with attributes that must be unique, and the association method lets you define
attributes on your model that should also be created via Factory.

The call signature for FactoryGirl is a little different from that of your home-
brewed Factory module:

class PostTest < ActiveSupport::TestCase

should "find all published posts on Post.published" do

Factory(:post)

Factory(:post, :published => false)

Post.published.each do |post|

assert post.published?

end

end

end

Because you can override the default values for the model’s attributes, you no longer
need to define a Factory method for both published and unpublished posts. It might
still make sense to have multiple factory definitions for a single model, and FactoryGirl
lets you do that.

The next section explores how to combine the Factory pattern with the concept
of test contexts in order to clean up your tests even further.

227AntiPattern: Fixture Blues

ptg

Solution: Refactor into Contexts
We’ve seen how factories can help you break free of fixtures and improve your test base
in terms of readability, flexibility, and integrity. Shoulda contexts reveal another way of
removing fixtures without having to deal with the redundancy of repeatedly building
your test records by hand in every test method.

The Malaise of Fixture-Oriented Tests

Convinced of the evils of fixtures, you may begin the task of removing them from your
application’s test suite. The first file you encounter resembles the much shorter version
here:

def test_user_without_posts_should_return_false_on_has_posted

user = users(:bob)

assert !user.has_posted?

end

def test_user_without_posts_should_not_be_allowed_to_edit_post

user = users(:bob)

post = posts(:political_post)

assert !post.editable_by?(user)

end

def test_user_with_posts_should_return_true_on_has_posted

user = users(:sarah)

assert user.has_posted?

end

def test_user_with_posts_should_be_allowed_to_edit_own_post

post = posts(:political_post)

user = users(:sarah)

assert post.editable_by?(user)

end

def test_admin_user_should_be_allowed_to_edit_other_users_post

post = posts(:political_post)

user = users(:charlie)

assert post.editable_by?(user)

end

228 Chapter 7. Testing

ptg

This is a fairly straightforward test case, but it exemplifies one of the bad practices that
fixtures encourage. These tests are making a number of assumptions about the fixture
data—that :bob has no posts, that :sarah wrote a political post, and that :charlie is
an administrator who did not write the political post. You would have to dig into both
the users.yml and posts.yml files to figure out what’s going on in any of these tests,
and the situation gets progressively worse as the test suite grows larger.

Of course, you could find every fixture call and replace it with a call to
ActiveRecord::Base#create!, passing in the parameters that define each record.
Here’s what this ends up looking like:

def test_user_without_posts_should_return_false_on_has_posted

user = User.create!(:name => "Bob")

assert !user.has_posted?

end

def test_user_without_posts_should_not_be_allowed_to_edit_post

user = User.create!(:name => "Bob")

assert !Post.create!(:title => "A Post").editable_by?(user)

end

def test_user_with_posts_should_return_true_on_has_posted

post = Post.create!(:title => "A Post")

user = User.create!(:name => "Bob", :post => post)

assert user.has_posted?

end

def test_user_with_posts_should_be_allowed_to_edit_own_post

post = Post.create!(:title => "A Post")

user = User.create!(:name => "Bob", :post => post)

assert post.editable_by?(user)

end

def test_admin_user_should_be_allowed_to_edit_other_users_post

user = User.create!(:name => "Bob", :admin => true)

assert !Post.create!(:title => "A Post").editable_by?(user)

end

These resulting tests are much more explicit than the originals. Each saved record clearly
states everything you could want to know about it in the parameters. A developer

229AntiPattern: Fixture Blues

ptg

working on these tests wouldn’t have to go rummaging through a bunch of other files
to figure out whether the user owns the post or what privileges the user has.

Unfortunately, this readability comes at the expense of test suite DRYness. Many
of the test methods share the same bits of “setup” code. Imagine how another devel-
oper would have to deal with a new validation being added to the User model. That
other developer would have to find and modify every call to User.create. That’s
time-consuming, error prone, and, in general, a huge maintenance headache.

This problem in general has led some developers to sprinkle their test cases with
all kinds of ad hoc helper methods to create objects, set up mocks and expectations, or
do other operations that happen in more than one test method. While these intentions
are good, the results are scattered and inconsistent. A better approach would be to
make use of a test framework that supports contexts.

Contexts

Using contexts is a way of grouping and gradually building setup code for a set of test
methods. The following is an example of how contexts work:

context "A dog" do

setup do

@dog = Dog.new

end

should "bark when sent #talk" do

assert_equal "bark", @dog.talk

end

context "with fleas" do

setup do

@dog.fleas << Flea.new

@dog.fleas << Flea.new

end

should "scratch when idle" do

@dog.idle!

assert @dog.scratching?

end

should "not be allowed inside" do

assert !@dog.allowed_inside?

230 Chapter 7. Testing

ptg

end

end

end

The context and should statements combine to create three test methods. Every
should statement inside a context first runs the setup method for that context and for
all the outer contexts. For example, the should "not be allowed inside" test runs
both the setup that creates a dog and the setup that gives that dog a value for fleas
before running its own assertions.

Essentially, these nested contexts are the same as the following explicit tests:

def test_a_dog_should_bark_when_sent_talk

@dog = Dog.new

assert_equal "bark", @dog.talk

end

def test_a_dog_with_fleas_should_scratch_when_idle

@dog = Dog.new

@dog.fleas << Flea.new

@dog.fleas << Flea.new

@dog.idle!

assert @dog.scratching?

end

def test_a_dog_with_fleas_should_not_be_allowed_inside

@dog = Dog.new

@dog.fleas << Flea.new

@dog.fleas << Flea.new

assert !@dog.allowed_inside?

end

Using contexts can improve a test suite in many ways, the most dramatic of which
is removing the redundant setup code that’s copied and pasted between test methods.
Armed with a test suite that supports nested contexts, you can rewrite the preceding
tests and come up with this:

231AntiPattern: Fixture Blues

ptg

context "A user" do

setup { @user = User.create!(:name => "Bob") }

should "not be allowed to edit another user's post" do

@post = Post.create!(:title => "A Post")

assert !@post.editable_by?(@user)

end

should "return false on #has_posted?" do

assert !@user.has_posted?

end

context "with a post" do

setup { @post = Post.create!(:title => "A Post", :user => @user) }

should "be allowed to edit the post" do

assert @post.editable_by?(@user)

end

should "return true on #has_posted?" do

assert @user.has_posted?

end

end

context "with admin privileges" do

setup { @user.update_attributes!(:admin => true) }

should "be allowed to edit another user's post" do

@post = Post.create!(:title => "A Post")

assert @post.editable_by?(@user)

end

end

end

Although this example shows an increased number of test code lines, it also shows
increased readability and maintainability. Most of the redundancy in the previous
examples has been eliminated. If you had to change how a user was created, you’d have
to do so in only one place. There is still some duplication in how posts are created,
and we’ll look at how to eliminate this duplication in just a bit. First, let’s look at some
of the other benefits of context-structured tests.

232 Chapter 7. Testing

ptg

Hidden Jewels

By explicitly separating the setup code from the assertions, you can write a single
focused test for each bit of functionality. This brings your test methods closer to the
“one assertion per test” tenet that many respected testing experts practice. How often
have you run across test methods like the following?

def test_get_to_show

get :show, :id => @mother.to_param

assert_response :success

assert_template :show

assert_nil flash[:warning]

assert assigns(:mother)

assert assigns(:children)

assigns(:children).each do |child|

assert child.good?

end

end

This test was written by a developer who wanted to avoid repeating the get :show line
across a series of tests. The result is a single test that is poorly named and that tests six
different pieces of behavior. In addition, the rest of the assertions aren’t run if one of
them fails. This hides important debugging information from the developer.

A comparable example using contexts does not have these issues. It also promotes
good BDD practices by forcing you to consider each bit of functionality as a separate
part of the specification:

context "on GET to #show" do

setup { get :show, :id => @mother.to_param }

should "respond successfully" do

assert_response :success

end

should "render the show template" do

assert_template :show

end

should "not set the flash" do

assert_nil flash[:warning]

end

233AntiPattern: Fixture Blues

ptg

should "assign to mother" do

assert assigns(:mother)

end

should "only show good children" do

assert assigns(:children)

assigns(:children).each do |child|

assert child.good?

end

end

end

This example also has the added bonus of producing very readable test names. A test
failure would present the user with a test name like "on GET to #show should only
show good children", which further encourages concise and focused test methods.

Join Forces for the Greater Good

As mentioned earlier, the code you’re dealing with could still use some more DRYing
up. While the details of creating a Post are repeated less using contexts, there is still
some duplication. There will also almost assuredly be duplication of that bit of code
across the different test files.

You might recognize that we addressed these concerns earlier in this chapter, in
the section “Solution: Make Use of Factories.” In fact, contexts and factories work
together very well. Here’s the same test file you’ve been working with, in this case
refactored to make use of FactoryGirl:

context "A user" do

setup { @user = Factory(:user) }

should "not be allowed to edit another user's post" do

assert !Factory(:post).editable_by?(@user)

end

should "return false on #has_posted?" do

assert !@user.has_posted?

end

context "with a post" do

setup { @post = Factory(:post, :user => @user) }

234 Chapter 7. Testing

ptg

should "be allowed to edit the post" do

assert @post.editable_by?(@user)

end

should "return true on #has_posted?" do

assert @user.has_posted?

end

end

context "with admin privileges" do

setup { @user.update_attributes(:admin => true) }

should "be allowed to edit another user's post" do

assert Factory(:post).editable_by?(@user)

end

end

end

The combination of contexts and factories may well be the pinnacle of current
testing best practices. We’ve made use of this pattern in every application we’ve devel-
oped, and it hasn’t let us down yet.

235AntiPattern: Fixture Blues

ptg

AntiPattern: Lost in Isolation
With all the benefits that using mocking can give you, it’s important to be aware of the
false sense of security mocking can instill. As you’ve seen, mocking allows you to iso-
late your tests, ensuring that you aren’t testing more than one component at a time.
While this can make your test suite more resilient to change, this resilience can be a
liability.

Consider a simple domain where you have Posts and Watchers. A Post can have
many watchers who need to be notified when the post is published. The post unit
tests are as follows:

test/unit/post_test.rb

class PostTest < ActiveSupport::TestCase

should_have_many :watchers

context "a post" do

setup { @post = Factory(:post) }

should "send notify_all_of_published_post to its

watchers when published" do

@post.watchers.

expects(:notify_all_of_published_post).

with(@post)

@post.publish!

end

end

end

The following model satisfies the test:

app/models/post.rb

class Post < ActiveRecord::Base

has_many :watchers

def publish!

watchers.notify_all_of_published_post(self)

end

end

236 Chapter 7. Testing

ptg

The implementation here is fairly simple. Calling @post.publish! in turn calls
watchers.notify_all_of_published_post(@post). As discussed in the section
“Solution: Learn and Love the Scope Method” in Chapter 1, this is the same as calling
Watcher.notify_all_of_published_post but against the subset of watchers that are
attached to this post.

Notice that you’ve made use of mocking to test that the callback is being trig-
gered. This means that the actual notify_all_of_published_post method is never
called in the test. Instead, you ensure that the call is made by intercepting it with
#expects.

The only part of the watcher model that concerns you for this example is that it
has a notify_all_of_published_post class method:

app/models/watcher.rb

class Watcher < ActiveRecord::Base

belongs_to :post

def self.notify_all_of_published_post(post)

...

end

end

That method, of course, would be fully unit tested in itself.
Now let’s look at what happens when one of your fellow developers comes in and

decides that notify_all_of_published_post doesn’t need the post passed in. After
all, each individual watcher belongs to one and only one post; they shouldn’t need
any more information to do their job. The developer removes the post parameter and
finds and fixes any failing unit tests for notify_all_of_published_post:

app/models/watcher.rb

class Watcher < ActiveRecord::Base

belongs_to :post

def self.notify_all_of_published_post

...

end

end

Seeing that all the tests pass, he then pushes his changes to the rest of the team.
Of course, the application is now broken. What went wrong?

237AntiPattern: Lost in Isolation

ptg

The Post unit tests were still running under the assumption that notify_
all_of_published_post required a parameter. The culprit is the line in the Post test
that uses mocking:

@post.watchers.

expects(:notify_all_of_published_post).

with(@post)

This line now needs to be changed to reflect the new calling signature of the notify_
all_of_published_post method:

@post.watchers.

expects(:notify_all_of_published_post).

with()

This is an example of the use of mocking causing gaps in the integration points of
tests. An integration point is where module A (for example, the publish! method)
interacts with module B (for example, the notify_all_of_published_post) method.

Mocking isolates tests from the implementations of other classes by acting as a
buffer in these integration points. This means, however, that the integration points are
now untested: You no longer know that module A knows how to talk to module B
correctly.

Those new to mocking might argue that our developer is simply a lazy program-
mer: “Surely, he should have searched the code for the method name and inspected
those tests by hand.” Not only is this a lot to expect from a developer working in a
large code base, but it’s also infeasible in many situations. In many systems, and espe-
cially in Ruby and the Rails framework, method names are often commonly used
words (such as find, all, and first). In addition, a highly dynamic language such as
Ruby can also hide the method names through calls to send, define_method, and
other tactics (as discussed further in the section “Solution: Make Magic Happen with
Metaprogramming” in Chapter 1).

Solution: Watch Your Integration Points
Does the danger discussed in the preceding section hearken the end of the mocking
“fad”? Not in the least. Experienced test developers know that a good test suite that
makes use of heavy mocking absolutely must be driven by integration tests that don’t

238 Chapter 7. Testing

ptg

use any mocking at all. As of late, the best way to produce these tests has been by using
the Cucumber framework (http://cukes.info).

The cycle of developing a feature is as follows:

1. Write a user story in Cucumber that describes the feature.

2. Develop only enough of the controller to make this story pass. While developing
this part of the controller, you’re writing functional tests that mock out the lower
layer (the models).

3. Develop only enough of the models to make the story pass. Again, this develop-
ment is driven by unit tests, which may mock out interactions with other models.

You can think of this process as smaller TDD loops inside a larger BDD loop (the user
story). By the end of this process, you are have a small, focused, and fast unit and func-
tional tests that use mocking. You also have the reassurance of the user story to know
that your integration points are tested.

Mock with Care

Story-driven development works well when it’s used consistently throughout a project.
We’ve found, unfortunately, that trying to add this methodology on top of existing
code bases yields only marginal value. However, worse still is making heavy use of
mocking in a project without supporting the features with any integration tests at all.
Doing so only undermines the effectiveness of the tests—and the team’s confidence in
them.

239AntiPattern: Lost in Isolation

ptg

AntiPattern: Mock Suffocation
Mocks and stubs are important and useful tools in the hands of a developer, but it’s
easy to get carried away. Besides lending a false sense of security, over-mocked tests can
also be brittle and noisy.

Two of the greatest benefits of using mocks and stubs are the focus they lend to an
exercise and the declarative nature of stubs in a setup. Consider the following example
of a site with publicly viewable articles that users can rate:

context "given an article with an average score of 4" do

setup do

@article = Factory(:article)

3.times { Factory(:vote, :article => @article, :score => 4) }

end

should "display the score on GET to show" do

get :show, :id => @article.to_param

assert_select '.score', '4'

end

end

In this example, you don’t want to display the average score for an article until it has at
least three votes. In order to test that the score is displayed, you need to create the nec-
essary votes.

This test has a number of problems. The practical speed issue of creating all these
records in a context that might wrap multiple tests is undesirable, but there’s a more
philosophical issue at hand. While the main point of the setup is to have an article
with a particular score, most of the setup is concerned with creating votes. The con-
cept of a vote isn’t actually relevant to this test and only serves as a distraction.

