


What readers are saying about Deploying Rails Applications

Deploying Rails Applications is a fantastic and vastly important book.

Many thanks!

Stan Kaufman

Principal, The Epimetrics Group LLC

I’ve used the section on setting up a virtual private server to get up

and running on three different VPS instances in less than thirty min-

utes each. Your book has saved me days of time preparing servers,

letting me focus instead on writing code. Your book also has the best

Capistrano tutorial I’ve ever read. It’s no longer a mystery, and I’m

now writing custom deployment tasks. I can’t wait to get my final

copy!

Barry Ezell

CTO, Balance Engines LLC

Prior to buying this book, I had to spend hours scouring the Web to

find this kind of information. Having it all in one place (and correct!)

helped me deliver a successful Rails project. Thank you!

Eric Kramer

Programmer, Nationwide Children’s Hospital



Deploying Rails Applications
A Step-by-Step Guide

Ezra Zygmuntowicz

Bruce A. Tate

Clinton Begin

with Geoffrey Grosenbach
Brian Hogan

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas



Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Ezra Zygmuntowicz, Bruce A. Tate, and Clinton Begin.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-0-5

ISBN-13: 978-09787392-0-1

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

http://www.pragprog.com


Contents
1 Introduction 8

1.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 11

1.2 Finding a Home . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 17

2 Refining Applications for Production 20

2.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 21

2.2 Source Code Management . . . . . . . . . . . . . . . . . 22

2.3 Subversion Tips . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Stabilizing Your Applications . . . . . . . . . . . . . . . 31

2.5 Active Record Migrations . . . . . . . . . . . . . . . . . . 34

2.6 Application Issues for Deployment . . . . . . . . . . . . 38

3 Shared Hosts 44

3.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 44

3.2 Choosing a Shared Host . . . . . . . . . . . . . . . . . . 46

3.3 Setting Up Your Domain and DNS . . . . . . . . . . . . 49

3.4 Configuring Your Server . . . . . . . . . . . . . . . . . . 51

3.5 Server Setup: Create a Database . . . . . . . . . . . . . 52

3.6 Installing Your Application . . . . . . . . . . . . . . . . . 53

3.7 Configuring Your Web Server . . . . . . . . . . . . . . . 56

3.8 Application Setup: Rails Config Files . . . . . . . . . . . 60

3.9 The Well-Behaved Application . . . . . . . . . . . . . . . 63

3.10 Troubleshooting Checklist . . . . . . . . . . . . . . . . . 64

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Virtual and Dedicated Hosts 72

4.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 72

4.2 Virtual Private Servers . . . . . . . . . . . . . . . . . . . 75

4.3 Dedicated Servers . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Setting Up Shop . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS 6

5 Capistrano 92

5.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 93

5.2 How It Works . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Local and Remote Setup for Rails . . . . . . . . . . . . . 97

5.4 Standard Recipes . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Writing Tasks . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 A Little Extra Flavor . . . . . . . . . . . . . . . . . . . . . 118

5.7 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . 121

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Managing Your Mongrels 124

6.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 124

6.2 Training Your Mongrels . . . . . . . . . . . . . . . . . . 124

6.3 Configuring the Watchdog . . . . . . . . . . . . . . . . . 131

6.4 Keeping FastCGI Under Control . . . . . . . . . . . . . . 136

6.5 Building in Error Notification . . . . . . . . . . . . . . . 138

6.6 Heartbeat . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Scaling Out 144

7.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 144

7.2 Scaling Out with Clustering . . . . . . . . . . . . . . . . 145

7.3 Mirror Images . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Domain Names and Hosts . . . . . . . . . . . . . . . . . 151

7.5 Deploying to Multiple Hosts . . . . . . . . . . . . . . . . 154

7.6 Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.7 nginx, from Russia with Love . . . . . . . . . . . . . . . 172

7.8 Clustering MySQL . . . . . . . . . . . . . . . . . . . . . . 179

7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8 Deploying on Windows 192

8.1 Setting Up the Server . . . . . . . . . . . . . . . . . . . . 192

8.2 Mongrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3 Mongrel and Pen . . . . . . . . . . . . . . . . . . . . . . 201

8.4 Using Apache 2.2 and Mongrel . . . . . . . . . . . . . . 204

8.5 IIS Integration . . . . . . . . . . . . . . . . . . . . . . . . 209

8.6 Reverse Proxy and URLs . . . . . . . . . . . . . . . . . . 211

8.7 Strategies for Hosting Multiple Applications . . . . . . . 213

8.8 Load-Testing Your Applications . . . . . . . . . . . . . . 218

8.9 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . 219

8.10 Developing on Windows and Deploying Somewhere Else 220

8.11 Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . 223

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=6


CONTENTS 7

9 Performance 224

9.1 The Lay of the Land . . . . . . . . . . . . . . . . . . . . . 224

9.2 Initial Benchmarks: How Many Mongrels? . . . . . . . . 228

9.3 Profiling and Bottlenecks . . . . . . . . . . . . . . . . . . 232

9.4 Common Bottlenecks . . . . . . . . . . . . . . . . . . . . 237

9.5 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 252

10 Frontiers 254

10.1 Yarv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.2 Rubinius . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.3 JRuby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

10.4 IronRuby . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

10.5 Wrapping Up . . . . . . . . . . . . . . . . . . . . . . . . . 257

A An Example nginx Configuration 258

B Bibliography 260

Index 261

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=7


Chapter 1

Introduction
Building Rails apps brings the joy back into development. But I, Ezra,

have a confession to make. There was a brief moment that I didn’t like

Rails at all.

I’d just graduated from the five-minute tutorial to developing my first

real Rails application. The helpers, plug-ins, and generators reduced

the amount of code I needed to write. The logical organization and lay-

out of the files let me painlessly find what I needed, and the domain-

specific languages in Active Record let me express my ideas with sim-

plicity and power. The framework bowed to my will, and aside from a

few trivial mistakes, I finished the app. Pure joy washed over me.

But then, it was time to deploy. Deployment means moving your appli-

cation from a development environment into a home that your cus-

tomers can visit. For a web application, that process involves choosing

a host, setting up a web server and database, and moving all your files

to the right places with the right permissions.

I quickly discovered that after the joy of development, deployment was a

real drag. All those waves of euphoria completely disintegrated against

the endless stream of crash logs, Rails error pages, and futile install

scripts. I spent hours wading through the Rails wikis, blogs, and books

for answers, but each one gave me a mere fragment of what I needed.

Much of the information I found was contradictory or flat-out wrong.

Deployment also involves making the best possible environment for

your customers, once you’ve settled into your new home. There, too,

I failed miserably. When I finally made my site work, it was too slow.

Stumbling through page caching seemed to make no difference, and



CHAPTER 1. INTRODUCTION 9

my end users watched the spinning (lack of) progress indicator in frus-

tration. I struggled to fix memory leaks, broken database migrations,

and worthless server configurations until eventually my site purred in

appreciation. Then came success, which means more visitors, followed

by more failure. I screamed some choice words that would make a

sailor’s dead parrot blush. No, at that moment, I really didn’t like Rails.

I’m not going to sugarcoat it. If you don’t know what you’re doing, Rails

deployment can stretch the limits of your patience, even endurance.

What’s worse, Rails deployment suffers especially in areas where Rails

development is easy:

• You can always find plenty of Rails development documentation,

but when it’s time to deploy, you can often find only a fraction of

what you need. People just seem to write more about development

than deployment.

• You can choose your development platform, but you can’t always

choose your deployment platform. Most hosts with Rails support

run some variant of Linux; others run FreeBSD or Solaris. And the

software stack for different hosts can vary wildly, as can applica-

tion requirements.

• When your development application breaks, you can find moun-

tains of information through breakpointing, rich development

logs, and the console. In production, when things go south, there

are fewer sources of information, more users, and more variables.

You might encounter a problem with the operating system, your

application server, system resources, plug-ins, your database ser-

ver, or any one of dozens of other areas. And your caching envi-

ronment works differently than your development environment.

• Rails is an integrated platform that narrows the choices. You’ll

probably use Active Record for persistence and Action Pack for

your controllers and views. You’ll use Script.aculo.us and Proto-

type for Ajax. But your deployment environment will require many

choices that are not dictated by Rails, including the most basic

choice of your web server.

But I’m living proof that you can learn to master this beast. Over time,

I’ve come to understand that my approach to deployment was rushed,

as well as a little haphazard. I found that I needed to approach deploy-

ment in the same way that I approached development. I had to learn

how to do it well, effectively plan each step, and automate as much

as possible so I left little to chance. I needed to plan for problems so

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=9


CHAPTER 1. INTRODUCTION 10

I could anticipate them and get automatic notification at the first sign

of trouble. At my company, Engine Yard, I support some of the largest

and most popular Rails sites in the world. I want to help you learn to

do the same.

Because Rails is so new, some people question whether anyone can

deploy a sophisticated, scalable, and stable Rails application. Based on

my experience at Engine Yard, I’d like to first debunk a few myths:

Myth: The Ruby on Rails development framework is much more advanced

than the deployment framework.

That’s false. Deployment tools for Rails get much less attention, but

they are also growing in form and function. If you know where to look,

you can find deployment tools that are proven, effective, and free to

use. These tools use techniques that are every bit as advanced and

functional as those used by the most mature Java or C# development

shops. Ruby admins can deploy a typical Rails application with one

command and move back to a previous release should that deployment

fail, again with one command. You can deploy Rails to simple single-

server setups or multiserver sites with very few changes. And if you now

copy PHP files to your server by hand or rsync Perl scripts to multiple

machines, your life is about to become a lot easier (and yes, you can

use some of these same tools as well). I’ll show you how to do these

things in Chapter 5, Capistrano, on page 92.

Myth: Rails is too new to have any large, sophisticated deployments.

That, too, is false. Ruby on Rails is in use on very large sites that are

spread across multiple machines. Some of those applications require

many full servers just to serve their full feature set to their community.

And the list of large Rails sites grows daily. Twitter, Basecamp, and 43

Things are all multiserver large Rails sites. Many more enter production

every month.

Myth: The Ruby language is inherently unstructured and is poorly suited

for web applications.

That’s mostly false. Ruby is an interpreted, dynamically typed language

that presents real challenges in high-volume production settings, but

the Rails framework has features and strategies that mitigate many

risks associated with these challenges. The Rails caching model and

performance benchmarking tools help developers to build high-perfor-

mance sites. The Rails testing frameworks, sometimes in combination

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=10


THE LAY OF THE LAND 11

with other Ruby testing frameworks, help developers catch errors that

a compiler might catch in a statically typed language. And the Rails

shared-nothing architecture, like many of the highest-volume Internet

sites in existence, allows Rails sites to scale by adding additional hard-

ware. You’ll learn how to cluster in Chapter 7, Scaling Out, on page 144.

Myth: Rails can get you into trouble, if you don’t know what you’re doing.

That one is true. If you want to stay out of serious trouble, you need

to know how to wield your chosen tools. No development language is

immune to bad design. And a poor deployment strategy will burn you.

You must always arm yourself with knowledge to protect yourself. In

this book, I hope to help you do exactly that.

Rest assured that the Rails deployment story is a good one. You can

learn to predictably and reliably deploy your applications. You can use

repeatable techniques to understand what the performance character-

istics of your system are likely to be. And you can improve the stability

and scalability of your system given knowledge, time, and patience. I’m

going to start quickly. I want to walk you through the same deployment

road map that every Internet application will need to use.

1.1 The Lay of the Land

Web 2.0, the new buzzword that describes a new class of web appli-

cations, sounds like a daunting mix of new technologies that radically

change the way you think about the Internet. But when you think about

it, from a deployment perspective, Web 2.0 doesn’t change much at all:

• The Internet still uses the same communication protocols and the

same type of web servers.

• You still scale Internet applications the same way, by clustering.

• You can even use some of the same servers, and the new ones

work mostly like the old ones.

• You still keep your source code in source control.

• The operating system is still usually Unix-based.

For all the talk about the way your applications may change, deploy-

ment remains precisely the same. Think of the Internet as a road map.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=11


THE LAY OF THE LAND 12

Host

Environment (OS)

Web Server

Application

Client

Application

Figure 1.1: Basic deployment map

The buildings and places are servers, browsers on clients, routers, fire-

walls, and balancers. The roads are the networks between them and the

various communication protocols those networks use. I like the map

analogy because when all is said and done, the Internet is all about

moving data from one place to another.

When you deploy, you’re using the Internet to move your application

from one place to another. You can think of every deployment story

as a map. In fact, every deployment story in this book will come with

a map. A generic version of the simplest possible deployment story is

shown in Figure 1.1.

Look at the components of that figure. First, you have a host with an

environment. I’ll spend much of this book showing you how to build the

environment that will host your application. The environment, in this

case, includes all the different components that an Internet applica-

tion needs. You’ll learn to build each of these pieces yourself or rely on

another vendor to build those pieces for you. Those pieces will include

the operating system, the Ruby language, the Rails framework, and the

various pieces that will tie them together. The host represents where

your customers will go to find your application. As you can well imag-

ine, that host image will get much richer as I take you through the

various pieces of this book.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=12


FINDING A HOME 13

You also see a development client. My machine is my trusty MacBook

Pro, but I’ve also developed on the Windows platform. You might think

that this book is about the road that goes from the application on the

client to the server. And I’ll start the book that way. The basic deploy-

ment map (shown in Figure 1.1, on the previous page) will use plain old

FTP to move your application from the client to the server.

Deployments are rarely as simple as the one you see in Figure 1.1, on

the preceding page. You’re going to find that shared hosting is a little

limited. And you probably know that plain old FTP may be simple, but

it will not handle the demands of effectively managing the site. You will

need better deployment tools. You will want to throw a source control

repository into the mix. If you’re lucky, one web server may not be

enough. You’ll wind up with a more sophisticated map, like the one in

Figure 7.1, on page 147.

In the complete map, you see a vastly different story. What may appear

as one site to the user has its own environments. The first change is the

website. You can no longer assume a single host. Those environments

might be virtual environments that all reside on a single machine, or

each individual environment could have its own hardware. Your deploy-

ment strategy will have to install your application into each Rails envi-

ronment. You will need to configure the pieces to work together. And

that’s the subject of this book.

In the first few chapters, you might think that we’re oversimplifying a

little bit. Don’t worry. You’re not going to be using FTP or shared hosting

by the time you finish this book. I’ll get to the second map. I’ll just build

it slowly, one piece at a time. We’ll keep extending the map throughout

the book until you get to your eventual goal. In the next section, I’ll

walk you through what you can expect in the chapters to follow.

1.2 Finding a Home

You’ve seen that our maps have one goal in mind. They want to get

your development code to its eventual home in the best possible way.

By now, you also know that the type of map you need depends on

where your application is going to live. You can’t adequately under-

stand deployment unless you understand where you’re going to put

your code, but finding a platform for your Rails code is hard. The pro-

cess feels like finding a home without a real estate agent, the Internet,

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=13


FINDING A HOME 14

or any consolidated home buyer guides. Over the course of this book,

I’d like to take you into that hidden universe. You will learn how to:

• develop Rails applications with painless deployment in mind;

• choose between shared hosts, virtual private servers, or dedicated

servers;

• understand the software stack that the pros use to deploy Rails

for high performance;

• build and configure your web servers and other services;

• stress your application before your users do; and

• streamline your application in production using advanced strate-

gies such as caching so your site can scale.

Throughout this book, I’ll treat deployment like buying a new home for

your application. Through each of the chapters, you’ll learn to pick and

prepare your home, streamline your stuff for everyday living, and even

move up into wealthier neighborhoods, should you ever need to do so.

Let me take you on a guided tour of the book:

Packing up: tending to your application. Before you can move, you

need to pack up. If you want a good experience, you need to orga-

nize your stuff to prepare for your move. On Rails, that means

minding your application. You will need to prepare source control.

You will also need to make some important decisions that will have

a tremendous impact on your production application, such as the

structure of your migrations and your attention to security. This

chapter will add source control to your map.

Finding a starter home: shared hosting. Not everyone can afford a

house. When most of us leave home, we first move into an apart-

ment building or a dorm. Similarly, most Rails developers will

choose some kind of shared hosting to house that first application:

a blog or a simple photo log. Shared hosting is the first and cheap-

est of the hosting alternatives. Setting up shared hosting involves

many of the same steps as moving into your first apartment: find

a home that meets your requirements, set up your address so

that others can find you, and customize your home as much as

possible. Like apartment living, shared hosting has its own set of

advantages and disadvantages. Shared hosting is cheap, but you

need to learn to be a good citizen, and you’ll also likely encounter

those who aren’t. In this chapter, you’ll learn to find and make the

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=14


FINDING A HOME 15

best use of your first home. The deployment will be simple. You’ll

need a shared host, a simple application, and a simple mechanism

such as FTP to ship your code up there.

Moving up: virtual and dedicated hosting. After you’ve lived in an

apartment for a while, you might decide to move up to your own

home or condo. Your virtual world is the same. When shared

hosting isn’t enough, you can move up to virtual and dedicated

hosts. Moving up to a home carries a whole new set of benefits

and responsibilities: you get more freedom to add that extra closet

you’ve always wanted, but you also have to fix the toilet and mow

the lawn yourself. Dedicated and virtual hosts are like your own

home or condo. These plans are typically more robust than shared

hosts, but they also require much more knowledge and responsi-

bility. When you set up your own host, you take over as landlord.

You need to know how to build and configure your basic software

stack from your web server to the Rails environment. This chapter

will walk you through building your hosting platform. Your map

will get a little more complicated because you’ll have to build your

environment, but otherwise, it will be the same.

Moving in: Capistrano. After you’ve chosen and prepared a place,

you can move in. Unlike moving in your furnishings, with Rails

you will probably move in more than once. You’ll want to make

that move-in process as painless as possible, automating every-

thing you possibly can. Capistrano is the Rails deployment tool of

choice. In this chapter, you’ll learn to deploy your application with

Capistrano using existing recipes with a single command. You’ll

also learn to roll back the deployment to the previous version

if you fail. You will also see many of Capistrano’s customization

tools. This chapter will change your map by building a better road

between your application and the deployment environment.

Adding on: proxies and load balancing. When your place is no

longer big enough, you need to add on or move up. Since we

have already covered moving up, this chapter will cover adding on

through clustering. One of the most common and effective ways

to remodel a Rails deployment without buying a bigger plan is

to separate the service of static content and application-backed

dynamic content. In this chapter, you’ll learn to reconfigure your

production environments to handle more load. I’ll show you setups

with Apache and nginx serving static content and dynamic content

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=15


FINDING A HOME 16

with Mongrel. You’ll also learn how to distribute your applications

across multiple servers with a rudimentary load-balanced cluster.

I’ll also walk you through potential database deployments. The

host side of your deployment map will get much more sophisti-

cated because you’ll be deploying to a cluster instead of a single

host, but with Capistrano already in the bag, you won’t have to

change the client side at all.

Planning for the future: benchmarking. As you grow older, your

family may grow. Without a plan, your house may not be able

to accommodate your needs a few years from now. In Rails or any

other Internet environment, capacity planning becomes a much

larger problem, because your home may need to serve hundreds

of times the number of users it does today. To get the answers

you need, you have to benchmark. After you’ve chosen your stack

and deployed your application, you’ll want to find out just how

far you can push it. In this chapter, you’ll learn to use the base

Ruby tools, and a few others, to understand just what your envi-

ronment can handle. You’ll also learn a few techniques to break

through any bottlenecks you do find. The deployment map won’t

change at all.

Managing things: monitoring. As you live in your new home, you’ll

often find that you need help managing your household. You might

turn to a watchdog to monitor comings and goings, or you might

want to hire a service to do it for you. With the many Rails config-

uration options, you’ll be able to manage some of your installation

yourself. You can also use an application called Monit to automat-

ically tell you when a part of your system has failed or is about to

fail. You will make only subtle adjustments to your map to allow

for the additional monitoring of the system.

Doing windows: deploying on Windows. Homeowners hate doing

windows. Rails developers often do, too. But sometimes, you don’t

have a choice. When you do have to deploy on Windows, this chap-

ter will walk you through the process. We’ll keep it as simple and

painless as possible. This chapter will focus on the host side of

the map to offer the Windows alternative as you build out your

environment on Windows.

When you’ve finished the book, you’ll know how to pick the best plat-

form for you. You’ll understand how to make Capistrano finesse your

application from your development box to your target environment. And

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=16


CONVENTIONS 17

you’ll be able to configure a variety of deployment scenarios from the

inside out. If you’ve built up any resentment for Rails because of deploy-

ment problems in the past, this book should get you back on the path

to enjoying Rails development again.

1.3 Conventions

Throughout this book, you’ll see several command-line terminal ses-

sions that show various deployment, setup, and configuration tasks.

You’ll need to make sure you type the right command in the right place.

You wouldn’t want to accidentally clobber your local code or acciden-

tally load your fixtures to your production database (destroying your

data in the process!). To be as safe as possible, I will follow a few con-

ventions with the command-line prompts to make it easier to follow

along.

On most Unix-like systems, when the command-line prompt is the

number sign (#), it is letting you know that you are logged in as root.

When the prompt is the dollar sign ($), you are logged in as a regu-

lar system user. These are the conventions for the Bourne Again Shell

(bash). If you are running another shell, you might have slightly differ-

ent indicators in your prompt, and you should adjust accordingly. On

the Ubuntu system we are about to set up, the default shell is bash.

The following prompts show how you should log in to run the various

shell commands we use in the book. When you should be logged in as

root, the prompt will look like this:

root#

When you should be logged in with your regular user account, the

prompt will look like this:

ezra$

When you should be running a command from your local computer and

not the server, the prompt will look like this:

local$

1.4 Acknowledgments

Collectively

We’d like to thank DHH and the Rails core team for giving us Rails,

because none of this would have been possible without their inno-

vations. We’d also like to thank the Rails and the Ruby community

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=17


ACKNOWLEDGMENTS 18

as a whole. We send thanks to the Capistrano and Mongrel teams

for advancing the early deployment story for Rails. This is one of the

friendliest and most helpful communities that we have had the pleasure

of knowing. Above all, thanks for the generosity of Brian Hogan and

Geoffrey Grosenbach for your invaluable contributions to this book.

Clinton Begin

“I promise, I’ll never write another book.” That’s what I told my wife,

Jennifer, after my first book. So, I’d like to start out by thanking her,

both for accepting my apology and for her selfless support throughout

this process. Being a part-time author robs us dads of valuable family

time and mothers of much-needed break time. After a few trial-by-fire

experiences, I can attest to the fact that Stay-at-Home Mother is a far

tougher job title than any I’ve ever held. I’d also like to thank my two

sons, Cameron and Myles, for teaching me more about myself each and

every day.

Outside of my family, I’d like to thank Bruce and Ezra for inviting me

to work on this book with them. It was an opportunity to tackle a very

important subject that most Rails books gloss over and simply run out

of space in their attempt to cover it. I’d also like to thank Thought-

Works, as they helped launch my career and gave me my first oppor-

tunity to work with production Rails deployments. ThoughtWorks has

some of the brightest Ruby and Rails minds out there, including Alexey

Verkhovsky and Jay Fields. Finally, I’d like to thank Dave Thomas.

Three years ago I challenged him by asking cockily “What does Ruby

have over other toy languages?” In a way that only Dave Thomas could

respond, he simply didn’t and mailed me a book instead.

Bruce Tate

I never thought I’d be writing a book on Ruby on Rails deployment.

My gift is as a programmer. As a manager and programmer on larger

Internet projects, I simply give the deployment task to others. Thanks

to Dave, Andy, and Ezra for the invitation to help tackle this important

gap in Rails literature. Thanks also go to my boss, Robert Tolmach,

who has become one of my best friends who trusted me to make some

radical bets with his money. He shared some time with me to make this

book possible so that others may benefit from what we’ve learned at

WellGood LLC with ChangingThePresent. Thanks go out especially to

Clinton Begin, who jumped into this project at the very last minute and

wrote the most important chapter in the book, giving us a much-needed

jolt of productivity when we most needed it.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=18


ACKNOWLEDGMENTS 19

If these acknowledgments read like a broken record, it’s only because

those we love make extreme sacrifices to satisfy our addiction to writing

and technology. Thanks to Maggie, Kayla, and Julia for sharing me with

the written word. This is far from the first book, and with luck, it won’t

be the last. My love for each of you grows always.

Ezra Zygmuntowicz

I’d like to thank my wife, Regan, for being so understanding and sup-

portive. There were many weekends and evenings that I should have

spent with her but instead worked on the book. I’d also like to thank all

the folks who helped proofread and critique the content as it changed

and morphed into the final result. I’d also like to thank all of my won-

derful coauthors for their contributions; I truly could not have done this

without all of the help. Special thanks go out to François Beausoleil who

helped me with some early svn stuff way back when we started pulling

this book together. And thanks to Geoffrey Grosenbach for all of your

critical early contributions.

Brian Hogan

I first need to thank Ezra for the opportunity to contribute to this book

and Bruce for introducing me to Ruby at a point in my life when I was

about to quit programming because of frustration. Without their help

and guidance, I would not be where I am today. Zed Shaw deserves

credit as well because he challenged me to make it work on Windows,

and Luis Laverna is my hero for making Mongrel run as a Windows

service, which made my job a lot easier.

I would also like to thank my wife, Carissa, for her support, Her con-

stant patience with me throughout this project (and many others) is

truly wonderful. Thanks to Ana and Lisa, my two girls, for being so

patient with Daddy. Thanks also to my mom and dad for teaching me

to work hard and to never give up no matter how hard I thought some-

thing was. I am extremely lucky and blessed to have such a wonderful

family.

Finally, thanks to Erich Tesky, Adam Ludwig, Mike Weber, Chris War-

ren, Chris Johnson, and Josh Swan. You guys are the best. Thanks for

keeping me going.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=19


4 Packing Up

Chapter 2

Refining Applications
for Production

Before you can move into your new house, you need to pack up. With

Rails, you need to do the same thing: prepare your Rails application for

deployment.

You’ll need to organize your code and prepare it for production. Specif-

ically, you’ll need to think about a few things:

• Making your source code repository work smoothly with your pro-

duction setup to make your deployments go smoother and be more

secure

• Strengthening your brittle migrations to save you from models that

change and developers who collide

• Locking down Ruby, Rails, and Gems code to a single, stable

version

Fundamentally, you want to build every application with deployment

in mind. The earlier you think about deployment issues, the better off

you’ll be.

I’m not saying you need to make early deployment decisions at demand

time. You just need to make sure you build intelligent code that is less

likely to break in production situations. Your first order of business is

to simplify your Subversion setup.



THE LAY OF THE LAND 21

Host

Environment (OS)

Web Server

Application

Source Repository

Application

Client

ApplicationApplication

Figure 2.1: Application map

2.1 The Lay of the Land

The first enhancement to the basic deployment map is shown in Fig-

ure 2.1. The following list explains what you’ll need to accomplish in

this chapter:

• Set up source control. If you haven’t already done so, setting up

source control will make the rest of your deployment picture much

simpler and will improve your development experience as well.

• Prepare your application configuration and performance. You will

make some simple changes to your application or, better yet, build

it right the first time.

The three Rails environments—development, test, and production—will

make it easy for you to isolate configuration for deployment. The rest is

just common sense. It all starts with source control.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=21


SOURCE CODE MANAGEMENT 22

2.2 Source Code Management

Good deployment strategies always start with a good foundation. I want

to be able to deploy the same application to my servers with identical

results every time. That means I need to be able to pull a given version

of the application from a central source. Anything less won’t give me

dependable, repeatable results. Luckily, Rails will automate a whole lot

of the deployment scripts, but only if you use the common infrastruc-

ture that other Rails developers do.

Unless you have a strong reason to use something else, you’ll want to

use Subversion for your application’s source code control. The majority

of Rails developers use it, the Rails team uses it for Rails, and the Rails

plug-in system also uses it. Version Control with Subversion [PCSF04]

is a great book about Subversion. You should also check out Pragmatic

Version Control [Mas05] for a pragmatic view of source code control in

any language. For this chapter, I’m going to assume you already have

Subversion installed and running.

Subversion on Rails

The keys to using Subversion with Rails are maintaining the right

structure. You want to keep the right stuff under source control and

keep the wrong stuff out. Setting up your application’s repository right

the first time will save you time and frustration. A number of items in

a Rails application do not belong in source control. Many a new Rails

developer has clobbered his team’s database.yml file or checked in a

5MB log file. Both of these problems are with the Subversion setup, not

with Rails or even the Rails developer. In an optimal setup, each devel-

oper would have their own database.yml file and log files. Each devel-

opment or production instance of your application will have its own

version of these files, so they need to stay out of the code repository.

You might already have a Subversion repository already, but I’ll assume

you don’t and walk you through the entire process from scratch.

Repository Creation

Start by creating a new Subversion repository for your Rails project.

Log in to the server that will have your Subversion repository. Create a

directory for your repository, and let Subversion know about it:

$ svnadmin create /home/ezra/svn

The authors of Subversion recommend creating all repositories with

three folders at the root: trunk,tags, and branches. This setup works best

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=22


SOURCE CODE MANAGEMENT 23

if you have one project per repository.1 You don’t have to create the

top-level folders for Subversion to work, but I suggest you do so. The

better Subversion repositories I have seen adhere to this convention,

and if you have only one project in your repository, this approach will

let you tag and branch at will. These commands will build your initial

directories:

$ svn mkdir --message="Initial project layout" ←֓

file:///home/ezra/svn/trunk file:///home/ezra/svn/tags ←֓

file:///home/ezra/svn/branches

Committed revision 1.

Importing a Simple Rails Application

I suggest you practice with an empty Rails project first. Create the Rails

application as usual:2

$ rails ~/deployit

create

create app/controllers

...

At this point, you could do an svn import and put the whole directory tree

in the repository. I recommend against doing so. If you use the “in-place

import” procedure instead, you can selectively commit the pieces you

want, not the whole tree. See Subversion’s “How can I do an in-place

import” FAQ for the full details.

Start your in-place import by checking out trunk into the folder you want

to import:

$ svn checkout file:///home/ezra/svn/trunk ~/deployit

Checked out revision 1.

$ cd ~/deployit

Next, add the whole tree to the working copy. The results are no differ-

ent from svn import initially, except all changes are local to the working

copy and you can selectively revert the files and folders you do not want

in the repository before committing. The end result is more convenient

control over what actually becomes part of the repository. We use svn

import with the --force option because otherwise Subversion will fail with

an error indicating that the current directory is already under version

control.

1. This is explained in more detail in “Choosing a Repository Layout” in the Subversion

book.
2. If you have an existing project you want to import in Subversion, simply skip this

step. All other steps are identical.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=23


SOURCE CODE MANAGEMENT 24

Now, add your Rails project like so:

$ svn add . --force

A app

...

A README

The Rails command helpfully creates most of the tree. Since I will

later use migrations in all my Rails projects, I immediately create the

db/migrate folder. Rails also creates a tmp folder when it needs it. For

completeness sake, I will create both folders immediately:

$ svn mkdir db/migrate tmp

A db/migrate

A tmp

Removing the Log Files from Version Control

At this point, Subversion would helpfully track all changes to the log

files. Then some following Friday at 6:30 p.m., some poor, harried devel-

oper would then accidentally check in an obscenely large log file, and

the rest of the developers would complain that the checkout was taking

way too long. To ease our burden, the easiest thing is to tell Subversion

to ignore any log files:

$ svn revert log/*
Reverted 'log/development.log'

Reverted 'log/production.log'

Reverted 'log/server.log'

Reverted 'log/test.log'

$ svn propset svn:ignore "*.log" log

property 'svn:ignore' set on 'log'

That’s all there is to it. Next stop: database.yml.

Managing the Database Configuration

Since database.yml file might be different for each developer, you do not

want to create havoc by accidentally committing database.yml. Instead,

you’ll have a sample of the file in the repository so each developer will

have their own safely ignored database.yml file. These commands do the

magic:

$ svn revert config/database.yml

Reverted 'config/database.yml'

$ mv config/database.yml config/database.yml.sample

$ svn add config/database.yml.sample

A config/database.yml.sample

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=24


SOURCE CODE MANAGEMENT 25

$ svn propset svn:ignore "database.yml" config

property 'svn:ignore' set on 'config'

$ cp config/database.yml.sample config/database.yml

$ svn status --non-recursive config/

A config

A config/routes.rb

A config/database.yml.sample

A config/boot.rb

A config/environment.rb

A config/environments

Newer Rails versions might already have some of these files. Use svn add

with the --force option for files you want to replace that might already be

under version control. If you use this approach, you’ll need to be sure

you communicate.

Since you’d make any changes to database.yml.sample, other developers

might not notice the changes. Most of the time, though, the sample file

will not change, and leaving it “as is” is OK. Alternatively, you can call

the sample file database.sample.yml so your editor can pick up syntax

highlighting.

Database Structure Dumps During Testing

When you run the tests, Rails will dump the development database’s

structure to db/schema.rb.3

Managing tmp, documentation, scripts, and public

Rails 1.1 and above now have a tmp folder. This folder will hold only

temporary files such as socket, session, and cache files. Ignore anything

in it:

$ svn propset svn:ignore "*" tmp

property 'svn:ignore' set on 'tmp'

The doc folder holds many subfolders: appdoc and apidoc among oth-

ers. To keep things simple, just ignore any “doc” suffix:

$ svn propset svn:ignore "*doc" doc

property 'svn:ignore' set on 'doc'

Subversion also has a property to identify executable files. Set the prop-

erty on files you might run from the command line.

3. If the Active Record configuration variable named config.active_record.schema_format is

set to:sql, the file will be named development_structure.sql instead. Simply replace schema.rb

with development_structure.sql in the commands.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=25


SOURCE CODE MANAGEMENT 26

Joe Asks. . .

What About the Deployed database.yml File?

Using the template file technique means the database.yml file is
not under version control on your production server. Here are
some solutions to this problem:

• Use a branch to deploy, and keep database.yml under ver-
sion control in the branch. See Section 2.2, Using a Stable
Branch for Deployment , on page 28 for how to do that.

• Have Capistrano copy the file forward on every deploy-
ment. I discuss this solution in Section 5.5, Using the Built-in
Callbacks, on page 112, and I discuss Capistrano in Chap-
ter 5, Capistrano, on page 92.

• You can leave the database.yml file on the server in the
shared directory. You can then create a symlink to that
file. It’s best to create this symlink in an after_update_code

Capistrano task. We’ll talk more about Capistrano later,
but for now, have a quick look at the following Capistrano
task just to whet your curiosity:

task :after_update_code, :roles => :app,
:except => {:no_symlink => true} do

run <<-CMD
cd #{release_path} &&
ln -nfs #{shared_path}/config/database.yml ←֓

#{release_path}/config/database.yml &&
ln -nfs #{shared_path}/config/mongrel_cluster.yml ←֓

#{release_path}/config/mongrel_cluster.yml
CMD

end

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=26


SOURCE CODE MANAGEMENT 27

Joe Asks. . .

What If I’m Using Rails Engines?

Rails Engines copies some files to public on startup. Since you do
not want to see those files on svn status, you should ignore them:

$ svn propset svn:ignore "engine_files" public
property 'svn:ignore' set on 'public'

On *nix, you will have to name each file on the command line:

$ svn propset svn:executable "*" ←֓

`find script -type f | grep -v '.svn'` public/dispatch.*
property 'svn:executable' set on 'script/performance/benchmarker'

...

property 'svn:executable' set on 'public/dispatch.fcgi'

On Windows systems, do this instead:

C:\deployit> svn propset svn:executable script\performance\* ←֓

script\process\* script\about script\breakpointer ←֓

script\console script\destroy script\generate script\plugin ←֓

script\runner script\server public/dispatch.*
property 'svn:executable' set on 'script/performance/benchmarker'

...

property 'svn:executable' set on 'public/dispatch.fcgi'

Since I will deploy on Unix/Linux machines, it makes sense to have

the dispatchers use a proper line ending. To do so, set svn:eol-style

to native to let Subversion manage the line ending according to local

conventions:

$ svn propset svn:eol-style native public/dispatch.*
property 'svn:eol-style' set on 'public/dispatch.cgi'

...

Last but not least, projects usually have a default home page served

by a Rails action. This means building a route and removing public/

index.html:

$ svn revert public/index.html

Reverted 'public/index.html'

$ rm public/index.html

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=27


SOURCE CODE MANAGEMENT 28

Capistrano and Stable Branch Deployment

We’ll be dealing with Capistrano in detail later in the book.
But for now, know that Capistrano can indeed deploy from the
trunk or any branch. For example, this is what the repository line
of deploy.rb would look like with a stable branch deployment:

set :repository,
"http://yoursvnserver.com/deployit/branches/stable"

Saving Your Work

After all these changes, commit your work to the repository:

$ svn commit --message="Initial project checkin"

Adding README

...

Adding vendor/plugins

Transmitting file data ...............................

Committed revision 2.

Using a Stable Branch for Deployment

Many simple applications simply run off the trunk. Others will feel

more comfortable deploying from a stable branch. Several great books

address this topic better than I possibly could, but I do want you to get

a feel for what’s involved. For detailed information on this topic, you

should read Pragmatic Version Control [Mas05].

The changes you do on trunk might not be fully tested, or you could be

in the middle of a major refactoring when an urgent bug report comes

in. You need to have the ability to deploy a fixed version of the appli-

cation without having to deploy the full set of changes since the last

deployment. In Subversion, you can copy a branch of development to

another name, and you can set up Capistrano to deploy from your sta-

ble branch instead of your development branch. Developers call this

technique stable branch deployment.

Let’s create the stable branch, which will be a copy of trunk:

$ svn copy --message "Create the stable branch" ←֓

file:///home/ezra/deployit/trunk ←֓

file:///home/ezra/deployit/branches/stable

Committed revision 234.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=28


SUBVERSION TIPS 29

When you are ready to merge a set of changes to the stable branch,

check the last commit message on the branch to know which revisions

you need to merge:

$ svn log --revision HEAD:1 --limit 1 ←֓

file:///home/ezra/deployit/branches/stable

---------------------------------------------------------------

r422 | ezra | 2007-05-30 21:30:27 -0500 (30 may 2007) | 1 line

Merged r406:421 from trunk/

---------------------------------------------------------------

Using the information in the log message, you can now merge all the

changes to the branch:

$ svn merge --revision 422:436 ←֓

file:///home/ezra/deployit/trunk .

A app/models/category.rb

M app/models/forum.rb

A db/migrate/009_create_category.rb

...

Finally, commit and deploy:

$ svn commit --message "Merged r422:436 from trunk/"

A app/models/category.rb

...

Transmitting file data ....

Committed revision 437.

$ cap deploy_with_migrations

...

You now have a good Subversion repository, and you can use it to

deploy. You’ve ignored the files that will break your developers’ will or

just your application, and you’ve used common Rails conventions. Still,

you should know a few things about developing with Subversion with

successful deployment in mind. I’d like to walk you through some tips

you can use when you’re using Subversion with Rails.

2.3 Subversion Tips

Now that your repository is off and running, I’ll cover a few quick tips

for using Subversion for your day-to-day coding. I’ll teach you how to

link to Edge Rails with an external link, how to generate code that’s

automatically checked in, and how to do a few other tricks as well.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=29


SUBVERSION TIPS 30

Running Edge Rails

If you are like me, you enjoy keeping up with the latest changes in the

Rails trunk or Edge Rails. Get the latest and greatest features right as

they are added by using svn:externals.

You can get Edge Rails to automatically update when you update your

working copy by setting the vendor directory’s svn:externals property by

running this command:

$ svn propedit svn:externals vendor

When your editor opens to allow you to set the svn:externals property,

add this line:

rails http://dev.rubyonrails.org/svn/rails/trunk/

The next time you update,4 Subversion will download the entire Rails

trunk directory to vendor/rails for you.

If you want to negate that option, you can use the following as of Sub-

version 1.2: 5

$ svn update --ignore-externals

Edge Rails has all the greatest features but is sometimes unstable.

Make sure you have a fairly wide set of unit, functional, and integra-

tion tests to catch any bugs Edge Rails might introduce. Don’t forget

to report any breakage to the Rails-core mailing list and/or to create

a ticket on the Rails Trac (http://dev.rubyonrails.org/ ). When reporting a

bug, you should always report which revision of Rails you were using

at the time:

$ svnversion vendor/rails

4077

Checking in Generated Code

During normal Rails development, you will use generators to create

many new files. Some generated files should not go into the repository.

As a general rule, if Rails generates a file from scratch at run time, you

will not want to check it in. If you will edit a generated file, you’ll want

to check it in.

4. If you set svn:externals before the first commit, the update will not fetch the external

source code.
5. http://subversion.tigris.org/svn_1.2_releasenotes.html

http://dev.rubyonrails.org/
http://subversion.tigris.org/svn_1.2_releasenotes.html
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=30


STABILIZING YOUR APPLICATIONS 31

Whenever you build a scaffold, you’ll want to add the generated files

to Subversion. You can save time by adding them as they are created.

Rails makes this easy when you use the script/generate command to

create new files. Just add the --svn flag. Rails will generate the files and

then automatically svn add them for you, like this:

$ script/generate scaffold --svn Post

exists app/controllers/

exists app/helpers/

create app/views/posts

A app/views/posts

exists test/functional/

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/post.rb

A app/models/post.rb

...

2.4 Stabilizing Your Applications

Rails is a fairly forgiving application framework in development mode,

with one user. When you push your application up to a production

server, it becomes real production software, whether it’s ready or not.

This section will walk you through a few things you can do to stabilize

your application.

Locking Down Plug-ins and Gems

You probably install third-party gems once on your local machine and

forget about them. You don’t need to do anything unless you want a

later gem that fixes a bug or you need features of a new gem.

Shared hosts are a different story, because they often upgrade gems

without your knowledge, which could hose your application at the most

embarrassing moment conceivable. To prevent this unfortunate cir-

cumstance from happening to you, copy each dependency to vendor.

Unpack each gem to vendor like this:

$ cd vendor

$ gem unpack money

Unpacked gem: 'money-1.5.9'

$ ls

money-1.5.9 plugins rails

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=31


STABILIZING YOUR APPLICATIONS 32

Gems all reside in a lib folder. To move your gem to version control, you

just need to copy the contents of that lib folder to vendor, like this:

$ cp -R money-1.5.9/lib/* .

$ cp money-1.5.9/MIT-LICENSE LICENSE-money

$ rm -Rf money-1.5.9/

$ ls

LICENSE-money bank money money.rb plugins rails support

Make sure you abide by your license agreements, too. For example,

to comply with the previous gem’s license, you also need to copy the

license along with the code. Next, add and check in the new files:

$ svn add --force *
A LICENSE-money

...

A support/cattr_accessor.rb

$ svn commit --message="Imported Money library 1.5.9"

Adding LICENSE-money

...

Transmitting file data .......

Committed revision 4.

Upgrading an Unpacked Gem

When you are ready to integrate a new version of the gem into your

application, you essentially follow the same procedure:

$ gem unpack money

Unpacked gem: 'money-1.7.1'

$ cp -Rf money-1.7.1/lib/* .

$ cp -f money-1.7.1/MIT-LICENSE LICENSE-money

$ rm -Rf money-1.7.1

$ svn status

M money/core_extensions.rb

M money/money.rb

X rails

$ svn commit --message="Upgraded Money to 1.7.1"

Sending money/core_extensions.rb

Sending money/money.rb

Transmitting file data ..

Committed revision 5.

If the library provider deleted or moved files around, you need to do the

same thing too. Check the library’s release notes to learn about any

requirements for backward compatibility. A great tool that automates

importing new releases of a library is svn_load_dirs.pl (http://svn.collab.net/

repos/svn/trunk/contrib/client-side/).

http://svn.collab.net/repos/svn/trunk/contrib/client-side/
http://svn.collab.net/repos/svn/trunk/contrib/client-side/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=32


STABILIZING YOUR APPLICATIONS 33

Freeze the Rails Gems

Even new versions of Rails can break backward compatibility. Bruce’s

shared host once upgraded to Rails 1.1 while he was in Spain to give

a Ruby talk at a Java conference. The new version immediately broke

his blog, which was bad enough. As you can imagine, the broken blog

made it nearly impossible to extol the virtues of Rails.

After several decades of intense therapy, he has finally recovered from

this incident and is a better person because of it. You can protect your-

self against this possibility by freezing a copy of the Rails libraries to

your app’s vendor directory. Your application will use the exact version

of Rails that you:

• considered when you designed your application. Some versions of

Rails have philosophical differences between other versions, such

as the new forms model introduced in 1.2, not to mention signifi-

cant changes in Rails 2.0.

• used to test your application. If you don’t freeze your Rails gems,

you’re fundamentally saying that you don’t need to test how thou-

sands of lines of code will work with your application. If you make

such a choice, I wouldn’t recommend any long trips to London.

• understand. Rails is an active framework. You need to make sure

you have a good grasp on changes in the framework before you

deploy.

When you upgrade to a newer version of Rails, you can integrate your

application, test, and then refreeze it to the vendor directory:

local$ rake rails:freeze:gems

If you’ve come from a C, Java, or C# platform, you may be surprised the

Ruby gems often break backward compatibility. In truth, this decision

is a double-edged sword. If you don’t respect backward compatibility,

your applications can break, but there’s a benefit. Breaking backward

compatibility allows your framework to evolve much more quickly and

cleanly, without the risk of framework bloat. (See Enterprise JavaBeans

or XML for two examples.) Ruby and especially Rails developers value

a cleaner code base more than backward compatibility. As more enter-

prise developers use Rails, you may see a change, but don’t ever rely on

a future that lets your application run safely without your own version

of Rails. With versioned code and gems in hand, you can move on to

organizing your migrations.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=33


ACTIVE RECORD MIGRATIONS 34

2.5 Active Record Migrations

Migrations, a Rails feature that lets you express your database tables in

Ruby instead of SQL, are a great way to manage your database schema

throughout your development process. You can quickly create, change,

or delete tables and indexes. If you are already using migrations, I’ll

show you how to whip them into shape for your production environ-

ment. If you’re deciding whether to use them, you should know the

strengths and weaknesses of the approach.

Migration Strengths and Weaknesses

On the plus side, migrations generally provide a more comfortable envi-

ronment and ease the process of keeping your production schema up-

to-date. More specifically:

• Migrations let you express database-independent code in Ruby in-

stead of SQL. Because you’re working in Ruby, you can often

express your ideas in a cleaner, simpler way.

• Migrations integrate with Rake (and Capistrano to a lesser extent).

You can call Rake commands to move your migrations up to a

precise level or move your schema back to a point in time. You can

also ask Capistrano to run your migrations automatically when

you deploy.

• Migrations deal with data. Some database schema changes require

changes in data. Migrations can handle both, since they are Ruby

scripts. Setting the data for new columns, selectively adding or

deleting rows, or defining lookup tables are all examples of dealing

with data in migrations.

• Migrations simplify backing up. Rails developers make just as

many mistakes as any others. If your latest build is a stinker that

also changes the schema, migrations can allow you to back up

quickly.

• Migrations make it easy to change schemas without losing data.

Since migrations use the ALTER TABLE command rather than CREATE

and DROP table, you can easily make changes to the schema with-

out worrying about losing production data. Also, you can use the

same tools to manage your development and production schemes.

Keep in mind that migrations are not a silver bullet. Some teams can

make them work, and others can’t. In general, small teams with a sim-

ple deployment strategy will work great with migrations.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=34


ACTIVE RECORD MIGRATIONS 35

Large teams, teams that manage multiple releases, or teams that refac-

tor model code on a regular basis and simultaneously use data migra-

tions will struggle. These are some of the disadvantages of migrations:

• Migrations do not integrate with Subversion. If an older migration

depends on a particular model and that model no longer exists,

it will break. The source code history in Subversion has no effec-

tive link to the database schema history that lives in your latest

Subversion version.

• Migrations have some curious defaults. By default, columns allow

null. My experience shows that most developers don’t think about

null columns until it’s too late, leading to database integrity prob-

lems later.

• All developers depend on a unified numbering scheme but have no

tools to manage them. If you create a migration and your friend

creates one at the same time, they will both have the same num-

ber, and they will fail.

• Branches are tough to manage. If you want to add a major branch,

perhaps to develop a major new feature without deploying it to the

public until it is stable, you will effectively have to write your own

migration support to do so, because each part of the application

will need its own migrations.

• Components have a tough time depending on migrations. Try to

integrate an existing blog to an existing application, and you’ll see

what I mean. Migrations don’t provide a good default to deal with

this problem.

For the most part, I like migrations. They are quick and convenient

most of the time, and if you can make them work with your team’s

model, you’ll usually be glad you did. If you’ve already committed to

migrations, make sure you look at the disadvantages and understand

them. You will want to solve the problems you’re likely to face before a

migration blows up in production.

First Look at Migrations

Regardless of whether you have a schema defined already or you are

starting a new project, you can easily start using migrations. If you

already have a schema in place, you’ll find Rails has some good tools

that will help you convert them.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=35


ACTIVE RECORD MIGRATIONS 36

Assume you have a forums table defined in a MySQL database and that

the SQL looks like this:

CREATE TABLE `forums` (

`id` int(11) NOT NULL auto_increment,

`parent_id` int(11) NOT NULL default '0',

`title` varchar(200) NOT NULL default '',

`body` text NOT NULL,

`created_at` datetime default NULL,

`updated_at` datetime default NULL,

`forums_count` int(11) NOT NULL default '0',

PRIMARY KEY (`id`)

) TYPE=InnoDB;

To start using a pure-Ruby schema, Rails includes a handy Rake task

to kick start your migration (pun intended). Run this command from

your application’s root:

$ rake db:schema:dump

This command will create a schema.rb file that looks like this:

Download before-category-migration/db/schema.rb

# This file is autogenerated. Instead of editing this file, please use the

# migrations feature of ActiveRecord to incrementally modify your database, and

# then regenerate this schema definition.

ActiveRecord::Schema.define() do

create_table "forums", :force => true do |t|

t.column "parent_id", :integer, :default => 0, :null => false

t.column "title", :string, :limit => 200, :default => "", :null => false

t.column "body", :text, :default => "", :null => false

t.column "created_at", :datetime

t.column "updated_at", :datetime

t.column "forums_count", :integer, :default => 0, :null => false

end

end

With db/schema.rb in place, you can start writing migrations. Rails will

apply each change to your initial schema.rb file. You will never need

to edit this file directly because Rails generates a fresh one after each

migration of your schema. Initially, you will need to copy the initial file

to your test and production environments.

db/schema.rb serves as the starting place for each migration. The file

holds your entire database schema at any point in time in one place for

easy reference. Also, migrations create a table called schema_info. That

http://media.pragprog.com/titles/fr_deploy/code/before-category-migration/db/schema.rb
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=36


ACTIVE RECORD MIGRATIONS 37

table holds a single version column, with one row and a single number:

the version number of the last migration that you ran. Each migration is

a Ruby file beginning with a number. The migration has an up( ) method

and a down( ) method. Migrating up starts with schema.rb and applies

the migrations with higher numbers than the number in schema_info,

in order. Migrating down will apply the migrations with lower numbers,

greatest first.

So now that you have a schema.rb file, you have everything you need

to create migrations at will. Your first migration will create schema_info

for you. I don’t want to teach you how to build a Rails application here,

because the Rails documentation is fairly complete. I do want to make

sure you know enough to stay out of trouble.

Putting Classes into Migrations

Good Rails developers generally don’t depend on domain model objects

in migrations. Five weeks from now, that Forum model might not even

exist anymore. Still, some data migrations will depend on a model, so

you need to create model instances directly inside your migration:

Download after-category-model/db/migrate/005_cleanup_forum_messages.rb

class CleanupForumMessages < ActiveRecord::Migration

class Forum < ActiveRecord::Base

has_many :messages, :class_name => 'CleanupForumMessages::Message'

end

class Message < ActiveRecord::Base

def cleanup!

# cleanup the message

self.save!

end

end

def self.up

Forum.find(:all).each do |forum|

forum.messages.each do |message|

message.cleanup!

end

end

end

def self.down

end

end

Notice that I declare each class I need in the migration itself, which acts

like a module.

http://media.pragprog.com/titles/fr_deploy/code/after-category-model/db/migrate/005_cleanup_forum_messages.rb
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=37


APPLICATION ISSUES FOR DEPLOYMENT 38

Make sure that you use the :class_name feature of has_many( )has_one( ),

belongs_to( ), and has_and_belongs_to_many( ) because Rails uses the top-

level namespace by default, instead of the current scope, to find the

associated class. If you do not use :class_name, Rails will raise an

AssociationTypeMismatch when you try to use the association.

The solution is not perfect. You’re introducing replication, and some

features such as single-table inheritance become troublesome, because

you need to declare each and every subclass in the migration. And

good developers can hear the word DRY—“don’t repeat yourself”—in

their sleep. Still, your goal is not to keep the two versions of your

model classes synchronized. You are merely capturing a snapshot of

the important features of the class, as they exist today. You don’t nec-

essarily have to copy the whole class. You need to copy only the features

you intend to use.6

More Migrations Tips

You should keep a few other things in mind as you deal with migrations.

These tips should improve your experience with them:

• Keep migrations short. You shouldn’t group together many differ-

ent operations, because if half of your migration succeeds, it will

be too hard to unwind. Alternatively, you can include your migra-

tions in a transaction if your database engine supports DDL state-

ments like CREATE and ALTER TABLE in a transaction. PostgreSQL

does; MySQL doesn’t.

