Th
Pr ematic

ogramimers

Rails Recipes

Rails 3 Edition

Chad Fowler

Edited by John Osborn

The Facets J_ of Ruby Series

What Readers Are Saying About Rails Recipes, Rails 3 Edition

Even the best chefs are loathe to re-create a recipe from scratch if they know a
good one already exists. Rails programmers would do well to code like a great chef
cooks and have this tome on their shelf.
» David Heinemeier Hansson
Creator of Ruby on Rails; partner at 37signals; coauthor of Agile Web Develop-
ment with Rails; and blogger

Rails Recipes is a great resource for any Rails programmer. The book is full of
hidden gems (no pun intended) that many programmers may not discover in their
daily quest to get the job done.
» Gary Sherman
Principal of GeoApt, LLC; chair of QGIS PSC; and author of The Geospatial
Deslktop

Rails Recipes has always been the definitive guide for aspiring Rails developers.
It doesn’t just cover how you could build something, but delves into the details
and explains all the reasons why you should build it that way. You can be sure
that if you follow the tips and tricks in this book, you're on the right path.
» Michael Koziarski

Software developer, Rails Core team member, and partner, Southgate Labs

Superlative. This readable, engaging book strikes a balance between laying out a
practical solution to a problem and teaching the principles and thought processes
behind it. You learn how to fix a problem today and gain the insight you need to
avoid problems in the future.
» Alex Graven

Senior developer, Zeevex, a division of InComm

Rails Recipes is a great book for any Rails developer. There is so much going on
in the Rails community these days that I find it hard to keep all of it in context.
This book provides the context I need.
» Mike Gehard

Lead software engineer, Living Social

Rails Recipes
Rails 3 Edition

Chad Fowler

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

John Osborn (editor)

Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-677-7

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2012

http://pragprog.com

Contents

Introduction ix

Part | — Database Recipes

Recipe 1. Create Meaningful Many-to-Many Relationships 2
Recipe 2. Create Declarative Named Queries 7
Recipe 3. Connect to Multiple Databases 11
Recipe 4. Set Default Criteria for Model Operations 19
Recipe 5. Add Behavior to Active Record Associations 22
Recipe 6. Create Polymorphic Associations 26
Recipe 7. Version Your Models 31
Recipe 8. Perform Calculations on Your Model Data 36
Recipe 9. Use Active Record Outside of Rails 39
Recipe 10. Connect to Legacy Databases 41
Recipe 11. Make Dumb Data Smart with composed_of() 44
Recipe 12. DRY Up Your YAML Database Configuration File 48
Recipe 13. Use Models Safely in Migrations 50
Recipe 14. Create Self-referential Many-to-Many Relationships 52
Recipe 15. Protect Your Data from Accidental Mass Update 56
Recipe 16. Create a Custom Model Validator 58
Recipe 17. Nest has_many :through Relationships 61
Recipe 18. Keep Your Application in Sync with Your Database
Schema 63
Recipe 19. Seed Your Database with Starting Data 68
Recipe 20. Use Helpers in Models 70
Recipe 21. Avoid Dangling Database Dependencies 72
Part Il — Controller Recipes
Recipe 22. Create Nested Resources 76

Recipe 23. Create a Custom Action in a REST Controller 80

Contents ® vii

Recipe 24. Create a Helper Method to Use in Both Controllers and

Views 83
Recipe 25. Trim Your REST Resources 85
Recipe 26. Constrain Routes by Subdomain (and Other

Conditions) 88
Recipe 27. Add Web Services to Your Actions 90
Recipe 28. Write Macros 94
Recipe 29. Manage a Static HTML Site with Rails 98
Recipe 30. Syndicate Your Site with RSS 100
Recipe 31. Set Your Application’s Home Page 108

Part lll — User Interface Recipes

Recipe 32. Create a Custom Form Builder 112
Recipe 33. Pluralize Words on the Fly (or Not) 116
Recipe 34. Insert Action-Specific Content in a Layout 118
Recipe 35. Add Unobtrusive Ajax with jQuery 120
Recipe 36. Create One Form for Many Models 125
Recipe 37. Cache Local Data with HTML5 Data Attributes 131

Part IV — Testing Recipes

Recipe 38. Automate Tests for Your Models 136
Recipe 39. Test Your Controllers 141
Recipe 40. Test Your Helpers 145
Recipe 41. Test Your Outgoing Mailers 148
Recipe 42. Test Across Multiple Controllers 151
Recipe 43. Focus Your Tests with Mocking and Stubbing 157
Recipe 44. Extract Test Fixtures from Live Data 163
Recipe 45. Create Dynamic Test Fixtures 168
Recipe 46. Measure and Improve Your Test Coverage 172
Recipe 47. Create Test Data with Factories 176

Part V — Email Recipes

Recipe 48. Send Gracefully Degrading Rich-Content Emails 182
Recipe 49. Send Email with Attachments 185
Recipe 50. Test Incoming Email 188

Part VI — Big-Picture Recipes
Recipe 51. Roll Your Own Authentication 198

viii ®* Contents

Recipe 52. Protect Your Application with Basic HTTP

Authentication 203
Recipe 53. Authorize Users with Roles 206
Recipe 54. Force Your Users to Access Site Functions with

SSL 211
Recipe 55. Create Secret URLs 212
Recipe 56. Use Rails Without a Database 216
Recipe 57. Create Your Own Ruby Gem 221
Recipe 58. Use Bundler Groups to Manage Per-Environment

Dependencies 224
Recipe 59. Package Rake Tasks for Reuse with a Gem 226
Recipe 60. Explore Your Rails Application with the Console 228
Recipe 61. Automate Work with Your Own Rake Tasks 230
Recipe 62. Generate Documentation for Your Application 235
Recipe 63. Render Application Data as Comma-Separated

Values 236
Recipe 64. Debug and Explore Your Application with the

ruby-debug Gem 239
Recipe 65. Render Complex Documents as PDFs 244

Part VIl — Extending Rails
Recipe 66. Support Additional Content Types with a Custom

Renderer 250
Recipe 67. Accept Additional Content Types with a Custom

Parameter Parser 253
Recipe 68. Templatize Your Generated Rails Applications 256
Recipe 69. Automate Recurring Code Patterns with Custom

Generators 259
Recipe 70. Create a Mountable Application as a Rails Engine

Plugin 266
Bibliography . . e . . . e . 271

Index 273

Introduction

What Makes a Good Recipe Book?

If I were to buy a real recipe book—you know, a book about cooking food—I
wouldn’t be looking for a book that tells me how to dice vegetables or how to
use a skillet. I can find that kind of information in an overview about cooking.

A recipe book is about how to malee food you might not be able to easily figure
out how to make on your own. It's about skipping the trial and error and
jumping straight to a solution that works. Sometimes it’s even about making
food you never imagined you could make.

If you want to learn how to make great Indian food, you buy a recipe book by
a great Indian chef and follow his or her directions. You're not buying just
any old solution. You're buying a solution you can trust to be good. That’s
why famous chefs sell lots and lots of books. People want to make food that
tastes good, and these chefs know how to make (and teach you how to make)
food that tastes good.

Good recipe books do teach you techniques. Sometimes they even teach you
about new tools. But they teach these skills within the context of and with
the end goal of making something—not just to teach them.

My goal for Rails Recipes is to teach you how to make great stuff with Rails
and to do it right on your first try. These recipes and the techniques herein
are extractions from my own work and from the “great chefs” of Rails: the
Rails core developer team, the leading trainers and authors, and the earliest
of early adopters.

I also hope to show you not only how to do things but to explain why they
work the way they do. After reading through the recipes, you should walk
away with a new level of Rails understanding to go with a huge list of success-
fully implemented hot new application features.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

x ® Introduction

Who's It For?

Rails Recipes is for people who understand Rails and now want to see how
an experienced Rails developer would attack specific problems. Like with a
real recipe book, you should be able to flip through the table of contents, find
something you need to get done, and get from start to finish in a matter of
minutes.

I'm going to assume you know the basics or that you can find them in a
tutorial or an online reference. When you're busy trying to make something,
you don’t have spare time to read through introductory material. So if you're
still in the beginning stages of learning Rails, be sure to have a copy of Agile
Web Development with Rails [RTH11] and a bookmark to the Rails API docu-
mentation handy.'

Rails Version

The examples in this book, except where noted, should work with Rails 3.1
or newer. All of the recipes that were part of the first edition of this book have
been updated to Rails version 3.1, and several recipes cover new features
that became available with that release.

Resources

The best place to go for Rails information is the Rails website.” From there,
you can find the mailing lists, IRC channels, and blogs of the Rails community.

Pragmatic Programmers has also set up a forum for Rails Recipes readers to
discuss the recipes, help each other with problems, expand on the solutions,
and even write new recipes. While Rails Recipes was in beta, the forum served
as such a great resource for ideas that more than one reader-posted recipe
made it into the book! The forum is at http://forums.pragprog.com/forums/8.

The book’s errata list is at http://books.pragprog.com/titles/rr2/errata. If you submit
any problems you find, we’ll list them there.

You'll find links to the source code for almost all of the book’s examples at
http://www.pragmaticprogrammer.com/titles/rr2/code.html.

If you're reading the PDF version of this book, you can report an error on a
page by clicking the “erratum” link at the bottom of the page, and you can

1. http://api.rubyonrails.org
2. http://www.rubyonrails.org

http://forums.pragprog.com/forums/8
http://books.pragprog.com/titles/rr2/errata
http://www.pragmaticprogrammer.com/titles/rr2/code.html
http://api.rubyonrails.org
http://www.rubyonrails.org
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Acknowledgments ® xi

get to the source code of an example by clicking the gray lozenge containing
the code’s filename that appears before the listing.

Acknowledgments

Thank you for reading this book. Thanks to everyone else who made the book
what it is.

Specifically, thanks to the following technical reviewers who read the last
drafts and provided valuable input: Akira Matsuda, Mike Gehard, Rick
DeNatale, Alex Graven, and Ryan Bates.

Chad Fowler

mai | t o: chad@hadf ow er. com
March 2012

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Part I

Database Recipes

The model layer of an MVC application is arguably
the most important. It’s where your business logic
lives. And business logic is the heart of almost any
application. Active Record and its libraries are
packed with features that allow us to model our
domains richly and efficiently. These recipes will
show you some of the highlights as well as some
of the lesser-known secrets of model development
in Rails.

Recipe 1

Create Meaningful Many-to-Many Relationships

Problem

Sometimes, a relationship between two models is just a relationship. For
example, a person has and belongs to many pets, and you can leave it at that.
This kind of relationship is straightforward. The association is all there is to
track.

But relationships usually have their own data and their own meaning within
a domain. For example, a magazine has (and belongs to) many readers by
way of their subscriptions. Subscriptions are interesting entities in their own
right that a magazine-related application would probably want to track. A
subscription might have a price or an end date. It might even have its own
business rules. Thinking about the connections between entities as you
model them can create a richer, more fluent domain model.

How can you create meaningful many-to-many relationships between your
models?

Solution

To model rich many-to-many relationships in Rails, use join models to leverage
Active Record’s has_many :through() macro.

When modeling many-to-many relationships in Rails, many newcomers
assume they should use the has_and_belongs to_many() (habtm) macro with its
associated join table. For years, application developers have been creating
strangely named join tables in order to simply connect two tables. But habtm
is best suited to relationships that have no attributes or meaning of their own.
And, given some thought, almost every relationship in a Rails model deserves
its own name to represent its function in the domain being modeled.

For the majority of many-to-many relationships in Rails, we use join models.
Don’t panic: this isn’t a whole new type of model you have to learn. You'll still
be using and extending ActiveRecord::Base. In fact, join models are more of a
technique or design pattern than they are a technology. The idea with join
models is that if your many-to-many relationship needs to have some richness

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Meaningful Many-to-Many Relationships * 3

in the association, instead of putting a simple, dumb join table in the middle
of the relationship, you can put a full table with an associated Active Record
model.

Let’s look at an example. We'll model a magazine and its readership. Magazines
(their owners hope) have many readers, and readers can potentially have
many magazines. We might first choose to use habtm to model this relationship.
Here’s a sample schema to implement this approach:

rr2/many_to_many/beginning_schema.rb

create table :magazines do |t]
t.string (title
t.datetime :created at
t.datetime :updated at

end

create_table :readers do |t]
t.string :name
t.datetime :created at
t.datetime :updated at
end

create table :magazines readers, :id => false do |t]|
t.integer :magazine id
t.integer :reader_id

end

As you see here, the table joining the two sides of the relationship is named
after the tables it joins, with the two names appearing in alphabetical order
and separated by an underscore. You would then say that the Magazine model
has_and_belongs_to_many :readers, and vice versa. This relationship does the trick,
enabling you to write code such as this:

magazine = Magazine.create(:title => "The Ruby Language Journal")
matz = Reader.find by name("Matz")

magazine.readers << matz

matz.magazines.size # => 1

Now imagine you need to track not only current readers but everyone who
has ever been a regular reader of your magazine. The natural way to do this
would be to think in terms of subscriptions. People who have subscriptions
are the readers of your magazine. Subscriptions have their own attributes,
such as a length and a date of last renewal.

It is possible with Rails to add these attributes to a habtm relationship and to
store them in the join table (magazines_readers in this case) along with the foreign
keys for the associated Magazine and Reader entities.

http://media.pragprog.com/titles/rr2/code/rr2/many_to_many/beginning_schema.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

4 * Database Recipes

However, this technique relegates a real, concrete, first-class concept in our
domain to what amounts to an afterthought. We'd be taking what should be
its own class and making it hang together as a set of attributes hanging from
an association. It feels like an afterthought because it is.

This is where join models come in. Using a join model, we can maintain the
convenient, directly accessible association between magazines and readers
while representing the relationship itself as a first-class object: a Subscription
in this case.

Let’s put together a new version of our schema, but this time supporting
Subscription as a join model. Assuming we already have a migration that set up
the previous version, here’s the new migration:

rr2/many_to_many/db/migrate/20101127162741_convert_to_join_model.rb
def self.up
drop table :magazines readers
create_table :subscriptions do |t|
t.column :reader_id, :integer
t.column :magazine id, :integer
t.column :last_renewal _on, :date
t.column :length in issues, :integer

Our new schema uses the existing magazines and readers tables but replaces
the magazines_readers join table with a new table called subscriptions. Now we’ll
also need to generate a Subscription model and modify all three models to set
up their associations. Here are all three models:

rr2/many_to_many/app/models/subscription.rb
class Subscription < ActiveRecord: :Base
belongs to :reader
belongs to :magazine
end

rr2/many_to_many/app/models/reader.rb
class Reader < ActiveRecord::Base

has _many :subscriptions

has _many :magazines, :through => :subscriptions
end

rr2/many_to_many/app/models/magazine.rb
class Magazine < ActiveRecord::Base

has many :subscriptions

has many :readers, :through => :subscriptions
end

http://media.pragprog.com/titles/rr2/code/rr2/many_to_many/db/migrate/20101127162741_convert_to_join_model.rb
http://media.pragprog.com/titles/rr2/code/rr2/many_to_many/app/models/subscription.rb
http://media.pragprog.com/titles/rr2/code/rr2/many_to_many/app/models/reader.rb
http://media.pragprog.com/titles/rr2/code/rr2/many_to_many/app/models/magazine.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Meaningful Many-to-Many Relationships * 5

Subscription has a many-to-one relationship with both Magazine and Reader, mak-
ing the implicit relationship between Magazine and Reader a many-to-many
relationship.

We can now specify that a Magazine object has_many() readers through their
associated subscriptions. This is both a conceptual association and a technical
one. Let’s load the console to see how it works:

$ rails c
>> magazine = Magazine.create(:title => "Ruby Illustrated")
=> #<Magazine id: 1, title: "Ruby Illustrated", ...>
>> reader = Reader.create(:name => "Anthony Braxton")
=> #<Reader id: 1, name: "Anthony Braxton", ... >
>> subscription = Subscription.create(:last_renewal_on => Date.today,
:length_in_issues => 6)
=> #<Subscription id: 1,
reader id: nil,
magazine id: nil,
last_renewal _on: "2010-11-27",
length in issues: 6>
>> magazine.subscriptions << subscription
=> [#<Subscription id: 1,
reader_id: nil,
magazine id: 1,
last renewal on: "2010-11-27",
length_in_issues: 6>]
>> reader.subscriptions << subscription
=> [#<Subscription id: 1,
reader id: 1,
magazine id: 1,
last renewal on: "2010-11-27",
length in issues: 6>]
>> subscription.save
=> true

This doesn’t contain anything new yet. But now that we have this association
set up, look what we can do:
>> magazine.reload

>> reader.reload
>> magazine.readers

=> [#<Reader id: 1, name: "Anthony Braxton", ...>]
>> reader.magazines
=> [#<Magazine id: 1, title: "Ruby Illustrated", ...>]

Though we never explicitly associated the reader to the magazine, the associ-
ation is implicit through the :through parameter of the has_many() declarations.

Behind the scenes, Active Record generates a SQL select that joins the tables
for us. For example, calling reader.magazines generates the following:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

6 * Database Recipes

SELECT "magazines".* FROM "magazines"
INNER JOIN "subscriptions" ON "magazines".id = "subscriptions".magazine id
WHERE (("subscriptions".reader id = 1))

With a join model relationship, you still have access to all the same has_many
options you would normally use.’ For example, if we wanted an easy accessor
for all of a magazine’s semiannual subscribers, we could add the following to
the Magazine model:

ManyToManyWithAttributesOnTheRelationship/app/models/magazine.rb
class Magazine < ActiveRecord::Base
has_many :subscriptions
has _many :readers, :through => :subscriptions
has _many :semiannual subscribers,
:through => :subscriptions,
1source => :reader,
:conditions => ['length in issues = 6']
end

We could now access a magazine’s semiannual subscribers as follows:

$ rails c
>> Magazine.first.semiannual_subscribers
=> [#<Reader id: 1, name: "Anthony Braxton", ... >]

Sometimes, the name of a relationship isn’t obvious to you. For example,
aren’t users just in groups? Over years of working with join models, I've
learned that the step of trying to name the relationships helps flesh out my
domain model in a positive way. Indeed, users are in groups, but that rela-
tionship is a membership. Are there other missing domain models you can
think of?

3. One exception to this is the :class_name option. When creating a join model, you should
instead use :source, which should be set to the name of the association to use, instead
of the class name.

http://media.pragprog.com/titles/rr2/code/ManyToManyWithAttributesOnTheRelationship/app/models/magazine.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 2

Create Declarative Named Queries

Problem

One of the most obvious advantages of Rails is its emphasis on declarative
programming. A Rails application speaks the language of its domain, rather
than littering itself with low-level configuration and implementation details.
For example, rather than embedding ugly SQL statements in a controller to
find the most active users on a site, it's much more expressive to write
something like Usermost_active, which returns a collection of User objects.

How do we write queries in our models so that we can best take advantage
of the declarative style that makes Rails so great?

Solution

Many of us launch into Rails development and blissfully take advantage of
the declarative, concise syntax available for features such as one-to-many
relationships and controller development, but when it comes time to query a
database, we fall back on our old SQL habits. In a Model View Controller
application, you only ever want to see SQL code in the model.

Many aspects of Rails development are made simple because Rails supports
a declarative style of web application development. In fact, Rails is so declar-
ative that some developers refer to it as a domain-specific language for web
development. That’s a fancy way of saying that, where possible, Rails lets you
code in terms of your application’s actual requirements instead of its low-
level implementation details.

Active Record’s “scope” macro allows you to declare named, composable,
class-level queries on your models. But most of us start out writing our queries
directly in the controllers, like this:

rr2/declarative_scopes/app/controllers/wombats_controller.rb
class WombatsController < ApplicationController
def search
@wombats = Wombat.where("bio like ?", "S#{params[:q]}%").
order(:age)
render :index
end

http://media.pragprog.com/titles/rr2/code/rr2/declarative_scopes/app/controllers/wombats_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

8 ¢ Database Recipes

That works, it uses the model, and since Rails as a framework gets out of our
way, it actually doesn’t look that bad to the eye of a new Rails developer. But
we’'ve broken a cardinal rule of Rails development: we put model code in the
controller. A reader of this code has to drop down into another level of
abstraction to understand what the controller does. Reading this code, we’d
have to look not just at what the original author means the code to do but
also at how it does it. A more readable version of this action might look like
this:

def search

@wombats = Wombat.with bio containing(params[:q])

render :index
end

Now someone reading this code can very easily understand what it does
without worrying about how it does it. That’s what we want in a controller.
We've asked the model to do the work, and we can ignore it unless we need
to specifically change how it does its job. In addition, it's now easier to test,
since we can completely test this code in a simple unit test. So, how do we
make this model code work?

The obvious, naive option would be to write a class-level method such as the
following implementation:

class Wombat < ActiveRecord::Base
def self.with bio containing(query)
where("bio like ?", "S#{query}%").
order(:age)
end
end

That would work. But what we’re doing here is not defining some arbitrary
behavior on the Wombat class. We're defining a named query. Active Record
gives us a way to make that fact explicit: scopes. Active Record scopes allow
you to name query fragments that can then be called as class-level methods
or chained together and then called. Before revisiting our with_bio_containing()
method, let’s look at a simple example:

rr2/declarative_scopes/app/models/person.rb

class Person < ActiveRecord::Base
scope :teenagers, where("age < 20 AND age > 12")
scope :by name, order(:name)

end

In this code, we define two named scopes. The teenagers() scope enables
querying for records that have an age in the teens. The by name() scope sorts
queried records by the name column. Let’s give these a try:

http://media.pragprog.com/titles/rr2/code/rr2/declarative_scopes/app/models/person.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Declarative Named Queries ® 9

ruby-1.9.3-p0 > Person.count
=> 30
ruby-1.9.3-p0 > Person.teenagers.count
= 9
ruby-1.9.3-p0 > Person.all[0..4].map &:name
=> ["Josefina Hand",
"Beau West",
"Donna Pfeffer",
"Tremaine Hagenes DDS",
"Clementine Funk"]
ruby-1.9.3-p0 > Person.by name[0..4].map &:name
=> ["Andy Stroman",
"Beau West",
"Buck Koepp",
"Chauncey Gleason",
"Clementine Funk"]
ruby-1.9.3-p0 >

As you can see, we use these scopes as if they were class-level methods. What
makes scopes even more powerful is that they can be combined:

ruby-1.9.3-p0 > Person.teenagers.by name.map &:name
=> ["Beau West",

"Chauncey Gleason",

"Clementine Funk",

"Donna Pfeffer",

"Easton Zemlak",

"Lavada Vandervort",

"Mariana Tremblay",

"Soledad Greenholt",

"Tremaine Hagenes DDS"]

You can imagine setting up a library of meaningful, reusable query conditions
and then composing complex queries by simply chaining them together.