As you can see in the following code, using a stub produces a more declarative test
case:

context "given an article with an average score of 4" do

setup do

@article = Factory(:article)

@article.stubs(:score => 4)

Article.stubs(:find).with(@article.id).returns(@article)

end

240 Chapter 7. Testing

ptg

should "display the score on GET to show" do

get :show, :id => @article.to_param

assert_select '.score', '4'

end

end

Now the test is concerned only with the aspects of the business value it’s prov-
ing—that the article has a score and that the score is displayed when you get the show
page.

Unfortunately, it can be easy to fall into the habit of creating stubs without care-
fully considering the interface you want the tested system to obey. If you find that you
need a great number of stubs just to get a test running, the fault may not be with the
testing strategy; it may be with your production code.

In general, one of the main benefits of TDD is that the act of writing tests helps
you think about the interfaces your classes should be exposing. If you have difficulty
with a test, such as having to wade through the mock-and-stub stew, then it’s likely
that you have ailing interfaces, with your classes not exposing a consistent and self-
contained API.

Solution: Tell, Don’t Ask
If you find yourself stubbing out several methods on the same object, you might want
to examine the interface you’re using on that object. The following is an example of
one of the most commonly used interfaces in Rails—saving an Active Record instance:

if @article.save

redirect_to @article

else

render :action => 'new'

end

In order to test this interaction, you need to stub out only one method:

@article.stubs(:save).returns(true)

The key here is the #save method, which validates the Article, saves it if it’s valid, and
then returns true or false to indicate success or failure. If you’re familiar with other
methods in the Active Record API, you know you could also write the example like this:

241AntiPattern: Mock Suffocation

ptg

if @article.valid?

@article.save!

redirect_to @article

else

render :action => 'new'

end

If you assume that all valid records should be savable, you might decide that the
#save method is an unnecessary convenience method, given the existence of #valid?
and #save!. However, the relationship between the controller and the model is now
more complicated. This is revealed by the stubs that would be necessary to test the
interaction:

@article.stubs(:valid?).returns(true)

@article.stubs(:save!)

The situation has become complicated because your controller is asking too many
questions. The controller doesn’t need to know if the article is valid; it just needs to
know if it was saved successfully.

While Active Record is a truly useful framework, some of the features that create
that utility also encourage long method chains and therefore promote a stew of mocks
and stubs in tests.

Active Record associations allow you to access associated records and call class
methods on those records easily and simply. Similarly, scopes (introduced as named_
scope in Rails 2.x) allow you to break up bits of finder logic into chainable scopes,
DRYing up finder methods and removing large swaths of SQL-building code.

However, using these chains outside a model introduces a lot of knowledge into
your other classes. This makes refactoring more difficult. The telltale sign of this is
often a large number of stubs in the tests.

Consider the following example, where you want to display “featured” articles on
the front page of your site. In order to qualify, an article must be from the past week,
must have at least one comment, and must have enough votes to merit a visible rating.
Using a named scope allows you to write these three requirements nicely:

class Article < ActiveRecord::Base

MIN_VOTES_TO_DISPLAY = 4

FEATURED_CUTOFF_AGE = 7.days

242 Chapter 7. Testing

ptg

scope :with_at_least_one_comment,

where('articles.comments_count > 0')

def with_votes_at_least(minimum)

where(['articles.votes_count >= ?', minimum])

end

def created_after(cutoff_date)

where(['articles.created_at > ?', cutoff_date])

end

end

The controller can combine the chains like so:

class ArticlesController < ApplicationController

def index

@featured_articles = Article.

with_at_least_one_comment.

with_votes_at_least(Article::MIN_VOTES_TO_DISPLAY).

created_after(Article::FEATURED_CUTOFF_AGE.ago)

end

end

However, the Article model has now spilled into ArticlesController, tying
the controller to three class methods and two constants. The tests for this scenario
look even worse:

class ArticlesControllerTest < ActionController::TestCase

context "given featured articles" do

setup do

chain = stub('chain')

@featured_articles = [Factory(:article), Factory(:article)]

Article.stubs(:with_at_least_comment).returns(chain)

chain.

stubs(:with_votes_at_least).

with(Article::MIN_VOTES_TO_DISPLAY).

returns(chain)

chain.

stubs(:created_after).

with(Article::FEATURED_CUTOFF_AGE.ago).

243AntiPattern: Mock Suffocation

ptg

returns(@featured_articles)

end

context "on GET index" do

setup { get :index }

should assign_to(:featured_articles).with { @featured_articles }

end

end

end

The root of the problem is that the controller is digging into the Article model
with gusto. You can clean this up by shoving that article logic back where it belongs:

class Article < ActiveRecord::Base

def self.featured

with_at_least_one_comment.

with_votes_at_least(MIN_VOTES_TO_DISPLAY).

created_after(FEATURED_CUTOFF_AGE.ago)

end

end

Now the tests are much less noisy:

class ArticlesControllerTest < ActionController::TestCase

context "given featured articles" do

setup do

@featured_articles = [Factory(:article), Factory(:article)]

Article.stubs(:featured).returns(@featured_articles)

end

context "on GET index" do

setup { get :index }

should assign_to(:featured_articles).with { @featured_articles }

end

end

end

And the controller asks for only what it needs:

244 Chapter 7. Testing

ptg

class ArticlesController < ApplicationController

def index

@featured_articles = Article.featured

end

end

Stop Asking Questions

If you find yourself stubbing a number of methods for each object, look carefully at
the methods you’re stubbing. Are you asking too many questions? If so, stop asking
your models questions and start telling them what needs to be done.

245AntiPattern: Mock Suffocation

ptg

AntiPattern: Untested Rake
You’ve become a full-ranking test-first zealot, and you never commit code for which
you haven’t written tests first. But now you’ve hit your first stumbling block. You’re
asked to write a rake task, but you don’t know how to drive the development of a rake
task with tests.

There are two interrelated obstacles in testing rake tasks. One is that they are, by
nature, scripts that live outside an application. This makes testing them much more
complicated than testing a method on a class. The other obstacle is that rake tasks,
more often than application code, perform operations across a network or against a
filesystem. You must therefore take extra care in preventing side effects during test runs.

Consider the following rake task:

lib/tasks/twitter.rake

namespace :twitter do

task :search => :environment do

puts "Searching twitter."

Twitter.search("@tsaleh").each do |result|

puts "Processing #{result.inspect}."

alert = Alert.create(:body => result)

alert.save_cache_file!

end

puts "All done!"

end

end

One solution we’ve often seen is to simply point the rake task at a temporary
directory or file and run it directly, using the system command:

test/unit/twitter_task_test.rb

class TwitterTaskTest < ActiveSupport::TestCase

Required because the rake task is being

run outside of the transaction.

self.use_transactional_fixtures = false

context "rake twitter:search" do

setup do

How slow is this going to be? Very.

@out = `cd #{Rails.root} && rake twitter:search 2>&1`

end

246 Chapter 7. Testing

ptg

should "print a message at the beginning" do

assert_match /Searching/i, @out

end

should "save some cache files" do

Search the filesystem for the cached files.

end

should "find all tweets containing @tsaleh" do

this one would be based entirely on luck.

end

should "print a message when done" do

assert_match /all done/i, @out

end

end

end

While this method works, it has drawbacks:

• The act of forking a process to test your rake tasks is both tricky and time-
 consuming. As test suites grow, the runtime of these tests begins to matter greatly.

• The crude nature of this technique means that extra care must be taken in prepar-
ing the files to be accessed and in removing any created or edited files after each
test has finished.

• Because you are no longer in the same process as the code that you’re testing, there
is no way to make use of mocking and stubbing. This means some actions, such as
network access, can neither be tested well nor stopped entirely (as they should be).

• Any database access performed by the rake task is done through a new connection
that is different from the connection of the test process. This means that the trans-
action surrounding the test will have no effect on the rake task, and any modifica-
tions it made will remain in place after the test is finished.

• You must essentially trust that the rake task is already well behaved to believe that
you won’t be affecting other parts of the filesystem. In general, testing a rake task
like this leaves you with no way of sandboxing its execution.

247AntiPattern: Untested Rake

ptg

Solution: Extract to a Class Method
How do you test a rake task inside the same Ruby process? The trick is to understand
that a rake task is nothing more than Ruby code disguised with domain-specific trap-
pings. Therefore, you can move the entirety of the task into a class method. Usually,
this method finds a home on one of the application models, but it can also be on a
class of its own, as in the following example:

app/models/alert.rb

class Alert < ActiveRecord::Base

def self.create_all_from_twitter_search(output = $stdout)

output.puts "Searching twitter."

Twitter.search("@tsaleh").each do |result|

output.puts "Processing #{result.inspect}."

alert = create(:body => result)

alert.save_cache_file!

end

output.puts "All done!"

end

def save_cache_file!

Removes a file from the filesystem.

end

end

You’ve now moved the bulk of the code into the model, which places it inside the
class responsible for its behavior. This is generally good object-oriented programming
practice, and it helps clean up and clarify the rake task:

lib/tasks/twitter.rake

namespace :twitter do

task :search => :environment do

Alert.create_all_from_twitter_search

end

end

Testing the rake task is now as simple as testing any other class method:

test/unit/alert_test.rb

class AlertTest < ActiveSupport::TestCase

context "create_all_from_twitter_search" do

248 Chapter 7. Testing

ptg

setup do

Make sure none of the tests below hit the

network or touch the filesystem.

Alert.any_instance.stubs(:save_cache_file!)

Twitter.stubs(:search).returns([])

@output = StringIO.new

end

should "print a message at the beginning" do

Alert.create_all_from_twitter_search(@output)

assert_match /Searching/i, @output.string

end

should "print a message for each result" do

Twitter.stubs(:search).returns(["one", "two"])

Alert.create_all_from_twitter_search(@output)

assert_match /one/i, @output.string

assert_match /two/i, @output.string

end

should "save some cache files" do

Twitter.stubs(:search).returns(["one"])

alert = mock("alert")

alert.expects(:save_cache_file!)

Alert.stubs(:create).returns(alert)

Alert.create_all_from_twitter_search(@output)

end

should "find all tweets containing @tsaleh" do

Twitter.expects(:search).

with("@tsaleh").

returns(["body"])

Alert.create_all_from_twitter_search(@output)

end

should "print a message when done" do

Alert.create_all_from_twitter_search(@output)

assert_match /all done/i, @output.string

end

end

end

You no longer face all the issues involved with spawning a separate process.

249AntiPattern: Untested Rake

ptg

You can now sandbox the tests for the rake task quite effectively, using your usual
bag of tricks. You can stop unexpected network access and return mocked responses
for expected ones. You can even make use of tools such as FakeWeb (http://
fakeweb.rubyforge.org) and FileUtils::NoWrite. Finally, because you’re running
inside the same process as the tests, any database access is completely encapsulated in
the test’s transaction.

As Simple As Possible, but Not Simpler

While it may seem that invoking the rake task directly via a system call is the simplest
way of attacking the testing problem, the headaches quickly mount up. This is an
example where a little thought, planning, and organization can go a long way toward
easing your future testing burdens.

250 Chapter 7. Testing

ptg

AntiPattern: Unprotected Jewels
We don’t view TDD as just a safety net against bugs. It’s a methodology for producing
well-designed code, and it shows other developers that you view your work as a craft.

As discussed in Chapter 6, when deciding what plugins or gems to use in a proj-
ect, one of the first and most important determiners of quality is whether the plugin
comes with a full test suite. Good tests tell you that the plugin author took the code as
seriously as you take the code in your application.

Writing a test suite for a gem or plugin is no easy task. Developers have a fairly
straightforward template and scaffolding to use when testing a Ruby on Rails con-
troller or model. There are even great integration testing libraries and patterns that are
already well understood and adopted by the community.

Plugins and gems, on the other hand, are almost free form packages of code that
can insert themselves into the Rails framework in a variety of ways. Because of this,
there’s really no silver bullet for creating a test scaffolding for your plugins.

The most common way of testing plugins and gems relies on the tests in the orig-
inal application from which a plugin was extracted. This method is flawed in two ways.
First, this keeps development of the plugin forever tied to the application, long after the
application has lost its relevance. It removes the ability for developers from the commu-
nity to make use of or add to the plugin’s test base. Second, keeping the tests separate
from the plugin makes it impossible for other developers to evaluate the quality of work.

The following solutions explore a variety of ways of testing plugins and gems that
have worked well for us in the wild. First, we walk through writing tests for simple
plugins that don’t require the Rails framework at all. Then we look at pulling just the
components we need, such as Active Record, into a test suite. Finally, we explore writ-
ing tests for plugins and gems that require the full Ruby on Rails stack.

Solution: Write Normal Unit Tests Without Rails
Often the simplest solution to a problem is the best one. While most Ruby on Rails
plugins and gems are highly integrated with the framework, there are many times
when that integration is trivial and is best ignored in the tests.

Take, for example, the following Lorem Ipsum plugin. It provides the Controller
and View layers with a method, lorem_ipsum, that prints variable amounts of filler
text. This plugin might be useful for producing quick prototype data while demon-
strating an application to a client or investors. The majority of the logic of the plugin
is contained in the lib/lorem_ipsum.rb file:

251AntiPattern: Unprotected Jewels

ptg

lib/lorem_ipsum.rb

module LoremIpsum

TEXT = "Lorem ipsum dolor sit amet, consectetur " +

"adipisicing elit, sed do eiusmod tempor " +

"incididunt ut labore et dolore magna aliqua. " +

"Ut enim ad minim veniam, quis nostrud " +

"exercitation ullamco laboris nisi ut aliquip " +

"ex ea commodo consequat. Duis aute irure " +

"dolor in reprehenderit in voluptate velit " +

"esse cillum dolore eu fugiat nulla pariatur. " +

"Excepteur sint occaecat cupidatat non proident, " +

"sunt in culpa qui officia deserunt mollit anim " +

"id est laborum."

def lorem_ipsum(words = nil)

if words

TEXT.split[0..words - 1].join(' ') + "."

else

TEXT

end

end

end

An important thing to note is that none of this file requires or interacts with the
Ruby on Rails framework. All of the plugin integration is contained in init.rb:

init.rb

ActionController::Base.send(:include, LoremIpsum)

ActionView::Base.send(:include, LoremIpsum)

As you can see, the integration is kept to a minimum. This allows you to test the
bulk of the plugin in isolation from the Ruby on Rails framework. To do this, you start
off with a minimal test_helper.rb file:

test/test_helper.rb

require 'rubygems'

require 'test/unit'

require 'shoulda'

require 'lorem_ipsum'

252 Chapter 7. Testing

ptg

You can then unit test the LoremIpsum module as you would in any other non-
Rails application:

test/lorem_ipsum_test.rb

require 'test_helper'

class LoremIpsumTest < Test::Unit::TestCase

include LoremIpsum

context "lorem_ipsum" do

setup { @output = lorem_ipsum }

should "return some lorem ipsum text" do

assert_match /lorem ipsum/i, @output

end

should "not include line breaks" do

assert_no_match /\n/i, @output

end

end

context "lorem_ipsum(3)" do

setup { @output = lorem_ipsum(3) }

should "return three words" do

assert_equal 3, @output.scan(/\w+/).length

end

should "end in a period" do

assert_equal ".", @output[-1, 1]

end

end

end

Note that because you’re not relying on the code in init.rb, you must explicitly
include the LoremIpsum module yourself. After that, it’s just a matter of testing the
behavior of a plain old Ruby module.

Having a simple test scaffolding in place makes it all the easier for you to maintain
your code and for other developers to contribute to it. An overly complex and hard-to-
grasp testing system creates a great barrier to entry for developers looking to con-
tribute to your code.

253AntiPattern: Unprotected Jewels

ptg

Note that the tests shown in this section fail to cover the two lines in init.rb.
While those lines aren’t in any way insignificant, and you should always aim for full
test coverage, the benefits of having a simple test setup like this far outweighs these
faults. This simple and elegant style of testing a plugin is possible only because the
majority of the plugin doesn’t use any of the facilities provided by the Ruby on Rails
framework. If at all possible, it’s best to aim for this separation in your plugins. Not
only does this separation allow you to test a plugin in isolation, it also increases your
future flexibility. It gives you the option of releasing code as a gem or of using it in
other non-Rails applications.