• Make sure you correctly identify nullable columns. Columns are

nullable by default. That’s probably not the behavior you want for

all columns. Rails migrations probably have the wrong default.

This list of tips is by no means an exhaustive list, but it should give you

a good start. Now, it’s time to shift to looking at improving the rest of

your application.

2.6 Application Issues for Deployment

Rails is a convenient framework for developers. Sometimes, the con-

venience can work in your favor. You can build quickly, and Ruby is

6. Thanks to Tim Lucas for the original blog post:

http://toolmantim.com/article/2006/2/23/migrating_with_models.

http://toolmantim.com/article/2006/2/23/migrating_with_models
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=38


APPLICATION ISSUES FOR DEPLOYMENT 39

malleable enough to let you work around the framework. But if you’re

not careful, all of that flexibility can bite you. In this section, I’ll walk

you through some common security problems and a few performance

problems as well.

Security Problems

Rails has the security characteristics of other web-based frameworks

based on dynamic languages. Some elements will work in Rails favor.

You can’t secure something that you don’t understand. The framework

is pretty simple, and web development experts already understand the

core infrastructure pretty well. But Rails has some characteristics you’ll

have to watch closely.

Rails is a dynamic, interpreted language. You need to be sure you don’t

evaluate input as code and that you use the tools Rails provides that

can protect you.

Using View Helpers

You likely know how Rails views work. Like most web frameworks, Rails

integrates a scripting language into HTML. You can drop code into Rails

by using<%= your_code_here %>. Rails will faithfully render any string

that you may provide, including a name, helpful HTML formatting tags,

or malicious HTML code like this:

<img src='http://porn.com/some_porn_image.jpg' />

You can easily prevent this problem by using the template helpers. If

you surround your code with <%=h your_code_here %>, Rails will escape

any HTML code a malicious user may provide.

Don’t Evaluate Input

At the same time, you need to be sure not to evaluate any code that any

user might type as input. Ruby is a great scripting language, but you

should be careful anytime you try to evaluate any code, and you should

never evaluate user input. For example, consider the following code that

assumes you’re picking the name of an attribute from a selection box:

def update

...

# Don't do this! Potential injection attack

string = "The value of the attribute is " +

"#{Person.send(param[:attribute])}"

...

end

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=39


APPLICATION ISSUES FOR DEPLOYMENT 40

That code would work just fine as long as the user cooperated with you

and picked “first_name” or “email” from a selection box. But if a Rails

developer wanted to exploit your system, he could send data to your

controller by opening a curl session and posting his own data. Or, if

you don’t verify that the command is a post, he could simply key the

following into a URL:

your_url.com/update/4?attribute=destroy_all

Assume all user input is tainted. Not all metaprogramming is good.

Don’t ever evaluate any data that comes from a user unless you’ve

scrubbed it first.

Don’t Evaluate SQL

You can make a similar mistake with SQL. Say you want to look up

a user with a user ID and a password. You could issue the following

Active Record command:

# Don't do this!

condition = "users.password = #{params[:password]} and

users.login = #{params[:login]}"

@user = find(:conditions => condition)

And all is well. At least, all is well until someone types the following

instead of a password:

up yours'; drop database deployit_production;

The first semicolon ends the first SQL statement. Then, the cracker

launches some mischief of his own, dropping the production database.

An alternative would be to try to create a user with enhanced permis-

sions. This type of attack, called SQL injection, is growing in promi-

nence. You can easily prevent the attack by coding your condition like

this:

conditions = ["users.login = ? and users.password = ?",

params[:login], params[:password]]

@user = find(:conditions => conditions)

This form of a finder with conditions allows Rails to do the right thing:

properly escape all parameters and input that Active Record will pass

through to the database.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=40


APPLICATION ISSUES FOR DEPLOYMENT 41

Check Permissions

Rails gives developers plenty of help when it comes to building pretty

URLs. The bad news is that others who would attack Rails also know

this. Consider the following action, which is commonly created through

scaffolding:

def destroy

Person.find(params[:id]).destroy

redirect_to :action => 'list'

end

To secure the command, you decide to add before_filter :login_required to

the top of your controller, meaning people need to log in before access-

ing the destroy( ) method. For an application where only admins can

delete, that protection is enough. But if any user can create an account

and log in, that protection is not nearly enough. Any user can create an

account and start deleting records by sequentially typing ID numbers

into the browser:

/people/destroy/1

/people/destroy/2

/people/destroy/3

/people/destroy/4

/people/destroy/5

/people/destroy/6

/people/destroy/7

...

Worse yet, a bot could log in and delete all your records. You need to

check that the logged-in user has permission to delete the file within

the controller action. Assume that each Person object is associated with

the User who created it. Also, assume current_user returns the current

logged-in user. Then, you could protect destroy( ) like this:

def destroy

person = Person.find(params[:id])

person.destroy if current_user == person.user

redirect_to :action => 'list'

end

Logging in is not enough. You must scope individual destructive actions

to one user. That covers the most common security flaws. There are oth-

ers, such as exposing your .svn directories to the Web. The easiest way

to get around this one is to do an svn export instead of an svn check-

out when deploying your code to production. This will export your code

without the Subversion metadata and keep prying eyes away.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=41


APPLICATION ISSUES FOR DEPLOYMENT 42

If you take heed of these various issues, then your Rails application

should be nice and secure. Do make sure you keep up with the main

Rails blog; see http://weblog.rubyonrails.org/ for any security updates or

warnings.

Database Performance Problems

Active Record belongs to a family of database frameworks called wrap-

ping frameworks. A wrapping framework starts with a single table and

places a wrapper around it to allow object-oriented applications to con-

veniently access rows in the table. The performance of wrapping sys-

tems like Active Record is highly dependent on you, the programmer.

The biggest thing you can do is benchmark your application. We’ll dis-

cuss benchmarking in Chapter 9, Performance, on page 224. In the

meantime, I’ll show you the most common problem you’re likely to see.

The N + 1 Problem

Active Record makes it easy to retrieve a given object and access its

attributes. Bad things happen when those attributes are lists of other

Active Record objects. Let’s say you’re building the next great social

networking site. You have a Person that has_many :friends. To populate a

list of friends, you write some harmless code that looks like this:

friends = Person.find(:all, :conditions => some_friend_conditions)

@friend_addresses = person.friends.collect {|friend| friend.address.street }

To be sure, that code will work, but it’s also horribly inefficient and

will get worse as the list of friends grows. You’re actually running an

Active Record query for the list of friends and another for every address

you need to fetch. You can fix that problem by using eager associa-

tions, meaning you’ll tell Active Record what to load in advance with

the :include option:

friends = Person.find(:all, :conditions => some_friend_conditions,

:include => :address)

@friend_addresses = person.friends.collect {|friend| friend.address.street }

This code works in the same way to you, but the performance will

improve dramatically. Active Record will load all people and their ad-

dresses instead of just loading people in the first query and addresses

as you touch them the first time.

http://weblog.rubyonrails.org/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=42


APPLICATION ISSUES FOR DEPLOYMENT 43

Indexes

Rails lets database developers get pretty far without knowing anything

about the database underneath or even the theory surrounding rela-

tional databases. If you trust Active Record to take care of you, it’s

likely that you and your users will be disappointed. One of the easiest

things to forget when you’re coding Rails is to create indexes. For any

large tables, make sure you create an index on any column you need

to search. And periodically, you should run statistics so the database

optimizer knows when to use indexes. Database administration perfor-

mance techniques are beyond the scope of this book.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=43


4 Finding a Starter Home

Chapter 3

Shared Hosts
Finding a host for your first Rails app is a lot like finding your first

home. When I left home the first time, I wanted to move right into a

castle, but real life doesn’t work out that way. Most people first move

into an apartment or dorm room. True, apartments don’t come with

their own throne room and servants’ quarters, but they do have their

advantages. You’re sharing common resources and infrastructure with

many others, so you wind up paying less. You don’t have to mow the

lawn or paint the fence. For most people, the first Rails app runs in

modest quarters for many of the same reasons: shared infrastructure,

lower costs, and help with the maintenance. In this chapter, you’ll learn

how to pick and prepare a shared host.

3.1 The Lay of the Land

Many Rails apps start life on a shared server, as shown in Figure 3.1,

on the next page. You’ll buy one slice of a larger server that will have

the ability to serve your Rails application and static content. You will

control only a few directories for your application. You’ll use Subversion

to install your application while you set up your initial infrastructure,

until you’re ready to automate with Capistrano. For a few dollars a

month, you’ll have your own domain name, access to a database server,

several email accounts, and maybe even a Subversion repository. For

many people, this setup is enough for a blog, a site prototype, or even

a bug-tracking system.

If you can cache your application, and sometimes even if you can’t, you

can serve hundreds of users daily without needing to pay US$100 per

month for a dedicated server. Your hosting company will fix intermittent

problems, occasionally upgrade your machine, and keep things running



THE LAY OF THE LAND 45

Shared Host

Source Repository

Application

Client

ApplicationApplication

Environment (OS)

Web Server

Application

Figure 3.1: Map for a shared server

smoothly. When you are ready to move on to a more powerful dedicated

machine or a cluster of servers, you can upgrade within your hosting

company or transfer to a colocation facility.

At least, that’s the theory. Shared hosting is not all sunshine and roses.

You may be sharing a single server with more than 1,000 other web-

sites. I’ve received more than my share of “nasty grams” telling me that

my app’s memory was out of control or that my unstable app crashed

the whole server. I’ve been on the other end of the equation, too. I’ve

been the good citizen, but someone else ran a script that monopolized

the server’s resources and slowed my application to a belly crawl. I’ve

also had my site become wildly popular and subsequently gotten a bill

for US$500. (I am much happier now that I am on the sending end of

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=45


CHOOSING A SHARED HOST 46

those bills!) A good host will keep tabs on these statistics and will notify

you if you are using more than your share. Most will even give you a

little grace period and eat small overages for short periods of time.

All things considered, you can do almost anything on a shared server

that you can do on a dedicated server, but you’ll have more resource

constraints. If you are just learning how to develop a database-driven

website, you can focus on the mechanics of your application instead

of worrying about the details of configuring DNS, daemons, and disk

partitions. Even so, I recommend you treat a shared host as a start-

ing point, not as the final destination for your application. If you are

earning more than US$30 per month from your site or if your business

depends upon it, you should upgrade to a virtual private server or a

dedicated server.

When you look for a new home, you can’t do it all at once. You’ll have

to consider the time it takes to pick a place, change your address,

bribe the landlord, and decide whether you’ll keep or throw out all that

fine stuff like your old Commodore 64. Moving takes time, and things

go more smoothly when you plan. Treat setting up a shared host the

same way. You have one goal—making your application run on a shared

host—but it’s best to define a few discrete steps to get there:

1. Find the right place. Pick the plan that works best for your appli-

cation and your pocketbook.

2. Tell the world where you live. On the Web, that means updating

your DNS entries.

3. Move in your stuff. For Rails, that means installing your applica-

tion. Later, I’ll help you automate this step.

4. Set up your utilities. In the web world, that means configuring

your web server and database server to work with your Rails app.

When all is said and done, your setup might not work the first time.

That’s OK. I’ll walk you through the process of pulling it all together.

When you’re done, you’ll have a slice of a common server, a Mongrel

web server, and a database-backed Rails application.

3.2 Choosing a Shared Host

Way back at the dawn of Rails history (aka the fall of 2004), only a few

hosts officially supported Ruby on Rails. That number increases every

day as Rails becomes better known. There are many capable hosts, so

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=46


CHOOSING A SHARED HOST 47

I won’t recommend any single provider, but you should look for several

critical features in a shared host.

Basic Requirements

At minimum, the host you choose must have the following features:

• Ruby 1.8.6 and Rails 1.2.6 or Rails 2.0.

• Mongrel support. Some shared hosts don’t yet support Mongrel,

but there are plenty that do, and Mongrel is rapidly emerging as

the de facto standard within the Rails community.

• The ability to specify the web server’s document root directory.

There are ways to get around this, but it is much easier if the host

provides an interface where you can point the web server to your

preferred directory, perhaps one like /home/ezra/brainspl.at/current/

public.

• SSH access. This is crucial for troubleshooting your installation

and is required for deploying with Capistrano. Some very inexpen-

sive hosts allow you to transfer files only by FTP, so choose one

that has SSH as an option.

• A database server and the required Ruby gems to connect to it.

MySQL and PostgreSQL are popular, but you can use file-based

database managers such as SQLite just as easily.

For the optimal Rails setup, I recommend these features:

• OS-dependent gems, such as RMagick. These gems let you easily

generate graphics, make thumbnails of photographs, and do other

useful tasks. You can copy pure-Ruby gems into your Rails appli-

cation’s lib directory, but you really want your hosting provider to

install gems requiring compilation and C libraries because build-

ing and installing these gems takes more authorization than your

account will typically have.

• Subversion repositories that are accessible over HTTP (or secure

HTTPS). Whether you are a professional programmer or a hobby-

ist, you should be using source code control. With a source code

control system, you can deploy with Capistrano or publish Rails

plug-ins that other Rails developers can install with the built-in

./script/plugin mechanism. You can use Subversion in countless

other ways, but HTTP access is the most versatile in the context

of a Rails application.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=47


CHOOSING A SHARED HOST 48

The Core Rails Libraries

If you were paying attention, you saw that an installation of the core

Rails libraries was missing from both lists! In fact, you will experience

more stability if you use the built-in Rake rails:freeze:gems command to

save a specific version of Rails to your application’s vendor directory.

You can find more about this in Section 2.4, Freeze the Rails Gems,

on page 33. If your host decides to upgrade to a blazingly fast new

version of Rails in the middle of the night—one that might break your

application—your application will still run with the older version resid-

ing in your vendor directory. When you have tested your app against

the newer version of Rails, you can again call rake rails:freeze:gems to

upgrade.

The adventurous can use rake rails:freeze:edge to use a copy of the devel-

opment version of Rails (commonly called the trunk version or Edge

Rails). Even though Rails is almost three years old, development con-

tinues at a rapid pace. Edge Rails users get to use newer Rails features

before the general public. Early use is a double-edged sword. With the

benefits you get with the early use of new features comes the potential

for API change and bugs. Both problems are inherent in using early

software.

You can also tie your application to the newest Rails trunk so it is

updated every time the development branch of Rails is updated, but

I don’t recommend doing so because that strategy adds another un-

known element into your deployment process. The Rails core team is

very active, and updates to the Rails trunk are made several times a

day. Your application might work at 8:05, but an update made at 8:06

could break your app when it is deployed on the server at 8:07. Keeping

a consistent version of Rails will let you decide when to upgrade, on

your schedule.

If you have installed other third-party libraries or plug-ins, they may

use undocumented features of Rails that could change without notice.

Well-behaved plug-ins will be more stable, but no authorized group of

developers certifies plug-ins. By using a consistent release (or edge) ver-

sion of Rails in conjunction with a thorough test suite, you can guar-

antee that the combination of code libraries in your application passes

all your tests.

Whether you choose to live on the edge or use an older version of

Rails, freezing the libraries within your application will help you sim-

plify your deployment and maintenance in the long run. Next, I’ll walk

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=48


SETTING UP YOUR DOMAIN AND DNS 49

you through some of the intangible factors you should consider when

selecting a shared host.

Intangible Factors

Shared hosts have variable reputations. You’ll want a shared host with

a good reputation for support and one that runs a tight ship. You may

not like that nasty email from the overzealous, pimple-ridden admin

that threatens the life of your firstborn because your application is tak-

ing more than its share of resources, but he’s exactly who you want

running your server. He will keep all the other apps on that shared

host in line too. You’ll also want a company with enough experience

to give you a little grace if your traffic spikes once in a while and won’t

simply kill your Mongrels without any notification when things step out

of the common parameters. System maintenance such as regular back-

ups and cycling log files is a plus because you won’t have to do them

yourself.

The best way to measure intangibles is to ask around. Good Rails pro-

grammers will know who the good vendors are. I won’t list any here

because I am such a vendor, but be forewarned. The best shop today—

one with good deals and good admins—could experience unmanage-

able growth, could lose that key admin who made everything run like a

Swiss watch, or could just get lazy. Ask around and keep up. You’ll be

glad you did. You can start with the excellent Ruby on Rails wiki1 or by

chatting with Rails developers on IRC.2

After you’ve done your homework and picked your host, you’ll want to

start setting things up. But first things first. You’ll need to tell the world

where your application lives. That means you’ll need a domain name,

and you’ll need to configure DNS.

3.3 Setting Up Your Domain and DNS

Any home you choose will need an address so people can find you. On

the Internet, you’ll have two addresses: the one with numbers and dots

is your IP address, and the name with a .com or .org on the end is your

domain name. The IP address contains four numbers, each with values

from 0 to 255, separated by periods. Since memorizing up to twelve

1. http://wiki.rubyonrails.org/

2. http://wiki.rubyonrails.org/rails/pages/IRC

http://wiki.rubyonrails.org/
http://wiki.rubyonrails.org/rails/pages/IRC
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=49


SETTING UP YOUR DOMAIN AND DNS 50

digits is hard, most of your users will refer to your site by its domain

name instead. You will buy your domain name from a domain name

service such as GoDaddy, Network Solutions, or Enom, and you’ll get

your IP address from your hosting service. Under the covers, Domain

Name System (DNS) will associate your name with your IP. The Internet

has several public domain name registries that associate IP addresses

with domain names. So to establish your address, you need to do the

following:

1. Buy a domain name. They will give you a name and a way to

configure the IP address.

2. Pick a shared host. They will give you your IP address.

3. Associate your name with your IP address.

You can easily buy a domain name for as little as US$10, which means

the hardest part is picking a name to use! I recommend choosing some-

thing that is easy to remember and easy to spell. (I hope your name

is simpler than EzraZygmuntowicz.com!) You can use a site such as

Instant Domain Search3 to help find a name that’s not already in use.

Most domain name registrars will also give you a web page to configure

your DNS settings. If you cannot easily find any place to make DNS

changes, contact your providers support system to ask about DNS set-

tings. You want these to point to your shared hosting company’s servers

so the domain name server will forward requests for your domain name

to your specific server.

DNS stands for Domain Name System. It is responsible for resolving a

domain name and returning an IP address where the service really lives.

Your shared hosting provider will have its own name servers. When you

sign up, ask the provider to give you its DNS name server addresses.

They will be something like ns1.foobar.com and ns2.foobar.com. Take note

of these addresses, go to your domain name registrar where you regis-

tered foobar.com, and click the section for DNS or name servers for your

domain. They will have multiple form fields you can fill out. Most hosts

will give you two name servers, but they may have more. Once you

enter these details and save the results, it will take twelve to seventy-

two hours for the name servers all across the world to propagate your

new records. Once DNS is propagated, you can type foobar.com in your

browser, and the domain name service will find the server’s IP address

and route your request to your domain.

3. http://instantdomainsearch.com

ns1.foobar.com
ns2.foobar.com
foobar.com
foobar.com
http://instantdomainsearch.com
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=50


CONFIGURING YOUR SERVER 51

Using Hosting Company Subdomains

Some shared hosts also provide you with a subdomain to use
while you are setting up your site. This might be something like
http://ezmobius.myhost.com. I strongly recommend against this
approach because it looks less professional and requires that
you use a third-party service for your email.

Also, if you switch to a different host, you will have to inform all
your visitors that your address has changed. When using your
own domain name, you can switch from one host to another
with fewer consequences, and your customers never need to
know.

You may be able to see your new application before the bulk of your cus-

tomers, depending on where you live and the DNS services near you.

Propagation time can range from less than an hour to a couple of days,

so plan in advance. While you’re waiting for the DNS changes to take

hold, you can switch gears and focus on configuring the shared host.

3.4 Configuring Your Server

Configuring your server is surprisingly easy when you follow a simple

plan. It really amounts to providing access to your server through SSH

and your document root and creating your application’s database. If

you do these steps correctly, you’ll have a good foundation for the easy

deployment of your web server and Rails app.

First, you’ll want to determine your application’s root directory. If you

don’t know exactly where to put your application, ask. Most host ac-

counts will create this directory for you and set permissions appro-

priately. In the rest of this chapter, I’ll refer to that directory as the

application root. This is the top-level directory for your Rails project.

Your document root is the root directory for your web server and will

hold your static files. Usually, you’ll put your Rails project in a directory

called current, meaning your document root will be current/public. From

here on out, I’ll refer to that directory as the relative root (/current).

http://ezmobius.myhost.com
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=51


SERVER SETUP: CREATE A DATABASE 52

Server Setup: Document Root and SSH

To prepare your shared host for your application, you’re going to need a

way to talk to it securely (SSH). You will also need a new user account

on the shared server. Many shared hosts provide only one SSH user

per account, and your hosting company may have created one for you

already. If not, each hosting company has a different web interface, but

the process is usually simple. Just read the documentation the host

provided.

After you’ve created an account, try it. If you’re running Windows, you’ll

need to set up your SSH client. PuTTY is a good one. There are several

free clients, and you’ll find plenty of documentation for them. If you’re

running a Unix derivative, you’ll have a much easier time. Usually, you

won’t even need to install anything. Open a terminal, and type ssh user-

name@hostname, using the information from your hosting provider. If

you have any trouble, ask your hosting provider. Make sure you get

your SSH connection working, because it’s your secure window into

the system for all your deployment, maintenance, and debugging.

While you are logged in, you will want to change the site’s document

root, also called the web root, to /current/public. Check the control panel

for your site for the right place to configure your document root. The

tool to change it will vary based on your provider. Shortly, you’ll upload

your Rails application to the current directory. The public directory has

your application’s public directory, which hosts static resources for

your application. Capistrano, the Rails utility for deployment, will use

the current directory to always hold the most recent version of your site.

3.5 Server Setup: Create a Database

The final task to do on the server is to create a database. Again, the

means for doing this depends on your hosting provider. As you know,

when you created your Rails application, you gave it a name, for exam-

ple, rails ezra. By default, Rails will use three databases for each of the

test, development, and production environments. The default database

name for each environment is the name of the Rails project, followed by

an underscore, followed by the name of the environment. For example,

for an application called ezra, Rails would generate ezra_development

for the development database. In practice, many developers omit the

_production for their production database.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=52


INSTALLING YOUR APPLICATION 53

Normally, your hosting provider will require that you share your data-

base with other users. They will likely give you a user ID and password

to access your own database namespace. You’ll use that ID to create

your database. Whichever name you choose, make sure to keep the

database name, combined with an admin-level username and pass-

word, in a safe place for use later. Here’s an example on MySQL that

creates a database called ezra and grants all the appropriate privileges.

Your setup may vary.

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP, ALTER, INDEX

mysql> ON ezra.* TO 'ezra'@'hostname' IDENTIFIED BY 'password';

mysql> FLUSH PRIVILEGES;

mysql> CREATE DATABASE ezra;

If you want to peek ahead, the production section of your Rails appli-

cation’s config/database.yml file will look like this:

production:

adapter: mysql

database: ezra

username: ezra

password: password

host: brainspl.at # provided by your shared host provider

At this point, you’ll want to make sure your database is running and

you can access it. Just using the database and showing the list of tables

is enough for now:

mysql> use ezra;

Database changed

mysql> show tables;

Empty set (0.00 sec)

mysql>

Now, you should have a working domain that’s pointed to your hosting

provider, you should be able to reach your server through SSH, and

you have created and accessed a database on the server. With all that

background work out of the way, it’s time to configure your web server.

3.6 Installing Your Application

Even before I knew how to write a single line of PHP, I could copy a

basic PHP script to a server and run it. Deploying Rails is not that easy.

You need to have at least a basic idea of what files and folders are used

by Rails when it runs.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=53


INSTALLING YOUR APPLICATION 54

Fortunately, Ruby has excellent tools that let you deploy your appli-

cation easier than PHP. The main one is Capistrano, which you’ll see

in Chapter 5, Capistrano, on page 92. When we’re done, your Capis-

trano script will check your application directly out of your Subversion

repository and put it exactly where it needs to be. But you need to walk

before you can run.

I’m going to take you through the installation process manually. That

way, you’ll see where everything goes, and you’ll have a greater appreci-

ation of what Capistrano is doing for you. Don’t worry, though. I’ll walk

you through automating the works soon enough.

Your first job is to put your Rails application on your shared host. You

should name your root project directory current. (As we mentioned ear-

lier, that’s the name that Capistrano will use when you automate your

deployment.) Since you have SVN installed, you can use svn export to

copy your application to your server, like this:

$ svn export your_repository_url ~/webroot/current/

You’ve already done some work to prepare your application for deploy-

ment. Even so, you’ll often want to build a tiny working application to

figure out your deployment story before your full application enters the

picture.

If you decide to take this approach, you can build a tiny Rails app in a

couple of minutes. You’ll create a Rails project, generate a model, create

your migration, and configure your database. I’ll walk you through that

process quickly so you’ll have a starter application. If you already have

a starter application, skip the next section.

Creating a Starter Application

When you are testing a deployment configuration, you’ll often want an

application simple enough for your grandmother to build. You’ll want

this simple application to do enough with Rails so you can see whether

your production setup works. You don’t want to have to debug your

deployment environment and your application at the same time.

With Rails, you can take five or ten minutes and build a dead-simple

starter application. Once you have that working, you can move on to

your real application.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=54


INSTALLING YOUR APPLICATION 55

You’ll want to do all the following steps on your development machine,

not your shared host. Your goal is to build a Rails application that

exercises Rails models, views, and controllers. Since the default Rails

project already tests the controller and views by default, you need to

worry only about a primitive model.

Run the commands rails ezra, cd ezra, and ruby script/generate model per-

son. (You don’t need the ruby on some platforms). You’ll get results sim-

ilar to the following:

~ local$ rails ezra

create

create app/controllers

create app/helpers

... more stuff ...

~ local$ cd ezra/

~/ezra local$ script/generate model person

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/person.rb

... more stuff ...

These steps give you a project and a model, but one without database

backing. The last command also generated a migration that you can

use to create your database-backed model. Edit the file db/migrate/001_

create_people.rb. Add a column called name, like this:

class CreatePeople < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.string "name"

end

end

def self.down

drop_table :people

end

end

Create a MySQL database called ezra_development, which you can ac-

cess with a user called root and no password. (If your database engine,

user, or password are different, you’ll simply have to edit database.yml

to match.) Run the migration with rake db:migrate, and create a scaffold

with script/generate scaffold person people.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=55


CONFIGURING YOUR WEB SERVER 56

You have everything you need to test your Rails setup:

~/ezra local$ mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 33 to server version: 5.0.24-standard

mysql> create database ezra_development;

Query OK, 1 row affected (0.02 sec)

mysql> exit

Bye

~/ezra ezra$ rake db:migrate

(in /Users/batate/rails/ezra)

== CreatePeople: migrating ====================================================

-- create_table(:people)

-> 0.1843s

== CreatePeople: migrated (0.1844s) ===========================================

~ezra ezra$ script/generate scaffold person people

exists app/controllers/

exists app/helpers/

create app/views/people

exists app/views/layouts/

... more stuff ...

If you’ve done any Rails development at all, you know these commands

create your database, create your initial table for your Person model

in a Rails migration, and create a simple scaffolding-based application

that you can use to test your simple production setup. Next, you’ll move

on to the web server configuration. Later, I’ll use this starter application

to make sure things are working.

3.7 Configuring Your Web Server

On most shared hosts, Rails can run with either the Apache or the

lighttpd web server with FastCGI, but I recommend Mongrel behind

Apache, nginx, or lighttpd instead if your host supports it. We will cover

how to use a proxy in front of a Mongrel cluster later in the book. For

this chapter, we will cover configuring Mongrel as well as Apache or

lighttpd with FastCGI. As you will see, the Mongrel configuration is

trivial, and that’s exactly the point of using it. If you’re on a hosting

provider that forces you to use FastCGI, you can still grin and bear it.

I’ll help you get set up regardless of web server.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=56


CONFIGURING YOUR WEB SERVER 57

Configuring Mongrel

Your shared host likely has Mongrel already installed. You’ll be amazed

at how simple configuration, startup, and shutdown can be. Mongrel is

a web server written by Zed Shaw in 2,500 lines of Ruby and C. Mongrel

is custom-tailored to running Ruby web applications like Rails. Since

Mongrel is an HTTP server in its own right, you gain the ability to use it

with a wide variety of preexisting tools built to work with HTTP. Here is

what Zed has to say about it on the project’s home page:4 “Mongrel is a

fast HTTP library and server for Ruby that is intended for hosting Ruby

web applications of any kind using plain HTTP rather than FastCGI or

SCGI.”

Mongrel is truly one of the best weapons in your arsenal when it comes

time to deploy your application. It also makes for a great development

server environment. Mongrel uses the best of both the Ruby and C

worlds. Internal HTTP parsing is done in C, and the API for configu-

ration and application interface is done with Ruby. This C foundation

gives it very good speed, and the clean Ruby wrapper provides a familiar

Ruby interface for configuration and extension.

Mongrel offers huge deployment advantages because it breaks away

from opaque protocols like FastCGI or SCGI and uses plain HTTP for

its transfer mechanism. HTTP is a proven, well-tooled, transparent pro-

tocol that all sysadmins know well. Because of the affinity to HTTP, you

will have a lot of options for integrating Mongrel into your production

environment. With Mongrel, you can interrogate individual Rails pro-

cesses with simple command-line tools like curl or by using a browser

and adding the individual Mongrel port number to the URL. By con-

trast, Apache and lighttpd use FastCGI, so there is no way to commu-

nicate with your Rails process without going through your front-end

web server.

If your hosting provider has already installed Mongrel for you, you can

take your new dog for a walk. Fire up one of your Rails applications on

Mongrel. Navigate to your project directory, and type the following:

ezra$ cd ~/webroot/current/

ezra$ mongrel_rails start -d

That command will start a Mongrel daemon running in the background

on port 3000. That port is fine for your development machine, but your

4. http://mongrel.rubyforge.org

http://mongrel.rubyforge.org
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=57


CONFIGURING YOUR WEB SERVER 58

shared host can’t have everyone on port 3000. Find out which port you

should use. You’ll have to start Mongrel on your preassigned port with

the -p extension:

ezra$ mongrel_rails start -d -p 7011

It is just as simple to restart or stop the Mongrel server:

ezra$ cd ~/webroot/current

ezra$ mongrel_rails restart

Sending USR2 to Mongrel at PID 27033...Done.

ezra$ mongrel_rails stop

Sending TERM to Mongrel at PID 27037...Done.

And that’s it. You can use the -p 8080 option to specify port 8080 and -e

production to specify the production environment. In Chapter 4, Virtual

and Dedicated Hosts, on page 72, you’ll learn more about configur-

ing Mongrel for more advanced needs. In the meantime, your hosting

provider probably has some documentation for their policies for dealing

with Mongrel. Look them over, and follow them closely. You can point

your browser at your domain name and see the starter application you

built earlier. You will probably not have to specify your port number,

assuming you’re following the port allocation and other instructions

that your hosting provider gave you.

If you’re working with Mongrel, you’re done. Whistle a happy tune,

and skip ahead to Section 3.8, Application Setup: Rails Config Files,

on page 60. You can skip ahead while I appease the poor pitiful sots

who must deal with lighttpd or Apache.

Apache + FastCGI

All kidding aside, Apache is a great general-purpose web server. In a

Rails environment, Apache works best for serving static content. Serv-

ing your Rails application will take a little more time to configure. To

use Apache, you’ll have to configure Rails to run using FastCGI. Then

you’ll tell the server to forward your request to those Rails FastCGI pro-

cesses. For security’s sake, most shared hosts control the majority of

the configuration options for the Apache web server. However, you can

specify some directives that will make your Rails application run more

smoothly.

By default, Rails provides an .htaccess file for Apache in the public direc-

tory of new Rails apps. By default, this will run your application in

normal, syrup-slow CGI mode. If you chose a quality shared host with

FastCGI support, you should turn on FastCGI in .htaccess. You’ll do so

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=58


CONFIGURING YOUR WEB SERVER 59

by editing the public/.htaccess file in your Rails project to look like the

following:

# Make sure the line that specifies normal CGI

# is commented out

# RewriteRule ^(.*)$ dispatch.cgi [QSA,L]

# Make sure this line is uncommented for FastCGI

RewriteRule ^(.*)$ dispatch.fcgi [QSA,L]

You can include many other directives in the .htaccess file. I won’t walk

through all of them right now, but one important one is specifying a few

custom error pages. No one wants to see “Application error (Rails).”

Even though it is not turned on by default, Rails provides a 404.html file

that you can customize to gently inform the visitor that a page could

not be found. To use these static error pages, make sure you remove

any default error directives and use the following instead:

ErrorDocument 404 /404.html

ErrorDocument 500 /500.html

You can even write a custom Rails controller that handles 404 (Page

Not Found) errors and provides a search box or a list of popular pages:

ErrorDocument 404 /search/not_found

You will need to verify that you have the correct path to the Ruby

interpreter for your host’s servers in your dispatch.fcgi file. The path

to Ruby in your dispatch.fcgi file will be set to the location of Ruby on

the machine you used to generate your Rails application. The easy way

around this problem is to use following line instead:

#!/usr/bin/env ruby

That line will load the environment to set the $PATH variable and then

find the Ruby binary by looking at the path. This makes it portable

across most Unix-like operating systems.

All in all, Apache + FastCGI is a pretty decent general-purpose Rails

platform, but you’ll need to watch a few quirks. You’ll need to make sure

that Apache creates no rogue FastCGI processes. I’ll walk you through

that process in Chapter 6, Managing Your Mongrels, on page 124. I’ll

walk you through these items and a few others in the sections to follow.

That’s pretty much the story for configuring your Rails application with

Apache and FastCGI. If you don’t need lighttpd, you can skip the next

section.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=59


APPLICATION SETUP: RAILS CONFIG FILES 60

lighttpd

The lighttpd web server runs independently of the other websites on

your shared server, so you must include a complete lighttpd.conf file to

start it. If you have installed lighttpd on your development machine,

Rails will copy a minimal config file to the config directory that you can

use as a reference. This file is also located inside the Rails gem in the

rails<version>/configs/lighttpd.conf directory.

If you are running several domains or subdomains with one instance of

lighttpd, you should keep the lighttpd.conf file in a directory outside any

specific Rails application. A good place might be ~/config or ~/lighttpd in

your home directory.

I wrote a specialized Capistrano recipe that builds a lighttpd.conf file

customized for running lighttpd on TextDrive. It could easily be cus-

tomized to use the file paths of other hosts as well. You can find it at

the Shovel page.5

3.8 Application Setup: Rails Config Files

A freshly generated Rails application needs only a minor amount of

customization to run in production mode.

config/database.yml

First, make sure you have edited config/database.yml with the appropri-

ate information for the database you created earlier:

production:

adapter: mysql

database: db_production

username: db_user

password: 12345

host: my_db.brainspl.at

In my experience, you can omit the socket attribute for most shared

hosts. Some shared servers are configured to use localhost as the host,

where others require you to create a separate subdomain for your data-

base. Finally, be sure you use the correct username for the database.

It may be different from the account you use to SSH to the server.

5. http://nubyonrails.com/pages/shovel

http://nubyonrails.com/pages/shovel
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=60


APPLICATION SETUP: RAILS CONFIG FILES 61

For the most security, you shouldn’t keep this file under source code

control. A common technique is to copy this file to a safe place on your

server and add an after_update_code( ) task to Capistrano that copies it

into the live application after it is deployed. (See Chapter 5, Capistrano,

on page 92 for more details.)

RAILS_ENV

Rails was intelligently designed to run with different settings for devel-

opment, test, production, or any other environment you define. It will

use the “development” environment unless told otherwise. When run-

ning on your shared server, you will want “production” mode to be in

effect.

There are at least three ways to set the RAILS_ENV for your application,

each with different repercussions. The goal is to set it in a way that will

take effect on the server, but not on your local development machine.

Option 1: Set the Environment in Your .bash_login File on the Server

The best way is to set the actual RAILS_ENV environment variable.

Rails and Capistrano work best with the bash shell.

ezra$ ~/.bashrc

export RAILS_ENV="production"

This is the most comprehensive way since migrations and other scripts

will also use that environment. Keep in mind this works only if your

SSH user runs your web server. If not, you’ll need to use one of the

following approaches.

Option 2: Set the Environment in Your Web Server Config File

If you can’t set the Rails environment variable in your shell, you must

look for another way to do it. The next best place is in your web server

configuration. Most shared hosts won’t let you set environment vari-

ables from a local .htaccess file. You must use one of the other options

if you are using Apache.

However, you can set the environment if you are using lighttpd.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=61


APPLICATION SETUP: RAILS CONFIG FILES 62

Edit the bin-environment directives in the FastCGI section of your server’s

lighttpd.conf:

fastcgi.server = ( ".fcgi" =>

( "localhost" =>

(

"min-procs" => 1,

"max-procs" => 1,

"socket" => "log/fcgi.socket",

"bin-path" => "public/dispatch.fcgi",

"bin-environment" => ( "RAILS_ENV" => "production" )

)

)

)

This setup can work well even if you use lighttpd locally for develop-

ment. When you start ./script/server for the first time, Rails creates a

file in config/lighttpd.conf that sets RAILS_ENV to development. When

you start your local server with ./script/server, that script then uses

the lighttpd.conf file to start lighttpd. If you put your shared server’s

lighttpd.conf in a different location, you will have harmony between your

local and remote environments.

In practice, most seasoned Rails developers run lighttpd this way, since

most people want to run several domains or subdomains with one

lighttpd server. Your lighttpd.conf is usually located somewhere in your

home directory, and your Rails applications are located in a subdirec-

tory (such as sites). Even though each Rails application may have its

own lighttpd.conf file, these will be ignored on the production server,

exactly as they should be.

Option 3: Edit environment.rb

The final way to set the environment for a shared host is to uncomment

the following line at the top of environment.rb:

ENV['RAILS_ENV'] ||= 'production'

Normally, Rails defaults to development mode, expecting other environ-

ments to specify a different RAILS_ENV if necessary. Uncommenting

this line changes the default to production. In practice, production is

a much better default. If you use lighttpd for development, Rails will

make a lighttpd.conf file for you that explicitly specifies development

mode. WEBrick will use development mode unless explicitly told to do

otherwise. Either way, you get the right environment.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=62


THE WELL-BEHAVED APPLICATION 63

3.9 The Well-Behaved Application

The shared hosting environment is a jungle of constantly changing ele-

ments. One of the otherwise peaceful coinhabitants of your server may

momentarily take the lion’s share of resources. Your host may upgrade

software or hardware for maintenance or out of necessity. Your host

may enforce resource limits and kill your application if it bogs down the

CPU for too long. By following a few simple guidelines, you can make

your application behave as well as possible and also protect yourself

from other poorly behaved applications.

One Rails App per User

Some shared hosts allow you to create several user accounts, and each

user account has its own memory allowance. So, you will benefit if you

run one Rails application per user account. If you need to run another

application, you should create a new user account and run the app

under that user.

Be Miserly with Memory

A bare Rails application with no other libraries will use 30MB to 50MB

of memory. Adding the RMagick image manipulation libraries can easily

push that to more than 100MB. Unlike VPS servers, shared servers

don’t usually sell plans where a fixed amount of memory is guaranteed

to your application. However, there is a fixed amount of total memory

available to all applications on the server, and some shared hosts will

periodically kill processes that use more than their share, usually about

100MB.

This practice of killing processes is especially problematic if you are

trying to run the lighttpd web server. If the host’s maintenance bot kills

your lighttpd daemon, lighttpd will not restart itself automatically. To

make matters worse, some hosts restrict the use of automated scripts

that restart dead or zombified FastCGI processes. Even though the

Apache web server can leak memory when running FastCGI processes,

it will automatically restart them if they have been killed. The bottom

line is that you need to conserve memory and make sure you don’t have

any leaks. Rails doesn’t have any silver bullets for dealing with memory

leaks, but I’ll tell you what I know throughout the chapters that follow.

The cruel reality is that a Rails app can outgrow the shared server

environment. I wrote an application for a client that used several large

libraries including RMagick and PDF::Writer. The overall memory

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=63


TROUBLESHOOTING CHECKLIST 64

requirements meant that the app was too large to run reliably within

the constraints of a shared host. Both are useful libraries, but if they

cause your app to use too much memory, you must either reconsider

your choices or move to a virtual private server. I’ll walk you through

memory in Chapter 9, Performance, on page 224.

In all likelihood, you already know that some applications just won’t

work in a shared hosting environment. If you’re ramping up the scal-

ability curve on the next Facebook application, you already know that

shared hosting is not the ultimate answer. And if you have applications

with intense number crunching, your shared hosting provider and any-

one on your box will curse you until you give up. As a hosting provider,

I’m watching you. Do the right thing.

3.10 Troubleshooting Checklist

Rails deployment means more than dropping in a JAR file or a PHP file.

Even if you follow the previous instructions precisely, your installation

may not run smoothly. Here are some common problems and ways to

easily fix them.

Look at the Web Server Error Logs (in Addition to Rails)

One of the best places to start troubleshooting are the web server’s error

logs, especially when you are initially debugging your configuration.

Rails can’t start writing to production.log until it has launched, so Rails

logging can’t help you if your initial setup has critical problems. File

permission problems and other errors will show up in the web server’s

access_log and may give you clues about what is going wrong.

The tail command is often the most useful way to view your logs. Nor-

mally, tail shows the last ten lines of a file. You can ask for more lines

with the -n argument (for example, tail -n 50 access_log). For real-time

output, the -f argument will continue to print new lines as the web

server writes them. On Unix-based systems, you see this kind of out-

put when you run the Rails script/server command during development.

With some versions of the tail command, you can even tail several logs

simultaneously. If your operating system doesn’t include a capable ver-

sion of tail, you can download a version written in Perl by Jason Fesler.6

6. http://gigo.com/archives/Source%20Code/xtailpl_tail_multiple_files_at_once.html

http://gigo.com/archives/Source%20Code/xtailpl_tail_multiple_files_at_once.html
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=64


TROUBLESHOOTING CHECKLIST 65

In any case, find where your host keeps the httpd logs, and tail them

all:

ezra$ tail -f log/production.log log/fastcgi.crash.log ←֓

httpd/error_log httpd/access_log

Refresh any page of your site, and you should see some kind of output

in the logs:

[Mon April 17 11:20:20 2007] [error] [client 66.33.219.16]

FastCGI:server "/home/ezra/brainspl.at/public/dispatch.fcgi"

stderr: ./../config/../app/helpers/xml_helper.rb:11:

warning: Object#type is deprecated; use Object#class

A common error is Premature end of script headers, which is quite vague

and usually signals a problem that needs to be debugged separately.

However, file permission errors will show up with the full path to the

file or folder that has the problem.

Do Files Have the Correct Permissions?

Rails has to write to several kinds of logs, so those files and folders need

to be writable by the user who runs the FastCGI processes. Usually this

login is the same as the user account used to SSH to the server, but

it might be different. If you have other FastCGI processes or Mongrels

already running, you can run the top command and see what user is

running them:

ezra$ top

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

25698 ezra 11 2 22072 21m 2288 S 0.0 1.1 0:03.30 dispatch.fcgi

Here are a few important files and the permissions they must have:

• The log directory and files must be writable by the user running

the FastCGI or Mongrel process. With Capistrano, the logs direc-

tory is a symbolic link to the shared/logs directory. Make sure both,

and the files inside, are writable.

• The public directory must be writable by the user running the

FastCGI or Mongrel process if you are using page caching. Rails

will run if the public directory is not writable but will not use

caching.

• Capistrano makes a system directory inside public. It also makes

links from this directory to the shared directory holding the core

Rails logs, including production.log. The benefit is that you can

store uploads and other files there, and they will remain between

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=65


TROUBLESHOOTING CHECKLIST 66

deployments. If you keep the page cache or uploads there, the

folder (and the link) must be writable by the FastCGI user.

• dispatch.fcgi must be executable, but not writable by others.

Properly configured web servers will refuse to execute files if dis-

patch.fcgi is writable by the general public. dispatch.fcgi is the main

file that handles requests and fires them off to the controllers in

your application, so it must be executable.

If you have permission problems with any of these files, you can remedy

the problem with the Unix chmod command. The chmod command has

many capabilities that are beyond the scope of this book. You can read

about it in excruciating detail in the Unix manual page by running the

command man chmod:

ezra$ chmod 755 public/dispatch.fcgi

ezra$ ls -l public/dispatch.fcgi

-rwxr-xr-x 1 ezra group 855 2006-01-15 02:03 dispatch.fcgi

The rwx means that ezra can read, write, and execute the file. The first

r-x means that only others in the same group can read and execute the

file. The last r-x means anyone can read and execute but not write the

file. This permission set is the proper setup for the dispatch.fcgi file.

Did You Specify the Correct Path to the Ruby Executables?

When generating a new Rails application, Rails uses the location of

your local Ruby executable to generate the dispatch scripts in the public

directory and all the scripts in the script directory.

Your shared server may not have a copy of Ruby in the same location.

For example, I used MacPorts to build a fresh copy of Ruby on my devel-

opment machine, so my local copy of Ruby is located at /opt/local/bin/

ruby. Even though I made a symbolic link from /usr/bin/ruby, Rails builds

all my script files like this:

#!/opt/local/bin/ruby

# ERROR: Incorrect for most production servers!

If you’ve already generated your application, you need to manually edit

your configuration files, including possibly dispatch.fcgi and others, to

match the actual location of Ruby on your shared server. You can find

this information by connecting to your server via SSH and issuing this

command:

ezra$ which ruby

/usr/local/bin/ruby

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=66


TROUBLESHOOTING CHECKLIST 67

Note the path returned by the which command. If you know this infor-

mation before you start building your application, you can send it to

Rails as you generate your application:

ezra$ rails my_rails_app --ruby /usr/local/bin/ruby

Be careful! Make sure you substitute the Ruby install path you noted

earlier for /usr/local/bin/ruby. All the relevant files will then start with the

correct location:

#!/usr/local/bin/ruby

If your development machine doesn’t have a link to Ruby in that loca-

tion, you can make one to match your production server:

# Link to the actual location of Ruby from an aliased location

ezra$ sudo ln -s /opt/local/bin/ruby /usr/local/bin/ruby

ezra$ sudo ln -s /opt/local/bin/ruby /usr/bin/ruby

ezra$ sudo ln -s /opt/local/bin/ruby /home/ezra/bin/ruby

Now I can set the application’s shebang7 to the location on the remote

server, but the application will still run on my development machine.

Does the Sessions Table Exist in the Database?

Some of the most baffling errors happen when Rails can’t save its ses-

sion data. I’ve gotten a completely blank page with no errors in any of

the logs. Often, the problem is an unwritable /tmp folder or an absent

sessions table. Fortunately, Rails 1.1+ has been enhanced to give a

more informative message when this happens.

By default, Rails stores user sessions in cookies. Cookie-based sessions

are fast, requiring no server-based disk access. This session storage

solution scales well because the server has very little overhead for each

additional client. There are a couple of limitations, though. Sessions are

limited to roughly 4,000 characters. Also, Rails stores cookie session

data without encryption so it is not secure. If you need large sessions

or secure sessions, databases may be the way to go. If you are storing

user sessions in the database, you may have started by creating the

sessions table in your development database like this:

ezra$ rake db:sessions:create

This command will create a numbered migration file that can be run

against the production database to add a sessions table. Then, you’ll

7. shebang refers to the #! characters. The #! characters specify the interpreter that will

execute the rest of the script.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=67


TROUBLESHOOTING CHECKLIST 68

have to add the database sessions to your environment by the line con-

fig.action_controller.session_store = :active_record_store to environment.rb.

Are Current Versions of Necessary Files Present?

Rails is a complete framework and expects to find files in certain places.

It is common to omit core files with the svn:ignore property while devel-

oping. However, those files must be included in your build process on

the production server.

A common example is database.yml. For security reasons, people don’t

want to have their name and password flying all over the Internet every

time they check out the code for a project. But if it isn’t on the produc-

tion server, Rails won’t be able to connect to the database at all.

A solution is to save it to a safe place on the server and make an

after_update_code( ) task to copy it into the current live directory. (See

Chapter 5, Capistrano, on page 92 for a detailed example.)

If you have saved a copy of the core Rails libraries to the vendor direc-

tory, your application will not run unless all the libraries are there. And

like the rest of Rails, filenames and directory names matter. I once saw

an odd situation where the built-in has_many( ) and belongs_to( ) meth-

ods were causing errors. The rest of the application ran fine until the

programmer asked for data from a related table. We discovered that

the actual filenames in ActiveRecord had somehow been truncated and

were causing the error.

Is the RAILS_ENV Environment Variable Set Correctly?

One of the most common problems during deployment is an incorrect

RAILS_ENV. For your production server, RAILS_ENV should be set to

production.

There are several ways to set RAILS_ENV and several ways to determine

the current setting of RAILS_ENV. The only thing that really matters is

the value of RAILS_ENV inside your Rails application, and there is no

direct way to test that (apart from a fully running application).

This can also be confusing since some scripts don’t tell you what envi-

ronment they are using, and others don’t tell you what environment

they are using until they are running properly.

However, you can use the following troubleshooting tools to find out

what RAILS_ENV might be.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=68


TROUBLESHOOTING CHECKLIST 69

The about Script

Rails 1.0 and above ship with a script that prints useful information

about your configuration. Unfortunately, this will not be accurate if the

environment was set in lighttpd.conf.

ezra$ ./script/about

About your application's environment

Ruby version 1.8.6 (i686-linux)

RubyGems version 1.0.1

Rails version 2.0.2

Active Record version 2.0.2

Action Pack version 2.0.2

Active Resource version 2.0.2

Action Mailer version 2.0.2

Active Support version 2.0.2

Application root /Users/ez/brainspl.at/current

Environment development

Database adapter mysql

Database schema version 3

Echo

If you have set the environment in your shell, you should be able to

SSH to your shared server and print it out like this:

ezra$ echo $RAILS_ENV

production

It should also take effect when you start the console:

ezra$ ./script/console

Loading production environment.

>>

Is the Database Alive and Present?

Although Rails can run without touching a database, most applications

use the database in some way. If the database doesn’t exist, your appli-

cation will not run and will show errors.

You can test the database independently of the rest of your application.

Call up the console in production mode, and you should be able to send

simple queries to the database:

ezra$ ./script/console production

Loading production environment.

>> User.find 1

=> #<User:0x263662c @attributes=...

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=69


TROUBLESHOOTING CHECKLIST 70

If this doesn’t work, one of the following may help:

• Can you connect directly to the database with a command-line

client such as mysql or psql? If not, the database may be down or

may not be accessible from your shared server. This method is

not always conclusive. I have used hosts where the command-line

MySQL client cannot connect to the server but the Rails applica-

tion runs without any problems.

• Do you have the proper database, username, password, host, and

port specified in the production section of config/database.yml?

Has the Database Been Migrated to the Correct Version for Your

Application?

You may have run your migrations, but was the right database affected?

If RAILS_ENV is missing from the shell, you may have migrated your

development or test database instead of the production database.

The easiest way to discover your current schema_version is to use the

./script/about command. Newer versions of Rails will display the schema

version on the last line:

ezra$ ./script/about RAILS_ENV=production

About your application's environment

Ruby version 1.8.6 (i686-linux)

RubyGems version 1.0.1

Rails version 2.0.2

Active Record version 2.0.2

Action Pack version 2.0.2

Active Resource version 2.0.2

Action Mailer version 2.0.2

Active Support version 2.0.2

Application root /Users/ez/brainspl.at/current

Environment development

Database adapter mysql

Database schema version 47

If this doesn’t show the version you expect, you may need to run your

migration again or check your other database connections to make sure

the correct database is being addressed. To reapply the migration man-

ually, issue this command:

ezra$ rake db:migrate RAILS_ENV=production

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=70


CONCLUSION 71

3.11 Conclusion

When possible, I run applications on a VPS or dedicated server. How-

ever, I still have several shared-hosted applications that run with an

acceptable degree of reliability. By following the steps mentioned here,

you can also run small applications reliably on an inexpensive, afford-

able shared host.

In this chapter, you learned to set up a typical shared hosting Rails

environment. You also learned that you can’t push shared hosts too

hard, and you can’t rely on them for perfect service. In the next chap-

ter, you’ll see the alternative: virtual and dedicated hosting. If you’re

bursting at the seams and hearing your neighbor through paper-thin

walls, it’s time to move up. Read on.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=71


4 Moving Up

Chapter 4

Virtual and Dedicated Hosts
Most shared host plans are roughly equivalent to a 7-by-7 apartment

with a shared bathroom and no kitchen. After a little time on that

shared host, it may start to feel pretty cramped. When you come to

a point where you are pushing the limits of your shared host, it’s time

for your own virtual private server or dedicated server. You will be able

to stretch out and take over the whole environment without worrying

about fighting others for your CPU time and memory. You’re probably

thinking to yourself, “Ah, the good life.”

Not so fast. With your newly found space and flexibility comes great

responsibility. No one else will hold your hand and watch over your

server, unless you’re willing to pay big bucks for a fully managed server.

You will have to decide whether that extra cost of disk redundancy

through RAID is worth it; you will be responsible for backing up your

system and restoring the data should something go wrong. For better or

worse, you are living the great American dream: full home ownership.

This chapter will walk you through the move-in.

4.1 The Lay of the Land

In this chapter, I’ll show you how to build out a server from scratch.