You probably noticed that neither of these scopes accepts parameters. To
demonstrate how to create a scope that does, let’s go back to our original
example and implement it as a scope:

rr2/declarative_scopes/app/models/wombat.rb
class Wombat < ActiveRecord::Base
scope :with bio containing, lambda {|query| where("bio like ?", "S#{query}%").
order(:age) }
end

In this revision, we've chained two conditions into one scope (the where() and
order() clauses). Since we need to pass the query text into the scope, we define
the entire scope definition to be a Ruby Proc object, which we create with the
Ruby lambda() method. lambda() takes a block and returns a new Proc instance
that encapsulates that block. We can use this Proc in scopes to regenerate the

http://media.pragprog.com/titles/rr2/code/rr2/declarative_scopes/app/models/wombat.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

10 * Database Recipes

scope whenever it's called. Any parameters passed into the scope will be
passed right into the Proc.

Putting this all together, our original controller action now works.

Many people look at chained scopes for the first time and think they’re ineffi-
cient, because it looks like they would generate one query for each chained
scope call. Active Record is smarter than that. Though it may look as though
a call to a scope returns an Array of queried objects, the scope actually returns
a special proxy that performs the query only when absolutely necessary (for
example, when you want to display all of the results in the console). Back in
the console, we can see this in action:

ruby-1.9.3-p0 > Person.teenagers.class
=> ActiveRecord: :Relation
ruby-1.9.3-p0 > puts Person.teenagers.to sql

SELECT "people".* FROM
"people" WHERE (age < 20 AND age > 12)
=> nil
ruby-1.9.3-p0 > puts Person.teenagers.by name.to sql
SELECT "people".* FROM
"people" WHERE (age < 20 AND age > 12) ORDER BY name
=> nil

You see here that a call to our teenagers() scope actually returns an instance
of ActiveRecord::Relation, not an Array of Person objects! We can ask an ActiveRecord::Rela-
tion to convert itself to SQL with the to_sql() method. If we combine two scopes,
you see that the ActiveRecord::Relation objects actually combine to generate one
composed query.

So, Active Record scopes are more expressive, are easier to test, and can
generate sane, well-performing queries. A well-written Rails application using
Active Record will likely make judicious use of scopes. Try them on your
current project!

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 3

Connect to Multiple Databases

Problem

The simple default Rails convention of connecting to one database per appli-
cation is suitable most of the time. That’s why its creators made it so easy.

But what if you need to step outside the norm and connect to multiple
databases? What if, for example, you need to connect to a commercial appli-
cation’s tables to integrate your nifty new rich web application with a legacy
tool that your company has relied on for years? How do you configure and
create those multiple connections? How do you cleanly connect to multiple
databases in a single Rails application?

Solution

To connect to multiple databases in a Rails application, we’ll set up named
connections in our application’s database configuration, configure our Active
Record models to use it, and use inheritance to safely allow multiple models
to use the new named connection.

To understand how to connect to multiple databases from your Rails applica-
tion, the best place to start is to understand how the default connections are
made. How does an application go from a YAML configuration file to a database
connection? How does an Active Record model know which database to use?

When a Rails application boots, it invokes the Rails initialization process. The
initialization process has the big job of ensuring that all the components of
Rails are properly set up and glued together. In Rails 3 and newer, this process
does its work by delegating to each subframework of Rails and asking that
subframework to initialize itself. Each of these initializers is called a Railtie.
Active Record defines ActiveRecord::Railtie to play the initialization role. One of
its jobs is to initialize database connections.

The Active Record Railtie is responsible for calling the method ActiveRe-
cord::Base.establish_connection(). If you call this method with no arguments, it will
check the value of the Rails.env variable and will look up that value in the
loaded config/database.yml. The default value for Rails.env is development. So, by

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

12 * Database Recipes

By default, on initialization a Rails application discovers which environment it's

running under (development, test, or production in a stock Rails app) and finds a
database configuration in config/database.yml that is named for the current environment.
Here’s a simple sample:

rr2/multiple_dbs/config/typical-database.yml
development:

adapter: mysql2

encoding: utf8

reconnect: false

database: multiple dbs development

pool: 5

username: root

password:

socket: /tmp/mysql.sock

test:
adapter: mysql2
encoding: utf8
reconnect: false
database: multiple dbs_test
pool: 5
username: root
password:
socket: /tmp/mysql.sock

production:
adapter: mysql2
encoding: utf8
reconnect: false
database: multiple dbs production
pool: 5
username: root
password:
socket: /tmp/mysql.sock

If you've done any database work with Rails, you've already seen (and probably con-
figured) a file that looks like this. The naming conventions make it quite obvious what
goes where, so you may find yourself blindly editing this file to achieve the desired
effect.

default, if you start a Rails application, it looks up the database configuration
section named development in its config/database.yml file and sets up a connection
to that database.

Note that an actual connection has not yet been established. Active Record
doesn’t actually make the connection until it needs it, which happens on the
first reference to the class’s connection() method. So if you're following along
and watching open database connections, don’t be surprised if you don't see
an actual connection made immediately after your application boots.

report erratum -« discuss

http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/config/typical-database.yml
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Connect to Multiple Databases ® 13

Having set up a connection to a database solves only part of the puzzle. That
connection still has to be referenced by the model classes that need it. Things
get interesting here. When the default connections are made by the Railtie,
they are made directly from the ActiveRecord::Base class, which is the superclass
of all Active Record models. Because the call to establish_connection() is made on
ActiveRecord::Base, the connection is associated with the ActiveRecord::Base class
and is made available to all of its child classes (your application-specific
models).

So, in the default case, all your models get access to this default connection.
If you make a connection from one of your model classes (by calling establish_con-
nection()), that connection is available from that class and any of its children
but not from its superclasses, including ActiveRecord::Base.

When asked for its connection, the behavior of a model is to start with the
exact class the request is made from and work its way up the inheritance
hierarchy until it finds a connection. This is a key point in working with
multiple databases. A model’s connection applies to that model and any of
its children in the hierarchy unless overridden.

Now that we know how Active Record connections work, let’s put our knowl-
edge into action. We’'ll contrive a couple of example databases with which to
demonstrate our solution. The following is our config/database.yml file. We have
two databases. One is labeled as development and will be our default database.
The other is labeled products and simulates the hypothetical scenario of having
an existing, external product database for a new application.

rr2/multiple_dbs/config/database.yml
development:

adapter: mysql2

encoding: utf8

reconnect: false

database: myrailsdatabase development

pool: 5

username: root

password:

socket: /tmp/mysql.sock

products:
adapter: mysql2
encoding: utf8
reconnect: false
database: products
pool: 5
username: root
password:
socket: /tmp/mysql.sock

http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/config/database.yml
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

14 * Database Recipes

We'll also create some tables in these databases so we can hook them up to
Active Record models. For our default Rails database, we’ll create a migration
defining tables for users and shopping carts.

rr2/multiple_dbs/db/migrate/20101128140540_add_users_and_carts.rb
class AddUsersAndCarts < ActiveRecord::Migration
def self.up
create table :users do |t|
t.string :name
t.string :email
end
create table :carts do |t]
t.integer :user id
end
create table :selections do |t|
t.integer :cart id
t.integer :product id
end
end

In a typical scenario like this, the second database would be one that already
exists, which you wouldn’t want to (or be able to) control via Active Record
migrations. As a result, Active Record’s migrations feature wasn’t designed
to manage multiple databases. That’s OK. If you have that level of control
over your databases and the tables are all related, you're better off putting
them all together anyway. For this example, we’ll assume that the products
database already has a table called products, with a varchar field for the product
name and a float for the price. For those following along, the following simple
DDL can be used to create this table on a MySQL database:

rr2/multiple_dbs/products.sql

DROP TABLE IF EXISTS ‘products’;

CREATE TABLE ‘products’ (
‘id" int(11) NOT NULL auto_increment,
‘name’ varchar(255) default NULL,
‘price’ float default NULL,
PRIMARY KEY ('id")

) ENGINE=InnoDB DEFAULT CHARSET=latinl;

Now that we have our databases set up, we’ll generate models for User, Cart,
and Product. The User model can have an associated Cart, which can have mul-
tiple Products in it. The User class is standard Active Record fare:

rr2/multiple_dbs/app/models/user.rb

class User < ActiveRecord: :Base
has one :cart

end

http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/db/migrate/20101128140540_add_users_and_carts.rb
http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/products.sql
http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/user.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Connect to Multiple Databases ® 15

Things start to get a little tricky with the Cart class. It associates with User in
the usual way. We’d like to use has_many() with a join model to link to :products,
but we can’t, because our products table is not in the same database. The
has_many() method will result in a table join, which we can’t do across database
connections. Here’s the Cart class without any association with the Product
class:

rr2/multiple_dbs/app/models/plain_cart.rb
class Cart < ActiveRecord: :Base
end

Before we deal with hooking Carts to Products, let’s look at our Product model:

rr2/multiple_dbs/app/models/plain_product.rb
class Product < ActiveRecord::Base

establish connection :products
end

As we learned earlier, Active Record establishes connections in a hierarchical
fashion. When attempting to make a database connection, Active Record
models look for the connection associated with either themselves or the
nearest superclass. So, in the case of the Product class, we've set the connection
directly in that class, meaning that when we do database operations with the
Product model, they will use the connection to our configured products database.

If we were to load the Rails console now, we could see that we are indeed
connecting to different databases depending on the model we're referencing:

$ rails console
>> Cart.connection.current_database
=> "myrailsdatabase development"
>> Product.connection.current_database
=> "products"

Great! Now if we were to call, say, Product.find(), we would be performing our
select against the products database. So, how do we associate a Cart with Products?
We have many different ways to go about doing this, but I tend to favor the
laziest solution. To make the connection, we’ll create a mapping table in our
application’s default database (the same one the cart table exists in):

rr2/multiple_dbs/db/migrate/20101128145152_create_product_references.rb
class CreateProductReferences < ActiveRecord::Migration
def self.up
create table :product references do |t]
t.integer :product id
t.timestamps
end
end
def self.down

http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/plain_cart.rb
http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/plain_product.rb
http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/db/migrate/20101128145152_create_product_references.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

16 * Database Recipes

drop table :product references
end
end

This table’s sole purpose is to provide a local reference to a product. The
product’s id will be stored in the product reference’s product id field. We then
create a model for this new table:

rr2/multiple_dbs/app/models/product_reference.rb
class ProductReference < ActiveRecord: :Base
belongs to :product
has many :selections
has_many :carts, :through => :selections

def name
product.name
end
def price
product.price
end
end

We've created the has_ many() relationship between our new ProductReference class
and the Cart class with a join model called Selection, and we’'ve associated each
ProductReference with a Product. Here’s the Selection definition:

rr2/multiple_dbs/app/models/selection.rb
class Selection < ActiveRecord::Base

belongs to :cart

belongs to :product, :class name => "ProductReference"
end

Since our Product class is simple, we have also manually delegated calls to
name() and price() to the Product, so for read-only purposes, the product reference
is functionally equivalent to a Product.

All that’s left is to associate the Cart with its products:

rr2/multiple_dbs/app/models/cart.rb
class Cart < ActiveRecord: :Base
has_many :selections
has _many :products,
:through => :selections
end

We can now say things such as Userfirst.cart.products.first.name and get the data
we desire. This solution would, of course, require the necessary rows to be
created in the product_references table to match any products we have in the
alternate database. This could be done either in a batch or automatically at
runtime.

http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/product_reference.rb
http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/selection.rb
http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/cart.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Connect to Multiple Databases ® 17

Now what if you would like to connect to multiple tables in the same external
database? Based on what we've done so far, you’d think you could add calls
to establish_connection() in the matching models for each of the new tables. But,
what you might not expect is that this will result in a separate connection for
every model that references your external database. Given a few tables and
a production deployment that load balances across several Rails processes,
this can add up pretty quickly.

Thinking back to what we learned about how database connections are
selected based on class hierarchy, the solution to this problem is to define a
parent class for all the tables that are housed on the same server and then
inherit from that parent class for those external models. For example, to ref-
erence a table called tax_conversions on the products database, we could create a
model called External as follows:

rr2/multiple_dbs/app/models/external.rb
class External < ActiveRecord::Base
self.abstract class = true
establish connection :products
end

Then, our Product and TaxConversion models could inherit from External like so:

ConnectingToMultipleDatabases/app/models/product.rb
class Product < External
end

rr2/multiple_dbs/app/models/tax_conversion.rb
class TaxConversion < External
end

Note that we've moved the establish_connection() call from Product to External. All
subclasses of External will use the same connection. We also set abstract _class to
true to tell Active Record that the External class does not have an underlying
database table.

You won’'t be able to instantiate an External, of course, since there is no
matching database table. If there is a table in your external database called
externals, choose a different name for your class to be on the safe side.

Though it’s possible to configure multiple database connections, it’s preferable
to do things “the Rails way” when you can. Given the choice, always house
new tables in a given application in the same database. There’s no sense in
making things harder than they have to be.

If you have to continue using an external database, you might consider
exposing that data as a REST service, allowing access only via HTTP calls as

http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/external.rb
http://media.pragprog.com/titles/rr2/code/ConnectingToMultipleDatabases/app/models/product.rb
http://media.pragprog.com/titles/rr2/code/rr2/multiple_dbs/app/models/tax_conversion.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

18 * Database Recipes

opposed to direct database access. For read-only feeds of data that need to
participate in complex joins, consider replicating the data from its source
table to the databases that need to use it.

Credit

Thanks to Dave Thomas for the real-world problem and the inspiration for
this solution.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 4

Set Default Criteria for Model Operations

Problem

Do you ever find yourself repeatedly typing the same snippet of SQL every
time you query for, or create, a record in a database? I know I do. For example,
if you are creating an online store, everywhere you display products you might
want to display only those products that are set to available in the store. If you
are creating a publishing system, you might want all queries to return by
default only those articles whose published column is set to true. How can you
make ActiveRecord scope all queries the same way by default?

Solution

We can set default criteria for model operations using Active Record’s
default_scope() method.

As we learned in Recipe 2, Create Declarative Named Queries, on page 7, the
problem isn’t so bad in Active Record. Sure, you might still suffer from some
code duplication, but we could, for example, create a scope called available()
in our Product model and then use that scope every time we interact with the
model. Given a model definition like this:

rr2/default_scopes/app/models/product_first.rb
class Product < ActiveRecord::Base

scope :available, where(:available => true)
end

we could interact with that model in the Rails console like so:

> Product.count
= 0
> Product.available.count
= 4
> Product.available.map(&:name)
=> ["Furbie",
"Godzilla",
"Mr. Bill",
"Cat Lady Action Figure"]
> Product.available.find by name("Godzilla")
=> #<Product id: 2, name: "Godzilla", ...>

http://media.pragprog.com/titles/rr2/code/rr2/default_scopes/app/models/product_first.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

20 * Database Recipes

But what if we wanted to apply this scope to all queries? It turns out that
Active Record has just the tool we need to solve this problem: default scopes.
Here’s another version of our model, using the default_scope() class-level method
to declare a default set of criteria for the Product model:

rr2/default_scopes/app/models/product.rb
class Product < ActiveRecord::Base

default scope :available, where(:available => true)
end

Now let’s take it for a spin!

> Product.all.map &:available
=> [true, true, true, true, truel
> Product.connection.execute("select count(*) from products")
=> [{"count(*)"=>11, 0=>11}]
> 1b = Product.create(:name => "Liquid Brains",
rprice => 19.74)
=> #<Product id: 12, ... updated at: "2010-11-04 23:34:49">
> lb.available?
=> true

That’s much better! There’s less code, and it works for creating new records,
too. Note that it won’'t automatically set available() to true when you update a
record. That’s very unlikely to be the behavior you'd expect, since you would
have to explicitly set any default-scoped attributes every time you update.

What if you need to bypass the default scope? ActiveRecord also makes that
easy in Rails 3. Simply wrap your code in a call to the unscoped() method, like
so:

> Product.create(:name => "Hideous Harvey",
iprice => 2.99,
:available => false)

=> #<Product id: 13, name: "Hideous Harvey" ... >
> Product.find by id(13)
=> nil
> Product.unscoped { Product.find by id(13) }
=> #<Product id: 13, name: "Hideous Harvey" ...>

When we created the Product, this time we passed in an explicit value for the
available attribute. The default scope’s value doesn’t apply if you override it
explicitly. On our first attempt to find the record we just created, the query
responds as if the record doesn’t exist. When we bypass the default scope
with the unscoped() method, the record is returned.

Before you go romping through your codebase, applying default scopes to all
of your methods, let’s temper our newfound enthusiasm with a word of cau-
tion. Implicit scoping like this, though convenient, is somewhat obfuscated.

http://media.pragprog.com/titles/rr2/code/rr2/default_scopes/app/models/product.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Set Default Criteria for Model Operations ® 21

Without reading through your models, another programmer won’t know that
a default scope is implied. Someone maintaining your code in the future might
reasonably expect a call to Product.all() to return all of the records in the products

table. The decision to use default scopes is a trade-off between convenience
and transparency.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 5

Add Behavior to Active Record Associations

Problem

When you access a has_many or has_and_belongs_to_many association on an Active
Record model object, it returns an array-like object that provides access to
the individual objects that are associated with the object you started with.
Most of the time, the stock array-like functionality of these associations is
good enough to accomplish what you need to do.

Sometimes, though, you might want to add behavior to the association. Adding
behavior to associations can make your code more expressive and easier to
understand. For example, you might want to further limit the scope of the
orders associated with a user of a shopping site or calculate the combined
cost of all the line items in a shopping cart. However, since these associations
are generated by Rails, how do you extend them? There isn't an easily
accessible class or object to add the behavior to. So, how do you do it?

Solution

The collection returned by an Active Record association isn’t actually an Array.
It’s a collection proxy. Collection proxies are wrappers around the collections,
allowing them to be lazily loaded and extended. To add behavior to an Active
Record association, you add it to the collection proxy during the call to
has_many().

Before we get started, let’s create a simple model with which to demonstrate.
For this example, we’ll create models to represent students and their grades
in school. The following are the Active Record migrations to implement the
schema:

rr2/assoc_proxies/db/migrate/20101221033031_create_students.rb
class CreateStudents < ActiveRecord::Migration
def self.up
create_table :students do |t]|
t.string :name
t.integer :graduating year
t.timestamps
end
end

http://media.pragprog.com/titles/rr2/code/rr2/assoc_proxies/db/migrate/20101221033031_create_students.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Add Behavior to Active Record Associations ® 23

def self.down
drop_table :students
end
end

rr2/assoc_proxies/db/migrate/20101221033237_create_grades.rb
class CreateGrades < ActiveRecord::Migration
def self.up
create table :grades do |t]|
t.belongs to :student
t.integer :score
t.string :class_name

t.timestamps
end
end

def self.down
drop_table :grades
end
end

We'll next create simple Active Record models for these tables. We’ll declare
the Student class has_many() Grades. Here are the models:

AddingBehaviorToActiveRecordAssociations/app/models/student.rb
class Student < ActiveRecord::Base

has many :grades
end

AddingBehaviorToActiveRecordAssociations/app/models/grade.rb
class Grade < ActiveRecord::Base
end

Now that we have a working model, let’s create some objects:

$ rails console

>> me = Student.create(:name => "Chad", :graduating_year => 2020)

=> #<Student:0x26d18d8 @new record=false, @attributes={"name"=>"Chad",
"id"=>1, "graduating year"=>2020}>

>> me.grades.create(:score => 1, :class_name => "Algebra")

=> #<Grade:0x269cb10 @new record=false, @errors={}>, @attributes={"score"=>1,
"class name"=>"Algebra", "student id"=>1, "id"=>1}>

(I was never very good at math—a 1 is a failing grade.)

If you're paying close attention, you’ll notice that this has already gotten
interesting. Where does this create() method come from? I don’t recall seeing
create() defined for the Array class. Maybe these associations don’t return arrays
after all. Let’s find out:

http://media.pragprog.com/titles/rr2/code/rr2/assoc_proxies/db/migrate/20101221033237_create_grades.rb
http://media.pragprog.com/titles/rr2/code/AddingBehaviorToActiveRecordAssociations/app/models/student.rb
http://media.pragprog.com/titles/rr2/code/AddingBehaviorToActiveRecordAssociations/app/models/grade.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

24 * Database Recipes

>> me.grades.class
=> Array
>> Array.instance _methods.grep /create/

=> []

Just what is going on here? The association claims to return an Array, but
where’s the create() method coming from?

Ruby is a very dynamic language. When I encounter something magical like
this, I find myself mentally working through all the possible ways it could be
implemented and then ruling them out. In this case, I might start by assuming
that the association is indeed an instance of Array with one or more singleton
methods added.

But, looking at the Rails source code for verification, it turns out I'd be wrong.
What's really going on is that the call to grades() returns an instance of
ActiveRecord::Associations::CollectionProxy. This sits between your model’s client code
and the actual objects the model is associated with. It masquerades as an
object of the class you expect (Array in this example) and delegates calls to the
appropriate application-specific model objects.

So, where does create() come from? It is defined on the association itself, and
it delegates to the Grade class to create grades.

If you understand that an association call really returns a proxy, it’s easy to
see how you could add behaviors to the association. You would just need to
add the behavior to the proxy. Since each access to an association can create
a new instance of CollectionProxy, we can’t just get the association via a call to
grades() and add our behaviors to it. Active Record controls the creation and
return of these objects, so we’ll need to ask Active Record to extend the proxy
object for us.