It is often the case, however, that you need to make use of some of the facilities
that the Ruby on Rails framework provides. In such situations, you need to isolate the
modules you require and include them piecemeal in your tests. The next section dis-
cusses just how to do this.

Solution: Load Only the Parts of Rails You Need
The preceding solution discusses writing tests for a plugin that bypass the Rails frame-
work entirely. While this is a great strategy for simple plugins with little or no integra-
tion with the framework, extending this strategy to more complex plugins quickly
leads to an unmanageable tangle of mocks and stubs.

While it might be tempting to pull out the big guns and embed a full Rails appli-
cation into your test folder (which you will do in the next solution), there is a very
maintainable and flexible middle ground. It’s possible to include only the parts of the
Rails framework that your plugin interacts with.

United We Stand

The Rails framework is a collection of gems that act in concert to help you build a
database-backed web-based application:

• ActionMailer: Responsible for delivering templated emails.

• ActionPack: The controller and view components of a Rails application (the M
and V of MVC).

• Active Record: The relational library we all know and love.

• ActiveResource: A REST-based port of Active Record for consuming third-party
sites.

254 Chapter 7. Testing

ptg

• ActiveSupport: A general-purpose collection of helpers and extensions.

• Rails: The library that binds the other gems into a coherent whole.

Most of these gems can be used in isolation quite easily. It’s not uncommon to leverage
Active Record when building a command-line script that manages database records.

Keep It Simple

Many plugins or gems actually interact with only one or two of the components listed
in the preceding section. It would be heavy handed to include an entire Rails applica-
tion in your plugin to test these components. Take, for example, a plugin named
Slugalicious that adds pretty URL support to an Active Record model. At first glance,
you might assume that this would touch the entire MVC stack. However, because of
the Rails conventions surrounding #to_param, you can easily isolate such a plugin to
just the Active Record library.

The trick to this involves reproducing just enough of the glue code from the Rails
gem to get your models to talk to a database reliably. Here’s what you have to do in the
test helper file:

slugalicious/test/test_helper.rb

require 'rubygems'

Only load ActiveRecord

require 'active_record'

Grab some other gems to help with our tests

require 'shoulda'

require 'shoulda/active_record'

require 'factory_girl'

Require the plugin file, itself

require 'slugalicious'

BASE = File.dirname(__FILE__)

Configure Factory Girl

require BASE + "/factories.rb"

Configure the logger

ActiveRecord::Base.logger = Logger.new(BASE + "/debug.log")

RAILS_DEFAULT_LOGGER = ActiveRecord::Base.logger

255AntiPattern: Unprotected Jewels

ptg

Establish the database connection

config = YAML::load_file(BASE + '/database.yml')

ActiveRecord::Base.establish_connection(config['sqlite3'])

Load the database schema

load(BASE + "/schema.rb")

The first few lines in the test_helper.rb file load the parts of the Rails framework
your plugin requires to run—in this case, just the Active Record gem. You also load
your testing tools of choice and then the plugin itself.

Next, you load the FactoryGirl definitions inside test/factories.rb, which for
your simple plugin is just the following:

#test/factories.rb

Factory.define :post do |f|

f.title "New post"

end

The rest of the code in the test_helper.rb file is dedicated to setting up the
Active Record environment: loading the logger, configuring the database, and loading
the schema. Your database.yml file is configured to use the sqlite in-memory data-
base feature. This frees you from having to configure a MySQL server for every
machine on which you want to run the tests, and it doesn’t leave you with unnecessary
sqlite database files lying around. The following is a configuration for an sqlite in-
memory database:

#test/database.yml

sqlite3:

adapter: sqlite3

database: ":memory:"

The schema.rb file contains all the tables you need for your tests:

#test/schema.rb

ActiveRecord::Schema.define(:version => 1) do

create_table :posts do |t|

t.column :title, :string

256 Chapter 7. Testing

ptg

t.column :slug, :string

t.column :body, :text

end

end

Now for the Easy Part

While at first glance, all the scaffolding necessary to test the Blawg plugin might seem
quite complex, rest assured that the hard part of the road is behind you. The only task
left is to write the tests themselves.

The complexity of this scaffolding setup should also serve as a warning to those
attempting this technique for plugins that don’t require it. We strongly encourage
developers to use the simplest technique at their disposal. It’s often the case that test-
ing a plugin in the manner described earlier, in the section, “Solution: Write Normal
Unit Tests Without Rails,” is sufficient and preferable.

There is nothing special about the actual tests for the Slugalicious plugin, but we
include them here for the sake of completeness:

#test/slugalicious_test.rb

class Post < ActiveRecord::Base

has title, slug, and body, as described in schema.rb

include Slugalicious

end

class PostTest < ActiveRecord::TestCase

setup { Post.destroy_all }

should validate_presence_of(:slug)

should allow_value("one-two").for(:slug)

should allow_value("foo_bar").for(:slug)

should allow_value("foo").for(:slug)

should_not allow_value("f b").for(:slug)

should_not allow_value("f.b").for(:slug)

should_not allow_value("f|b").for(:slug)

should_not allow_value("f'b").for(:slug)

context "when there's an existing post" do

setup { Factory(:post, :slug => "slug") }

should validate_uniqueness_of(:slug)

end

257AntiPattern: Unprotected Jewels

ptg

258 Chapter 7. Testing

should "set the slug from the title" do

post = Factory(:post, :title => "This is a 'title'.")

assert_equal "this-is-a-title", post.slug

end

should "set the slug to a uniq value" do

post1 = Factory(:post, :title => "Title")

assert_equal "title", post1.slug

post2 = Factory(:post, :title => "Title")

assert_equal "title-2", post2.slug

post3 = Factory(:post, :title => "Title")

assert_equal "title-3", post3.slug

end

should "be findable by the slug" do

post = Factory(:post)

assert_equal post.id, Post.find(post.slug).id

end

should "still be findable by the id" do

post = Factory(:post)

assert_equal post.id, Post.find(post.id).id

end

should "return the slug on to_param" do

assert_equal "title",

Factory(:post, :title => "Title").to_param

end

end

The Middle Road

The technique just described is clearly more complicated (and thus more of a mainte-
nance hassle) than the previous solution, but when viewed against our next and final
path, it seems almost elegant in its simplicity.

Extracting and isolating various parts of Rails to test a plugin is an effective tech-
nique when the plugin integrates with only a small portion of the framework. Many
plugins, however, integrate and interact with the entire MVC stack—adding helpers
to the views, modifying the controllers, and interacting with the models. In such a sit-
uation, the only good way of maintaining an effective test suite is to actually embed an
entire Rails application inside the plugin’s test suite. We discuss this technique next.

ptg

Solution: Break Out the Atom Bomb
Throughout the book, we strive to maintain a consistent theme of valuing simplicity
in the solutions. Embedding an entire Rails application inside a plugin’s test suite is a
perfect example of a highly complex solution that you should avoid if at all possible.
Unfortunately, at rare times this is the simplest—and maybe even the only—good way
of testing a Rails plugin or gem.

Embed a Complete Rails Application in Your Tests

Some plugins interact with the entire Rails stack. For example, a blogging plugin
could add an entire posts resource—model, controller, routes, and views. While it
would be wonderful if you could use one of the previous techniques to test such a
plugin, you would quickly find yourself mired in a tangle of mocks and overly com-
plex testing harnesses. In such a situation, the heavy-handed solution of embedding a
sample Rails application under the plugin’s test directory turns out to be the simplest
reasonable path.

The mechanics involved in embedding a Rails application in a test suit are actu-
ally less difficult than you might expect, and the level of indirection can be challeng-
ing to grasp. The strategy described in the following sections is to install a small fake
Rails application under the plugin’s test directory. Next, you will configure that appli-
cation to point back to your plugin. Finally, you will develop your plugin by using
normal TDD methodology—except that your tests will live inside the fake Rails appli-
cation that’s using your plugin, while your plugin code will be inside the blawg/lib
and blawg/app directories, right where it belongs.

The Grunt Work

After generating a base plugin skeleton, you move into the test directory and run the
rails command:

cd blawg/test

rails rails_root

create

create app/controllers

create app/helpers

create app/models

create app/views/layouts

...

259AntiPattern: Unprotected Jewels

ptg

You should now configure the new application to run with a sqlite database.
This allows you to run the tests without having to configure a local MySQL database
and reduces the burden on would-be contributors. You can do this easily enough
through the database.yml file:

blawg/test/rails_root/config/database.yml

development:

adapter: sqlite3

database: db/development.sqlite3

test:

adapter: sqlite3

database: db/test.sqlite3

Note that while you don’t have to configure a production environment, because of the
way the Rails test system works, you do have to configure a development environ-
ment. Also, unless you’re running this on OS X Leopard or later, you’ll have to install
the sqlite3 gem:

gem install sqlite3-ruby

Next, you want your application to load the Blawg plugin as if it had been installed
normally. A simple solution would be to use a symlink:

cd blawg/test/rails_root/vendor/plugins/

ln -s ../../../../ blawg

ls blawg

lrwxr-xr-x 1 tsaleh staff 12B Oct 20 17:18 blawg@ ->

../../../../

ls blawg/

total 8

-rw-r--r-- 1 tsaleh staff 554B Oct 20 15:04 Rakefile

drwxr-xr-x 5 tsaleh staff 170B Oct 20 16:39 app/

drwxr-xr-x 3 tsaleh staff 102B Oct 20 16:50 config/

-rw-r--r-- 1 tsaleh staff 26B Oct 20 16:48 init.rb

drwxr-xr-x 3 tsaleh staff 102B Oct 20 15:04 lib/

drwxr-xr-x 5 tsaleh staff 170B Oct 20 15:36 test/

260 Chapter 7. Testing

ptg

This works well enough on UNIX systems, but it doesn’t work at all on Windows,
which doesn’t have the concept of a symlink. It also confuses some applications, such as
TextMate, which will happily follow recursive symlinks until they run out of stack space.

A better way to deal with this is to use the Rails config.plugin_paths option
to change the directory the application searches for plugins. You also explicitly config-
ure the application to load only your plugin; you wouldn’t want any other files
or directories next to it confusing your tests. You set these configurations in the
environment.rb file:

blawg/test/rails_root/config/environment.rb

#...

Rails::Initializer.run do |config|

Point back to the plugin containing this rails_root

config.plugin_paths = ["#{RAILS_ROOT}/../../../"]

Only load the plugin we're testing

config.plugins = [:blawg]

#...

end

Get Down to Business

Now that you’re finished with the boilerplate code necessary to test your plugin, you
can start with the real development. The intention with the Blawg plugin is that after
installation, you’ll be able to list and read blog posts by browsing to /posts. This
requires a Post model, a PostsController, and some views and routes for the /posts
resource.

Let’s start with the Post model. You write the tests for the model inside the
embedded Rails application as though it were a normal model in the application:

blawg/test/rails_root/test/unit/post_test.rb

require 'test_helper'

class PostTest < ActiveSupport::TestCase

should have_db_column(:title)

should have_db_column(:body)

should validate_presence_of(:title)

should validate_presence_of(:body)

end

261AntiPattern: Unprotected Jewels

ptg

To run this test, you simply run the rake command from inside the application:

cd blawg/test/rails_root

rake test:units

(in .../blawg/test/rails_root)

...

1) Error:

test: Post should have db column named body. (PostTest):

ActiveRecord::StatementInvalid: Could not find table 'posts'

...

The tests fail, as you expect it to, because there is no posts table in the database.
At this point, you could write a migration generator for the Blawg plugin that would
create this migration. You could even test-drive this fairly easily, as described in the
rubyguides article on plugins (http://guides.rubyonrails.org/plugins.html#generators).
That would be overkill for your purposes, though. Instead, you can simply document
the contents of the small migration in the plugin’s README file and add it to your appli-
cation directly:

blawg/test/rails_root/db/migrate/20091020224736_create_posts.rb

class CreatePosts < ActiveRecord::Migration

def self.up

create_table :posts do |t|

t.string :title

t.text :body

end

end

def self.down

drop_table :posts

end

end

At this point, running the tests will show failures for not having a Post model
defined. This is the first piece of code that you’ll add to the plugin itself:

blawg/app/models/post.rb

class Post < ActiveRecord::Base

validates :title, :presence => true

validates :body, :presence => true

end

262 Chapter 7. Testing

ptg

Note that in Rails 2.2.0, all you had to do to have the application automatically
load your Post model was put it under blawg/app/models. This works with con-
trollers, views, and helpers, as well as with the routes file (under blawg/config).

You now have passing unit tests, so you can move on to your controller. First you
create the functional tests:

blawg/test/rails_root/test/functional/posts_controller_test.rb

require 'test_helper'

class PostsControllerTest < ActionController::TestCase

context "given a post" do

setup { @post = Factory(:post) }

context "on GET to /posts/:id" do

setup { get :show, :id => @post.to_param }

should render_template(:show)

should respond_with(:success)

should "find the post" do

assert assigns(:post)

assert_equal @post.id, assigns(:post).id

end

end

...

end

end

To make these tests pass, you need a controller, a set of views, and a routes defini-
tion. Again, you can just put these under blawg/app and blawg/config. First, here is
your controller:

blawg/app/controllers/posts_controller.rb

class PostsController < ApplicationController

def show

@post = Post.find(params[:id])

end

...

end

263AntiPattern: Unprotected Jewels

ptg

Here is the show view:

blawg/app/views/posts/show.html.erb

<%= div_for @post do %>

<h2 class="post_title"><%= h @post.title %></h2>

<div class="post_body"><%= h @post.body %></div>

<% end %>

And here is the routes file, under the config directory:

blawg/config/routes.rb

MyApp::Application.routes.draw do

resources :posts

end

Take It Further

While the solution in the preceding section is clearly very heavy and complex, it does
provide some nice features. It allows you to test the entire MVC stack, even using inte-
gration tests with webrat. It also allows you to test the interaction of your plugin when
installed alongside other plugins, or with different application configurations.

You need to take care of one final detail. Having to run the rake task from inside
the blawg/test/rails_root directory is unconventional and a likely point of confu-
sion in the future. You can tie this up by replacing the default test task that comes con-
figured in your Blawg Rakefile with the following:

blawg/Rakefile

...

desc 'Default: run unit tests.'

task :default => :test

desc 'Test the blawg plugin.'

task :test do

rails_root = File.join(File.dirname(__FILE__), 'test',

'rails_root')

system("cd #{rails_root} && rake")

end

All you’re doing here is delegating to the Rakefile in your embedded application.

264 Chapter 7. Testing

ptg

Strive for Simplicity

Now you have three techniques at your disposal for testing Rails plugins: You can test
them without using any of the Rails libraries; you can pull in only the individual Rails
gems you need; and, finally, you can pull out the atom bomb and embed an entire
Rails application in your test suite. You should turn to the next heaviest of these solu-
tions only when it’s clear that the preceding techniques aren’t powerful enough for the
needs of your plugin.

265AntiPattern: Unprotected Jewels

ptg

This page intentionally left blank

ptg

CHAPTER 8
Scaling and Deploying

Studies have shown that maintenance—that is, the processing of modifying existing
operation software—typically consumes 60 to 80 percent of a software product’s total
lifecycle expenditures and over 50 percent of total programmer effort.

For many web applications, a lot of that expense and effort may be related to scaling,
which is the capability of a system to handle an increasing amount of work gracefully
or to be readily enlarged. The deployment strategies you use and must maintain also
go hand in hand with scalability and the overall performance of your software system.

Typical Rails applications can employ a few simple strategies to ensure a solid
deployment that can help to avoid common pitfalls and ensure a flexible system for the
future without overly increasing up-front effort. In addition, some common Anti -
Patterns throughout the application and database layer can contribute to scalability
issues you can avoid and address in order to ensure a scalable system. This chapter pro-
vides insight into these issues to help you save time and money with software systems.