You’ll first build and install your operating system. Then, you’ll build

some of the tools that you will need to build the Ruby stack. You will

move on to build out the Ruby stack, including Ruby, Rails, RMag-

ick, and Mongrel. You will also install a database and your web server,

though you won’t integrate your web server until Chapter 7, Scaling

Out, on page 144. You’ll have a working Rails installation like the one

in Figure 4.1, on the next page.



THE LAY OF THE LAND 73

Host

Ubuntu (OS)

Mongrel

Application

Source Repository

Application

Client

ApplicationApplication

MySQL
Ruby
Rails

RMagick
nginx
Apache

Capistrano

Figure 4.1: Dedicated server map

In practice, the setup will not work much differently from the one you

saw in Chapter 3, Shared Hosts, on page 44. You will serve each request

with a single Mongrel. That architecture will not scale, but your empha-

sis is on building a workable foundation that you can use as a foun-

dation. In later chapters, you’ll cluster your Mongrels, and then if your

application requires it, you’ll scale out using one of the options in Chap-

ter 7, Scaling Out, on page 144. For now, focus on building all the pieces

that you’ll need through the rest of the book.

Introducing Your Own Host and Administrator

As if deploying a Rails application to someone else’s server wasn’t

enough fun, now you’re ready to build your own machine. Whether

you want the role or not, you’re an administrator. You earned that

rank the moment you built your own environment. I recommend you

take your new role seriously. As an administrator, you have many

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=73


THE LAY OF THE LAND 74

responsibilities—topics that other books will do a better job of exhaust-

ing. You can group your responsibilities into these categories:

• Security and stability

• Configuration and upgrades

• Documentation

Keeping your server secure and stable is a tough business and is a sub-

ject I won’t even attempt to tackle in this book. Managing configuration

and upgrades can be a weekly occurrence, and patching the system is

an important security practice. But the one that I really want to drive

home is documentation. Developers have a bad habit of avoiding docu-

mentation. Programmers I know use insanely creative rationalizations.

Here are some of the best:

• “You may not think you have the time or skill to pull it off, but

you’ll pay with your time now or later.”

• “You might think that documentation is always out-of-date and

unable to keep up with changes in code, but I’m not talking about

code.”

• “The configuration won’t change as fast as code, and even if it

does, that’s all the more reason to document it.”

None of the old arguments against documentation work for infrastruc-

ture. As system administrators, we have to document our configura-

tions. The following tips will help with managing documentation:

• Keep a server journal next to the machine or in a common place

if there are multiple administrators or remote servers. Treat it like

the conch from Lord of the Flies: only the person with the journal

can modify the server configuration. In the journal, record and

date which changes were made and why.

• Keep a directory containing dated session logs in a well-known

directory. If at all possible, comment the logs with “why?” ques-

tions. It’s often easy to see what someone did with the logs, but

the “why?” needs to be filled in to communicate with others.

• Update formal documentation once per week or anytime a major

change is made. Formal documentation includes simple diagrams

and organized sections of documentation for key infrastructure

components.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=74


VIRTUAL PRIVATE SERVERS 75

• Make sure everyone reads the documentation. Let people know

when you update the documentation, and walk them through it

over coffee. These practices will ensure that they understand the

system and also encourage discussion and questions about the

system.

When you must move to multiple servers, you will need to do your best

to keep the configurations in sync. And by “in sync,” I mean preferably

identical. You will want to try to automate differences in configuration

by your application or even Capistrano, and your service provider will

manage others for you. To keep your configurations identical, you will

need good organization and up-to-date documentation. I’ve preached

enough for now. Roll up your sleeves, and let’s get to work.

4.2 Virtual Private Servers

Even after you’ve decided that shared hosting is not enough, one size

does not fit all. Before you decide to spring for that dedicated host pack-

age, take a deep breath and look at another attractive alternative first.

The virtual private server, or VPS for short, is the first logical step up

from a shared server plan. Some hosts might call these virtual dedi-

cated servers (VDSs). These type of servers run in a virtual machine.

Multiple VM instances run on one physical hardware server. Before

you run away shrieking in horror, you need to know that a VPS is not a

shared server package. You will get complete root access to your VPS,

and often you’ll even pick your operating system from some Linux dis-

tribution or FreeBSD.

Your host may run one of quite a few different server virtualization soft-

ware packages. Out of all of these that I have tried, Xen is my favorite.

Xen is a relative newcomer to the virtualization scene, but the open

source package is built right into certain Linux kernels, so the virtu-

alized server processes run a little closer to the metal. Xen also offers

superior disk I/O, which is a big issue for anything that deals with

many files. And guess what? The majority of the time, a web appli-

cation does nothing more than deliver file after file to the user. More

and more web hosts are making Xen-based virtual servers available to

hosting clients, so it shouldn’t be hard to find one.

Once you acquire your own VPS, it acts like a dedicated box. You have

full root access to install or remove anything you need. On a Xen-based

VPS, you could even recompile your own kernel if you wanted to (but

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=75


VIRTUAL PRIVATE SERVERS 76

you should ask your host provider first). Since most virtual servers

will run on high-end hardware, you can get very good performance. Of

course, the more VPSs that your host tries to squeeze onto one physical

box, the less resources there are to go around. It is a good practice

to ask the provider about the hardware setup and exactly how many

virtual machines it runs per box. Generally speaking, bigger slices on

bigger boxes are better. If you need help interpreting the numbers, ask

an expert. You might pay one if you have a lot of money riding on the

answer, or you might simply post the question on one of the many

excellent Ruby on Rails forums.

Memory

Usually, your performance bottleneck will not be processing power but

memory. Some shared hosting providers oversell their hardware in the

hopes that not everyone will be running full blast at once. When too

many customers need too much, your VPS can easily run out of mem-

ory and start swapping out memory pages to disk. To understand the

impact on performance, imagine an Olympic sprinter running at full

speed in perfect conditions and then plunging him into water up to his

chest to finish the race. But with Xen-based VMs, the memory alloca-

tion you get for your server is your memory only. A Xen-based archi-

tecture will not allow a hosting provider to oversell the memory of the

physical box, and your application can run in the clean air of memory

instead of the quagmire of disk swapping. Products like Virtuozzo and

OpenVZ are a few to investigate.

Depending on what you’re doing, I’d recommend a minimum of 160MB

to 256MB of RAM on your VPS. This amount of memory will allow

you to run one or two small Rails sites, depending on the application’s

resource usage. But you can be more precise. Rather than take a blind

guess, you can estimate how much you will need based on one critical

question: how many Mongrels or FastCGI listeners will you need?

One or two back-end processes is plenty for many Rails applications.

A typo or Mephisto blog that gets a medium amount of traffic will usu-

ally be fine on one process. A typical Rails process can take anywhere

from 35MB to 120MB, but some Rails application may take more. Keep

in mind there are always exceptions to the rule, and you should test

locally to see what your memory consumption is before you order your

VPS. I’ll show you how in Chapter 9, Performance, on page 224.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=76


DEDICATED SERVERS 77

Even if you get your initial memory size wrong, a VPS system is very

easy to upgrade. If you need more RAM, disk space, or other resources,

usually all you have to do is request these from your host and reboot

your VPS. When it comes back online, you will have the new resources

available without the need to change anything in your settings to take

advantage of them. Another benefit of the virtual server approach is the

ability to easily migrate your entire server to another physical box or

host when the time comes. If you choose the right provider, upgrading

with your traffic should happen smoothly.

Using Lightweight Web Servers

Mongrel is emerging as the de facto method of deploying a Rails applica-

tion on a VPS. You can run a blog or smaller apps on one Mongrel alone.

Should you need another web server in front of Mongrel for static con-

tent, using nginx or lighttpd can be a huge win. These servers use fewer

resources than Apache and are very fast. If you want an alternative to

Mongrel, nginx and lighttpd have FastCGI support that is top-notch

and stable.

Most hosting providers offer a number of Linux distributions to choose

from. Primarily, you want a distribution with a minimal footprint. When

you run on a smaller memory system, make sure to install only what

you need and no more. From there, you should build only what you

need. In the end, you will come out with a leaner, faster server.

The instructions for setting up a VPS are basically the same as setting

up a dedicated server. You’ll need to know a little more about dedicated

hosting before I move into the setup tutorial.

4.3 Dedicated Servers

Say you have written the latest popular Rails web 2.0 application and a

shared host is no longer enough. Your shared host admin is screaming

at you about resource usage, he’s not responding to your requests for

support quickly enough, and you’ve decided to either challenge him to a

duel or switch to a higher plan. It’s time to move. You’re ready for root,

and your customers are ready to see your fabulous content without

the dreaded spinning globe, or whatever icon their browser is spinning

these days.

With a dedicated server, you don’t have to worry about memory con-

straints or disk space as much. A good starting system would have a

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=77


SETTING UP SHOP 78

modern processor, 512MB to 1024MB RAM minimum, and a spacious

hard drive. A system like this will let your application service a lot of

traffic and concurrent users. I’m not going to bore you with statistics

here because there are too many variable factors to weigh, but once

you’re on a dedicated box, if your application keeps growing to the point

where you need to start thinking about a cluster, you will be ready.

Typically dedicated boxes cost more than VPS systems. A starter VPS

can run you US$25 to US$60 per month, whereas a starter dedicated

box is usually closer to US$150 to US$300.

Even if you do get your own dedicated box, you may want to consider

using Xen. In the real world, Xen offers acceptable performance and

gives you a nice long-term solution for scaling your system out as you

grow. Installing and configuring Xen is out of scope for this book, but

it is definitely worth your time to investigate this alternative. You trade

a small percentage of raw performance for ease of administration and

scalability. With Xen you can partition your dedicated server into a

number of targeted VPS servers that you can easily move to other boxes

as you grow. I’ll tell you how to do exactly this in the Chapter 7, Scaling

Out, on page 144.

4.4 Setting Up Shop

Building a deployment environment is not for the impatient, but with a

good knowledge of the command line and a willingness to google, you

should be able to build your own setup for running Rails applications

in production. I’ll spell out the rest for you. This is all well-traveled

territory, so if things go wrong and you can’t find the answers here,

don’t be afraid to go searching for answers. I’ll show you many of the

answers that you need, and Google can help you find the rest.

Regardless of whether you decide to go with a VPS or dedicated server,

your Rails setup will be the same. I’ll use Ubuntu Linux 7.10 Server

Edition, but don’t worry if your favorite server platform is OS X, BSD,

or another Linux distribution. Everything pertaining to web server and

Rails configuration will work pretty much the same way on any Unix-

like operating system.

I like to build from scratch using Ubuntu Gutsy Gibbon Server. You

can get the download image and instructions online.1 In all likelihood,

1. http://www.ubuntu.com/getubuntu/download

http://www.ubuntu.com/getubuntu/download
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=78


SETTING UP SHOP 79

you won’t wind up building your own system. Almost any virtual or

dedicated hosting provider offers this as an option when you set up your

account with them. If not, just ask them to install the Server version

of Ubuntu for you. They will also set up the basic network interface to

work with their network and data center.

From here on out I’ll assume you are starting from a working install

base with the right network install. If you are installing on your own

server at home or work, you can get detailed Ubuntu Server installation

instructions online.2

Any virtual host provider will have some version of SSH installed and

configured, but you may need to install OpenSSH2 if you’re building

your own host locally. Use the ssh install package by typing sudo apt-get

install ssh to get things working.

I can’t possibly cover all the details for securing a Linux server, but I’ll

give you a few important tips along the way. Here’s the first. Use ssh and

sftp or scp, not ftp or rsh. If you don’t, all your communications will be

in the clear, directly readable at any of the intermediate hosts between

your local machine and server. To use SSH, you will need SSH on both

the client and the host. I’ve already told you about the host system, so

shift your attentions to the client. If you are on OS X, Linux, or BSD,

you undoubtedly have a client installed, but if you run Windows locally,

you will want to install PuTTY. The Windows de facto standard, PuTTY

is an excellent and free SSH program you can find online.3 Follow the

instructions you find there, and you’ll be ready for the rest of this book.

Building your production setup is not a trivial exercise. Here is the

rundown of the whole list you’ll be installing:

• Gnu Compiler Collection (GCC for short) and associated tools. You’ll

use it to build several components including RubyGems and the

RMagick plug-in.

• Ruby and RubyGems. You’ll get the latest stable version of Ruby

and the RubyGems third-party library packing and distribution

system.

• Rails. After installing the operating system and RubyGems, instal-

ling and configuring Rails will be surprisingly easy.

2. https://help.ubuntu.com/

3. http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

https://help.ubuntu.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=79


SETTING UP SHOP 80

• MySQL and the mysql-ruby bindings. You can use a variety of dif-

ferent database servers, but I’m going to go with the most popular

Rails database engine.

• Subversion. Capistrano will check out your code right out of your

Subversion repository.

• Mongrel and dependencies. Mongrel is rapidly becoming the de

facto standard for serving Rails applications.

• ImageMagick and RMagick. Many modern web applications allow

the uploading of images. RMagick can help by automatically cre-

ating thumbnails and cropping images.

• FastCGI Developers Kit and the Ruby FastCGI bindings. If you’re

running Apache or lighttpd instead of Mongrel, you will want to

replace the slower, default CGI right away.

• nginx. This tiny web server is lightning in a bottle, making it a

good substitute for Apache with many installations. Installing it is

easy if you want to go that route.

With these elements, you will have the basic stack that will serve as

the basic foundation for all we do in the remainder of the book. We

will cover optimizing the individual web server configurations in other

chapters in the book. Once you’ve completed the steps in this chapter,

you will be able to run a basic production Rails application.

I’m going to break a cardinal publishing rule here and repeat some

details from Chapter 1, Introduction, on page 8. I’m doing so not to pad

the book but to protect you from major havoc. You’re going to issue

commands against your local box and remote servers, with user per-

missions and root permissions. You’ll need to understand where you

are at all times and how much power (and potential for damage) you

have at any given time. Moving files around and installing software can

destroy lots of work if you’re not extremely careful, so look for the clues

that tell you where and how you’re logged in.

If I’m logged on to my production system, the login will begin with ezra.

If I’m logged in locally, the login will begin with local. In the bash shell

on *nix systems, the # command-line prompt tells you that you are

logged in as root, and a $ means you are logged in as a regular system

user. I’m going to use bash. If you want to use a different shell, make

sure you understand the prompt indicators for your system.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=80


SETTING UP SHOP 81

Configuring the Server

It’s time to get started. I’m going to name my virtual server «tracklayer».

Whenever you see «tracklayer» in the commands, replace it with the IP

address or domain name of your server.

You’ll need a root user and a regular user. Admins usually set up

Ubuntu with a normal user account instead of a root account only.

If you are configuring most other Linux distributions, you will need to

make a normal user and add yourself to the /etc/sudoers file.

If you have a normal user account, use it to log in and skip past the

next two session listings. If you have only root, you’ll need to create a

normal user. SSH in to your new account’s IP with your root user and

password:

local$ ssh root@tracklayer

root@tracklayer password: <enter your password>

If all is well, create your normal user account:

root# adduser ezra

Adding user `ezra'...

Adding new group `ezra' (1001).

Adding new user `ezra' (1001) with group `ezra'.

Creating home directory `/home/ezra'.

Copying files from `/etc/skel'

Enter new UNIX password:

Retype new UNIX password:

# you will be asked a few more questions,

# fill them out however you like.

Be careful with root. After you’ve established your account, always log

in to your machine as your own user instead of root. Simply use su or

sudo to gain root privileges as needed. su stands for super user, and

sudo stands for super user do. If you’re not logged in as root, become

root now:

$ su -

Password:

root#

Now edit /etc/sudoers. You should use a program called visudo to edit the

sudoers file because visudo won’t let two people edit at the same time.

root# visudo

Use your arrow key to move the cursor down, and add this line at the

end of the file:

yourusername ALL=(ALL) ALL

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=81


SETTING UP SHOP 82

Securing SSH

Most experienced *nix admins tend to run sshd on high port
numbers. Here’s why. Crackers commonly create automated
attacking programs called bots that crawl the Net, visiting one
machine after the next to find machines with a running SSH
daemon. Then, the bot uses an automated script with a dic-
tionary to try many combinations of usernames and passwords.
The attacks are so prevalent that these days most servers on the
Internet will experience this kind of attack with some frequency.
If you have a weak login/password combination on a live SSH
port, you’re toast, especially if sshd is on the standard port 22.
Since most of these attack bots will not scan ports higher than
1024, you should always assign sshd to a free port above 1024.

Modify the port for sshd by editing /etc/ssh/sshd_config. Edit the
line that looks like this:

Port 22

Change it to this:

Port 8888 # or any unused port above 1024

Then save the file and quit the editor. And don’t forget to restart
the SSH server daemon.

Now press the Escape key, and type :wq. This means write file and quit.

For security’s sake, you don’t want to allow SSH root logins because

an unauthorized login would be disastrous. Edit /etc/ssh/sshd_config,

replacing this line:

PermitRootLogin yes

with this one:

PermitRootLogin no

Now reload its /etc/ssh/sshd_config to pick up the new settings:

root# /etc/init.d/sshd reload

* Reloading OpenBSD Secure Shell server's configuration sshd [ ok ]

For security and to make things easier on yourself, using SSH keys

instead of passwords for logins is a great technique. Let’s create a pair

of public/private keys and get them installed on our new server; the

key generation is done on your local machine:

local$ ssh-keygen -t dsa

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=82


SETTING UP SHOP 83

This will prompt you for a secret passphrase. If this is your primary

identity key, make sure to use a good passphrase. When this is done,

you will get two files called id_dsa and id_dsa.pub in your ~/.ssh directory.

Note that it is possible to just press the Enter key when prompted for a

passphrase, which will make a key with no passphrase. This is a Bad

Idea™ for an identity key, so don’t do it! You will learn how to achieve

passwordless logins in a secure manner shortly.

Now we need to place your public key on the server. Here is a nice

bash function that will do this for us; place this in your ~/.bashrc or

~/.bash_profile depending on the type of computer you are using locally.

(The function assumes you’ve already created the .ssh directory, so if

you haven’t done so, create it first.)

function authme {

ssh $1 'cat >>.ssh/authorized_keys' <~/.ssh/id_dsa.pub

}

Once that is in your shell’s rc file, you will need to start a new shell or

source the file:

local$ . ~/.bashrc

With this all in place, we can now use the authme command to place

your new keys on the server (replace tracklayer with your IP or host-

name):

local$ authme tracklayer

You will be prompted for the password, and your key will be placed on

the server. Now you will want to enter a new shell with your SSH keys

loaded. This will allow you to start a shell and enter your passphrase for

your private key only once, and then you will be able to ssh to anywhere

your key is placed without entering the passphrase again:

local$ ssh-agent sh -c 'ssh-add < /dev/null && bash'

Now you can ssh to your new server with no passphrase entry:

local$ ssh tracklayer

Install the GCC Tool Chain

You will need to install a compiler tool chain to build and install many

elements including RubyGems. The build-essential package has every-

thing you need to build the components you’ll need to install later.

Install it on Ubuntu like so:

root# apt-get install build-essential

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=83


SETTING UP SHOP 84

Install Ruby and RubyGems

By default, Debian and Ubuntu have five package repositories called

main, restricted, universe, multiverse, and commercial. For the setup in

this chapter, you will need the universe package repository. By default,

it is not enabled. Fix that by editing the /etc/apt/sources.list file, and

uncomment the following two lines:

deb http://us.archive.ubuntu.com/ubuntu/ gutsy universe

deb-src http://us.archive.ubuntu.com/ubuntu/ gutsy universe

Now, update your apt-sources file, and install Ruby and friends. You

should have least Ruby 1.8.6 and Rails 1.2.x or 2.0.x.

root# apt-get update

root# apt-get upgrade

root# apt-get install ruby ri rdoc irb ri1.8 ruby1.8-dev libzlib-ruby zlib1g

...

root# ruby -v

ruby 1.8.4 (2005-12-24) [i486-linux]

Ruby is live. If you want to verify that fact, run irb, and type a few com-

mands, but for now, I’ll press onward. Install RubyGems. You really

don’t want to install Rails without it. Ubuntu and Debian do not offi-

cially package RubyGems, so you will need to build it from source. Go

to RubyForge,4 download the latest stable version, and then build and

install it like this:

root# wget https://rubyforge.org/frs/download.php/29548/rubygems-1.0.1.tgz

...

root# tar xvzf rubygems-1.0.1.tgz

...

root# cd rubygems-1.0.1/

root# ruby setup.rb

---> bin

<--- bin

...

Successfully built RubyGem

Name: sources

Version: 0.0.1

File: sources-0.0.1.gem

Removing old RubyGems RDoc and ri...

Installing rubygems-1.0.1 ri...

Installing rubygems-1.0.1 rdoc...

As of RubyGems 0.8.0, library stubs are no longer needed.

Searching $LOAD_PATH for stubs to optionally delete (may take a while)...

...done.

No library stubs found.

4. http://rubyforge.org/projects/rubygems/

http://rubyforge.org/projects/rubygems/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=84


SETTING UP SHOP 85

Building the Latest Ruby from Source

Ubuntu and Debian releases often do some strange things with
Ruby. A given release may break Ruby up into tiny pieces or
install some earlier release of Ruby. If you want Ruby-1.8.6, you
will need to build from source.

The first step is getting the latest stable release of Ruby. In your
web browser, go to the Ruby home,∗ and download the desired
release. I’m going to install Ruby-1.8.6.

ezra$ wget ftp://ftp.ruby-lang.org/pub/ruby/1.8/ruby-1.8.6.tar.gz

Now, unpack, build, and install Ruby:

ezra$ tar -xvfz ruby-1.8.6.tar.gz
...
ezra$ cd ruby-1.8.6
ezra$ ./configure && make && sudo make install
...

You will need to make sure your $PATH has /usr/local/bin in it:

ezra$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

If you don’t have /usr/local/sbin:/usr/local/bin in your $PATH, then
you will need to add it. Open /etc/profile with your editor, and
add the following line:

export PATH=/usr/local/sbin:/usr/local/bin:$PATH

Those are the basic steps required to build Ruby from source.
Please note that if you choose to build your own Ruby, it will
not work with the Ruby packages in Ubuntu. You will have to
install the mysql and rmagick gems through Ruby Gems and
not through apt-get.

∗. http://www.ruby-lang.org/en/

http://www.ruby-lang.org/en/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=85


SETTING UP SHOP 86

Remember to clean up after yourself. Delete the RubyGems source files:

root# cd ..

root# rm -rf rubygems-1.0.1*

Now you are ready to move into some more familiar territory. You have

already installed Rails on your development machine, and now you

will do the same thing for your production setup. The component ver-

sion numbers will probably be higher by the time you read this, but

the following command will install the latest stable version of Rails.

The include-dependencies option will make sure you have all necessary

dependencies:

root# sudo gem install rails --no-rdoc --no-ri

Successfully installed rake-0.8.1

Successfully installed activesupport-2.0.2

Successfully installed activerecord-2.0.2

Successfully installed actionpack-2.0.2

Successfully installed actionmailer-2.0.2

Successfully installed activeresource-2.0.2

Successfully installed rails-2.0.2

Usually, your server-side installation won’t need the documentation, so

the --no-rdoc --no-ri flags will skip them and keep your installation lean.

Mongrel is next. If you have suffered through building and installing

Apache, you’ll really appreciate the following command:

root# gem install mongrel mongrel_cluster ←֓

--include-dependencies --no-rdoc --no-ri

Select which gem to install for your platform (i486-linux)

1. mongrel 1.0.1 (ruby)

2. mongrel 1.0.1 (mswin32)

3. mongrel 1.0 (mswin32)

4. mongrel 1.0 (ruby)

5. Skip this gem

6. Cancel installation

...

When multiple versions of a gem are available, RubyGems will prompt

you for the version and platform you want. I’m on Ubuntu, so choosing

1 gives me the latest compatible version. Most of the time, Mongrel is

enough. If I need more performance, I put a proxy in front of Mongrel

to serve static content. I’ll talk more about that in Chapter 7, Scaling

Out, on page 144. But now, it’s on to the database.

Install MySQL

Next, you will install MySQL and the MySQL-Ruby bindings. You don’t

have to use MySQL—several available database engines work quite well

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=86


SETTING UP SHOP 87

with Rails. PostgreSQL is another popular choice. You will also install

the zlib1g-dev package because it is a requirement for RubyGems and a

few other things you will need along the way:

root# apt-get install mysql-server-5.0 mysql-client-5.0 ←֓

libmysqlclient15-dev libmysqlclient15off zlib1g-dev ←֓

libmysql-ruby1.8

You’ve installed the database server, but don’t forget to set the root

password:

root# mysqladmin -u root password <your password here>

You can easily verify that the MySQL-Ruby bindings work correctly with

a simple require command in irb:

root# irb

irb(main):001:0> require 'rubygems'

=> true

irb(main):001:0> require 'mysql'

=> true

irb(main):002:0> exit

This require command tells Ruby to load the mysql library that provides

basic Ruby support for MySQL. Since Rails uses the same bindings, if

the require returns true, Rails will probably work too.

So far, you’ve installed Ruby, Ruby on Rails, RubyGems, Mongrel, and

MySQL. I’m going to walk you through installing nginx and FastCGI as

well. You’ll need nginx if you want to use nginx for load balancing and

static content. FastCGI is a good alternative to Mongrel, should you

ever need an alternative. If you want, you can skip these steps and pick

them up later.

Install nginx and FastCGI

This book will concentrate on clustering with Mongrel and Mongrel

cluster. If you want to use FastCGI instead, you can install it now.

Install libfcgi-dev and libfcgi-ruby1.8 like this:

root# apt-get install libfcgi-ruby1.8 libfcgi-dev

To check that fcgi-ruby works, make sure neither installation returns

any errors. You want to be sure you successfully installed the C exten-

sion version of ruby-fcgi and not just the pure-Ruby version. The C

extension is much faster then the pure-Ruby version.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=87


SETTING UP SHOP 88

Just as you did with MySQL, you’ll use a require statement to make sure

you have the right libraries installed:

root# irb

irb(main):001:0> require 'fcgi.so'

=> true

irb(main):002:0> require 'fcgi'

=> true

irb(main):003:0> exit

If both requires returned true, you’re ready to proceed. You need the

Perl Compatible Regular Expression Library (or libpcre) for the rewrite

module in nginx to work properly. You also need the OpenSSL library

and development package for SSL support in nginx:

root# apt-get install libpcre3-dev libpcre3 openssl libssl-dev

Now, the bad news: nginx does not have the latest Ubuntu package at

this time, so you’ll have to build it from scratch. Get the latest release5

(nginx 0.5.33 at the time of this writing), and build it like so:

root# wget http://sysoev.ru/nginx/nginx-0.5.33.tar.gz

...

root# tar xzvf nginx-0.5.33.tar.gz

...

root# cd nginx-0.5.33

root# ./configure --with-http_ssl_module

...

root# make

...

root# make install

...

That’s it for nginx. As always, clean up after yourself and add nginx to

the $PATH:

root# cd ..

root# rm -rf nginx-0.5.33*

The default nginx installation directory is /usr/local/nginx, so you need to

add /usr/local/nginx/sbin to the $PATH. Open /etc/profile with your editor,

and add the following line:

export PATH=/usr/local/nginx/sbin:$PATH

Check that nginx is working and in your $PATH. The version command

option should do the trick:

root# nginx -v

nginx version: nginx/0.5.33

5. http://www.nginx.net/

http://www.nginx.net/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=88


SETTING UP SHOP 89

Install ImageMagick and RMagick

You’ve installed a pretty good stack. Many Rails applications will also

need ImageMagick and RMagick to process image upload and manipu-

lation. This set of libraries gives everyone a little trouble, so pay close

attention:

root# apt-get install imagemagick librmagick-ruby1.8 ←֓

libfreetype6-dev xml-core

Check to see that RMagick works. Put an arbitrary image file called

test.jpg in your current working directory for a test, and run the follow-

ing command:

root# irb

irb(main):001:0> require 'RMagick'

=> true

irb(main):002:0> include Magick

=> Object

irb(main):003:0> img = ImageList.new "test.jpg"

=> [test.jpg JPEG 10x11 DirectClass 8-bit 391b]

scene=0

irb(main):004:0> img.write "test.png"

=> [test.jpg=>test.png JPEG 10x11 DirectClass 8-bit]

scene=0

irb(main):005:0>

RMagick should now work fine, but it is notorious for being hard to

install. If you run into any issues getting RMagick working, you can

look at the Install FAQ on the website.6

Installing Subversion

To get things ready for Capistrano, you’ll need to install Subversion.

Let’s install it now:

root# apt-get install subversion subversion-tools

When you install subversion-tools, it will pull in the exim SMTP server

as a dependency. Configuring your mail server is beyond the scope of

this book, but during the install you will be prompted to choose the

general type of mail configuration you want. Choose the option that

says “internet site; mail is sent and received directly using SMTP.”

You will need to create new Subversion repositories that you can reach

from your development machine. If you don’t have Apache installed,

the best way to run Subversion over the network is with svnserve or

6. http://rmagick.rubyforge.org/install-faq.html

http://rmagick.rubyforge.org/install-faq.html
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=89


CONCLUSION 90

over Subversion and SSH. See the Chapter 2, Refining Applications for

Production, on page 20 for instructions on setting up and using Sub-

version for your Rails projects.

Test It!

Now you should be in great shape for Rails deployment. Generate a

skeleton Rails app, and fire it up with Mongrel to make sure everything

is working fine. Switch to your normal user now because you don’t need

root for Rails development:

root# su yourusername

ezra$ cd ~

ezra$ rails test

Take it for a test-drive:

ezra$ cd test

ezra$ ruby script/server

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

** Starting Mongrel listening at 0.0.0.0:3000

** Starting Rails with development environment...

** Rails loaded.

** Loading any Rails specific GemPlugins

** Signals ready. TERM => stop. USR2 => restart. INT => stop (no restart).

** Rails signals registered. HUP => reload (without restart).

** It might not work well.

** Mongrel available at 0.0.0.0:3000

** Use CTRL-C to stop.

The script/server command will start Mongrel instead of WEBrick. If the

server starts OK, point your browser at http://tracklayer:3000. Remember

to replace tracklayer with the IP or domain of your server.

You should see the “Congratulations, you’ve put Ruby on Rails!” page,

so we are done with the basics for our sweet Rails server stack! You’re

the captain of your own ship now.

4.5 Conclusion

Running your own Rails server is a rewarding experience. With this

basic stack in place, you can start to build your empire and tweak it

to your every desire. With nginx and Mongrel installed, you have many

configuration options to try on your new server.

http://tracklayer:3000
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=90


CONCLUSION 91

Now that the basic building blocks are in place, you’re ready to use the

techniques you’ll find in the rest of this book to make your deployment

scale—and make it screaming fast.

In this chapter, you’ve walked through building your basic installa-

tion. You have the components to run Ruby via Mongrel or another web

server. In the chapters that follow, you’ll put each of those components

through their paces. You’ll start by building some scripts to repeatedly

and reliably deploy your applications. If you’re excited and ready to

move in to this new home, read on. Moving in with Capistrano is next.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=91


4 Moving In

Chapter 5

Capistrano
If you’ve ever rented an apartment or bought a house, you know that the

financial transaction is only the first tiny step. Moving in comes next,

and the process can be, well, overwhelming. In the previous chapters,

you used FTP, SFTP, or Subversion to install your application onto the

shared host. You simply found the files you needed to copy, and you

used Subversion or FTP to push the whole Rails project directory up

to your sever, wholesale. But this limited approach presents several

important problems:

• It’s not scalable. Once you move beyond a single server, your de-

ployment will get much more complicated.

• You need to schedule downtime. While you’re copying your appli-

cation, the app is in an inconsistent state, with some of the files

from your old application and some from the new.

• If something goes wrong, it’s hard to backtrack. You would need to

put the old version of your application back. Doing so means more

manual work or more guesswork.

• For FTP, you need to handle source control manually. Unless you’re

living in the dark ages, you’re keeping your code base in a source

control system. Most Rails developers use Subversion.1

• The deployment process is not automated. You have to do it by

hand, which leaves room for error. Laziness may be one of the

programmer’s greatest virtues, but it doesn’t make for perfect exe-

cution when many steps are involved.

1. If you’re not using some form of source control, put this book down and run, don’t

walk, to pick up Pragmatic Version Control [Mas05]. Running without version control

these days is madness.



THE LAY OF THE LAND 93

You might decide to use an existing tool, such as rsync. The rsync open

source utility provides fast, incremental file transfer, meaning it copies

only those files that change between one invocation and the next.

This method works a little better than plain old FTP because you don’t

move all the files at once, but it still has most of the same prob-

lems. rsync is usually faster than plain FTP, works better with multi-

ple servers, and works without any additional modifications to your

server’s configuration. If you are in a situation where you have little

control over the rest of the server, this might be an acceptable solution.

But as a programmer who aspires to do great things, you want more

than just the acceptable solution, don’t you?

5.1 The Lay of the Land

So far, you have an application that’s ready for deployment and served

from a common repository and a host. To move in with style, you need

some software to manage your move. That’s Capistrano. As you see in

Figure 5.1, on the next page, the Capistrano tool sits on the developer’s

client. Think of Capistrano as the moving company that orchestrates

your move to make sure your application makes it to the server in an

orderly and repeatable manner. You just call them up from any phone,

give the command, and they do the work. Capistrano works the same

way. You can direct any deployment from the comfort of your develop-

ment client, without needing to log onto the deployment servers at all.

For the same reason the company wrote Rails, 37signals created

Capistrano to solve actual business problems. As its Rails deployments

became more regular and more complex, the growing company needed

an automated solution to handle complex application deployments.

This typically entailed deploying code updates to at least two web ser-

vers and one database server. Any solution would need to do at least

the following:

• Securely update multiple web and database servers from a central

source code control repository.

• Be sensitive to errors, and roll back any changes if necessary.

• Work with the Rails file layout and allow logging to happen without

interruption.

• Operate quickly and reduce the need for downtime.

• Work well with Ruby on Rails.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=93


THE LAY OF THE LAND 94

Host��� ��� ��� �� 	
��
Web Server

Application

Source Repository

Application

Client

ApplicationApplication

Capistrano

Figure 5.1: Capistrano map

In the early stages of Rails development, Jamis Buck wrote an applica-

tion named Capistrano to solve this problem. Like Rails, Capistrano is

opinionated software and assumes that you do the following:

• Deploy to a dedicated server.

• Use a Unix-like operating system and file system on the server.

• Have SSH access to that server.

• Use Subversion or some other form of source code control.

• Have the ability to run commands as root with the sudo command.

• Deploy to a web server, an application server, and a database

server (on one or more machines).

Fortunately, you can still configure Capistrano if these assumptions

don’t hold in your particular situation. Shared hosting is such a situa-

tion, and I will show you how to set up a rock-solid recipe for Capistrano

later in this chapter.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=94


HOW IT WORKS 95

5.2 How It Works

You will need to install the Capistrano gem and its dependencies. The

recipes in this chapter use Capistrano 2.0, so install it now. Remember,

local$ is the prompt on your local development machine, and ezra# is the

prompt on your development server:

local$ sudo gem install capistrano

Always keep in mind that Capistrano runs on your local machine. It

uses Net::SSH and Net::SFTP to connect to your remote servers and

run shell commands on them. This means you do not need to install

Capistrano on your remote servers, only on the machines you want to

use to trigger a deploy.

Once you’ve configured Capistrano with a few variables, called a recipe,

you can deploy with the following simple command (some initial setup

is required, which I’ll cover next):

local$ cap deploy

This unassuming command does everything you need to reliably deploy

your application. Rather than tell you what’s happening in English, you

can just look at the Ruby deploy task:

task :deploy do

transaction do

update_code

symlink

end

restart

end

That’s a pretty simple block of Ruby code. Capistrano uses a Rake-like

syntax for defining tasks that will execute on the server. Each task has

a name, followed by a code block. This task, named deploy, does the

following:

1. Before either of these lines is executed, Capistrano connects to

your server via SSH.

2. The code begins a transaction. That means that all the code will

happen in the scope of a transaction. If any part of the transaction

fails, the whole transaction will fail, triggering a rollback. I’ll cover

rollbacks later in this chapter.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=95


HOW IT WORKS 96

3. The first step in the transaction, update_code, does a Subversion

checkout to load a full copy of your Rails application into a dated

release directory on the remote server. For example, a cap deploy

might create a directory called releases/20070416190111. The num-

ber 20070416190111 is actually a time stamp for 7:01:11 p.m. on

April 16, 2007.

4. The next step in the transaction, symlink, links the log directory for

your Rails application to a shared log directory. symlink then links

your application’s folder to the current directory so the web server

can find it.

5. The task finally restarts any active Mongrel or FastCGI processes.

Each of these steps is a critical component to a secure, successful

deployment. Using Subversion ensures that Capistrano will always get

the right code base. SSH provides the necessary security so your files

cannot be compromised in transit, and the symlinks force an instan-

taneous conversion. The symbolic link also lets you revert to an older

version of the code if your code is bad or Capistrano encounters an

error. Finally, Capistrano restarts any active Mongrels or FastCGI pro-

cesses, and the new code goes live.

The Capistrano deploy task is certainly better than rsync, but the auto-

mation comes at a cost. You’ll need to do a little more setup, but not

too much. Before I walk you through the gory details, let’s take a look

at Capistrano’s file organization.

Capistrano’s File Organization

37signals built Capistrano specifically to deploy Rails applications, but

you can configure it to work with other types of applications too. The

default recipe assumes you have a log directory for log files and a public

directory for the web server’s public files.

Every time you deploy, Capistrano creates a new folder named with the

current date and then checks out your entire Rails app into that folder.

Next, it wires the whole thing together with several symbolic links. The

directory structure is shown in Figure 5.2, on the following page. Notice

the current directory doesn’t have the physical file structure under-

neath it. current directory is only a link into a specific dated folder in the

releases directory. The result is that current will always hold the current

active version of your application. For your convenience, Capistrano

also creates a public/system folder and links it to the shared/system direc-

tory, helping you retain cache files or uploads between deployments.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=96


LOCAL AND REMOTE SETUP FOR RAILS 97

log

system

myapp current

releases

shared

20060818213217

symlink

app

config

db

lib

log

symlink

REVISIONS

Figure 5.2: The current directory with symbolic links to releases

5.3 Local and Remote Setup for Rails

Capistrano configuration isn’t too difficult, but you will need to do a

few steps on both your development machine and the remote server. I’ll

list the steps and then go through each in detail. First, on your local

machine you’ll need to do the following:

1. Install the Capistrano gem.

2. Tell Capistrano about your application so it can add the necessary

files to it.

3. Customize config/deploy.rb with your server’s information.

4. Import your application into Subversion.

Those local changes prepare your development machine to deploy your

code base from Subversion. Next, you’ll need to make the following

changes on your server:

1. Set your web server’s document root to current/public.

2. Do a checkout of your app so Subversion will cache your login

information.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=97


LOCAL AND REMOTE SETUP FOR RAILS 98

Practice with a Blank Rails Project

If you are using Capistrano for the first time, it might help to
make a blank Rails project and practice a simple deployment
on your server. You don’t need to write any code or even
create a database. Just use a new project with the default
index.html page that is generated by Rails. To create the default
project, just type rails projectname.

When you’ve completed these steps, you can run the cap deploy:setup

and cap deploy tasks. Next, I’ll show you each independent step in more

detail.

Install the Capistrano Gem

You need to install Capistrano only on your development machine, not

the server, because Capistrano runs commands on the server with a

regular SSH session. If you’ve installed Rails, you probably already have

RubyGems on your system. To install Capistrano, issue this command

on your local machine:

local$ sudo gem install capistrano

Attempting local installation of 'capistrano'

Local gem file not found: capistrano*.gem

Attempting remote installation of 'capistrano'

Successfully installed capistrano-2.0.0

Successfully installed net-ssh-1.1.1

Successfully installed net-sftp-1.1.0

Installing ri documentation for net-ssh-1.1.1...

Installing ri documentation for net-sftp-1.1.0...

Installing RDoc documentation for net-ssh-1.1.1...

Installing RDoc documentation for net-sftp-1.1.0...

While you are installing gems, install the termios gem as well. (Sorry,

termios is not readily available for Windows.) By default, Capistrano

echoes your password to the screen when you deploy. Installing the

termios gem keeps your password hidden from wandering eyes.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=98


LOCAL AND REMOTE SETUP FOR RAILS 99

Reinstalling Ruby on Mac OS X

Capistrano relies heavily on Ruby’s ability to communicate over
SSH, which does not work properly with the default Ruby inter-
preter included with Mac OS X for versions before Leopard.
The C bindings do not always work correctly. (Leopard includes
Capistrano, Ruby version 1.8.6, and Mongrel.) If you have one
of these versions of OS X, you can fix this problem in a couple of
ways:

• Install the MacPorts package management system, and
let it install Ruby for you. You can download MacPorts∗ and
then run this command:

local$ sudo port install ruby

• Install Ruby from source. Dan Benjamin has step-by-step
instructions.† You can find a shell script that automates an
installation of Ruby using Dan’s instructions online.‡

∗. http://macports.org/

†. http://hivelogic.com/narrative/articles/ruby-rails-mongrel-mysql-osx

‡. http://nubyonrails.com/pages/install

To install termios, type the following:

local$ sudo gem install termios

Attempting local installation of 'termios'

Local gem file not found: termios*.gem

Attempting remote installation of 'termios'

Building native extensions. This could take a while...

ruby extconf.rb install termios

checking for termios.h... yes

checking for unistd.h... yes

...

Successfully installed termios-0.9.4

Generate an Application Deployment File

A deployment file brings together all the Ruby scripts and configuration

parameters that Capistrano needs to deploy your application. Just as

the Rails script/generate command generates some default application

code that you later modify, Capistrano has a special flag to copy a few

Rake tasks and a sample deployment file to the proper locations inside

your Rails application.

http://macports.org/
http://hivelogic.com/narrative/articles/ruby-rails-mongrel-mysql-osx
http://nubyonrails.com/pages/install
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=99


LOCAL AND REMOTE SETUP FOR RAILS 100

Generate your deployment file now by typing the following command:

local$ cd my_rails_app

local$ capify .

[add] writing `./Capfile'

[add] writing `./config/deploy.rb'

[done] capified!

Let’s break down what just happened.

capify is the Capistrano script. The dot tells it to install in the current

directory. Alternatively, you can provide the full or relative path to your

Rails app. The command creates a config/deploy.rb file, which contains

the deployment hosts, and Capfile, which tells Capistrano to load its

default deploy recipes and where to look for your deploy.rb when you

run cap deploy from inside your Rails application.

Customize config/deploy.rb

Here is a first glance at the default deploy.rb recipe file that the capify

created for you:

set :application, "set your application name here"

set :repository, "set your repository location here"

# If you aren't deploying to /u/apps/#{application} on the target

# servers (which is the default), you can specify the actual location

# via the :deploy_to variable:

# set :deploy_to, "/var/www/#{application}"

# If you aren't using Subversion to manage your source code, specify

# your SCM below:

# set :scm, :subversion

role :app, "your app-server here"

role :web, "your web-server here"

role :db, "your db-server here", :primary => true

There’s no rocket science in deploy.rb. The :application symbol defines

the deployment target application’s name. The :repository symbol defines

the Subversion repository for the application. The next three roles then

define the machines that serve as the web, application, and database

servers for your application. Most applications will need to set a few

variables depending on the installed location of the application, the

user deploying the app, and the web servers involved.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=100


LOCAL AND REMOTE SETUP FOR RAILS 101

Here is a slightly more customized deploy.rb file:

# Customized deploy.rb

set :application, "brainspl.at"

set :repository, "http://brainspl.at/svn/#{application}"

set :scm_username, 'ezra'

set :scm_password, proc{Capistrano::CLI.password_prompt('SVN pass:')}

role :web, "web1.brainspl.at", "web2.brainspl.at"

role :app, "app1.brainspl.at", "app2.brainspl.at"

role :db, "db.brainspl.at", :primary => true

set :user, "ezra"

set :deploy_to, "/home/#{user}/#{application}"

set :deploy_via, :export

The most obvious differences in the default file and the customized

file are the roles and the few lines below that. Roles are groupings of

machines that handle different tasks for your application. The key roles

are the web server (Apache), application server (Mongrel), and database

server (MySQL). Now, look at the next few lines below the roles.

Capistrano lets you customize many different elements related to your

servers, your application, authentication, and Subversion. The previ-

ous script customizes the deployment directory, the system user, the

:scm_username command, the :scm_password command, and the com-

mand used to access Subversion.

In Capistrano 2.0, Subversion is the default SCM module. The user and

password used to connect to your Subversion repository are defined

as :scm_username and :scm_password. If you use a different source code

repository, then you can set the :scm variable in your deploy recipe. For

example, if you use Darcs instead of Subversion, it would look like this:

set :scm_username, 'ezra'

set :scm_password, proc{Capistrano::CLI.password_prompt('Darcs pass:')}

set :scm, 'darcs'

You will notice that we have something different going on for the :scm_

password variable. Since we don’t want to hard-code the password in our

deploy recipe, we have asked Capistrano to prompt us for the password

every time we run a deploy.

If you’re running a shared host, you can’t run with root access, so you’ll

need to handle restarts a little differently.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=101


LOCAL AND REMOTE SETUP FOR RAILS 102

Setup Apache or lighttpd to Use the Maintenance Page

The deploy:web:enable task assumes your server will serve the
public/system/maintenance.html page instead of the real site, if
the maintenance page exists. Add the following Rewrite direc-
tive to your Apache config or your local .htaccess in order to
make deploy:web:disable work correctly:

RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f
RewriteCond %{SCRIPT_FILENAME} !maintenance.html
RewriteRule ^.*$ /system/maintenance.html [L]

This rewrite rule says that if there is a file called %{DOCU-

MENT_ROOT}/system/maintenance.html, rewrite all requests to /sys-

tem/maintenance.html. With that rewrite rule in place, if the
maintenance page exists, the web server will deliver it to sat-
isfy any requests to this application regardless of what URL they
requested.

In the following code, I use a script called the reaper that does the trick:

set :use_sudo, false

set :run_method, :run

namespace(:deploy) do

desc "Restart with shared-host reaper"

task :restart do

run "#{current_path}/script/process/reaper --dispatcher=dispatch.fcgi"

end

end

Notice that the :restart is defined inside the namespace(:deploy) block.

Capistrano 2 has an organization concept of namespaces. Namespaces

let you collect related concepts into a central grouping of names. The

method namespace takes a single parameter, defining the namespace,

and a code block. All of the Capistrano tasks in the code block will be

part of that namespace. In this case, I’m adding the :restart task to the

default namespace. I’ll create all the deploy-related tasks inside that

namespace. To call this restart task in the deploy namespace, you need

to specify the namespace, like this:

local$ cap deploy:restart

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=102


LOCAL AND REMOTE SETUP FOR RAILS 103

Import Your App into Subversion

In Chapter 5, Capistrano, on page 92, you learned how to place your

code under source control, if you were not already doing so. Capistrano

works with several source code control systems, but Subversion is the

most common. Many shared hosts offer Subversion hosting, or you can

install the Subversion server on your own dedicated or VPS server (see

Chapter 4, Virtual and Dedicated Hosts, on page 72).

You will save configuration time by creating a repository named for

your deployment domain. For example, the brainspl.at repository stores

the Rails app that powers the Brainspl.at site.2 To import the project

for the very first time, issue the following command:

ezra$ svn import brainspl.at http://brainspl.at/svn/brainspl.at

brainspl.at is the local directory containing the application. The source

control server is brainspl.at. The repository on the server is also named

brainspl.at.

After importing a project for the first time, you must check out a new

copy. The new copy will have all the extra files Capistrano needs to

keep everything synchronized. To edit the code for development, you

can issue this command:

local$ svn checkout http://brainspl.at/svn/brainspl.at

To prevent confusion, it’s a good idea to use a separate password for

checking out code on your server instead of the one you use for your

local workstation. From this point, you can make changes to the source

and synchronize it with the server by issuing the svn commit command:

local$ svn commit --message "Bugs have been fixed!"

Setting Your Public Document Root

The document root is a directory your shared host uses to serve all your

static web pages. Rails will manage all the dynamic content. The local

host uses a web server such as Apache to serve your static content—

images, HTML pages, JavaScripts, and style sheets. In Rails, the pub-

lic directory holds all static content. Since the current directory points

to your Rails application, you need to set your document root to cur-

rent/public. Just how you do so will depend on whether you have a

shared or dedicated host and on the web server you’re using. Your host-

ing provider will tell you how to set that document root appropriately.

2. http://brainspl.at

http://brainspl.at
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=103


LOCAL AND REMOTE SETUP FOR RAILS 104

Cache Your Password on the Remote Server

Subversion clients cache login credentials for convenience and perfor-

mance. But remember, Capistrano runs commands in a shell on the

server, not your local host. To make things work smoothly, you need to

log in to Subversion at least once from the remote server so the remote

server’s Subversion client caches your username and password. When

you deploy, the server will use the cached information to do checkouts

from the repository. An easy way to invoke Subversion is to request a

listing from your repository from any directory on the remote server,

like so:

ezra$ svn list http://brainspl.at/svn/brainspl.at

Password: ******
Rakefile

app/

config/

db/

doc/

lib/

log/

public/

script/

test/

vendor/

After you type the command, Subversion will prompt you for your pass-

word and then show a list of the folders in the repository. More impor-

tant, the remote server will be able to cache your username and pass-

word for subsequent Capistrano commands.

Run the setup and deploy Tasks

You are nearly done! Capistrano needs to create a few directories on the

remote server for organization, so run the setup task:

local$ cap deploy:setup

* executing `deploy:setup'

* executing "umask 02 && mkdir -p /home/ezra/brainspl.at/releases

/home/ezra/brainspl.at/shared /home/ezra/brainspl.at/shared/system

/home/ezra/brainspl.at/shared/log /home/ezra/brainspl.at/shared/pids"

servers: ["brainspl.at"]

Password: ******
[brainspl.at] executing command

command finished

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=104


LOCAL AND REMOTE SETUP FOR RAILS 105

myapp releases

shared log

system

Figure 5.3: Directory layout on the server after setup

setup creates the releases and shared directories on the remote server

as in Figure 5.3. No current directory exists yet since you’ve not yet

deployed. You’re finally ready to remedy that. Run the deploy task for

the first time:

local$ cap deploy

If you have a standard setup, you should have a running application,

but you should be aware of a few variations on the plain deploy task.

If you’re running FastCGI and no listeners are running now, you may

need to run the deploy:cold task instead so Capistrano knows to start

FastCGI listeners. Also, if your application has new migrations and you

haven’t run them yet, you should run cap deploy:migrations to populate

your database with the initial schema.

If all has gone well, you will be able to see your new site in a web

browser. If not, see the troubleshooting sections in Chapter 4, Virtual

and Dedicated Hosts, on page 72 and Chapter 3, Shared Hosts, on

page 44.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=105


LOCAL AND REMOTE SETUP FOR RAILS 106

You’ve spent a little time getting your deployment right, but you should

already be seeing the benefits. You now have a deploy command that is

also secure, integrated with source control, informative to your users,

and completely automated. True, I’ve shown you only the most basic

setup so far, but in the rest of the chapter I’ll walk you through a few

more scenarios. First, let me lay a little foundation for customization.

Under the Hood

By now you should understand the basics of Capistrano. Before you

start to customize it, I should provide a little more detail about how

Capistrano executes tasks. Take a look under the hood.

Capistrano Runs Locally

Some developers get a little confused with where and how Capistrano

works. In principle, Capistrano is a client-side tool that issues remote

commands via SSH. From that point, the commands run within the

bash shell just as if you had logged in to the server and typed them

manually. So, the remote server doesn’t need to know anything about

Capistrano, and you don’t even need to install the Capistrano gem

there, but you do need the bash shell.

Code Synchronization Happens from Subversion

Local changes to your copy of the source don’t affect the code on the

remote server! Capistrano synchronizes the remote server from the

remote repository, so you must commit any code changes that you want

deployed.

I just lied a little, but only a little. One piece of code does not come from

Subversion: deploy.rb. All changes to deploy.rb will take effect during

deployment whether those changes have been checked in or not. You

already know why: that’s the script that runs Capistrano, including the

code that exports the current version of your app. It’s still a good idea

to keep your deploy script under source code control with the rest of

your project.

Now, you’ve seen the basic Capistrano deploy script in action, but only

in the default configuration with very few customizations. In the sec-

tions that follow, I’ll show you how to create your own Capistrano tasks

and customize your existing tasks to handle more demanding scenar-

ios. First, you’ll see some tasks, called recipes, that handle some com-

mon tasks.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=106


STANDARD RECIPES 107

myapp current

releases

20060101000000

symlink

app

config

db

lib

20050101000000

20040101000000rollback

Figure 5.4: The rollback task

5.4 Standard Recipes

Developers across the globe continually enhance Capistrano. To see

the name and description of the current built-in tasks, use the cap -T

command. As an added bonus, cap -T shows any of your own custom

tasks too, as long as they have a description. From the root of your

Rails application, do this:

local$ cap -T

Here are a few useful tasks:

cap deploy:migrate Use the power of the Rails migration system to up-

date your database or manipulate data. This task will migrate the

currently deployed code, so use deploy first, or use the composite

deploy:migrations task to keep everything synchronized.

cap deploy:rollback Houston, we have a problem! Something went

wrong, and you need to revert to the previous version of your code.