Fortunately, Active Record gives us two ways to accomplish this. First, we
could define additional methods in a module and then extend the association
proxy with that module. We might, for example, create a module for doing
custom queries on grades, including the ability to select below-average grades.
Such a module might look like the following:

rr2/assoc_proxies/lib/grade_finder.rb
module GradeFinder
def below average
where('score < ?', 2)
end
end

http://media.pragprog.com/titles/rr2/code/rr2/assoc_proxies/lib/grade_finder.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Add Behavior to Active Record Associations ® 25

This is a simple extension that adds a below_average() method to the grades()
association, which will find all grades lower than a C (represented as a 2 on
the four-point scale). We could then include that module in our model with
the following code:

rr2/assoc_proxies/app/models/student.rb
require "grade finder"
class Student < ActiveRecord::Base
has _many :grades, :extend => GradeFinder
end

The new method is now accessible on the association as follows:

$ rails console

>> Student.first.grades.below_average

=> [#<Grade:0x26aeccO @attributes={"score"=>"1",
"student id"=>"1", "id"=>"1"}>]

Alternatively, we could have defined this method directly by passing a block
to the declaration of the has_many() association:

rr2/assoc_proxies/app/models/student.rb
class Student < ActiveRecord::Base
has many :grades do
def below average
where('score < ?', 2)
end
end
end

These association proxies have access to all the same methods that would
normally be defined on the associations, such as find(), count(), and create().

An interesting point to notice is that inside the scope of one of these extended
methods, the special variable self refers to the Array of associated Active Record
objects. This means you can index into the array and perform any other
operations on self that you could perform on an array.

Understanding association proxies is one of the keys to expressive Active
Record development. Try looking in some of your existing Rails application
code for opportunities to create more expressive implementations using
association proxies.

http://media.pragprog.com/titles/rr2/code/rr2/assoc_proxies/app/models/student.rb
http://media.pragprog.com/titles/rr2/code/rr2/assoc_proxies/app/models/student.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 6

Create Polymorphic Associations

Problem

Active Record’s has_many() and belongs_to() associations work really well when
the two sides of the relationship have fixed classes. An Author can have many
Books. A Library can have Books.

But sometimes you may want to use one table and model to represent some-
thing that can be associated with many types of entities. For example, how
do you model an Address that can belong to both people and companies? It's
clear that both a person and a company can have one or more addresses
associated with them. But a has_many() relationship relies on a foreign key,
which should uniquely identify the owner of the relationship. If you mix
multiple owning tables, you can't rely on the foreign key to be unique across
the multiple tables. For instance, there may be a person with id 42 and a
company with id 42. How do you associate models from one table to records
from multiple other tables?

Solution

This is a job for the Active Record polymorphic associations feature. Although
its name is daunting, it’s actually nothing to fear. Polymorphic associations
allow you to associate one type of object with objects of many types. So, for
example, with polymorphic associations, an Address can belong to a Person or
a Company or to any other model that wants to declare and use the association.

Let’s work through a basic example. We'll create a simple set of models to
represent people, companies, and their associated addresses. We'll start with
Active Record migrations that look like the following:

rr2/polymorphic/db/migrate/20101214163755_create_people.rb
class CreatePeople < ActiveRecord::Migration
def self.up
create table :people do |t]|
t.string :name
t.timestamps
end
end

http://media.pragprog.com/titles/rr2/code/rr2/polymorphic/db/migrate/20101214163755_create_people.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Polymorphic Associations ® 27

def self.down
drop_table :people
end
end

rr2/polymorphic/db/migrate/20101214163759_create_companies.rb
class CreateCompanies < ActiveRecord::Migration
def self.up
create table :companies do |t|
t.string :name

t.timestamps
end
end

def self.down
drop_table :companies
end
end

rr2/polymorphic/db/migrate/20101214163839_create_addresses.rb
class CreateAddresses < ActiveRecord::Migration
def self.up
create table :addresses do |t]

t.string :street addressl
.string :street_address2
.string :city
.string :state
.string :country
.string :postal code
.integer :addressable id
.string :addressable type

A+ + + + + +

t.timestamps
end
end

def self.down
drop_table :addresses
end
end

You'll immediately notice something unusual about the addresses table. First,
the name of the foreign key is neither people_id nor company_id, which is a depar-
ture from the usual Active Record convention. It’s called addressable _id instead.
Second, we've added a column called addressable_type. You’ll see in a moment
how we're going to use these columns. You get extra credit if you can guess
before reading on!

http://media.pragprog.com/titles/rr2/code/rr2/polymorphic/db/migrate/20101214163759_create_companies.rb
http://media.pragprog.com/titles/rr2/code/rr2/polymorphic/db/migrate/20101214163839_create_addresses.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

28 * Database Recipes

Now that we have a database schema to work with, let’s create models using
the generator. We'll generate models for Person, Company, and Address. We’'ll then
add has_many() declarations to the Person and Company models, resulting in the
following;:

rr2/polymorphic/app/models/person.rb

class Person < ActiveRecord::Base

has_many :addresses, :as => :addressable
end

rr2/polymorphic/app/models/company.rb
class Company < ActiveRecord: :Base

has many :addresses, :as => :addressable
end

As you can see, the has_many() calls in the two models are identical. And now
we start to get some insight into the addressable columns in the addresses table.
The :as option, part of the new polymorphic associations implementation, tells
Active Record that the current model’s role in this association is that of an
“addressable,” as opposed to, say, a “person” or a “company.” This is where
the term polymorphic comes in. Though these models exist as representations
of people and companies, in the context of their association with an Address
they effectively assume the form of an “addressable” thing.

Next we’ll modify the generated Address model to say that it belongs_to() address-
able things:

rr2/polymorphic/app/models/address.rb
class Address < ActiveRecord::Base

belongs to :addressable, :polymorphic => true
end

If we had omitted the :polymorphic option to belongs to(), Active Record would
have assumed that Addresses belonged to objects of class Addressable and would
have managed the foreign keys and lookups in the usual way. However, since
we’'ve included the :polymorphic option in our belongs to() declaration, Active
Record knows to perform lookups based on both the foreign key and the type.
The same is true of the has_many() lookups and their corresponding :as options.

The best way to understand what’s going on here is to see it in action. Let’s
load the Rails console and give our new models a spin:

$ rails c

Loading development environment (Rails 3.0.3)

>> person = Person.create(:name => "Egon")

=> #<Person id: 1, name: "Egon", created_at: "2010-12-14 16:44:43",
updated at: "2010-12-14 16:44:43">
>> address = Address.create(

http://media.pragprog.com/titles/rr2/code/rr2/polymorphic/app/models/person.rb
http://media.pragprog.com/titles/rr2/code/rr2/polymorphic/app/models/company.rb
http://media.pragprog.com/titles/rr2/code/rr2/polymorphic/app/models/address.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Polymorphic Associations ® 29

:street _addressl => "Wiedner Hauptstrasse 27-29",
:city => "Vienna", :country => "Austria", :postal code => "091997")
=> #<Address id: 1, street addressl: "Wiedner Hauptstrasse 27-29", ...,
addressable id: nil, addressable type: nil>
>> address.addressable = person
=> #<Person id: 1, name: "Egon", created at: "2010-12-14 16:44:43",
updated at: "2010-12-14 16:44:43">
>> address.addressable_id
= 1
>> address.addressable_type
=> "Person"

Aha! Associating a Person with an Address populates both the addressable_id field
and the addressable_type field. Naturally, associating a Company with an Address
will have a similar effect:

>> company = Company.create(:name => "Infoether, Inc.")
=> #<Company id: 1, name: "Infoether, Inc.",
created at: "2010-12-14 16:47:14",
updated at: "2010-12-14 16:47:14">
>> address = Address.create(:street_addressl => "123 Main",
:city => "Memphis", :country => "US", :postal code => "38104")
=> #<Address id: 2,
street addressl: "123 Main",
street address2: nil,...,
addressable id: nil,
addressable type: nil,
created at: "2010-12-14 16:47:25">
>> address.addressable = company
=> #<Company id: 1,
name: "Infoether, Inc.",
created at: "2010-12-14 16:47:14",
updated at: "2010-12-14 16:47:14">
>> address.addressable_id
= 1
>> address.addressable_type
=> "Company"

Notice that in both examples, the addressable_id values have been set to 1. If
the relationship wasn’t declared to be polymorphic, a call to Company.find(1).
addresses would result in the same (incorrect) list that Person.find(1).addresses would
return, because Active Record would have no way of distinguishing between
person 1 and company 1.

Instead, a call to Company.find(1).addresses will execute the following SQL:

SELECT *
FROM addresses
WHERE (addresses.addressable id = 1 AND
addresses.addressable type = 'Company')

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

30 ¢ Database Recipes

Though it’s easy to configure polymorphic associations, don’t forget that some-
times duplication isn’t that bad. A separate address table for people and
companies might be the right design for your application. If you do turn to
polymorphic associations, be sure to carefully consider the right indexes for
your tables, since you’ll be performing many queries using both the associated
id and type fields.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 7

Version Your Models

Problem

Applications often let users edit the data they enter. But users make mistakes,
and when they do, they like to have an “Undo” feature available to correct
them, like the ones their spreadsheets and word processors provide. Some-
times users need to be able to compare two versions of a piece of data to see
what has changed. In some cases, they might even have a legal requirement
to keep track of those changes through time.

To handle any one of these scenarios, you must be able to version user data.
But how can you version data in an Active Record model?

Solution

Rick Olson’s acts_as_versioned plugin provides just the solution we need. Install
it by adding the following statement to your project’s Gemfile:

gem 'acts as versioned'

Then update your bundle:

$ bundle install

The acts_as_versioned plugin allows you to easily cause a model to save each
version of its data in a special table, complete with a version identifier that
can be used to list, retrieve, or roll back to previous, arbitrary versions of that
data.

As a demonstration of its power, we’ll work on a model for a simple, collabo-
rative book-writing tool. In this application, each Book is divided into Chapters,
each with its own stored version history. If one of the authors of a book comes
along and wipes out an important plot twist, our users will be able to easily
roll back to the previous or even earlier versions of their data to see a history
of the chapter’s development.

We'll start by defining the model for our version-controlled Chapter objects.
Notice that we're doing the model first. You’'ll see why this is important as we
start defining the database tables to support the model.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

32 * Database Recipes

$ rails g model Chapter title:string body:text version:integer book_id:integer
invoke active record
create db/migrate/20101215025803 create chapters.rb

create app/models/chapter.rb

invoke test unit

create test/unit/chapter test.rb
create test/fixtures/chapters.yml

Now we’ll edit chapter.rb to declare that our Chapter model should be version
controlled. Because we already installed the acts_as versioned plugin, this is a
simple one-liner:

rr2/versioned/app/models/chapter.rb

class Chapter < ActiveRecord: :Base
acts _as _versioned

end

That single call to acts_as_versioned() is, in the background, defining a bunch of
filters that will stand between our code and the actual saving of our Chapter
objects. Now that we have defined Chapter to be versioned, the acts_as_versioned
plugin takes care of everything else.

With our model defined, we’ll edit the migration that will define the tables to
support a versioned Chapter model. The migration should look like the following;:

rr2/versioned/db/migrate/20101215025803_create_chapters.rb
class CreateChapters < ActiveRecord::Migration
def self.up
create table :chapters do |t]
t.string :title
t.text :body
t.integer :version
t.integer :book id
t.timestamps
end
Chapter.create versioned table
end
def self.down
drop_table :chapters
Chapter.drop versioned table
end
end

Notice the call to Chapter.create versioned table() and its inverse, Chapter.drop ver-
sioned_table(). These special methods were added to our model dynamically by
the acts_as_versioned plugin. They define what is essentially a copy of the table
for a given model. If we hadn’t created our model class first, we wouldn’t have
been able to use these methods in our migration file. Run rake db:migrate now
to add these tables.

http://media.pragprog.com/titles/rr2/code/rr2/versioned/app/models/chapter.rb
http://media.pragprog.com/titles/rr2/code/rr2/versioned/db/migrate/20101215025803_create_chapters.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Version Your Models ¢ 33

Now that we have a versioned model and a database schema to support it,
let’s load rails console and see what this thing can do:

$ rails c
Loading development environment (Rails 3.0.3)
>> chapter = Chapter.create(:title => "Ligeti's Legacy", :body =>
>> "Ligeti turned in time to see a look of ...wife's face..")
=> #<Chapter id: 1,
title: "Ligeti's Legacy",
body: "Ligeti turned in time to see a look of terror sweep...",
version: 1,
book id: nil,
created at: "2010-12-15 03:30:35",
updated at: "2010-12-15 03:30:35">
>> chapter.version
= 1
>> chapter.title = "Ligeti's Legacy of Lunacy"
=> "Ligeti's Legacy of Lunacy"
>> chapter.version
= 1
>> chapter.save
=> true
>> chapter.version
= 2
>> chapter.body << "Ligeti didn't know what to think."
=> "Ligeti turned in time to see ...Ligeti didn't know what to think."
>> chapter.save
=> true
>> chapter.version
= 2

In our dialog, we created a Chapter instance, and it was automatically assigned
a version of 1. Note that when we changed the title of the chapter, the version
didn’t get updated until we saved the object. Now we have a Chapter instance
with two versions. What can we do with them? We can access all versions of
the record. We can locate and find a version and even revert to it. Here’s how:

>> chapter.versions.size
= 2
>> chapter.versions.find_by_version(1)
=> #<Chapter::Version id: 1, chapter_id: 1, version: 1,
body: "Ligeti turned in time to see a look of terror sweep...",
book id: nil,
created at: "2010-12-15 03:30:35",
updated at: "2010-12-15 03:30:35">
>> chapter.revert_to(1)
=> true
>> chapter.body
=> "Ligeti turned in time to see a look of
terror sweep over his wife's face.."

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

34 » Database Recipes

>> chapter.versions.size
= 2
>> chapter.title = "Another version's title"
=> "Another version's title"
>> chapter.save
=> true
>> chapter.version
= 3

We can access data from previous versions and even revert the object to a
previous version. What if we wanted to change the object without creating a
new revision? For this, we can use the save_without_revision() method. We'll start
a fresh Chapter object to demonstrate:

>> chapter = Chapter.create(:title => "The Next Day",
>> :body => "Liget woke up with a throbbing headache...")
=> #<Chapter id: 3,
title: "The Next Day",
body: "Liget woke up with a throbbing headache...",
version: 1,
book id: nil,
created at: "2010-12-15 17:26:40",
updated_at: "2010-12-15 17:26:40">
>> chapter.title = "different title"
=> "different title"
>> chapter.save

=> true
>> chapter.versions.size
= 2
>> chapter.title = "The Previous Day"

=> "The Previous Day"
>> chapter.save_without_revision
=> true
>> chapter.versions.size
= 2
>> chapter.title
=> "The Previous Day"
>>

Under the covers, acts_as_versioned manages your model’s versions using the
additional table it created when you ran your migration. This is done, not
surprisingly, using an Active Record model. The model for your version tables
is constructed in memory at runtime. You can access it via the method ver-
sioned_class(), which acts_as_versioned adds to your model’s class. With this class,
you can do all the usual stuff you'd expect to be able to do with an Active
Record model. So, for example, if you wanted to look at all the versions of
every instance of Chapter, you would do something like this:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Version Your Models ¢ 35

>> Chapter.versioned_class.all.map do |version|
>> [version.chapter_id, version.title]
>?> end
=> [[1, "Ligeti's Legacy"l, [1l, "Ligeti's Legacy of Lunacy"],
[1, "Another version's title"],
[2, "The Next Day"],
[2, "different title"],
[2, "different title again"],
[3, "The Next Day"l],
[3, "different title"]]

As you can see, with the acts_as_versioned plugin in place, support for versioned
data in a Rails project is not only possible but easily provided.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 8

Perform Calculations on Your Model Data

Problem

You want to perform numeric calculations on the data in your database. For
example, you want to calculate the average cost of a purchase on a shopping
site. You don’t want to have to drop into SQL, but your data sets are too big
to select all the data and perform the calculations in Ruby.

Solution

The ActiveRecord::Calculations module, included by default into Active Record, is
just what we need. It wraps the SQL necessary to perform in-database calcu-
lations while also providing a friendly interface that will be comfortably
familiar to everyone who already uses Active Record.

ActiveRecord::Calculations provides model-level methods for querying the count,
sum, average, maximum, and minimum values of data in a model. For
example, if we wanted to find out the number of people older than 21 in our
system, we can do this:

>> Person.where("age > 21").count
=> 23

Under the covers, Active Record generates something like this:

SELECT COUNT(*) FROM "people" WHERE (age > 21)

To find the average, minimum, and maximum ages of all the people in your
system, we can do this:

>> Person.average(:age)
= 22
>> Person.minimum(:age)
= 1
>> Person.maximum(:age)
=> 49

Because ActiveRecord::Calculations methods can be chained onto any Active Rela-
tion, its interface allows you to define complex calculations with simple code.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Perform Calculations on Your Model Data ® 37

For example, the following code averages the ages of everyone whose name
contains the letter T:

>> Person.where("name like ?", "%T%").average(:age)
=> 25

We can also group your calculations by an attribute of the model. For example,
to sum the number of donations to a charity for each day in a pledge drive,
we can do this:

>> Donation.group(:created_at).sum(:amount)
=> {2010-12-19 22:28:35 UTC => 96,
2010-12-19 23:27:01 UTC => 370,
2010-12-19 24:08:25 UTC => 86...}

We can also use SQL functions in the group() call. To perform the same opera-
tion but group by year, we can do this:

>> Donation.group("strftime('%Y', created_at)").count
=> {"2006"=>8, "2007"=>25, "2008"=>20, "2009"=>28, "2010"=>19}

Beware of Raw SQL. If we need our code to be database-agnostic,
beware of using SQL directly. Not all databases support the
same functions.

We can group by associations, too. If we have a blog with a rating system and
want to get the average rating for each post in the system, instead of using
the usual group() method, we can do this:

>> Rating.average(:value,
:group => :post).map{|post, rating| [post.title, ratingl}
=> [["innovate enterprise e-markets", 3],
["disintermediate vertical experiences", 1],
["embrace magnetic systems", 2]...etc.

Grouping on associations yields an OrderedHash whose key is the full, instanti-
ated associated object. So if we want to get the average of a specific post,
given the full list, we can do this:

>> Rating.average(:value, :group => :post)[Post.find(1)]
=> 3

Finally, performing calculations within a certain scope works the same as
the rest of Active Record. For example, to average the rating of posts by a
specific person, we can do this:

>> Person.find_by name("Haruki Murakami").ratings.average(:value)
= 2

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

38 ¢ Database Recipes

Although it may be tempting to do things the “easy” way by performing calcu-
lations in Ruby, as you can see, Active Record’s calculation support is simple
and will usually result in snappier application performance.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 9

Use Active Record Outside of Rails

Problem

In a standard Rails application, database connectivity and database configu-
ration are done for you. However, in a complex system, we often need to access
the database outside the scope of a Rails application. Batch processing,
background workers, and simple scripts need to connect and process data.
How do you use Active Record outside of a Rails application?

Solution

The Rails environment is really well configured. It’s so well configured that
we rarely (if ever) have to concern ourselves with the process of initializing
the Rails subframeworks.

In fact, you might not even realize it's possible, for example, to use Active
Record outside of the context of a Rails application. Not only is it possible,
but it’s really easy.

Here’s a script that uses Active Record to connect to a database and search
for pending orders. Once connected, it shells out to an external program that
sends those orders to a legacy mainframe system for fulfillment.

rr2/use_active_record_outside_of rails/process_orders_nightly
require 'logger'
require 'active record'
ActiveRecord: :Base.establish connection(
:adapter => "mysql2",
thost => "localhost",
:username => "root",
:password => "",
:database => "web orders"

)

class Order < ActiveRecord: :Base
end
ActiveRecord: :Base.logger = Logger.new(STDOUT)

Order.all.each do |o]
puts "Processing order number #{o.id}"

http://media.pragprog.com/titles/rr2/code/rr2/use_active_record_outside_of_rails/process_orders_nightly
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

40 * Database Recipes

p " ./sendorder -c #{o.customer id} \
-p #{o.product _id} \
-q #{o.quantity}"
end

If you work in an environment that has any non-Rails applications, this kind
of lightweight script can really come in handy. You don’t need to create an
entire Rails application or incur the start-up overhead of the full Rails envi-
ronment for something this simple.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 10

Connect to Legacy Databases

Problem

You need to connect to a database that doesn’t follow the Rails naming con-
ventions. You may have an old legacy system you're replacing piece by piece.
Or perhaps you need to integrate with an external, non-Rails application that
follows its own naming conventions.

Solution

Active Record offers a number of overrides to its conventional mapping from
objects to tables, allowing you to configure table names, primary key names,
column name prefixes, and other options.

One of the Rails mantras is “convention over configuration.” It’s a great idea,
but the problem with conventions is that there can be more than one. In this
recipe, you'll learn not only how to buck Rails naming conventions but also
how to snap your model onto another, as we’ll demonstrate using the Word-
Press’ database schema.

Let’s start by looking at the definition of one of WordPress’s more representa-
tive tables. Here’s the WordPress comments table:

CREATE TABLE ‘wp comments” (
‘comment id’ bigint(20) unsigned NOT NULL auto_increment,
‘comment post id' int(11) NOT NULL default '0',
‘comment author® tinytext NOT NULL,
‘comment author email® varchar(100) NOT NULL default '',
‘comment _author url’ varchar(200) NOT NULL default '',
‘comment author IP' varchar(100) NOT NULL default '',
‘comment date’ datetime NOT NULL default '0000-00-00 00:00:00',
‘comment date gmt' datetime NOT NULL default '0000-00-00 00:00:00',
‘comment content’® text NOT NULL,
‘comment karma® int(11) NOT NULL default '0°',
‘comment approved’ enum('@','1','spam') NOT NULL default 'I1',
‘comment agent’ varchar(255) NOT NULL default '',
‘comment type® varchar(20) NOT NULL default '',

4. WordPress is a popular, open source blog engine written in PHP and available from
http://www.wordpress.org.

http://www.wordpress.org
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

42 * Database Recipes

‘comment parent’ int(11l) NOT NULL default '0',
‘user _id' int(11l) NOT NULL default '0',
PRIMARY KEY (comment id"),
KEY “comment approved’ (comment approved'),
KEY ‘comment post id® (' comment post id")

)

The first step of hooking Active Record into this table is to generate a model
for it. By Rails conventions, the model name for this table would have to be
WpComment. That’s ugly, so we’ll generate a model called Comment and deal with
the incompatibility.