267

ptg

AntiPattern: Scaling Roadblocks
The concept of building for the actual environment on which you’ll be deploying is
prudent on its surface. If you’ll be deploying to only one server for production, it doesn’t
make sense to prematurely spend extra engineering effort optimizing your code for
multiple servers in a clustered configuration. This is absolutely the case for some scal-
ing features you might try to add. However, there are some simple things you can do
from the start with an application that don’t add a significant amount of engineering
overhead in the beginning but can save an enormous amount of time and effort in
potential migration costs down the road.

Solution: Build to Scale from the Start
As with many other aspects of being a responsible developer, deciding when to build
to scale from the get-go is a matter of striking a balance. With all development, you
need to weigh the cost of implementing and maintaining a feature against the cost and
likelihood of needing to add that feature to the application later in the development
lifecycle. Some scaling features are clearly not worth worrying about early on, and
some should be added to each application from the beginning.

Take dataset sharding, as an example. Sharding is the concept of breaking certain
datasets into different sections and hosting each section on its own server to decrease
the size of each server’s dataset and load. The engineering effort needed to implement
sharding from the start is far too high to justify in most cases. In addition, few real-
world applications actually ever need to shard, no matter how much they must scale.
It’s simply not the right answer for every scaling problem, and therefore it’s not some-
thing a responsible developer would add from the start.

Head in the Clouds

Unlike sharding, storage of assets is an area where several things can be put in place
from the start to save a lot of time later on, when an application needs to grow from
one server to many. These items, largely configuration options, add so little engineer-
ing overhead that implementing them from the start is a no-brainer.

The Rails community’s preferred file attachment plugin is Paperclip (http://
github.com/thoughtbot/paperclip). It offers several configuration options that, if done
from the start, will make scaling to multiple servers much easier down the road.

Support for Amazon S3 is built into Paperclip. S3 is a distributed file store service
that Amazon provides. If you don’t store your images in S3 from the start and instead

268 Chapter 8. Scaling and Deploying

ptg

269AntiPattern: Scaling Roadblocks

store them on the disk of your server, when your application changes to multiple
servers, you must move your assets to S3 or to another shared filesystem, such as GFS
or NFS. This process can be troublesome and time-consuming when you’re dealing
with thousands of files.

The following is the Paperclip configuration for storing files on disk on a single
server:

has_attached_file :image,

:styles => { :medium => "290x290>",

:thumb => "64x64#" }

This is the same configuration with the files stored on S3:

has_attached_file :image,

:styles => { :medium => "290x290>",

:thumb => "64x64#" },

:storage => :s3,

:s3_credentials => "#{Rails.root}/config/s3.yml",

:path => ":class/:id/:style/:basename.:extension",

:bucket => "post-attachment-images-#{Rails.env}"

Maximum Occupancy

Most Linux-based filesystems have a limit of 32,000 files within each directory. With
the Paperclip path definition in the preceding section (and the default, which is
":rails_root/public/:attachment/:id/:style/:basename.:extension"), you will
run into this limit when you hit 32,000 attachments. This number may seem like far
far away, but when you hit that limit, moving around and migrating 32,000 images
won’t be fun.

Fortunately, Paperclip has a built-in configuration option for dealing with this
problem. Paperclip provides a path interpolation of :id_partition. This option
changes where Paperclip stores the uploaded files; instead of storing all attachments in
one directory, it splits up the id into a directory structure, ensuring that there are a
limited number of files within each directory. For example, instead of storing the
attachments for the post with id 1003 in /public/images/1003, it will store the
attachments in /public/images/1/0/0/3. The new Paperclip configuration for this
looks as follows:

ptg

270 Chapter 8. Scaling and Deploying

has_attached_file :image,

:styles => { :medium => "290x290>",

:thumb => "64x64#" },

:path =>

":rails_root/public/:class/:id_partition/:style/:basename.:extension",

:url =>

"/:class/:id_partition/:style/:basename.:extension"

And here’s the same configuration with the files stored on S3:

has_attached_file :image,

:styles => { :medium => "290x290>",

:thumb => "64x64#" },

:storage => :s3,

:s3_credentials => "#{Rails.root}/config/s3.yml",

:path =>

":class/:id_partition/:style/:basename.:extension",

:bucket => "post-attachment-images-#{Rails.env}"

Amazon S3 does not actually have the 32,000-files-per-directory limit (or “directories”
at all, in fact). However, if you ever needed to move files or back them up to a storage
system with this limit, you would run into many problems in doing so. Partitioning
the data, even on S3, just makes sense because of the trouble it will save down the
road.

Slice and Dice

Cloud deployment is easier today than ever before. With services such as Engine Yard
(http://engineyard.com), Heroku (http://heroku.com), and Google App Engine
(http://code.google.com/appengine/), you no longer need to maintain your own clus-
ter configurations or keep track of and manage your own instances and provisioning
and deployment involves one click (or command). In addition, the costs for an actual
cluster in the cloud are comparable with what you might pay for a typical single server
in a data center.

Yes, you can deploy to just one instance or server, but by deploying your applica-
tions to a clustered environment from the start, even if you only use one server there,
you are sure to maintain ultimate flexibility in scalability and deployment. And the
amount of effort and cost will be similar to what you’d spend on a more traditional
server infrastructure.

ptg

AntiPattern: Disappearing Assets
In order to enable easy rollback of deployments, most deployment tools, such as the
ever-popular Capistrano, will move old code to a timestamped directory and copy the
latest code into its place. During this process, fixed assets on a server (such as user-
uploaded content and configuration files) must not be moved along with the old
release. While various manual or custom-built strategies may be employed to combat
this problem, there is actually one provided by Capistrano.

Solution: Make Use of the System Directory
Capistrano provides the system directory, which is useful for preventing fixed assets on
a server from being moved along with the old release. A top-level directory managed
by Capistrano will look like this:

current -> releases/2010...

releases/

revisions.log

shared/

The shared directory contains a system directory, and Capistrano symlinks this system
directory to RAILS_ROOT/public/system on each deployment of your application.

For example, if you’re using Paperclip, the Rails community’s preferred file upload
attachment plugin, you’ll configure the Paperclip attachment definition to store the
uploads somewhere under the public/system directory, as shown here:

has_attached_file :image,

:styles => { :medium => "290x290>",

:thumb => "64x64#" },

:path =>

":rails_root/public/system/:class/:id_partition/:style/:filename",

:url =>

"/system/:class/:id_partition/:style/:basename.:extension"

Because the system directory is symlinked in public, everything in it is available for
download, bypassing the Rails stack entirely. Therefore, you’ll actually want to store
any configuration files or other private information that should not be available for
download in Capistrano’s shared directory rather than shared/system. Storing items
in these folders will ensure that they are preserved across application deployments.

271AntiPattern: Disappearing Assets

ptg

AntiPattern: Sluggish SQL
The most common location of performance issues in the MVC framework is the data-
base layer.

If you’re anything like us, you got into Rails at least partially because of your love
for the Ruby language. Ruby is a beautiful, expressive, and enticing medium for build-
ing code. SQL, that workhorse of relational algebra, is firmly and happily entrenched
at the opposite side of this spectrum. SQL is a demanding boss, a field marshal, and is
as unforgiving as it can be.

While most developers can recognize performance issues in their Ruby code at an
early stage in their career, doing the same in SQL code requires a bit of experience and
expertise. This section shows you some simple and common fixes you can implement
to make quick gains against your SQL performance issues. We’ll show you how to
identify the need for indexes, as well as how to apply them. We’ll show you when it’s
best to make use of SQL subselects, and finally, when you need to reconsider your
domain model in general.

Solution: Add Indexes
Nearly all database servers you’ll use in production support the concept of a database
index, which is a data structure that speeds up database reads by serving as a lookup
table for both ordering and querying.

Without indexes, querying a database becomes unreasonably slow once there are
even only a few thousand records in the table. Database indexes are not tools to trou-
bleshoot speed problems or data growing pains; they’re fundamental tools that rela-
tional databases use to function correctly in the first place.

Unfortunately, it’s all too easy to overlook adding indexes because they have to be
added as a second step in your migrations. The following sections provide some guide-
lines for when to add indexes.

Primary Keys

Most SQL databases with the concept of a primary key will automatically create an
index on the primary key column when it exists. In Rails, this is typically the id col-
umn in a table. Fortunately, because Rails tells the database that it’s a primary key,
you’ll get the index for free—that is, created by the database. This is very important
for a view for the show action, like /users/1, for example. The request comes in, and

272 Chapter 8. Scaling and Deploying

ptg

the query to “find user with id equal to 1” occurs very quickly because the users.id
column is indexed.

Foreign Keys

Given the following User model, there will be a user_id column in the comments
table, and the Comment model will use this column to determine the user that it
belongs to:

class User < ActiveRecord::Base

has_many :comments

end

You should have an index on every foreign key column. When you make a page like
/users/1/comments, two things need to happen. First, you look up the user with id
equal to 1. If you’ve indexed primary keys, this index will be hit. Second, you want to
find all comments that belong to this user. If you’ve indexed comments.user_id, this
index will be used as well.

Because one of the biggest issues with indexes is remembering to add them, you
might consider enforcing a code policy of only naming actual foreign key columns
ending in _id. This will act as a hint that such a column needs to be indexed.

Columns Used in Polymorphic Conditional Joins

The following models set up a polymorphic relationship between comments and tags.
Other models in this application can also have tags, and this is why they are polymorphic:

class Tag < ActiveRecord::Base

has_many :taggings

end

class Tagging < ActiveRecord::Base

belongs_to :tag

belongs_to :taggable, :polymorphic => true

end

class Comment < ActiveRecord::Base

has_many :taggings, :as => :taggable

end

273AntiPattern: Sluggish SQL

ptg

When you establish a polymorphic relationship like this one, you end up with a
condition on a join in the resulting queries for doing lookups on these polymorphic
records. For example, with the relationships shown above there will be queries like the
following:

SELECT * FROM comments

INNER JOIN taggings

ON taggings.taggable_type = 'Comment' AND

taggings.taggable_id = '3'

INNER JOIN tags

ON taggings.tag_id = tags.id

In this case, there should be a composite index on taggings on the columns
taggable_type and taggable_id so that the initial lookup goes well. You should also
index the taggings.tag_id column because this is a foreign key association:

class AddindexesToAllPolymorphicTables < ActiveRecord::Migration

def self.up

add_index :taggings, :tag_id

add_index :taggings, [:taggable_id, :taggable_type]

end

def self.down

remove_index :taggings, :column => [:taggable_id, :taggable_type]

remove_index :taggings, :tag_id

end

end

Columns Used in Uniqueness Validations

The User model shown here has a unique constraint on its email column:

class User < ActiveRecord::Base

validates :email, :unique => true

end

In this model, every time you save a User record, Active Record runs a query to try to
find other rows that have the same data in the email. It is much faster to do this com-
parison on indexed columns than on non-indexed columns; therefore, this column
should have an index.

274 Chapter 8. Scaling and Deploying

ptg

Columns Used for STI

With the single-table inheritance (STI) pattern in Active Record, there is a type col-
umn to store the parent class of a subclass. For example, if AdminUser inherits from
User with STI, there will be a users table with a type column, which all AdminUser
records will populate with the string "AdminUser" to indicate that those records are of
that subclass. This means that every query that looks up AdminUser records is going to
have at least a WHERE users.type = 'AdminUser' clause in it, and therefore the type
column on that table should be indexed.

Columns Used by to_param

It’s fairly common to introduce the concept of “pretty URLs” into an application.
That is, instead of a location’s URL being based on the id column of the location, it’s
based on the location’s city column—for example, /locations/springfield. The
city column is used as the lookup now, and it’s important that it have an index. This
column may be covered by other guidelines above that already gave it an index, but
this is something to keep an eye out for to ensure that it’s not missed.

Other Columns Used in WHERE Clauses

You don’t want to index every column that can appear in the WHERE clauses of your
SQL queries, but you do want to investigate each of them to understand how the
queries will be run and whether indexes will be beneficial.

The following sections provide some common things to look for regarding poten-
tial indexes in your WHERE clauses.

State Columns

Say that in a system with an Article model, articles can be in Draft (not done yet),
Submitted (done, awaiting approval), Published (approved), or Unpublished (approved
then taken down) states. In this case, you’re most likely going to have an interface for
users that shows “all of your draft articles” so that the users can resume working on
them and “all your submitted articles” so they can review their past wisdom. Or possi-
bly you’ll have an interface with a dropdown of all states to allow a listing on each state
individually.

In this system with the Article model, you’ll have an articles.state column,
which will be a varchar column and hold one of the states as a string. You should con-
sider indexing that column so that the queries to find comments in a certain state are

275AntiPattern: Sluggish SQL

ptg

indexed. If, as proposed, you have the interface list all the draft articles of a particular
user, you’ll want to do a composite index on user_id and state.

Boolean Columns

In the system with articles having a “submit for approval” concept, you need to add an
“admin” concept for users, with the option to either be an admin or not be an admin.
You also need an “all users who are admins” view so that you can see at a glance who is
doing comment approval and click through to see what each has approved.

In this case, you need to add a Boolean column called admin to the users table.
You should consider whether indexing Boolean columns is right for your application.
For example, if you’re using Boolean columns in a WHERE clause along with other con-
ditions, it might be helpful to add the Boolean to the composite index. In addition, if
the majority of users are not administrators, a page that is supposed to list only admin-
istrators will perform poorly without an index.

Consider indexing Boolean columns if they’ll be queried and the values are heav-
ily skewed in favor of either true or false and you are selecting the value that has the
smaller number.

DateTime Columns

Assuming that published articles are listed with the most recent ones first, the query to
find and list articles will likely have an ORDER BY created_at DESC clause. Or, if the
home page shows any articles published this week, it may have a WHERE created_at
>= "2010-10-27 00:00:00" clause. Given these clauses, it may be necessary to add an
index on the created_at column.

You should determine how your date columns will be used in both WHERE and
ORDER clauses and consider them for indexing.

What’s the Downside?

If you haven’t introduced indexes from day one, or if you are adding an index to a new
column in a table that has many rows, the migration can take quite a bit of time. For
example, adding a new index on a table with 12 million rows took us about 7 hours.

Also, you shouldn’t just go about willy–nilly, adding database indexes to every col-
umn in every table in your database. There is a cost to the database to maintain those
indexes, and every time an INSERT or UPDATE occurs, there is work to be done that
would not need to be done without the index in place. It’s important to do your
homework before you go index crazy.

276 Chapter 8. Scaling and Deploying

ptg

Seek and Destroy

How do you go about finding missing indexes and determining whether they should
be added?

There are several Rails plugins you can use tools to identify missing indexes. The
simplest of them is Limerick Rake (http://github.com/thoughtbot/limerick_rake),
which provides a rake task db:indexes:missing. When run on your application, this
task examines your database and identifies obvious missing indexes, primarily missing
foreign key indexes.

You can also turn on MySQL slow query logging, which is described at
http://dev.mysql.com/doc/refman/5.1/en/slow-query-log.html, and its sidekick log-
queries-not-using-indexes. If you add the following to your MySQL configura-
tion, your MySQL will take note of queries that take a long time or do not use any
indexes:

log_slow_queries = /var/log/mysql/mysql-slow.log

log-queries-not-using-indexes

This log will serve as an important indicator of potential places for missing indexes.
There are also two Rails plugins that will print out EXPLAIN statements of every

query used to render a page to the page itself. These can assist in identifying issues.
The two plugins are Rails Footnotes (http://github.com/josevalim/rails-footnotes) and
QueryReviewer (http://github.com/dsboulder/query_reviewer).