Running this task activates your previous release. You can run

this several times in a row to continue rolling back to older and

older versions as shown in Figure 5.4. Remember that this uses

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=107


WRITING TASKS 108

only the versions that you’ve previously deployed to the server,

not older tagged versions from the repository. This task does not

touch the database. If older versions of your code require down-

ward migrations, you will have to revert to a previous migration

manually.

cap deploy:cleanup deploy:cleanup deletes older versions from the

releases folder. By default, cleanup leaves the five latest versions,

but you can configure this number with the :keep_releases vari-

able in your recipe. You could set an after "deploy", "deploy:cleanup"

callback task to run deploy:cleanup automatically, but remember

that you won’t be able to deploy:rollback further than the number

of releases currently on the server.

cap invoke COMMAND=’uname -a’ Run a single command on the remote

server. invoke is useful for doing one-time tasks such as executing

Rake tasks.

cap deploy:web:disable This command copies a file called public/system/

maintenance.html with messages when your site is down. Using

deploy:web:disable requires you to first set up your web server to

use a static error page if it exists. deploy:web:disable simply copies

that file to the public/system directory, which your web server will

show to any clients, thus bypassing the web server when your

Rails site is down for maintenance.

cap deploy:web:enable The opposite of deploy:web:disable, deploy:web:

enable deletes the temporary maintenance file created by the

deploy:web:disable task.

When you call the deploy:web:disable task, you can pass in two environ-

mental variables, UNTIL and REASON. Capistrano will render these into

the maintenance.html page that your web server displayed while your

site is down for maintenance. Here is an example call:

local$ cap deploy:web:disable UNTIL='4:30pm' ←֓

REASON='We are deploying new features,←֓

please check back shortly.'

5.5 Writing Tasks

Capistrano is even more powerful when you start writing your own

tasks. Jamis Buck used Ruby’s metaprogramming capabilities to write

Capistrano. If you’ve used Rake (written by Ruby’s metaprogramming

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=108


WRITING TASKS 109

master, Jim Weirich), you’ll understand the general format of a Capis-

trano task, with a few minor differences that you can find in Sec-

tion 5.5, Like Rake, Not Exactly, on page 117.

Capistrano has many built-in tasks and capabilities that are always

evolving. As with Rails itself, it is being developed at a rapid rate, and

this chapter has been rewritten several times as new features have

been added. Even now, Capistrano developers are discussing plans that

would drastically change the internal organization of Capistrano, but

the external interface and operation of existing tasks should remain

the same. For the most current information on Capistrano’s built-in

methods and variables, see the online documentation.3

Setting Variables

The standard deploy task uses several user-customized variables in

order to find the server, repository, and remote directory in which to

deploy an application. If you are writing your own recipes, you can also

create variables with the set( ) method:

set :food, "chunky bacon"

The food variable becomes a local variable for any task, on either side

of a standard assignment. I can then use the variable as follows:

set :breakfast, "a hot slab of #{food}"

task :serve_breakfast, :roles => :web do

run <<-CMD

echo "Are you ready for #{breakfast}?"

CMD

end

This important task prints “Are you ready for a hot slab of chunky

bacon?” You can also use the set( ) method with an array, a hash, or

any other kind of object. You can even assign the variable to the output

of any method, like so:

set :projects, ['todo_list', 'lib/payment_library']

desc "Update remote folders from the repository"

task :update_projects do

projects.each do |project|

run "svn update /home/ezra/#{project}"

end

end

3. http://capify.org/

http://capify.org/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=109


WRITING TASKS 110

In the previous code listing, I set the projects variable to an array value. I

reuse that variable in a task that Capistrano runs on the remote server.

Lazy Evaluation of Variables

Sometimes you want to define a variable that uses other variables that

haven’t been defined yet. No problem. You can enclose your variable

within {}, and Capistrano will use lazy evaluation. For example:

set(:released_stylesheets_dir) {"#{release_path}/public/stylesheets"}

In the previous example, Capistrano will evaluate #{release_path} when

it uses the string. Lazy evaluation lets you wait to bind a given variable

to a value, increasing your flexibility.

Standard Variables and Their Default Values

Capistrano has many different predefined variables. You can set them

to configure different tasks in different ways. Capistrano creates them

for use with your tasks or within other custom variables that you set.

These are some of the predefined variables and their associated uses:

• :application has no default. This variable has the name of your

application. Other variables such as deploy_to use this variable.

You will probably want to set this to the domain name of the appli-

cation you are deploying or to the preferred nickname for your

application.

• :repository has no default. This variable defines the address of your

Subversion repository containing the code you want to deploy.

• :user defaults to the currently logged-in user. This variable defines

the SSH user Capistrano will use to deploy the application. If your

username on your deployment machine is the same as your SSH

username, then you can use the default value. This user account

will also be used to check out code from the repository and per-

form sudo commands during the deployment process.

• :deploy_to defaults to /u/apps/#{application}. This variable defines

the target deployment directory.

• :use_sudo defaults to true. Capistrano often needs to run commands

under the root user. You can suppress this behavior by setting

use_sudo to false.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=110


WRITING TASKS 111

• :run_method defaults to :sudo. Capistrano uses this option to deter-

mine whether the cap deploy:restart should run under the current

user (specify the :run value) or root (specify the :sudo option).

• :password has no default. This parameter defines your password

for SSH authentication. If you leave this blank, Capistrano will

prompt you for the password when you try to deploy.

• :deploy_via defaults to :co. This command defines which Subver-

sion command Capistrano should use to check out your applica-

tion from your repository. Most Rails developers now use :export

instead in order to avoid displaying .svn directory information via

the Web.

• :shared_path, :release_path, and :current_path all point to the various

directories in your environment, as I’ve described in this chapter.

Defining Tasks

Now that you’ve seen a few existing Capistrano variables and tasks, it’s

time to build your own. Tasks consist of a description, a name, and a

list of applicable roles. They are similar to Rake tasks (Section 5.5, Like

Rake, Not Exactly, on page 117).

Any custom tasks you write that are used during your deployment pro-

cess should be put in the :deploy namespace. For the following tasks,

we will assume they are being defined inside the namespace.

Here is a simple task:

desc "Delete cached files"

task :sweep_remote_cache, :roles => :web do

run "cd #{release_path}; rake sweep_cache RAILS_ENV=production"

end

The sweep_remote_cache command runs the Rake task called sweep_

cache. The benefit of building a Capistrano task to do this job is that I

can run the task from my development machine. Take a look in greater

detail:

• desc is a short description Capistrano will show when anyone runs

the cap -T command. This tag is optional, but it’s a good idea to use

it since your tasks will not show up when you run cap -T unless

they have a description defined.

• task identifies the name of the task.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=111


WRITING TASKS 112

• :roles limits the task to certain groups of servers. The most common

roles are :app, :db, and :web. You can define your own roles and

subroles should you have the need.

The rest of the script contains more conventional Ruby code. Capis-

trano provides these methods to make custom task-writing easier:

• run and sudo: Most tasks will use one of these methods. Each

sends shell commands to the remote server, but sudo runs the

commands as root. See the Capistrano page at the Ruby on Rails

site4 for more details.

• put: This uploads a file to the remote server.

• delete: This forcibly deletes a file on the server.

• on_rollback: This executes whenever you explicitly issue a cap

deploy:rollback or when a cap command within a transaction fails.

Here is the definition of the deploy:web:disable task from Capistrano’s

default recipes:

namespace :web do

task :disable, :roles => :web, :except => { :no_release => true } do

require 'erb'

on_rollback { run "rm #{shared_path}/system/maintenance.html" }

reason = ENV['REASON']

deadline = ENV['UNTIL']

template = File.read(File.join(File.dirname(__FILE__), "templates", ←֓

"maintenance.rhtml"))

result = ERB.new(template).result(binding)

put result, "#{shared_path}/system/maintenance.html", :mode => 0644

end

end

This demonstrates the proper use of the on_rollback and put tasks avail-

able to any Capistrano recipe file.

Using the Built-in Callbacks

If you want to add functionality to the standard deployment process to

run a Ruby script when you deploy your application, the best way is

to use the built-in callback system. For every task, Capistrano looks

4. http://manuals.rubyonrails.com/read/chapter/104

http://manuals.rubyonrails.com/read/chapter/104
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=112


WRITING TASKS 113

Use the cap Shortcut for Custom Tasks

The easiest way to run custom tasks is to use the cap

command-line tool. Capistrano will automatically discover the
config/deploy.rb recipe file and will run actions that are passed
as arguments. It does this by looking for a Capfile in the current
working directory that tells it which deploy.rb to load.

# With cap command and arguments
local$ cap -f config/deploy.rb my_custom_task

# The same command, but even simpler!
local$ cap my_custom_task

for a before and after task and calls each one at the appropriate time

if it exists. This was how you would write callbacks in Capistrano 1.x.

In Capistrano 2, there is a more event-driven callback mechanism with

methods called before() and after().

I mentioned earlier that the deploy task calls three other tasks. This

gives you a total of four tasks that you can hook in to. If you write a

task named before_deploy, Capistrano will execute it in advance of the

rest of the deployment process. Similarly, after_deploy will run after the

deployment task.

Here is a short bit of pseudocode that illustrates how this works:

--> before_deploy

deploy do

--> before_update_code

update_code

--> after_update_code

--> before_symlink

symlink

--> after_symlink

--> before_restart

restart

--> after_restart

end

--> after_deploy

In addition, Capistrano automatically creates callbacks for each of your

own tasks, opening a world of possibilities.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=113


WRITING TASKS 114

For any task you define, you automatically get a before and after task:

task :global_thermonuclear_war do

...

end

task :before_global_thermonuclear_war do

kiss_your_butt_goodbye

end

task :after_global_thermonuclear_war do

paint_the_house

end

At this point, I’m sure your mind is racing with the possibilities. Need to

check out code and run the test suite before every deployment? Check.

Want to send email to admins after every deployment? Yup. Give your-

self a raise in after_symlink? Possible, but not likely. With before and after

tasks, you can extend the right task at exactly the right time.

Now, you can take things too far. Let your mind wander a little bit,

and you’ll see what I mean. If before_deploy is also a task, you could

conceivably write a before_before_deploy task. In fact, you can write an

action as convoluted as before_before_after_before_deploy, which looks

like something out of a Monty Python skit. I said you could do it, not

that you should do it. In fact, I’d like a deployment without so much

before in it!

I hope you never write such a task. Still, imagine with me a little bit

longer. A task without any roles will be executed on all servers and all

roles, no matter what the parent task is. It seems that before_wash_dishes

should happen only on the kitchen server if wash_dishes was defined as

a task that happens on the kitchen server. Not so! You must explicitly

specify :role => :kitchen for any task that needs to be restricted to the

kitchen server:

role :kitchen, "kitchen.ezra.com"

role :home_theater, "theater.ezra.com"

# Executed on all servers!

task :before_wash_dishes do

...

end

# Executed only on the servers that have the :kitchen role

task :wash_dishes, :roles => :kitchen do

...

end

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=114


WRITING TASKS 115

# Here's the right way to limit this to one group of servers

task :after_wash_dishes, :roles => :kitchen do

...

end

Having taken that trip down the rabbit hole, it is usually better to refac-

tor your tasks and give them self-documenting names. A make_dinner

task makes much more sense than a generic before_wash_dishes task.

Here’s the revised code, with a better name:

desc "Perform household maintenance."

task :maintain_house, :roles => :estate do

mow_lawn

prepare_soap_bucket

wash_car

wax_car

make_dinner

wash_dishes

end

Defining callbacks by making tasks named after your tasks with before_

or after_ prepended is still a valid method of using callbacks in Capis-

trano. But there is also new syntax for defining callbacks that are a bit

cleaner. For example:

desc "Perform household maintenance."

task :maintain_house, :roles => :estate do

mow_lawn

prepare_soap_bucket

wash_car

wax_car

make_dinner

wash_dishes

end

before "deploy", "maintain_house"

As you can see, this new notation allows you to name your tasks what-

ever you desire and still be able to hook them to certain events.

Consider a more practical problem. If your database.yml file is not under

source code control—remember, database.yml has your password—you

need to use another method to copy it to your server when you deploy.

Writing an after callback task is a perfect way to solve this problem.

When you run cap deploy, Capistrano calls other tasks that you can

define without having to override the built-in tasks. To build such a

task, you would save the appropriate password information to a file

in shared/config/database.yml. The shared folder is made by Capistrano

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=115


WRITING TASKS 116

when you run the deploy:setup task, but you will have to make the config

folder manually. If you have a cluster of servers, you will have to do

this on each of your servers. The following task shows how. Add it to

deploy.rb:

desc "Symlink the database config file from shared

directory to current release directory."

task :symlink_database_yml do

run "ln -nsf #{shared_path}/config/database.yml

#{release_path}/config/database.yml"

end

after 'deploy:update_code', 'symlink_database_yml'

Because we did not specify any roles, Capistrano will run the task on all

the servers in the cluster (:app, :web, :db, and any others you define).

Anytime you deploy, your script will symlink database.yml to the config

folder in the current release directory. It’s just so easy!

Using Roles

By default, Capistrano executes tasks in parallel on all the servers

defined with the role command. You can limit the scope of a command

by explicitly specifying the roles for that task. It is also important to

note that Capistrano also runs tasks in parallel, but not concurrently.

Imagine three tasks and three servers:

role :web, ['one', 'two', 'three']

task :daily do

wash_dishes

mow_lawn

learn_japanese

end

The tasks would be executed like this:

local$ cap daily

* wash_dishes on server one

* wash_dishes on server two

* wash_dishes on server three

* mow_lawn on server one

* mow_lawn on server two

* mow_lawn on server three

* learn_japanese on server one

* learn_japanese on server two

* learn_japanese on server three

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=116


WRITING TASKS 117

Like Rake, Not Exactly

Earlier I told you that Capistrano was almost exactly like Rake. I’m sure

you noticed the almost. I’ll point those differences out now.

Tasks Are Methods

Unlike Rake, other tasks can call Capistrano tasks directly, just as if

they were methods. Rake tasks can call other Rake tasks only as tasks,

but not as methods. Capistrano uses this feature internally, but you

can use it in your tasks, too. For example, here is a simple task:

desc "Play a war game"

task :play_global_thermonuclear_war do

...

end

play_global_thermonuclear_war is a Capistrano task, but you can call it

from another task like a normal method:

desc "Play several games"

task :play_games do

play_global_thermonuclear_war

play_llor_dot_nu

end

This strategy lets you run a task alone or together with other tasks. For

example, you could call a :rotate_logs task from a task called :weekly or

alone.

You Can’t List Other Tasks as Dependencies of a Capistrano Task

With Rake, you can pass the name of a task as a hash where the key

is the task name and the values are the other tasks that must be run

before the current task. Capistrano doesn’t use this syntax. Instead,

you must call other tasks as methods or write before and after callbacks,

as mentioned previously.

You Can Override Capistrano Tasks

Rake lets you define tasks in stages, so it is not possible to override an

existing Rake task. Capistrano gives you the ability to override tasks.

If you don’t like the behavior of a built-in task, you can redefine it. For

example, if you are deploying to a shared host, you might need to send

a special argument to the reaper script in order to restart your FastCGI

processes.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=117


A LITTLE EXTRA FLAVOR 118

To do this, define your own restart task as if it had never been written:

namespace(:deploy) do

desc "Shared host restart"

task :restart do

run "#{current_path}/script/process/reaper --dispatcher=dispatch.fcgi"

end

end

Other built-in tasks such as deploy will now use this task instead of the

built-in deploy:restart task.

Capistrano Tasks Aren’t Automatically Available as Rake Tasks

Even though Capistrano tasks look like Rake tasks, they are part of

a separate system. Rake doesn’t know about Capistrano tasks, even

though older versions of Capistrano tried to bridge that gap. The ap-

proved way to call Capistrano tasks is with the cap command. It will

automatically discover recipes in config/deploy.rb (depending on the con-

tents of Capfile):

local$ cap deploy

5.6 A Little Extra Flavor

In this section, I’ll walk you through the topics that will make your

Capistrano experience a little sweeter. You’ll sometimes want to see

extra output or speed up your checkouts. These extra touches can

really improve your overall experience.

Stream

Capistrano has a built-in helper called stream. You can use this helper

to stream information such as log files and other stats from your remote

servers to your local terminal.

You can use a task like this to tail the log files of your server:

Download capistrano/recipes/stream.rb

task :tail_log, :roles => :app do

stream "tail -f #{shared_path}/log/production.log"

end

You can also continuously monitor the output of a shell command with

Capistrano’s streaming callbacks.

http://media.pragprog.com/titles/fr_deploy/code/capistrano/recipes/stream.rb
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=118


A LITTLE EXTRA FLAVOR 119

For example, to get the output of the rails_stat log parser, you would use

something like this:

Download capistrano/recipes/stream.rb

desc "Watch continuous rails_stat output"

task :rails_stat, :roles => [:app] do

sudo "rails_stat /var/log/production.log" do |channel, stream, data|

puts data if stream == :out

if stream == :err

puts "[Error: #{channel[:host]}] #{data}"

break

end

end

end

In this task, you can see that the sudo method takes a block with three

parameters: channel, stream, and data. The channel is the raw SSH con-

nection, the stream is equal to either :out or :err, and the data is the

output from the server.

This produces the following output on my blog:

~ 0.4 req/sec, 2.6 queries/sec, 6.7 lines/sec

~ 0.3 req/sec, 1.4 queries/sec, 4.3 lines/sec

~ 0.6 req/sec, 0.6 queries/sec, 4.2 lines/sec

~ 0.5 req/sec, 0.5 queries/sec, 3.5 lines/sec

~ 0.2 req/sec, 0.2 queries/sec, 1.4 lines/sec

Run Solo

Capistrano can do any kind of task that can be run over SSH, and it

can be used with other technologies such as PHP, Perl, or Python (I’ve

used it to deploy a web app written in Perl). I run my blog off the Typo

trunk but use a separate theme that is stored in my own repository. To

easily update it on the remote server, I use a custom recipe kept in its

own deploy.rb file within the theme directory:

set :application, "example.com"

set :user, "ezra"

role :web, application

desc "Update the theme and delete cached CSS files."

task :theme_update, :roles => :web do

run "svn update #{application}/themes/nuby"

run "rm #{application}/public/stylesheets/theme/*.css"

end

http://media.pragprog.com/titles/fr_deploy/code/capistrano/recipes/stream.rb
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=119


A LITTLE EXTRA FLAVOR 120

What’s happening here? I use Capistrano’s built-in capability to con-

nect to a remote server and execute commands. By specifying a :role for

the task, it knows that it should connect to all the :web servers and run

the svn update and rm commands. I also used its ability to set local vari-

ables like :application to simplify the recipe. I keep the files in a folder

with the name of the domain, which makes it simple to specify a path

to the theme folder and the cached style sheets.

To deploy, you could call it from the command line like this:

local$ cap -f /path/to/deploy.rb theme_update

Since deploy.rb is in a nonstandard location, use the -f argument to

specify the location on the file system. Then you need to specify the task

to run with theme_update. This makes it easy to address deploy recipes

anywhere on your computer rather than only those in the standard

locations.

Capistrano will prompt you for your password and will execute the

actions, showing the output as it happens. It will not do the standard

deploy:update_code, deploy:symlink, and other tasks. Those are only part

of the deploy task. If you write your own tasks, they will be executed

independently.

You could also use Capistrano in a similar fashion to do maintenance

tasks built into Rails, including log rotation and session sweeping:

desc "A Capistrano task that runs a remote rake task."

task :clear_sessions, :roles => :db do

run "cd #{release_path}; rake db:sessions:clear RAILS_ENV=production"

end

Do a Push Deploy Instead of Pull with a Custom Deployment

Strategy

Capistrano is a great system by default. But some people would rather

push a tarball of their application code base to the servers rather than

let the servers pull the application from Subversion. Luckily, Capis-

trano 2.0 has different deployment strategy, and it’s easy to change the

deploy to work via push instead of pull:

set :deploy_via, :copy

Just changing the :deploy_via variable to :copy will alter the behavior

of your deploy. Now instead of logging in to your servers and doing

an svn export, Capistrano will now do a local Subversion checkout to a

temporary location on your local machine. It will then compress and

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=120


TROUBLESHOOTING 121

create a gzipped tarball of your application. Once it has the tarball, it

will upload it to the server and create a new release directory. The rest

of the deploy tasks will remain unchanged, and all your symlinks and

callbacks will fire like usual. This is extremely useful if you can access

your Subversion repository only from inside your office building but not

from your servers. Now you can deploy via push to avoid this issue.

5.7 Troubleshooting

Since Capistrano executes remotely on the target server via SSH, de-

bugging can be difficult. These tips can help you troubleshoot your

scripts when things go wrong.

The current Directory Can’t Exist as an Actual Folder

Capistrano is a tremendously convenient tool, but it’s part of your

infrastructure. As with Rake or other Rails scripts, you might find

debugging Capistrano recipes a little intimidating. Take heart, though.

It’s all Ruby code.

Shared hosts often give you a directory called current as part of the

overall setup process. The recipes that I’ve shown you will create that

directory for you. You’ll want to delete the host’s version.

Migrations Out of Sync with Code Base

Capistrano usually makes it easy to deal with migrations if you follow

the precautions I lay out in Chapter 2, Refining Applications for Pro-

duction, on page 20. That chapter laid out what you should do to keep

your migrations well behaved. If you’ve gotten yourself into trouble,

keep these tricks up your sleeve to get you back out.

One problem can occur with partially completed migrations. If a migra-

tion has a bug in the up( ) or down( ) method, your migration might

leave your database in an inconsistent state, or you may be lucky and

need only to set the version number correctly. If your version number

is wrong, you need to reset it with a SQL query.5 You can easily do so in

the console or from the Rails script runner. Say Rails crashed in migra-

tion 44 before setting the version in the schema information, so your

migrations are always crashing on number 43. You can set the version

5. Alternatively, you can use the transactional_migration plug-in at

http://www.redhillonrails.org/#transactional_migrations.

http://www.redhillonrails.org/#transactional_migrations
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=121


TROUBLESHOOTING 122

column of schema_info to 44 with this command: ruby script/runner ’Active

Record::Base.connection.execute "update schema_info set version=44"’.

You may also have a situation where Rails is breaking because the

version of code your migration needs is inconsistent with an earlier

migration. (If you put your models in your migrations, this problem

won’t occur.) You can solve the problem by deploying an earlier version

by running your migrations (on the server) up to a specific version like

this: rake db:migrate VERSION=42.

Then, you can simply run cap deploy:migrations to deploy your current

code base with the rest of your migrations.

Only the Contents of log and public/system Will Be Kept Between

Deployments

Each time you deploy, Capistrano makes a time-stamped release direc-

tory. If you have user-generated file uploads that end up in public, they

will disappear the next time you deploy. This is because Capistrano

made a new release directory and symlinked to it. My favorite way to

fix this is to make an after ’deploy:update_code’( ) hook task to symlink

your own folders into public from the Capistrano shared directory.

Assume you have a public/avatars directory where you store uploaded

avatars. You want this directory to persist between deployments and

not get overwritten. You need to create an empty avatars directory in

the Capistrano shared directory and then have it get symlinked into

the proper place each time you deploy:

after 'deploy:update_code', 'deploy:link_images'

namespace(:deploy) do

task :link_images do

run <<-CMD

cd #{release_path} &&

ln -nfs #{shared_path}/avatars #{release_path}/public/avatars

CMD

end

end

User Permissions

The user performing the SSH deployment will own all your files. You

need to remember that the web server user must be able to read and

write to all of the appropriate files. Most Rails shops use a single deploy-

ment ID to deploy. If you must change permissions as part of a Capis-

trano script, use an after task to change permissions if necessary.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=122


CONCLUSION 123

Keep in mind that any cron runner or email-receiving task should also

have write access to the appropriate log file.

5.8 Conclusion

In this chapter, you’ve taken a pretty deep stroll through Capistrano.

You can now deploy your application in a repeatable, reliable way.

You’ve also learned to extend Capistrano using recipes or callbacks.

In the chapters to come, I’ll shift the focus to your application. You now

know the basics for Rails deployments. It’s time to read about the finer

points. In the next chapter, you will learn to build applications that are

friendlier to your production environment. Read on.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=123


4 Getting a Watchdog

Chapter 6

Managing Your Mongrels
By now, you’ve located a good home and moved in. If you’ve chosen to

manage your own deployment and followed the steps in this book, you

have a single Mongrel running your application. Things will start hap-

pening very quickly now. The next step is to make sure your house is

running smoothly and that it is safe. Part of that job will be clustering

and configuring Mongrel. Next, you’ll want to get a watchdog to help

keep an eye on things. In this chapter, you’ll learn Mongrel configura-

tion, clustering, and monitoring.

6.1 The Lay of the Land

Clustering Mongrel is the first step to achieving better scalability with

Ruby on Rails. You’ll find the process amazingly easy to do. First, you’ll

build a customized configuration file that will let you predictably and

reliably restart Mongrel with an automated script. Then, you’ll use a

Mongrel cluster to launch more than one Mongrel so that your instal-

lation can share many simultaneous requests.

After you have a working cluster, you will place that cluster under

a monitoring process called Monit. This watchdog process will take

action when rogue Mongrel processes take up too much memory, stop

responding, or misbehave in other ways. The Mongrel cluster under

management from Monit is shown in Figure 6.1, on page 126.

6.2 Training Your Mongrels

You’ve seen how easy it is to use a Mongrel server in its default con-

figuration. In practice, you’re often going to need more flexibility than



TRAINING YOUR MONGRELS 125

the default configuration can provide. You will want to cluster your

Mongrels and probably run them as a service. Fortunately, configuring

Mongrel and even enabling Mongrel clusters is surprisingly easy. As

you recall, to start Mongrel, you want to run the following commands:

ezra$ cd /path/to/railsapp

ezra$ mongrel_rails start -d

That command starts a Mongrel daemon running in the background

on port 3000. It is just as simple to restart or stop the server. You’d

use mongrel_rails restart to restart and mongrel_rails stop to stop. But these

commands simply take your dog for a walk. You are ready to teach your

dog a few more advanced tricks. You can train your dog with much more

control through a variety of command-line options and configuration

files.

The mongrel_rails command-line tool contains explanations for all its

options. To access this embedded documentation, use the -h flag:

ezra$ mongrel_rails start -h

Usage: mongrel_rails <command> [options]

-e, --environment ENV Rails environment to run as

-d, --daemonize Whether to run in the background or not

-p, --port PORT Which port to bind to

-a, --address ADDR Address to bind to

-l, --log FILE Where to write log messages

-P, --pid FILE Where to write the PID

-n, --num-procs INT Number of processors active before clients denied

-t, --timeout TIME Timeout all requests after 100th seconds time

-m, --mime PATH A YAML file that lists additional MIME types

-c, --chdir PATH Change to dir before starting (will be expanded)

-r, --root PATH Set the document root (default 'public')

-B, --debug Enable debugging mode

-C, --config PATH Use a config file

-S, --script PATH Load the given file as an extra config script.

-G, --generate CONFIG Generate a config file for -C

--user USER User to run as

--group GROUP Group to run as

--prefix PATH URL prefix for Rails app

-h, --help Show this message

--version Show version

Keep in mind that this list will doubtlessly change as Mongrel grows

and improves. For a detailed explanation of every command-line option,

refer to the great online how-to.1 You can also find excellent documen-

tation at the Mongrel website.2

1. http://mongrel.rubyforge.org/docs/howto.html

2. http://mongrel.rubyforge.org/docs/

http://mongrel.rubyforge.org/docs/howto.html
http://mongrel.rubyforge.org/docs/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=125


TRAINING YOUR MONGRELS 126

Host

Operating System

Monit

Mongrel

Application

Source Repository

Application

Client

ApplicationApplication

Capistrano

Mongrel

Application

Mongrel

Application

Figure 6.1: Deployment map for scaling out

You can specify all these options on the command line each time you

start mongrel_rails, but if you need anything more than the most basic

configuration, flags will quickly get tedious. This is where the Mongrel

configuration file comes into play. The -G or --generate option will create

a config file for a given set of command-line flags. Once you have a

command line with all the options you desire, you can save them to disk

for later use. From the root of your Rails application, run the following

command:

ezra$ mongrel_rails start -G config/mongrel_7000.yml ←֓

-e production -p 7000 -d

** Writing config to "config/mongrel_7000.yml".

** Finished. Run "mongrel_rails -C config/mongrel_7000.yml"

** to use the config file.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=126


TRAINING YOUR MONGRELS 127

The previous command generates a file called mongrel_7000.yml in the

config/ directory of your Rails application:

ezra$ cat mongrel_7000.yml

---

:config_file:

:daemon: true

:cwd: /Users/ezra/railsapp

:includes:

- mongrel

:environment: production

:log_file: log/mongrel.log

:group:

:config_script:

:pid_file: log/mongrel.pid

:num_processors: 1024

:debug: false

:docroot: public

:user:

:timeout: 0

:mime_map:

:prefix:

:port: "7000"

:host: 0.0.0.0

That file has a lot of options. Thankfully, you don’t usually need all

these settings, so you can trim the file down quite a bit, like so:

---

:daemon: true

:cwd: /Users/ezra/railsapp

:environment: production

:log_file: log/mongrel.log

:pid_file: log/mongrel.pid

:docroot: public

:port: "7000"

:host: 0.0.0.0

Now you can make changes to your Mongrel configuration without typ-

ing them on the command line each time you want to start a Mongrel

server. To start Mongrel with your shiny new config file, use the -C flag:

ezra$ mongrel_rails start -C config/mongrel.yml

If you aren’t sure what options you want yet but you want to generate

a config file to start with, you can use the -G option without any other

arguments:

ezra$ mongrel_rails start -G config/mongrel.yml

When you run Mongrel on any Unix-like operating system, you can

control it with signals similar to WEBrick or FastCGI.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=127


TRAINING YOUR MONGRELS 128

The signals that Mongrel understands include the following:

TERM Stops Mongrel and deletes the PID file.

USR2 Restarts Mongrel (new process) and deletes the PID file.

INT Same as USR2. This command is a convenience because

Ctrl + C generates an interrupt signal and Ctrl + C is used in

debug mode.

HUP Internal reload. This command might not work well because

sometimes doing an internal reload will not reload all the code

in the system. You are safer if you do a real USR2 restart.

You can send these signals with the kill command:

ezra$ kill -HUP 27333

Configuring a Cluster

You’ve seen how to configure a single Mongrel instance. Your next step

is to build a more flexible configuration for a cluster. First, you need to

generate your mongrel_cluster.yml file. Let’s configure a cluster of three

Mongrels by running the following command from the root of your Rails

application directory:

ezra$ mongrel_rails cluster::configure -p 8000 ←֓

-e production -a 127.0.0.1 -N 3

Writing configuration file to config/mongrel_cluster.yml.

ezra$ cat config/mongrel_cluster.yml

---

port: "8000"

environment: production

address: 127.0.0.1

pid_file: log/mongrel.pid

servers: 3

You just built a minimal, but working, mongrel_cluster.yml file to run a

cluster. The port option is a little different from the port option you used

when you configured a single Mongrel instance. For a cluster, port spec-

ifies the first port number for your first Mongrel. Each subsequent Mon-

grel starts on the next port. These Mongrels will start on ports 8000,

8001, and 8002. You also specified the Rails environment for your Rails

application. Normally, you’ll run a single Mongrel in development mode

and a cluster for production. Mongrel will listen on the hostname or

IP address specified by the address option. The pid_file option specifies

the location for Mongrel’s PID files, and servers specifies the number

of Mongrels you want in the cluster. The previous file configures three

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=128


TRAINING YOUR MONGRELS 129

Mongrels running on ports 8000, 8001, and 8002. Next, customize this

config file a bit to take advantage of a few more attributes:

---

port: "8080"

cwd: /Users/ezra/railsapp

log_file: log/mongrel.log

environment: production

address: 127.0.0.1

pid_file: log/mongrel.pid

servers: 3

docroot: public

user: ezra

group: ezra

It’s a good idea to set cwd (current working directory) to the root of

your Rails application. I also added the log_file, docroot, user, and group

settings. Configuring the user and group will make Mongrel run under

that user and group even if you accidentally start it with sudo. It is

always a good idea to run web applications as a normal user instead of

root, just in case your application has a security breach. We know all

applications have security holes.

To start and stop your Mongrel cluster, you still use the mongrel_rails

command, but you gain a set of cluster commands to use with it. Try it

now from the root of your Rails app:

ezra$ mongrel_rails cluster::start

Starting 3 Mongrel servers...

ezra$ mongrel_rails cluster::restart

Stopping 3 Mongrel servers...

Starting 3 Mongrel servers...

ezra$ mongrel_rails cluster::stop

Stopping 3 Mongrel servers...

You’ve just tidied up your Mongrel configuration. Next, you can work

on running Mongrel as a service.

Running Mongrel as a Service

Using the mongrel_rails command from your local directory is fine for

playing around on your local machine or for staging environments. But

in a production environment, it’s nice to configure Mongrel more like

Apache and MySQL. The service configuration keeps things consistent.

The operating system will include Mongrel when automatically starting

services each time your server starts or restarts. The service configura-

tion works much like the Mongrel configuration you’ve already built.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=129


TRAINING YOUR MONGRELS 130

You’ll need to ensure that you have the mongrel_cluster gem installed

first. Once it is, you simply need to create a file at /etc/mongrel_cluster/

myapp.conf. I recommend you replace myapp with the name of your

application, but you can use anything you like. If you’re running mul-

tiple applications on one server, you can have multiple Mongrel cluster

configuration files. In the file, you configure your Mongrel cluster with

a few simple options. They are documented with inline comments in the

following example configuration file:

# /etc/mongrel_cluster/myapp.conf

# The user and group with which to run Mongrel

user: deploy

group: deploy

# The location of our Rails application

# and the environment to run within

cwd: /home/deploy/apps/myapp/current

environment: production

# The number of servers in the cluster

servers: 4

# The starting port

# e.g. with 3 mongrels would bind ports 8000-8002

port: "8000"

# The IP Addresses allowed to connect to Mongrel

# If your web server proxy is separate from your app server,

# put its IP address here instead of the localhost IP address

address: 0.0.0.0

# The location of the process ID files relative to the rails app above

pid_file: log/mongrel.pid

With that configuration file in place, you can now start, restart, or stop

Mongrel using the following simple command from any current working

directory:

• mongrel_cluster_ctlstart will start a Mongrel cluster from scratch.

• mongrel_cluster_ctlrestart will restart a running Mongrel cluster.

• mongrel_cluster_ctlstop will stop a Mongrel cluster.

Now that you have your cluster of Mongrels happily running as a ser-

vice, you can turn your attention to managing the Mongrel server. The

Monit tool will let you handle scenarios where your Mongrels might run

out of memory or experience any other problems.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=130


CONFIGURING THE WATCHDOG 131

Starting Mongrel Cluster on Boot

You can get your Mongrel cluster to start at boot time, and it
should be fairly simple with most Linux distributions. The Mon-
grel cluster comes with a script ready to go. Installing it is sim-
ply a matter of finding it and copying it to the /etc/init.d/ direc-
tory. On my setup, the mongrel_cluster script file is located at the
following location: /usr/lib/ruby/gems/1.8/gems/mongrel_cluster-

<VERSION>/resources/mongrel_cluster.

Simply copy it to /etc/init.d/, and make it executable like this:

ezra$ sudo cp \
/usr/lib/ruby/gems/1.8/gems/mongrel_cluster-1.0.5/resources/\
mongrel_cluster \
/etc/init.d

ezra$ sudo chmod +x /etc/init.d/mongrel_cluster

Now your Mongrel cluster is configured to load on boot, just like
Apache and MySQL. As an added bonus, you can now also use
/etc/init.d/mongrel_cluster [start|restart|stop] anywhere you read
mongrel_cluster_ctl [start|restart|stop]. This is nice because it’s very
familiar to anyone who has used other service scripts like those
for Apache and MySQL.

You might need to make a few changes to the PATH variable
inside the script depending on your specific setup, Linux dis-
tribution, and hosting provider’s custom configuration. Check
with your host provider or the documentation for your Linux dis-
tribution in case yours is a little different.

6.3 Configuring the Watchdog

Monit is a simple utility used to manage files, processes, and directo-

ries on Unix. You can configure Monit to split your logs if they get too

big, start and stop processes, and also keep tabs on resources. Monit

can notify you if your memory use gets out of control and actually do

something about it. You may want Monit to restart one of the Mongrels

in your cluster or restart your nginx web server, if someone changes

your configuration file.

For starters, you’re going to use Monit to make sure your Mongrels

keep running at peak efficiency. You’ll need to do three things to get

the management process running:

• You will need to install the right version of mongrel_cluster. The

minimum version of Mongrel you will want to run is 1.0.1.1.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=131


CONFIGURING THE WATCHDOG 132

Building Monit on RHEL or CentOS

You need to install a few dependencies before you can get
Monit to build on Red Hat or CentOS distributions. Use rpm or
yum to search for and install the following packages: flex, bison,
and byacc. Once you have these prerequisites installed, you
can build Monit with the same instructions shown for other sys-
tems.

Earlier versions do not support the --clean option. This is impor-

tant because Mongrel 1.0+ will not start if there is a process iden-

tification (PID) file sitting on disk. So if your server crashes and

has to be rebooted, Mongrel tries to start up and fails because

there was a leftover PID file. The --clean option deletes leftover PID

files if they exist.

• You need a good mongrel_cluster.yml file. You’ve already built one

earlier in this chapter, and that one should work fine.

• You need a Monit configuration file, called mongrel.monitrc. This

configuration file will tell Monit what to do for each Mongrel on

your system.

The first order of business is to install Monit. Most Linux distribu-

tions will have a Monit package available in their package managers.

On Debian/Ubuntu you can run sudo apt-get install monit, and on Gen-

too you can run sudo emerge monit. If you cannot locate a package for

your preferred Linux, don’t sweat it, because you can build Monit from

source, like this:

ezra$ wget http://www.tildeslash.com/monit/dist/monit-4.9.tar.gz

...

ezra$ tar xzvf monit-4.9.tar.gz

...

ezra$ cd monit-4.9

ezra$ ./configure && make && sudo make install

...

Next up you need to install the correct version of mongrel_cluster. You

will want the latest version from RubyForge. It is important to clean up

older versions of mongrel_cluster if you had any installed:

$ sudo gem install mongrel_cluster ←֓

&& sudo gem cleanup mongrel_cluster

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=132


CONFIGURING THE WATCHDOG 133

After you’ve set that up, you are ready to configure Monit. I like to

create a separate configuration for each Mongrel cluster. You’ll add the

following configuration to mongrel.monitrc, which you’ll keep in Monit’s

directory, in our case, /etc/monit.d:

check process mongrel_deployit_5000

with pidfile /data/deployit/shared/log/mongrel.5000.pid

start program = "/usr/bin/mongrel_rails cluster::start -C ←֓

/data/deployit/current/config/mongrel_cluster.yml ←֓

--clean --only 5000"

stop program = "/usr/bin/mongrel_rails cluster::stop -C ←֓

/data/deployit/current/config/mongrel_cluster.yml ←֓

--only 5000"

if totalmem is greater than 110.0 MB for 4 cycles then restart

if cpu is greater than 80% for 4 cycles then restart

if 20 restarts within 20 cycles then timeout

group deployit

Notice that you will need a block for each process that you want Monit

to monitor. The previous configuration is for one Mongrel only. The first

directive, check_process, identifies a process to monitor. I have skipped

that directive in favor of the alternative with pidfile option that tells Monit

which process file to monitor. Recall that each Mongrel instance has

a file stored in the log/mongrel.port.pid file. The next two directives tell

Monit how to start and stop Mongrel. The last three directives tell Monit

what to do when certain pathological conditions exist. This configura-

tion will restart Mongrel instances if the memory exceeds a thresh-

old (110.0MB in the previous configuration) or the CPU is too busy

for a process. These directives also can take more extreme measures,

such as timing out and notifying administrators. Keep in mind that

all this is fully automated and requires notification only in extreme

circumstances.

Keep in mind that Monit will start your Mongrels with a completely

clean shell environment. This means your normal $PATH will not be set

up. You will need to use the fully qualified path to your mongrel_rails

command. In the previous config I used /usr/bin/mongrel_rails, but you

may need to adjust this path depending on where your system installed

the command. You can figure out where the command was installed like

this:

ezra$ which mongrel_rails

/usr/bin/mongrel_rails

A final configuration provides the general setup for Monit, including

the configuration for the mail server and alerts. This file is located at

/etc/monit/monitrc.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=133


CONFIGURING THE WATCHDOG 134

set daemon 30

set logfile syslog facility log_daemon

set mailserver smtp.example.com

set mail-format {from:monit@example.com}

set alert sysadmin@example.com only on { timeout, nonexist }

set httpd port 9111

allow localhost

include /etc/monit.d/*

This config is fairly straightforward, but there are a few things to note.

set daemon 30 tells Monit how often to check processes, in this case

every 30 seconds. I have found that 30 seconds is perfect for this set-

ting. You need to set your own SMTP server and email addresses for

alerts. The last two directives turn on Monit’s built-in HTTP server

on port 9111, making it viewable only from the localhost, and sets

/etc/monit.d to be the directory from which to include config files.

When you’re done, you can try a couple of commands. You can actually

start and stop Mongrel cluster instances through Monit. First you need

to make sure Monit has your latest configuration loaded:

ezra$ sudo /etc/init.d/monit restart

When Monit starts, it will automatically boot your Mongrels. Then you

can restart the Mongrels by their groups through Monit:

$ sudo monit restart all -g deployit

Or restart one single Mongrel by its name:

$ sudo monit restart mongrel_deployit_5000

To see the current status of your Mongrels, use the status command:

$ sudo monit status

The monit daemon 4.9 uptime: 4d 2h 27m

Process 'mongrel_deployit_5000'

status running

monitoring status monitored

pid 20467

parent pid 1

uptime 55m

childrens 0

memory kilobytes 50432

memory kilobytes total 50432

memory percent 12.8%

memory percent total 12.8%

cpu percent 0.0%

cpu percent total 0.0%

data collected Sun Jul 1 14:38:26 2007

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=134


CONFIGURING THE WATCHDOG 135

You may be asking yourself “Who monitors Monit?” That is a great ques-

tion. Monit is usually very stable, but certain conditions such as “out

of memory” can cause Monit itself to crash. If you want to prevent this

from happening, you can put Monit under the control of init. On a Linux

system, init is responsible for running all the scripts in /etc/init.d. init

can also respawn daemons if they die. The first step is to remove Monit

from the /etc/init.d scripts. Consult the documentation for your system

for information on how to remove a start-up script from the default

run level. On Gentoo, you would do it by running rc-update del monit.

The next step is to edit /etc/inittab and add the following lines near the

bottom of the file:

mo:345:respawn:/usr/bin/monit -Ic /etc/monitrc

m0:06:wait:/usr/bin/monit -Ic /etc/monitrc stop all

Now you can have init to watch Monit. The first step is to stop Monit.

Then you tell init to spawn Monit and keep it alive:

ezra$ sudo /etc/init.d/monit stop

ezra$ sudo telinit q

Now that Monit runs under init, the /etc/init.d/monit command will not

work to start and stop the Monit daemon. Instead, you will have to kill

Monit and let init pick it back up again, like this:

ezra$ sudo killall -9 monit

You will need some custom Capistrano tasks now that you are using

Monit to watch your Mongrels. When you use Monit, you do not need

to use mongrel_cluster/recipes in your deploy recipe. Instead, you will set

the Monit group of the Mongrels you are targeting with this line in your

deploy.rb file:

set :monit_group, 'deployit'

Now you need to add the following tasks to your deploy recipe:

desc <<-DESC

Restart the Mongrel processes on the app server by

calling restart_mongrel_cluster.

DESC

task :restart, :roles => :app do

restart_mongrel_cluster

end

desc <<-DESC

Start Mongrel processes on the app server.

DESC

task :start_mongrel_cluster , :roles => :app do

sudo "/usr/bin/monit start all -g #{monit_group}"

end

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=135


KEEPING FASTCGI UNDER CONTROL 136

desc <<-DESC

Restart the Mongrel processes on the app server by

starting and stopping the cluster.

DESC

task :restart_mongrel_cluster , :roles => :app do

sudo "/usr/bin/monit restart all -g #{monit_group}"

end

desc <<-DESC

Stop the Mongrel processes on the app server.

DESC

task :stop_mongrel_cluster , :roles => :app do

sudo "/usr/bin/monit stop all -g #{monit_group}"

end

Now you know how to use Monit to keep a leash on your Mongrels.

Monit can be a lifesaver for your production Rails applications, and I

highly suggest using it whenever you deploy Mongrels.

6.4 Keeping FastCGI Under Control

Our primary focus has been on Mongrel. I’m going to dedicate the rest

of the chapter to FastCGI. If you should find yourself deploying with

FastCGI, you’ll want to read the next few sections. Otherwise, feel free

to skip ahead to Section 6.5, Building in Error Notification, on page 138.

Zombie FastCGI Processes

During the dog days of summer in 2005, I noticed that one of my Rails

apps was running a little slower than expected. Confident in my debug-

ging abilities, I fired up my SSH client and logged into my shared server.

Almost immediately, the server kicked me out with an odd “resource

unavailable” error.

After three more tries with the same result, I emailed the customer sup-

port team. It turns out that I had fifty processes running, the maximum

allowed for any single user! Every one of those processes was a zombie,

aimlessly occupying my process allocation but unable to do anything

useful. Like a bad horror sequel, one of my Rails apps on a completely

different host had the same problem a few days later.

The Apache web server is famous for producing these zombies when

running with FastCGI, causing many developers to favor Mongrels or

nginx instead. The good news is that a few simple cron tasks can keep

zombies from getting out of hand, making the difference between a

smoothly running site and one that dies daily. I’ll discuss them in The

Reaper below.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=136


KEEPING FASTCGI UNDER CONTROL 137

The conclusion to the story is that the sysadmin at the shared host

killed the zombie processes, and things began working again. I learned

to start a daily cron task that cleans out zombies and gives my server

a fresh start. Some people restart their dispatch processes every single

hour. You will have to experiment with your specific situation and see

what works best.

The Reaper

The reaper is not a black-hooded messenger of doom; he is your best

friend. The reaper command reliably prunes back FastCGI processes.

Capistrano uses it to restart your Rails app after a fresh deployment.

You can also use it to restart processes on a regular schedule.

The reaper is a script you run on the command line. By default it

restarts FastCGI dispatch processes for your application only, so you

won’t disrupt other applications running under the same user account.

You can fire off other actions with the reaper as well:

• restart: Restarts the application by reloading both application and

framework code (the default). Send the USR2 signal to each dis-

patch.fcgi process belonging to the current application.

• reload: Reloads only the application, not the framework (like the

development environment). Reload sends the HUP signal.

• graceful: Marks all the processes for exit after the next request.

Graceful sends the TERM signal.

• kill: Forcefully exits all processes regardless of whether they’re cur-

rently serving a request. kill sends the -9 signal. Use this only if

none of the other signals is successful.

You can run the reaper without any arguments or request one of the

previous actions such as the following:

ezra$ ./script/process/reaper --action=graceful

In my experience, the defaults don’t work on most shared hosts because

their output doesn’t match the reaper’s expectations. The good news is

that you can send an extra argument to match the specific output of

your host.

Let me show you how I fine-tuned this on one of my shared hosting

accounts. First, I tried to run the dispatcher normally. Even though

I knew that there were several dispatch.fcgi processes running at that

very moment, the reaper couldn’t find them.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=137


BUILDING IN ERROR NOTIFICATION 138

ezra$ ./script/process/reaper

Couldn't find any process matching:

/data/deployit/releases/20060224192655/public/dispatch.fcgi

Reading through the reaper code revealed the exact command that the

reaper used to find the list of running processes. I called that command

manually:

ezra$ ps axww -o 'pid command'

PID COMMAND

4830 /usr/bin/ruby dispatch.fcgi

18714 /usr/bin/ruby dispatch.fcgi

2076 /usr/bin/ruby1.8 dispatch.fcgi

12536 -bash

5607 ps axww -o pid command

I could then see what was happening. The reaper was looking for the

full path to the dispatcher, but the ps command on my server returned

a shorter version of the current process list. Consequently, the reaper

could not find the full path, so I can’t restart this application indepen-

dently of the others running under that same user account. As config-

ured, the reaper was all or nothing!

Running the same command on my local Mac OS X machine shows

the entire path to the dispatch.fcgi script, as it should. A fact of shared

hosting is that you can’t control systemwide settings, so you may have

to adjust your scripts to match.

With this information in hand, I could send a more general argument

to restart all dispatch processes running under that user account in

order to keep things fresh and zombie-free:

ezra$ ./script/process/reaper --action=restart --dispatcher=dispatch.fcgi

Restarting [4830] /usr/bin/ruby dispatch.fcgi

Restarting [18714] /usr/bin/ruby1.8 dispatch.fcgi

Restarting [2076] /usr/bin/ruby1.8 dispatch.fcgi

6.5 Building in Error Notification

With a Mongrel cluster in place, your setup has greater scalability, and

you should be able to sustain minor failures. With Monit in place to

manage your Mongrel clusters, you have the capability to take preemp-

tive action when a single Mongrel cluster fails or when resources get

scarce.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=138


BUILDING IN ERROR NOTIFICATION 139

But most of the time, your failures will come from plain old human

error. If you want a good management story, you are going to have to

deal with your programmer’s mistakes. Usually, Rails errors will gen-

erate an application error, the dreaded 500 error page. With Ruby, it’s

fairly easy to intercept the default error behavior to, for example, send

email notifications. And that is exactly what the exception_notification

plug-in does.

You can read about the exception_notification plug-in at the Rails wiki

(http://wiki.rubyonrails.org/rails/pages/ExceptionNotification). To install it,

simply run the installation script like this:

ezra$ ruby script/plugin install exception_notification

Next, to build notification into a particular controller, include the error

notification module. I like to include error notification in application.rb

so I’ll get email notification when any user of any controller encounters

an error that I failed to handle correctly, like so:

class ApplicationController < ActionController::Base

include ExceptionNotifiable

...

end

Next, configure the email addresses that should get notified of Rails

exceptions. Put the notification in config/environment.rb:

ExceptionNotifier.exception_recipients = ←֓

%w(you@yourdomain.com another@yourdomain.com)

Now, if any error should occur, you’ll get an error notification like the

following:

A ActionView::TemplateError occurred in drives#edit_comment:

undefined method `title' for nil:NilClass

On line #5 of app/views/drives/edit_comment.rhtml

2: <%= error_messages_for 'gift' %>

3: <!--[form:drive]-->

4:

5: <h1><%= @drive.title %></h1>

6: <div>

7:

8: <table><tr>

#{RAILS_ROOT}/app/views/drives/edit_comment.rhtml:5:in ←֓

`_run_rhtml_47app47views47drives47edit_comment46rhtml'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:326:in ←֓

`compile_and_render_template'

http://wiki.rubyonrails.org/rails/pages/ExceptionNotification
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=139


BUILDING IN ERROR NOTIFICATION 140

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:301:in ←֓

`render_template'

...

-------------------------------

Request:

-------------------------------

* URL: http://changingthepresent.org/drives/edit_comment/65?donate=true

* Parameters: {"donate"=>"true", "action"=>"edit_comment", ←֓

"id"=>"65", "controller"=>"drives"}

* Rails root: /home/deploy/importantgifts/current

-------------------------------

Session:

-------------------------------

* @write_lock: true

* @session_id: "875ce6f70cb9b8e9348a72147999303c"

* @data: {"flash"=>{}}

* @new_session: true

-------------------------------

Environment:

-------------------------------

* GATEWAY_INTERFACE : CGI/1.2

* HTTP_ACCEPT : */*

* HTTP_ACCEPT_ENCODING: gzip

* HTTP_CONNECTION : Keep-alive

* HTTP_FROM : googlebot(at)googlebot.com

* HTTP_HOST : changingthepresent.org

* HTTP_USER_AGENT : Mozilla/5.0 (compatible; ←֓

Googlebot/2.1; +http://www.google.com/bot.html)

* HTTP_VERSION : HTTP/1.1

* HTTP_X_FORWARDED_FOR: 66.249.72.161

* HTTP_X_TEXTDRIVE : BigIP

* PATH_INFO : /drives/edit_comment/65

* QUERY_STRING : donate=true

* REMOTE_ADDR : 66.249.72.161

* REQUEST_METHOD : GET

* REQUEST_PATH : /drives/edit_comment/65

* REQUEST_URI : /drives/edit_comment/65?donate=true

* SCRIPT_NAME : /

* SERVER_NAME : changingthepresent.org

* SERVER_PORT : 80

* SERVER_PROTOCOL : HTTP/1.1

* SERVER_SOFTWARE : Mongrel 1.0

* Process: 1620

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=140


BUILDING IN ERROR NOTIFICATION 141

* Server :

-------------------------------

Backtrace:

-------------------------------

On line #5 of app/views/drives/edit_comment.rhtml

2: <%= error_messages_for 'gift' %>

3: <!--[form:drive]-->

4:

5: <h1><%= @drive.title %></h1>

6: <div>

7:

8: <table><tr>

#{RAILS_ROOT}/app/views/drives/edit_comment.rhtml:5:in ←֓

`_run_rhtml_47app47views47drives47edit_comment46rhtml'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:326:in ←֓

`compile_and_render_template'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:301:in ←֓

`render_template'

#{RAILS_ROOT}/vendor/rails/actionpack/lib/action_view/base.rb:260:in ←֓

`render_file'

...