Active Record has a configuration option to set the table name prefix for
models. We can simply call ActiveRecord::Base.table_name_prefix=() to set it. Since
we want that setting to affect our entire application, we’ll add it to a new file
in the config/initializers directory:

rr2/legacy_databases/config/initializers/wordpress_db_conventions.rb
ActiveRecord: :Base.table_name_prefix = "wp "

There is also a _suffix form of this attribute for setting the suffix of table names.

At this point, we can start the console and query the wp_comments table with
our model. If we had already started the console, we would need to restart it
to detect the change. Note that if the table names were really unusual, you
could always call set_table_name() in your model’s definition, passing in the name
of the table.

>> spam = Comment.first
=> #<Comment comment id: 449,
comment post id: 11,
comment author: "texas holdem",
comment author url: "http://texas-holdem.ebloggy.com"...
comment parent: 0,
user_id: 0>
>> spam.destroy
NoMethodError: undefined method ‘eq' for nil:NilClass
from /../lib/active support/whiny nil.rb:48:in “method missing'
from /../lib/active record/persistence.rb:79:in “destroy'

Oops. Something unfortunate happened. Digging through the source of Active
Record (using the provided backtrace), it’s clear that the error happens when
we try to do a comparison on the primary key field of the table. Oh! No id field.

>> ActiveRecord: :Base.connection.columns("wp_comments").map(&:name).grep(/id/)
=> ["comment id", "comment post id", "comment author id", "user_ id"]

The key is called comment_id. Scanning the other WordPress tables, it looks
like this is a standard convention used throughout (most of) the product.

http://media.pragprog.com/titles/rr2/code/rr2/legacy_databases/config/initializers/wordpress_db_conventions.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Connect to Legacy Databases ® 43

Fortunately, it’s also used widely enough throughout the industry that Rails
provides an easy way to accommodate it. Adding the following to the end of
the config/initializers/wordpress_db_conventions.rb file we created earlier will cause
Active Record to work correctly with this convention:
rr2/legacy_databases/config/initializers/wordpress_db_conventions.rb

ActiveRecord: :Base.primary key prefix type = :table name with underscore
#

If we were working with a schema that used a convention such as commentid,
we could have set this parameter to :table_name.

Now we can find and destroy records by their primary keys:

<! [[CDATA
>> Comment.find(441)
=> #<Comment comment id: 441, comment post id: 7.. >
>> Comment.destroy(441)
=> #<Comment comment id: 441, comment post id: 7.. >
11>

Now what if the table had been called wp_comment and all the other tables used
singular forms of the name as well? Simply add the following to the initializer
file, and you’ll be in business:

ActiveRecord: :Base.pluralize table names = false

Finally, if your schema were to use an arbitrary (but repeatable) primary key
field name throughout, such as identifier, much in the same way Rails uses id,
you could set the primary key name using the following:

ActiveRecord: :Base.primary key = "identifier"

Though Rails allows some configuration to adapt to schemas outside of its
usual convention, the path of least resistance (and greatest joy!) with Rails
is to stick to its conventions when you can. Use these tips if you have a
legacy database to which you must adapt. But if you're creating a new appli-
cation or migrating an old one, do yourself a favor and just stick to the
defaults. You'll save a lot of time and have a lot more fun.

Credit

Thanks to reader Frederick Ros for the ideas he contributed to this recipe.

http://media.pragprog.com/titles/rr2/code/rr2/legacy_databases/config/initializers/wordpress_db_conventions.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 11

Make Dumb Data Smart with composed_of()

Problem

Though it makes sense to store simple data in flattened structures in your
database tables, sometimes you want a rich, object-oriented representation
of the data in your Ruby code.

Imagine we’re managing student records for a school. We want to use our
students’ course histories to determine whether they meet the academic
requirements needed to participate in various school-sponsored extracurric-
ular activities. For example, we might say that a student has to have completed
Algebra II with a grade of B or better to be part of the math club.

How do you construct intelligent, structured objects from flat data?

Solution

For a long time, Active Record has shipped with a powerful but poorly
understood macro called composed of(), which, it so happens, we can use to
map a flat data structure to objects. The basic syntax of the macro looks like
this:
class SomeModel < ActiveRecord::Base
composed of :some attribute,

:class _name => 'SomeSpecialClass',

:mapping => [%w(model attr _name special class attr)]
end

The problem here is that it reads like this: “SomeModel is composed of some
attribute.” That doesn’t quite capture the meaning of composed_of(). How it
should really read is as follows: “Add some attribute, composed of SomeSpe-
cialClass, and map SomeModel’s model_attr_name field to special_class_attr.”

Back to our student course histories example, when a student completes a
course, we store the letter grade that the student received for the course in
the student’s record. Letter grades can range from A through F and be modified
with a plus or minus sign such as B+. We store the letter grade as a string
in the database.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Make Dumb Data Smart with composed_of() * 45

This is a perfect place to use a composed_of() mapping. Our internal field is
“dumb”: it’s just a string with no grade-specific behavior. But we need to
ensure that A- is higher than F, regardless of its case. Here’s what the relevant
code from our CourseRecord class would look like:

rr2/composed_of/app/models/course_record.rb
class CourseRecord < ActiveRecord: :Base
composed of :grade,
tmapping => %w(letter grade letter grade)
end

The CourseRecord model has a table attribute called letter grade that will be
mapped to an identically named field in the class, Grade, which will be acces-
sible via CourseRecord’s grade() attribute. The class name Grade is determined by
the same conventions used to translate model and controller class names to
their associated source files.® The composed of() macro assumes that it can
instantiate the composing class, passing each of the mapped values into its
constructor. So, we’ll make sure our Grade class accepts a single argument.
Here’s the class now:

rr2/composed_of/app/models/grade.rb
class Grade
include Comparable
attr _accessor :letter grade
SORT ORDER = ["f", "d", "c", "b", "a"l.inject({}) {|h, letter]
h.update "#{letter}-" => h.size
h.update letter => h.size
h.update "#{letter}+" => h.size
}
def initialize(letter grade)
@letter _grade = letter grade
end
def <=>(other)
SORT_ORDER[letter grade.downcase] <=>
SORT_ORDER[other.letter grade.downcase]
end
end

We've defined the <=> method and included the Comparable module, which is
all any Ruby class needs to implement comparison functionality. The <=>
method returns 1, O, or -1 depending on whether the receiving object is
semantically greater than, equal to, or less than the supplied argument. The
SORT_ORDER hash defines how letter grades should be sorted, including the
pluses and minuses.

5. You can override the naming convention by passing the :class_name option to the com-
posed_of() method.

http://media.pragprog.com/titles/rr2/code/rr2/composed_of/app/models/course_record.rb
http://media.pragprog.com/titles/rr2/code/rr2/composed_of/app/models/grade.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

46 * Database Recipes

Let’s take a look at a console session to see how this works:

chad> ruby script/console

>> grade = CourseRecord.first.grade

=> #<Grade:0x2241618 @letter grade="a">
>> grade > Grade.new("a-")

=> true

>> grade > Grade.new("a+")

=> false

The value objects that we create in a composed_of() scenario should be treated
as immutable. You can modify these objects in place all you want, but the
values will never get saved:

>> course = CourseRecord.first
=> #<CourseRecord:0x2237514
@attributes={"student_id"=>..."letter_grade"=>"a"...>

>> course.grade
=> #<Grade:0x22364c0 @letter grade="a">
>> course.grade.letter_grade = "f"
= "f"
>> course.save
=> true
>> course = CourseRecord.first
=> #<CourseRecord:0x222e900
@attributes={"student id"=>..."letter grade"=>"a"...>

To actually modify the value stored in the database, you have to create a new
Grade object and assign it to the CourseRecord class:

>> course.grade = Grade.new("f")
=> #<Grade:0x222c54c @letter grade="f">
>> course.save

=> true
>> course = CourseRecord.find(:first)
=> #<CourseRecord:0x2226d90
@attributes={"student id"=>"..."letter grade"=>"f",...>

You can also use the composed _of() macro to make a flat structure look normal-
ized. If for some reason you needed to store structured data, such as an
address, in the same table with the entity that data belongs to, you could
map multiple fields into a single object. For example:

class Person < ActiveRecord: :Base
composed of :address, :mapping => [%w(address street street),
%w(address city city),
%w(address state state),
%w(address country country) 1]
end

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Make Dumb Data Smart with composed_of() * 47

This would map the fields address street, address city, address state, and address_
country of the people table to the Address class, allowing you to work with
addresses as first-class objects, even though they’re stored as flat attributes
in the database.

Now your models represent your application’s core domain. With composed_of{(),
your domain can be expressed more fluently.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 12
DRY Up Your YAML Database Configuration File

Problem

256

DRY. It’s Pragmatic Programmer-speak for “Don’t Repeat Yourself.”” Duplica-

tion is a waste of your time and a source of bugs and rework.

But can you apply this rule to YAML-formatted Rails database.yml configuration
files when multiple databases are involved? For example, suppose you want
to use the same host or login information to access a collection of databases
used by the same application.

Solution

A database.yml file is so small and simple (by default) that it’s easy to forget that
it is written in a pretty robust markup language: YAML. YAML has a little-
used feature called merge keys. A merge key allows you to literally merge one
Hash into another, and therein lies the solution to our problem.

Guess what the database.yml configuration entries are. That's right: they're
hashes. This means you can use YAML merge keys to convert a duplication-
ridden file like this one into one that’s DRYer:

rr2/dry_db/config/database.yml.yuck
development:

adapter: mysql2

encoding: utf8

reconnect: false

database: dry db development

pool: 5

username: root

password:

socket: /tmp/mysql.sock

test:
adapter: mysql2
encoding: utf8
reconnect: false
database: dry db test

6. The Pragmatic Programmer [HTO0O]

http://media.pragprog.com/titles/rr2/code/rr2/dry_db/config/database.yml.yuck
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

DRY Up Your YAML Database Configuration File ® 49

pool: 5

username: root
password:

socket: /tmp/mysql.sock

production:
adapter: mysql2
encoding: utf8
reconnect: false
database: dry db production
pool: 5
username: root
password:
socket: /tmp/mysql.sock

Here’s the result:

rr2/dry_db/config/database.yml

defaults: &defaults
adapter: mysql2
encoding: utf8
reconnect: false
socket: /tmp/mysql.sock
pool: 5
username: root
password: secret

development:
database: dry db development
<<: *defaults

test:
database: dry db test
<<: *defaults

production:
database: dry db production
<<: *defaults

They’re functionally equivalent, but the second one is much less likely to
cause an embarrassing head-smacking moment down the road.

We didn’t go into detail about how merge keys work. YAML is a rich language
with many features you might want to take advantage of in your database
configuration or your fixtures. Make an afternoon project out of reading
through the YAML specification, which is freely available at http://yaml.org/spec/.

http://media.pragprog.com/titles/rr2/code/rr2/dry_db/config/database.yml
http://yaml.org/spec/
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 13

Use Models Safely in Migrations

Problem

Migrations are version control for your database schema. At any given point,
you should be able to check out the latest version of your code from its source
control repository and rebuild your database schema from scratch. Sometimes
it’s useful to perform model-level operations in your migrations. How do you
use models in your migrations without causing version mismatch problems
between your historical database schema and your code?

Solution

To ensure your migrations always have compatible versions of any models
required, you can create locally namespaced model classes inside your
migrations.

Active Record migrations are wonderful things in that they support constant
evolution of your database schema. Where it used to be painful to rename,
add, or drop columns, migrations makes it easy.

But with this flexibility comes the increasing probability that we’ll want to
not only add, drop, and rename tables and columns but want and need to do
the same with our models as well. This can lead to problems. Since you
sometimes need to manipulate data during a migration, it's tempting to use
your Active Record models in the migrations themselves. After all, Active
Record is usually quite a bit easier and less wordy to use than raw SQL.

But what if you rename your models? Early migrations will cease to work,
since your file system (and even your source control tool) doesn’t have a built-
in versioning system that would be compatible with migrations. Your earlier
migrations would be relying on models that were either deleted or removed.

The solution? Define your models (even if they already exist in the usual place)
in the migration itself. For example:

class AddPositionToProducts < ActiveRecord::Migration
class Product < ActiveRecord::Base; end
class SoftwareProduct < Product; end
class CourseProduct < Product; end

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Use Models Safely in Migrations ® 51

def self.up
add column :products, :position, :integer
Product.reset column information

Set default list orders
SoftwareProduct.all.each with index {|p, i| p.position = i; p.save!) }
CourseProduct.all.each with index {|p, i| p.position = i; p.save! }
end
def self.down
remove column :products, :position
end
end

Regardless of which models exist on your file system, this migration will
always work. Take notice that the models it uses are defined inside the
migration class. This is important, because they are separated by namespace,
just in case you need to use different versions of the model classes in other
migrations. For example, the Product class is really AddPositionToProducts::Product.
This guarantees that among your migrations the model will be unique.

Credit

Thanks to Tim Lucas for inspiring and supplying code for this recipe.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 14

Create Self-referential Many-to-Many Relationships

Problem

You have a model that needs a many-to-many relationship with itself. For
example, you might want to keep track of a bunch of people and who their
friends are. In Active Record-speak, a Person has many friends (through their
friendships), who are also people. But how do you represent a has_many :through
relationship when both ends of the relationship are of the same class?

Solution

You can solve this problem by configuring the has_many() relationships beyond
Active Record’s defaults and by using Active Record callbacks. You can use
callbacks to specify actions to take place when records are saved or destroy.
These actions can manage the reciprocal property of a many-to-many relation-
ship by automatically associating records with each other and then cleaning
up whose associations when a record is destroyed.

Let’s start by setting up a simple data model representing people and their
friends. To keep things simple, we’ll give people the bare minimum of infor-
mation in our system. The following are the Active Record migrations for
creating our data model:

rr2/self_ref/db/migrate/20110111152835_create_people.rb
class CreatePeople < ActiveRecord::Migration
def self.up
create table :people do |t]|
t.string :name

t.timestamps
end
end

def self.down
drop_table :people
end
end

http://media.pragprog.com/titles/rr2/code/rr2/self_ref/db/migrate/20110111152835_create_people.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Self-referential Many-to-Many Relationships ¢ 53

rr2/self_ref/db/migrate/20110111152844_create_friendships.rb
class CreateFriendships < ActiveRecord::Migration
def self.up
create_table :friendships do |t]
t.integer :person_id
t.integer :friend id

t.timestamps
end
end

def self.down
drop_table :friendships
end
end

We now have a table structure that is capable of storing a dead-simple Person
and a link between people and friends. This looks like a typical has_many :through
relationship, given the existence of both a Person model and a Friend model.
Since we want to have Person objects on both ends of the relationship, we’ll
have to get more explicit than usual as we specify the has_many :through relation-
ship. The following is the Person code:

rr2/self_ref/app/models/person.rb
class Person < ActiveRecord: :Base
has_many :friendships
has many :friends, :through => :friendships,
:source => :friend
end

This declaration creates an attribute on Person called friends. Since we're
bucking the usual Rails naming conventions, we have to specify the class
name of the model that we are relating to—in this case, the class Person. To
complete the association, we need to declare the relationships in the join
model:

rr2/self_ref/app/models/friendship.rb
class Friendship < ActiveRecord::Base
belongs to :person
belongs to :friend, :class name => "Person"
end

The only unusual thing here is that we need to specify the class name of the
friend attribute. If we hadn’t specified the class name explicitly, Active Record
would expect a relationship to a Friend model, which is not what we want.

Loading the console, we can see that this works as expected:

http://media.pragprog.com/titles/rr2/code/rr2/self_ref/db/migrate/20110111152844_create_friendships.rb
http://media.pragprog.com/titles/rr2/code/rr2/self_ref/app/models/person.rb
http://media.pragprog.com/titles/rr2/code/rr2/self_ref/app/models/friendship.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

54 ¢ Database Recipes

$ rails console
Loading development environment.
>> chad = Person.create(:name => "Chad")

=> #<Person id: 1, name: "Chad", ... updated at: "2011-01-11 15:33:37">
>> erik = Person.create(:name => "Erik")

=> #<Person id: 2, name: "Erik", ... updated at: "2011-01-11 15:33:40">
>> chad.friends << erik

=> [#<Person id: 2, name: "Erik", ... updated_at: "2011-01-11 15:33:40">]
>>

Great! But now that I think of it, as an idealist, I like to think that if I count
someone as being my friend, they reciprocate the feeling....

>> erik.friends

=> []

That makes me sad, though I'm convinced that the problem is not one of
human nature but just a limitation of Active Record’s conventions. Because
we need one key for the possessor and another key for the possessed party
in a join model, there’s no way for the relationship to be fully reciprocal on
naming convention alone. Thankfully, Active Record gives us the ability to
make the world a friendlier place by way of callbacks.

A quick change to our Friendship model gives us the following:

rr2/self_ref/app/models/friendship.rb

class Friendship < ActiveRecord: :Base
belongs to :person
belongs to :friend, :class name => "Person"
after create :be friendly to friend
after destroy :no more mr nice guy

def be friendly to friend
friend.friends << person unless friend.friends.include?(person)
end
def no _more mr nice guy
friend.friends.delete(person)
end
end

Even though we might never explicitly create a Friendship instance in our
application, when Active Record creates relationships via a join model, that
model’s callbacks get invoked. This is really cool, because it means we can
declare callbacks to be triggered when two objects are related. In this code,
we declare be_friendly_to friend() to be executed on a Friendship when it’s created
and no_more_mr_nice_guy() to be called when a Friendship is destroyed. So, now
when we call the following code:

person.friends << another person

http://media.pragprog.com/titles/rr2/code/rr2/self_ref/app/models/friendship.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Self-referential Many-to-Many Relationships ¢ 55

our code will encourage—OK, force—another person to accept person as his or
her friend.

Credit
Thanks to Luke Redpath for the ideas that led to this recipe.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 15

Protect Your Data from Accidental Mass Update

Problem

The way Rails integrates forms with Active Record models is a modern marvel
of convention. Form parameter naming conventions inform the Rails form
parameter parser to arbitrarily generate Ruby Hashes in your controllers. Active
Record models can be instantiated given Ruby Hashes that are used to set
their initial values.

Although mass attribute updates like this are a beautiful time-saving feature,
Rails does not discriminate when doing these mass Hash-driven assignments.
So, how do we protect attributes we don’t want users to be able to update?

Solution

Active Record ships with two built-in ways to protect attributes from mass
assignment, which can be invoked when a record is either created or updated:
the attr_protected() and attr_accessible() methods. If, for example, our User model
contains a flag to identify a user as an administrator, we will want to make
sure that users can’t flag themselves as administrators by modifying the form
we provide them to edit their profiles.

For a case like this, we can use the Active Record attr_protected() macro to guard
this and other attributes against mass update. attr_protected() accepts a list of
zero or more attribute names, which should not be mass-updatable. Here’s
how we would use it for this example:

class User < ActiveRecord: :Base
attr protected :admin
end

Now if we were to add the admin attribute to a form and try to update the
model, the model would save, and the new value for admin would be silently
ignored.

That’s fine, but if we were to add another sensitive field, we would need to
remember to update this call to attr_protected(). And if we added yet another,

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Protect Your Data from Accidental Mass Update ® 57

we’d have to update it yet again. Sure, this approach doesn’t require a lot of
typing, but the problem is that we're likely to forget to do it.

So, on models that are likely to contain such sensitive fields, you might choose
to focus on what’s allowed instead of what’s forbidden. It'll be more verbose,
but it’s always best to err on the side of safety when in doubt.

If our User model had the attributes name, password, and admin, we could
accomplish the same thing as our previous example with the following:

class User < ActiveRecord: :Base
attr _accessible :name, :password
end

Now, the only mass-updatable attributes for the User model are name and
password. Any new attributes added to the model will not be mass-updatable
unless they are added to this list. Safe but slightly inconvenient.

For the paranoid (or cautious) among us, a nice trick with attr_accessible() (and
attr protected()) is that they can be called with no parameters. If you call
attr_accessible() with no parameters, no attributes will be mass-updatable. As a
matter of convention, you might consider making attr_accessible() the default
for every new model in your application.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 16

Create a Custom Model Validator

Problem

Rails ships with a nice collection of model validators. You can use them to
validate presence, numericality, format, and several other qualities commonly
associated with attributes. Most of the time, these validators are enough to
meet our needs. But sometimes they’re not, such as when an application
requires validation specific to a domain that the built-in validators can’t
handle and that we’d like to reuse elsewhere.

How do we create a clean, reusable custom validator for Rails?

Solution

The solution is to create and reference a subclass of ActiveModel::Validator.

In Rails 3, all of the fancy declarative validators are built on a single, config-
urable method called validates_with(). Under the covers, Rails uses this single
configurable method to set up all validations instead of validation-specific
methods such as validates_uniqueness_of(). As a shortcut to simplify the options,
the class-level method validates() is provided to our models.

The validates() method allows us to specify multiple validations for a given
attribute in one call. It uses naming conventions to locate the validators. The
following code, for example, will ensure that instances of Person include a value
for age that is an integer:

class Person < ActiveRecord::Base
validates :age, :presence => true, :numericality => {:only integer => true}
end

The validates() method takes one or more attributes and a Hash of validation
options. The keys in these options are not hard-coded into Rails. They work
from naming conventions. The name :presence is translated and resolved to
the class name PresenceValidator. The name :numericality is resolved to the class
name NumericalityValidator. The validates() (and its underlying validates_with()) has no
knowledge of these specific validators. Let’s look at an example of how we can
use this to our advantage.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create a Custom Model Validator ¢ 59

Imagine we had a Product model for which we wanted to validate the format of
a stock-keeping unit (SKU) code. Let’s say that in our business the SKUs
consist of four uppercase ASCII letters, followed by a dash, followed by an
eight-digit numeric code. We could declare this validation “manually” with
the built-in validates_format_of() and a regular expression. But we're missing the
beauty of Ruby and Rails: the ability it gives us to program close to the domain!