Finally, New Relic RPM (www.newrelic.com) is a Rails plugin that monitors an
application’s performance and sends the information to the New Relic RPM service
for analysis and monitoring. You can then log into the service and drill down into the
various layers of the MVC stack to see how much time is spent where. For diagnosing
performance problems, including slow queries, New Relic RPM is an invaluable tool.
We’re not salespeople for them; we’re just happy customers.

Solution: Reassess Your Domain Model
The number of rows you have in a table and the number of tables involved in an SQL
query are two important factors that can undermine the speed of your queries.
Furthermore, they can work in concert to really affect the performance of an applica-
tion negatively. If you have many rows in many tables and you’re joining across many
tables in one query, you’re going to have immediate performance issues.

277AntiPattern: Sluggish SQL

ptg

Modeling your domain (and therefore your database tables) in a highly normal-
ized fashion can contribute greatly to performance problems in many of your queries.
For example, examine the following models:

class State < ActiveRecord::Base

validates :name, :unique => true

end

class User < ActiveRecord::Base

end

class Category < ActiveRecord::Base

validates :category, :unique => true

end

class Article < ActiveRecord::Base

belongs_to :state

belongs_to :categories

belongs_to :user

end

In order to query the articles of a particular state, category, and user, it would be
fairly typical to write the following query:

SELECT * from articles

LEFT OUTER JOIN states ON articles.state_id=states.id

LEFT OUTER JOIN categories ON articles.category_id=categories.id

WHERE articles.category_id = categories.id

AND states.name = 'published'

AND categories.name = 'hiking'

AND articles.user_id = 123

You would write this via ActiveRecord#find as follows:

Article.includes([:state, :category]).

where("states.name" => "published",

"categories.name" => "hiking",

"articles.user_id" => current_user)

278 Chapter 8. Scaling and Deploying

ptg

Understandably, if there were very many articles, categories, and states, these joins
would start to get very slow. With this in mind, the preceding query could be rewrit-
ten to avoid the joins as shown here:

SELECT * from articles

WHERE state_id = 150

AND category_id = 50

AND user_id = 123

You could rewrite this using Active Record queries as follows:

published_state = State.find_by_name('published')

hiking_category = Category.find_by_name('hiking')

Article.where("state_id" => published_state,

"category_id" => hiking_category,

"user_id" => current_user)

The N+1 Problem

Take a look at the following view:

<table>

<tr>

<th>Title</th>

<th>User</th>

<th>State</th>

<th>Category</th>

</tr>

<% @articles.each do |article| %>

<% content_tag_for :tr, article do %>

<td><%= article.title %></td>

<td><%= article.user.name %></td>

<td><%= article.state.name %></td>

<td><%= article.category.name %></td>

<% end %>

<% end %>

</table>

This view loops through all the given articles and prints out the title, user name, state
name, and category name of each one.

279AntiPattern: Sluggish SQL

ptg

For each new state, category, and user on articles, a new query will be performed
to look up and load the object. This could potentially be many queries and could
cause this page to load too slowly.

You can solve this problem by using a strategy called eager loading that’s built into
Active Record. To do this, you change your query to retrieve the articles to use the
includes scope:

Article.includes([:state, :category, :user])

This includes call eagerly loads the state, category, and user of each article by joining
against the respective tables and loading all the data from it into the model instance.
The preceding Active Record query would result in approximately the following SQL
query:

SELECT * from articles

LEFT OUTER JOIN states ON articles.state_id = states.id

LEFT OUTER JOIN categories ON articles.category_id =

categories.id

LEFT OUTER JOIN users ON articles.user_id = users.id

You’re right back to the joins you started with in the first example!
Granted, for the sake of brevity and understandability here, the articles, states,

categories, and users example is fairly trivial, and it might not result in slow queries.
However, in most sufficiently complex applications, there won’t be just these four
models and the three joins they produce. There may be many more joins and many
more rows in the database tables.

Also, while each of these problems can be addressed by manually massaging the
queries produced by Active Record to avoid poorly performing joins, as a programmer,
you ultimately want to be in a position to write the most straightforward and expres-
sive code possible.

Learn to Love the Denormalized Dataset

The most straightforward solution to the problem presented in the preceding section
is to recognize that the Category and State models aren’t adding value. You can there-
fore eschew the above workarounds and complexity and simply denormalize the
domain to eliminate those models altogether. Doing so results in an Article model
with the following definition:

280 Chapter 8. Scaling and Deploying

ptg

class Article < ActiveRecord::Base

STATES = %w(draft review published archived)

CATEGORIES = %w(tips faqs misc hiking)

validates :state, :inclusion => {:in => STATES }

validates :category, :inclusion => {:in => CATEGORIES}

end

The new query now pulls from only a single table, and it does not require subse-
quent queries to figure out the state and category names. It now looks like the follow-
ing:

Article.where("state" => "published",

"category" => "hiking",

"user_id" => current_user)

Or, more idiomatically:

current_user.articles.find_all_by_state_and_category("published",

"hiking")

For full instructions and more information on this denormalization, see the sections
“AntiPattern: The Million-Model March,” in Chapter 2.

281AntiPattern: Sluggish SQL

ptg

AntiPattern: Painful Performance
It’s a frustrating experience for everyone, including the developer, management, and,
most importantly, the customer when a website has performance problems. While it’s
true that a website can have performance problems introduced by the traffic load and
the need to scale, you can make some straightforward changes in the way you write
some code to greatly reduce simple performance problems.

Solution: Don’t Do in Ruby What You Can Do in SQL
One of the most common performance pitfalls we see leading to slow application
response times is doing operations on data in Ruby that can be done in SQL instead.
The two most common causes for this are making a simple mistake, such as misun-
derstanding the Active Record API, and laziness.

Everybody Makes Mistakes

Simple mistakes are often caused by the unfamiliarity with or changes in the Active
Record API. For example, there are three ways to get the number of items in an Active
Record association:

@article.comments.count

@article.comments.length

@article.comments.size

All three of these methods will return the same correct number. However, each of
them performs a dramatically different operation.

@article.comments.count executes an SQL count statement to find the number
of items in the relationship. @article.comments.length is not defined on Active
Record relationships, and therefore it falls through and causes all the records in the
relationship to be loaded and causes length to be called on the resulting collection.
@article.comments.size calls length on the collection of items in the relationship if
it has already been loaded; otherwise, it calls count.

Each of the three different methods has a purpose, but unfamiliarity with the API
or simple forgetfulness might cause a developer to call length. This could potentially
load thousands of objects into memory and cause a very slow action.

282 Chapter 8. Scaling and Deploying

ptg

Laziness

When it comes to using Ruby when SQL will do the job better, there are two types of
laziness:

• The developer knows how to do it in SQL but does it in Ruby anyway.

• The developer doesn’t know how to do it in SQL so instead does it in Ruby.

Both of these lead to slow application response times, but let’s examine them
 individually.

The most common example of doing something in Ruby that can be done in
SQL even though the developer knows how to do it in SQL seems to be sorting. For
example, take the following case-insensitive sort of all users on an account by name:

@account = Account.find(3)

@users = @account.users.sort { |a,b| a.name.downcase <=>

b.name.downcase }.first(5)

This loads all users on the account into a collection from SQL and then sorts them all,
using Ruby, by name. It lowercases each name so that the sort is case-insensitive, start-
ing with the first five. In addition, as icing on the performance cake, sort also dupli-
cates the original users array and returns a new sorted one, doubling the amount of
memory used by this code.

You can write this by using SQL and the Active Record finders as follow:

SELECT * FROM users WHERE account_id = '3' ORDER BY LCASE(name)

LIMIT 5

@users = @account.users.order('LCASE(name)').limit(5)

Note
If you were actually going to perform the ordering and sort-
ing shown here, you would do well to wrap it up in a named
scope to enhance readability and separate concerns.

The second manifestation of laziness is doing something that is hard to do in
Ruby because the developer didn’t take the time to figure out how to do it in SQL.

283AntiPattern: Painful Performance

ptg

Unfortunately, this results in poorly performing code in nearly every circumstance.
The developer may think that it won’t be an issue, but it often is.

No, it’s probably not very much fun to spend all day composing a difficult SQL
query. But it’s not going to be very much fun dealing with the performance issue later
either.

Take the following domain model, for example:

class User < ActiveRecord::Base

has_many :comments

has_many :articles, :through => :comments

end

class Article < ActiveRecord::Base

has_many :comments

has_many :users, :through => :comments

end

class Comment < ActiveRecord::Base

belongs_to :article

belongs_to :user

end

In the application using the code above, the users want to see a list of their collabora-
tors. A collaborator is another user who has commented on the same article that you
have commented on and who is not the user himself. The developer isn’t sure of the
right way to program this functionality in SQL, so he decides to use Ruby instead and
ends up with the following code:

class User < ActiveRecord::Base

has_many :comments

has_many :articles, :through => :comments

def collaborators

articles.collect { |a| a.users }.flatten.uniq.reject {|u| u ==

self }

end

end

This code works and returns the right list of collaborators, the entire collection of
every article the user has commented on, and every user on all of those comments,

284 Chapter 8. Scaling and Deploying

ptg

including duplicates, and is loaded into memory. Then the array of arrays is flattened
out, duplicates are removed, and the user himself is removed. The simple fact of the
matter is that for any sufficiently large number of articles, users, and comments, this
code is just not going to perform well.

Note that oftentimes a good indicator that Ruby is being used for something that
SQL should be used for is that it contains calls to the flatten method. The preceding
collaborators method can be rewritten using SQL (with Active Record finders):

class User < ActiveRecord::Base

has_many :comments

has_many :articles, :through => :comments

def collaborators

User.select("DISTINCT users.*").

joins(:comments => [:user, {:article => :comments}]).

where(["articles.id in ? AND users.id != ?",

self.article_ids, self.id])

end

end

This results in the following SQL code:

SELECT DISTINCT users.* FROM users

INNER JOIN comments

ON comments.user_id = users.id

INNER JOIN users users_comments

ON users_comments.id = comments.user_id

INNER JOIN articles

ON articles.id = comments.article_id

INNER JOIN comments comments_articles

ON comments_articles.article_id = articles.id

WHERE (articles.id in (1) AND users.id != 1)

As you can see, Active Record provides the capability to do more complex joins based
on associations, and it prefixes the joined tables with unique prefixes if the same table
is joined against more than once.

By using the tools described here, you should be able to perform complex queries
while maintaining application response time.

285AntiPattern: Painful Performance

ptg

Solution: Move Processing into Background Jobs
The majority of systems we’ve been involved with and written have eventually had
something in them that does not fit well within the normal web request/response
cycle. That is, the functionality takes too long to complete for the web page to be ren-
dered to the user in a reasonable amount of time. These pain points can vary widely
from application to application but tend to be a few common things:

• Generating reports

• Updating lots of related data in an associated object, based on a user action

• Updating various caches

• Communicating with slower external resources

• Sending email

When presented with any of the actions in this list, moving the processing into a back-
ground job is the common solution to the problem. You can take the action out of the
response cycle altogether so that it is not executed at the same time as the original
request.

There are two main strategies for executing tasks outside the response cycle: cron
tasks and queuing.

cron Tasks

Moving extra processing into a cron task is a relatively straightforward process for
those already familiar with the basic UNIX concepts of cron and scripting. Therefore,
this can be a valid solution in some circumstances. The ideal circumstances for using
cron tend to be when the work to be done can easily be identified, when the work can
be done in batches, and when the amount of work to be done is fairly consistent
between runs.

For example, retrieving the count on a large InnoDB table can take a very long
time. In a system where it takes 3 minutes to get the count of rows in the table, but the
total number of items is to be displayed on a web page, the total number of items
should be cached.

Assuming that it’s okay for the count to be slightly out of date, a cron script could
be written to run every 30 minutes and regenerate the cache. In this scenario, the work
to be done is easily identified. Simply calling count on the table will give you the new
number.

286 Chapter 8. Scaling and Deploying

ptg

However, if in order to use cron you must do a lot of complex operations, flag-
ging, or queuing to identify which items need to be worked on in the background,
using an actual queuing system, as explained in the following section, is a better
option.

Queuing

Using a queue is the right solution when work to be performed is not easily identified,
is not consistent, or isn’t ideally suited for processing in batches.

A queuing system allows you to simply place a job to be performed on the queue
whenever a job needs to be performed. For example, if a user requests that a very large
CSV report be generated, you can place a job for doing this task in the queue and dis-
play a “Please wait” response to the user immediately.

There are a number of popular queuing systems for Rails. Two of the most popu-
lar and well supported are delayed_job (or DJ; http://github.com/tobi/delayed_job)
and Resque (http://github.com/defunkt/resque). Both of these are libraries for creat-
ing background jobs, placing jobs in queues, and processing those queues. Resque is
backed by a Redis datastore, and delayed_job is SQL backed.

Resque is heavily inspired by delayed_job and was built to power GitHub. We echo
the sentiment of GitHub and Chris Wanstrath and highly recommend delayed_job to
anyone whose site is not 50% background work. However, if you already have Redis
deployed, you should consider using Resque. Because delayed_job is a straightfor-
ward, reliable system that is built on the technology stack most Rails websites already
run (Rails and SQL), it should provide adequate queuing needs for most websites.

Once you’ve installed delayed_job into your application and followed the setup
instructions in its README, you can add jobs to the queue by using two different
 mechanisms.

The first mechanism is to place any object that responds to perform onto the
queue for later processing. Take, for example, the following SalesReport class:

class SalesReport < Struct.new(:user)

def perform

report = generate_report

Mailer.sales_report(user, report).deliver

end

private

287AntiPattern: Painful Performance

ptg

def generate_report

FasterCSV.generate do |csv|

csv << CSV_HEADERS

Sales.find_each do |sale|

csv << sale.to_a

end

end

end

end

If users should be able to request that a sales report be mailed to them, you can place
this code in the create action of ReportsController, as shown here:

def create

Delayed::Job.enqueue SalesReport.new(current_user)

end

The second mechanism provided by delayed_job is the send_later method on
all objects. It has the same syntax as Ruby’s send method, but instead of calling the
method immediately, you place Delayed::PerformableMethod on the queue. This
provides a slightly more ad hoc and flexible way of scheduling jobs in the queue. By
using the send_later method, you can place the generate_report method shown
earlier directly on the Sale model, without the need to create a separate class, as
shown here:

class Sale < ActiveRecord::Base

def self.generate_report(user)

report = FasterCSV.generate do |csv|

csv << CSV_HEADERS

find_each do |sale|

csv << sale.to_a

end

end

Mailer.sales_report(user, report).deliver

end

end

With this in place, your controller’s create action would be as follows:

288 Chapter 8. Scaling and Deploying

ptg

def create

Sale.send_later(:generate_report, current_user)

end

Which syntax you choose is up to you. However, utilizing separate job classes is a
good way to follow the Single Responsibility Principle and keep your classes clean,
especially for more complex job logic.

Keep It Real

Backgrounding and queuing are reliable strategies for dealing with the inevitable slow
actions that result from functionality that simply takes too long to perform. Once you
have a queuing system in place, you can offload these tasks into the background and
keep your application responsive for users. However, don’t overdo it. If you push too
many items into the background, often prematurely, your application will ultimately
become overly complex and brittle. So be sure to exercise restraint when using
 queuing.

289AntiPattern: Painful Performance

ptg

This page intentionally left blank

ptg

CHAPTER 9
Databases

With the Rails framework providing a simple ORM that abstracts many of the data-
base details away from the developer, the database is an afterthought for many Rails
developers. While the power of the framework has made this okay to a certain extent,
there are important database and Rails-specific considerations that you shouldn’t
 overlook.

291

ptg

AntiPattern: Messy Migrations
Ruby on Rails database migrations were an innovative solution to a real problem faced
by developers: How to script changes to the database so that they could be reliably
replicated by the rest of the team on their development machines as well as deployed
to the production servers at the appropriate time. Before Rails and its baked-in solu-
tion, developers often wrote ad hoc database change scripts by hand, if they used them
at all.