Voila! This email message is an actual email notification that helped

solve a production problem in the code at ChangingThePresent.3 The

email contains a full complement of debugging information, including

a full trace and back trace, the contents of the session, the offending

view code, and the full environment for the HTTP request.

You can configure a few other options as well. Configure the sender with

ExceptionNotifier.sender_address, and append a string to the subject line

(to help with email filters) with ExceptionNotifier.email_prefix. This plug-in

will send email notifications only when the address is not local. You

can configure which IP addresses should be considered as local with

ExceptionNotifier.consider_local.

With this solution, Rails will notify you whenever your application expe-

riences an exception. You can configure it to work well with your email

clients, and because it’s plugged directly into Rails, as long as Rails

does not fail completely and your network and email keep working,

you’ll get a notification.

3. http://ChangingThePresent.org

http://ChangingThePresent.org
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=141


HEARTBEAT 142

6.6 Heartbeat

The exception_notification plug-in is a great way to understand, when

your application has errors, whether the errors are consistent or inter-

mittent. It’s not a complete management solution, though. For larger

or more critical production systems, you also need to verify that the

system is running at all.

A heartbeat service will tell you when your application fails. I find that

a simple script running on a separate host works better than cus-

tom solutions because it’s easy, infinitely customizable, and deployable

on any host with your scripting language. The following script detects

when one of four pages is down at ChangingThePresent:

Download managing_things/heartbeat.rb

#!/usr/local/bin/ruby

require 'net/smtp'

require 'net/http'

require 'net/https'

require 'uri'

urls = %w{

http://www.changingthepresent.org/

http://www.changingthepresent.org/nonprofits/show/23/

http://www.changingthepresent.org/causes/list/

https://www.changingthepresent.org/

}

from = 'system@importantgifts.org'

recipients = %w{development@changingthepresent.org}

errors = []

urls.each do |url|

begin

uri = URI.parse(url)

http = Net::HTTP.new(uri.host, uri.scheme == "https" ? 443 : nil)

http.use_ssl = (uri.scheme == "https" ? true : false)

http.start do |http|

request = Net::HTTP::Get.new(uri.path)

response = http.request(request)

case response

when Net::HTTPSuccess, Net::HTTPRedirection

else

raise "requesting #{url} returned code #{response.code}"

end

end

http://media.pragprog.com/titles/fr_deploy/code/managing_things/heartbeat.rb
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=142


CONCLUSION 143

rescue

error = "#{url}: #{$!}"

errors << error

puts error

end

end

unless errors.empty?

msg = "From: #{from}\n"

msg += "Subject: ChangingThePresent.org is down!\n\n"

msg += errors.join("\n")

puts "sending email to #{recipients.join(', ')}"

Net::SMTP.start('localhost', 25, 'localhost') do |smtp|

smtp.send_message(msg, from, recipients)

end

end

The four URLs are not haphazard. They represent a secure page, a

page-cached page, a fragment-cached page, and a standard dynamic

page. The admin team executes this script once every five minutes via

a cron job. The script notifies all the developers on the project via an

email address that is forwarded to all developers whenever the site is

down.

The script counts redirects and success as a successful contact. Any-

thing else is a failure. Timeouts will also trigger a notification.

6.7 Conclusion

The management strategies in this chapter don’t cost anything, but

they are surprisingly robust. Building repeatable Mongrel configura-

tions rather than command-line options is easy and enables consistent

clustering. Configuring your Mongrels in a cluster gives you good per-

formance and some failover. Clustering Mongrel is important because

of the Rails shared-nothing strategy.

Clustering is only the beginning of your managing strategy. To run pro-

duction Mongrels, you need information and control. By using Monit,

you get a watchdog that will automatically kill and restart any rogue

Mongrels. By using the various email notification features, the scripts

will notify the recipients of your choice when the server is down or when

anyone encounters a Rails error.

Still, our error recovery solutions are not yet complete. You will need a

better handle on monitoring resources and on performance before you

have a complete strategy. Read on.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=143


4 Adding On

Chapter 7

Scaling Out
You will often want your website to grow. When you can’t fit into your

existing home anymore, you have to find some way to move up or to

add on. The Rails model for scaling will take you beyond the single

home owner and into the realm of a real estate developer or community

planner. This chapter will examine scaling out.

7.1 The Lay of the Land

I’m going to put down my real estate agent hat for a little while and

put on the hat of a community planner. If you own a house near a con-

gested city and work in its busy downtown core, you’re all too familiar

with multilane highway traffic that travels at times as fast as a cheetah

and other times as slow as a statue of a cheetah. Presented with this

problem, you might start with one of the following two solutions to the

problem:

• Increase the speed limit.

• Increase the number of lanes.

These solutions sound obvious and you have probably heard similar

analogies before, but there’s a lot more to it. Natural and political laws

place a limit on how fast cars can travel safely, and you can add only

so many lanes to a highway. These constraints effectively limit how

effective either solution can ultimately be.

Sometimes, these solutions are not even attacking the right problem.

The obstacles to effectively moving people aren’t always speed limits

or lanes. You need to consider interfaces—on-ramps and merges—that

can slow traffic down. Entrances force lane changes and slowdowns,



SCALING OUT WITH CLUSTERING 145

exits double the problem, and accidents or construction projects force

lane closures. The biggest bottleneck of all, though—and the one that’s

responsible for the others—is the destination. Not only are all the cars

on the same road, but they’re all heading to the same place. The prob-

lem is the city center itself. You can only hope that there are enough

parking spaces and office space available once you finally reach it!

Your computer infrastructure isn’t much different. Each lane of the

highway is a network connection to some service provided by the appli-

cation. The city center is the resource pool. Every ramp is a client node.

Each car is a user request headed downtown to do some business. The

idea of adding lanes and increasing speed limits is effectively a way of

“scaling up.” You can scale up by upgrading hardware such as CPUs,

memory, disks, and network bandwidth. That strategy works some-

times, but upward scaling has its limits. There are only so many CPUs,

so much memory, so many disks, and so much bandwidth that you can

jam into a single box. These limits will likely never allow your applica-

tion to meet the demands of the global crowd.

The low ceiling isn’t the only problem with scaling up. As your business

grows, the cost of failure becomes greater too. You’ll need redundant

systems and hot backups to handle failure and even the occasional

hardware upgrade. Ultimately, scaling up is harder, with a lower ceiling.

Most successful web businesses scale up, not by chance or even neces-

sity but by preference. I won’t completely write off scaling up. I’ll touch

upon it when I address the database because scaling up has some real

advantages in that space.

7.2 Scaling Out with Clustering

Scaling out means adding more servers, complete with their own ded-

icated CPUs, disks, memory, and network bandwidth. Think back to

the traffic analogy for a moment. The ultimate problem was that every-

one was heading to the same city center. Scaling out adds a second

city center so half the travelers that day would suddenly be on a differ-

ent road and heading toward a different city center. Imagine what your

daily commute would be like tomorrow if half the city’s population were

simply not on your road! Scaling out certainly yields greater rewards.

But what about cost, complexity, and maintainability?

Scaling out to hundreds of servers can cost you plenty in dollars and

complexity, but you don’t have to pay all the price at once. Conve-

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=145


SCALING OUT WITH CLUSTERING 146

niently, scaling out lets the complexity scale with you. In the begin-

ning, designing to scale outward costs little, but your preparations will

position you for bigger challenges to come. You can deal with new per-

formance demands later by doing a little prep work today. To get ready,

you’ll prepare a few key elements of infrastructure. The trick is to get

your scaling right early so you can avoid surprises later.

Keep in mind that you’ll still have to get your performance right. Even

if you plan to scale by throwing money and hardware at the problem,

you’ll want to save enough time to address performance. I’ll talk more

about performance in Chapter 9, Performance, on page 224.

From a deployment perspective, you’re looking at a map something like

Figure 7.1, on the next page. You’ll have two or three different virtual

hosts that may or may not reside on the same servers. Each Mongrel

cluster is a separate city center. One server will use Apache or nginx as

a static proxy and load balancer. The other two will serve Rails applica-

tions through Mongrel clusters. You’ll use Capistrano to deploy to each

of them. The next few sections will help you set up a simple architec-

ture that can easily grow from a single dedicated server to around five

servers with minimal changes to your application. In the sections that

follow, I’ll walk you through the following:

• Adding multiple virtual machines to your environment

• Setting up subdomains for your cluster using CNAMEs with your

DNS provider

• Ensuring your Mongrel servers are deployed as clusters and as

services

• Setting up a load-balancing proxy web server with Apache or nginx

• Configuring multimaster and master/slave MySQL clusters

I’ll start with the simplest Rails deployment and slowly grow the server

into a scaled-out model ready to handle your angry mob of Web 2.0

users. When I’m done, you will have a web server that serves as a static

proxy and a load balancer that serves content to one or more Mongrel

clusters. This system will serve a typical request as shown in Figure 7.2,

on page 148. The user makes a request to a gateway server. If it’s a

static request, the gateway server simply serves up the static content,

and you’re done. If not, the gateway server will forward the request

to one of several Mongrel clusters. The Mongrel clusters forward the

request to an individual Mongrel server.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=146


SCALING OUT WITH CLUSTERING 147

Server

VHost

Application

Development Client

code repository

Application

Mongrel Cluster

Application

Deploy Tools
(Capistrano)

Application

Application
Application
Application

Server

V Host

Application
Application

Mongrel Cluster

Application

Server

V Host

Static Server

Load 
Balancer

Figure 7.1: Deployment map for scaling out

Prerequisites

If you don’t have access to a hosted virtual private server (VPS), you

can set a couple of virtual machines up on your desktop. For Win-

dows users, both VMware and Microsoft Virtual PC are free for non-

commercial use. Linux users have commercial and free options includ-

ing VMware, Xen, or OpenVZ. Mac users can use Parallels or VMware,

neither of which is free. Check for free trials if you’re not sure which

one to buy. I prefer VMware, but any one of them will work.

These virtual machine technologies work in a similar way to what a

VPS host will provide. They will allow you to install an entirely separate

operating system in a contained environment that acts like a computer

within your computer. In fact, if you’re considering a VPS hosting ser-

vice and aren’t sure how much memory or disk space you need, you

can test various configurations with these “home versions” to artificially

constrain system resources. Try running your application in a 256MB

VMware virtual machine before committing to 12 months of a 256MB

managed Xen VPS.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=147


SCALING OUT WITH CLUSTERING 148

Physical machine 2Physical machine 1

Virtual machine 1 Virtual machine 2 Virtual machine 3
eb Server
Port 80

Web Server
Port 80

Web Server
Port 80

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

Mongrel
Cluster

3000-3005

MySQL
Port 3306
Async

Multimaster

MySQL
Port 3306
Async

Multimaster

MySQL
Port 3306
Async

Multimaster

Hardware Load Balancer or Software Substitute
(ports 80, 443)

Figure 7.2: Typical Rails clustered deployment setup

You can use any Linux distribution, but I’ve always found the Red Hat–

derived ones like CentOS and Fedora to be the most friendly. They are

similar to what many VPS hosting providers will offer (RHEL and Cen-

tOS are very popular). There are a lot of Linux package dependencies

to get your Rails application up and running. At a minimum, you will

need a C/C++ compiler, Ruby and gems related to your app, Subver-

sion, Apache httpd, MySQL Server, and your favorite text editor, be it vi

or emacs. Sometimes you can build out a system by just installing your

Linux distribution with its “web server” and “developer” options. How-

ever, it’s not terribly hard to install everything from a minimal instal-

lation, especially given the documentation in Chapter 4, Virtual and

Dedicated Hosts, on page 72.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=148


SCALING OUT WITH CLUSTERING 149

Joe Asks. . .

Why Bother with Virtualization for Scaling Out?

Virtualization has many advantages for scaling out. Primarily,
you can configure your application to scale out sooner. You
can probably get at least two or more virtual private servers for
the same price as a single dedicated server. You gain most of
the advantages of redundancy and increased performance
sooner, and you can always switch to a dedicated box later,
with a reduced impact to your configuration and less down-
time. Personally, I choose to run virtualized environments even
on a dedicated server. I find them far easier to manage and
configure. Advances in hardware and software have made vir-
tualization technology fast, and the benefits far outweigh any
marginal performance cost.

You will need two virtual machine instances. With most of the soft-

ware technologies mentioned earlier, you can build one and simply copy

the virtual machine files, changing only some identification information

such as the IP address and the hostname.

Once you have your virtual machines up and running, create the data-

base and deploy your application with Capistrano to one of them using

the techniques you learned in the earlier chapters. You can deploy your

application in its simplest form so you can at least start up Mongrel

and access your application via a web browser by hitting the Mongrel

server directly.

Any application will do, but it should be more than an empty Rails

app. If you need a application to work with, try using the example

from Agile Web Development with Rails found at http://www.pragprog.

com/titles/rails2/source_code.

You can find entire books about the administration of Linux, Apache,

and MySQL. I may skip some steps here and there to keep your focus

on topics specific to Rails deployment. When I do, I’ll try to direct you

to other resources when necessary to further tighten security or tweak

performance.

http://www.pragprog.com/titles/rails2/source_code
http://www.pragprog.com/titles/rails2/source_code
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=149


MIRROR IMAGES 150

7.3 Mirror Images

Your server farm will have a number of servers across many roles. Try

hard to keep servers in the same role configured identically. Your life

will be easier, you will experience fewer surprises, and you’ll have less

documentation to write. If identical configurations sound like too much

work, you’re going to love virtualization.

Virtual servers are like files that sit on your hard drive. You can move

them, copy them, delete them, and back them up. When it comes time

to keep configurations the same, the easiest thing to do is just make a

copy. Here are a few strategies for ensuring configuration consistency

across your VMs, depending on the size and timing of the change.

Cold Copy It

When you’re first setting up your environment, just configure one vir-

tual server. Get that server to the point where all the software, patches,

dependencies, and configurations are in place so you can run a single

instance of your app. Then, make one copy for each server role, includ-

ing application servers, web servers, and database servers.

Automate It

You can often automate a change in configuration with Capistrano. You

have seen that Capistrano scripts do a good job, use Ruby code, and

can distinguish between server roles for different configurations.

Hot Copy It

Larger, more serious configuration changes may require you to shut

down the server. The cool thing about VMs in this case is that you can

use the copy strategy. Simply pull one server out of your cluster, make

your changes to it, and then copy it to replicate all the other servers

in the farm. This hot copy approach lets you introduce a new server

into the farm to handle additional load. Be careful. You will want to

always be able to uniquely identify each server. Whenever you make

a copy, you have to be sure to properly set the IP address, hostname,

and any other unique information for each server. If possible, automate

such a thing with a script common to each of the servers. Remember to

document the process!

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=150


DOMAIN NAMES AND HOSTS 151

Just Do It

If you can’t justify automating a change or don’t want to shut down

servers, you might just have to walk through the servers and make

the change. Remember to keep organized and document your steps,

though—it will make a world of difference.

Keep Offline Master Copies

A master copy is an offline configuration that has never been deployed

or exposed as a server to the public Internet. You will use it the first

time for your cold copy. After you build your initial VM, you can use

that copy as an online master copy. Whenever you need to make con-

figuration changes, you can change this master copy. Most important,

this is the copy you can safely deploy should your servers become com-

promised because of a security breach. Once a server has been com-

promised, it is hard to ever trust it again. You’ll have enough to worry

about regarding potential threats to your data, let alone the nightmare

of trying to clean out your server farm. Having offline master copies

allows you to patch the security hole in the offline copy that has never

been exposed to the network and redeploy each of the server roles to

the farm.

Use Third-Party Tools

So far I’ve discussed only custom brute-force approaches to managing

these configurations. Third-party tools that can do the same might even

be included with your virtual machine software or by your VPS provider.

Shop around and talk to your service and software providers.

7.4 Domain Names and Hosts

When you have multiple servers in your environment, managing their

names becomes important. You’ll manage domain names through the

web-based user interfaces you used in Chapter 3, Shared Hosts, on

page 44, as well as in Chapter 4, Virtual and Dedicated Hosts, on

page 72. Remember, changes to the domain name configuration can

take hours or even days to propagate fully throughout the Internet.

Managing these details for a cluster is a little tougher than managing a

single web server, but you can usually get by knowing only a few more

concepts:

A records The default configuration for most domain name services is

to support brainspl.at in addition to www.brainspl.at. The primary

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=151


DOMAIN NAMES AND HOSTS 152

Joe Asks. . .

So Do I Use an A Record or a CNAME?

When I researched the A record vs. CNAME issue for myself,
I remember coming across debates over various uses and
abuses of CNAME records and advantages and disadvantages
of different configurations. My conservative nature led me to
avoid playing games, so I generally follow the rules:

• Use A records for mappings of names to IP addresses.

• Use CNAME records to alias A records.

domain (brainspl.at) is an A, or address, record in DNS terms. This

record maps brainspl.at directly to your IP and is the lowest-level

mapping.

CNAME records CNAME records are like aliases for an A record, be it

one of your own or someone else’s. Aliases usually indicate the

kind of service that a server provides. For example, www.brainspl.at

is an alias to brainspl.at that indicates interest in the HTTP server,

and ftp.brainspl.at indicates interest in the File Transfer Protocol.

Keep in mind that longstanding conventions exist, and you should

follow them where you can.1

What Names Do I Need?

Armed with your new knowledge of domain name configuration, you

now need to decide what names you will need. Try to name all your

site’s publicly available nodes, including the load balancer and the

nodes that it balances. You’ll probably have a firewall installed too.

Getting your names and visibility right in a real production environ-

ment can require some advanced firewall setup, which is beyond the

scope of this book. For simplicity, I’ll let the web server act as the load

balancer and remind you later that a hardware load-balancing solution

is definitely a must-have for the most serious websites.

Imagine that you have a configuration involving a load balancer, two

web servers, and a database server. You will expose the load balancer

1. See http://en.wikipedia.org/wiki/Domain_name_system for more.

brainspl.at
http://en.wikipedia.org/wiki/Domain_name_system
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=152


DOMAIN NAMES AND HOSTS 153

to the network but not the database. So, you’ll need a name for the load

balancer. The database server may have a name on your local intranet,

but it will not have a name in the domain name service (so there will be

no db.brainspl.at). The load balancer will distribute requests between the

two web servers. They will also need names because you’ll eventually

need to access individual web servers directly or redirect a request to a

specific server—for debugging, configuration, or testing, if nothing else.

I see three A records and one CNAME because the load balancer will

map to the load balancer IP address, and each of the web servers will

also have an IP address. I’ll use a CNAME for the www alias that visitors

use. I’ll throw in an extra CNAME for a potential caching service. The

final table looks like this:

A Records

• brainspl.at => 999.999.999.100—load balancer

• www1.brainspl.at => 999.999.999.101—first web server

• www2.brainspl.at => 999.999.999.102—second web server

CNAME Records

• www.brainspl.at => brainspl.at—alias to the load balancer

• content.brainspl.at => content.contentcache.com—alias to the con-

tent caching service

That last CNAME is to a third-party A record that provides caching of

large content such as music, images, and videos.

When setting up both A records and CNAMEs, you need to set the

or time-to-live (TTL) parameter. This value will determine how often

name servers return to your configuration to check for changes. Setting

this value a low value, such as 30 minutes, will give you a little more

flexibility to change your configuration with minimal impact to your

site. Setting it to a higher value, such as seven days, will provide better

performance of your site because client software like browsers will have

to do fewer name lookups. I recommend setting it low to start so that

you can make a few mistakes with minimal impact. Then once you’re

comfortable with your configuration, return and increase the values for

all A and CNAME records to at least twenty-four hours.

Now that you have named servers, you can start deploying your appli-

cation to them.

db.brainspl.at
999.999.999.100
999.999.999.101
999.999.999.102
brainspl.at
content.contentcache.com
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=153


DEPLOYING TO MULTIPLE HOSTS 154

7.5 Deploying to Multiple Hosts

With Rails and Capistrano, you have a lot of deployment options. Capis-

trano supports three server roles right out of the box:

• The web role points to servers responsible for static content.

Apache or nginx lives here.

• The app role points to the server that will run your Rails applica-

tion. Mongrel lives here.

• The db role points to your database server. MySQL lives here.

Capistrano deploys the right files to each server. If you need to do

so, you can override its behavior. With only one server, you generally

deploy all roles to that one server. The following Capistrano script is an

example of a single-server configuration. I’ll reference parts of it for the

remaining examples in this section.

# Customized deploy.rb

set :application, "brainsplat"

set :user, "ezra"

set :repository, "http://brainspl.at/svn/#{application}"

set :deploy_to, "/home/#{user}/#{application}"

role :web, "www1.brainspl.at"

role :app, "www1.brainspl.at"

role :db, "www1.brainspl.at", :primary => true

Options for Clustering

Given two servers, you now have a decision to make. The three following

options are the most reasonable.

Isolate the database: This first option is simple and may offer the best

performance for an individual request depending on the application. If

your application is transaction heavy and depends on a lot of dynamic

data, then this option might be the right choice. With this configuration,

the database alone is separate, so it has fully dedicated access to the

server resources, which should include lots of fast disks. You will also

have the added security of keeping the database further away from the

public network interface. You would configure the isolated database

option like this:

# Relevant lines of deploy.rb

# ...

role :web, "www1.brainspl.at"

role :app, "www1.brainspl.at"

role :db, "internal.brainspl.at", :primary => true

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=154


DEPLOYING TO MULTIPLE HOSTS 155

Joe Asks. . .

Why Not Just “Scale Up” the Database?

You absolutely could “scale up” the database. The database
server is a good candidate for scaling upward, because it is
often a bottleneck and can benefit from ultra-fast disks and
lots of memory. You can also put redundant disks in a RAID-1,
RAID-5, or RAID-10 configuration that would offer a similar level
of redundancy as a software cluster and would probably per-
form better. Do not underestimate the costs of such hardware,
and remember the limitations and consequences of a scale-up
approach. They still apply!

Isolate the web server: The second option is to isolate the web server so

it can concentrate on caching and serving static pages with lots of mem-

ory and a fast network connection. If your application is heavy on static

content and wants a chance at surviving the Digg effect, you might

want to choose a dedicated web server. The application and database

are isolated on a second internal server. Conveniently, you still have the

security advantage of keeping the database away from the web server.

However, deploying the web server and application server to a sepa-

rate machines loses the benefit of directly serving cached pages that

Rails creates on the fly. Clustered or shared file systems, or another

web server on the app server, may solve the problem. In any case, the

isolated web server roles look like this in a Capistrano configuration:

# Relevant lines of deploy.rb

# ...

role :web, "www1.brainspl.at"

role :app, "internal.brainspl.at"

role :db, "internal.brainspl.at", :primary => true

It’s a subtle difference that has huge consequences. The type of appli-

cation you’re running and the hardware available to you will dictate the

right option. If you plan on quickly growing beyond the capacity sup-

ported by either of these options, then you might want to consider a

third option, because you’ll likely end up there anyway.

Cluster: This third option has both servers running all the roles: web

server, application, and database. It offers the benefit of full redun-

dancy. You can lose one entire server, and the site will keep running

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=155


DEPLOYING TO MULTIPLE HOSTS 156

with data intact. The site may well perform better under certain kinds

of load. Given two users, each will have a full application stack and

dedicated hardware ready to serve the individual request. However, the

option is somewhat less secure because the database lives in the same

environment as the web server, fully exposed to web-related bugs and

security risks.

This configuration can be a bear to set up, especially with regard to

the database. Separating reads and writes to different databases with a

single master/slave configuration won’t do you much good if either one

crashes.

If you want full redundancy, you need to implement a synchronous

database cluster that supports reading and writing to either database

instance. I’ve dedicated a full section to it in Section 7.8, Clustering

MySQL, on page 179. For now, I’ll assume it’s already set up. The fol-

lowing Capistrano configuration makes use of it:

# Relevant lines of deploy.rb

# ...

role :web, "www1.brainspl.at"

role :app, "www1.brainspl.at"

role :db, "www1.brainspl.at", :primary => true

role :web, "www2.brainspl.at"

role :app, "www2.brainspl.at"

role :db, "www2.brainspl.at"

Combining Approaches with More Servers

Capistrano and Rails are flexible enough to support a great number of

server configuration options. As soon as you scale beyond two servers,

you have many, many more options. The following sections highlight a

few of the more popular options.

Four Servers: Clustered Database

This configuration has a clustered database with separate web and app

servers. This configuration emphasizes transactions and dynamic data.

If your database is the bottleneck or you need to add failover at the

database level, this configuration is a good place to start:

# Relevant lines of deploy.rb

# ...

role :web, "www.brainspl.at"

role :app, "app.brainspl.at"

role :db, "db1.brainspl.at", :primary => true

role :db, "db2.brainspl.at"

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=156


DEPLOYING TO MULTIPLE HOSTS 157

Five Servers: Clustered Web Servers

This configuration uses clustered web servers, a separate app server

and a scaled-up database. The emphasis for this solution is on static

content, but it has extra muscle in the database server to handle load.

# Relevant lines of deploy.rb

# ...

role :web, "www1.brainspl.at"

role :web, "www2.brainspl.at"

role :web, "www3.brainspl.at"

role :app, "app.brainspl.at"

role :db, "bigdb.brainspl.at", :primary => true

Ten Servers

This configuration, shown in Figure 7.3, on the next page, supports a

full cluster with no specific emphasis. Two large database servers sup-

port the application as clustering a database to more than two servers

starts to yield fewer benefits with each server. If you want to cluster

the database server more broadly, consider sharding, which I discuss

in more detail in Section 7.8, Challenge 3: Clustering vs. Sharding, on

page 180.

# Relevant lines of deploy.rb

# ...

role :web, "www1.brainspl.at"

role :web, "www2.brainspl.at"

role :web, "www3.brainspl.at"

role :app, "app1.brainspl.at"

role :app, "app2.brainspl.at"

role :app, "app3.brainspl.at"

role :app, "app4.brainspl.at"

role :app, "app5.brainspl.at"

role :db, "bigdb1.brainspl.at", :primary => true

role :db, "bigdb2.brainspl.at"

Web Servers vs. Application Servers: What’s the Difference?

At this point you’ve heard a lot about web and app roles. I’ve also hinted

that Mongrels may not make the best web servers. It’s time to drill down

a little deeper.

The Web Server

The web server is good at quickly routing requests, serving static file

content, and caching, so it makes an excellent proxy that sits in front of

the application server. After briefly flirting with lighttpd, the Rails com-

munity seems to have settled on one of two servers that are preferred

in the web role: Apache and nginx. Apache is a scalable, full-featured,

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=157


DEPLOYING TO MULTIPLE HOSTS 158

Load Balancer

Web 
Server

Web 
Server

Web 
Server

App 
Server

App 
Server

App 
Server

App 
Server

App 
Server

Data-
Base 
Server

Data-
Base 
Server

Figure 7.3: A ten-server cluster

and extremely reliable web server. But with Apache, you may get more

than you want and may suffer with having to configure it regardless.

Enter nginx. This Russian creation is very capable and well suited to

sitting in front of a Mongrel cluster. However, nginx has a simpler con-

figuration, is very fast, and uses minimal system resources. It makes

a great candidate for virtual hosting services where memory is limited

and software efficiency is key.

The Application Server

The application server is a container focused on securely executing code

and managing the runtime environment. For Rails, a single runtime

environment is not enough because Rails uses a single-threaded archi-

tecture. One Mongrel can serve only one request at a time. Because of

its share-nothing architecture, each concurrent user request to a Rails

application requires an isolated runtime environment.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=158


APACHE 159

The Rails application server architecture has two challenges:

• Mongrel is not optimized for serving static content, and doing so

puts unnecessary load on the Rails controller.

• In a production environment, you will have multiple application

servers on different ports, so you need a router of sorts to dis-

tribute requests among them.

You’ll need a web server optimized for routing requests, serving static

content, and caching. You can also see the need for an application

server optimized for serving Rails requests. Mongrel is by far the most

preferred server for Rails content because of its performance, stability,

and security. FastCGI is also an option and is marginally faster than

Mongrel. But because of stability problems and configuration head-

aches, few would choose FastCGI over Mongrel.

At this point, make sure your Mongrel instance is working as a cluster

and running as a service. In the sections to come, I’ll lay out the other

side of this equation: the static web server.

7.6 Apache

Apache may be the most successful open source project ever created.

Apache powers some of the biggest Internet sites in the world and has a

huge community. Apache also has an official 501(c)(3) nonprofit behind

it—the Apache Software Foundation. Apache is a safe bet to remain the

de facto standard web server for a long time to come.

Despite its success, Apache is not always easy to install, configure, or

manage. Like anything, it’s a matter of perspective and opinion. Some

people believe Apache is complex and hard to set up. Others believe it

is one of the easiest because of its incredible flexibility. Regardless of

which one is true, if you choose to run Apache, you’ll want to set it

up properly now. You don’t want to hammer in a simple configuration

and then be a slave to that configuration later. Before you roll up your

sleeves, you should have a more detailed picture of what Apache will do

for you.

Separation of Concerns: Web Server Style

I’m going to take a little bit of a different approach to configuring Apache

here. I’m going to use more virtual host proxies than usual.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=159


APACHE 160

I’m going to do this for a few reasons:

• To better isolate various configuration elements to make it easier

for you to read and follow.

• To separate the concerns and responsibilities into different virtual

servers.

• To mock the behavior of infrastructure components that would be

hard to demonstrate while you follow through these examples on

your own—unless you happen to have a hardware load balancer

on hand to distribute requests between your virtual machines. I

don’t, so I’ll use Apache.

That last point is especially important. You normally would have a

hardware load balancer distributing requests to the web servers on

each of your virtual machines, which would then either serve up some

static content or forward the request to one of the Mongrels in your

cluster. You can already begin to imagine the layering of responsibili-

ties. Initially, Apache serves as a web server, taking all incoming HTTP

requests. Then, Apache serves as a static proxy, serving static pages

as requests come in. Then, when dynamic requests come in, Apache

serves as a load balancer that forwards requests to the appropriate

web server.

However, in the absence of a hardware load balancer, you’ll set up a

couple of Apache virtual servers to handle the following tasks:

• Load balancing between the virtual machines

• Forwarding HTTP requests on port 80 to the web server on one of

those virtual machines

• Forwarding secure HTTPS/SSL requests on port 443, possibly just

to a regular nonsecure HTTP web server on port 80 within our

intranet

Prerequisites

Before we start, you’ll need to ensure that Apache is installed on your

server. If you are hosting with a managed VPS host, your provider may

have installed Apache by default. I recommend using Apache 2.2, and

that’s what I’m going to configure here. You’ll also need mod_ssl installed

to handle HTTPS requests on port 443. If you don’t have these installed,

it’s usually a simple matter. On CentOS or Fedora, use yum install httpd

and yum install mod_ssl. On Debian or Ubuntu, use apt-get install apache

and apt-get install libapache-mod-ssl. You can also compile Apache from

source, but for that I suggest buying an Apache book.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=160


APACHE 161

To fully simulate a load-balanced environment on your local machine,

you’ll need three (yes, three) virtual machines. Now would be a good

time to make copies of your virtual machine image and configure their

hostnames and IP addresses so that you have three uniquely identifi-

able machines.

Apache as a Load Balancer

Using Apache in place of a hardware load balancer may not yield the

best performance, but it will give you an opportunity to explore the

proxy balancer features that Apache provides in a simpler context. In

essence, you have two virtual machines, and you want to distribute

evenly between them. How evenly depends on the load balancer imple-

mentation, and Apache’s is fairly simplistic, but it will do for now.

Apache’s configuration starts with one file found at one of two locations

depending on your Linux distribution:

• Debian, Ubuntu: /etc/apache2/conf/apache2.conf

• Fedora, CentOS: /etc/httpd/conf/httpd.conf

The contents of the files are similar. From here on in, we’ll refer primar-

ily to the apache2-based names. On some Linux distributions, there will

be an empty httpd.conf file besides the apache2.conf file. Ignore it.

I’ve noticed that some VPS service providers like to break the configu-

ration file up into pieces and customize it quite a bit. You should leave

the configuration as intact as possible because it’s likely optimized for

the limitations of your VPS. Also, they may already have a directory for

you to place your own custom site configurations in. Be sure to read the

specific documentation for your VPS host. Different Linux distributions

may already have a directory for you to place your own site configu-

rations in. So again, be sure to check with the documentation for your

specific Linux distribution. Usually the only thing that is different is the

specific directory locations. They will always be fairly obviously named,

derived from either apache or httpd, with custom app directories named

sites and apps.

Fedora and CentOS have a fairly simplistic directory structure that you

will need to customize for yourself. Ubuntu has a nice default directory

structure that can be easily imitated on Fedora and CentOS. However,

it’s bad enough the Apache configuration files are named differently

and are in different locations. So, to make this discussion as easy to

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=161


APACHE 162

follow as possible, we’ll make a new directory for our Rails applications

so we can all be on the same page.

First let’s orient ourselves. Navigate to the Apache 2 configuration direc-

tory, which again will be either /etc/apache2/conf or /etc/httpd/conf.

Then at the command line, enter tail apache2.conf or tail httpd.conf. At

the bottom of the file, you will notice that it probably “includes” a couple

of other directories, for example:

• Include /etc/apache2/conf.d/

• Include /etc/apache2/sites-enabled/

The first conf.d/ directory is for common or reusable snippets of config-

uration. Think of it like a lib directory of sorts but for configuration. We

won’t be using it here. The second should appear on most Ubuntu or

Debian Linux distributions. Your Linux distribution may differ, or your

VPS host provider may have included some other directories, which

you’re free to use instead of those we’ll suggest here. For simplicity,

let’s add a new included configuration directory. At the very end of the

file—below the other Include statements—add the following:

Include conf/applications/*.conf

This line simply includes your private configuration file, giving you

a place to work. It can be any directory you like. You can now add

your own *.conf files to the /etc/apache2/conf/applications/ subdirectory,

which act like extensions to the master configuration file. The other 990

lines of apache2.conf (aka httpd.conf) are beyond the scope of this book

to discuss in detail. The good news is that the vast majority of those

lines are actually inline documentation! The Apache developers do a

good job of documenting the configuration file, or at least the basics of

it. Take a look and read it. While you’re there, as an exercise, find some

of the following pieces of information: the document root, the user and

group to run the processes as, the number of worker processes, the lis-

tening port, the log file locations, and the virtual host example. Here’s

a bonus question: if you have mod_ssl installed, how is the SSL configu-

ration loaded? I’ll touch upon that in a bit.

The Apache configuration file looks kind of like XML, but it uses num-

ber (#) signs to comment lines. Once you are a little more familiar with

the Apache configuration files, you can start to create your own. You’re

going to be configuring virtual hosts, which will in some cases override

some of the configurations you saw in apache2.conf. Most notably, the

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=162


APACHE 163

root directory will no longer point to the document root that you found.

Your virtual host will handle the routing of those requests instead.

Configuring the Load Balancer VM

You’re going to create three files to cleanly separate concerns. All of

them should be placed in the /etc/apache2/conf/applications directory

included in the apache2.conf file you edited earlier. If the /etc/apache2/

conf/applications directory doesn’t exist yet, create it now.

• cluster.conf will define a load balancer that will distribute requests

across two or more machines.

• http_proxy.conf will define a virtual host that will proxy typical HTTP

requests on port 80 to the load balancer.

• https_proxy.conf will define a virtual host that will proxy secure

HTTPS requests on port 443 to the load balancer.

Let’s start with cluster.conf, into which you’ll put the following:

# cluster.conf

<Proxy balancer://mycluster>

BalancerMember http://10.0.0.102:80

BalancerMember http://10.0.0.103:80

</Proxy>

This file defines the cluster definition itself. The Proxy stanza defines

the load balancer named mycluster. You are free to name the cluster

whatever you like, and it should probably be something meaningful to

your environment or application.

The balancer includes two BalancerMember entries—one for each of our

virtual machines. Here I’m using the IP address and specifying the port

explicitly. In certain cases, you may have different servers running on

different ports, and Apache lets you fully map requests received on

port 80 of the proxy to any port on the balancer members. You’ll see an

example of that later when we map requests to our Mongrel cluster.

By itself, cluster.conf would not impact your site very much. You need

to somehow tell the server to use the balancer, which brings us to the

next step: defining the virtual host to proxy the requests. The file you’ll

use to do that is http_proxy.conf:

# http_proxy.conf

<VirtualHost *:80>

ServerName brainspl.at

ServerAlias www.brainspl.at

ServerAlias 10.0.0.101 # if you don't have a hostname yet

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=163


APACHE 164

ProxyPass / balancer://mycluster/

ProxyPassReverse / balancer://mycluster/

ErrorLog logs/http_proxy_error_log

TransferLog logs/http_proxy_access_log

LogLevel warn

</VirtualHost>

The first three lines, ServerName and ServerAlias, tell the virtual server

which hostnames to intercept. These commands allow you to host mul-

tiple websites with different domain names on a single server easily.

That’s pretty nice stuff. I generally map the A record from my DNS

configuration to the ServerName property if I can and then map any rel-

evant CNAME records in the ServerAlias. That implementation is clean

and consistent with our DNS configuration.

The next two lines, ProxyPass and ProxyPassReverse, tell Apache to map

the root path (/) of this virtual host to a load balancer called mycluster.

Finally, you’ll configure the location and name of our error and access

logs, as well as set the log level, which is pretty self-explanatory.

Next, I’ll dive a little deeper and configure a secured port just like this.

I’ll put this configuration in a file called https_proxy.conf. It starts out

exactly like the HTTP version but then gets a little more complicated.

Here is what the file should look like:

# https_proxy.conf

NameVirtualHost *:443

<VirtualHost *:443>

ServerName brainspl.at

ServerAlias www.brainspl.at

ServerAlias 10.0.0.101 # if you don't have a hostname yet

ProxyPass / balancer://mycluster/

ProxyPassReverse / balancer://mycluster/

ErrorLog logs/https_proxy_error_log

TransferLog logs/https_proxy_access_log

LogLevel warn

RequestHeader set X_FORWARDED_PROTO 'https'

SSLEngine on

# The following line was broken to fit the book.

# Don't break it when you type it!

SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:

+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

SSLCertificateFile /etc/apache2/conf/ssl/crt/server.crt

SSLCertificateKeyFile /etc/apache2/conf/ssl/key/server.key

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=164


APACHE 165

<FilesMatch "\.(cgi|shtml|phtml|php)$">

SSLOptions +StdEnvVars

</FilesMatch>

<Directory "/var/www/cgi-bin">

SSLOptions +StdEnvVars

</Directory>

BrowserMatch ".*MSIE.*" \

nokeepalive ssl-unclean-shutdown \

downgrade-1.0 force-response-1.0

</VirtualHost>

The first line tells Apache that you want to access your virtual host by

names based on the URL of the incoming request. Without this, your

server would likely never be invoked because the default handler will

grab all the incoming requests. With this enabled, when it sees the

server name or one of the server aliases in the URL, it knows that this

is the virtual host to use.

The next seven lines of https_proxy.conf look very much like its HTTP

counterpart. In fact, you could have created an include file for the first

four lines to avoid the duplication.

However, I chose to duplicate it for readability and because it’s four

lines in two files in the same directory. I’ll warn you that there’s a

nice balance somewhere between excessive duplication and excessive

hierarchies of include files. Both can be overdone.

The rest of the file is quite different, starting with RequestHeader called

X_FORWARDED_PROTO. Recall that in your cluster configuration, both

of your balancer members used basic, unencrypted HTTP on port 80.

Without forwarding the protocol, your Rails application would be un-

aware that the request actually came through over a secure connection.

This information is important to e-commerce applications that might

redirect the user to a secure page when necessary. X_FORWARDED_PROTO

tricks Rails into thinking that it was directly requested via an HTTPS

protocol.

The rest of the lines are awkward to the extreme. This confusion loses

friends for Apache. But there is good news. Luckily, the mod_ssl installa-

tion or VPS host probably created a default SSL configuration file, usu-

ally called ssl.conf. On Fedora and CentOS it is located in /etc/apache2/

conf.d/. On Ubuntu and Debian, it is located in /etc/apache2/mods-

available. Also, on Ubuntu/Debian you should also see a symbolic link

to ssl.conf in /etc/apache2/mods-enabled. If you do not, you need to

enable the module by typing on the command line: a2enmod ssl. Even

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=165


APACHE 166

though it sounds annoying, Ubuntu’s a2enmod/a2dismod and a2ensite/

a2dissite are worth looking into.

Regardless of where ssl.conf is located, in it you’ll find all the same lines

that are listed earlier (and more). I certainly won’t try to increase our

page count by repeating the file here, so you should go give it a quick

read if you have it.

There are two options that I should mention, though: SSLCertificateFile

and SSLCertificateKeyFile. These two lines specify the location of your pri-

vate key file and your certificate. SSL and public key cryptography is

another one of those subjects that would double the size of this book.

I’ll settle for giving you enough information to set up your test envi-

ronment, but you should definitely research this topic further for your

production environment. Luckily, most hosting providers will help you

out here and may even properly set up the keys up for you. You do have

to pay for these keys to be signed by a certificate authority for them to

be valid. You don’t have to do that with your test certificates, but real-

ize that they won’t be secure, and your user’s browsers will tell them so

with an irritating warning.

Here’s how to generate the test certificates:

#root> # Generate a private key file with a passphrase

#root> openssl genrsa -des3 -out server.key 1024

#root> # TEST ONLY: Remove the passphrase to make

#root> # our test environment easier to manage

#root> # DO NOT do this in production. The *.pem

#root> # file is the key file without the passphrase

#root> openssl rsa -in server.key -out server.pem

#root> # Generate a certificate signing request.

#root> # Answer aquestions as accurately as you can for test environment

#root> openssl req -new -key server.pem -out server.csr

#root> # TEST ONLY: Self sign the key.

#root> # In production the Certificate Authority's signature is what matters.

#root> openssl x509 -req -in server.csr -signkey server.pem -out server.crt

An alternative to generating them is to just use the examples that

Apache created when you installed mod_ssl. You can check the default

ssl.conf I mentioned before to find the locations of those example files.

In a true production situation, you’ll want keep the key file encrypted

and lock down the file itself so that only root has access to it. If you

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=166


APACHE 167

lose this file or if it is compromised by a malicious party, you will have

to buy a new certificate and immediately revoke the old one.

With that, your Apache-based software load balancer is done. You can

now test it by starting Apache on all three virtual machines. You can

start, restart, stop, or test the Apache configuration as follows:

• sudo /etc/init.d/apache2 start

• sudo /etc/init.d/apache2 restart

• sudo /etc/init.d/apache2 stop

• sudo /etc/init.d/apache2 configtest

The configtest option will often give some insight into any problems if

the server is failing to start.

To test the cluster and see how it behaves, you should put something

interesting and uniquely identifiable in the /var/www/html/index.html file

of your balancer members. That way, you can watch how your balancer

distributes requests between them by refreshing the balancer URL. If

everything is working properly, you should see the page alternating

between the two balancer members.

You’re not here to serve static index.html pages, though. It’s now time

to set up the balancer members with your Rails application! The cool

thing is that it’s really no different from what you’ve seen so far. It’s

just another proxy balancer on another server. You already know most

of what you need, but let’s step through it together.

Apache as a Mongrel Proxy

As you recall, Mongrel is a cool little web server that’s custom-tailored

to serve up a single request through the Rails share-nothing architec-

ture. Therefore, you need to run multiple Mongrels to allow multiple

users of our application to use your site concurrently. Otherwise, your

users would all be waiting in line for a single Mongrel server. You’ve

just learned in the previous section that Apache can balance requests

across multiple servers, so let’s do that for Mongrel now.

First remember that you’re no longer on the same virtual machine as

before. You’re done with the software load balancer and are now work-

ing on one of the balancer members.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=167


APACHE 168

On each balancer member, you’re going to create two files, only to

keep the concerns separated as before. These files will also reside in

/etc/apache2/conf/applications/, and you’ll need to remember to add the

Include conf/applications/*.conf to /etc/apache2/conf/apache2.conf. These

are the files you’ll need:

• mongrel_cluster.conf will define a load balancer that will distribute

requests across two or more Mongrel servers.

• mongrel_proxy.conf will define a virtual host that will proxy typical

HTTP requests on port 80 to the Mongrel cluster.

Note the lack of a secure SSL configuration. The reason for that omis-

sion is that our software load balancer configured in the previous sec-

tion will take care of that for us. A hardware load balancer would do

the same. Secure requests are proxied through to a basic HTTP ser-

vice on port 80 of our balancer members, which are inside our firewall.

This keeps the configuration of the balancer members far cleaner. The

exception is if you do want to expose your balancer members directly

(for example, www1.brainspl.at), then you may need additional configu-

ration in the load balancer to support SSL for each one.

The Mongrel cluster configuration contained in mongrel_cluster.conf will

look very familiar:

# mongrel_cluster.conf

<Proxy balancer://mongrelcluster>

BalancerMember http://0.0.0.0.8000

BalancerMember http://0.0.0.0.8001

BalancerMember http://0.0.0.0.8002

BalancerMember http://0.0.0.0.8003

</Proxy>

This time, you’ll notice that we’re not balancing to a different server.

Recall our Capistrano roles. In this case, it’s clear that this one server

is filling both the web and app roles. If we wanted to separate the web

and app roles, we’d run the Mongrels on a different server, and the IP

addresses in the cluster would be to a remote server. For example:

# Alternative mongrel_cluster.conf

# with separated web and app roles

<Proxy balancer://mongrelcluster>

BalancerMember http://10.0.0.104.8000

BalancerMember http://10.0.0.104.8001

BalancerMember http://10.0.0.104.8002

BalancerMember http://10.0.0.104.8003

</Proxy>

www1.brainspl.at
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=168


APACHE 169

Also remember that in our /etc/mongrel_cluster/myapp.conf file, there

was a line restricting the IP address allowed to access the Mongrel

servers:

# Partial /etc/mongrel_cluster/myapp.conf

# ...

address: 0.0.0.0

# ...

If you’re running both on the same server, you can use the IP address

0.0.0.0 or 127.0.0.1. If you’ve separated the web and app roles, this

address line will have to match the web server/Mongrel proxy—the

server you’re working with now (for example, 10.0.0.101). Note that

these are all internal IP addresses we’re using here, not public IP ad-

dresses exposed to the Internet.

Also recall the following two lines from /etc/mongrel_cluster/myapp.conf:

# Partial /etc/mongrel_cluster/myapp.conf

# ...

servers: 4

port: "8000"

# ...

These two values will determine how many balancer members you will

have and what their port numbers will be. In this example, there would

be four servers ranging from port 8000 to 8003. Thus, that’s our bal-

ancer configuration.

The second file that you need on each balancer member, and the final

Apache configuration file we’ll deal with, is mongrel_proxy.conf. If you’re

keen, you are probably thinking you already know the answer here,

because you can just add a virtual host that routes all requests to

the balancer. That does indeed work, and the configuration would look

nearly identical to the virtual hosts we defined on the load balancer:

# A very simple mongrel_proxy.conf

<VirtualHost *:80>

ServerName www1.brainspl.at

ServerAlias 10.0.0.102 # if you don't have a hostname yet

RequestHeader set X_FORWARDED_HOST 'www.brainspl.at'

ProxyPass / balancer://mongrelcluster/

ProxyPassReverse / balancer://mongrelcluster/

ErrorLog logs/mongrel_proxy_error_log

TransferLog logs/mongrel_proxy_access_log

LogLevel warn

</VirtualHost>

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=169


APACHE 170

I have added only one new element here. Did you spot it? The X_

FORWARDED_HOST header is there to trick Rails into thinking the

hostname is one thing, even if it is actually something else. The reason

for this is that after all of this proxying and indirection, the original

hostname will likely be lost in the shuffle. This trick just makes it eas-

ier for Rails to do things like redirect to its own server, without having

to worry about unintentionally getting an internal hostname instead of

the public web address.

The disadvantage here is performance. This configuration would have

Mongrel serving up static content and images, as well as all cached

Rails pages. You didn’t go through all this work just to be as slow as

Mongrel! You want to leverage the Apache web server and have it serve

up the static stuff. The unfortunate solution here is yet another config-

uration that will have you turning up your nose a bit. It is not a trivial

or easily digestible approach. Luckily, once again, you can pretty much

take it line for line and use it in your own applications.

There is another approach that does away with the ProxyPass and Prox-

yPassReverse configurations and replaces them with a number of URL-

rewriting statements. The advantage is that Apache will serve static

content directly, which is far faster and leaves your Mongrels available

for more important work that actually requires application code to run.

The following listing contains the mongrel_proxy.conf file in its entirety.

I’ve numbered the sections for later discussion and identified the pur-

pose in capital letters where relevant. Look through it, and then I’ll walk

you through it:

# A full featured mongrel_proxy.conf

<VirtualHost *:80>

ServerName www1.brainspl.at

ServerAlias 10.0.0.102 # if you don't have a hostname yet

RequestHeader set X_FORWARDED_HOST 'www.brainspl.at'

### New configuration elements begin here. ###

# 1. Document root specified to provide access to static files directly

DocumentRoot /home/deploy/applications/myapp/current/public

<Directory /home/deploy/applications/myapp/current/public>

Options FollowSymLinks

AllowOverride None

Order allow,deny

Allow from all

</Directory>

RewriteEngine On

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=170


APACHE 171

# 2. SECURITY: Don't allow SVN directories to be accessed

RewriteRule ^(.*/)?\.svn/ - [F,L]

ErrorDocument 403 "Access Forbidden"

# 3. MAINTENANCE: Temporary display of maintenance file if it exists

RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f

RewriteCond %{SCRIPT_FILENAME} !maintenance.html

RewriteRule ^.*$ /system/maintenance.html [L]

# 4. PERFORMANCE: Check for static index and cached pages.

RewriteRule ^/$ /index.html [QSA]

RewriteRule ^([^.]+)$ $1.html [QSA]

# 5. OTHERWISE: If no static file exists, let Mongrel handle the request

RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f

RewriteRule ^/(.*)$ balancer://mongrel_cluster%{REQUEST_URI} [P,QSA,L]

# 6. PERFORMANCE: Compress text output for compatible browsers

AddOutputFilterByType DEFLATE text/html text/plain text/xml

BrowserMatch ^Mozilla/4 gzip-only-text/html

BrowserMatch ^Mozilla/4\.0[678] no-gzip

BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

### End new configuration elements, logging below is the same. ###

ErrorLog logs/mongrel_proxy_error_log

TransferLog logs/mongrel_proxy_access_log

LogLevel warn

</VirtualHost>

The first thing you’ll notice is a fairly typical-looking web server docu-

ment root stanza (#1). This is what allows static content to be served.

However, before it attempts to serve any file, Apache must execute a

number of rewrite rules. These rules are based on regular expressions

that check for some condition and then rewrite the request to modify

the resulting behavior. For example, the first rewrite rule (#2) blocks

access to .svn directories that Capistrano tends to leave behind. The

next group of rules form a maintenance (#3) rule that lets you grace-

fully respond to visitors while your site is not available. But the next

rules (#4) demonstrate the overall goal: better performance. They look

for static index pages when no file is specified in the URL and also

serve up cached Rails pages if they exist. If Apache can’t find a static file

matching the request, Rails handles the request through the last pair of

rewrite rules (#5). Finally, to speed up network transfers at the expense

of some processing power, you can optionally enable the mod_deflate

output filter (#6) to compress outbound text data.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=171


NGINX, FROM RUSSIA WITH LOVE 172

These are huge performance advantages for high-traffic sites. Not only

is Apache faster at serving static content, but it keeps unnecessary load

off of the Mongrels so they can efficiently handle only Rails requests.

You can now start up Apache and the Mongrel cluster on your balancer

members. Better yet, have Capistrano do it! After all, that’s what Capis-

trano is for. Also, you have only a single database so far, and therefore

you have to configure it to accept connections from remote servers.

This database configuration is usually a simple matter of granting per-

missions to remote users (for example, ’deploy’@’10.0.0.102’) on your

database. I’ll cover more advanced MySQL topics later in this chapter.

Congratulations! You have now configured a highly flexible and high-

performance clustered server architecture. If you look back and con-

sider some of your options, you can scale this out to six servers quite

easily: the software load balancer, two web proxy servers, two applica-

tion servers, and a database server. You can play around with your local

virtual machines to try adding another web server or to try separating

the web and app roles onto different hosts. Otherwise, if you’ve found

all this to be a little overbearing, with too much unneeded flexibility

and indirection, or if your server is strictly limited to low resources,

you might need an alternative to Apache. In that case, there’s nginx.

7.7 nginx, from Russia with Love

nginx (pronounced “engine-x”) is a fast, lightweight web server written

by Igor Sysoev. It is extremely well suited as a front-end server for Mon-

grel clusters. Out of the box, some find that nginx serves static files

faster and under heavier load than Apache, often using a fraction of

the resources under similar work loads. Where Apache focuses clearly

on modularity and flexibility, nginx focuses on simplicity and perfor-

mance. That’s not to say nginx isn’t feature rich, because it has nice

built-in rewrite and proxy modules and a clean configuration file syn-

tax that makes it a pleasure to use.