So, instead, we’ll make a custom validator. This will give us a more declarative,
domain-level representation of our validation as well as giving us the added
benefit of being able to reuse the validation in other models or on other fields.

We'll start by defining our Product model and the validation for the sku field:

rr2/custom_validator/app/models/product.rb
class Product < ActiveRecord::Base

validates :identifier, :sku => true
end

Let’s start the console and take a look at the Product model:

>> Product
ArgumentError: Unknown validator: 'sku'

from .../validations/validates.rb:87:in "rescue in block in validates'
from .../validations/validates.rb:84:in "block in validates'

from .../validations/validates.rb:83:in “each'

from .../validations/validates.rb:83:in ‘validates'

Oops! We haven't created the validator for sku yet. This gives us some insight
into how the validators are resolved. During the call to validates(), the validator
is located and put in place. So, we need to define a validator that matches
the expected naming convention for sku. Let’'s name this validator SkuValidator.
We can define it anywhere as long as Rails loads it. Let’s put it in app/models.
If we name it using the usual Rails filenaming convention, sku_validator.rb, Rails
will automatically find it without having to explicitly require() it. Here’s the
validator:

rr2/custom_validator/app/models/sku_validator.rb
class SkuValidator < ActiveModel::EachValidator
def validate each(record, attribute, value)
record.errors[attribute] << (

options[:messagel || "is not a valid SKU code"
) unless
value =~ /\A([A-Z]{4})-([0-9]{8})\z/i

end
end

http://media.pragprog.com/titles/rr2/code/rr2/custom_validator/app/models/product.rb
http://media.pragprog.com/titles/rr2/code/rr2/custom_validator/app/models/sku_validator.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

60 * Database Recipes

Our validator class inherits from ActiveModel::EachValidator, which is what most
of the built-in validators inherit from. EachValidator's job is to iterate through
the list of given attributes, calling validate_each() for each one. The validate_each()
method takes the object being validated, the attribute name currently being
validated, and the value assigned to that attribute. To signal a validation
error, we simply add a message for the given attribute to the object’s error
list.

Now we can reload the console and interact with the model:

>> shampoo = Product.new(:name => "Glue Shampoo", :identifier => "shampoo!")
=> #<Product id: nil, name: "Glue Shampoo", identifier: "shampoo!">

>> shampoo.valid?

=> false

>> shampoo.errors.full_messages.to_sentence

=> "Identifier is not a valid SKU code"

>> shampoo.identifier = "ABCD-12345678"

=> "ABCD-12345678"

>> shampoo.valid?

=> true

Now that we've created the custom validator, we can use it in any class or
future application that may need it. Even if we don’t reuse it, we've separated
validation logic from the rest of the model, making the code easier to under-
stand and maintain.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 17

Nest has_many :through Relationships

Problem

The standard Active Record conventions for many-to-many relationships give
us an easy way to query and join models that are two tables away. For
example, a user has many groups through its memberships with them. When
a user is configured properly, we can easily ask for a user’s groups without
having to explicitly walk through its memberships. But what if we wanted to
get a list of meetings a user was expected to attend based on his or her groups?
How do you easily query a relationship that is three steps away from the
source?

Solution
Rails 3.1 introduced the ability to do multilevel has_many :through() relationships.

If we had defined the relationships mentioned in the problem statement, the
models would traditionally look like these:

rr2/nested_hm_thru/app/models/user.rb
class User < ActiveRecord: :Base

has many :memberships

has _many :groups, :through => :memberships
end

rr2/nested_hm_thru/app/models/membership.rb
class Membership < ActiveRecord: :Base
belongs to :user
belongs to :group
end

rr2/nested_hm_thru/app/models/group.rb

class Group < ActiveRecord: :Base
has_many :memberships
has _many :users, :through => :memberships
has_many :meetings

end

rr2/nested_hm_thru/app/models/meeting.rb
class Meeting < ActiveRecord: :Base
end

http://media.pragprog.com/titles/rr2/code/rr2/nested_hm_thru/app/models/user.rb
http://media.pragprog.com/titles/rr2/code/rr2/nested_hm_thru/app/models/membership.rb
http://media.pragprog.com/titles/rr2/code/rr2/nested_hm_thru/app/models/group.rb
http://media.pragprog.com/titles/rr2/code/rr2/nested_hm_thru/app/models/meeting.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

62 * Database Recipes

To get access to a given user’s meetings, you'd have to query for the user’s
groups and then loop through querying for the group’s meetings. This is both
ugly and inefficient. Here’s what it would look like in a console session:

>> user = User.first
>> groups = user.groups
>> groups.each do |group]|
p group.meetings
end
=> [#<Meeting id: 1, group id: 1, created at ...]

As we loop through the groups, querying for meetings, we're making a separate
query for each group. That’s not good. What if we had hundreds of groups to
loop through? Also, this code is just ugly. Why can’t we just ask a user for
its meetings? In Rails 3.1 and newer, we can. First we need to reconfigure
the User model like so:

rr2/nested_hm_thru/app/models/user.rb
class User < ActiveRecord::Base
has_many :memberships
has _many :groups, :through => :memberships
has many :meetings, :through => :groups
end

We've added one more line that says we can get to a user’s meetings through
its groups. That’s all it takes! Here’s how we could use this new functionality
in the console:

>> user = User.first
>> user.meetings

Not only is it more direct and easier to read, but it's more efficient. The call
to the meetings() method results in a single SQL query that would look some-
thing like this:

SELECT "meetings".* FROM "meetings"
INNER JOIN "groups" ON "meetings"."group id" = "groups"."id"
INNER JOIN "memberships" ON "groups"."id" = "memberships"."group id"

WHERE "memberships"."user id" =1

http://media.pragprog.com/titles/rr2/code/rr2/nested_hm_thru/app/models/user.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 18

Keep Your Application in Sync with Your Database Schema

Problem

Active Record migrations are a wonderful, database-independent way to evolve
a database schema as your application’s code evolves. And as a Ruby program-
mer, I find the ability to define schemas in a language that I have some chance
of remembering is a welcome relief from the inevitable Google searches and
head scratching involved whenever I have to go back to SQL DDL.

Unfortunately, many of our Rails applications’ schemas either were created
before they were moved to Rails or were created by someone not ready to use
the migration functionality. So, now it feels like a catch-22. You want to use
migrations, but you can’t because you're not already using migrations! How
do you go from a traditional, SQL-managed schema to an Active Record
migrations-managed schema?

Solution

The solution is to dump the schema in Ruby format and use that dump as
an initial database migration.

To see a real conversion to migrations in action, let’s start with a small set of
example tables. The following is the DDL for three simple tables, which back
an online cooking recipe database. We’ll assume that these tables already
exist in our database and that they have data in them.

rr2/migrations/initial_schema.sql
CREATE TABLE 'ingredients' (
'id' INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
'recipe id' int(11l) default NULL,
'name' varchar(255) default NULL,
'quantity' int(11l) default NULL,
'unit of measurement' varchar(255) default NULL
);
CREATE TABLE 'ratings' (
'id' INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
'recipe id' int(11l) default NULL,
'user id' int(11l) default NULL,
'rating' int(11) default NULL
)i

http://media.pragprog.com/titles/rr2/code/rr2/migrations/initial_schema.sql
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

64 * Database Recipes

CREATE TABLE 'recipes' (
'id' INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
'name' varchar(255) default NULL,
'spice level' int(11l) default NULL,
'region' varchar(255) default NULL,
‘instructions' text

);

The challenge is to move from this SQL-driven approach of creating and
maintaining schema to using Active Record migrations without the loss of
any data.

Active Record migrations are managed using a domain-specific language
called ActiveRecord::Schema. ActiveRecord::Schema defines a pure-Ruby, database-
independent representation of a database schema. Rails ships with a class
called ActiveRecord::SchemaDumper whose job is to inspect your databases and
print their schema definitions in ActiveRecord::Schema format.

After requireing active_record/schema_dumper (it’s not loaded by Rails by default), a
call to ActiveRecord::SchemaDumper.dump() will result in your default database’s
schema being dumped to your console. To see it in action, do the following.
(We've split the command across two lines to make it fit.)

$ rails runner 'require "active_record/schema_dumper"; \
ActiveRecord: : SchemaDumper.dump"’

But the Rails developers have made it even easier than this. Using the supplied
Rake task, db:schema:dump, you can dump your schema into the file db/schema.rb
at any time. Let’s do that with our existing schema:

$ rake db:schema:dump

Now our existing schema is converted to an ActiveRecord::Schema format in
db/schema.rb. Here’s what it looks like:

rr2/migrations/db/schema.rb
ActiveRecord: :Schema.define(:version => 20110115192759) do

create table "ingredients", :force => true do |t|
t.integer "recipe id", :limit => 11
t.string "name"
t.integer "quantity", :limit => 11
t.string "unit of _measurement"

end

create table "ratings", :force => true do |t]|
t.integer "recipe id", :limit => 11
t.integer "user id", :limit => 11
t.integer "rating", :limit => 11

end

http://media.pragprog.com/titles/rr2/code/rr2/migrations/db/schema.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Keep Your Application in Sync with Your Database Schema ¢ 65

create table "recipes", :force => true do |t|
t.string "name"
t.integer "spice level", :limit => 11
t.string "region"
t.text "instructions"
end
end

That was nice and simple. And, because this format is the same format that
migrations use, the create_table() code in this file will be the very code that
makes up our first migration! Let’s create that migration now:

$ rails generate migration InitialSchema
invoke active record
create db/migrate/20110115192759 initial schema.rb

Now we can take the code from db/schema.rb and paste it into our freshly gen-
erated migration file, db/migration/20110115192759 _initial_schema.rb. Here is what the
migration file should look like. (Note: don’t jump the gun—read ahead before
you run this migration, or you might lose data!)

rr2/migrations/db/migrate/20110115192759_initial_schema.rb
class InitialSchema < ActiveRecord::Migration

def up
create table "ingredients", :force => true do |t|
t.integer "recipe id", (limit => 11
t.string "name"
t.integer "quantity", :limit => 11
t.string "unit_of measurement"
end
create table "ratings", :force => true do |t]
t.integer "recipe id", :limit => 11
t.integer "user id", limit = 11
t.integer "rating", :limit => 11
end
create table "recipes", :force => true do |t|
t.string "name"
t.integer "spice level", :limit => 11
t.string "region"
t.text "instructions"
end
end
def down

drop _table :recipes
drop table :ratings

http://media.pragprog.com/titles/rr2/code/rr2/migrations/db/migrate/20110115192759_initial_schema.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

66 * Database Recipes

drop table :ingredients
end
end

Notice that we also added drop_table() calls to the migration’s down() definition,
which tell Active Record to remove those tables if we ever downgrade beyond
this version (though that’s unlikely to happen given that this is the initial
version of the schema). If you use drop_table() calls, remember to drop the tables
in such a way that you don’t break any foreign key constraints.

At this point, our application has been converted to use migrations. On a
fresh database, we can run rake migrate to install our schema. We can also start
generating subsequent migrations and evolve our database. But we still have
a problem. Our migration isn't quite ready yet. In its present form, this
migration will wipe out our existing data.

$ rails runner 'puts Recipe.count'’
253

$ rake db:migrate

$ rails runner 'puts Recipe.count'
0

Oops! You may have noticed that whenever the create_table() method is called
in the schema.rb file, the :force parameter is passed to it with a value of true. This
parameter causes Active Record to first drop the table if it already exists and
then re-create it. And with the loss of the initial table so go all of its rows.

Remove the :force parameter from your migration before you try to run it. It
won'’t get you all the way there, but you should get rid of it nevertheless to
avoid losing any data. Here’s what happens when we try to run the migration
now:

chad> rake migrate

(in /Users/chad/src/FR_RR/Book/code/ConvertExistingAppToMigrations)

rake aborted!

Mysql::Error: #42S01Table 'ingredients' already exists:

CREATE TABLE ingredients (id" int(11) DEFAULT NULL auto increment PRIMARY KEY,
‘recipe id® int(11), “name’ varchar(255), ‘quantity’® int(11),
‘unit_of_measurement® varchar(255)) ENGINE=InnoDB

This migration can’t create the tables, because they already exist. At this
point, we have two choices.

The first choice is a brute-force solution. We could dump our existing data
as fixtures (see Recipe 44, Extract Test Fixtures from Live Data, on page 163 to
learn how). This would allow us to drop and re-create our entire database,
starting over using migrations from the beginning. After re-creating the

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Keep Your Application in Sync with Your Database Schema ¢ 67

database, we would run rake db:migrate and then rake db:fixtures:load to restore the
data. Our application would then be ready for any future migrations without
any hassle.

The alternative is probably both easier and safer. Active Record was trying to
re-create tables that already exist because its method of determining which
version of the schema it’s on wasn’t available. Active Record uses a special
table called schema_migrations to keep track of the database’s current schema
version. This table contains a single column called version. You probably noticed
when you generated the migration file that its filename started with a number
that looked like a timestamp. It’s this number, prepended to every migration’s
filename, that Active Record uses to determine which files have not yet been
applied and in which order they should be applied.

The alternative way to make things work, therefore, is to insert a schema
version before the migration runs. Here’s a command that will do just that
(again, split onto two lines for formatting reasons):

$ rails runner 'ActiveRecord::Base.connection.execute(
"INSERT INTO schema migrations(version) VALUES(20110115192759);")'

Sure enough, after setting the schema version, a call to rake db:migrate works
as advertised. Congratulations! You are now one step closer to Rails nirvana.
Be careful, though. Migrations will spoil you. Once you've used them, you’ll
never want to go back.

Also See

For more information about using migrations, see the Rails API documenta-
tion.”

Also, as mentioned previously, if you want to learn how to extract your
existing development data as Active Record fixtures, see Recipe 44, Extract
Test Fixtures from Live Data, on page 163.

7. http://api.rubyonrails.org/classes/ActiveRecord/Migration.html

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 19

Seed Your Database with Starting Data

Problem

Most data-driven applications need some preexisting data the day they're
deployed. These might be lists of categories, authorization groups, lookup
tables, and other bits of required information. How can you ensure this data
will be consistently deployed with each new installation of your application?

Solution

If you want to seed a Rails database with the same data whenever you deploy
it, you should automate the process and make it part of your deployment
script. Today, the best approach is to run rake db:seed whenever you install a
new instance of your application. The rake db:seed task looks for and executes
the file named db/seeds.rb after the Rails environment and your application
code have been loaded. You can include any Ruby code you want in this file,
but typically you’ll write Active Record statements such as these:

chad = Person.create! (:name => "Chad", :location => "Boulder, (C0")
rich = Person.create!(:name => "Rich", :location => "Reston, VA")
chad.pets.create! (:name => "Shrenik")

chad.pets.create! (:name => "Arnie")

chad.pets.create! (:name => "Polkadot")

rich.pets.create! (:name => "Ewok")

What we have here is typical Active Record code. The one unusual aspect is
that we're using the create!() method instead of the usual create() method. The
<!> version of create() (and of save()) raises an exception when the record is
invalid.

This is very important to remember in seed data if you want to keep your
sanity! Forgetting to check the validity of records in the seed data has wasted
a lot of time for a lot of people. Don’t be one of them!

After having filled in the db/seeds.rb file, simply type rake db:seed to load the data.
And that’s it!

Keep in mind that this is just Ruby code executing in the context of your Rails
application. It's essentially the same as running a script through rails runner.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Seed Your Database with Starting Data ® 69

Therefore, any Ruby code is valid. You can and should clean up your seed
data in the same way you clean up your usual Ruby code. Remove duplication,
create methods, and generally refactor for readability and maintainability.
The previous example might better be expressed as follows:

chad = Person.create! (:name => "Chad", :location => "Boulder, C0")
rich = Person.create!(:name => "Rich", :location => "Reston, VA")
Sw(Shrenik Arnie Polkadot).each do |pet_name|
chad.pets.create! (:name => pet name)

end

rich.pets.create! (:name => "Ewok")

When you run the rake db:seed command, the existing database is not automat-
ically wiped out of the database. Sometimes this is what you want. Sometimes
it isn’t. Rails chooses the safer, ideally less destructive default. If you need
to clean out your database and start over, a good way to do it in development
is rake db:reset. This task drops and re-creates your database, loads the migra-
tions, and applies the seed data.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 20

Use Helpers in Models

Problem

Rails provides us with a number of useful text- and link-related helpers to
use in our views. But sometimes we need to generate links and manipulate
other view-related text in our models. How do we do this?

Solution

Fortunately, the helpers we use in our views are implemented using Ruby
modules. By default, they are mixed into the views, but if we want to use
them in our models as well, we simply need to mix them in.

Imagine we had a Meeting model whose to_s() method should return the subject
of the meeting and how many people are planning to attend. We’'d like to use
the pluralize() helper to generate this text. Here’s how to use it:

rr2/using_helpers_in_models/app/models/meeting.rb
class Meeting < ActiveRecord::Base
include ActionView: :Helpers::TextHelper

has_many :attendances
has _many :attendees,
:through => :attendances,
}source => :person
def to_s
"#{subject} - #{pluralize(attendees.count, 'person')} attending"
end
end

The following test demonstrates the behavior of our new to_s() method:

rr2/using_helpers_in_models/test/unit/meeting_test.rb
test "Generates a help summary" do
meeting = Meeting.create(:subject => "Plan the plan")
assert _equal "Plan the plan - 0 people attending", meeting.to s
meeting.attendees << Person.create(:name => "Haruki")
assert _equal "Plan the plan - 1 person attending", meeting.to s
end

http://media.pragprog.com/titles/rr2/code/rr2/using_helpers_in_models/app/models/meeting.rb
http://media.pragprog.com/titles/rr2/code/rr2/using_helpers_in_models/test/unit/meeting_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Use Helpers in Models ® 71

At the top of the definition of Meeting, we mix the ActionView::Helpers::TextHelper
module into the class. This gives us the capability to invoke any method de-
fined in ActionView::Helpers::TextHelper as an instance method of Meeting.

Also See

How did we know where to find the pluralize() method? We looked in the Rails
RDoc documentation. To determine which module defines any given method
in the Rails source, locate the method in the Rails API documentation (for
example, at http://api.rubyonrails.org), click the method, and then scroll to the top
of the page for that method’s documentation.

http://api.rubyonrails.org
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 21

Avoid Dangling Database Dependencies

Problem

By default, when you delete an Active Record with a one-to-many relationship,
the child rows of the parent remain in the database. Sometimes this is the
behavior you want. Often, it isn’t. How do you tell Active Record to delete
dependent records when a parent row is deleted?

Solution

Active Record’s has_many()—often forgotten and woefully underused—supports
a :dependent option that takes care of this problem. You can use this option to
tell Active Record what do with child records when a parent is deleted.

You can use it one of three ways, as the following table summarizes::

:dependent value Behavior

:destroy Calls destroy() on each child record, invoking callbacks
:delete Deletes each child record in a single database query

:nullify Sets the foreign key to null for each child record in a single

database query

Most common is :dependent => :destroy. When a parent is deleted, a relationship
configured with :dependent => :destroy will cause Active Record to load every
dependent record and call the destroy() on each. This allows your application
to take advantage of any before_destroy() or after destroy() hooks on the child
objects, so it’s a good choice in many cases. Here’s an example:

class Flight < ActiveRecord: :Base
has _many :seats, :dependent => :destroy
end

class Seat < ActiveRecord::Base
belongs to :flight
after destroy :cancel tickets!
def cancel tickets!
...
end
end

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Avoid Dangling Database Dependencies ® 73

This example from a fictitious airline reservation system destroys the seats
associated with a flight when that flight record is destroyed. This gives each
Seat the opportunity to cancel any associated tickets.

This solution might be OK if there were always a limited number of Seat
records. But imagine using :dependent => :destroy in an application with millions
of child rows. Instantiating all of those objects and running their callbacks
might bring the application to its knees. For these situations, we have two
options.

If we wanted to delete all of the child records and didn’t need to run any
callbacks, we could use :dependent => :delete. This option tells Active Record to
issue a single SQL delete statement for the parent record’s children. For large
numbers of child rows, this option performs significantly better than :dependent
=> :destroy.

What if we didn’'t want to delete the child rows at all? Sometimes we need to
keep the children of a one-to-many relationship but simply clear the foreign
key value so it doesn’t point to an invalid record. That’s where :dependent =>
:nullify comes in. Using :dependent => :nullify tells Active Record to issue a SQL
query to set the foreign key to null for every child row as a parent is destroyed.

In my own work, I frequently encounter Rails applications that don’t use the
:dependent option. This results in wasteful, messy data. I recommend auditing
your current applications and evaluating each has many() call in terms of
whether you're missing the :dependent option.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Part II

Controller Recipes

Controllers are the primary entry point into any
Rails application. They typically control what we
can do and how we can do it. They’re the gateway
between the Internet and our application’s business
logic. In a well-written Rails application, controllers
and their actions are succinct but expressive. These
recipes offer tips not only on how to make the most
of what Rails offers in the controller layer but how
to keep your controllers clean and maintainable.

Recipe 22

Create Nested Resources

Problem

Often in web applications, a given resource makes sense only in the context
of another resource. For example, in an event registration system, it doesn’t
make sense to create a registration without actually specifying which event
the user is registering for. In an e-commerce application, a selection makes
no sense outside the context of a shopping cart or order. A group membership
is meaningless without the group.

Therefore, it should be easy to express our resources in a way that makes
this contextual relationship explicit, while at the same time saving ourselves
from repetition and effort. In Rails, this concept is expressed through nested
resources.

How do we nest resources in our Rails routes so that we support URLs such
as http://example.com/people/123/orders/4567

Solution

To nest resources in our Rails routes, we can make nested calls to the resources()
method.

A resource that is nested inside another is created just like any other resource.
The controller is named the same way, and the actions and views for the
resource follow the usual conventions. The primary difference is in how the
resource is routed. Let’s look at the example of an event management system
and its registrations.