However, as with most other improvements, database migrations are not without
pain points. Over time, a database migration can become a tangle of code that can be
intimidating to work with rather than the joy it should be. By strictly keeping in mind
the following solutions, you can overcome these obstacles and ensure that your migra-
tions never become irreconcilably messy.

Solution: Never Modify the up Method on a
Committed Migration
Database migrations enable you to reliably distribute database changes to other mem-
bers of your team and to ensure that the proper changes are made on your server dur-
ing deployment.

If you commit a new migration to your source code repository, unless there are
irreversible bugs in the migration itself, you should follow the practice of never modi-
fying that migration. A migration that has already been run on another team mem-
ber’s computer or the server will never automatically be run again. In order to run it
again, a developer must go through an orchestrated dance of backing the migration
down and then up again. It gets even worse if other migrations have since been com-
mitted, as that could potentially cause data loss.

Yes, if you’re certain that a migration hasn’t been run on the server, then it’s possi-
ble to communicate to the rest of the team that you’ve changed a migration and have
them re-migrate their database or make the required changes manually. However,
that’s not an effective use of their time, it creates headaches, and it’s error prone. It’s
simply best to avoid the situation altogether and never modify the up method of a
migration.

Of course, there will be times when you’ve accidentally committed a migration
that has an irreversible bug in it that must be fixed. In such circumstances, you’ll have
no choice but to modify the migration to fix the bug. Ideally, the times when this hap-
pen are few and far between. In order to reduce the chances of this happening, you

292 Chapter 9. Databases

ptg

should always be sure to run the migration and inspect the results to ensure accuracy
before committing the migration to your source code repository. However, you shouldn’t
limit yourself to simply running the migration. Instead, you should run the migration
and then run the down of the migration and rerun the up. Rails provides rake tasks for
doing this:

rake db:migrate

rake db:migrate:redo

The rake db:migrate:redo command runs the down method on the last migration
and then reruns the up method on that migration. This ensures that the entire migra-
tion runs in both directions and is repeatable, without error. Once you’ve run this and
double-checked the results, you can commit your new migration to the repository
with confidence.

Solution: Never Use External Code in a Migration
Database migrations are used to manage database change. When the structure of a
database changes, very often the data in the database needs to change as well. When
this happens, it’s fairly common to want to use models inside the migration itself, as in
the following example:

class AddJobsCountToUser < ActiveRecord::Migration

def self.up

add_column :users, :jobs_count, :integer, :default => 0

Users.all.each do |user|

user.jobs_count = user.jobs.size

user.save

end

end

def self.down

remove_column :users, :jobs_count

end

end

In this migration above, you’re adding a counter cache column to the users table, and
this column will store the number of jobs each user has posted. In this migration,

293AntiPattern: Messy Migrations

ptg

you’re actually using the User model to find all users and update the column of each
one. There are two problems with this approach.

First, this approach performs horribly. The code above loads all the users into
memory and then for each user, one at a time, it finds out how many jobs each has and
updates its count column.

Second, and more importantly, this migration does not run if the model is ever
removed from the application, becomes unavailable, or changes in some way that
makes the code in this migration no longer valid. The code in migrations is supposed
to be able to be run to manage change in the database, in sequence, at any time. When
external code is used in a migration, it ties the migration code to code that is not
bound by these same rules and can result in an unrunnable migration.

Therefore, it’s always best to use straight SQL whenever possible in your migra-
tions. If you do so, you can rewrite the preceding migration as follows:

class AddJobsCountToUser < ActiveRecord::Migration

def self.up

add_column :users, :jobs_count, :integer, :default => 0

update(<-SQL)

UPDATE users SET jobs_count = (

SELECT count(*) FROM jobs

WHERE jobs.user_id = users.id

)

SQL

end

def self.down

remove_column :users, :jobs_count

end

end

When this migration is rewritten using SQL directly, it has no external dependencies
beyond the exact state of the database at the time the migration should be executed.

There may be cases in which you actually do need to use a model or other Ruby
code in a migration. In such cases, the goal is to rely on no external code in your
migration. Therefore, all code that’s needed, including the model, should be defined
inside the migration itself. For example, if you really want to use the User model in the
preceding migration, you rewrite it like the following:

294 Chapter 9. Databases

ptg

class AddJobsCountToUser < ActiveRecord::Migration

class Job < ActiveRecord::Base

end

class User < ActiveRecord::Base

has_many :jobs

end

def self.up

add_column :users, :jobs_count, :integer, :default => 0

User.reset_column_information

Users.all.each do |user|

user.jobs_count = user.jobs.size

user.save

end

end

def self.down

remove_column :users, :jobs_count

end

end

Since this migration defines both the Job and User models, it no longer depends
on an external definition of those models being in place. It also defines the has_many
relationship between them and therefore defines everything it needs to run success-
fully. In addition, note the call to User.reset_column_information in the self.up
method. When models are defined, Active Record reads the current database schema.
If your migration changes that schema, calling the reset_column_information
method causes Active Record to re-inspect the columns in the database.

You can use this same technique if you must calculate the value of a column by
using an algorithm defined in your application. You cannot rely on the definition of
that algorithm to be the same or even be present when the migration is run. Therefore,
the algorithm should be duplicated inside the migration itself.

Solution: Always Provide a down Method in Migrations
It’s very important that a migration have a reliable self.down defined that actually
reverses the migration. You never know when something is going to be rolled back. It’s
truly bad practice to not have this defined or to have it defined incorrectly.

295AntiPattern: Messy Migrations

ptg

Some migrations simply cannot be fully reversed. This is most often the case for
migrations that change data in a destructive manner. If this is the case for a migration
for which you’re writing the down method, you should do the best reversal you can do.
If you are in a situation where there is a migration that under no circumstances can
ever be reversed safely, you should raise an ActiveRecord::IrreversibleMigration
exception, as shown here:

def self.down

raise ActiveRecord::IrreversibleMigration

end

Raising this exception causes migrations to be stopped when this down method is run.
This ensures that the developer running the migrations understands that there is
something irreversible that has been done and that cannot be undone without manual
intervention.

Once you have the down method defined, you should run the migration in both
directions to ensure proper functionality. As discussed earlier in this chapter, in the
section “Solution: Never Modify the up Method on a Committed Migration,” Rails
provides rake tasks for doing this:

rake db:migrate

rake db:migrate:redo

The rake db:migrate:redo command runs the down method on the last migra-
tion and then reruns the up method on that migration.

296 Chapter 9. Databases

ptg

AntiPattern: Wet Validations
Ruby on Rails generally treats a database as a dumb storage device, essentially working
only with many of the common-denominator features found in all the databases it
supports and eschewing additional database functionality such as foreign keys and
constraints. But many Rails developers eventually realize that a database has this func-
tionality built in, and they attempt to use it by trying to duplicate the validation and
constraints from their models into the database. For example, the following User
model has a number of validations:

class User < ActiveRecord::Base

validates :account_id, :presence => true

validates :first_name, :presence => true

validates :last_name, :presence => true

validates :password, :presence => true,

:confirmation => true,

:if => :password_required?

validates :email, :uniqueness => true,

:format => { :with => %r{.+@.+\..+} },

:presence => true

belongs_to :account

end

You could attempt to create a database table to back this model that attempts to
enforce the same validations at the database level, using database constraints. The
(inadequate) migration to create that table might look something like this:

self.up

create_table :users do |t|

t.column :email, :string, :null => false

t.column :first_name, :string, :null => false

t.column :last_name, :string, :null => false

t.column :password, :string

t.column :account_id, :integer

end

execute “ALTER TABLE users ADD UNIQUE (email)”

297AntiPattern: Wet Validations

ptg

execute “ALTER TABLE users ADD CONSTRAINT

user_constrained_by_account FOREIGN KEY (account_id) REFERENCES

accounts (id) ON DELETE CASCADE”

end

self.down

execute “ALTER TABLE users DROP FOREIGN KEY

user_constrained_by_account”

drop_table :users

end

However, there are several reasons this doesn’t work in practice. For one thing, not
all databases support all the constraints that Active Record supports. For example, in
MySQL, it’s possible to enforce the uniqueness constraints on email, but none of the
other constraints are fully possible without the use of stored procedures and triggers.
For example, in the migration earlier in this chapter, there is only a constraint on NULL
values in the first_name column. A blank string would still be allowed to be inserted.

If you are on a database that supports these constraints, you are then left to main-
tain them all by hand, in duplicate—a process that is tedious and error prone.

Active Record does not handle violations of database constraints well. It does not
automatically read the constraints in the database. And if something is out of sync and
a constraint in the database is hit, this will result in an exception that is not handled
gracefully at the library level. The result is a failure the user sees or one that the pro-
grammer must handle, which is impractical.

Solution: Eschew Constraints in the Database
It’s simply best to not fight the opinion of Active Record that database constraints are
declared in the model and that the database should simply be used as a datastore.

Despite all of the above, you may find yourself working with a DBA who insists
that foreign key constraints or other constraints be stored in the database, or you your-
self may simply believe in this principle. In such a case, it is strongly recommended
that you not attempt to do this by hand and instead use a plugin that provides support
for this. One such plugin is Foreigner (http://github.com/matthuhiggins/foreigner/),
which provides support for managing foreign key constraints in migrations. Several
other well-supported plugins provide support for additional constraints, most of
which will be specific to your database server.

298 Chapter 9. Databases

ptg

There’s Always an Exception

In the example we’ve been looking at in this section, the exception is NULL constraints
coupled with default database values. Active Record handles these constraints per-
fectly, with the defaults even being picked up and populated in your model automati-
cally. Therefore, the recommended way to provide default values to your model
attributes is by storing the default values in the database. For example, if you want to
default a Boolean column to true, you can do so in the database:

add_column :users, :active, :boolean, :null => false, :default =>

true

This will result in the active attribute on the user model being set to true whenever
a new user is created:

>> user = User.new

>> user.active?

=> true

You can use this swell behavior to your benefit to simplify code and make your objects
more consistent. In most applications, setting all Booleans to allow null and to
default to false is preferred. That way, your Booleans will really have only two possi-
ble values, true and false, not true, false, and nil.

299AntiPattern: Wet Validations

ptg

This page intentionally left blank

ptg

CHAPTER 10
Building for Failure

While most of us aren’t building websites for banks, medical centers, or the NCSA, it’s
still important to focus on and be aware of the possible failure points of our applica-
tions. Doing so gives our products an attention to detail that will be appreciated by
our user base and will evolve into real, tangible profits.

Building an application to handle various failure modes is simply another aspect
of mindful, detail-oriented application design. Building for failure does not necessar-
ily mean that the application must recover gracefully from all possible failures; rather,
it means it should degrade gracefully in the face of uncertainty. A classic example of
this is the “over capacity” error page sometimes presented to the (un)happy masses on
Twitter. The error page displayed includes an endearing image of an exhausted cartoon
whale being air lifted by a squadron of Twitter birds. Ironically, this failure image has
become a positive icon of the modern web world. It’s been seen on clothing and dish-
ware, and it has even surfaced as a tattoo. The Twitter fail whale, concocted by a
Twitter designer as a graceful way of conveying an internal technical failure to the end
user, has its own fan club (http://failwhale.com).

There are very few concrete techniques for building an application that handles
failure gracefully. There is no fail_gracefully gem to be installed. Rather, building
for failure is a philosophy, a school of thought much like agile development. That
being said, there are some good rules of thumb to keep in mind whenever working on
your codebase, such as “fail fast” and “never fail silently.” We’ll be discussing each of
these in the following solutions.

301

ptg

AntiPattern: Continual Catastrophe
A well-seasoned technical manager once said that the best developers started as sys-
tems administrators and that the best systems administrators started as developers.
There are many reasons we believe this to be true, not the least of which is that systems
administrators are trained with a healthy dose of paranoia.

While working as a systems administrator in a past, to-remain-unnamed position,
one of the authors of this book came across the following snippet running nightly out
of the root user’s crontab:

cd /data/tmp/

rm -rf *

At first glance, you might not see an issue with this snippet. Clearly, it’s there to
remove temporary files from the system, a feature likely added to increase the system’s
reliability by keeping the storage array from overfilling.

As a systems administrator, this snippet kept me awake for nights. What would
happen if I renamed the data directory application? The failure of the cd command
would be ignored, and everything in the root user’s home directory would be
destroyed overnight. I fixed that script, but what other time bombs lay in wait for me
the next morning?

bash, being designed for paranoid people such as myself, comes with set -e and
the powerful && operator to help address these kinds of ignored failures. You need to
apply the same sort of techniques to your Rails code as well.

Solution: Fail Fast
The “fail fast” philosophy is applicable both in application code and in utility code
such as rake tasks and other support scripts. It most clearly manifests itself as sanity
checks placed toward the top of the execution stack.

Whoa, There, Cowboy!

For example, the following method from a Portfolio model has a collection of photo
files:

class Portfolio < ActiveRecord::Base

def self.close_all!

all.each do |portfolio|

302 Chapter 10. Building for Failure

ptg

unless portfolio.photos.empty?

raise "Can't close a portfolio with photos."

end

portfolio.close!

end

end

end

The Portfolio.close_all! method closes all portfolios, which has the side effect of
deleting all the photo files for each portfolio. Consider what happens when a user with
100 portfolios clicks the Close All button. If the 51st portfolio still has files in it, the
user is left with 50 open portfolios and a general sense of confusion.

Even though the following version is less performant than the preceding, it pro-
duces a much more consistent end user experience:

class Portfolio < ActiveRecord::Base

def self.close_all!

all.each do |portfolio|

unless portfolio.photos.empty?

raise "Some of the portfolios have photos."

end

end

all.each do |portfolio|

portfolio.close!

end

end

end

In this version above, you ensure that all the portfolios are empty before closing
any of them. This helps avoid the half-closed scenario above. It still leaves room for
race conditions if the user uploads more photos while the method is running, but you
can alleviate this via database-level locking.

Improve the User Experience

While raising an exception prevents the inconsistency outlined in the above scenario,
it doesn’t present a very good user experience, as it allows the user to close all portfolios
and simply presents a 500 error screen when that action fails. You can address this with
some judicious extraction and double-checking at the Controller and View layers.

303AntiPattern: Continual Catastrophe

ptg

The first thing to do is to extract the sanity check into another class method on
Portfolio:

class Portfolio < ActiveRecord::Base

def self.can_close_all?

! all.any? { |portfolio| portfolio.photos.empty? }

end

def self.close_all

raise "Can't close a portfolio with photos." unless

can_close_all?

all.each do |portfolio|

portfolio.close!

end

end

end

Like most other method extraction refactorings, this has the added benefits of
making the class easier to test and increasing the readability of the code in general.
Now you can make use of this predicate class method in your views like this:

<% if Portfolio.can_close_all? %>

<%= link_to "Close All",

close_all_portfolios_url,

:method => :post %>

<% end %>

And, as a third check, you can add a before_filter to your controller action:

class PortfoliosController < ApplicationController

before_filter :ensure_can_close_all_portfolios,

:only => :close_all

def close_all

portfolio.close_all!

redirect_to portfolios_url,

:notice => "All of your portfolios have been

closed."

end

304 Chapter 10. Building for Failure

ptg

private

def ensure_can_close_all_portfolios

if Portfolio.can_close_all?

redirect_to portfolios_url,

:error => "Some of your portfolios have photos!"

end

end

end

While the business logic is properly extracted into a single method (can_close_
all?), the repeated checks in this above might seem a bit redundant. Situations in
which you need to guard against irreversible actions call for this layered approach.

Readability

A further benefit of pushing sanity checks toward the top of your execution stack is
readability. It’s easy to see, in the following example, what sanity checks are being run:

def fire_all_weapons

ensure_authorized!

ensure_non_friendly_target!

ensure_loaded!

weapons.each {|weapon| weapon.fire! }

end

If the sanity checks are scattered throughout the execution stack, the purpose is
obscured, hindering the readability and maintainability of the codebase.