The proxy module has similar capabilities to mod_proxy_balancer in

Apache, so it works great for fronting clusters of Mongrels. Conditional

if statements and regular expressions matching allow precise control

over which requests get served as static content and which dynamic

requests nginx will proxy through to a Mongrel back end.

nginx is surprisingly full-featured considering how fast and efficient it

is. It has support for SSL, HTTP AUTH, FastCGI, gzip compression, FLV

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=172


NGINX, FROM RUSSIA WITH LOVE 173

streaming, memcached, and many other modules, so you’ll be able to

handle the more advanced topics in this book such as caching and clus-

tering. The nginx wiki (http://wiki.codemongers.com/nginx) is the defini-

tive place go for nginx documentation.

nginx can do everything you configured Apache to do in the previous

section: software load balancing, acting as a Mongrel proxy, and serv-

ing static content. If you repeated everything all over again with nginx,

you’d probably find it quite repetitive. Instead, I’ll show you the nginx

configuration and separate the concerns as before. That should give

you enough knowledge to configure nginx as we did Apache or however

you like. I think you’ll agree that the simplicity of the nginx configura-

tion will make it quite a bit more straightforward compared to Apache.

Starting, Stopping, and Reloading

If you haven’t already noticed, nginx has a more hard-core feel to it.

Case in point: you have to compile it from source, and even after it’s

installed, it doesn’t come with all the user-friendly service scripts that

Apache comes with. You’ve already installed nginx in Chapter 4, Virtual

and Dedicated Hosts, on page 72. To start it, you’ll be running the exe-

cutable directly, and to stop or restart it, you’ll be using the kill program

to send signals to the process. This sounds like it could get messy, but

luckily the basics for using it are pretty simple. To start the server,

run the command /usr/local/nginx/sbin/nginx as root. That command will

load the configuration file at/usr/local/nginx/conf/nginx.conf. To load or

test other configuration files, you’ll need a couple of options:

-c filename Load the configuration file named filename instead of the

default file.

-t Don’t run the server. Just test the configuration file.

As with other *nix applications, you can control nginx through the use

of signals. To use signals, you’ll need the process ID. Use this version

of the ps command to get it (output truncated to fit the book):

ezra$ ps -aef | egrep '(PID|nginx)'

UID PID PPID .. CMD

root 6850 1 .. nginx: master /usr/local/nginx/sbin/nginx

nobody 6979 6850 .. nginx: worker

nobody 6980 6850 .. nginx: worker

nobody 6981 6850 .. nginx: worker

nobody 6982 6850 .. nginx: worker

http://wiki.codemongers.com/nginx
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=173


NGINX, FROM RUSSIA WITH LOVE 174

The master process PID is 6850, as you can see in the Parent Process

ID (PPID) column of the output. nginx is architected as a single master

process with any number of worker processes. We are running four

workers in our configuration. You can stop the master process with the

kill 15 signal (kill -15 6850), which will also kill the worker processes. If

you change a configuration file, you can reload it without restarting

nginx:

ezra$# The -c option is only needed if your .conf file is in a custom location.

ezra$ sudo /usr/local/nginx/sbin/nginx -c /etc/nginx/nginx.conf

ezra$ sudo kill -HUP 614

The first command sets up the new configuration file. The second sends

a kill signal with HUP. The HUP signal is a configuration reload signal.

If the configuration is successful, nginx will load the new configuration

into new worker processes and kill the old ones. Now you know enough

to run the server, stop the server, and configure the server. The next

step is building a configuration file.

Configuring nginx

nginx has a master configuration file that includes a number of other

files, including our virtual host configurations. The master configura-

tion file is stored at /usr/local/nginx/conf/nginx.conf. We’re going to add a

line to the end of that file to include our virtual host configurations.

You’re going to add only one line, but it’s important to put it in the right

spot. You want it in the http block:

# Partial nginx.conf

# ...

http {

# ...

# Include the following line at the end of the http block

include /etc/nginx/vhosts/*.conf;

}

Be sure to create the vhosts directory for yourself. This should seem

familiar, because it is very much like the approach you saw when set-

ting up Apache. However, the nginx master configuration file is not

well documented with inline comments, so I’ve done that for you in

Appendix A, on page 258. Please take this time to refer to the nginx.conf

file on your server, using Appendix A as a guide.

There is a default virtual host built into the master configuration file

that you should remove. As you’ll see in the next section, you’ll be

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=174


NGINX, FROM RUSSIA WITH LOVE 175

replacing the default virtual hosts with your own. You’ll keep it in a

separate file for cleanliness, though.

Virtual Host Configuration

The nginx virtual host configuration is similar to the Apache equiv-

alent but with less noise. The syntax is more like that of a domain-

specific language than a structured file format, which is more com-

fortable for Ruby programmers. You’ll find most of the configuration

elements familiar from our earlier discussions of the Apache configura-

tion, but I’ll go through each just to be sure.

The first thing you’ll do in your virtual host configuration is set up a

load-balancing cluster for your Mongrels. You’ll then configure some

typical HTTP details such as the server name, port, root directory, error

files, and logs. Finally, you’ll set up the URL-rewriting rules to make

sure you get the most out of nginx by having it serve static files and

cached Rails files and to help keep unnecessary load off your Mongrels.

Take a look at an nginx virtual host configuration file now. I’ll name

mine after my site and call it brainspl.at.conf:

# brainspl.at.conf

# nginx virtual host configuration file

# to be included by nginx.conf

# Load balance to mongrels

upstream mongrel_cluster {

server 0.0.0.0:8000;

server 0.0.0.0:8001;

server 0.0.0.0:8002;

}

# Begin virtual host configuration

server {

# Familiar HTTP settings

listen 80;

server_name brainspl.at *.brainspl.at;

root /data/brainspl.at/current/public;

access_log /var/log/nginx/brainspl.at.access.log main;

error_page 500 502 503 504 /500.html;

client_max_body_size 50M;

# First rewrite rule for handling maintenance page

if (-f $document_root/system/maintenance.html) {

rewrite ^(.*)$ /system/maintenance.html last;

break;

}

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=175


NGINX, FROM RUSSIA WITH LOVE 176

location / {

index index.html index.htm;

# Forward information about the client and host

# Otherwise our Rails app wouldn't have access to it

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header Host $http_host;

proxy_max_temp_file_size 0;

# Directly serve static content

location ~ ^/(images|javascripts|stylesheets)/ {

expires 10y;

}

if (-f $request_filename) {

break;

}

# Directly serve cached pages

if (-f $request_filename.html) {

rewrite (.*) $1.html break;

}

# Otherwise let Mongrel handle the request

if (!-f $request_filename) {

proxy_pass http://mongrel_cluster;

break;

}

}

}

The upstream block defines a load-balancing cluster of three Mongrel

servers, which in this case happen to be on the same host as the nginx

server. You can, of course, separate the Mongrels onto their own appli-

cation server and then simply specify a remote IP address here.

You can define as many clusters like this as you need, but be sure to

name each one uniquely and descriptively. In this case, I named it fairly

generically as mongrel_cluster.

The server block is the virtual host directive. You will need one server

block for each Rails app you want to run; pair it with a cluster as

you did in your upstream block. If you have only a single virtual host

accessing the cluster, you might as well keep it in the same file. But if

you have two or more virtual hosts accessing it, you might want to put

the upstream block in its own include file. That way, it’s easier to find,

and you can maintain your separation of concerns as before.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=176


NGINX, FROM RUSSIA WITH LOVE 177

The contents of the server block begins with some basic HTTP config-

uration. This HTTP configuration is quite self-explanatory, a result of

the simplicity of the nginx configuration syntax. Read through it now.

First, I’m configuring nginx to listen on the standard HTTP port 80.

The server is named brainspl.at, and I’ve also aliased all subdomains

(*.brainspl.at). I’ve set the document root to the /public directory of my

Rails application, which was deployed with Capistrano. I pointed the

main access log at a file specific to this server and set the default error

page for 50x-class error codes. Finally, for security reasons, I’ve limited

the maximum response size to avoid attempts to overload the server.

Just below the basic HTTP configuration, you’ll see the first rewrite

rule. You’re already familiar with rewrite rules from the Apache config-

uration; however, I think you’ll agree that these are cleaner and easier

to read. That first rewrite rule checks for the existence of a mainte-

nance.html file and displays it (and only it) if it exists. This rule allows

you to gracefully respond to your visitors while you are making changes

requiring an application shutdown.

The location block allows nginx to set custom configuration options for

different URLs. In this default configuration, I’m setting configuration

options for the root (/) . The index directive tells nginx which file to

load for requests like / or/foo/. Here I’ll use the standbys index.htm and

index.html.

Next you’ll see a group of proxy_* directives that forward information

about the client and spoof information about the host to help hide the

nginx proxy from the Rails application. This way, Rails has all the infor-

mation it would normally have if it were serving requests directly to

the user from one of the Mongrel servers. The forwarded information

includes the IP of the client and the hostname we want Rails to see (for

example, www.brainspl.at instead of the internal address of our Mongrel

server). This is important for the request objects to work properly.

The sections immediately after the proxy_* directives are the meat of the

URL rewriting. The expires directive sets the Expires header for any URLs

that match images, JavaScripts, or style sheets. This rule will make

the client download these respective assets only once and then use

their local cached versions for ten years from the first download. When

Capistrano deploys Rails apps, Capistrano appends a time stamp to

the URL so that clients will think they are new assets and download

them again. This allows you to push changes to the same filename and

properly invalidate the cache.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=177


NGINX, FROM RUSSIA WITH LOVE 178

Next, if the requested filename exists on disk, just serve it directly, and

then finalize the request by breaking out of the block. If the static file

doesn’t exist, Rails then checks for the requested filename with .html

appended. In other words, it checks for a cached Rails view. So when a

user requests a URL such as /post/foo, nginx will check for /post/foo.html

and serve it directly instead of proxying to Rails for a dynamic page.

Finally, if none of the other rules matched, the config then proxies the

request to one of the Mongrels defined in the upstream block.

Secure Connections

To use SSL with nginx, you use a configuration that matches the server

block as shown earlier but with the following differences:

• The secure HTTPS/SSL server will normally listen on port 443.

• SSL needs to be enabled.

• You need to create secure certificate and private key files and put

them in the appropriate directories, just as we did with Apache.

• You need to forward one more header to ensure Rails knows when

we have a secure connection.

You can put the configuration in another configuration file called brain-

spl.at.ssl.conf. Remember to consider putting the upstream block from the

non-SSL configuration into its own file and include it in the nginx. You

can add the relevant lines like this:

server {

listen 443;

ssl on;

# path to your certificate

ssl_certificate /etc/nginx/certs/server.crt;

# path to your ssl key

ssl_certificate_key /etc/nginx/certs/server.key;

# put the rest of your server configuration here.

location / {

# set X-FORWARDED_PROTO so ssl_requirement plugin works

proxy_set_header X-FORWARDED_PROTO https;

# standard rails+mongrel configuration goes here.

}

}

Notice I didn’t define the Mongrel cluster again. I can use the same one.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=178


CLUSTERING MYSQL 179

Taking It to the Next Level

You can get more life out of your web tier by first introducing hardware

load balancing to replace the Apache-based load balancer you built

earlier. Hardware load balancers offer many of the same features plus

more, including enhanced security, proxying HTTPS/SSL requests, and

server affinity (sticky load balancing).

Another excellent enhancement is to offload serving of large static con-

tent from your own web servers and instead employ a content delivery

service. These services will cache images, videos, music, PDF files, and

any other large files that you need not bother your own servers with. It

doesn’t make your application any faster, of course, but it certainly will

reduce the load on your web server’s network, memory, and disks.

7.8 Clustering MySQL

I’ve shown how you might cluster multiple web and application servers

behind a software load balancer, but a single database on the back end

can take you only so far. The database would be thrashed severely if you

had ten servers all vying for its time and resources, so you need some

solution to allow for multiple databases in your application infrastruc-

ture. I should warn you that you must customize clustering solutions

to fit the application that you are building, considering carefully the

balance of performance against data integrity concerns.

The Challenges with MySQL Clustering

In this book, I’ve chosen MySQL because it is by far the most common

and best supported database for Rails applications. Truth be told, for

the most extreme scalability problems, there are better databases on

the market that offer more powerful clustering features. As it turns

out, MySQL is actually not a very good candidate for clustering at all,

because of some challenges.

Challenge 1: The Relational Database

MySQL is a relational database. Relational databases do not scale well

to super-high loads like those experienced by Google and Facebook.

Instead, such sites will often use simpler, faster systems such as the

Oracle Berkeley DB, which is an in-process nonrelational data stor-

age solution that offers far better performance and stability, even in

a distributed environment. Others may use in-memory object-oriented

databases or even flat files! Each of these has their pros and cons, but

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=179


CLUSTERING MYSQL 180

the relational database can actually be among the slower options, often

favoring features over performance.2

Challenge 2: Asynchronous vs. Synchronous Replication

MySQL supports only asynchronous replication. Under this scaling

model, you will have a lag between the time a transaction completes

on one of the databases and when MySQL replicates that row to all

the others in the cluster. This lag time can cause you pain when you

are dealing with unique indexes such as the primary key. It’s especially

challenging with other unique indexes. Say that a given user must have

a unique login. If two users took the same name at the same time,

you’d have inconsistent data. The only solution is often your own cus-

tom algorithm for guaranteeing uniqueness. A few ambitious developers

have formed projects to implement a synchronous clustering solution

for MySQL, one that would eliminate the time-lag problem. One such

project called google-mysql-tools includes a feature called SemiSyncRepli-

cation. Another is solidDB for MySQL, by Solid Information Technol-

ogy. It also offers synchronous replication and other high-availability

features. If you’re serious about clustering MySQL, you should watch

these projects.

Challenge 3: Clustering vs. Sharding

Clustering in general doesn’t perform well enough for the most extreme

database loads. Even if you do manage to get a synchronous cluster

set up, certain kinds of transactions must update all the databases

before completing. This limitation means that if you have ten database

servers in your synchronous cluster and update a number of records

that are centrally dependent to your system, your transaction will need

to write to all ten servers! Your database cluster can easily become

more of a hindrance than a help. Furthermore, it’s hard to cluster in a

geographically diverse way, so it becomes difficult to put one server in

Japan and another in Canada and have them belong to a cluster. The

performance implications of synchronizing a database across a wide

network is not at all practical, regardless of the other benefits. So as

an alternative to clustering, many modern high-load websites use an

approach called sharding.

Sharding means splitting your database up into groupings of cohesive

data, such that all the data that a certain user or function requires

2. See http://www.oracle.com/database/berkeley-db/index.html for more.

http://www.oracle.com/database/berkeley-db/index.html
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=180


CLUSTERING MYSQL 181

is colocated in one database, and data for other users or functions is

stored in another database. For example, you might choose to store

all the users whose names start with A–L in one database and M–Z in

another. Or, you may choose to keep records based on geography, so

you could store Japanese records in a database in Japan and Cana-

dian records in a database located in Canada. Perhaps you can easily

organize your database by data and time: a news site may store the

most recent articles on one server and older archived ones on another.

Sharding is highly application dependent, so I can’t really do a good

job of discussing approaches in a generic way within the scope of this

book. You can imagine how complex this may make your application,

though.

Challenge 4: The Official MySQL Cluster Is Limited

So far I’ve been using the term cluster in a pretty generic sense and

will continue to do so because it’s simply the best word to use for this

situation. However, MySQL does distinguish between replication and

clustering, and they’re right to do so. In this book, the way that we

implement the cluster is through MySQL replication features. Recall

that the replication features are asynchronous and are not really meant

to be used to create a cluster. Unfortunately, the fact is that the offi-

cial MySQL cluster will not satisfy the requirements for most projects

because of a number of limitations. As we’ll soon see, MySQL replica-

tion simply works better to create a “poor man’s cluster.”

The official MySQL cluster feature uses a different data store called

NDB. Like ISAM and InnoDB, NDB changes the way MySQL works and

has its own advantages and disadvantages. Unfortunately for most peo-

ple, the disadvantages and limitations will significantly outweigh the

advantages. In my opinion, NDB borderlines on useless for most appli-

cations. If one of the replication approaches presented here doesn’t

work for you, then you’re far better off seeking a commercial syn-

chronous clustering/replication technology for MySQL. It is possible

you might need to seek out a different RDBMS altogether. For more

about the limitations of the NDB data store, see http://dev.mysql.com/

doc/refman/4.1/en/mysql-cluster-limitations.html.

As you may be thinking by now, a scale-up approach for the database

may be an easier solution. After all, you can buy a monstrous database

server with sixteen cores, 16GB of RAM, four independent network

interfaces, sixteen SCSI drives, and a RAID controller with a battery

backup and 64MB of cache RAM. But that sounds expensive, and this

http://dev.mysql.com/doc/refman/4.1/en/mysql-cluster-limitations.html
http://dev.mysql.com/doc/refman/4.1/en/mysql-cluster-limitations.html
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=181


CLUSTERING MYSQL 182

is not a hardware book! So, pretend that you’re a start-up with a Rails

application experiencing medium to high load and that you have made

an informed decision to cluster your MySQL database despite these

challenges.

Separating Reads and Writes

The first approach to scaling out your database would be to separate

the reads from the writes. MySQL has decent support for this model

through its master/slave replication. The idea here is that all data is

written to one of the single databases, the master, while all data reads

occur on the slave. This strategy lets you optimize the databases more

specifically for read or write performance and split the database up on

to separate servers.

Configuring MySQL Master/Slave Replication

I have kind of a conservative nature, so I don’t like to mess around with

existing data too much. So, regardless of whether I have an existing

database, I take the same approach to introducing the master/slave

configuration to my environment. I will take the time to build a new

master and slave virtual server from scratch. I find it less risky because

I can work offline and less problematic because I am not balancing

between old and new configurations. Once I’ve prepared the new mas-

ter/slave servers, it’s simply a task of dumping your data from the old

database and uploading to the new one. Then, I can shut down the old

server and introduce the new one into the environment. This approach

may sound like you would have a lot of downtime, but really, you need

to be down only for as long as it takes to dump the old data and import it

into the new database. You won’t have to rebuild your database infras-

tructure very often.

To set this up, you’ll need two MySQL 5.0+ database servers, on sep-

arate virtual machines. The first thing you’ll need to do is give each of

your servers an identity. On the master machine, open /etc/my.cnf, and

add the following two lines to the [mysqld] section:

# /etc/my.cnf on MASTER

# These lines added below the [mysqld] section

log-bin=mysql-bin

server-id=1

The first line, log-bin, tells MySQL to log activity in a binary format

file using the prefix specified on the right side of the assignment. This

binary logging needs to be done only on the master, and it’s what the

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=182


CLUSTERING MYSQL 183

slave will read from when replicating data. The second line, server-id, is

a unique identifier for the server, in this case, 1. Restart the master

server using this:

# Restart MySQL -- My conservative nature leads

# me to avoid restart scripts for major changes.

/etc/init.d/mysqld stop

/etc/init.d/mysqld start

Next, set up the slave, which is even easier. You don’t need to use the

binary logging on the slave. Add the server ID to the slave, choosing a

different ID, of course, and then restart the slave as you did the master:

# /etc/my.cnf on SLAVE

# Following line added below the [mysqld] section

server-id=2

You should now log into the master server as root and query the repli-

cation status using SHOW MASTER STATUS, which produces output like the

following. The important bits to note are the file and the position. You’ll

need those to configure the slave.

mysql> # ON MASTER;

mysql> SHOW MASTER STATUS\G;

*************************** 1. row ***************************
File: mysql-bin.000001

Position: 98

Binlog_Do_DB:

Binlog_Ignore_DB:

1 row in set (0.00 sec)

Now log into the slave and set the master using CHANGE MASTER TO. I

usually use the same user as my Rails app, because it would normally

have all the necessary permissions (ALL PRIVILEGES). You’ll need to grant

privileges to the remote user, though (for example, ’deploy’@’10.0.0.3’).

Notice that I used the name of the file and position that I retrieved from

the master server in the previous step.

mysql> # ON SLAVE;

mysql> CHANGE MASTER TO

-> MASTER_HOST='10.0.0.3',

-> MASTER_USER='deploy',

-> MASTER_PASSWORD='deploypassword',

-> MASTER_LOG_FILE='mysql-bin.000001',

-> MASTER_LOG_POS=98;

Query OK, 0 rows affected (0.04 sec)

You can now start the slave by using the START SLAVE command and stop

it using STOP SLAVE. Stopping is more like pausing: when you start it up

again, MySQL will catch up on anything it missed while it was stopped.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=183


CLUSTERING MYSQL 184

It can be frustrating if you make a mistake, which is another reason

why I start with a fresh server. If you make a mistake and somehow

the servers get out of sync and become deadlocked, you can start over.

Simply use RESET MASTER and RESET SLAVE. The slave should be stopped,

before resetting them. You should requery the master status with SHOW

MASTER STATUS and rerun CHANGE MASTER TO to reconfigure the slave

before restarting it. It’s a worthwhile exercise to tinker around with this

on a couple of test database instances and make mistakes on purpose

to see how to get yourself out of them. If you have data to import, you

can simply run your dump script against the master once everything

is set up correctly. The slave should replicate all the imported data,

assuming it’s all set up correctly.

You can also set up multiple read-only databases. If your application

is far heavier on reads than writes, then you may want more than one

read-only database. The cool thing is that adding more read-only slaves

can be a simple matter of stopping the slave temporarily, copying the

slave virtual machine, and of course configuring the machine’s identity.

Recall that this includes the hostname, the IP address, and also the

MySQL server ID! Don’t forget that. You can then start up the slaves

again, and the new one will pick up as if it had always been there.

To test your configuration, connect to the master server, create a data-

base, create a table, and write a row or two to it. Then log onto the slave

server to see whether the changes were replicated.

Configuring Your Rails Application

Now that you have two databases, one for writing and one for reading,

you need to tell Rails how to use them. Unfortunately, Rails does not

support this out of the box. So, you can write something yourself to

override the finders and which database they can connect to, or you

can search for something that someone else has already built.

I did, and I found something I really like acts_as_readonlyable (yes, that’s

the name). You can find it at the longest URL I’ve ever had to put in a

book (but Google works too): http://revolutiononrails.blogspot.com/2007/04/

plugin-release-actsasreadonlyable.html

Names aside, acts_as_readonlyable uses a very clean syntax and simple

configuration for dealing with separate read and write databases. Fol-

low the instructions on the website for installation. At the time of this

writing, it was simply a script/plugin install with their most current release

tag in their Subversion repository.

http://revolutiononrails.blogspot.com/2007/04/plugin-release-actsasreadonlyable.html
http://revolutiononrails.blogspot.com/2007/04/plugin-release-actsasreadonlyable.html
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=184


CLUSTERING MYSQL 185

Once it’s installed, you can configure additional read-only databases in

your database.yml file:

production:

database: my_app_master

host: master_host

read_only_a:

database: my_app_slave

host: slave-a

read_only_b:

database: my_app_slave

host: slave-b

Applying the plug-in to your model classes is straightforward, and when

you do so, your finders will behave differently. They will use the read-

only databases specified in the parameter of the declaration. So, for

example:

class Product < ActiveRecord::Base

acts_as_readonlyable [:read_only_a,:read_only_b]

end

Here I’ve chosen to use two read-only databases. However, I think we

can do one better. We can use this approach to achieve a sort of “poor

man’s sharding,” by simply being selective about which read-only data-

base is used by each model. For example:

# partial database.yml

#...

read_only_products:

database: my_app_slave

host: slave-products

read_only_articles:

database: my_app_slave

host: slave-articles

# product.rb

#...

class Product < ActiveRecord::Base

acts_as_readonlyable [:read_only_products]

end

# article.rb

#...

class Article < ActiveRecord::Base

acts_as_readonlyable [:read_only_article]

end

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=185


CLUSTERING MYSQL 186

You can also get a little extreme and just apply the plug-in to all your

model classes and cross your fingers, like this:

# environment.rb

# not recommended....

class << ActiveRecord::Base

def read_only_inherited(child)

child.acts_as_readonlyable :read_only

ar_inherited(child)

end

alias_method :ar_inherited, :inherited

alias_method :inherited, :read_only_inherited

end

I highly recommend against this. Because of the asynchronous repli-

cation in MySQL, there will be certain data you’ll always want to read

from the master database. Rails sessions are a good example of where

lag between the write and read may create instability in your applica-

tion. Also, beware of anything to do with money!

You’ve seen how to enjoy multiple read-only databases but are still con-

strained by being able to write to a single database only. It’s time to

enable two read/write databases.

Multimaster, Read/Write Clustering

The advantages to having two or more databases that accept writes are

mostly stability and redundancy. Performance isn’t greatly improved,

because eventually the data does have to be written to each database

in the cluster. But if you lose a server to a catastrophic failure, you can

rest assured that your data will be mostly intact. I say “mostly” again

because of the asynchronous replication. There is still a slight chance

that data will be lost in a crash, before it can propagate throughout the

cluster.

Now that we’ll be reading and writing to the cluster, the challenges of

asynchronous replication is doubled. Not only do we have to worry that

the data may not be there when reading, but we also have to worry that

it might already be there upon writing! If somehow a duplicate value

was written to the same primary key column in two databases within

the cluster, we’d have a real problem. MySQL allows us to configure

offsets to keep autogenerated primary keys unique. Server 1 could have

odd keys, and server 2 could have even keys, for example. But if you

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=186


CLUSTERING MYSQL 187

have any other unique indices on your tables, you will have to find your

own solution for preventing conflicts.

Configuring the Asynchronous Multimaster MySQL Cluster

The configuration doesn’t look much harder, but it can definitely be

frustrating initially. So if you’re going to try this, definitely bring a full

bag of patience. Since you’re already familiar with the my.cnf file, I’ll

spare you some time and tackle both master configurations in one shot.

The following configuration files have comments identifying each server:

# /etc/my.cnf on FIRST MASTER

# These lines added below the [mysqld] section

server-id=1

log-bin=mysql-bin

log-slave-updates

replicate-same-server-id=0

auto_increment_increment=10

auto_increment_offset=1

# /etc/my.cnf on SECOND MASTER

# These lines added below the [mysqld] section

server-id=2

log-bin=mysql-bin

log-slave-updates

replicate-same-server-id=0

auto_increment_increment=10

auto_increment_offset=2

Notice the differences compared to the master/slave configuration we

discussed before. Of course, you still need the server-id to identify each

server. The first difference, though, is that both servers now use log-bin

to enable binary logging. Each server will produce its own binary log

and read the binary log from the other server. The log files allow each

server to pick up the writes from the other server. It’s the same concept

as master/slave, but done twice over. You’re using the same file prefix

for the binary log files, but you can use whatever you like. The server

name works perfectly well.

The log-slave-updates option ensures that if you chain more than one

slave together in a circular arrangement, MySQL will forward along all

updates received from other servers. Since you don’t want to send the

same update around in an infinite replication loop, the next option,

replicate-same-server-id, tells a server to ignore its own updates.

Finally, the last two lines of each file help MySQL deal with asynchro-

nous autoincrement key generation. The first, auto_increment_increment,

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=187


CLUSTERING MYSQL 188

tells MySQL to increment autoincrement fields by ten each time, essen-

tially dividing the total number of possible keys a server can generate by

ten. The auto_increment_offset command is basically added to the incre-

ment. By making this offset different for each server, you will avoid key

collisions. The first master will generate keys such as 1, 11, 21, and 31,

and the second master will generate keys like 2, 12, 22, and 32. Having

an increment level of 10 basically leaves room in the keyspace for ten

servers in your cluster. You can tune it higher or lower depending on

the number of servers you expect to have, but I don’t think introduc-

ing more than ten servers in an asynchronous cluster is practical. In

fact, I probably wouldn’t do more than two or three and would favor a

hardware solution or replacing MySQL with a more capable clustered

database solution.

The remainder of the configuration is the same as for the master/slave

setup, but doubled up. As before, execute SHOW MASTER STATUS, but on

each server. Take the values from each master, and use them in the

appropriate file and position parameters of the CHANGE MASTER TO state-

ment, on each slave. Then, use START SLAVE on both servers to bind them

to each other. Refer to these steps in the earlier master/slave discus-

sion for more details.

Testing your work is pretty straightforward. Create a database and

some tables, and insert some rows on each server to ensure that MySQL

updates both databases. It’s pretty cool when you get it up and run-

ning. However, as you’ll see in the next section, it’s not all sunshine

and roses.

Configuring Your Application for the Multimaster Cluster

The good news about a multimaster, read/write cluster is that you may

not have to change your application at all. You won’t need any plug-ins

or special software. Your application sees a fully functional database

and is unaware of the cluster. This transparency is nice, especially com-

pared to handling the clustering by hand. But remember, being explicit

with each update has advantages too, along the lines of the sharding

solutions I presented earlier.

The multimaster approach has its own challenges, serious challenges

indeed. Again, because of the asynchronous nature of the replication,

you really have to be careful when you write sensitive data. In addition,

you have to be aware of situations where a single user may make mul-

tiple requests in rapid succession, perhaps without even knowing it.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=188


CLUSTERING MYSQL 189

One of my favorite web application patterns is the Redirect-After-Post

pattern. Posting is annoying because when the user hits the Back but-

ton in their browser, they get prompted to resend the data. However,

if you redirect them after they post a form of data, their Back button

behaves nicely, and their overall experience is improved. However, this

pattern results in a very quick update to the database in one request

and then a subsequent read within a second or two from the redirected

request. Often, the very next request will query for the data that you

just wrote.

In the case of a multimaster cluster, if the user posts to one server and

is then redirected to a query for the same data on another server, that

data may not have been written yet! This inconsistency could cause

random instability in your site that’s hard to track down. So when you

use a multimaster cluster, use sticky load balancing to ensure that a

given user remains on the same server for the duration of their browser

session. Sticky balancing is not the best performing solution, but I’ll

always choose stability over performance.

Most web servers and hardware load balancers offer support for sticky

load balancing. With Apache, the configuration is simple. Recall the

Apache cluster definition from our software load balancer solution ear-

lier in this chapter. It looked like the following, but we’ve made some

changes:

# cluster.conf

<Proxy balancer://mycluster> lbmethod=byrequests stickysession=BALANCEID

BalancerMember http://10.0.0.102:80 route=www1

BalancerMember http://10.0.0.103:80 route=www2

</Proxy>

Did you spot the changes? In the first line I added lbmethod to tell

the balancer to load balance every request, alternating the members

between them. However, the stickysession option overrides the default

behavior if it finds a cookie called BALANCEID with a valid route value. If

the value of BALANCEID matches any of the route values of any balancer

members, then it will ensure to balance only among balancer members

with the same value. It basically locks a user’s browser session into a

specific balancer member or group of balancer members (yes, multiple

balancer members can have the same route value).

You’re not quite done yet, though. Your software load balancer itself

does not set the cookie, so you need to ask your web servers to do that

for you.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=189


CLUSTERING MYSQL 190

Luckily, it’s a one-liner, an ugly line, but one line nevertheless:

# Partial mongrel_proxy.conf

# on 10.0.0.102

#...

RewriteEngine On

RewriteRule .* - [CO=BALANCEID:balancer.www1:.brainspl.at]

# Partial mongrel_proxy.conf

# on 10.0.0.103

#...

RewriteEngine On

RewriteRule .* - [CO=BALANCEID:balancer.www2:.brainspl.at]

Writing the cookie makes use of the rewrite engine, as you should recall

from our earlier Apache discussions. The cookie value is balancer.www1,

where the www1 matches the route of the appropriate balancer member.

Note that we set the domain explicitly to .brainspl.at so that the cookie

can be read, written, or overwritten from any server on our domain.

Combining the Approaches

There just isn’t any pleasing some people, so you may want the redun-

dancy and failover capabilities of a multimaster cluster, as well as

the performance of read-only databases in master/slave configuration.

This is entirely possible. However, you will be inheriting not only the

benefits of both, but also the challenges of both. Getting a configura-

tion like this right will take time, patience, and some documentation

on your part. Don’t build something like this and expect everyone to

understand it at a glance. So, draw a picture of your environment, and

include some high-level documentation.

I won’t go through the step-by-step configuration details all over again,

because they’re the same as they were earlier. Essentially, what you’ll

do is build a multimaster cluster with sticky load balancing. But each

balancer route will lead to an set of application and database servers

that includes one master database server from the master cluster and

a number of read-only slave servers dedicated to that master server in

particular.

Don’t forget that in addition to the sticky load balancing, you will also

have to use the acts_as_readonlyable plug-in or a similar solution to han-

dle the read-only databases. If you follow all the rules, you shouldn’t

get bitten by the asynchronous bug too hard or too often. If your envi-

ronment is getting this complex, then you might want to seriously start

balancer.www1
www1
.brainspl.at
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=190


SUMMARY 191

considering an alternative to MySQL or perhaps do away with the rela-

tional database entirely.

7.9 Summary

If I haven’t exhausted the subject of scaling out, then at the very least

I must have exhausted you. In this chapter, I gave you a number of

tools to build convincingly high-performance infrastructure for Ruby

on Rails. You learned to configure A records and CNAMES for a clus-

ter. Then, you learned to dabble in virtualized servers with VMware

and Parallels. You also learned to deploy to those virtual servers with

Capistrano.

Next, you learned to build both Apache and nginx servers to serve as

load balancers, secured servers, and static proxies. Apache demon-

strated its flexibility and modularity as a Mongrel proxy and load bal-

ancer. For those interested in simplicity and performance, nginx shines

brightly. With some better documentation and a few more battle scars,

nginx looks like it could become a popular alternative to Apache and

possibly the new king of lightweight web servers.

Finally, I tackled one of the more daunting tasks of Rails deployments:

clustering a MySQL database. Although there are more powerful data-

bases for clustering, MySQL ultimately handles the job effectively, if not

gracefully. I’m happy to have MySQL despite its shortcomings, because

it makes up for them in spades in other areas, including community

and Rails support. And you can’t beat the price.

Before I move on, I should warn you that you can find books about

most of the topics in this chapter. If you’re a developer, I encourage

you to explore each one more deeply if you’re serious about deploying

a massively scalable website. Stepping out of your developer shoes and

dealing with operational tasks will grow you as a person and a devel-

oper. Or at the very least, you’ll be a little nicer to your system admin-

istrator because of your new appreciation for the role. And if you’re an

admin, you can better understand the foundations of your deployment.

I’ve really just scratched the surface.

In the next chapter, I’ll dive into some basic performance topics. You’ll

learn how to benchmark and profile systems for performance. You’ll

also see some solutions to common Rails bottlenecks such as caching

and eager loading.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=191


Chapter 8

Deploying on Windows
If you asked for a show of hands of how many people had ever deployed

Rails on Windows at a Ruby conference, you would get almost no one

to admit to that crime. The truth is something very different. Microsoft

has sold a bunch of copies of Windows to someone, and many com-

panies and educational institutions simply don’t have access to other

platforms for deployment. For many companies, bringing in a Linux-

based server isn’t an option because of politics, a lack of experience, or

the perceptions of management. If you are deploying small departmen-

tal applications in such a company, Windows may be your best bet.

This chapter explores a few strategies that you can use to get a Rails

application deployed within a Windows server environment. I’ve used

each one of these methods at various times to serve applications to vari-

ous audiences. I’ll cover using single instances of Mongrel, load balanc-

ing with Pen or Apache, and finally, a strategy to integrate Rails apps

into an existing IIS web server using a special ISAPI filter and custom

Rails plug-in.

8.1 Setting Up the Server

To serve Ruby on Rails applications in our Windows environment, you

need to do a few things to get your machine ready. You have to install

Ruby, Gems, and Rails, as well as Subversion. I’ll also demonstrate how

to get your Rails application talking to a Microsoft SQL Server.

Installing Ruby on Rails

Getting Ruby, Gems, and Rails on a Windows server is extremely easy

thanks to the work done by Curt Hibbs. His One-Click Ruby Installer

package makes installing Ruby and Gems painless.



SETTING UP THE SERVER 193

Just do the following:

1. Download the One-Click Ruby Installer from RubyForge.1 Down-

load version 1.8.6 or higher, because previous versions had issues

with security and lacked proper debugging support.

2. Double-click the One-Click Ruby Installer to install the package,

and accept all the default settings.

3. Open a command prompt, and run the following command:

C:\>gem install rails --no-rdoc --no-ri

Successfully installed rake-0.8.1

Successfully installed activesupport-2.0.2

Successfully installed activerecord-2.0.2

Successfully installed actionpack-2.0.2

Successfully installed actionmailer-2.0.2

Successfully installed activeresource-2.0.2

Successfully installed rails-2.0.2

The gem install rails command installs the latest version of Rails on your

system. As before, we’ll skip the documentation for our server installa-

tion with the --no-rdoc and --no-ri flags. Next, I’ll show you how to install

Subversion.

Installing Subversion

You will need to have the Subversion client tools installed on your

machine in order to install the necessary Rails plug-ins. If you use Sub-

version to manage your projects, you can easily copy your applications

to your production server. You can find a handy Windows installation

of Subversion at Tigris.2 Download the most recent Windows installer.

The Subversion installation alters your PATH environment variable to

include the path of the Subversion executables. You do not have to re-

start your machine for these path changes to take effect, but you will

need to close any open command windows.

Configuring Ruby on Rails to Use Microsoft SQL Server

Microsoft SQL Server doesn’t work with Rails without some tweaking.

You will have to take a few minor steps to establish a successful connec-

tion. If you don’t plan to use SQL Server with your Rails applications,

you can safely skip this section.

1. http://rubyforge.org/projects/rubyinstaller/

2. http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91

http://rubyforge.org/projects/rubyinstaller/
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=193


SETTING UP THE SERVER 194

Virtualization to the Rescue...Again?

If you have worked with Ruby on Windows before, even just for
development, you know that it’s slow. Very, very slow. On Win-
dows Vista, based on my own personal (daily) experience, it is
even slower. Simply running unit tests can be orders of magni-
tude slower than running the same tests on Linux. Believe it or
not, it’s so slow that it might be faster to run your Rails appli-
cations in a virtual Linux machine on Windows using VMware
Server or similar software. Modern virtualization software com-
bined with multicore CPUs has made virtualization extremely
fast. Thus, Rails on Linux, on VMware, and on Windows should
actually perform quite well. The only way to know for sure is to
try it for yourself. Build a simple Rails-capable virtual Linux server
with VMware, and run your unit tests (see Chapter 7, Scaling
Out , on page 144). Compare it against the time it takes to run
the tests on Windows natively. If you see a huge difference, then
try performing some load tests (see Chapter 9, Performance,
on page 224) against your application to see whether it’s truly
faster running on a virtual machine.

Performance isn’t the only benefit of running in a virtual
machine. Recall our discussions from Chapter 7, Scaling Out ,
on page 144, about how virtualization simplifies a great num-
ber of deployment issues and can help you scale out faster.

I can think of only one good reason why virtualization may not
be a practical choice for your Rails application: integration. If
your Rails application needs to integrate with native Windows
services or other applications that would not be accessible
from within a virtual machine, then the rest of this chapter will
become very important to you.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=194


SETTING UP THE SERVER 195

Joe Asks. . .

What About InstantRails, Apache, and FastCGI?

I won’t discuss InstantRails, a popular and easy way to get
started with Rails development on Windows, in this chapter
because it’s really not meant to be a production deployment
solution. Some people claim to have deployed applications
with it to varying degrees of success, but the lack of load bal-
ancing and the inability to run as a service disqualify it as a
good solution.

I also won’t discuss the setup of Apache and FastCGI in this
chapter. There are many issues with using this method on Win-
dows including random server errors, poor performance, and
really long start-up times for Apache.

I’ll stick to the deployment options that will give you the best
possible chance of success.

1. Download the latest stable version of Ruby-DBI.3 Look for a file

with the name dbi-0.1.0.tar.gz or something similar. Extract this file

to a temporary location like C:\TEMP.

2. Grab one file from that archive called ADO.rb. If you have extracted

the files to C:\TEMP, you can find the file in the folder C:\TEMP\lib\

dbd.

3. Copy this file to C:\ruby\lib\ruby\site_ruby\1.8\DBD\ADO. You will

need to create the ADO folder, because it won’t exist.

4. Please see the Rails wiki4 for more information on using SQL

Server with your Rails applications.5

While Microsoft SQL Server is a common database for the Microsoft

platform, it’s not the only popular choice. You can also use several

of the popular open source databases with Rails, including MySQL,

SQLite, and Oracle.

3. http://rubyforge.org/projects/ruby-dbi/

4. http://wiki.rubyonrails.org/rails/pages/HowtoConnectToMicrosoftSQLServer

5. You can also use ODBC DSNs to connect to SQL Server from Rails, but there are

some tricky permissions issues with ODBC and Mongrel as a service, so I don’t typically

recommend going that route.

http://rubyforge.org/projects/ruby-dbi/
http://wiki.rubyonrails.org/rails/pages/HowtoConnectToMicrosoftSQLServer
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=195


MONGREL 196

MySQL on Windows

If you intend to use MySQL instead of SQL Server, you’ll be happy

to know you can do so easily. I’m going to assume you already have

MySQL installed and working. Rails has built-in support for MySQL,

but to avoid potential problems such as speed and performance, you’ll

need to install the MySQL/Ruby for Windows adapter. You will see bet-

ter performance when using this C-based library instead of the pure-

Ruby library. Until recently, installing MySQL/Ruby was a pain, but the

gem now comes complete with a binary version for Windows. Installing

it is as simple as opening a command prompt and installing the gem:

C:\>gem install mysql

Bulk updating Gem source index for: http://gems.rubyforge.org

Select which gem to install for your platform (i386-mswin32)

1. mysql 2.7.3 (mswin32)

2. mysql 2.7.1 (mswin32)

3. mysql 2.7 (ruby)

4. mysql 2.6 (ruby)

5. Skip this gem

6. Cancel installation

> 1

Successfully installed mysql-2.7.3-mswin32

Installing ri documentation for mysql-2.7.3-mswin32...

Installing RDoc documentation for mysql-2.7.3-mswin32...

While generating documentation for mysql-2.7.3-mswin32

... MESSAGE: Unhandled special: Special: type=17, text="<!-- $Id: README.html,

v 1.20 2006-12-20 05:31:52 tommy Exp $ -->"

... RDOC args: --op c:/ruby/lib/ruby/gems/1.8/doc/mysql-2.7.3-mswin32/rdoc --exc

lude ext --main README --quiet ext README docs/README.html

(continuing with the rest of the installation)

Be sure to select the highest-numbered version for Windows.6 That’s

really all there is to it. You have the prerequisites installed. It’s time to

turn your attention to the server you’ll use to serve your Rails applica-

tion. I’ll first show you Mongrel and then a few tricks you can use to

enhance the installation.

8.2 Mongrel

As with *nix platforms, if you’re running Ruby applications, Mongrel is

usually the way to go. Not only is Mongrel relatively fast, but it’s also

extremely easy to install and use. You can install the Windows version

of Mongrel as a Windows service. There’s no mongrel_cluster for Windows

yet, but don’t worry. I will show you how to manually build a cluster of

Mongrels.

6. Future versions of RubyGems will automatically install the correct version for you.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=196


MONGREL 197

Installing Mongrel

Installing Mongrel on Windows is easy. Open a command prompt, and

install Mongrel with the gem command. Choose the highest-numbered

Win32 option.7 The latest version is always at the top of the list, so pay

close attention to both the version number and the platform, like this:

C:\>gem install mongrel --include-dependencies

Select which gem to install for your platform (i386-mswin32)

1. mongrel 1.1.1 (ruby)

2. mongrel 1.1.1 (jruby)

3. mongrel 1.1.1 (mswin32)

4. mongrel 1.1 (mswin32)

5. mongrel 1.1 (ruby)

6. mongrel 1.1 (jruby)

7. Skip this gem

8. Cancel installation

> 3

Successfully installed mongrel-1.1.1-mswin32

Successfully installed gem_plugin-0.2.2

Successfully installed cgi_multipart_eof_fix-2.3

Installing ri documentation for mongrel-1.0.1-mswin32...

Installing ri documentation for gem_plugin-0.2.2...

Installing ri documentation for cgi_multipart_eof_fix-2.3...

Installing RDoc documentation for mongrel-1.0.1-mswin32...

Installing RDoc documentation for gem_plugin-0.2.2...

Installing RDoc documentation for cgi_multipart_eof_fix-2.3...

Next, install the Mongrel Service plug-in. This plug-in provides the nec-

essary commands to get Mongrel installed and running as a Windows

service. To do so, just run the following command:

C:\>gem install mongrel_service --include-dependencies

Select which gem to install for your platform (i386-mswin32)

1. mongrel_service 0.3.3 (mswin32)

2. mongrel_service 0.3.2 (mswin32)

3. mongrel_service 0.3.1 (mswin32)

4. mongrel_service 0.1 (ruby)

5. Skip this gem

6. Cancel installation

> 1

Select which gem to install for your platform (i386-mswin32)

1. win32-service 0.5.2 (ruby)

2. win32-service 0.5.2 (mswin32)

3. Skip this gem

4. Cancel installation

> 2

Successfully installed mongrel_service-0.3.3-mswin32

Successfully installed win32-service-0.5.2-mswin32

7. RubyGems version 0.9.5 lets you skip the platform selection step.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=197


MONGREL 198

Installing ri documentation for mongrel_service-0.3.2-mswin32...

Installing ri documentation for win32-service-0.5.2-mswin32...

Installing RDoc documentation for mongrel_service-0.3.2-mswin32...

Installing RDoc documentation for win32-service-0.5.2-mswin32...

Watch closely for the gem for the win32-service file. The win32 version

is not always at the top of the list like it is for mongrel_service. When-

ever installing gems, always take note of the version number and the

platform to make sure you get the right version; the ruby ones won’t

install on Windows when you’re using the One-Click Ruby Installer’s

Ruby interpreter.

Test Mongrel

Now that you’ve installed Mongrel, you should test it against your appli-

cation to ensure that Mongrel can serve pages. I typically test Mongrel

like this:

1. Create a folder on your hard drive called c:\web.

2. Open the command prompt, and navigate to c:\web.

3. Create a new Rails application in that folder:

C:\web>rails mytestapp

create

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

...

create doc/README_FOR_APP

create log/server.log

create log/production.log

create log/development.log

create log/test.log

If you have a working Rails application you want to try, you should

place that in a subfolder of c:\web and then reference that path

in all future steps. Also, make sure the database configuration for

the production environment is correct before proceeding. Review

config/database.yml to ensure that your production database is

defined properly.

To test your application, execute the following command:

C:\web\mytestapp>mongrel_rails start -e production -p 4001

** Starting Mongrel listening at 0.0.0.0:4001

** Starting Rails with production environment...

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=198


MONGREL 199

** Rails loaded.

** Loading any Rails specific GemPlugins

** Signals ready. INT => stop (no restart).

** Mongrel available at 0.0.0.0:4001

This command starts Mongrel on port 4001. Navigate to http://

localhost:4001, and make sure that your application works before

continuing.

If you do not get a response, make sure port 4001 is not being

blocked by Windows Firewall or by your router.

Once you know your application works in production mode, stop

the server with Ctrl + C .

Install Mongrel as a Windows Service

Now that you know your application works and that you have Mon-

grel installed correctly, you can install your application as a Windows

service. You’ll install this application using production mode, so make

sure your database.yml file points to a working production database if

you’re using your own application with this tutorial.

1. Stop Mongrel by pressing Ctrl + C .

2. Execute the following command in order to install the application

as a service:

C:\web\mytestapp>

mongrel_rails service::install -N MyTestApp_4001 -p 4001 -e production

** Copying native mongrel_service executable...

Mongrel service 'MyTestApp_4001' installed as 'MyTestApp_4001'.

This command creates a new Windows service with the name

MyTestApp_4001, which you can view in the Control Panel Services

applet, as shown in Figure 8.1, on the following page.

3. You can start the service from the Services applet or from the

command line by executing the following command: mongrel_rails

service::start -N MyTestApp_4001.

• To stop the service from the command line, use mongrel_rails

service::stop -N MyTestApp_4001.

• Later, you can remove the service at any time using mon-

grel_rails service::remove -N MyTestApp_4001.

http://localhost:4001
http://localhost:4001
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=199


MONGREL 200

Figure 8.1: Mongrel as a Windows service in the Services applet

Adding the port number to the service name is a really helpful way

to keep track of the ports you’ve used. As you add services, the port

number becomes even more useful. It’s not a requirement, but it’s a

good convention to follow.

Creating a Second Instance of Mongrel for Your Application

Your application is now hosted by Mongrel, running as a service. Now,

it’s time to kick up your feet and pop open a tall frosty one, right? Be

careful, though. One Mongrel is not likely enough. Rails is not always

the fastest available framework, and a single instance of Mongrel can

handle only one request at a time. As load increases, you need to add

more instances of Mongrel and then balance the requests.

Those lucky *nix guys get to use a tool called mongrel_cluster, which

can start and stop multiple instances of Mongrel with ease. Windows

doesn’t have mongrel_cluster yet, so you’ll need to improvise. You can

just create another instance of Mongrel as a service that points to the

same Rails application. You can then use a load balancer to distribute

traffic to each instance.

Creating your custom cluster manually is not as hard as it sounds.

You’ll create another service that points to the same application, but

this time use port 4002 by running the following commands:

mongrel_rails service::install -N MyTestApp_4002 -p 4002 -e production

mongrel_rails service::start -N MyTestApp_4002

If you look in the Control Panel under Services, you will see both ser-

vices running. Adding the port number to the service name makes it

easier to remember which port each service uses. If you look at Fig-

ure 8.2, on the next page, you will see an example of both services

installed.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=200


MONGREL AND PEN 201

Figure 8.2: Both Mongrel instances as services

Keep in mind that these services aren’t set to automatically start when

you reboot the server, so your app isn’t going to be available after a

restart. Let’s remedy that. Configure each service to start up automat-

ically by right-clicking each service name and setting the start-up type

to Automatic.

Test each address to make sure the requests work and that the services

are in fact serving your web application. http://localhost:4001 and http://

localhost:4002 should both be serving the same application.

So, you have two instances of your application running on different

ports. That’s better than one, but the setup is not that useful yet; you

need to load balance them, and you make that happen by using Pen or

Apache.

8.3 Mongrel and Pen

Pen is a nice, simple way to load balance an application without hav-

ing to do too much setup. Pen is great for small sites without a huge

number of expected connections, and it’s great because you don’t have

to spend a lot of time learning how to configure it. Pen handles reverse-

proxying and balancing very well, but it isn’t a web server, which means

you can’t serve static content with it. Your static content will be served

by your back-end Mongrel services. For small apps with more than a

couple of users, this setup should work just fine.

You can download a Windows binary of Pen from ftp://siag.nu/pub/pen/

pen-0.17.1.exe.

Pen supports SSL, but its support is very experimental, so if you need

to host a secure site, you’ll have to use some sort of proxy server in

front of this setup.

http://localhost:4001
http://localhost:4002
http://localhost:4002
ftp://siag.nu/pub/pen/pen-0.17.1.exe
ftp://siag.nu/pub/pen/pen-0.17.1.exe
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=201


MONGREL AND PEN 202

Figure 8.3: Required files to run Pen

Setting Up Pen

Create a folder to store Pen. C:\pen will do just fine. Save the file you

just downloaded in this folder, and rename it to pen.exe so it’s easier to

call. To run Pen on Windows, you’ll need to download the file cygwin1.dll8

and place it in C:\pen. The file is compressed, so unzip it first.

Figure 8.3 shows the files required to run Pen. Once you’ve downloaded

both of them, you can give Pen a quick test, but first make sure your

Rails app is running with Mongrel as described previously. Open a com-

mand window, and navigate to C:\pen. Execute the following command

to start Pen:

pen -f 80 localhost:4001

This tells Pen to listen on port 80 and forward all requests to localhost:

4001. If your Mongrel service is still running there, this command will

make your application available on port 80.

Now open http://localhost in your browser, and you should see your Rails

app. It’s just that simple. The -f switch keeps Pen from going into the

background. If you forget this switch, then you’ll have to kill Pen using

the Windows Task Manager.

Use Ctrl + C to stop Pen and return to the command prompt.

Load Balancing with Pen

Load balancing with Pen is as easy as adding each remote host and port

to the command line. If you had two Mongrel instances running, one

on port 4001 and the other on port 4002, you would use the following

command:

pen -f 80 localhost:4001 localhost:4002

8. http://www.dll-files.com/dllindex/dll-files.shtml?cygwin1

localhost:4001
localhost:4001
http://localhost
http://www.dll-files.com/dllindex/dll-files.shtml?cygwin1
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=202


MONGREL AND PEN 203

Installing Pen as a Service

If you decide that Pen is right for you, you should install it as a service

so you can have it automatically start just like your Mongrel services

do. There’s a relatively easy (and free) way to do that.

1. Download the Windows 2003 Server Resource Kit from Microsoft,9

and install it.

2. Open a command prompt, and run the following command:
"C:\Program Files\Windows Resource Kits\Tools\instsrv.exe" Pen

"C:\Program Files\Windows Resource Kits\Tools\srvany.exe"

The service was successfully added!

Make sure that you go into the Control Panel and use

the Services applet to change the Account Name and

Password that this newly installed service will use

for its Security Context

The commands in the following list will create a new registry entry

containing the configuration for your new service.

3. Open regedit, and locate the key HKEY_LOCAL_MACHINE\SYSTEM\

CurrentControlSet\Services\Pen.

4. Create a new key beneath that key called Parameters.

5. Select the Parameters key, and create a new string value with the

name Application. Enter c:\pen\pen.exe for the value.

6. Create another string value called AppParameters. Enter -f 4000

localhost:4001 localhost:4002 for the value.

7. Create a third string value called AppDirectory. Enter c:\pen for the

value.