In this system, we want to allow for the ability to register for an event. Staying
true to the Rails CRUD conventions, we’ll accomplish this using a Registration
model. As I mentioned, a registration makes sense only in the context of an
event. We'll set up the Registration model with an event_id attribute and declare
it to belong to an Event:

rr2/create_nested_resources/app/models/registration.rb

class Registration < ActiveRecord: :Base
belongs to :event

end

http://example.com/people/123/orders/456
http://media.pragprog.com/titles/rr2/code/rr2/create_nested_resources/app/models/registration.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Nested Resources ¢ 77

Then, after creating the EventsController and RegistrationsController, we’ll configure
our routing like this:

rr2/create_nested_resources/config/routes.rb
CreateNestedResources: :Application.routes.draw do
root :to => "events#index"
resources :events do
resources :registrations
end
end

By passing a block to the declaration of the event resource, we are able to
nest configuration inside that resource. This route configuration declares that
we have nested our registration’s resources inside our event’s resources. You'll
notice now that if we dump our routing configuration, all of our registration’s
routes are hierarchically nested inside of the route to an event:

$ CONTROLLER=registrations rake routes

event registrations GET /events/:event id/registrations(.:format) \
{:action=>"index", :controller=>"registrations"}

event registrations POST /events/:event id/registrations(.:format) \
{:action=>"create", :controller=>"registrations"}

new event registration GET /events/:event id/registrations/new(.:format) \
{:action=>"new", :controller=>"registrations"}

edit_event registration GET /events/:event id/registrations/:id/edit(.:format) \
{:action=>"edit", :controller=>"registrations"}

event registration GET /events/:event id/registrations/:id(.:format) \
{:action=>"show", :controller=>"registrations"}

event registration PUT /events/:event id/registrations/:id(.:format) \
{:action=>"update", :controller=>"registrations"}

event registration DELETE /events/:event id/registrations/:id(.:format) \
{:action=>"destroy", :controller=>"registrations"}

Every path to the RegistrationsController requires an event _id for the route to match!

This means that forms for nested resources also need to supply the ID of the
object under which the resource is nested. There are many ways you could
imagine passing this id attribute around, including hidden form fields and
other explicitly coded hacks. Fortunately, Rails makes this easy. Here’s an
example of how you might set up a form to create a new Registration. First the
controller code sets up both the empty registration and the containing event
as instance variables:

rr2/create_nested_resources/app/controllers/registrations_controller.rb
class RegistrationsController < ApplicationController
def new
@event = Event.find(params[:event id])
@registration = Registration.new
end

http://media.pragprog.com/titles/rr2/code/rr2/create_nested_resources/config/routes.rb
http://media.pragprog.com/titles/rr2/code/rr2/create_nested_resources/app/controllers/registrations_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

78 * Controller Recipes

Note that we look up the Event by the supplied event_id parameter. Because we
have used a nested route, we can rely on this parameter being filled in. By
looking up the event from the database, we also verify that the ID passed in
corresponds to a valid event before displaying the form. Here’s the view for
the new() action:

rr2/create_nested_resources/app/views/registrations/new.html.erb
<%= form for [@event, @registration] do |[f| %>

<p>

<%= f.label :name %>

<%= f.text_field :name %>
</p>
<p>

<%= f.label :email %>

<%= f.text_field :email %>
</p>

<%= f.submit "Register! "%>
<% end %>

Linking a form to a nested resource couldn’t be easier. Instead of passing
only the @registration variable to the call to form_for(), we pass both the @event
and the @registration as an Array. If the form_for() method is given an Array, it con-
structs the corrected nested route to the resource automatically. That’s all
there is to it!

Now back in the controller, to finish the task, we could implement the create()
action to look something like this:

rr2/create_nested_resources/app/controllers/registrations_controller.rb
def create
@event = Event.find(params[:event id])
@registration = @event.registrations.build(params[:registration])
if @registration.save
redirect to root url, :notice => "Successfully registered!"
else
render :new
end
end

Again, because we're operating in the context of a nested route, we can rely
on the event_id being supplied. We first look up the Event, and we then use that
Event object to build and save the Registration.

There’s only one problem: code duplication. In both actions, we looked up
the @event variable using identical code. Since a registration makes sense only
in the context of an event, it’s easy to imagine this code being duplicated for
every action in the controller. Since this is a pattern we’ll see over and over

http://media.pragprog.com/titles/rr2/code/rr2/create_nested_resources/app/views/registrations/new.html.erb
http://media.pragprog.com/titles/rr2/code/rr2/create_nested_resources/app/controllers/registrations_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Nested Resources ® 79

again in nested resources, let’s clean it up. An idiomatic way to remove this
duplication in a Rails controller is to use a before filter(). This way, we can
declare that every action in our controller should have the associated @event
populated before the action’s code is executed. We could then remove the
duplicated code from each action. Here’'s the before filter() declaration and
implementation:

rr2/create_nested_resources/app/controllers/registrations_controller.rb
before filter :setup event
def setup_event
@event = Event.find(params[:event id])
end

Now before any action in the RegistrationsController is executed, the @event will be
retrieved from the database. If an invalid event ID is passed in, Rails will
automatically abort the request with a 404 Not Found HTTP status code,
displaying the application’s 404 page.

This recipe presents a common pattern in the use of nested resources. If
you're like me and many of the Rails developers I've worked with, your first
foray into nested resources might lead you to go overboard. Don’t get too
caught up in creating deep hierarchies in your routes. If you find yourself
setting up more than one level of nesting, take a step back and consider
whether you're making the application easier or harder to maintain.

http://media.pragprog.com/titles/rr2/code/rr2/create_nested_resources/app/controllers/registrations_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 23

Create a Custom Action in a REST Controller

Problem

By default, when we create a new REST controller, the resource-oriented
routing configuration constrains us to the standard set of seven actions:
create, update, edit, new, index, show, and destroy. How can we add custom
actions to controllers whose routes we have constrained using the resources()
method in our routing configuration?

Solution

To add a custom action to a REST controller, create a new controller method
and view and then add the action as either a member or a :collection route to the
routing configuration.

When you create a controller and configure its routing to go through the
resources or resource macro, Rails gives you a number of routes for free. Because
they’re automatically programmed, you don’t have to type in each of the
possible routes for the various create, read, update, and delete functions of
aresource controller. But at the same time, viewing a controller as a resource
manager is constraining.

If you want to do anything other than the standard seven CRUD actions, there
is no default way to route to those actions. This limitation is intentional. At
David Heinemeier Hansson’s 2006 RailsConf keynote, he used the phrase
“freedom through constraints” to describe this limitation, arguing that being
forced to think of all operations as CRUD actions leads to better designs. In
my own work, I've come to agree strongly with this idea. But sometimes you
really do need a custom, non-CRUD action in your REST controllers.

Suppose you have a simple application you use to track your music collection.
Manually adding albums to the list might become a chore. It would be nice
if you could copy information about similar album, one by the same artist,
say, instead of being forced to type the same information about him for each
album repeatedly. For example, if you were adding a stack of vintage David
Bowie albums to your collection, you could populate your database by copying
information from the album on the top of the pile to all of the other records.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create a Custom Action in a REST Controller * 81

That way, all you need to change for each entry is its title, tracks, and other
specifics, while preserving information about the artist copied from the first
album. Here’s what the model method to accomplish this might look like:

rr2/custom_rest_action/app/models/album.rb
class Album < ActiveRecord: :Base
def copy
self.class.new.tap do |new album|
attributes.each do |key, value|
new album.send("#{key}=", value) unless key == "id"
end
new album.save
end
end
end

The copy method creates a new Album object, copies all of the original album’s
attributes into it except for the id(), and saves it. Next we would want to be
able to call this method from our controller, so in the AlbumsController used to
manage the Album resource, we could add an action like this one:

rr2/custom_rest_action/app/controllers/albums_controller.rb

def copy
original album = Album.find(params[:id])
@album = original album.copy

redirect to edit album path(@album),
:notice => "This is a copy of #{original album.title}"
end

We would like to be able to post to this action, given the original album’s id(),
and then get redirected to the form with which we can edit and save our new
record. The problem we run into is that there are no default REST routes that
respond to an HTTP POST given an ID. So, we need to configure the resource
in our config/routes.rb file. Here’s an example configuration:

rr2/custom_rest_action/config/routes.rb
CustomRestAction: :Application.routes.draw do
resources :albums do

member do
post :copy
end
end

end

In a routing configuration, the resources() accepts an optional block. Inside this
block, as we saw in Recipe 22, Create Nested Resources, on page 76, you can
nest resources and set up custom routes. The first thing we do inside the
configuration of our album resource is to call the member() method, passing

http://media.pragprog.com/titles/rr2/code/rr2/custom_rest_action/app/models/album.rb
http://media.pragprog.com/titles/rr2/code/rr2/custom_rest_action/app/controllers/albums_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/custom_rest_action/config/routes.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

82 * Controller Recipes

yet another block. Inside the member() block, we declare that our controller
accepts a POST to the copy() action. That all makes sense, but what does
member() mean?

There are two types of entry points in any REST resource: member and collec-
tion routes. Member routes operate on a specific member of the set of
resources this controller is managing. So if albums are our resource, a
member route would operate on a specific album. This means member routes
require the id() of the resource they operate on. Collection routes point to
actions that operate on the full set of resources. The index() action is an
example of a collection route. You don’'t pass an id() to the index() action,
because it wouldn’'t have any meaning.

Now that we can route to our new action, all that’s left to do is to create a
way to get to it from the application’s user interface. Let’s add a “copy” button
in the Album’s show() action:

rr2/custom_rest_action/app/views/albums/show.html.erb
<%= button to 'Copy', copy album path(@album) %>

Here we've created a button that posts to the named route called
copy_album_path(). Remember, this named route is a member route, so we have
to pass in the id() of the album we're copying. As a shortcut, we can pass in
the @album object, and Rails will obtain its id() for us. In this case, we didn’t
use a link, opting for a button instead. There are two good reasons for this.
The first, and less technical, reason is that a link doesn’t as clearly tell the
user that when the link is clicked, something is going to change. As users of
web browsers, we've been trained over the years to expect buttons to perform
actions and links to take us to new pages. The second reason we chose a
button instead of a link is that buttons, unlike links, create an HTTP POST by
default, which is what is required for our route to match. A normal link would
generate an HTTP GET, which would result in a routing error. If you really
wanted a link to this copy() action, you could generate it using the :method
option to the link_to() helper like this:

<% link to "Copy", copy album path(@album), :method => :post %>

I've found that when something is hard(er) to do in Rails, it’s usually for good
reason. So, opt for buttons for generating POSTs, and think long and hard
before using this :method() option.

http://media.pragprog.com/titles/rr2/code/rr2/custom_rest_action/app/views/albums/show.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 24

Create a Helper Method to Use in Both Controllers and Views

Problem

If you want to create a method you can use throughout a controller, you can
simply define it as an instance method and call it from your actions. If you
want to create a method you can use in your views, you can put the method
in one of your view helper modules. Sometimes you want to use exactly the
same logic from both your controllers and your views. How would you
accomplish this?

Solution

Because we're using Ruby, there are many possible answers to this question.
But Rails gives us an easy, consistent way to do it using the built-in
helper_method() declaration. Define an instance method in your controller—in
this case, we’ll do it in ApplicationController so it will be available to all of the
controllers in our application—and then declare that method to be a helper
method: ®

rr2/helper_in_controller_and_views/app/controllers/application_controller.rb
class ApplicationController < ActionController: :Base
protect from forgery
helper method :impressive assertion
def impressive assertion
[Faker::Company.catch phrase, Faker::Company.bs].join(" will ")
end
end

We use the built-in class-level helper_method() to declare that any named
methods should be made available to the views for this controller and its
subclasses. That’s all there is to it. Now, from a view, we can simply call this
method:

rr2/helper_in_controller_and_views/app/views/marketing/index.html.erb
<hl>Welcome to Fancy Corp</hl>
<%= impressive assertion %>!

8. This code uses the fabulous Faker gem to generate random catchphrases, installable
via gem install faker.

http://media.pragprog.com/titles/rr2/code/rr2/helper_in_controller_and_views/app/controllers/application_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/helper_in_controller_and_views/app/views/marketing/index.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

84 * Controller Recipes

Now we can use our impressive_assertion() method in any controller or view in
our application. There’s no need to duplicate logic between the controller and
view layers, and changes made in our ApplicationController will be reflected
application-wide.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 25

Trim Your REST Resources

Problem

Imagine you are creating a service in which users can send messages to each
other. In this service, you want users to be able to create messages, but you
don’t want to let them edit the messages once they've been sent. Changing
the content of a message that other users might have already viewed would
be a confusing way to communicate.

How can we remove unimplemented references from our REST routes?

Solution

The resources() method in a routing configuration accepts options allowing us
to limit the routes it builds for a given resource.

As we know, REST controllers wrap CRUD operations for resources in a Rails
application. CRUD stands for “create, read, update, and delete.” While Rails
provides support for all four of these operations on a resource, not every REST
controller needs them. Because the Rails scaffold makes it so easy to generate
the full range of CRUD actions and because the resources() router method
automates the mapping of those actions to HTTP requests, it can be tempting
to just create the full set of CRUD actions and routes every time we make a
resource.

But unused code is forgotten code. And forgotten code is bad code. Forgotten
code can develop confusing inconsistencies with the rest of its codebase. It
can confuse maintainers who don’t realize it is unused. Worse than these
concerns, however, is that forgotten code doesn’t get updated with security
fixes. Unused code can easily lead to accidental back doors into a system.

So, the best rule of thumb is to always delete code you don’t need. Never leave
code in your codebase just because you think you might one day need it. This
applies to CRUD controllers and their routes. So, how do we trim them down?

Back to the specific example problem of removing unwanted actions from our
REST resources, the first thing to do, of course, is to simply delete the actions

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

86 * Controller Recipes

and views for edit() and update() from the application. However, once those are
removed, you'll still see the following routing configuration:

$ rake routes
(in /Users/chad/src/rr2/Book/code/rr2/trim_down your rest resources)
messages GET /messages(.:format) \
{:action=>"index", :controller=>"messages"}
messages POST /messages(.:format) \
{:action=>"create", :controller=>"messages"}
new message GET /messages/new(.:format) \
{:action=>"new", :controller=>"messages"}
edit message GET /messages/:id/edit(.:format) \
{:action=>"edit", :controller=>"messages"}
message GET /messages/:id(.:format) \
{:action=>"show", :controller=>"messages"}
message PUT /messages/:id(.:format) \
{:action=>"update", :controller=>"messages"}
message DELETE /messages/:id(.:format) \
{:action=>"destroy", :controller=>"messages"}

Those extra routes for edit() and update() take memory, so they cause each
request to be processed just a little more slowly. It might not be a big deal for
a small application, but a huge application with many routes should be freed
of any unneeded routes.

To remove the unneeded routes, we can pass one of two options in the call
to the resources() (or resource()) method. To exclude certain routes, use the :except
option, passing an Array of action names not to generate routes for. Alternative-
ly, you can use the :only option to explicitly name every action to generate a
route for.

In our code, we’ll use :except to exclude route generation for the :edit() and
update() actions.

rr2/trim_down_your_rest_resources/config/routes.rb
TrimDownYourRestResources: :Application.routes.draw do

resources :messages, :except => [:edit, :update]
end

After applying this change, we’ll see the new trimmed-down configuration
reflected in our routing configuration:

$ rake routes
(in /Users/chad/src/rr2/Book/code/rr2/trim _down your rest resources)
messages GET /messages(.:format) \
{:action=>"index", :controller=>"messages"}
messages POST /messages(.:format) \
{:action=>"create", :controller=>"messages"}
new message GET /messages/new(.:format) \
{:action=>"new", :controller=>"messages"}

http://media.pragprog.com/titles/rr2/code/rr2/trim_down_your_rest_resources/config/routes.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Trim Your REST Resources ® 87

message GET /messages/:id(.:format) \
{:action=>"show", :controller=>"messages"}

message DELETE /messages/:id(.:format) \
{:action=>"destroy", :controller=>"messages"}

Now our application is (slightly) faster and less susceptible to accidentally
executable code.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 26

Constrain Routes by Subdomain (and Other Conditions)

Problem

Sometimes you want to route to certain paths in your application only if the
application is accessed via a specific subdomain. For example, for convenience,
you might want to route to the administrative index page of your “exam-
ple.com” application when accessed via the URL http://admin.example.com.” Though
it would be possible to do this in a before filter() in your controllers, how can
you take advantage of the more declarative routing syntax to do per-subdomain
routes?

Solution

The arrival of Rails 3 introduced a flexible constraint-matching system to its
routing engine in the form of a :constraints key, which is the perfect solution to
this problem. By passing a :constraints key to any route, you can constrain how
Rails chooses to match that routing rule. Since subdomain-based constraints
are common, Rails includes a :subdomain key for this purpose right out of the
box.

The following simple routing configuration maps the root of an application to
the AdminController's index() action, but only if it is accessed with the “admin”
subdomain:

rr2/route_based_on_subdomain/config/routes.rb
RouteBasedOnSubdomain: :Application.routes.draw do

root :to => "admin#index", :constraints => {:subdomain => "admin"}
root :to => "home#index"
end

Since route recognition occurs in a top-down order, if you were to access this
application via http://admin.example.com, the first route would match because the
request was made for the root of the application, and the subdomain constraint
would match. If, however, you accessed the application through any other
subdomain, such as http://www.example.com, the first rule would fail to match
the constraint, and the routing engine would continue to the next rule in the
configuration, which would match, rendering the HomeController’s index() action.
That’s all there is to it!

http://media.pragprog.com/titles/rr2/code/rr2/route_based_on_subdomain/config/routes.rb
http://www.example.com
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Constrain Routes by Subdomain (and Other Conditions) ¢ 89

The special :subdomain constraint is a specific instance of a more general
framework. Routes can be matched based on arbitrary constraints. For more
flexible constraint matching, the routing engine gives you two more choices.
The first choice is to pass a Proc in as the value for the :constraint key in the
routing rule:

rr2/route_based_on_subdomain/config/routes.rb
RouteBasedOnSubdomain: :Application.routes.draw do
root :to => "phone#index",
:constraints => lambda{ |req|
req.params.keys.grep(/iphone/i).any?

}
root :to => "home#index"
end

This rule matches any parameter key whose name contains “iphone” case-
insensitively. You might use a flexible rule like this to handle legacy URLs
when porting an older site to Rails. In this case, our routing configuration
would match a URL such as http://www.example.com?iphone=1 and route to the
special phone index page. If you need to implement a constraint with more
complex logic, you can create your own class or object that responds to the
method matches?(). Here’s a more flexible version of the rule we just implemented
using a custom class. First, here’s the matcher class itself:

rr2/route_based_on_subdomain/config/routes.rb
class LegacyParameterMatcher
def initialize(regular expression)
@regular expression = regular _expression
end

def matches?(request)
request.params.keys.grep(@regular expression).any?
end
end

We could then use this class like this:

rr2/route_based_on_subdomain/config/routes.rb
RouteBasedOnSubdomain: :Application.routes.draw do
root :to => "phone#index",
:constraints => LegacyParameterMatcher.new(/iphone/1i)
end

This constraint system is extremely flexible and opens up a world of creative
routing possibilities. If you're like me and have been using Rails since the
early days, you may need to train yourself to turn to the routing configuration
for more dynamic solutions than were available in the past.

http://media.pragprog.com/titles/rr2/code/rr2/route_based_on_subdomain/config/routes.rb
http://www.example.com?iphone=1
http://media.pragprog.com/titles/rr2/code/rr2/route_based_on_subdomain/config/routes.rb
http://media.pragprog.com/titles/rr2/code/rr2/route_based_on_subdomain/config/routes.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 27

Add Web Services to Your Actions

Problem

You need to access the same business logic whether it's via a web browser
as posts or it's via an XML or JSON service. How do you cleanly support
multiple sets of view logic within the same action?

Solution

Web services can be easily added to your actions by taking advantage of the
Rails parameter parsers, using respond_to() to detect what format the client is
communicating with, and supplying additional options to the built-in render()
method, causing it to generate the appropriate output format and headers.

The following simple action creates a new Contact row in the database. It follows
the fairly typical pattern of saving the contact and then redirecting to the
page for that contact.

rr2/simple_web_services/app/controllers/contacts_controller.rb
def create
@contact = Contact.new(params|[:contact])
if @contact.save
redirect to @contact, :notice => 'Contact was successfully created.'
else
render :new
end
end

What if the client were posting XML instead of the usual encoded data? And
now what if we wanted to change the output based on the kind of client
accessing the action?

We'll start with the first question, because it's the easiest. How could we
modify this action to accept XML? What if we had, say, the following Java
program making a post from a legacy system to a new Rails application?

rr2/simple_web_services/CommandLinePost.java
import java.io.BufferedReader;
import java.net.URLConnection;
import java.net.URL;

import java.io.InputStreamReader;

http://media.pragprog.com/titles/rr2/code/rr2/simple_web_services/app/controllers/contacts_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/simple_web_services/CommandLinePost.java
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Add Web Services to Your Actions ® 91

import java.io.OutputStreamWriter;
public class CommandLinePost {

private static void usage()

{
System.err.println("usage: java CommandLinePost <url>");
System.exit(1);
}
public static void main(String argsl[])
{
if(args.length > 2)
usage();
String endPoint = args[0];
try {
String data = "<contact>" +

"<name>Kurt Weill</name>" +
"<phone>501-555-2222</phone>" +
"</contact>";

URL url = new URL(endPoint);
URLConnection conn = url.openConnection();
conn.setRequestProperty("Content-Type", "application/xml");
conn.setDoOutput(true);
OutputStreamWriter wr =

new OutputStreamWriter(conn.getOutputStream());
wr.write(data);
wr.flush();

BufferedReader rd =
new BufferedReader (new InputStreamReader(conn.getInputStream()));
String line;
while ((line = rd.readLine()) !'= null) {
// Imagine this was putting the data back into a legacy
// Java system. For simplicity's sake, we'll just print
// it here.
System.out.println(line);
b
wr.close();
rd.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}

How do we modify our action to accept XML input like this and parse it into
a form that we can work with? We don't.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

92 * Controller Recipes

By default, any POST made with a content type of application/xml will be parsed
by the Rails built-in XML parser and converted into a familiar hash of param-
eters that will be available, as always, via the params method in your controller.
Rails uses simple but effective rules for translating the XML into a hash. If
your root element is (as it is in this case) <contact>, a parameter will be available
via params[:contact]. If the <contact> tag contains a set of children, it will be con-
verted into an array in the params list. Otherwise, as in this case, it will be
converted into a hash with its child element names as keys.