Consistency Breeds Trust

As is the case with all the other solutions in this chapter, using the “fail fast” philoso-
phy helps ensure that your application will behave consistently in the face of adversity.
This, in turn, is one of the pillars of producing a user base that trusts you and your
application.

305AntiPattern: Continual Catastrophe

ptg

AntiPattern: Inaudible Failures
An important part of the motivation behind building for failure is the user experience
of the end user. Functionality that is error prone or inconsistent leaves the user not
trusting your software. Oftentimes, we’ve seen code samples that look something like
the following:

class Ticket < ActiveRecord::Base

def self.bulk_change_owner(user)

all.each do |ticket|

ticket.owner = user

ticket.save

end

end

end

The purpose of this code is fairly clear: Ticket.bulk_change_owner(user) loops
through each ticket, assigning the user to it and saving the modified record.

You can modify the Ticket model by adding a validation to ensure that each
ticket’s owner is also a member of that ticket’s project:

class Ticket < ActiveRecord::Base

validate :owner_must_belong_to_project

def owner_must_belong_to_project

unless project.users.include?(owner)

errors.add(:owner, "must belong to this ticket's project.")

end

end

...

end

It’s important to always keep the end user in mind when working on absolutely any
part of an application.

Consider, for example, what happens when a user attempts to assign another user
to a bunch of tickets across multiple projects. Ticket.bulk_change_owner works fine
for any ticket whose project has the user being assigned as a member and silently swal-
lows validation errors for all other tickets. The end results are an inconsistent and
buggy experience for the users and an unhappy customer for you.

306 Chapter 10. Building for Failure

ptg

Solution: Never Fail Quietly
The precise culprit in the bulk_change_owner method in the preceding section is in
the inappropriate use of save instead of save!. However, the underlying issue is the
silent swallowing of errors in general. This can be caused by ignoring negative return
values, as you’ve done above, or by accidentally swallowing unexpected exceptions
through overzealous use of the rescue statement.

Embrace the Bang!

In the code above, Ticket.bulk_change_owner should have been originally written
to use the save! method—which raises an exception when a validation error occurs—
instead of save. Here’s the same code as before, this time using save!:

class Ticket < ActiveRecord::Base

def self.bulk_change_owner(user)

all.each do |ticket|

ticket.owner = user

ticket.save!

end

end

end

Now, when the exception happens, the user will be made aware of the issue (you’ll
see how later in this solution). There is still the issue of having updated half of the tick-
ets before encountering the exception. To alleviate that, you can wrap the method in a
transaction, as in the following example:

class Ticket < ActiveRecord::Base

def self.bulk_change_owner(user)

transaction do

all.each do |ticket|

ticket.owner = user

ticket.save!

end

end

end

end

307AntiPattern: Inaudible Failures

ptg

Make It Pretty

In the preceding section, the user is made aware of the fact that a problem occurred,
and you no longer have the problem of inconsistent data. However, showing a 500
page isn’t the best way to communicate with your public.

One quick way of producing a better user experience is to make use of the Rails
rescue_from method, which you can leverage to display custom error pages to users
when certain exceptions occur. While you could add your own exception for the
Ticket.bulk_change_owner method, you’ll keep it simple for now and just rescue
any ActiveRecord::RecordInvalid exception that finds its way to the end user:

class ApplicationController < ActionController::Base

rescue_from ActiveRecord::RecordInvalid, :with => :show_errors

Never Rescue nil

A mistake we commonly see in the wild involves developers accidentally hiding unex-
pected exceptions through incorrect use of the rescue statement. This always involves
using a bare rescue statement without listing the exact exceptions the developer is
interested in catching.

Consider this snippet of code, which calls the Order#place! method:

order_number = order.place! rescue nil

if order_number.nil?

flash[:error] = "Unable to reach Fulfillment House." +

" Please try again."

end

The Order#place! method contacts the fulfillment house in order to have it ship the
product. It also returns the fulfillment house’s internal order number. The code makes
use of an inline rescue statement to force the returned order number to nil if an
exception was raised while placing the order. It then checks for nil in order to show
the user a friendly message to ask them to try again.

Let’s take a look at the implementation for the Order#place! method:

class Order < ActiveRecord::Base

def place!

fh_order = send_to_fulfillment_house!

self.fulfillment_house_order_number = fh_order.number

save!

308 Chapter 10. Building for Failure

ptg

return fh_order.number

end

end

Here, the Order#place! method is calling the send_to_fulfillment_house!
method, which is where the earlier example expected the exception to originate.
Unfortunately, the place! method also calls save!, and there lies the rub.

The order_number = order.place! rescue nil line not only swallows any net-
work errors that occurred during the send_to_fulfillment_house! call, it also cancels
any validation errors that happened during the save! call. To make matters worse, the
flash message instructs the user to attempt to place the order again, which means the
fulfillment house will end up sending multiple products to the user because of a sim-
ple validation error on your end.

The root issue is using a blanket rescue statement without qualifying which
exceptions to catch. The correct solution, as shown in the section “AntiPattern: Fire
and Forget” in Chapter 5, is to collect the exceptions you want to catch in a constant
and rescue those explicitly.

Big Brother Is Watching

Producing a consistent and trustworthy user experience is just one benefit of writing
code that fails loudly. The other critical benefit has to do with instrumentation.
Consider the before_save callback on the Tweet model shown here:

class Tweet < ActiveRecord::Base

before_create :send_tweet

def send_tweet

twitter_client.update(body)

rescue *TWITTER_EXCEPTIONS => e

HoptoadNotifier.notify e

errors.add_to_base("Could not contact Twitter.")

end

end

Here, you let the user know that you had issues contacting Twitter (a very rare sit-
uation, indeed) by setting a validation error. In addition, you record that fact via the
Hoptoad (http://hoptoadapp.com) service to ensure that the development team is
aware of any connectivity issues or of general downtime with the external service.

309AntiPattern: Inaudible Failures

ptg

Note
In the examples in this chapter, we’ve used Hoptoad, the
most popular error logging service for Rails applications.
However, there are other services and plugins, such as excep-
tion_notification (http://github.com/rails/exception_notifi-
cation), Exceptional (http://getexceptional.com), and New
Relic RPM (http://newrelic.com).

The Takeaway

You should never ignore exceptions and negative return values. Instead, you should
bubble them up to both the end user and to a monitoring system. Doing so ensures
that your user’s experience remains consistent, which, as we’ve said before, is key to
building a relationship of trust between users and your application. In addition, it
removes your team’s blindfold and keeps you aware of the errors your users experience.

310 Chapter 10. Building for Failure

ptg

=, 114
character, 114
% character, 114
[] operator, 115
. character, 114
- operator, 114

A

Abstract methods, 57
Accessors, 98–100
AccountsController, 26, 29, 144, 148
AccountsControllerTest, 143, 146
ActionMailer, 193, 254
ActionPack, 254
ActivationsController, 164
Active Presenter, 149–153
Active Record

associations, 3–7, 11–12, 32–36, 242, 282
lifecycle methods, 125
scope, 33, 36–42
scopes, 10–13
validation macros, 53

ActiveRecord#save!, 226
ActiveResource, 254
ActiveSupport, 255

ActiveSupport::Concern, 53, 56, 58
ActiveSupport::TestCase, 223, 226,

236, 246, 248, 255, 261
Acts As Revisionable, 85
ActsAsVersioned, 85
add_user, 75–76
admin, 27–29
AdminController, 161–165
AlertsController, 100
alerts_rss_url, 104–105
Amateur Gemologist, 214–215
Amazon S3, 268–270
AND, 44
Antipatterns, xiii
AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis, xiii
APIs, 184–186
/app/helpers, 91
ApplicationHelper, 103
application_helper.rb, 103
/app/views directory, 91
apt, 44
@article.comments.count, 282
@article.comments.length, 282
@article.comments.size, 282
ArticlesController, 123–125,

139–142, 243–245
assert, 221, 233

311

Index

ptg

Association methods, 33–36
AssociationProxy, 11–13, 141
Associations, 3–7, 11–12, 242, 282
Attributes, 27–28, 47–48
:authenticate before filter, 119–120
Authentications, 118–122, 167–169
Authlogic, 121–123
Authorization, 118
Authorization Astronaut, 74–78
Automated test suite, xiv

B

Background processing, 286–289
Background tasks, 195–196
Backtrace, 86–87
Beck, Kent, 221
before_create, 28–29, 86
before_filter, 173, 304
before_save, 150, 309
Behavior-driven development (BDD), 221,

225–233
Blawg, 257–264
Bloated Sessions, 154–160
Boolean columns, 276
Boolean values, 299
Booleans, 76–78, 84–85
Bundler, 63, 219

C

Callbacks, 25–27, 237, 309
Callbacks and setters, 123–142
can_ methods, 74–76
Capistrano, 271
Case-insensitive sort, 283
Catlin, Hampton, 112
city column, 275
Class (defined), 2

Class, compared with model, 2
class attributes, 96, 109, 114–115
Class definitions, 34, 64, 68, 70, 225
Class method rake tests, 248–250
Classes, refactoring, 16–17
Clearance, 119–121
Cloud deployment, 268–270
Clustered environment, 270
Code patching, 217–219
Code sharing, 219
Code splitting, 207–210
Comments, 273–274
Complexity, 14
composed_of method, 19–20
Composite index, 274–276
Composition, 18–19, 61
Conditional callbacks, 137–138
Conditional joins, 273–274
Conditions, 40, 44
config.plugin_paths, 261
config/routes.rb, 120, 168, 264
Confirmation email, 28–29
Constants, 57, 243
Constraints, 297–299
content_for, 95–98, 115
content_tag, 102, 110–111
content_tag_for, 110
Contexts, 230–232, 234–235
Continual Catastrophe, 302–305
Controller actions, 161
Controller naming, 162
Controllers

Bloated Sessions, 154–160
Controller of Many Faces, 167–169
Evil Twin Controllers, 184–188
Fat Controller, 123–153
Homemade Keys, 118–122
Lost Child Controller, 170–179
Monolithic Controllers, 161–166
Rat’s Nest Resources, 180–183

Conversion, 16–17
Cookies, 154–156, 198

312 Index

ptg

count, 282
create, 124–130, 141
#create, 143–144, 146–148
create_account!, 24–29
created_at, 47–48, 128
create_first_version!, 126–133
create_version!, 124, 126–128,

130–133, 137–139
cron, 286–287, 302
CSS, 91, 107–109, 115–116
CSS3, 198–199
csv, 17
Cucumber, 120–121, 163, 239
current_version, 133–138

D

Database
Boolean values, 299
constraints, 297–299
defaults, 129, 147, 277
down method, 293–296
external code, 293–295
indexes, 272–277
Messy Migrations, 292–296
transactions, 125, 147
up method, 292–296
validations, 297–299
Wet Validations, 297–299

database.yml, 256, 260
DateTime columns, 276
db:indexes:missing, 277
db:migrate, 293, 296
db:migrate:redo, 293, 296
define_method, 68, 77, 238
delayed_job (DJ), 196, 287–289
delegate method, 6–7, 18–19
delete_user, 76, 162–163, 166
Delta indexes, 48–49
Denormalization, 79–82, 84, 280–281
Denormalized role_type, 77

Deploying. See Scaling and deploying
Descriptive naming, 134
Design Patterns: Elements of Reusable Object-

Oriented Software, xiii, 54, 225
Disappearing Assets, 271
<div>, 114
div_for, 110, 115
Domain model, 277–281, 284
Domain modeling

Authorization Astronaut, 74–78
Million-Model March, 79–87

dom_class, 110
dom_id, 110
down method, 293–296
DRY (Don’t Repeat Yourself) Principle,

50, 226
Duplicate Code Duplication

metaprogramming, 64–71
modules, 51–59
plugins, 59–64

Duplicate exceptions, 85
Dust, 221

E

Eager loading, 280
Email confirmation, 28–29
Email errors, 192–193
Email model, 208
EmailsController, 208–210
Encapsulation, 2, 4–7
Engine Yard, 270
Engines, 119
Environment info, 86–87
environment.rb, 261
ERb, 89, 91, 94–95
Error catching application, 85–86
Error logging, 192–194, 309–310
Error pages, 301, 308
Errors, rescuing, 190–192, 308
eval, 63

313Index

ptg

Evaluating third-party tools, 214–215
Evil Twin Controllers, 184–188
Exceptional, 194, 309–310
exception_notification, 194, 310
Exceptions, 85, 125, 148, 190–194, 309
EXPLAIN statements, 277
extend, 22–23, 34–35, 50, 53, 56, 58
External code, 293–295
:extract_backtrace_info, 86–87
:extract_environment_info, 86–87
:extract_request_info, 86–87
Extracting code into modules, 50–59

F

Facebook errors, 190–192
Factories, 225–227, 234–235
Factory, 225
Factory.define, 227
FactoryGirl gem, 227, 234, 256
Factory.next, 227
Factory.sequence, 227
Fail fast, 302–305
Fail whale, 301
Failure

Continual Catastrophe, 302–305
Inaudible Failures, 306–310

FakeWeb, 250
Fat Controller

callbacks and setters, 123–142
conditional callbacks, 137–138
create, 124–130
current_version, 133–138
database transactions, 125
exceptions, 125
lifecycle methods, 125
presenter, 142–153
unless, 135

Fat Models
composed_of method, 19–20
delegate method, 18–19

large transaction blocks, 24–30
Law of Demeter, 18
modules, 21–24
nested attributes, 27–28
refactor into new classes, 15–21
Single Responsibility Principle, 15–21

Ferret, 43
Fielding, Roy, 161
Fields, Jay, 149
fields_for, 84, 145
File attachment plugin, 268–270
Filesystem limits, 269
FileUtils::NoWrite, 250
Filters, 47
find() calls, 7–13
find_by_sql, 34n
Fire and Forget

exceptions, 190–194
Hoptoad, 192–194
HTTP errors, 192
publish_to, 190–191

500 error, 190, 303, 308
Fixture Blues

contexts, 228–235
factories, 225–227

fixtures, 223
flatten, 284–285
Flow control, 125
Foreign keys, 273, 277, 297–298
Foreigner, 298
Forking, 247
Forking gems, 219
:format, 100–101
Formatted URL helpers, 100–101
form_for, 92–93, 110, 145, 175
Full-text search engine, 42–49

G

Gamma, Erich, 54, 225
Gang of Four, xiii

314 Index

ptg

Gem install, 44
Gems

Authlogic, 121–123
Clearance, 119–121
compared with plugins, 63–64, 211
evaluating, 214–215
forking, 219
git repository, 219
Haml, 112–114
modifying, 217
monkey patching, 217–219
parsing web pages, 198–200
unused, 216
when to look for, 213

generate plugin, 60–61
Generators, 60–61, 119–120
Get, 75–76, 244, 263
git repository, 219
GitHub, 211–219, 227, 287
Golick, James, 149
Google App Engine, 270
Graceful degradation, 210

H

Haml, 111–116
.haml, 113
has_and_belongs_to_many, 74–75, 83
has_finder, 40n
hashed_password, 225
has_many, 12, 77, 83, 295
Helm, Richard, 54, 225
Helpers, 92–98, 100–106
Homemade Keys

Authlogic, 121–123
Clearance, 119–121

Hoptoad, 85–87, 192–194, 309–310
HTML

Haml, 111–116
parser, 198–199
semantic markup, 107–109

HTTP errors, 192
HTTP Post, 208–210
HTTP status codes, 203–206
Hunt, Andy, 50

I

id attributes, 109–111, 114
id column, 272–273
:id_partition, 269–271
Inactive code, 214
Inaudible Failures, 306–310
include, 22–23, 50
included, 53, 56, 58
includes, 278, 280
Indentation, 113–114
Indexes, 272–277
Indexing, 44–45
Inheritance, 2
Initializer, 24, 52
init.rb, 60–63, 253–254
Inline text, 114
Instance methods, 23, 50, 61–62
Integration points, 238–239
Irreversible actions, 305
Irreversible migration, 296