8. Close regedit, and open a command prompt.

9. Start the service by typing the following command:
C:\>net start pen

The Pen service is starting.

The Pen service was started successfully.

You can stop the Pen service just as easily:
C:\>net stop pen

The Pen service was stopped successfully.

That’s it. This setup should work well for single applications that need

to handle a lot of users. Though you see a lot of steps, they take only

about fifteen minutes from beginning to end. If you decide that this

9. http://www.microsoft.com/downloads/details.aspx?familyid=9d467a69-57ff-4ae7-96ee-b18c4790cffd

http://www.microsoft.com/downloads/details.aspx?familyid=9d467a69-57ff-4ae7-96ee-b18c4790cffd
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=203


USING APACHE 2.2 AND MONGREL 204

method is not for you, you can remove the service with the command

sc delete pen.

Before moving on, you should know that a single instance of Pen is

going to work for only one Rails application. If you are trying to serve

multiple Rails applications with Pen, you’ll need to copy pen.exe to

another file like my_app_name_pen.exe and then set up the service with

a new name. You could end up with quite a few services if you’re serving

lots of apps.

So, Pen works great for small apps that need a bit of load balancing

help, but what do you do when you have to handle a lot more requests?

You’re going to have to use what some Windows system administrators

refer to as “the A word.”

8.4 Using Apache 2.2 and Mongrel

If you need to handle load, there’s no better solution on Windows than

Apache 2.2. Not only can you load balance with relative ease, but you

can also make Apache serve all the static content such as cached pages,

CSS, JavaScript, and images. If you’re taking advantage of page caching

(and you should if you’re doing a public site), then Apache is going to

be your best bet for high performance.

Another great advantage of using this approach is that you can “bor-

row” a lot of configuration files from the *nix guys.

Install Apache

Download the Apache 2.2 Windows binary from Apache.10 Be sure to

grab the latest release.

Install Apache 2.2 using the installer you downloaded.

The wizard should be pretty easy to handle. I’ll just walk you through

a few of the highlights. Most important, be careful when you pick a

port. I usually choose to install Apache for a single user on port 8080

to prevent conflicts with IIS on port 80. I’ll install the Windows ser-

vice manually later. Also, make sure you don’t install Apache as a web

service, as shown in Figure 8.4, on the next page.

Install Apache to c:\apache or some other directory you can easily find

later. The Apache configuration should complete without any problems.

10. http://httpd.apache.org/download.cgi

http://httpd.apache.org/download.cgi
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=204


USING APACHE 2.2 AND MONGREL 205

Figure 8.4: Ensure that you’re not installing Apache as a service.

Configuring Apache to Serve Your Rails Applications

Apache uses the file httpd.conf to hold all the configuration settings. You

know the drill. I’m not going to talk about them all, only the ones you

will need to know for this Windows installation. You can always consult

the excellent documentation to learn more. In fact, I recommend you

familiarize yourself with the contents of that file before you roll out into

production. Apache is big, it has lots of options, and you really want to

make sure you don’t have any gaping security holes.

Locate the httpd.conf file. It’s in the folder C:\apache\conf.

First, locate the section of the file that starts with this:

# Dynamic Shared Object (DSO) Support

This section contains all the modules that can be loaded by Apache.

Each hash mark (#) means that the line is commented out.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=205


USING APACHE 2.2 AND MONGREL 206

Uncomment the following lines to activate the proxy balancer:

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

LoadModule proxy_http_module modules/mod_proxy_http.so

You also need to enable URL-rewriting support by uncommenting this

line:

LoadModule rewrite_module modules/mod_rewrite.so

Next, you’ll want to enable the deflate module to allow your content to

be compressed as it is served:

LoadModule deflate_module modules/mod_deflate.so

Finally, add this line to the bottom of the file:

Include conf/httpd-proxy.conf

This allows you to split up your configuration for your application into

another file. At this point, you should save the httpd.conf configura-

tion file. Create a new file in C:\Apache\Apache2.2\conf called httpd-

proxy.conf with the following contents:

<VirtualHost *:8080>

ServerName yourdomain.com

DocumentRoot c:/web/mytestapp/public

<Directory "c:/web/mytestapp/public">

Options FollowSymLinks

AllowOverride None

Order allow,deny

Allow from all

</Directory>

# Configure mongrel instances

<Proxy balancer://mongrel_cluster>

BalancerMember http://127.0.0.1:4001

BalancerMember http://127.0.0.1:4002

</Proxy>

RewriteEngine On

# Uncomment for rewrite debugging

#RewriteLog logs/your_app_deflate_log deflate

#RewriteLogLevel 9

# Check for maintenance file and redirect all requests

RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f

RewriteCond %{SCRIPT_FILENAME} !maintenance.html

RewriteRule ^.*$ /system/maintenance.html [L]

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=206


USING APACHE 2.2 AND MONGREL 207

# Rewrite index to check for static

RewriteRule ^/$ /index.html [QSA]

# Rewrite to check for Rails cached page

RewriteRule ^([^.]+)$ $1.html [QSA]

# Redirect all non-static requests to cluster

RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f

RewriteRule ^/(.*)$ balancer://mongrel_cluster%{REQUEST_URI} [P,QSA,L]

# Deflate

AddOutputFilterByType DEFLATE text/html text/plain text/xml

BrowserMatch ^Mozilla/4 gzip-only-text/html

BrowserMatch ^Mozilla/4\.0[678] no-gzip

BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

# Uncomment for deflate debugging

#DeflateFilterNote Input input_info

#DeflateFilterNote Output output_info

#DeflateFilterNote Ratio ratio_info

#LogFormat '"%r" %{output_info}n/%{input_info}n (%{ratio_info}n%%)' deflate

#CustomLog logs/your_app_deflate_log deflate

ErrorLog logs/your_app_error_log

CustomLog logs/your_access_log combined

</VirtualHost>

Save the file, and double-check to make sure it’s in the same folder as

httpd.conf.

Explaining the Proxy

The important part of the file is this section:

# Configure mongrel_cluster

<Proxy balancer://mongrel_cluster>

BalancerMember http://127.0.0.1:4001

BalancerMember http://127.0.0.1:4002

</Proxy>

This section is the load balancer configuration. Each BalanceMember

points to one of your back-end instances of Mongrel. This configuration

supports only two back ends, but you can easily add more. Keep in

mind that changing this configuration file requires a restart of Apache.

When a request comes in, Apache checks for a static page. If no static

page is found, the system will forward the request to the Rails applica-

tion, just like a stand.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=207


USING APACHE 2.2 AND MONGREL 208

Figure 8.5: Apache installed as a Windows service

Test Apache’s Configuration

Open a command prompt, navigate to c:\apache\bin, and execute the

following command:

httpd

If you receive no errors, Apache is running and listening on port 8080. If

you have Mongrel instances listening on ports 4001 and 4002, then you

can test the configuration by pointing your browser to http://localhost:

8080/. You should see your Rails application.

This section showed you how to host a Rails application using Apache

on port 8080. If you wanted to host the application using the standard

port 80, you would simply need to change the virtual host definition.

Installing Apache as a Windows Service

Now that Apache has been correctly configured and tested, you can

safely install the service.

Open a new command prompt, and enter the following command:

cd\apache\bin

httpd -k install

You should see the following output:

Installing the Apache2 service

The Apache2 service is successfully installed.

Testing httpd.conf....

Errors reported here must be corrected before the service can be started.

You should now see the service in your Services panel, as shown in

Figure 8.5. Ensure that the start-up type is set to Automatic so it will

restart when you restart your server. You might see a Windows Firewall

prompt. In that case, you will need to unblock Apache or disable your

Windows Firewall service for things to work properly. Apache is now

http://localhost:8080/
http://localhost:8080/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=208


IIS INTEGRATION 209

configured to load balance between two back-end Mongrel processes.

You can test this configuration by opening a browser and navigating to

http://localhost:8080/. Your Rails application will appear.

Now you can go a step further and hide your Apache server behind IIS.

Taking this step may seem strange to you, but read on.

8.5 IIS Integration

IIS is a popular web server in Windows-based organizations. Despite

its reputation, it can be a very good static web server. In this section,

I’ll show you how to use IIS to forward requests to your Rails applica-

tions. This configuration will allow you to seamlessly integrate a Rails

application into an existing IIS website.

Using IIS has a couple of benefits. First, you can use the same SSL

certificate for all your Rails applications. Second, you have the flexibility

to move the back-end applications to another server at any time. If you

find that Windows isn’t going to work for you as a deployment method,

you can easily move your Rails applications to a Linux-based server

and still have requests come through your main web server.

Before you can begin, you will need to get an additional piece of soft-

ware. I am also going to assume that you will be performing all this

on a server where IIS is running on the default port (80) and that your

Rails applications reside on the same machine.

Install ISAPI Rewrite

ISAPI Rewrite is a URL-rewriting filter that provides some simple for-

ward proxy support. Though it is not free, it is well worth the nominal

fee its developers charge, and you have access to an unrestricted trial

version, which will get you through this chapter.

Visit the ISAPI Rewrite site,11 and download the trial version of ISAPI

Rewrite 3.0. Launch the installation program, and accept all the default

settings. The installation will restart your IIS service, because it needs

to install an ISAPI filter on your server.

11. http://www.isapirewrite.com/

http://localhost:8080/
http://www.isapirewrite.com/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=209


IIS INTEGRATION 210

What About Just Serving Rails Through IIS?

Different groups of people have tried to serve Rails directly
through IIS. Some tried to use the FastCGI ISAPI filter, but that
configuration requires registry hacks and leads to instability.
When I tried the FastCGI approach on three machines, I was
able to make it work successfully only on one, and it wasn’t
very reliable. This option may become more viable soon, but for
now, most Windows developers are going with the approaches
outlined in this chapter.

Microsoft has actually taken some great steps to make FastCGI
better in IIS 7.0, but it has made no specific commitment to serv-
ing Rails applications with IIS at the time this book is being writ-
ten. This stuff moves pretty fast though, so it’s definitely some-
thing you should keep an eye on.

Using a proxied approach does provide for better long-term
scalability, because it is much easier to move your Rails applica-
tion to one or more separate physical machines. If you plan to
host several Rails applications from one server, FastCGI is prob-
ably not a good option for you at all.

If you experience trouble with the installation, you’ll need to refer to

the developers of this product. The support forum12 is an excellent

resource.

Forwarding Requests to Your Application

Say you want to forward all requests from http://localhost/mytest/ to your

Rails application. You need to ensure that one of the following is true:

• You allow script execution from your site root.

• You allow script execution from the folder or virtual directory

mytest.

Failing to allow script execution from one of those places will result in

a 403.1 error message from IIS.

The file C:\Program Files\Helicon\ISAPI_Rewrite3\httpd.conf contains the re-

write rules that IIS uses to forward requests.

12. http://www.helicontech.com/forum/

http://localhost/mytest/
http://www.helicontech.com/forum/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=210


REVERSE PROXY AND URLS 211

Forwarding a requested URL to a back-end server is really easy. To

forward requests to /mytest to a Mongrel instance on the same machine

running on port 4001, you use this rule:

RewriteProxy /mytest(.*) http\://localhost:4001$1 [I,U]

If you’re using Apache on port 8080, you just forward requests to that

port instead:

RewriteProxy /mytest(.*) http\://localhost:8080$1 [I,U]

You can even go to a different server:

RewriteProxy /mytest(.*) http\://backend.mydomain.com:4001$1 [I,U]

On some systems, especially those that have tightened security, this file

is marked as read-only. You’ll need to remove the read-only attribute

before you can change the file. Also, ensure that the SYSTEM user can

read that file.

Testing It

Configure the filter to forward requests to your Mongrel instance on

port 4001:

RewriteProxy /mytest(.*) http\://localhost:4001$1 [I,U]

You can now pull up your Rails application via IIS by navigating to

http://localhost/mytest/. Unfortunately, it’s not going to look very good.

Read on to find out why.

8.6 Reverse Proxy and URLs

The big problem we’re faced with now is that the URLs that Rails creates

internally, such as style sheet links, url_for links, and other links, don’t

work as you might expect.

For example, if you pull up the URL http://localhost/mytest/ in your brow-

ser, you should see that the application comes up just fine, but with-

out the style sheets. You will also notice that when you click a link,

you’re transferred to http://localhost/, and in some cases your proxy will

be exposed. This situation could be especially bad for your users if

your application server happens to be behind a firewall that can’t be

accessed from the Internet.

Neither IIS nor ISAPI_Rewrite has a method to handle reverse proxying.

A reverse proxy rewrites the content served from the back end to mask

the fact that the request was filtered through a proxy.

http://localhost/mytest/
url_for
http://localhost/mytest/
http://localhost/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=211


REVERSE PROXY AND URLS 212

A Note About relative_url_root

At first glance, it looks like most problems with the URLs could
be solved simply by applying the following code to the environ-

ment.rb file:

ActionController::AbstractRequest.relative_url_root = '/mytest'

That change fixes most of the issues, but it doesn’t fix any links
written using url_for :only_path => false. The reverse_proxy_fix plug-in
that I wrote addresses these issues as well.

I developed a simple Rails plug-in that modifies the way Rails creates

URLs in order to address this issue. The plug-in tells Rails to prepend

your external URL to any URLs it creates through the system. This

plug-in will force all user requests to come back through the IIS proxy.

The URLs are altered only when you run the application in production

mode, so you don’t have to worry about changing routes or configura-

tion files when you deploy your application. It’s also safe to keep the

plug-in with your application during development.

Installing the Proxy Plug-In

Execute the following command (but all on one line):

ruby script/plugin install http://svn.napcsweb.com/public/reverse_proxy_fix

from within your application’s root folder. Once the plug-in is installed,

it asks you for the base URL. Enter http://localhost/mytest, and press

Enter. If all goes well, the plug-in will write the configuration file. If

the configuration file can’t be modified, you can configure it yourself by

editing the file vendor/plugins/reverse_proxy_fix/lib/config.rb.

Using the Proxy Plug-In

Once you’ve installed the plug-in, you’ll need to restart your Rails appli-

cation. If you’re using multiple instances of Mongrel, you’ll need to

restart all instances before the plug-in will work. Once the applications

restart, any internal links in your application will now be automatically

corrected, and your users will be routed back through the proxy.13

13. This assumes you used link_to and friends to generate your links and images. Hard-

coded paths are not changed by this plug-in.

http://localhost/mytest
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=212


STRATEGIES FOR HOSTING MULTIPLE APPLICATIONS 213

8.7 Strategies for Hosting Multiple Applications

You can use several strategies to host several applications, and the one

you choose depends mostly on the number of users who will use your

system. When you have many users and long HTTP requests such as file

uploads, you will have to address scaling through adding more back-

end processes. That was traditionally done by increasing the number

of FastCGI processes, but now you can just add another instance of

Mongrel to our cluster.

The next few sections will cover various strategies you can use to deploy

several applications into production.

Serve Several Small Applications Using IIS and Mongrel

Serving many small applications is a simple approach. Each application

is installed as a Windows service using Mongrel running on a different

port. You can then use IIS with ISAPI_Rewrite and the reverse_proxy_fix

plug-in to mount each application to its own URL within IIS as in Fig-

ure 8.6, on page 215:

http://www.yourdomain.com/app1⇒ http://localhost:4001

http://www.yourdomain.com/app2⇒ http://localhost:4002

http://www.yourdomain.com/app3⇒ http://localhost:4003

The ISAPI_Rewrite rules for this are simply as follows:

RewriteProxy /app1(.*) http\://localhost:4001$1 [I,U]

RewriteProxy /app2(.*) http\://localhost:4002$1 [I,U]

RewriteProxy /app3(.*) http\://localhost:4003$1 [I,U]

You would then need to apply the Reverse_Proxy_Fix plug-in to each of

your applications, setting the BASE_URL parameter for each originating

URL.

I don’t recommend doing this for production. There’s no support for

page caching here, and there’s just no way to scale up. However, this

is a really great approach to demo a site to your stakeholders quickly

without going through a lot of complex setup.

http://www.yourdomain.com/app1
http://localhost:4001
http://www.yourdomain.com/app2
http://localhost:4002
http://www.yourdomain.com/app3
http://localhost:4003
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=213


STRATEGIES FOR HOSTING MULTIPLE APPLICATIONS 214

Applications, Users, and Requests

How do you measure the size of an application, and how do
you choose the method of deployment? People tend to think
about application size by thinking about how many users the
app will have. There’s a slight problem with that, though.

I could have an application with hundreds of models. The appli-
cation could be very complex, but if there are only 100 people
using the application, it’s not going to be that problematic to
just throw up one instance of Mongrel and let it do the work,
provided that there aren’t any simultaneous requests.

I could also have an application with five models and three
controllers, and this application gets hit 100,000 times a day by
students who are registering for a summer orientation session at
a university. A single instance of Mongrel would probably work,
but there would be a lot of waiting going on.

The number of users an application can support is really not a
good measure, though. With Ajax becoming more and more
popular and with Rails’ support of REST, you may see more hits
to your application than you expect, whether it be from a user’s
browser or another web service.

Requests per second is a much better measure for your site.
How many requests does your app need to support per sec-
ond? Three? Six? Twenty? A hundred? This is something you
need to figure out by benchmarking existing applications and
doing some forecasting. An application that supports five
requests per second can serve 144,000 requests in an eight-
hour period. That’s not too bad. The problem is that a Rails
application is single-threaded. A single instance of Mongrel
can serve only one request at a time. So if you have an Ajax-
based search on your site, the live updating that the search
does can cause other requests to get stuck in a queue.

So, test your apps, and determine the requests per second. If
you determine that your small internal application can run on
a single instance of Mongrel, that makes life easier. You can
easily scale up using the techniques in this book.

Keep in mind that on Windows, your app will typically perform
much slower than on another platform, so you may require
more balanced back ends to process the same number of
requests.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=214


STRATEGIES FOR HOSTING MULTIPLE APPLICATIONS 215

IIS
(80)

Mongrel
(4001)

Rails application

Reverse_Proxy_Fix

ISAPI_REWRITE

Mongrel
(4002)

Rails application

Reverse_Proxy_Fix plugin 

http://yourdomain.com/app1 http://yourdomain.com/app2

Figure 8.6: IIS forwarding requests to multiple instances of Mongrel

Serving Several Large Applications

You have several possibilities for serving large applications.

One method would be to use Pen to cluster several Mongrel instances

and then use IIS to forward requests to Pen as shown in Figure 8.7, on

the following page.

This configuration is the same as if you were going directly to Mongrel.

You would install multiple copies of Pen on different ports, each for-

warding to their own group of Mongrel instances. You would then set

up IIS to forward requests to each instance of Pen.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=215


STRATEGIES FOR HOSTING MULTIPLE APPLICATIONS 216

IIS
(80)

Mongrel
(4001)

Rails application

Reverse_Proxy_Fix plugin

ISAPI_REWRITE

Mongrel
(4002)

Pen
(4000)

Mongrel
(5001)

Rails application

Reverse_Proxy_Fix plugin

Mongrel
(5002)

Pen
(5000)

http://yourdomain.com/app1 http://yourdomain.com/app2		 

.

Figure 8.7: IIS forwarding requests to multiple instances of Pen

This is one of those solutions that works well for those cases where

your organization has a “no Apache” policy.

This approach won’t be the best approach if your application makes

extensive use of page caching, but it is easy to implement and can

work fine for systems where every user needs to be authenticated on

every request, making page caching a nonissue.

The most performant method is to simply use Apache on port 80. Using

the proxy_balancer method, Apache can be configured for multiple vir-

tual hosts with each virtual host serving a separate cluster of Mongrel

instances as shown in Figure 8.8, on the next page.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=216


STRATEGIES FOR HOSTING MULTIPLE APPLICATIONS 217

Apache 2.2
(80)

Mongrel
(4001)

Rails application

mod_proxy_balance

Mongrel
(4002)

Mongrel
(5001)

Rails application

Mongrel
(5002)

http://app1.yourdomain.com http://app2.yourdomain.com

Figure 8.8: Apache 2.2 with mod_proxy_balancer on multiple vhosts

Implementing this approach is a matter of creating separate groups of

Mongrel instances and then creating a virtual host entry for each of

these groups in the httpd-proxy.conf file created earlier. Your DNS and

local HOSTS file would then need to be configured for each virtual host.

This approach yields good performance, scales well, and allows page

caching to work effectively. It’s the fastest and most stable solution

right now for Windows.

Finally, if you want transparent integration, you could make IIS send

these requests to your various Apache virtual hosts. This is a more com-

plicated approach with more points of failure, but it will allow you to

use your IIS SSL certificates, will allow you to place your database and

Rails applications behind a firewall, and will make your applications

appear to be integrated. Remember to make use of the reverse_proxy_fix

plug-in if you choose to use IIS to forward your requests.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=217


LOAD-TESTING YOUR APPLICATIONS 218

Performance on Windows

Ruby does not perform as well on Windows as it does on Linux. Appli-

cations that routinely handle 60 requests per second on a Linux box

with one instance of Mongrel can handle only six to nine requests per

second on Windows. Any more than that, and your users start seeing

delays as each request is processed.

If you have a really powerful server, like the fastest thing available with

lots of RAM and very little running, then you might see around thirty-

five requests per second with a single instance. Linux servers tend to

provide much greater throughput with much less expensive hardware.

You can improve performance slightly by looking over the applications

you plan to deploy and checking the following areas:

• Change how you use sessions. How are sessions managed in your

application? The P-Store, or file-based store, can often be slow.

Consider moving your session store into your database, or inves-

tigate other session-storing mechanisms.

• Go through your development logs, and make sure you’re not

making unnecessary calls to your database. Simply adding an

:include to a finder can really help an application’s performance,

and it is often missed.

• Use fragment, action, and page caching as much as you can. Since

Ruby is slow on Windows, you want to make as much use of page

caching as you possibly can so that Rails is never invoked.

• Ensure that nothing is interfering with the process. Certain secu-

rity auditing software, quota managers, and virus scanners can

drastically reduce the amount of requests you can handle. Watch

your performance monitor for any spikes when testing your

application.

8.8 Load-Testing Your Applications

There are few good choices for load-testing your applications on Win-

dows. If at all possible, get a Linux machine or a Mac, and use httperf

to test your application.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=218


FINAL THOUGHTS 219

If that’s just not going to work for you, try one of these alternatives:

• Microsoft Web Application Stress Tool: This tool, available online,14

is a free tool that lets you record your steps through a web applica-

tion or website and then play them back and generate loads. It can

be used to control remote clients as well so you can generate more

realistic loads against your application. It has quite a few bugs,

but it is still a very useful program. I have found its accuracy to

be relatively good.

• WAPT : WAPT is a commercial tool that performs load and stress

testing of web applications. Like the Microsoft offering, WAPT al-

lows you to record your browsing session so it can be played back.

Interpreting the reports can be trickier, but it’s worth it because

WAPT has the ability to connect to secure sites.

Apache Benchmark (ab): Apache Benchmark is a command-line

tool that can be used to hit a URL repeatedly, but it is known

to produce extremely misleading results. I use this tool only to

generate loads against an application.

8.9 Final Thoughts

I believe that Windows is a good platform for developing Rails applica-

tions and does an adequate job of serving Rails applications that have

a moderate user base. However, as you begin to develop more applica-

tions and gain more users, your needs may change.

I also believe that Linux is the better choice right now. I have a 1GHz

desktop machine running Ubuntu and serving a single Rails application

from one instance of Mongrel that serves three times as many requests

per second than a server with two Xeons at 2GHz.

In recent months, Windows machines are getting much faster, but they

are not quite as performant. If your applications aren’t performing at an

acceptable level and you’ve done everything you can to optimize them,

then you should consider deploying some applications to a Linux test

server. The information and strategies I have shared with you can be

used to help you migrate some or all of your Rails applications to Linux

servers transparently. You could still use IIS or Apache on Windows and

move only the Rails applications to Linux, which is a great transitional

solution that I’ve employed a number of times with great success.

14. http://www.microsoft.com/downloads/details.aspx?FamilyID=E2C0585A-062A-439E-A67D-75A89AA36495

http://www.microsoft.com/downloads/details.aspx?FamilyID=E2C0585A-062A-439E-A67D-75A89AA36495
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=219


DEVELOPING ON WINDOWS AND DEPLOYING SOMEWHERE ELSE 220

Testing Tips

– Run your tests from a different machine than the one
hosting the application. Testing the throughput on
the same machine can lead to unrealistic and inac-
curate results.

– Run the stress test against a baseline such as your
public home page. This will give you a good idea of
how your application compares to your existing ser-
vices.

– Run the tests from inside and outside of your network.
If you can, try running the test from a cable or DSL
connection to see what kind of an impact that has.

– Stress test your app on the production server. Some
sysadmins may cringe at this, but you should test
the application where you plan to deploy it wher-
ever possible. Do some testing during some sched-
uled downtime or during off-peak times when your
server use is low. If you can’t do this, you should at
least consider having a staging server that mirrors
your production machine so you will be able to see
accurate results and plan for the future.

– Use more than one tool and compare the results.

8.10 Developing on Windows and Deploying Somewhere Else

If you develop on Windows but plan to deploy on a Linux server such

as a virtual private host, a shared host, or a new shiny Linux server

that your wonderful bosses purchased especially for you, you should

be aware of some issues.

Dispatch.fcgi Ruby Interpreter

When you deploy an application that you created on Windows to a

Linux server, the very first line in your dispatch.fcgi file will be wrong.

On Windows, it usually reads as follows:

#!c:/ruby/bin/ruby

On Linux, it often reads as follows:

#!/usr/bin/ruby

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=220


DEVELOPING ON WINDOWS AND DEPLOYING SOMEWHERE ELSE 221

You can figure out what path you should use by connecting to your

remote host and typing which ruby.

This is a problem if your hosting platform is using FastCGI because the

FastCGI server will be unable to locate the Ruby interpreter. If you’re

using Mongrel, then it’s not really a concern.

Line Breaks

Linux uses different line breaks than Windows does. This can some-

times be a problem because the extra character that Windows uses can

interfere with how scripts are processed. Many Linux distributions have

a program called dos2unix that you can use to convert the line breaks in

your files.

The best solution is to find yourself a good editor for Windows that

allows you to specify what type of line breaks are used. Eclipse, Net-

Beans IDE, Notepad++, and Crimson Editor are just a few examples of

editors that are known to work correctly. Windows Notepad should be

avoided at all costs, as well as WordPad, because they are meant for

Windows-formatted text files.

Permissions

When you deploy your application to a Linux server, you need to check

permissions. If your server uses FastCGI, then you need to make sure

that you allow the web server’s user and group the right to execute pub-

lic/dispatch.fcgi, or your application isn’t going to work. If your applica-

tion uses page caching, ensure that the public/ folder is writable by the

web server’s user, or Rails will be unable to write the static versions of

the pages.

Preventing Problems When Deploying

Follow these tips to make deploying an application to production from

Windows to Linux:

• Create the application on the Linux machine using the rails com-

mand. This will put all the files in the right locations and make

sure that the paths are correct.

• If your production server or web host uses Apache and FastCGI

for Rails application hosting, be sure to modify your copy of pub-

lic/.htaccess on your server so that dispatch.fcgi is called instead of

dispatch.cgi.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=221


DEVELOPING ON WINDOWS AND DEPLOYING SOMEWHERE ELSE 222

• Deploy your application files over the top of the ones you created,

making sure to ignore overriding the dispatch.fcgi or .htaccess file.

This can easily be scripted if you use Subversion.

• Edit your database configuration file on the production server, and

then make sure you never overwrite it when you redeploy. I do

not think it is a good idea to store your database passwords in

a code repository, so I never check the database.yml file in to the

repository.

• Run your migrations in production mode to ensure that your data-

base is configured.

• Open the console in production mode (./script/console production),

and attempt to retrieve some data. This will help test to see if you

have any odd characters in your code that need to be converted.

• Test your application on the production server using WEBrick in

production mode (./script/server -e production). If your host allows

you to connect on port 3000, try pulling up your site using that

port.

• Configure your production server to use your new application.

Some providers like DreamHost have a control panel where you

specify the public folder of your Rails app. Once your app is con-

figured, try hitting it with the browser one more time to make sure

it comes up.

• Check to see whether the production log is being used. If it’s not,

you’ll need to modify your environment.rb file to force production

mode. Some shared hosts have been known not to set the envi-

ronment in their Apache configuration.

A better approach than this is to automate your deployment using

Capistrano. You can safely make all these alterations to your files at

any time and just check them in to your repository. You can then just

deploy using a Capistrano recipe. Capistrano tasks can change per-

missions, alter files, and more. If you’re going through all the trouble

to write a program, take a little more time to learn how to automate the

deployment. You’re less likely to forget something later.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=222


WRAPPING UP 223

8.11 Wrapping Up

This chapter talked about various strategies you can use to deploy

your application. You have a lot of choices to make now, because each

method will yield different results. Some might be better than others,

but you need to figure out which will work for you and your situation.

I can’t stress enough the importance of testing your stack. Run perfor-

mance testing tools against your application before you deploy it, and

keep a close eye on it when it’s running. You want to make sure you

are ready to move to a better deployment solution before you need it.

Don’t be afraid to deploy on Windows, though—many people, including

myself—have been very successful deploying applications with these

methods. It’s a great way to get Rails into a Windows-based environ-

ment. Once you prove you can be more efficient with Rails, you can

push for a Linux deployment stack!

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=223


4 Running an Efficient

Chapter 9

Performance

Home

In the old Chinese proverb, many people can look at the elephant from

different perspectives and see different things. In very much the same

way, a programmer can look at Rails and smile, experiencing near

euphoria. When it’s time to deploy that same application and make it

scale, the system administrator who is charged with the daunting task

of pumping users through it might run howling and shrieking from the

room. Rails is very much a trade-off. The same high-level language that

makes the beautiful domain-specific languages and allows the sweet

dynamic programming enabling Active Record all takes time to exe-

cute. All that magic that goes on under the covers and makes things

cushy for the application developers has a cost when it’s time to push

into deployment.

The good news is that you can make Rails scale. The framework is

specifically designed with shared-nothing principles that will allow you

to throw hardware at the problem, as you learned in Chapter 7, Scal-

ing Out, on page 144. This has a tendency to make some developers

procrastinate on the performance aspects of their applications. Though

premature optimization is not always recommended either, you don’t

get a license to ignore optimization or scalability altogether. In this

chapter, I’ll walk you through some of the techniques you’ll need to

know to understand how much traffic a given deployment can handle,

and then I’ll show you the core techniques to dramatically improve what

you have with a little hard work.

9.1 The Lay of the Land

Performance benchmarking is for two kinds of developers: those who

take a structured and patient approach and those who love pain. So,



THE LAY OF THE LAND 225

What Doesn’t Work?

Before I walk you through the game plan for improving applica-
tion performance, let me walk you through a few examples of
approaches that we know don’t often work:

• Premature optimization: Focusing on performance above
all else may produce the fastest, slickest application
whether you actually need the performance or not. How-
ever, you may find that this comes at the cost of code
that is complex, hard to read, and even harder to main-
tain. Optimization also takes time, so you may also risk your
project schedule and miss deadlines due to features tak-
ing too long to implement because of the additional per-
formance enhancements. Instead, performance test your
application often throughout the project. Ensure that it will
meet an acceptable level of performance for your needs,
and optimize only the critical bottlenecks as required.

• Guessing: When you find that your application is too slow,
you may be tempted to guess about where the prob-
lem might be. You may hack through various performance
optimizations in an attempt try fix it. You may guess right
once or twice, but you’ll eventually spend hours on the
right solutions to the wrong problems. Instead, use pro-
filing tools, load-testing, and monitoring tools to pinpoint
the problem areas before implementing any performance
patches.

• Caching everything: Rails makes caching fairly easy, so
you might just think that caching will always save you
at the last minute. But caching is almost always harder
than it looks on the surface. This enigmatic performance
enhancement creates opportunities for bugs to creep into
production where they weren’t seen in testing, because
cached features can be hard to test. It’s especially dan-
gerous to simply enable caching at the last minute and
hope that it will work. Instead, try to identify potential hot
spots early, such as your home page or latest news feed.
Then, design those features with caching in mind, and use
a staging environment where caching is enabled so that
you can test the application as it will be in production.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=225


THE LAY OF THE LAND 226

What Doesn’t Work? (cont.)

• Fighting the framework : Rails is a convention-based
framework that makes a lot of assumptions. This philoso-
phy works best if you work within the framework. At times,
you may feel like getting creative and breaking some of
the known best practices and possibly even hacking on
Rails to either modify it or work around it. However, you
may find yourself using the framework in ways that the
Rails designers never intended, so when it comes time to
upgrade Rails to the next version or make use of a plug-
in that assumes you’re using Rails in the expected way,
you’ll feel the pain. Instead, do your best to work within the
constraints of the framework you chose. Ask around and
seek out experts in the Rails community, and ask them how
they might solve performance problems similar to yours—
without breaking the written and unwritten rules.

unless you’re the one who loves pain, whenever you deploy a new appli-

cation, you will want to make a deliberate plan and stay with it as best

as you can. The basic steps are shown in Figure 9.1, on the next page.

1. Be the best you can be: target baseline: The first thing you want to

do is set your expectations. You have to know when you’re done.

You need a best-case baseline to know your upper performance

bound. To do this, take Rails out of the picture to see how many

HTTP requests your production servers can handle—you cannot

expect to go any faster than that. Then run the simplest possible

Rails request to establish a target for Rails applications in general.

If there’s a large disparity already, you may want try tuning your

proxy, FastCGI, or Mongrel. When you’re done, this is your target

baseline.

2. Know where you are now: application baseline: If you want to

improve on any application, you have to know where you are so

that you know how far you have to go. You’ll want to run a simple

performance test without optimization of any kind. This is your

application baseline.

3. Profile to find bottlenecks: After you have a baseline, you should

profile your system to locate your bottlenecks. A bottleneck, like

the governor on an engine, limits how fast your application can

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=226


THE LAY OF THE LAND 227

Best-Case 
Baseline, 
Set Targets

Run 
Application 
Baseline

Run Profile

Remove 
Bottlenecks

Quit

Satisfied? Not satisfied?

Figure 9.1: Performance process

go, regardless of the rest of the system. You improve performance

by systemically eliminating bottlenecks.

4. Remove bottlenecks: This is the proper place within your process

for performance optimizations. Using profiling and benchmarking,

you can understand exactly where your changes will make the

biggest impact. You will concentrate on one specific inefficiency

and eliminate it. Then, you can run your profile and repeat the

process.

5. Repeat: Using a basic approach of profiling and benchmarking,

making incremental changes to your code, and repeating the pro-

cess will let you know for sure which code changes increased or

decreased performance. You will change one parameter at a time

and keep the process simple. Be sure to make a only single change

at a time, and take a new measurement. This will save you time in

the long run.

Now that I’ve walked you through the basic premise behind benchmark-

ing, I’d like to walk you through selected pieces of the process and also

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=227


INITIAL BENCHMARKS: HOW MANY MONGRELS? 228

through some basic bottlenecks and their solutions. First, you’ll take a

baseline with a benchmark.

9.2 Initial Benchmarks: How Many Mongrels?

When you are ready to benchmark your application, your initial bench-

marks should give you the overall application performance. This means

using HTTP load-testing tools to test your application over a network.

If you are satisfied with these load-testing results, then you don’t have

to optimize anything, but many times you will find at least a few areas

to tweak.

One question that pops up at this point is the classic “How many Mon-

grels do I need for my app?” In my experience, people tend to overes-

timate the number of Mongrels required for optimal performance. Of

course, everyone wants to be the next Web 2.0 Google acquisition, but

the reality is that most production Rails apps that get less than 100,000

page views per day can be served perfectly well with two or three Mon-

grels behind a proxy. The only way to know for sure is to benchmark.

I will be using Mongrel in my tests, but the same information applies to

any other means of running Rails applications in multiple processes. To

practice what I preach, the first thing to do is get a baseline, absolute

best-case performance scenario for my current hardware. I will use ab

(Apache bench) or httperf to measure the requests per second of the

smallest request that invokes Rails. Create a fresh Rails app with one

controller and one action that just does a render :text => "Hello!". This will

measure the fastest baseline response time you can expect from a Rails

app running on Mongrel on your current hardware.

ezra$ rails benchmark_app

ezra$ cd benchmark_app

ezra$ script/generate controller Bench hello

Now open the BenchController class (the file bench_controller.rb in the

directory RAILS_ROOT/app/controllers), and edit it to look like this:

class BenchController < ApplicationController

def hello

render :text => "Hello!"

end

end

This hello action is the absolute smallest and fastest request a Rails

application can serve while still invoking the full stack including ses-

sions. It doesn’t call the database server or open and interpolate any

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=228


INITIAL BENCHMARKS: HOW MANY MONGRELS? 229

templates. The application calls routing and instantiates the controller

to serve the request. Rails has to go through the motions of setting up

the session filter chain and all the other magic that happens during the

service of one request. As you add code, templates, and database calls

to your actions, the results will become slower, but at this point, I’m

after a best-case target baseline.

Take a look at the output from the ab command. Here is the help

banner:

ezra$ ab -h

Usage: ab [options] [http://]hostname[:port]/path

Options are:

-n requests Number of requests to perform

-c concurrency Number of multiple requests to make

-t timelimit Seconds to max. wait for responses

-p postfile File containing data to POST

-T content-type Content-type header for POSTing

-v verbosity How much troubleshooting info to print

-w Print out results in HTML tables

-i Use HEAD instead of GET

-x attributes String to insert as table attributes

-y attributes String to insert as tr attributes

-z attributes String to insert as td or th attributes

-C attribute Add cookie, eg. 'Apache=1234' (repeatable)

-H attribute Add Arbitrary header line, eg. 'Accept-Encoding: zop'

Inserted after all normal header lines. (repeatable)

-A attribute Add Basic WWW Authentication, the attributes

are a colon separated username and password.

-P attribute Add Basic Proxy Authentication, the attributes

are a colon separated username and password.

-X proxy:port Proxyserver and port number to use

-V Print version number and exit

-k Use HTTP KeepAlive feature

-d Do not show percentiles served table.

-S Do not show confidence estimators and warnings.

-g filename Output collected data to gnuplot format file.

-e filename Output CSV file with percentages served

-h Display usage information (this message)

I’ll start with a simple test against one Mongrel with one concurrent

user and 1,000 requests.

ez rmerb $ ab -n 1000 http://localhost:3000/bench/hello

This is ApacheBench, Version 1.3d <$Revision: 1.73 $> apache-1.3

Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/

Copyright (c) 1998-2002 The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Completed 100 requests

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=229


INITIAL BENCHMARKS: HOW MANY MONGRELS? 230

Completed 200 requests

: : :

Completed 900 requests

Finished 1000 requests

Server Software: Mongrel

Server Hostname: localhost

Server Port: 3000

Document Path: /bench/hello

Document Length: 5 bytes

Concurrency Level: 1

Time taken for tests: 9.196 seconds

Complete requests: 1000

Failed requests: 0

Broken pipe errors: 0

Total transferred: 255000 bytes

HTML transferred: 5000 bytes

Requests per second: 108.74 [#/sec] (mean)

Time per request: 9.20 [ms] (mean)

Time per request: 9.20 [ms] (mean, across all concurrent requests)

Transfer rate: 27.73 [KBytes/sec] received

Connnection Times (ms)

min mean[+/-sd] median max

Connect: 0 0 0.0 0 0

Processing: 6 9 6.5 8 83

Waiting: 6 9 6.5 8 83

Total: 6 9 6.5 8 83

Percentage of the requests served within a certain time (ms)

50% 8

66% 8

75% 8

80% 9

90% 9

95% 9

98% 10

99% 32

100% 83 (last request)

The main thing I want to see is Requests per second: 108.74 [#/sec] (mean).

I ran this benchmark on a 2GHz Intel Core Duo with 2GB of RAM.

A small fresh Rails application like this usually will use about 45MB

of RAM per Mongrel process. This first benchmark runs on the same

host as the Rails application. Remember that this test will provide an

absolute best-case performance baseline and does not simulate real-

world situations very well.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=230


INITIAL BENCHMARKS: HOW MANY MONGRELS? 231

On modern hardware, you should expect to easily get more than 100

requests a second for this simple action. Your results will vary, but if

you are getting more than 100 requests a second, then you are doing

fine. You can improve this first baseline by turning off sessions for your

action.

That tiny improvement actually increases the results to more than 400

requests a second! This just shows that if you don’t need sessions,

then be sure to use the session method of ActionController::Base to turn

sessions off for any actions that don’t use them. In the real world, most

actions will require sessions, though, so assume a best-case baseline

of 108 requests per second.

The next step is to use a cluster of Mongrels behind a load balancer

proxy of some kind. This way I can test concurrent users and come up

with our magic number of Mongrel processes that works best on the

hardware at hand. Refer to Chapter 7, Scaling Out, on page 144 for

information about installing and configuring a proxy load balancer.

Once you have your proxy set, then you should start testing with two

Mongrels, and then three, and so on. For each battery of tests, you

should increase the simulated concurrent users with the -c option. I

like to test ten, thirty, and fifty levels of concurrency. Any more than

that, and the stats become skewed because ab has trouble simulating

that much load. I am establishing a best-case baseline. I’ll do real load

testing once I settle on a final configuration and my application is fin-

ished. I’ll generate my load tests from another server or even multiple

servers at once to more closely simulate real-world usage.

Another trick to more closely simulate real-world conditions is to use

the -C options to set a cookie value. The results from the first bench-

mark will actually create and save a new session for all 1,000 requests!

The real usage of your app will not create so many sessions because

once someone logs in, they reuse the same session. Also, you will inevi-

tably want to test protected areas of your site for performance, so you

need to be able to maintain a session while benchmarking. To simu-

late a logged-in user, I will log into the site with a web browser and get

the _session_id from the cookie. Check your browser’s preferences for a

cookie viewer of some sort.

Once you have copied the _session_id from your browser, then it’s time

to add it to the ab command.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=231


PROFILING AND BOTTLENECKS 232

Here is a sample of a sequence of benchmarks to run against your app:

ezra$ ab -n 5000 -c 10 -C _session_id=ee738c2fcc9e5ab953c35cc13f4fa82d ←֓

http://localhost/bench/hello

...

ezra$ ab -n 5000 -c 30 -C _session_id=ee738c2fcc9e5ab953c35cc13f4fa82d ←֓

http://localhost/bench/hello

...

ezra$ ab -n 5000 -c 50 -C _session_id=ee738c2fcc9e5ab953c35cc13f4fa82d ←֓

http://localhost/bench/hello

...

ezra$ ab -n 5000 -c 100 -C _session_id=ee738c2fcc9e5ab953c35cc13f4fa82d ←֓

http://localhost/bench/hello

Keep adding Mongrels until you don’t gain any more requests per sec-

ond by adding more. This step is especially important for software load

balancers like Apache 2.2 or nginx. You might expect that by doubling

the number of Mongrels you would double the throughput. You’d usu-

ally be wrong. Sometimes using more Mongrels than you need will actu-

ally slow down response times because the load balancer works harder

to distribute the load. With expensive hardware load balancers, you

can get pretty close to doubling throughput by doubling Mongrels, but

these devices are out of reach for most application hosting budgets.

By testing in a methodical fashion, you can begin to get an overall view

of the performance you can expect from your app. Without a good best-

case baseline, it would be hard to know when to keep optimizing code

and when to add more hardware. Rails applications tend to vary widely

in the way they are coded and the way they utilize resources, so any

generalizations about the performance of an app are very hard to make.

Being scientific about your process and measuring heavily after every

change to any part of the equation will let you know what has helped

and what has hurt your performance.

9.3 Profiling and Bottlenecks

Now that I know the overall best-case performance characteristics of

my system, I can move on to improving performance. If I’ve determined

that performance is a problem, I can start to plan my attack. I usually

work to find bottlenecks by using the Rails profiler, which highlights

slower code. Armed with exact data that shows me how long each slice

of code is taking, I can eliminate the slowest pieces under my control.

Then, I’ll benchmark again and repeat the process.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=232


PROFILING AND BOTTLENECKS 233

There are two profilers I’ll use. The first will test performance of the full

request—from the controller, all the way through to the database. The

second will drill down a little deeper and focus strictly on the Active

Record–based models.

ruby-prof

The Fast Ruby Profiler (ruby-prof) gem lets you profile Ruby in a fairly

detailed way. It comes with a convenient Rails plug-in that will let you

profile your application including the full stack of your application code.

To get started, simply install the gem with gem install ruby-prof. Now

navigate to the ruby-prof gem directory located under your Ruby instal-

lation’s /lib directory.

Mine was located in <rubyhome>/lib/ruby/gems/1.8/gems/ruby-prof-0.5.2/

rails_plugin. In that directory, you’ll find a subdirectory called ruby-prof.

Copy that subdirectory to <your_rails_app>/vendor/plugins/. Make sure not

to move it, because you will need a copy of it for any other Rails apps

you want to profile. Finally, there’s only one configuration change you

need to make to your application.

In each of your environment configurations in /config/environments, in-

cluding development.rb, test.rb, and production.rb, you’ll see a line that

reads something like config.cache_classes = [true|false]. In the test and

production configurations, it is set to true. In development, it is set

to false. This parameter needs to be set to true so that your profiling

metrics aren’t severely skewed by the unnecessary reloading of classes.

Rather than using production for profiling or modifying development,

you should create a new environment specifically for profiling.

Simply copy the development.rb file to profiling.rb, and set the line

config.cache_classes = true. Don’t forget to add a configuration to con-

fig/database.yml. You will use the production database instead of creat-

ing a new one. Feel free to create one if you want a fully independent

environment for profiling. You can also tinker with other settings in the

file as you profile. I tend to disable caching when profiling because I’m

more interested in how I can improve my code than how it performs

when my code isn’t run at all. If you want, you can easily create two

environments for profiling, one with caching and one without.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=233


PROFILING AND BOTTLENECKS 234

Now you’re ready to profile your application. Simply start your server

with script/server -e profiling, and then hit the home page of your applica-

tion. The output of the profiler will appear in two places: in the console

where you started the server and in log/profiling.log where profiling is the

name of your profiling environment. Here’s an example of what you

should see:

Completed in 0.00400 (249 reqs/sec) | DB: 0.00200 (49%)

| 302 Found [http://localhost/profiles/login]

[http://localhost/profiles/login]

Thread ID: 82213740

Total: 0.005

%self ... calls name

20.00 ... 18 IO#read

20.00 ... 2 Mysql#read_rows

20.00 ... 33 Hash#default

20.00 ... 2 Kernel#respond_to_without_attributes?

20.00 ... 1 ActionController::Benchmarking#perform_act...

This profile is an example of a login process that looks up a user’s

profile with a typical login and password. The first interesting line is a

typical log line that Rails shows even without the profiler installed. The

profile shows how the time was split between rendering in controllers

and accessing the database through your models. A lot of the time, this

output may tell you what you need to know, but your database access

time will likely dwarf the rendering time. That’s where the detailed pro-

file numbers may help you out a bit. In the previous lines, you can

see activity including network I/O to the database, the parsing of the

MySQL row data, and a few calls to various libraries that probably

don’t concern you as much. If your application spends too much time

in either IO#read or Mysql#read_rows, you could be returning too many

rows, too many columns, or large amounts of data within the columns

like large text fields. This profile is not everything you will ever need,

but it does give you some place to start looking.

What about the rendering? It looks like Rails didn’t render anything

in the previous profile. The reason is that we’re using a redirect-after-

post pattern. Typically after submitting data, it’s a good idea to redirect

the user to a GET request–based view that is friendlier to page reloads

and Back buttons. That’s what this code did, so the rendering time

was actually displayed as a separate request, and the profiler produced

separate output for that.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=234


PROFILING AND BOTTLENECKS 235

Here’s the output for the GET request:

Completed in 0.00700 (142 reqs/sec) | Rendering: 0.00300 (42%)

| DB: 0.00100 (14%) | 200 OK [http://localhost/profiles/view]

[http://localhost/profiles/view]

Thread ID: 81957820

Total: 0.007

%self ... calls name

14.29 ... 6 ActionController::Base#response

14.29 ... 73 Hash#[]

14.29 ... 17 Array#each

14.29 ... 81 String#slice!

14.29 ... 4 Logger#add

14.29 ... 1 ActionController::Benchmarking#render

14.29 ... 1 <Class::ActiveRecord::Base>#method_missing

Here you can see where the controller is executed and various methods

are accessed inside the controller. Some of these might be your own

calls, while others might be internal to Rails. Again, any imbalance in

times should give you a place to start looking. This code deals with

a fairly simple and balanced request. Don’t get too hung up on the

details of every single line. Look for the odd results and the long times,

and then start to drill down into why. The idea behind profiling is to

help pinpoint a place to start looking so that you can eliminate some of

the guesswork.

So, what do you do when you want more detail? Be careful what you

ask for, because you just might get it! If you need more detailed profiling

information to start your digging, ruby-prof can provide far more detail.

Luckily, it does so in the form of either HTML or even graphical format.

Open the Rails plug-in file found at <your_rails_app>/vendor/plugins/ruby-

prof/lib/profiling.rb. This clean little Ruby script has several configuration

options in it. The lines you’ll want to look at are similar to the following.

I’ve numbered the comments to make it easier to reference here:

# #1 Create a flat printer

printer = RubyProf::FlatPrinter.new(result)

printer.print(output, {:min_percent => 2,

:print_file => false})

logger.info(output.string)

# #2 Example for Graph html printer

# printer = RubyProf::GraphHtmlPrinter.new(result)

# path = File.join(LOG_PATH, 'call_graph.html')

# File.open(path, 'w') do |file|

# printer.print(file, {:min_percent => 2,

# :print_file => true})

# end

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=235


PROFILING AND BOTTLENECKS 236

# #3 Used for KCacheGrind visualizations

# printer = RubyProf::CallTreePrinter.new(result)

# path = File.join(LOG_PATH, 'callgrind.out')

# File.open(path, 'w') do |file|

# printer.print(file, {:min_percent => 1,

# :print_file => true})

# end

By default the script has the Flat printer (#1) enabled. The result is

what you’ve been looking at so far. As you’ve seen, the results are cryp-

tic and informational at best. You can enable other printers by simply

removing the comment characters from the appropriate lines for the

printer.

The best one for tracking down specific lines of code is the Graph

HTML printer (#2). That option will create an HTML file (and subse-

quently overwrite it) for each request. The amount of detail in this file is

obscene, but here’s a small sample, where I’ve removed many columns

and left out most of the rows to make it readable:

... ... ... ...

... ActionView::Base#compile_and_render_template 325

... ActionController::Base#perform_action_without_filters 1101

66.67% ... Kernel#send 0

... ProfilesController#view 1101

... ActionController::Base#template_class 1164

... ... ... ...

In each section of the report, you’ll see a listing of methods, with one

method in bold. The bold method is the subject of that particular sec-

tion. The methods above it are the callers of the bold method. Methods

below are methods the bold method called. The bold line also contains

the total percentage of the execution time spent in that method. Where

possible, the report also contains a line number, which links to the

Ruby source on your local file system. Links to Rails code assumes

Rails is frozen in your vendor directory. The report is very long, so make

use of the text search facilities in your browser to find your own code

or other items of interest.

The third printer, KCacheGrind visualization printer (#3), produces a

graphical representation of the profile results. I won’t go into detail

here. If you want to see more examples and get more information about

ruby-prof, please refer to the following links. The first is the ruby-prof

home on RubyForge, which serves only to prove how poor Ruby docs

are in general.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=236


COMMON BOTTLENECKS 237

Therefore, I searched for a decent blog posting on the subject and found

a very good one that goes into further detail:

• http://ruby-prof.rubyforge.org/

• http://cfis.savagexi.com/articles/2007/07/10/how-to-profile-your-rails-application

Standard Rails Model Profiler

Most of the time, your performance problems will center around your

Active Record models. Either they’re too slow or they’re being overused

by calling classes, such as a finder in a loop. Therefore, if you know

that your performance issues are definitely within your Active Record

models, you can use a built-in profiler script that comes with Rails.

This script works very much like ruby-prof but is probably already on

your machine. Like ruby-prof, it produces an obscene amount of infor-

mation. I won’t exhaust the topic any further and instead just leave you

with this example:

ezra$ script/performance/profiler 'Profile.find_by_id(1)' 10 graph

Loading Rails...

Using the standard Ruby profiler.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

12.65 0.22 0.22 114 1.90 2.18 Array#select

10.90 0.40 0.19 498 0.38 0.87 Mysql#get_length

9.09 0.56 0.16 1975 0.08 0.11 Kernel.===

6.29 0.67 0.11 107 1.01 1.30 Mysql::Net#read

4.60 0.75 0.08 72 1.10 31.40 Integer#times

4.55 0.83 0.08 3724 0.02 0.03 Fixnum#==

3.67 0.89 0.06 10 6.30 11.00 ActiveRecord::Base#co...

3.67 0.95 0.06 109 0.58 0.58 Object#method_added

3.55 1.01 0.06 137 0.45 5.58 Array#each

2.74 1.06 0.05 12 3.92 5.17 MonitorMixin.mon_acquire

2.74 1.11 0.05 8 5.87 5.87 Class#inherited

2.68 1.15 0.05 963 0.05 0.05 String#slice!

1.86 1.18 0.03 12 2.67 63.67 Mysql#read_query_result

1.86 1.22 0.03 56 0.57 0.57 Mysql::Field#initialize

1.81 1.25 0.03 98 0.32 0.32 Gem::GemPathSearcher#m...