So, if you construct your XML the way Rails expects it to be constructed, the
parameters will be populated exactly as if they had been submitted via an
HTML form.

Let’s move on to the second question we started with: how do we render a
response that depends on the kind of client that is accessing our action? We
could hack something together where different clients pass a special param-
eter. Or we could inspect the HTTP USER_AGENT field if it’s set. We could make
our judgment based on the content type of the input to our action.

But there’s a cleaner way. The HTTP specification supports a header field
called Accept. In this field, a client can list all of the MIME types (technically
called media ranges in this context) it is capable of accepting. So, to cook up
a simple example, a browser might pass something like text/htmltext/plain to
indicate that either of these formats is OK.

Clients can also pass wildcards such as text/* or even */*. The server should
then deliver content of the most specific type requested (that the server is
capable of returning). It’s also possible for clients to include a parameter, g,
appended to each content type and connected by a semicolon. This is called
the quality parameter and can be used to further specify an order of preference
for the media ranges reported.

The advantage of this approach is that it uses the HTTP standard in the way
it was intended. Many HTTP clients support this behavior, and it’s easy to
code an Accept header into your web service clients. The disadvantage is that
with so many standards to choose from, the logic to implement this would
be far more complex than our initial simple hack ideas.

Thankfully, however, this logic is already integrated into Rails. Via the method
respond_to(), it’s trivial to set up a single action to respond to various media
ranges and, therefore, client types. Here’s a revised version of our create()
action from earlier:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Add Web Services to Your Actions ® 93

rr2/simple_web_services/app/controllers/contacts_controller.rb
def create
@contact = Contact.new(params[:contact])

respond_to do |format|
if @contact.save
format.html do
redirect to(@contact,
:notice => 'Contact was successfully created.')
end
format.xml do
render :xml => @contact,
:status => :created,
:location => @contact
end
else
format.html { render :new }
format.xml do
render :xml => @contact.errors,
:status => :unprocessable entity
end
end
end
end

The new version of our action behaves similarly to the last one if the client
expects HTML. However, if the client expects XML, it sets the HTTP status
code to 201 (using the shortcut, :created) and then uses the to_xml() method on
our model to render XML to the client. The to xml() method renders XML that
follows the same basic convention that the XML input mechanism expects.
Since we used the :xml option when we called render(), the content type of the
response is automatically set to application/xml for us.

Note that for this behavior to be enabled for our client, we’d have to add the
Accept header to our client program. Here’s the Java code to set the client from
our earlier example to accept XML:

conn.setRequestProperty("Accept", "application/xml");

That’s it! If we recompile our Java code and run it against our create() action,
we should receive a nice, usable XML response.

http://media.pragprog.com/titles/rr2/code/rr2/simple_web_services/app/controllers/contacts_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 28

Write Macros

Problem

You notice a recurring pattern in your application. You're writing code for the
same actions over and over again in your controllers.

Looking at the declarative style of many of the Rails helpers such as respond_to()
and before_filter(), you want your own code to be expressed as succinctly.

How does Rails implement these so-called macros—code that writes code for
you? And how can you create your own?

Solution

To write our own Rails macros, we can take advantage of Ruby’s metaprogram-
ming capabilities. In this recipe, we’ll use define_method() to dynamically define
named methods to our controllers, which will be available as actions.

Ruby is an extremely dynamic language. We are all exposed to its dynamic
typing system daily, but the dynamism doesn’t end there.

Ruby, like Lisp and Smalltalk before it, allows programmers to easily write
code that writes and loads code at runtime. This is a really deep topic, and
we’re not going to attempt to dig too far into it here. Instead, we’ll focus on
the details necessary to implement our own Action Controller macros.

Let’s imagine we have a complex application with a large domain model for
which we have many actions that implement a simple search. We have stan-
dardized the look and feel of this search across the application so that users
have a consistent interface. In fact, we've made the look and feel so consistent
that we are able to reuse the same view for all the search actions and would
like to create a macro to do the work.

A typical instance of one of these actions might look like the following, a
simple search through contacts in a contact database:

rr2/metaprogramming/app/controllers/contacts_controller.rb
def search
@title = "Your Contacts"
@results = Contact.where("name like ?", "%#{params[:term]}%")

http://media.pragprog.com/titles/rr2/code/rr2/metaprogramming/app/controllers/contacts_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Write Macros ® 95

@display as = :name

@display path = :contact path

render 'shared/search results'
end

Over the life of our application, because we have refactored separate actions
into being able to use a single view, we ended up with this “configure by
instance variable” style. We set several variables in this action that influence
the behavior of the shared view. Let’s look at the shared view now:

rr2/metaprogramming/app/views/shared/search_results.html.erb
<h2 class='search header'>
<%= @title %>
</h2>

<% @results.each do |result| %>

<%= link to result.send(@display as),
send(@display path, result)
%>

<% end %>

We see here that the view of search results is structurally the same across
all search actions and uses the instance variables set in the search action to
decide what heading to use, which named route to link each result to, and
which attribute of the returned item to use as the display value for the link.
We can now easily use this same view to display search results for practically
any Active Record model, provided we create a search action that follows the
expected protocol.

The problem here is that although the view has been nicely cleaned of dupli-
cation, we still have a ton of duplicated code in our controllers. In a big
application, this kind of pattern might propagate itself tens of times. If we
needed to change the behavior of the search results view, we would have to
edit each action that references it. Bad news.

What would be great is if we could simply do something like the following in
our controllers whenever we wanted a search action:

search action for :contacts, :title => "Your Contacts"

In idiomatic Rails style, this would create a search action for the Contact
model with a sensible set of defaults that could be overridden by an options
Hash passed in as the second parameter to the method. Let’s convert our
existing search() action to a macro-driven implementation.

http://media.pragprog.com/titles/rr2/code/rr2/metaprogramming/app/views/shared/search_results.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Line 1

v

96 * Controller Recipes

The quickest and easiest way to make this macro available from any controller
in the application is to define it in ApplicationController. Here’s our ApplicationController
with the macro defined:

rr2/metaprogramming/app/controllers/application_controller.rb
class ApplicationController < ActionController: :Base
def self.search action for(table, options = {})
table = table.to s
model class = table.classify.constantize
define method(:search) do
@title = options[:title] || "Your #{table.humanize}"
search _column = options[:search column] || 'name'
@display as = options[:display as] || :name
@display path = options[:display path] || "#{table.singularize} path"

@results = model class.where("#{search column} like ?", "S#{params[:term]}%")

render 'shared/search results'
end
#FIXME: do routing configuration here

end

- end

Walking through the code, you’ll see that search_action_for() is defined using
self.search_action_for(). This is because we're defining the method to be called on
the controller class itself, not on instances of that class. When we call a method
inside a class definition, it gets called on that class. This method uses the
Rails built-in constantize() to dynamically look up a constant by name. In Ruby,
classes are constants, so in this case we're actually looking up the class using
its name.

Rails actions are simply methods defined on controllers. So, to write code
that writes Rails actions for us, we need to be able to define methods
dynamically. We can do this with Ruby’s define_method() method. We name the
method search(), because we want the action to be called search(). Although
we're defining this code in ApplicationController, it will be run in the context of
the controller from which it is called. So, if we call it inside ContactsController, it
will define a method called search() in that controller, not in ApplicationController.

Next we pass a block of code to define_method(). This is the code that makes up
the search() action’s real logic. The first step of the search code’s logic is setting
up our configuration. We support a set of sensible defaults, which users can
optionally override using the options parameter. In addition to the variables
we set in our contact-specific version of search(), we're also providing the abil-
ity to override which column the query will use in its WHERE condition, which
we’'ve named search_column in the options parameter.

http://media.pragprog.com/titles/rr2/code/rr2/metaprogramming/app/controllers/application_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Write Macros ® 97

Now that we have all of the configuration taken care of, on line 10 we actually
do the query. Notice that we're calling where() on the where variable. This was
set outside the scope of our dynamic method definition to the model class for
which we're creating a search action. That class, by virtue of Ruby’s support
for closures, gets embedded in the action and won’t be looked up again when
the action is invoked.

Finally, we need to add a route for this search action.

So, now we have a search() action maker that we can use in any controller we
want and with any model. If we had a controller for managing status updates
and wanted to support searching them, all we’d have to do is add something
like the following to our appointments controller:

search action for :appointments,
:title => "Upcoming appointments",
:search _column => 'description',
:display as => :subject

This is a great way to use less code for the same features, remove duplication,
and make life easier. We've gone through a simple example here, but these
basic building blocks can be applied to a diverse set of problems. Now that
you've seen it once, let your imagination take over, and you're sure to find
many ways this technique could help you on your own projects.

You can confront reuse in many ways. The two most prevalent ways are either
to generate code or to create a runtime framework. This recipe combines those
two. We generate code at runtime.

This kind of runtime code generation can be powerful. But it comes at a price.
Creating powerful abstractions such as these requires code that is sometimes
complex and uses the most advanced features of Ruby. During development,
it can be difficult to debug problems with generated code.

Typically, though, generated code done well creates an expressive, productive
environment. It’s a balancing act and a decision you shouldn’t take lightly.

And as an experiment, see how much of what you've learned in this recipe
could be applied to creating macros for Active Record models. You'll be sur-
prised by how much you can already do!

Also See

If you create something reusable in this manner, you might consider packaging
it as a gem. See Recipe 57, Create Your Own Ruby Gem, on page 221 for more
information.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 29
Manage a Static HTML Site with Rails

Problem

How can we take advantage of the Rails layout and templating systems while
building a static HTML website?

Solution

Rails caching provides the tools that we need to solve this problem, and we
can use them to produce a static website on the fly with Rails.

After spending enough time in Rails, I find myself getting used to the Rails
layout mechanism and seriously missing it when I'm building static sites.
Sure, other systems are specifically geared toward creating static sites. But
I use Ruby and Rails, and I'd rather not learn another system that I have to
use in static-site situations. On top of that, many static sites start out being
static but quickly need database-driven content. Starting with a simple Rails
site makes it easier to grow it into a dynamic site later.

Given that Rails has a simple and robust caching mechanism, we can use
Rails as a static-site management tool. Just set up a controller under which
to store your static content (I called mine pages), and add the following line
inside the controller’s class definition:

after filter { |c| c.cache page }

This tells the controller to cache every action as it is accessed. It’s possible
to declaratively cache actions by name, but if we want to cache all of the
actions in a controller, this after filter() method is the way to do it. Now, when
you access this page via your browser, Rails will create a static, cached version
of it that will be served directly by the web server on subsequent requests.

The generated pages will include any layouts that would normally be applied,
or even partials that have been rendered within your views. This is a great
way to componentize your static content. If your site displays the same contact
list in several places, for example, you can create a partial view with that
information and render it where appropriate.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Manage a Static HTML Site with Rails ® 99

Keep in mind that if you use this method on a page that requires authentica-
tion, the page that is cached will be the version that the first user saw. So, if
this page showed sensitive account information, that user’s information would
show up for every user who accessed the site. Use this technique only with
content that is the same for all users!

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 30
Syndicate Your Site with RSS

Problem

RSS and Atom feeds are ubiquitous. Although they were originally created to
track news stories, it's now common for an application to offer a feed for just
about anything that might update over time. Applications offer RSS and Atom
feeds to allow their users to track comments, new product releases, version
control commits, and pretty much anything you can imagine.

With syndication becoming more and more common, your users will expect
you to provide it as well. All of the major browsers support syndicated feeds
out of the box. How do you add syndication to your Rails applications?

Solution

To add syndicated feeds, we’ll do the following:

¢ Create a new controller to serve the feeds

e Configure our routes

e Use respond_to() to respond with the appropriate type of feed when
requested

e Create an XML Builder template to generate the feed’s view

Two major syndication formats® are in play today: RSS (Really Simple Syndi-
cation) and Atom. Although there are some technical differences between
these formats, the end-user experience is the same: RSS and Atom provide
the ability to syndicate chronologically sensitive site updates via XML feeds.

Plenty of web resources are available'® that detail these formats and how they
work architecturally, so we won’t belabor the points here. Suffice to say that
RSS and Atom both involve the production of an XML file by a server of some
sort and the consumption and display of the XML file contents (usually in
reverse chronological order) by one or more clients called news aggregators.

9. Actually, RSS is the subject of a huge amount of political tension on the Web, so it
has splintered into at least three separate flavors. Save yourself a headache, and don’t
worry about any of those flavors except for RSS 2.0.

10. http://en.wikipedia.org/wiki/Web feed

http://en.wikipedia.org/wiki/Web_feed
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Syndicate Your Site with RSS * 101

These aggregators allow a simple, unified view of what has changed across a
potentially large number of websites.

So, if you want your site to produce a feed that one of these aggregators is
capable of displaying, you need to publish with the aggregator in mind. All
the major news aggregators these days support both RSS and Atom, so for
this recipe we’ll focus on just one of the formats: RSS. The concepts involved
in producing an RSS feed are nearly identical to those of producing an Atom
feed, so with a little research, you can easily produce either. So, let’s stop
talking and start cooking up a feed!

As an example, we'll create a feed to syndicate new recipes added to an online
cookbook application. Whenever a recipe is added or updated, users should
be able to receive updates in their news aggregators. Let’s create a simple set
of models to represent users and recipes in the cookbook, starting with the
models:

rr2/syndication/app/models/recipe.rb
class Recipe < ActiveRecord::Base

has many :ingredients

belongs to :author, :foreign key => 'author id', :class name => 'User'
end

rr2/syndication/app/models/ingredient.rb

class Ingredient < ActiveRecord::Base
belongs to :recipe

end

rr2/syndication/app/models/user.rb
class User < ActiveRecord::Base

has many :recipes, :foreign key => 'author id'
end

The basic story with our schema is that we have users who author many
recipes, and the recipes have zero or more ingredients. It’s a simplistic schema,
but it works. Here’s a dump of the actual database schema:

rr2/syndication/db/schema_preserved.rb

create table "ingredients", :force => true do |t]
t.integer "recipe id"
t.string "name"
t.string "unit"
t.decimal "amount"
t.datetime "created at"
t.datetime "updated at"
end
create table "recipes", :force => true do |t]

t.string "title"

http://media.pragprog.com/titles/rr2/code/rr2/syndication/app/models/recipe.rb
http://media.pragprog.com/titles/rr2/code/rr2/syndication/app/models/ingredient.rb
http://media.pragprog.com/titles/rr2/code/rr2/syndication/app/models/user.rb
http://media.pragprog.com/titles/rr2/code/rr2/syndication/db/schema_preserved.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

102 * Controller Recipes

t.text "instructions"
t.integer "author id"
t.datetime "created at"
t.datetime "updated at"

end

create table "users", :force => true do |t]
t.string "name"
t.string "password"

t.datetime "created at"
t.datetime "updated at"
end

What do we want to accomplish with our RSS feed? If the core functionality
of the application is to allow users to share recipes, we would like to add a
feed to the application that will enable our users to subscribe to the running
stream of new and updated recipes. With information overload plaguing so
many of us these days, the ability to let the system keep track of what’s new
for you can make a huge difference.

We'll start by creating a separate controller for the feed. You don’t have to
serve feeds through a separate controller, but you'll frequently find that in a
complex application, even given the ability to use respond_to() to render different
formats for a single action, the behavior of the typical action doesn’t apply to
an RSS feed. For example, you won’t want to apply the same authentication
or authorization rules to an RSS feed (more on this later). You won’t want to
run an RSS feed through the same kinds of filters that you might run an
HTML action through. It just tends to be cleaner and easier to keep things
separate.

This being a food-related website, we’ll give the controller a name with two
meanings, FeedsController:

$ rails g controller Feeds
create app/controllers/feeds controller.rb
invoke erb
create app/views/feeds

Let’s create a simple action that grabs the fifteen latest recipes from the
database. We'll call it recipes(). This leaves the FeedsController open to serve other
feeds, should we eventually have the need.

rr2/syndication/app/controllers/feeds_controller.rb
def recipes

@recipes = Recipe.order("updated at, created at").limit(15)
end

http://media.pragprog.com/titles/rr2/code/rr2/syndication/app/controllers/feeds_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Syndicate Your Site with RSS * 103

Next we’ll need to add a route to the action:

rr2/syndication/config/routes.rb
match "feeds/recipes(.:format)" => "feeds#recipes"

Notice we've left the :format parameter configurable even though we're going
to support only RSS for now. That leaves us open to easily add alternate for-
mats later without having to deprecate the URLs our users have been using
for their feeds.

Now we’ve done the easy part. Our FeedsController has selected the latest recipes
to be added to the feed. It's time to generate the feed itself. And now we have
a decision to make: how should we create the feed’s XML?

We have three fairly good ways to create the feed file. We could use Ruby’s
built-in RSS library. This library provides a nice, clean API for both generating
and consuming RSS. Alternatively, we could create an ERb template that is
preformatted as an RSS feed and uses dynamically inserted Ruby snippets
to generate the recipe’s content. Finally, we could use the XML Builder library
to generate the RSS feed via a .builder template.

Each possible approach has its merits. Since we want to keep this recipe as
feed format-agnostic as possible, we’ll rule out using Ruby’s built-in RSS
library. That leaves us with either ERb or XML Builder. This being an XML
feed, we're likely to have a cleaner experience with XML Builder, so we’ll go
with that.

Just as with ERb templates, XML Builder templates should be named after
the actions they provide a view for. As usual, the middle part of the filename
specifies the format this template is created to render (RSS in this case).
Here’s what our recipes.rss.builder template looks like:

rr2/syndication/app/views/feeds/recipes.rss.builder
xml.instruct!
xml.rss "version" => "2.0",
"xmlns:dc" => "http://purl.org/dc/elements/1.1/" do
xml.channel do
xml.title 'Freshly Added Recipes'
xml.link recipes_url
xml.pubDate CGI.rfcl123 date(@recipes.first.updated at)
xml.description h("Cook Book Freshly Added Recipes.")
@recipes.each do |recipe]
xml.item do
xml.title recipe.title
xml.link recipe url(recipe)
xml.description recipe.instructions
xml.pubDate CGI.rfcl123 date(recipe.updated at)
xml.guid recipe url(recipe)

http://media.pragprog.com/titles/rr2/code/rr2/syndication/config/routes.rb
http://media.pragprog.com/titles/rr2/code/rr2/syndication/app/views/feeds/recipes.rss.builder
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

104 * Controller Recipes

xml.author recipe.author.name
end
end
end
end

In case you've never seen an XML Builder template before, here’s XML Builder
in the shell of a really, really small nut: all those method calls on the implic-
itly available object, xml, end up generating XML tags of the same name. The
tags get whatever value you pass into the method calls, and if you pass in a
block, all the nested calls create nested tags.

XML Builder templates are Ruby code, and they run as Rails views, which
means you can call all those wonderful helpers you normally use in your .erb
files. In this example, we use the Action View named route helpers. We could
have just as easily used any other built-in Rails helpers or even custom helpers
defined in our application.

We won’t go into too much detail on the RSS specification and what each
element in this feed means. You can read the full RSS 2.0 specification at
http://cyber.law.harvard.edu/rss/rss.html if you're into that kind of thing. This is the
high-level overview.

RSS feeds have channels. Channels are named and have URLs, titles, and
descriptions. More important, channels have items in them that also have
URLs, titles, and descriptions as well as authors and the timestamp of when
they were created. In our case, as you can see, these items are going to be
recipes.

With this overview of XML Builder and RSS, the workings of recipes.rss.builder
become self-apparent. The one little critical nugget you may not have noticed
is the use of the _url forms of the named route helpers (for example, recipes_url()).
This is easy to forget, because it’s seldom necessary in everyday Rails views.
It tells Rails to generate a URL with the full protocol and host name as opposed
to just the relative path to the URL. Since these feeds will be consumed outside
our application, a relative path won’t do.

Here’s an abbreviated example of the RSS feed we generate:

rr2/syndication/sample.xml

<?xml version="1.0" encoding="UTF-8"?>

<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">

<channel>

<title>Freshly Added Recipes</title>
<link>http://localhost:3000/recipes</link>
<pubDate>Tue, 04 Jan 2011 18:13:19 GMT</pubDate>
<description>Cook Book Freshly Added Recipes.</description>

http://cyber.law.harvard.edu/rss/rss.html
http://media.pragprog.com/titles/rr2/code/rr2/syndication/sample.xml
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Syndicate Your Site with RSS ¢ 105

<item>
<title>Blood Sausage</title>
<link>http://localhost:3000/recipes/1</link>
<description></description>
<pubDate>Tue, 04 Jan 2011 18:13:19 GMT</pubDate>
<guid>http://localhost:3000/recipes/1</guid>
<author>hank</author>

</item>

<item>
<title>Natto Omlet</title>
<link>http://localhost:3000/recipes/2</link>
<description></description>
<pubDate>Tue, 04 Jan 2011 18:13:20 GMT</pubDate>
<guid>http://localhost:3000/recipes/2</guid>
<author>forrest</author>

</item>

</channel>
</rss>

And here’s what a full feed would look like in an RSS aggregator:

Freshly Added Recipes

Natto Omlet

Bead more...

Figgy Pudding

Read more...

Grilled Cheese

Read more...

Goat Cheese Banana

Bead more. ..

Blood Sausage

Bead more. ..