J

JavaScript, 89, 91, 94, 109, 111, 178
Johnson, Ralph, 54, 225
Joins, 273–274
Json, 17, 184

K

Koenig, Andrew, xiii
Kraken Code Base, 207–210

315Index

ptg

L

lambda, 37–39
Law of Demeter, 3–7, 18, 38
layouts directory, 91
length, 282
/lib directory, 52–53, 61, 63
Lifecycle methods, 125
Lighthouse, 208
Limerick Rake, 277
link_to, 94–98, 100–102, 172
log-queries-not-using-indexes, 277
Lorem Ipsum, 251–254
Lost Child Controller, 170–179
Lost in Isolation, 236–239

M

Macros, 53, 69, 150
Markup helpers, 102–103
Markup Mayhem

Haml, 111–116
Rails helpers, 109–111
semantic markup, 107–109

Martin, Robert Cecil, 16, 19
Mechanize, 198
MessagesController, 180–183
Messy Migrations, 292–296
Metaprogramming, 64–71
Method (defined), 2
Method names, 238
Methods, 33–36
Migration, 129–130, 262, 292–296
Million-Model March

denormalizing data, 79–82
serialization, 82–87

MIME, 89
Miscreant Modification, 217–219
Missing indexes, 277
Mock Suffocation, 240–245

Mocking, 2, 39, 236–239
Mocking and stubbing, 247
Model, 2
Models

Duplicate Code Duplication, 50–71
Fat Models, 14–30
Spaghetti SQL, 31–49
Voyeuristic Models, 2–13

Model-View-Controller (MVC)
architecture, 2–3

Model-View-Presenter (MVP) pattern, 149
Modifying gems, 217
Modularity, 2
Modules, 21–24, 51–59
Monkey patching, 217–219
Monolithic Controllers, 161–166
Multistep wizard, 154–158
MySQL, 43–44, 277, 298

N

N+1, 279
named_scope, 40n, 42, 242
Naming controllers, 162
Nested attributes, 27–28
Nested controllers, 182–183
Nested resources, 173–179
Nested transactions, 146–147
Net::HTTP library timeout, 195
Never fail quietly, 307–310
New Relic, 194, 277, 310
new_version, 141–142
nil, 308
Nokogiri, 198–199
Normalized domain model, 79

O

Object-oriented programming, 2–3, 16, 18
“One assertion per test,” 233–234

316 Index

ptg

One-to-many associations, 170–179
Open source code, patching, 217–219
OrdersController, 155–159
ORM (object-relational mapping), 1–3, 73
OS X Leopard, 260

P

Painful Performance
background processing, 286–289
using SQL, 282–285

Paperclip, 268–271
params, 104, 139–141
Parsing web pages, 197–200
Password, 118–122, 163
PasswordsController, 164–165
Patching code, 217–219
PDF, 17
perform, 196, 287–288
Performance testing, 277, 310
PHPitis

accessors, 98–100
helpers, 100–106
view helpers, 92–98

Pitiful Page Parsing
Mechanize, 198–199
Nokogiri, 198–199
RestClient, 199

Pivotal Tracker, 208
Plugins

Acts As Revisionable, 85
ActsAsVersioned, 85
Blawg, 257–264
compared with gems, 63–64, 211
Foreigner, 298
guide, 61
Limerick Rake, 277
Lorem Ipsum, 251–254
New Relic, 194, 277, 310
Paperclip, 268–271
QueryReviewer, 277

Rails Footnotes, 277
Slugalicious, 255–258
testing, 251–265
user authentication, 118–122
versioning, 217–219
writing and sharing, 59–64

Polymorphic conditional joins, 273–274
Polymorphism, 2
port, 44
PortfoliosController, 304
Post, 208–210, 261, 263
PostgreSQL, 43–44
PostsController, 169, 261, 263
posts.yml, 229
PostTest, 226–227, 236, 261–262
post_test.rb, 236
Pragmatic Programmer, The, 50
Presenter Pattern, 142–153
Primary keys, 272–273
Principle of Least Knowledge. See Law of

Demeter
private, 2
protected, 2
public, 2
/public/javascripts, 91
/public/stylesheets, 91
publish_to, 189–191

Q

QueryReviewer, 277
Queue systems, 209
Queuing, 287–289

R

Rails (library), 255
Rails 3, 63, 186–188
Rails Footnotes, 277
Rake command, 262

317Index

ptg

rake db:migrate, 293, 296
rake db:migrate:redo, 293, 296
Rake routes, 173
rake tasks, 44–46, 246–250, 262–264,

293, 296
Rat’s Nest Resources, 180–183
RAW version state, 129
Readability, 305
read_timeout, 195
Recutting the Gem, 213
Redis, 287
Refactoring, xiii–xiv, 3–4, 15–21, 167–169,

228–235
References, 154–160
Relationship collections, 134
RemoteProcess, 36–39
render method, 94–96
Request info, 86–87
require, 62–63, 104
rescue, 124, 190–192, 307–308
rescue_from, 308
reset_column_information, 295
Resource, 167–169
Responders, 186–188
respond_to, 184–186, 188
respond_with, 187–188
Resque, 196, 209, 287
RestClient, 199
RESTful APIs, 201–202
RESTful controllers, 161–169
RJS, 89, 91–92
Routes file, 264
RPM, 277, 310
Rspec, 221
rss_link, 101–102, 104–105

S

Sass, 115–116
Save, 146–147, 241–242
save method, 125–127, 140

save! method, 25–26, 126, 139–140, 148,
307–310

#save!, 148, 242
Scaling and deploying

Disappearing Assets, 271
Painful Performance, 282–289
Scaling Roadblocks, 268–270
Sluggish SQL, 272–281

schema.rb, 256–257
scope, 10–13, 33, 36–42, 242
Searchable, 54
Searching, 46–48
Searching serialized data, 85–87
self.down, 294–296, 298
self.up, 293–295, 297
Semantic markup, 107–116
send, 238
send_confirmation_email, 28–29
send_later, 288
Serialization, 82–87
serialize, 84–87
Services

Fire and Forget, 190–194
Kraken Code Base, 207–210
Pitiful Page Parsing, 197–200
Sluggish Services, 195–196
Successful Failure, 201–206

Session store, 154–160
set_version_number, 131
Sharding, 268
should, 150, 231
Shoulda, 221–222, 228
Signup (presenter), 149–153
Simplicity, 14
Single Responsibility Principle, 15–21
Single-table inheritance (STI) pattern, 275
size, 282
Slashes, 99
Slow query logging, 277
Slugalicious, 255–258
Sluggish Services

background tasks, 195–196
delayed_job, 196

318 Index

ptg

Resque, 196
timeouts, 195

Sluggish SQL
domain model, 277–281
indexes, 272–277

SMTP, 193
Solr, 43
SongsController, 172–176, 184–186,

201–203
Sorting, 47–48, 283
Spaghetti SQL

Active Record associations, 32–36
full-text search engine, 42–49
Law of Demeter, 38
Scope method, 36–42

Sphinx, 43–44
SQL, 37–38, 282–285
sqlite3, 256, 260
“SRP: The Single Responsibility Principle,”

16, 169
Standard controller actions, 161
StandardError, 192
Star syntax, 45–46
state column, 275
State model, 79–82
Stateless, 154
Status codes, 203–206
Stubs, 240–245
Submodules, 61–62
Successful Failure

HTTP status codes, 203–206
RESTful APIs, 201–202

Superclass, 54, 57, 59
suspenders, 24
Symlink, 260–261, 271
System directory, 271

T

Tags, 107, 273–274
Taligent, 149

TAM (tests, activity, and maturity), 214–215
Template pattern, 54, 56–59
Test-driven development (TDD), 64, 221,

241, 251
test/factories.rb, 256
test/factory.rb, 225
/test/fixtures, 170–171, 223
test_helper.rb, 104, 147, 225, 252–256
Testing

contexts, 230–232
Cucumber, 163, 239
embedding a Rails app, 259–265
Fixture Blues, 223–235
and integration points, 238–239
Lost in Isolation, 236–239
Mock Suffocation, 240–245
“one assertion per test,” 233–234
performance, 277, 310
plugins and gems, 251–265
rake tasks, 246–250
schema.rb, 256–257
stubs, 240–245
test cases, 221, 229–230, 240–241
and third-party tools, 214–215
Unprotected Jewels, 251–265
Untested Rake, 246–250
view helpers, 103–106

Test::Spec, 221
Test::Unit, 221
test/unit/helpers, 104
TextMate, 261
Thinking Sphinx

delta indexes, 48–49
filters, 47
gem install, 44
indexing, 44–45
searching, 46–48
sorting, 47–48
star syntax, 45–46

Third-party code
Amateur Gemologist, 214–215
Miscreant Modification, 217–219

319Index

ptg

Third-party code (continued)
Recutting the Gem, 213
Vendor Junk Drawer, 216

Thomas, Dave, 50
thoughtbot

Clearance, 119–121
FactoryGirl gem, 227, 234, 256
Hoptoad, 85–87, 192–194, 309–310
Limerick Rake, 277
Paperclip, 268–271
Shoulda, 221–222, 228
suspenders, 24

Ticket, 208
TicketsController, 208–210
Ticket-tracking application, 208–210
Time, 126–128
Timeouts, 195
to_param, 275
ts:in, 44–46, 49
ts:start, 45–46, 49
ts:stop, 46, 49
Twitter, 301, 309

U

Uniqueness validations, 274
unless, 135
Unnested resources, 176–179
Unprotected Jewels

init.rb, 252–253
plugin integration, 251–254
sqlite, 256, 260
test/factories.rb, 256

Untested Rake
class method, 248–250
FakeWeb, 250
FileUtils::NoWrite, 250
forking, 247
mocking and stubbing, 247
rake tasks, 246–248

Unused gems, 216

up method, 292–296
URL helpers, 100–101, 168, 255
URL mapping, 163
“Use only one dot,” 5
User authentication plugins, 118–122
User authorization code, 74–78
users_attributes, 27–28
UsersController, 9–11, 92–93,

163–164, 167–168, 205
UserSessionsController, 121–122
users.yml, 223, 225, 229
use_transactional_fixtures, 147

V

#valid?, 242
Validation macros, 53
Validations, 25–28, 297–299, 307
Vendor Junk Drawer, 216
vendor/gems directory, 217
vendor/plugins directory, 217
Version model, 130–142
Versioning, 85, 217–219
Versions, 128–129
View helpers, 91–100, 103–106
Views

ERb, 89, 91, 94–95
layer, 91
Markup Mayhem, 107–116
MIME, 89
PHPitis, 91–106
RJS, 89, 91–92

Virtual Proxy, 37
Vlissides, John M., 54, 225
Voyeuristic models

Active Record associations, 3–7, 11–12
Active Record scopes, 10–13
delegate method, 6–7
encapsulation, 4–5
find() calls, 7–13
Law of Demeter, 3–7

320 Index

ptg

UsersController, 9–11
wrapper methods, 6

W

Wanstrath, Chris, 287
webrat, 264
Wet Validations, 297–299
WHERE clauses, 275
Whitespace sensitivity, 113–114, 116
will_paginate library, 44–45
Wrapper methods, 6
written_at, 126–128

X

Xapian, 43
XML, 17, 184, 198–199
XPath, 198–199
xUnit Pattern, 221

Y

YAML, 223–225
yield, 95–98
yum, 44

321Index

	Contents
	Foreword
	Introduction
	Acknowledgments
	About the Authors
	1 Models
	AntiPattern: Voyeuristic Models
	Solution: Follow the Law of Demeter
	Solution: Push All find() Calls into Finders on the Model
	Solution: Keep Finders on Their Own Model

	AntiPattern: Fat Models
	Solution: Delegate Responsibility to New Classes
	Solution: Make Use of Modules
	Solution: Reduce the Size of Large Transaction Blocks

	AntiPattern: Spaghetti SQL
	Solution: Use Your Active Record Associations and Finders Effectively
	Solution: Learn and Love the Scope Method
	Solution: Use a Full-Text Search Engine

	AntiPattern: Duplicate Code Duplication
	Solution: Extract into Modules
	Solution: Write a Plugin
	Solution: Make Magic Happen with Metaprogramming

	2 Domain Modeling
	AntiPattern: Authorization Astronaut
	Solution: Simplify with Simple Flags

	AntiPattern: The Million-Model March
	Solution: Denormalize into Text Fields
	Solution: Make Use of Rails Serialization

	3 Views
	AntiPattern: PHPitis
	Solution: Learn About the View Helpers That Come with Rails
	Solution: Add Useful Accessors to Your Models
	Solution: Extract into Custom Helpers

	AntiPattern: Markup Mayhem
	Solution: Make Use of the Rails Helpers
	Solution: Use Haml

	4 Controllers
	AntiPattern: Homemade Keys
	Solution: Use Clearance
	Solution: Use Authlogic

	AntiPattern: Fat Controller
	Solution: Use Active Record Callbacks and Setters
	Solution: Move to a Presenter

	AntiPattern: Bloated Sessions
	Solution: Store References Instead of Instances

	AntiPattern: Monolithic Controllers
	Solution: Embrace REST

	AntiPattern: Controller of Many Faces
	Solution: Refactor Non-RESTful Actions into a Separate Controller

	AntiPattern: A Lost Child Controller
	Solution: Make Use of Nested Resources

	AntiPattern: Rat’s Nest Resources
	Solution: Use Separate Controllers for Each Nesting

	AntiPattern: Evil Twin Controllers
	Solution: Use Rails 3 Responders

	5 Services
	AntiPattern: Fire and Forget
	Solution: Know What Exceptions to Look Out For

	AntiPattern: Sluggish Services
	Solution: Set Your Timeouts
	Solution: Move the Task to the Background

	AntiPattern: Pitiful Page Parsing
	Solution: Use a Gem

	AntiPattern: Successful Failure
	Solution: Obey the HTTP Codes

	AntiPattern: Kraken Code Base
	Solution: Divide into Confederated Applications

	6 Using Third-Party Code
	AntiPattern: Recutting the Gem
	Solution: Look for a Gem First

	AntiPattern: Amateur Gemologist
	Solution: Follow TAM

	AntiPattern: Vendor Junk Drawer
	Solution: Prune Irrelevant or Unused Gems

	AntiPattern: Miscreant Modification
	Solution: Consider Vendored Code Sacrosanct

	7 Testing
	AntiPattern: Fixture Blues
	Solution: Make Use of Factories
	Solution: Refactor into Contexts

	AntiPattern: Lost in Isolation
	Solution: Watch Your Integration Points

	AntiPattern: Mock Suffocation
	Solution: Tell, Don’t Ask

	AntiPattern: Untested Rake
	Solution: Extract to a Class Method

	AntiPattern: Unprotected Jewels
	Solution: Write Normal Unit Tests Without Rails
	Solution: Load Only the Parts of Rails You Need
	Solution: Break Out the Atom Bomb

	8 Scaling and Deploying
	AntiPattern: Scaling Roadblocks
	Solution: Build to Scale from the Start

	AntiPattern: Disappearing Assets
	Solution: Make Use of the System Directory

	AntiPattern: Sluggish SQL
	Solution: Add Indexes
	Solution: Reassess Your Domain Model

	AntiPattern: Painful Performance
	Solution: Don’t Do in Ruby What You Can Do in SQL
	Solution: Move Processing into Background Jobs

	9 Databases
	AntiPattern: Messy Migrations
	Solution: Never Modify the up Method on a Committed Migration
	Solution: Never Use External Code in a Migration
	Solution: Always Provide a down Method in Migrations

	AntiPattern: Wet Validations
	Solution: Eschew Constraints in the Database

	10 Building for Failure
	AntiPattern: Continual Catastrophe
	Solution: Fail Fast

	AntiPattern: Inaudible Failures
	Solution: Never Fail Quietly

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