1.81 1.28 0.03 3445 0.01 0.01 Hash#key?

1.81 1.31 0.03 736 0.04 0.04 Array#<<

1.81 1.34 0.03 22 1.41 33.23 Mysql#read_rows

1.81 1.37 0.03 93 0.33 7.53 Mysql#read_one_row

9.4 Common Bottlenecks

http://ruby-prof.rubyforge.org/
http://cfis.savagexi.com/articles/2007/07/10/how-to-profile-your-rails-application
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=237


COMMON BOTTLENECKS 238

So far, all I’ve done is set up an ideal expectation for performance. The

next step is to eliminate bottlenecks. Many experts have explored Rails

performance. One of the best is Stefan Kaes. The noted Rails perfor-

mance guru identified several common Rails bottlenecks in his often-

quoted talk at RailsConf.1 The items are still as relevant today as they

were when the list was first released:

• Slow helper methods. Since views often call helper methods inside

tight loops, it’s easy to build helpers that take much too long to

calculate. For such common helpers, make sure you keep them

lean.

• Complicated routes. Each time the web server invokes Rails, the

router calculates the routes in your routes.rb file. You don’t want to

have any complex calculations in there.

• Associations. Active Record makes it easy to build database-

backed code—almost too easy. When associations get loaded too

often, performance will suffer. I’ll walk you through the most crit-

ical performance cases in the section that follows.

• Retrieving too much from the database. Active Record retrieves the

whole database row by default, and sometimes, you just don’t

need all that data. If you’re retrieving a row with a 4KB descrip-

tion field just to get a foreign key, you may want to trim down that

query with :select.

• Slow session storage. Sessions across many users can add up.

Since sessions represent shared memory that Rails holds for in-

definite periods of time, you need to pay them special attention.

In the sections that follow, I’ll walk you through a couple of the most

common performance problems. I’ll start with Active Record bottle-

necks. Active Record is one of the most convenient persistence frame-

works ever built. You can often find Rails developers mocking their Java

counterparts with a few trivial lines of code that set up the database,

process five relationships, process six custom validations, and even

solve world peace—all with a dozen lines of code. Unfortunately, all

that convenience and flexibility comes at a cost. A few months later,

those same Java counterpoints are often the ones doing the mocking.

Active Record, out of the box, is slow. Luckily, you have a few tools at

your disposal to speed things up:

1. http://Frailsexpress.de/blog/files/slides/railsconf2006.pdf

http://Frailsexpress.de/blog/files/slides/railsconf2006.pdf
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=238


COMMON BOTTLENECKS 239

• Includes: When you have associations that you know you will use

from the results of a find, you can use the :include option. With the

include option, you’ll generate one SQL query instead of many.

• Piggybacked attributes: Active Record dynamically builds objects

from the objects in the result set for any given find. You can often

add attributes to a result set with SQL. I’ll show you more in a

moment.

• Custom SQL: You can build custom SQL to return exactly what

you need.

• Selects: If you don’t need all of the columns of a database, you

can eliminate the additional overhead by simply using the select

option. Select specifies which columns you want to retrieve from

the model’s database table. By default, Active Record returns all

of them.

:include and the N+1 Problem

By default, Active Record relationships are lazy. That means the frame-

work will wait to access a relationship until you actually use it. Take,

for example, a member with an address. You can open the console and

type this command: member = Member.find 1. You’ll see the following

appended to your log, as follows:

Member Columns (0.006198) SHOW FIELDS FROM members

Member Load (0.002835) SELECT * FROM members WHERE (members.'id' = 1)

Member has a relationship to an address that was defined with the

macro has_one :address, :as => :addressable, :dependent => :destroy. Notice

that you don’t see an address field in the log when Active Record loaded

Member. But if you type member.address in the console, you’ll see the

following contents in development.log:

./vendor/plugins/paginating_find/lib/paginating_find.rb:98:in 'find'

Address Load (0.252084) SELECT * FROM addresses

WHERE (addresses.addressable_id = 1

AND addresses.addressable_type = 'Member') LIMIT 1

./vendor/plugins/paginating_find/lib/paginating_find.rb:98:in 'find'

So, Active Record does not execute the query for the address rela-

tionship until you actually access member.address. Normally, this lazy

design works well, because the persistence framework does not need

to move as much data to load a member. But assume you wanted to

access a list of members and all of their addresses, like this:

Member.find([1,2,3]).each {|member| puts member.address.city}

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=239


COMMON BOTTLENECKS 240

Since you should see a query for each of the addresses, the results

should not be pretty, in terms of performance:

Member Load (0.004063) SELECT * FROM members WHERE (members.`id` IN (1,2,3))

./vendor/plugins/paginating_find/lib/paginating_find.rb:98:in `find'

Address Load (0.000989) SELECT * FROM addresses

WHERE (addresses.addressable_id = 1

AND addresses.addressable_type = 'Member') LIMIT 1

./vendor/plugins/paginating_find/lib/paginating_find.rb:98:in `find'

Address Columns (0.073840) SHOW FIELDS FROM addresses

Address Load (0.002012) SELECT * FROM addresses

WHERE (addresses.addressable_id = 2

AND addresses.addressable_type = 'Member') LIMIT 1

./vendor/plugins/paginating_find/lib/paginating_find.rb:98:in `find'

Address Load (0.000792) SELECT * FROM addresses

WHERE (addresses.addressable_id = 3

AND addresses.addressable_type = 'Member') LIMIT 1

./vendor/plugins/paginating_find/lib/paginating_find.rb:98:in `find'

Indeed, the results are not pretty. You get one query for all the members

and another for each address. We retrieved three members, and you got

four queries. N members; N+1 queries. This problem is the dreaded N+1

problem. Most persistence frameworks solve this problem with eager

associations. Rails is no exception. If you know that you will need to

access a relationship, you can opt to include it with your initial query.

Active Record uses the :include option for this purpose. If you changed

the query to Member.find([1,2,3], :include => :address).each {|member| puts

member.address.city}, you’ll see a much better picture:

Member Load Including Associations (0.004458)

SELECT members.`id` AS t0_r0, members.`type` AS t0_r1,

members.`about_me` AS t0_r2, members.`about_philanthropy'

...

addresses.`id` AS t1_r0, addresses.`address1` AS t1_r1,

addresses.`address2` AS t1_r2, addresses.`city` AS t1_r3,

...

addresses.`addressable_id` AS t1_r8 FROM members

LEFT OUTER JOIN addresses ON addresses.addressable_id

= members.id AND addresses.addressable_type =

'Member' WHERE (members.`id` IN (1,2,3))

./vendor/plugins/paginating_find/lib/paginating_find.rb:

98:in `find'

That’s much better. You see one query that retrieves all the members

and addresses. That’s how eager associations work.

With Active Record, you can also nest the :include option. For example,

consider a Member that has many contacts and a Contact that has one

address. If you wanted to show all the cities for a member’s contacts,

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=240


COMMON BOTTLENECKS 241

you could use the following code:

contacts</heading>

member = Member.find(1)

member.contacts.each {|contact| puts contact.address.city}

That code would work, but you’d have to query for the member, each

contact, and each contact’s address. You can improve the performance

a little by eagerly including :contacts with :include => :contacts. You can

do better by including both associations using a nested include option:

member = Member.find(1, :include => {:contacts => :address})

member.contacts.each {|contact| puts contact.address.city}

That nested include tells Rails to eagerly include both the contacts

and address relationships. You can use the eager-loading technique

whenever you know that you will use relationships in a given query.

:include does have limitations. If you need to do reporting, you’re almost

always better off simply grabbing the database connection and bypass-

ing Active Record all together with ActiveRecord::Base.execute("SELECT *

FROM...") to save the overhead related to marshaling Active Record ob-

jects. Generally, eager associations will be more than enough.

Other Active Record Options

Controlling your associations with :include and defining exactly which

columns you want with :select will give you most of the performance

you need. Occasionally, you will need a few extra tricks to get you all

the way home.

Nested sets: Rails provides a convenient tree for dealing with hierar-

chies of data. If you’re not careful, you can easily build an application

that does a query for each node in the tree. When you need to find

all nodes in one section of the tree, such as with catalogs, you will be

better off using a nested set. You can read more about it in the Rails

documentation.

Smart inheritance: The Rails model of inheritance is single-table inher-

itance. That means that every Active Record model that participates in

an inheritance hierarchy goes into the same table. If you try to build

models that inherit too deeply, you will cram too much into a single

table. You can often use polymorphic associations2 instead of inheri-

tance to represent key concepts such as an address or a common base

class.

2. http://wiki.rubyonrails.org/rails/pages/UnderstandingPolymorphicAssociations

http://wiki.rubyonrails.org/rails/pages/UnderstandingPolymorphicAssociations
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=241


CACHING 242

When that fails, you can take advantage of Ruby’s duck typing instead

of inheritance. Think of a website that uses little bits of content in many

different forms across the whole application. Every piece of content may

have a name and a description. If you tried to let every different type of

class inherit from a class called Content, your whole application would

be in one table. The Ruby way to solve this problem is to just add the

name and description columns to each table that needs them. Ruby’s

duck typing will let you treat all kinds of content the same, referring to

both the name and description columns.

Both polymorphic associations and duck typing can lead you to better

performance but also to much cleaner model code.

Indexes and normalization: Though Active Record hides some of the

concepts from you, underneath you’re still dealing with a good, old rela-

tional databases. Your larger tables will still need indexes on the fields

that you’ll access often. The same database normalization3 techniques

still apply.

9.5 Caching

When you need to stretch Rails for high performance, your first impres-

sion will usually be to cache. Before you go down the caching path, take

a deep breath. Caching is not a silver bullet. Even in the best of circum-

stances, caching is difficult to get right, nearly impossible to test well,

and unpredictable. If you’re not convinced, read the last sentence twice

more and also the following list:

• Caching is ugly. You’ll be polluting parts of your application with

code that has nothing to do with the business problem you’re try-

ing to solve. Rails can protect you from some of the ugly syntax,

but not all.

• Caching is tough to debug. You will add a whole new classification

of bugs to your system, including stale data, inconsistent data,

timing-based bugs, and many more. Keep in mind that it’s not

just the impact of a model on one page but the interaction between

many cached pages that can give your user a strange experience.

• Caching is complicated. You’ll need to consider all the pages and

fragments that a given model can change, how to expire those

3. http://en.wikipedia.org/wiki/Database_normalization

http://en.wikipedia.org/wiki/Database_normalization
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=242


CACHING 243

pages across a cluster, the impacts of caching on security and

roles, and how to manage the additional infrastructure.

• Caching limits your user interface options. You will have to answer

many questions that should be independent of implementation.

Can you show a flash message? Can you show a user’s login and

picture? Can you secure a page? Can you have dynamic content

of any kind on a page or fragment? Your answers will often be “no”

if caching is involved.

If I haven’t scared you away from caching by now, I probably won’t or

shouldn’t. You should also know that Rails has a broad spectrum of

caching solutions. They are usually well designed and easy to under-

stand. You can divide them all into two categories:

• Page and fragment caches let you save some part of a rendered web

page. Page and page fragment caches are interesting because for

any given page or fragment, you completely take the back end of

the application out of the picture. For the cached page or fragment,

there’s no database access and no expensive computation.

• Model caches work exclusively in the realm of the model. Usu-

ally, you’re trying to save a database access or other computation.

By the time this book is published, you should be able to cache

the results of an Active Record query. Other plug-ins allow you to

explicitly cache any model that’s frequently used or expensive to

create.

In this section, I’ll focus on the page and fragment caching techniques

because the model caching techniques are in flux. Along the way, I’ll

walk you through the strengths and weaknesses of each caching tool

and show you how to use them.

Out of the box, Rails provides three primary caching options, in order

of performance: page caching, action caching, and fragment caching.

You will see that page caching is the fastest because it creates static

pages that your web server can serve. Action caching is not nearly as

fast because the web server will invoke Rails for each request. Fragment

caching is the slowest because Rails caches only a fragment of the page.

The solution you pick depends on the flexibility you will ultimately

require. Fragment caching is the only caching solution that allows you

to cache a partial page. If you absolutely need to use before filters

in your controllers—to restrict a page to an authenticated user, for

instance—you will need to use fragment caching or action caching.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=243


CACHING 244

Page Caching

Page caching is by far the simplest and most effective caching option if

your pages and application are static enough. Getting the basics right

is simple. Nailing down all the details can be unbearably difficult. I’ll

cover the basics first.

Say you have a controller with an index action. The index action creates

a catalog page that is relatively complicated, but it rarely changes. Your

current setup is not fast enough anymore, so after carefully considering

your options, you decide to cache. Since your page is completely the

same for each user and changes infrequently, you correctly decide that

you should use page caching.

You will need to change your controller to cache the page. You’ll also

need some strategy for deleting the static page when you want Rails to

generate an updated version of your page. You could easily cache the

page like this:

class CatalogController

caches_page :index

def index

# do something complicated

end

end

When you run this application in development mode, you’ll see no dif-

ference. Caching is turned off by default in development mode as you

would expect. When you’re developing, you want to immediately see

code changes reflected in your web page. You can turn caching on by

editing config/environments/development.rb and changing false to true in

the following line:

config.action_controller.perform_caching = true

Now, when you point your browser to localhost:3000/catalog for the first

time, Rails will create a static HTML page by the name of public/catalog/

index.html. Page caching is very effective when you can use it because

Rails never even gets involved. Your web server can just serve the static

page, which can improve your throughput by a factor of 100 or more.

Your web server will serve that static page until you physically delete it,

which brings me to the next topic.

localhost:3000/catalog
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=244


CACHING 245

Sweeping a Page Cache

When you need to clear a cached page, you are actually deleting the

HTML file. You can delete pages with file commands or with Rails direc-

tives. For simplicity, most people start with the Rails directives. Sooner

or later, most complex applications will wind up moving to file-based

commands.

I’ll start simple. Say your catalog has gifts on the page. You want to

expire the index page whenever you create, delete, or update a gift. First,

I’ll create a method to expire the pages I need to expire when my gift’s

controller changes a gift.

class ApplicationController < ActionController::Base

def expire_all_gift_pages

expire_page(:controller => 'catalog', :action => 'index')

end

I’ll typically keep this method in application.rb so any controller that

changes the model can call the method, but if changes to gifts were

isolated to my gifts controller, this method could easily be a private

method on the gifts controller. Next, I can create a simple after filter for

each action that changes gifts:

class GiftsController < ActionController::Base

after_filter :expire_all_gift_pages, :only => [:create, :update, :destroy]

Keep in mind that the expire_all_gift_pages( ) method deletes only a single

file on a single machine. If you cluster, you’ll have to do something to

synchronize your cache across all your nodes. Otherwise, users on dif-

ferent nodes could easily be seeing different versions of your catalogs!

To keep things synchronized, you might consider a shared or clustered

file system or building a simple web service that explicitly connects to

each node in your cluster and expires the page.

The second way that you can expire a page is with a file-based com-

mand. Usually, you’ll use a class structure called a sweeper. Often,

you’ll find that sweeping individual pages with Rails is a messy process

because you don’t know exactly which pages are cached. Many applica-

tions don’t write very often, so it’s a perfectly valid approach to sweep

your entire cache when any model object changes significantly. A com-

mon approach4 to sweeping an entire page cache is to observe a model

object and delete a whole controller’s cache when any model instance

changes. I use a slightly different variation of the referenced algorithm

4. http://www.fngtps.com/2006/01/lazy-sweeping-the-rails-page-cache

http://www.fngtps.com/2006/01/lazy-sweeping-the-rails-page-cache
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=245


CACHING 246

because my page caches of my most active pages depend on a relatively

narrow list of model objects:

class GiftSweeper < ActionController::Caching::Sweeper

observe Gift

def after_save(record)

self.class::sweep

end

def after_destroy(record)

self.class::sweep

end

def self.sweep

FileUtils.rm_r(Dir.glob(RAILS_ROOT+"/catalog/*")) rescue Errno::ENOENT

end

end

In your controller, you’ll need to reference your sweeper:

class GiftsController < ActionController::Base

cache_sweeper :gift_sweeper, :only => [:create, :update, :destroy]

You will notice that the sweeper is dead simple. Rather than worry

about which pages are dirty, it simply deletes all the cached gift pages.

That approach to sweeping may ultimately be too aggressive if you

have model objects that change too frequently, but the simplicity of

the approach makes it extremely attractive for many applications such

as blogs or e-commerce sites where articles and catalogs are changed

infrequently.

Page Caching Problems

In a book like this one, all these issues look simple to implement and

simple to resolve. In practice, caching is incredibly hard to get right.

The following list shows some things to watch:

• Sweeping the right files: Most caching complexity in Rails comes

from knowing what to sweep. Whenever you change a model ob-

ject, you must sweep every page that presents any data related

to that model. Usually, the hardest part of caching is determining

exactly which pages change when you make an update.

• Getting your URLs right: The Rails page caching model depends on

your URL names. If you need URL parameters to uniquely deter-

mine a page, you’re out of luck. You will often need a more sophis-

ticated routing rule such as :controller/:action/:id/:page_number for

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=246


CACHING 247

page caching to work. You must also beware of URL encoding.

Special encoded characters in your URLs can defeat page caching.

• Security: If your content varies for each logged-in user, you will not

want to use page caching. Even if you have special before filters

to enforce security, Rails will happily show private content to all

users because the router never invokes your controller for page

caching.

• Multiple paths: If you have multiple routes for a given page, you

will find page caching more difficult. You will need to make sure

you clear the cache for every route that presents one piece of cus-

tom content.

A comprehensive page caching treatment of page caching is well beyond

the scope of this book, but you should have enough to get started. It’s

time to move on to action caching.

Action Caching

Action caching works like page caching. You enable this kind of caching

with a before filter, just as you do with page caching. Action caching has

two major differences from page caching:

• Controller execution: When you use action caching, Rails will in-

voke the controller for each action, even if the action is in the

cache.

• Back end: Page caching always uses the file system as the file

store, but action caching uses a configurable back end.

Syntactically, action caching looks almost identical to page caching. To

action cache the index and show actions on the catalog controller, you’d

use the following code:

class CatalogController

caches_action :index

def index

# do something complicated

end

end

The previous caching code will use the caching back end that you spec-

ify in your configuration, which is the file system by default. To expire

them, you can use Rails directives like this:

expire_action(:controller => 'catalog', :action => 'index')

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=247


CACHING 248

You can also use a regular-expression style of expiration, like this:

expire_action(%r{catalog/gifts/.*})

Of course, most complicated applications will use sweepers. The syntax

of the sweeper remains the same regardless of the type of caching you

use. Though the programming interface is similar, the strengths and

weaknesses are much different. On the plus side, the action caching

model allows greater flexibility. Since the Rails router invokes the con-

troller even for cache hits, you have full access to before and after filters

so you can enable features like security. Also, the back end is config-

urable, so you can use caching strategies that are friendlier to cluster-

ing. I’ll talk more about the available caching back ends in Section 9.5,

Caching Back Ends, on the next page.

You know by now that there’s no such thing as a free lunch. The added

flexibility of filters and a configurable back end comes at a price: perfor-

mance. Page caching has a huge benefit. Each page service completely

bypasses the Rails infrastructure and all of its overhead.

Fragment Caching

Fragment caching works exactly like action caching, but for partial

pages instead of full pages. Fragment caching uses directives in the

views to mark the content that you want to cache. You can use the

out-of-the-box directives, or you can use some add-ons that support

time-based expiration.

With out-of-the-box fragment caching, you use the cache helper within

your view templates to cache content. Your cached code goes to a con-

figurable back end (see Section 9.5, Caching Back Ends, on the follow-

ing page) that you can later expire with expire_fragment directives. In

your view, you’d have something like this:

<% cache do %>

<%= render partial => 'something_expensive' %>

<% end %>

Say you invoked an action called expensive/action for the first time, and

that action rendered the view with the previous code fragment. The

code helper would cache the code to the configured back end and name

the cache fragment expensive/action. The second time you invoked the

expensive/action action, Rails would retrieve that action from the cache.

expensive/action
expensive/action
expensive/action
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=248


CACHING 249

The sweeper would be the same as the sweeper you’d use for either

of the other caching strategies. Using a sweeper, you can expire cache

fragments based on changes in the model.

Fragment caching has one critical weakness. The Rails programming

model strongly suggests that you place any code that accesses your

models in the controller. That means the controller will initiate most of

your queries. But the fragment caching strategy does not help at all on

the controller side. You can do only one of two things: you can run your

queries in your views and suffer the consequences of poor application

design, or you can extend the fragment caching model with a plug-in or

custom code.

when_fragment_expired 'fragment_name', 20.minutes_from_now do

@comments = Comment.find_favorite_comments

end

One such plug-in called timed_fragment_cache lets you expire fragments

based on some time interval. Better still, the plug-in lets you bracket

your controller code with caching directives. Say you wanted to expire

a partial that presented the most popular blog comments every twenty

minutes. In the controller, you would have this code:

<% cache 'blog_favorites', 20.minutes.from_now do %>

<%= render partial => 'favorite_comments' %>

<% end %>

And in the view, you’d use the cache directive with a name and an

expiration time:

<% cache 'blog_favorites', 20.minutes.from_now do %>

<%= render partial => 'something_expensive' %>

<% end %>

You can immediately see the benefits. Sure, you’re saving the time Rails

takes to render the view. More important, you’re saving the time it takes

to retrieve the favorite comments, possibly from a remote database

server. The implementation is clean, convenient, and easy to cluster

based on the configurable back end. The expiration is also dead sim-

ple. Every twenty minutes, Rails expires the fragment and computes a

new one.

Caching Back Ends

Page caching always caches content as files in the public directory. This

arrangement is easy to implement but harder to cluster. As you’ve seen,

both action caching and fragment caching use the same configurable

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=249


CACHING 250

back ends. Out of the box, you have several back ends available. The

most useful are these two:

• File system. The simplest and most convenient choice is the file

system. This back-end choice works well with single-server de-

ployments. The choice doesn’t cluster as well because to do expi-

ration, you would have to delete files across all nodes in a cluster.

• Memcached: The MemCachedStore option lets you use the mem-

cached networked object cache.

Normally, you’ll configure your caching options in one of your envi-

ronments, typically config/environments/production.rb. Add the option line

config.action_controller.perform_caching = true. You don’t usually want to

leave caching active within your development.rb file because you will

often need to refresh your web pages, and deleting cached content is a

pain. If you need to work with cached content in production temporar-

ily, you can just set the appropriate cache option.

If you think you’ll be spending much time working caching issues in

development, you can add a new Rails environment. Typically what I do

is copy my test.rb environment to a new one called staging.rb, in which

I enable more production-like configurations such as caching. Keep in

mind that a typical testing setup will not keep caching enabled!

When you set up the file system cache, you’ll just need to make sure

the root directory exists, and then you are off to the races. Memcached

is a little more difficult. You’ll typically need to set memcached up on

every developer’s local machine, on your production setup, and addi-

tionally on any staging machine you have. Testing will not usually use

memcached at all.

To set up memcached locally on your development machine, you can

use one of the following methods:

• On Windows, use the convenient installer found at http://jehiah.cz/

projects/memcached-win32/.

• There are two ways for Mac OS X. First, you can try the script at

http://topfunky.net/svn/shovel/memcached/install-memcached.sh.

• The second approach for OSX is more involved:

– Download libevent from http://monkey.org/~provos/libevent/,

configure, make, and make install it.

http://jehiah.cz/projects/memcached-win32/
http://jehiah.cz/projects/memcached-win32/
http://topfunky.net/svn/shovel/memcached/install-memcached.sh
http://monkey.org/~provos/libevent/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=250


CACHING 251

– Get memcached from http://www.danga.com/memcached/,

and uncompress it.

– In the uncompressed memcached directory, locate

memcached.c, and edit it.

– Anywhere in the file before line 105, add #undef TCP_NOPUSH,

and save.

– Run the usual ./configure, and then make and sudo make

install.

To set up memcached on your Linux server (or your Linux develop-

ment box), you might want to find specific instructions for your Linux

distribution. However, the following steps I found5 worked for me:

# Install libevent

curl -O http://www.monkey.org/~provos/libevent-1.1a.tar.gz

tar zxf libevent-1.1a.tar.gz

cd libevent-1.1a

./configure

make

make install

cd ..

# Install memcached

curl -O http://www.danga.com/memcached/dist/memcached-1.1.12.tar.gz

tar zxf memcached-1.1.12.tar.gz

cd memcached-1.1.12

./configure

make

make install

# Then add /usr/local/lib to LD_LIBRARY_PATH in your .bash_profile

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

export LD_LIBRARY_PATH

# Then test:

memcached -m 512 -u nobody -vv

Memcached has a pretty limited command-line interface that is pretty

much good only for starting memcached:

ezra$ memcached -help

memcached 1.1.12

-p <num> port number to listen on

-l <ip_addr> interface to listen on, default is INDRR_ANY

-d run as a daemon

5. http://dotnot.org/blog/archives/2006/01/04/install-memcached-on-linux-centos-42/

http://www.danga.com/memcached/
http://dotnot.org/blog/archives/2006/01/04/install-memcached-on-linux-centos-42/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=251


CONCLUSION 252

-r maximize core file limit

-u <username> assume identity of <username> (only when run as root)

-m <num> max memory to use for items in megabytes, default is 64 MB

-M return error on memory exhausted (rather than removing items)

-c <num> max simultaneous connections, default is 1024

-k lock down all paged memory

-v verbose (print errors/warnings while in event loop)

-vv very verbose (also print client commands/responses)

-h print this help and exit

-i print memcached and libevent license

-P <file> save PID in <file>, only used with -d option

To stop memcached, use killall memcached. Otherwise, flushing mem-

cached can be done only via the API, which you can find more informa-

tion for at http://www.danga.com/memcached/. You might want to stop

and start the memcached server with your Capistrano deploy scripts.

Similarly, you may want to create a couple of custom Rake tasks to

flush the cache when you need to in development and production.

9.6 Conclusion

There are good Rails projects and bad ones. Good projects benefit from

good planning and discipline. Getting good performance out of Rails

definitely takes discipline. In this chapter, I laid out a disciplined ap-

proach to get you the strongest possible performance quickly.

The first step in the process was to establish a baseline. I used Apache

bench or httperf to measure the smallest application that I could cre-

ate with Rails. This best-case scenario for the application told me the

high-end expectation for my Rails application given the hardware and

resources. I could use the same technique to run an application base-

line to show me the application performance, without optimizations.

If I detected a performance problem, I might decide to start making

arbitrary changes to improve performance, but I would probably guess

wrong. Instead, I profile to find out exactly which pieces of my code

base are breaking. Various Rails tools include the ruby-prof gem and the

basic profiling.rb script. Using these commands with various options, I

could find bottlenecks.

After locating a bottleneck, I could solve the bottleneck using several

techniques in the chapter. Caching helped me sidestep a few lines of

Ruby code or bypass Rails entirely, trading flexibility and power for

speed. I also showed how to improve Active Record performance.

http://www.danga.com/memcached/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=252


CONCLUSION 253

You learned that Rails is not going to squeeze every last cycle out of

your hardware, but you can usually get a system that is fast enough

and scalable enough, unless you’re trying to put Google or eBay out of

business. But getting the most out of Rails depends on your knowledge

and your discipline.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=253


4 Planning Ahead

Chapter 10

Frontiers
Both the Ruby programming language and Ruby on Rails are fairly

well established, but the various Ruby deployment platforms are very

much in their infancy. It is the hope of this team of authors that this

book is the state of the art in Rails deployment for a very short time.

For that to happen, a better deployment platform must emerge that

radically changes the whole Ruby stack. There are already three good

alternatives.

10.1 Yarv

The next version of Ruby, 1.9, will formally have a virtual machine at its

core. The goal of Yarv is to build the fastest virtual machine for Ruby in

the world. So far, they seem to have succeeded.1 This implementation

is much faster than the current implementation of Ruby. The bytecode

support will lead to a more portable, faster code base. This implementa-

tion will be the first step in moving Ruby to a first-class virtual machine.

But all eyes will be on Rubinius and Ruby 2.0.

10.2 Rubinius

Rubinius is a next-generation virtual machine written primarily in Ruby

and loosely based on the Smalltalk-80 Blue Book. The current target

version of Ruby is version 1.8.6, but once Rubinius is 1.8.6 compatible,

work will begin on 1.9 and 2.0 compatibility. The virtual machine called

shotgun is a tiny core written in C, with the rest of the runtime written

almost entirely in Ruby. It uses newer techniques, such as a better

1. http://www.atdot.net/yarv/bench_20041002.txt

http://www.atdot.net/yarv/bench_20041002.txt


RUBINIUS 255

garbage collector, that were not available when Matz’s Ruby Interpreter

(MRI) was created. The team proclaims the goal that “anything that

can be written in Ruby will be.” The pure Ruby core makes it easier to

extend. The compiler (also written in Ruby) generates bytecode, making

the resulting programs more efficient than the current strategy MRI

uses. The virtual machine will come with a packaging and deploying

strategy for Ruby bytecode in the form of .rba files (Ruby Application

Archive). This structure will allow you to package all of your bytecode

for a project into one file for easy deployment.

Rubinius is creating a test suite using RSpec-like syntax. Since there

is no official spec for Ruby, this suite of tests will serve as a specifica-

tion of the language. This test suite is making it easier for platforms

such as JRuby and Iron Ruby to prove compatibility with the core lan-

guage implementation. Having all the new Ruby implementations share

a common suite of specs will help keep Ruby the language from frag-

menting as these alternate implementations evolve.

Rubinius is worth watching as a deployment platform for a number

of reasons. For a good understanding of the impact of bytecode on a

deployment platform, look no further than Java. The bytecode archi-

tecture for the Java virtual machine is an extremely successful deploy-

ment platform that will lead to the following advantages:

• Rubinius-compiled bytecode will be very efficient.

• Rubinius bytecode will be easier to package and deploy.

• The Rubinius virtual machines will insulate the programmer from

the operating system, making Ruby code much more portable.

• Virtual machines can have configurable security policies, making

Rubinius applications potentially more secure.

• The work on mod_rubinius aims to replace the multiple moving

parts of a typical Mongrel deployment strategy with a simple-to-

configure, true-Ruby application server that can sit behind Apache

or nginx.

Rubinius is rapidly picking up momentum. Engine Yard has six full-

time people working on the project with plans to make it the de facto

Ruby VM. It already has improved libraries for concurrency and a better

strategy for providing operating systems services without the need for a

binding layer. Engine Yard’s commercial support will lead to a stronger,

supported project. For more information, visit the site at http://rubini.us/.

http://rubini.us/
http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=255


JRUBY 256

10.3 JRuby

JRuby is a Ruby implementation written entirely in Java. The imple-

mentation has many advantages associated with the Java virtual

machine. While most Ruby applications run a separate process per

instance, the JRuby implementation can use a separate native thread

per instance. This implementation should eventually let a Rails applica-

tion run with a fraction of the resources of a typical application running

with a pack of Mongrels. Currently, though, most JRuby deployments

still use a pack of Mongrels with mongrel_jcluster and thus consume

more resources than a typical Mongrel deployment on MRI.

If you have significant investment in Java applications, you can access

those Java classes directly from JRuby applications. Testing, script-

ing, Rails development, and user interface development are only a few

places that developers are actively using JRuby today.

The key inroads of the JRuby platform in my opinion are political. The

two core developers, Charles O. Nutter and Thomas Enebo, are now

working for Sun Microsystems. This move has completely changed the

JRuby project. Since Sun is committed to moving the technology for-

ward, the team has better access to resources that will advance the

platform. Most important, these two key developers have much more

time to build and evangelize JRuby since they can work on it full-time.

10.4 IronRuby

IronRuby is a Ruby implementation on Microsoft’s .NET platform. Iron-

Ruby, based on Ruby version 1.8.x, boasts seamless integration with

.NET infrastructure and libraries. To date, most of the implementa-

tion is written in C#. The shared source project has been around since

about April 2007. The project is released under the BSD-like Microsoft

permissive license.

Unlike the Java virtual machine, .NET has some target features, called

the Dynamic Language Runtime (DLR), that target dynamically typed

languages like Ruby. This foundation provides a core set of services

that permit fast and safe dynamic language code.

IronRuby has not been around as long as JRuby, but the parallels

should be obvious. The managed .NET environment has important ad-

vantages for any team considering deploying a .NET application.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=256


WRAPPING UP 257

10.5 Wrapping Up

I hope you’ve enjoyed this pass through the Rails deployment scene.

With the information in this book, you should be able to handle simple

deployments on shared hosts, as well as complex deployments span-

ning several application and web servers. With the examples in the

Capistrano chapter, you should have a good understanding of how to

build custom deployment scripts. You can also take a reasonable shot

at tuning your deployment for performance and managing the result.

I do urge you to listen closely to the state of the art. You’ve seen in this

chapter that the Ruby deployment picture will move quickly. I’ve pre-

sented a few important frontiers in deployment. Others will emerge too.

With any luck, the emergence of the new alternatives will be as excit-

ing as the emergence of the current frontier—the Mongrel, Monit, and

Capistrano foundations—that form the heart of the Rails deployment

story today.

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=257


Appendix A

An Example nginx Configuration
In Chapter 7, Scaling Out, on page 144, I based Apache and nginx con-

figurations on existing configurations. I used the base configurations

that came with Apache as a foundation for that web server, but nginx

has no consensus base configuration for Rails. The following configu-

ration, complete with comments, serves as the foundation for the nginx

configurations in this book:

Download nginx/nginx.conf

# user and group to run as

user ezra ezra;

# Nginx uses a master -> worker configuration.

# number of nginx workers, 4 is a good minimum default

# when you have multiple CPU cores I have found 2-4 workers

# per core to be a sane default.

worker_processes 4;

# pid of nginx master process

pid /var/run/nginx.pid;

# Number of worker connections. 8192 is a good default

# Nginx can use epoll on linux or kqueue on bsd systems

events {

worker_connections 8192;

use epoll; # linux only!

}

# start the http module where we config http access.

http {

# pull in mime-types. You can break out your config

# into as many include's as you want to make it cleaner

include /etc/nginx/mime.types;

http://media.pragprog.com/titles/fr_deploy/code/nginx/nginx.conf


APPENDIX A. AN EXAMPLE NGINX CONFIGURATION 259

# set a default type for the rare situation that

# nothing matches from the mimie-type include

default_type application/octet-stream;

# This log format is compatible with any tool like awstats

# that can parse standard apache logs.

log_format main '$remote_addr - $remote_user [$time_local] '

'"$request" $status $body_bytes_sent "$http_referer" '

'"$http_user_agent" "$http_x_forwarded_for"';

# main access log

access_log /var/log/nginx/access.log main;

# main error log - Do not comment out. If you do

# not want the log file set this to /dev/null

error_log /var/log/nginx/error.log notice;

# no sendfile on OSX

sendfile on;

# These are good default values.

tcp_nopush on;

tcp_nodelay on;

# output compression saves bandwidth. If you have problems with

# flash clients or other browsers not understanding the gzip format

# them you may want to remove a specific content type that is affected.

gzip on;

gzip_http_version 1.0;

gzip_comp_level 2;

gzip_proxied any;

gzip_types text/plain text/html text/css application/x-javascript

text/xml application/xml application/xml+rss text/javascript;

# this will include any vhost files we place in /etc/nginx/vhosts as

# long as the filename ends in .conf

include /etc/nginx/vhosts/*.conf;

}

http://books.pragprog.com/titles/fr_deploy/errata/add?pdf_page=259


Appendix B

Bibliography

[Mas05] Mike Mason. Pragmatic Version Control Using Subversion.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, 2005.

[PCSF04] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitz-

patrick. Version Control with Subversion. O’Reilly & Asso-

ciates, Inc, 2004.



Index
Symbols
# sign, in Apache, 163, 206

#! characters, 67n

A
A record, 152, 153

about script, 69

Action caching, 247–248

Active Record

bottlenecks and, 238

:include, 239–241

options, 241–242

Active Record migrations, 34–38

classes, putting in, 37

overview of, 35

strengths, 34

tips, 38

weaknesses, 35

acts_as_readonlyable, 184

Apache, 58–59, 102, 157, 159–172

configuration, 160

configuration directory for, 162

configuration file for, 161, 163

installation (Windows), 204

as load balancer, 161–172

load balancer configuration,

163–167

load balancer testing, 167

as Mongrel proxy, 167–172

Mongrels and, 232

on multiple vhosts (Windows), 217f

requirements for, 160

rewrite rules, 171

Windows and, 195, 205f, 204–209

as Windows service, 208f, 208–209

zombies and, 136

Apache Benchmark (ab), 219

Application baseline, 226

Application map, 21f

Application root, 51

Application server, 159

Applications

Capistrano deployment file and, 100

configuration files, 60–62

deployment issues, 39–43

installation of, 53–56

load-testing (Windows), 219–220

multiple (Windows), 215f, 216f, 217f,

213–218

shared hosting, guidelines for, 63–64

size of, 214

stabilizing, 31–33

starter, 54–56

Associations, 238, 241

Attributes, piggybacked, 239

B
Back ends caching, 250–252

Begin, Clinton, 18

Benchmarking, 224–228

baselines, 226

Mongrels and, 228–232

profiling and, 232–237

Benjamin, Dan, 99

Blocks, 176

Bottlenecks, 145, 227, 238–242

Buck, Jamis, 94, 108

C
Caching, 242–252

action, 247–248

back ends, 250–252

controller and, 247, 249

debugging, 242

drawbacks of, 242

fragment, 248–249

page, 244–247

performance errors and, 225



CALLBACKS 262 DOMAIN HOSTS

profiling and, 233

solutions in Rails, 243

URLs and, 247

Callbacks, built-in, 113–116

cap command, 113

cap -T command, 107

Capistrano, 92–123

assumptions of, 94

basics, 95

built-ins, 109n

callbacks, built-in , 113–116

cap command, 113

configuration setup, 97–106

application deployment file, 100

deploy.rb, 100–102

gem installation, 98–100

password, caching, 104

public domain root, setting, 103

setup task, 104

SETUP, 105f

Subversion, importing, 103

CURRENT directory, 97f

customization and, 101

file organization, 96

isolated web servers, 155

Mac OS X installation and, 99

map for, 94f

Monit and, 135

overview, 93–94

practice, blank Rails project, 98

push vs. pull deployment, 120

vs. Rake, 117

recipes, 95, 107–108

role command, 116

rollback task, 107f

Ruby and, 54

running solo, 119

server roles, support for, 154

stream, 118–119

support for, 47

tasks, defining, 111

troubleshooting, 121–123

under the hood, 106

variables, 109, 110

writing tasks, 109–118

CentOS, 162

Certificate (Apache), 166

ChangingThePresent, 141, 142

Clustering servers, 154

CNAME, 152, 153

Command-line options, Mongrel, 125

config/database.yml, 60–61

Conventions

load balancer name (Apache), 163

logging in, 17

naming root project directory, 54

Cookies, 231

Current working directory (CWD), 129

Custom error pages, 59

D
database.yml file, 26

Databases

isolating, 154

migration of, 70

MySQL and, 187

normalization, 242

performance problems, 42

read-only, 184

relational, 179

scaling up, 155

server setup and, 52–53

session table and, 67

troubleshooting, 69

Dedicated servers, 77–78

map of, 73f

overview, 72–73

responsibilities of, 73–75

Deployment, 8, 9

basic map for, 12f

Capistrano, 122

after development on Windows,

220–222

Mongrel and, 57–58

to multiple hosts, 154–159

performance and, 226

scaling out, 147, 148f

stable branch for, 28

treatment of, 13–17

see also Windows

Deployment preparation, 20–43

Active Record migrations and, 34–38

application issues and, 39–43

application map, 21f

source code management, 22–29

stabilizing applications, 31–33

Subversion tips and, 29–31

Digg effect, 155

DNS setup, 50–51

Document root, 52

Documentation, 74

Domain hosts, 151–153



DOMAIN NAMES 263 MIGRATIONS

multiple, deployment to, 154–159

Domain names, 151–153

Domain setup, 50–51

E
Eager associations, 42

Echo, 69

Edge Rails, 30, 48

Enebo, Thomas, 256

Engine Yard, 10, 255

Error logs, 64

Error notification, building in, 139–141

error_notification plug-in, 139–141

Errors, custom pages for, 59

Expanding, see Scaling

F
FastCGI, 136–138

Apache and, 58–59

installation, 87–88

permissions and, 65

production setup and, 80

reaper command, 137–138

Windows and, 195

Fedora, 162

Fesler, Jason, 64

File system, caching back ends, 250

Files

permissions, 65

versions of, 68

Flat printer, 236

Fragment caching, 248–249

Framework, 226

G
GCC tool chain, 83

Gems, 31

freezing, 33

OS-dependent, 47

unpacking, 32

Generators, 30

Graph HTML printer, 236

Growth, see Scaling

H
Hardware load balancers, 179

Heartbeat service, 142–143

Helper methods, 238

Hibbs, Curt, 193

Hogan, Brian, 19

HTTP load-testing, 228

I
Identity keys, 83

IIS, 213, 215, 216f

IIS integration, 209–211

ImageMagick, 89

:include, 239–241

Indexes, 43, 242

Input, evaluating, 39

Instant Domain Search, 50

InstantRails, 195

IronRuby, 256

ISAPI Rewrite, 209

J
JRuby, 256

K
Kaes, Stefan, 238

KCacheGrind printer, 236

L
Lazy evaluation, 110

lighttpd, 60, 77, 102

Lightweight servers, 77

Linux vs. Windows, 219–222

Load balancer, 152, 179, 202, 207, 232

Apache as, 161–172

configuration of, 163–167

Load tests, 231

Load-testing, 219–220

location block, 177

Lucas, Tim, 38n

M
Mac OS X

Capistrano and, 99

memcached and, 250

Master copies, 151

Master/slave servers, 182–184

Memcached, 250

Memory, 63, 76

Microsoft, see Windows

Microsoft SQL server, 193

Microsoft Web Application Stress Tool,

219

Migrations, Active Record, 34–38

classes, putting in, 37

overview of, 35



MIGRATIONS 264 PERFORMANCE

strengths, 34

tips, 38

weaknesses, 35

Migrations, Capistrano, 121

Mongrels, 77, 80, 124–143

advantages of, 56

Apache 2.2 and (Windows), 204–209

Apache as proxy for, 167–172

application servers and, 159

applications, serving several, 213

benchmarking, 228–232

cluster configuration, 128

command-line tool options, 125

commands, 130

config file, 125

configuration, 57–58

configuration of, 125–129

current working directory, 129

deployment map for, 126

error notification, 139–141

heartbeat service, 142–143

installation, 86

Monit configuration, 131–136

multiple, 130

nginx and, 175

number needed, 228

overview, 124

Pen and, 202f, 201–204

server hosting and, 49

service configuration, 129–130

support for, 47

Windows and, 196–201

as Windows service, 200f, 201f,

199–201

Monit, 124, 131–136

Capistrano and, 135

configuration of, 133

installation, 132

monitoring of, 135

Red Hat/CentOS installation, 132

Multimaster clustering (MySQL),

186–190

Mycluster, 163

MySQL, 179–191

asynchronous replication and, 180

cluster limitations, 181

clustering challenges, 179–182

multimaster clustering, 186–190

Rails, configuration for, 184–186

reads and writes, separating,

182–186

sharding, 180

Windows and, 196

MySQL installation, 86

Myths, 10–11

N
N + 1 problem, 42, 239–241

NDB data store, 181

Nested sets, 241

nginx, 77, 80, 88, 157, 172–179, 232,

258

configuration of, 174–175

pronunciation of, 172

rewrite rules, 177

signals, 173

SSL and, 178

starting, stopping, reloading,

173–174

support of, 172

virtual host configuration, 175–178

Normalization, 242

Nutter, Charles O., 256

O
One-Click Ruby Installer, 193

OpenVZ, 76

Optimization, premature, 225

Out-of-the-box fragment caching, 248

P
Packing up, see Deployment

preparation

Page caching, 244–247

Pen, 202f, 201–204

applications, serving several, 216f,

215–217

load balancing and, 202

as a service, 203–204

setup, 202

Windows binary download, 201

Performance, 224–253

Apache as Mongrel proxy and, 170

bottlenecks and, 238–242

caching, 242–252

failures of, 225

Mongrels and benchmarking,

228–232

MySQL on Windows, 196

process and benchmarking, 227f,

224–228



PERMISSIONS 265 SERVERS

profiling and, 232–237

vs. stability, 189

Windows and, 194, 218

see also Scaling

Permissions, 41, 122, 221

Permissions file, 65

Piggybacked attributes, 239

Plug-ins, 31, 48, 185, 212, 249

Polymorphic associations, 241

Premature optimization, 225

Preparation, deployment, see

Deployment preparation

Primary key, 187

Private key file (Apache), 166

Production setup, 79

Profiler, 237

Profiling, 227, 232–237

detail level and, 235

environments for, 233

purpose of, 235

Proxy plug-in, 212

Public domain root, setting, 103

PuTTY, 52, 79

R
Rails

Apache access, 58

blank project, practice, 98

bottlenecks, common, 238

conventions for, 17

deployment and, 8, 9, 12f, 13–17

framework and, 226

generators and, 30

IIs and, 210

indexes and, 43

libraries, 48

Microsoft SQL server and, 193

MySQL configuration and, 184–186

myths associated with, 10–11

profiler, standard model, 237

trade-off with, 224

trunk updates, 48

Web 2.0 and, 11–13

wiki, 195

Rails Engines, 27

RAILS_ENV, 61–62

Read-only databases, 184

reaper command, 137–138

Recipes, 95, 107–108

Redirect-After-Post pattern, 189

Relational databases, 179

relative_url_root, 212

Relative root, 51

Replication, asynchronous vs.

synchronous, 180

Requests per second, 214

Reverse proxy, 211–212

Rewrite rules, 171, 177

RMagick, 47, 63, 80, 89

role command, 116

rsync, 93

Rubinius, 254–255

Ruby

building from source, 85

installation, 84–86

IronRuby and, 256

JRuby and, 256

Rubinius and, 254–255

Yarv and, 254

Ruby-DBI, 195

ruby-prof gem, 233

RubyForge, 84

RubyGems, 84, 86

S
Scaling, 144–191

A records vs. CNAME, 152

Apache and, 159–172

databases, 155

deployment map for, 147f

deployment setup, clustered, 148f

described, 145

domain names and hosts, 151–153

multiple hosts, deployment to,

154–159

MySQL clustering, 179–191

nginx and, 172–179

overview, 144–145

requirements for, 147–149

virtualization and, 150–151

web vs. application servers, 157–159

Security issues, 39

Apache and, 58, 166, 205

clustering and, 156

file permissions, 65

identity key, 83

nginx and, 178

page caching and, 247

server blocks, 177

SSH and, 82

server block, 176

Servers



SESSION STORAGE 266 UBUNTU GUTSY GIBBON SERVER

clustering, 154, 156, 158f

configuration of, 51–52, 56–60,

81–83

configuration options, 156–157

database creation, 52–53

error logs, 64

lightweight, 77

master/slave, 182–184

production setup, 79

scaling out and, 145

testing setup, 90

virtual, 150

web vs. application, 157–159

Windows, setup, 192–196

see also Shared hosts; Virtual

private servers (VPS); Dedicated

servers

Session storage, 238

Sessions, 231

bottlenecks and, 238

cookies and, 231

tables, 67

Sharding, 180

Shared hosts, 44–71

application, installing, 53–56

configuration, 56–60

domain and DNS setup, 50–51

guidelines for, 63–64

map for, 45f

moving from, 46

overview, 44–46

Rails configuration files and, 60–62

requirements and selection of, 47–49

server configuration, 51–52

server setup, 52–53

subdomains and, 51

troubleshooting, 64–70

Shebang, 67n

Shotgun, 254

Shovel, 60

Signals, 173

Smart inheritance, 241

Source code management, 22–29

SQL, evaluating, 40

SSH, 47

client setup, 52

installation, 79

securing, 82

SSL, nginx and, 178

Stable branch deployment, 28

Starter application, 54–56

Sticky load balancing, 189

stream, 118

Subdomains, 51

Subversion, 80

Capistrano, importing, 103

database configuration, 24

database.yml file and, 26

folders in, 25

host requirements, 47

importing Rails application, 23

installation, 89, 193

log files, removing from version

control, 24

Rails Engines and, 27

repository creation, 22

saving work, 28

tips for, 29–31

Sweeper, 245, 248, 249

Sysoev, Igor, 172

T
tail command, 64

Target baseline, 226

Tasks

custom, 113

defining, 111

as methods, 117

overriding, 117

writing, 109–118

Tate, Bruce, 18

termios, 98

Test certificates, 166

Testing

Apache configuration (Windows), 208

Apache load balancer, 167

benchmarks, 228

HTTP load-testing, 228

IIS integration (Windows), 211

load tests, 231

Mongrel on Windows, 198–199

MySQL multimaster cluster, 188

server setup, 90

Windows and, 219–220

Time-to-live (TTL) parameter, 153

Tool chain, 83

Troubleshooting

Capistrano, 121–123

shared hosts and, 64–70

U
Ubuntu Gutsy Gibbon Server, 78



UPSTREAM BLOCK 267 ZYGMUNTOWICZ

upstream block, 176

URLs and caching, 247

URLs, reverse proxy and, 211–212

User permissions, 122

V
Variables

Capistrano, setting, 109

lazy evaluation, 110

predefined, 110

Version control, see Subversion

Versions, file, 68

Vhost directory, 174

View helpers, 39

Virtual dedicated servers, see Virtual

private servers (VPS)

Virtual private servers (VPS), 75–77

configuration, 81–83

FastCGI installation, 87–88

mirror images, 150

MySQL installation, 86

overview, 72–73

responsibilities of, 73–75

RMagick and ImageMagick

installation, 89

Ruby installation, 84–86

Subversion installation, 89

Virtualization, 149, 150, 194

Virtuozzo, 76

W
WAPT, 219

Web 2.0, 11–13

Websites

acts_as_readonlyable, 184

Apache 2.2 binary, 204

cache sweeping, 245n

Capistrano’s built-ins, 109n

ChangingThePresent, 141n

IASPI Rewrite support, 210n

Instant Domain Search, 50n

ISAPI Rewrite, 209

Microsoft Web Application Stress

Tool, 219

Mongrel, 57n

nginx documentation, 173

One-Click Ruby Installer, 193

Pen, Windows binary, 201

Rails wiki, 195

Ruby-DBI, 195

Shovel, 60n

Subversion, 193

tail, 64n

Ubuntu Gutsy Gibbon Server, 78n

Weirich, Jim, 108

Windows, 192–223

Apache 2.2 (load balancing), 205f,

204–209

Apache as service, 208f, 208–209

application size and, 214

deploying elsewhere, 220–222

Firewall service, 209

IIS and, 215, 216f

IIS integration and, 209–211

vs. Linux, 219

load-testing, 219–220

Mongrels and, 200f, 201f, 196–201

multiple applications, hosting, 215f,

216f, 217f, 213–218

MySQL and, 196

options, deployment, 195

Pen and, 202f, 201–204

performance and, 194, 218

server setup, 192–196

Subversion installation, 193

URLs, reverse proxy and, 211–212

virtualization and, 194

X
Xen, 75, 78

Y
Yarv, 254

Z
Zombies, 136–137

Zygmuntowicz, Ezra, 19


	Contents
	Introduction
	The Lay of the Land
	Finding a Home
	Conventions
	Acknowledgments

	Refining Applications for Production
	The Lay of the Land
	Source Code Management
	Subversion Tips
	Stabilizing Your Applications
	Active Record Migrations
	Application Issues for Deployment

	Shared Hosts
	The Lay of the Land
	Choosing a Shared Host
	Setting Up Your Domain and DNS
	Configuring Your Server
	Server Setup: Create a Database
	Installing Your Application
	Configuring Your Web Server
	Application Setup: Rails Config Files
	The Well-Behaved Application
	Troubleshooting Checklist
	Conclusion

	Virtual and Dedicated Hosts
	The Lay of the Land
	Virtual Private Servers
	Dedicated Servers
	Setting Up Shop
	Conclusion

	Capistrano
	The Lay of the Land
	How It Works
	Local and Remote Setup for Rails
	Standard Recipes
	Writing Tasks
	A Little Extra Flavor
	Troubleshooting
	Conclusion

	Managing Your Mongrels
	The Lay of the Land
	Training Your Mongrels
	Configuring the Watchdog
	Keeping FastCGI Under Control
	Building in Error Notification
	Heartbeat
	Conclusion

	Scaling Out
	The Lay of the Land
	Scaling Out with Clustering
	Mirror Images
	Domain Names and Hosts
	Deploying to Multiple Hosts
	Apache
	nginx, from Russia with Love
	Clustering MySQL
	Summary

	Deploying on Windows
	Setting Up the Server
	Mongrel
	Mongrel and Pen
	Using Apache 2.2 and Mongrel
	IIS Integration
	Reverse Proxy and URLs
	Strategies for Hosting Multiple Applications
	Load-Testing Your Applications
	Final Thoughts
	Developing on Windows and Deploying Somewhere Else
	Wrapping Up

	Performance
	The Lay of the Land
	Initial Benchmarks: How Many Mongrels?
	Profiling and Bottlenecks
	Common Bottlenecks
	Caching
	Conclusion

	Frontiers
	Yarv
	Rubinius
	JRuby
	IronRuby
	Wrapping Up

	An Example nginx Configuration
	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