Now that we have a feed available, we naturally want the world to know about
it. Of course, there’s always the tried-and-true method of putting a big RSS
button on your website with a link to the feed. But there’s also a trick for
helping web browsers and aggregators automatically discover available feeds.

report erratum -« discuss

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

106 * Controller Recipes

Although it’s not a published, official standard, a de facto standard for RSS
autodiscovery has emerged using the HTML <link> tag. The tag goes in your
page’s <head> element and looks like this (from my website):
<link href="http://feeds.feedburner.com/Chadfowlercom"

rel="alternate"

title="RSS"
type="application/rss+xml" />

Browsers and aggregators know how to extract these tags from web pages to
find the feed links. This is a really good thing to put in your layouts. It's much
easier for your users to remember mycooldomain.com when they're trying to
subscribe to your feed than some technical URL. Thankfully, Rails makes
adding an autodiscovery link trivial. Inside the <head> of your page template,
insert the following:

<%= auto discovery link tag(:rss,

:controller => 'feeds',
:action => 'recipes') %>

If you had created an Atom feed, you could replace :rss with :atom. Rails will
generate the <link> code for you, so you don’t have to remember the syntax.

Finally, as an optimization measure, since we've put our RSS code in a sepa-
rate controller, we can add the following to the top of the feed controller, just
after the class definition:

session :off

RSS requests are stateless, so there’s no need to generate a session for every
request. Since aggregators generally won't send any cookies with their
requests, leaving session enabled for a feed could translate into hundreds of
thousands of sessions needlessly created in a short span of time, which would
be a bad thing if you were storing your session data in a database or mem-
cached service.

RSS feeds are a great way to keep track of a large amount of time-sensitive
data. They're good for tracking public sites, but they're also good for keeping
track of your private information. For example, an RSS aggregator is a powerful
tool for managing a software project when attached to a bug tracker, source
control repository, and discussion forum.

The problem is that this kind of data is private and usually requires authen-
tication. RSS aggregators are hit-or-miss when it comes to supporting
authentication schemes, so it will probably be necessary to work around the
problem. One way to do that is by using obfuscated, resource-specific URLs.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Syndicate Your Site with RSS * 107

You can read more about how to do that in Recipe 55, Create Secret URLs,
on page 212.

Also See

Recipe 55, Create Secret URLs, on page 212

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 31

Set Your Application’s Home Page

Problem

By default, in a freshly generated Rails application, the root URL displays the
Rails Welcome Aboard page. But you'd like your root URL to point to a
meaningful action in your application, such as http://example.com/. When your
users access the root URL of your application, how can you configure Rails
to route them to the controller and the action of your choice?

Solution

The Rails routing method root() is the tool to use when you want to set a home
page for your application. In addition to providing a new route to our preferred
root, we also have to delete the existing index file of our application. If we are
building a recipe-sharing application, for example, and we want the root of
the application to point to a recipe index, we can configure the root to route
there like this:

rr2/set_home_page/config/routes.rb
SetHomePage: :Application. routes.draw do
root :to => "recipes#index"
resources :recipes
end

Although we have configured the root route, we're not finished. Here’s the
problem. If you access the root URL of the application now, you will still see
that old familiar Rails welcome page. Why? Because it’s being served not by
Rails but by the web server!

Look at the contents of public/index.html. You’ll find that this file contains the
source for the Rails welcome page. The public directory is where the Rails web
server configuration conventionally finds static pages and assets. Images in
public/images, for example, are accessible via http://example.com/images/. That means
the public/index.html file is accessible via http://example.com/index.html. For most web
server configurations, the filename index.html is special. If a browser requests
a directory path on the web server and an index.html file is present, the web
server will serve it up.

http://example.com/
http://media.pragprog.com/titles/rr2/code/rr2/set_home_page/config/routes.rb
http://example.com/images/
http://example.com/index.html
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Set Your Application’s Home Page * 109

The web server running your Rails application is configured to serve static
files that match the request path when they exist and to delegate to Rails
only when there’s no static file available. So, to disable the welcome page and
allow Rails to route to your intended root action, simply remove the pub-
lic/index.html file!

Now that you're routing to the action of your choice, don’t be fooled by the
simplicity of the root() method. You're not limited to simply pointing the root
URL to a specific controller and action. You have the same power available
here as you do with other routes. You could, for example, set arbitrary
parameters or apply constraints to the root mapping.

Perhaps you want to use the Recipe index both as an application home page
and as an regular index view for CRUD operations. The only difference between
these two modes of access is the sort order of the displayed recipes. You could
then configure the root mapping like this:

root :to => "recipes#index", :sort _style => "home"

Now, when the recipe index is accessed via the root URL, the sort style
parameter is set to home.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Part III

User Interface Recipes

No matter how well organized and efficient your
business logic, your views are what your users
experience in your application. Important as they
are, many developers treat them as an afterthought.
Keeping your views clean and maintainable is as
important as keeping your business logic clean.
These recipes will give you techniques not only for
creating solid, maintainable views but for adding
extra touches to your application’s interface, making
it easier and more appealing to use.

Recipe 32

Create a Custom Form Builder

Problem

Your application uses particular form elements and styles repeatedly. You
want to create a helper you can call whenever you need to build forms in the
same style. Suppose, for example, that you like to label every field of the form
you create with a name or alternate the color of each row in a grid.

Solution

To create a custom form builder, first define a custom FormBuilder subclass to
implement the result you want. Add it to the lib directory of your application.
Use the form_for :builder option to tell the framework to use your new FormBuilder
subclass instead of the default Rails FormBuilder. For example, to create a form
with labels for each of its fields, first define a LabeledFormBuilder class in your
application’s lib directory. Here’s its definition:

rr2/custom_form_builder/lib/labeled_form_builder.rb
class LabeledFormBuilder < ActionView: :Helpers::FormBuilder
(field helpers -
%w(check box radio button hidden field label)).each do |selector|
src = <<-END SRC
def #{selector}(field, options = {})

@template.content tag("p", label(field) + ": " + super)
end
END SRC
class_eval src, _ FILE , _ LINE _
end
end

Now use the build option of the form_for helper to call LabeledFormBuilder, as shown
in the following code snippet:

<%= form for :contact, :builder => LabeledFormBuilder do |f| %>
.text field :street address %>

.text_field :postal_code %>

.text_field :neighborhood %>

.text field :price %>

.text_area :notes %>

.submit %>

<% end %>

A
o
1l
— —h —h —h —h —h

http://media.pragprog.com/titles/rr2/code/rr2/custom_form_builder/lib/labeled_form_builder.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create a Custom Form Builder ® 113

The form_for() family of Rails helpers provides a form builder option that you
can use to customize your forms. Code for creating a vanilla Rails form to
gather data for a house variable might look like this:

%= form for @house do |f| %>

<%= f.text_field :street address %>
% .text field :postal code %>
.text field :neighborhood %>
.text_field :price %>

.text _area :notes %>

<%= f.submit %>

<% end %>

A
o
|

- —h —h —h

This code generates a form for the variable @house and five of its fields. While
its syntax is clear, this code generates the same HTML form we’d get with a
stock Rails application. The solution gets more exciting when you take advan-
tage of form_for()’s :builder option. The builder is the object that is yielded to
form_for()’s block. Because you call the helpers on that object, it’s the builder
that actually generates the HTML for the form and its tags.

Suppose we always want every field in our forms to have a label. The form_for()
call would look something like this:

<%= form_for :contact, :builder => LabeledFormBuilder do |f]| %>
<%= f.text_field :street address %>

.text field :postal code %>

.text field :neighborhood %>

.text_field :price %>

.text _area :notes %>

.submit %>

<% end %>

A
o of ci\l o°
—h —h —h —h —h

Then we would define the LabeledFormBuilder in our application’s lib directory.
Here’s its definition:

rr2/custom_form_builder/lib/labeled_form_builder.rb
class LabeledFormBuilder < ActionView: :Helpers::FormBuilder
(field helpers -
%sw(check box radio button hidden field label)).each do |selector|
src = <<-END SRC
def #{selector}(field, options = {})

@template.content tag("p", label(field) + ": " + super)
end
END SRC
class_eval src, _ FILE , _ LINE _

end
end

http://media.pragprog.com/titles/rr2/code/rr2/custom_form_builder/lib/labeled_form_builder.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

114 User Interface Recipes

If you haven’t done a lot of metaprogramming in Ruby, this class might be a
little jarring at first. It’s OK to take this dynamically generated code on faith,
so don'’t let it bog you down. You can use the LabeledFormBuilder class as a tem-
plate for creating your own builders. The code loops through all the helpers
defined on FormBuilder and overrides them with our own autogenerated method
definitions. If you turn your head to the side and squint at the code for
LabeledFormBuilder, you can see that, in the loop, the class defines a method with
the same name as each helper (such as text field() and text_area()). Each method
sets up a paragraph with a label after which the output of the original helper
from FormBuilder is placed.

Our modified form_for() now generates HTML that looks like the following
markup (some newlines were added to make this listing fit the width of the

page):

<p>
<label for="house street address">Street address</label>:
<input id="house street address"
name="house[street address]" size="30" type="text" />
</p>
<p>
<label for="house postal code">Postal code</label>:
<input id="house postal code"
name="house[postal code]" size="30" type="text" />
</p>

At last, we're getting somewhere! Now, because our forms are generated using
a builder that we can control, we can tweak this markup to our heart’s content
and create the perfect form wherever we need it. In fact, it’s so great to be
able to customize and standardize controls like this on a per-application basis
that it would be convenient if we didn’t need to include the :builder option on
each and every form. No problem! To do that, we just need to set Action View’s
default form builder at Rails startup. A good place to put code to execute at
startup is in the config/initializers directory. Any Ruby file in that directory will
be loaded and evaluated during the configuration phase of boot process.
Here’s our file that sets the default form builder for the entire application:

rr2/custom_form_builder/config/initializers/custom_form_builder.rb
require 'labeled form builder'
ActionView: :Base.default_form_builder = LabeledFormBuilder

We simply require the file that defines our labeled form builder and set it as
the default on ActionView::Base. Now, unless specifically overridden using the
:builder option, all form_for() calls in our application will use the LabeledFormBuilder
to generate HTML.

http://media.pragprog.com/titles/rr2/code/rr2/custom_form_builder/config/initializers/custom_form_builder.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create a Custom Form Builder ® 115

Now that you have that working, you can’t help but ask yourself what other
elements you constantly find yourself putting into forms. How about alternat-
ing the color of each row in a form? Here’s a form builder that does that:

rr2/custom_form_builder/lib/alternating_colors_form_builder.rb
class AlternatingColorsFormBuilder < ActionView: :Helpers::FormBuilder
(field helpers -
%w(check box radio button hidden field label)).each do |selector|
src = <<-END SRC
def #{selector}(field, options = {})
@template.content tag("p",

label(field) + ": " + super,
:class => @template.cycle("", "alt-row"))
end
END SRC
class eval src, FILE , LINE
end
end

This builder uses the built-in helper method cycle() to toggle the CSS class
name with each field’s paragraph tag. Adding a CSS snippet like the following
to your application’s style sheet will give you a nice, readable alternating table
row effect:

.alt-row { background: #fab444; }

Consider creating one or more custom form builders for each of your applica-
tions. As you can see here, custom form builders can create consistency in
your user interface and help make your code more maintainable and succinct.
Credit

Thanks to Mike Clark and Bruce Williams for their contributions to this recipe.

http://media.pragprog.com/titles/rr2/code/rr2/custom_form_builder/lib/alternating_colors_form_builder.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 33

Pluralize Words on the Fly (or Not)

Problem

One annoying little problem that we have all had to deal with from time to
time occurs when you need to choose between the plural or singular version
of a word depending on how many items are returned from a database. How
many messages does a user have in his or her inbox? How many failed
transactions does a financial operations team need to resolve? Wouldn't it be
great if the choice to display singular or plural could be automated?

Solution

Rails comes with a wonderful tool called the Inflector, which is the utility that
(among doing other tasks) figures out what a table name should be called
based on the name of its associated model. Its logic involves a great deal of
smarts, which has thankfully been exposed for use anywhere in a Rails
application. In fact, a handy wrapper method called pluralize() in Action View
was made to handle the most common pluralization scenarios. Here’s how
you use the pluralize method:

rr2/pluralization/app/views/recipes/index.html.erb
Hi <%= @user.name %>.
You have <%= pluralize @recipes.size, "unread recipe" %> 1in your inbox.

For example, what if your application isn’t in English or you want to support
the (horrible) geek-culture tendency to refer to server boxes as boxen? Casting
aside good taste, you can write your own language rules by customizing the
Inflector’s pluralization rules. A freshly generated Rails app even has a file,
config/initializers/inflections.rb, with commented examples. Let’'s uncomment and
modify some of the file’s lines:

rr2/pluralization/config/initializers/inflections.rb

ActiveSupport::Inflector.inflections do |inflect|
inflect.plural /(ox)$/i, '\len'
inflect.singular /(ox)en/i, '\1'

end

Now, the plural form of box is boxen, and vice versa.

http://media.pragprog.com/titles/rr2/code/rr2/pluralization/app/views/recipes/index.html.erb
http://media.pragprog.com/titles/rr2/code/rr2/pluralization/config/initializers/inflections.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Pluralize Words on the Fly (or Not) ® 117

You can also use the Inflector's uncountable() method to mark words that have
no plural and the irregular() method to configure words whose pluralization
rules don’t follow a pattern:

inflect.uncountable "fish", "information", "money"
inflect.irregular "person", "people"

If you're curious about which rules have already been configured, you can
query the configured rules like so:

>> ActiveSupport::Inflector.inflections.plurals

=> [[/(ox)$/1i, "\\1len"]1, [/k(?i)ine$/, "kine"1, [/K(?i)ine$/, "Kine"]...etc.
>> ActiveSupport::Inflector.inflections.uncountable

=> ["equipment", "information", "rice", "money", "species"...]

Noun inflection is a place where the consistency built into Rails really shines.
Take advantage of it where you can to avoid manual, often error-prone, plu-
ralization rules in your own code.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 34

Insert Action-Specific Content in a Layout

Problem

Layouts are a great way to keep the view code of your application free of
duplication while maintaining a consistent structure in its pages. But suppose
you want to add dynamic, action-specific content to a page without dirtying
the layout.

Solution

The best way to add dynamic content to a standard Rails page without dis-
rupting its appearance is to use the content_for() view method that ships with
the Action Pack. content_for() is used to queue up content for use later. The
method takes a Symbol parameter, which is used to name the content (think
of it as a view-specific variable name) and a block whose contents get stored
and associated with that Symbol. Here’s how to make it work.

Imagine we have a simple layout with a sidebar. We want to insert action-
specific content into the sidebar displaying “recent items” in a context-specific
way. Suppose the application is one that manages recipes. When we view the
recipe list, we want to show the most recently added recipes in the sidebar.
In our recipe index view, we might include something like this:

rr2/per_action_content/app/views/recipes/index.html.erb
<% content for :recent do %>
<h1l>Recent Recipes</hl>

<% @recent recipes.each do |recipe| %>
<%= link to recipe.name, recipe %></1li>
<% end %>

We define a block of view code that we're storing in the view and naming
“recent.” This code can appear anywhere in the index view. The location
doesn’t matter, because this code won’t be rendered into the view when we
call content_for(). It’s only processed and stored for later.

Now to use this snippet of view code, we do the following in our layout:

http://media.pragprog.com/titles/rr2/code/rr2/per_action_content/app/views/recipes/index.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Insert Action-Specific Content in a Layout ® 119

rr2/per_action_content/app/views/layouts/application.html.erb
<div id='sidebar'>
Things that go in the sidebar!
<% if content_for?(:recent) %>
<p class='recent'>
<%= yield :recent %>
</p>

<% end %>
</div>

This code defines a sidebar in which the static, site-wide sidebar contents
would go. Then we use the content_for?() method to conditionally render a
paragraph tag in which we’ll put our per-action content. If content_for?() returns
true, we define the paragraph and then call yield :recent to embed the results of
the content_for() call in the action’s view code.

The key to understanding the solution is the order in which Rails processes
each step of your request. When a request comes in, here’s a simplified list
of the steps Rails takes to satisfy it:

1. The routing engine uses the incoming HTTP verb and URI to map to a
controller and action.

2. The controller is instantiated with Request and Response objects encapsulat-
ing input and output.

3. The action method is executed.
4. The view for the action is rendered.
5. Unless otherwise directed, the layout is rendered.

If you're like me, you’ll be surprised by the order in which these steps are
executed. Given that an action’s content is added to the layout by a call to
yield() in the layout, you might have expected step 4 to come after step 5. But,
no. The action’s view is rendered first and then simply inserted into the layout
using yield().

Thus, the problem at hand is a view-layer problem. So, if you want to prepare
action-specific view content, the right place to do it is not in the controller
but in the view. Since the action’s view is rendered before the layout, we can
prepare action-specific view content for the layout while in the action’s view!

http://media.pragprog.com/titles/rr2/code/rr2/per_action_content/app/views/layouts/application.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 35

Add Unobtrusive Ajax with jQuery

Problem

You want to issue Ajax-style asynchronous HTTP requests to post and retrieve
data from a Rails service without reloading the user’s browser page. But you
want to keep your HTML as clean and free of code as possible. For example,
suppose you want to asynchronously switch between views of a personnel
file, one that shows only administrators and one that shows everyone without
reloading the entire page?

Solution

The answer is to use the new built-in support for unobtrusive JavaScript that
ships with Rails 3. Rails 3 also makes it easier for you to plug in your favorite
JavaScript framework, eliminating prior versions’ tight coupling with Prototype.js.
In fact, because the jQuery framework has become so popular, Rails 3.1 goes
one step further and installs jQuery as its default framework.

If you're implementing your site with a version of Rails that precedes version
3.1, you'll need to first install jQuery 3 before you can use it. (See Installing
JjQuery for Rails 3, on page 121.)

With jQuery in place, let's make sure we have the necessary headers in our
layout. By default, they will be in app/views/layouts/application.html.erb. We need to
ensure the following two lines appear in the head section of our layout:

<%= javascript_include_tag "application" %>
<%= csrf_meta tags %>

If we were to forget either of these lines, we might later find ourselves staring
at a lifeless HTML page with no sign of error, which as you can imagine would
be both frustrating and demotivating.

Now that we're set up and ready to go, for the sake of reproducibility we’ll
start with a scaffolded controller:

$ rails g scaffold Person name:string admin:boolean
invoke active record
create db/migrate/20110219192623 create people.rb
create app/models/person.rb

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Add Unobtrusive Ajax with jQuery ® 121

remove
remove
remove
remove
fetching
create
create
fetching
conflict

force

invoke
create
create

route

To install jQuery for your pre-Rails 3.1 project, you'll first need to update the project’s
Gemfile to include the following declaration:

gem 'jquery-rails'

To install the jquery-rails gem (and any other dependencies not yet installed for our
project), run the following command from the root of our Rails application:

$ bundle install

With your gems up-to-date, you should find yourself with a new generator that, when
you run it, will copy the necessary JavaScript files into your project for jQuery.

$ rails generate jquery:install

Overwrite public/javascripts/rails.js? (enter "h" for help) [Ynaqdh] Y

This generator removes Prototype.js and other supporting JavaScript files, replacing
them with jQuery. Also, notice we've allowed it to overwrite the file rails.js. This file is
where much of the magic of the Rails unobtrusive JavaScript support comes from.

Now you're ready to put jQuery to work.!

public/javascripts/controls.js
public/javascripts/dragdrop.js
public/javascripts/effects.js
public/javascripts/prototype.js
jQuery (1.5)
public/javascripts/jquery.js
public/javascripts/jquery.min.js
jQuery UJS adapter (github HEAD)
public/javascripts/rails.js

public/javascripts/rails.js

test_unit
test/unit/person_test.rb
test/fixtures/people.yml
resources :people

We have a collection of people, some of whom are administrators. We want
to modify the generated index view to allow us to asynchronously filter only
administrators and to toggle back and forth between the filtered and unfiltered

views.

We'll start by modifying the app/views/people/index.html.erb view. We need a link to
toggle the filtering functionality, but we don’t want this to be a normal link,
resulting in a browser page reload. We want it to make an Ajax request back
to the server without updating the page.

Here’s how we do that:

report erratum -« discuss

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

122 * User Interface Recipes

rr2/ajax_with_jquery/app/views/people/index.html.erb
<%= link to "Showing all (toggle)",
people path(:admin => true),
:remote => true,
:id => 'toggle' %>

We're creating a link back to the index() action of the PeopleController, passing in
a parameter called admin to signal to the server that we want the filtered list.
The part that makes this call special is the option :remote, which we've set to
true. This tells Rails to generate an Ajax-enabled link. How does it do this?

Here’s where the unobtrusive part comes into play. In the old days, Rails
might have generated inline JavaScript that would have overridden the onClick()
event for the link. In Rails 3, it does something better. Look at the generated
HTML from our link_to() call:

<a href="/people?admin=true"
data-remote="true"
id="toggle">Showing all (toggle)

Hey, that’s pretty clean! No JavaScript in sight! So, how does this become an
Ajax link? The answer is in the combination of the data-remote attribute we see
here and the contents of the public/javascripts/rails.js file we saw earlier. Here’s the
relevant snippet from that file:

$('al[data-confirm], al[data-method], a[data-remote]').live('click.rails',
function(e) {
var link = $(this);
if (!allowAction(link)) return false;

if (link.attr('data-remote') != undefined) {
handleRemote(link);
return false;

} else if (link.attr('data-method')) {
handleMethod(link);
return false;

1)

This code uses jQuery to hook the onClick() event of any anchor tag with the
“data-confirm,” “data-method,” or “data-remote” attribute set. If the “data-
remote” attribute is set, as is the case with our generated link, a click is
handled by the handleRemote() function. The handleRemote() function is also defined
in rails.js. It creates and processes an Ajax request.

So, now that we have a working Ajax link, the next step is to implement the
functionality on the server to respond to the request appropriately. Our link

http://media.pragprog.com/titles/rr2/code/rr2/ajax_with_jquery/app/views/people/index.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Add Unobtrusive Ajax with jQuery ¢ 123

points to the route for the index() action of the PeopleController. Here’s the new
implementation of that action:

rr2/ajax_with_jquery/app/controllers/people_controller.rb
def index
@people = params[:admin] ? Person.where(:admin => true) : Person.all

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @people }
format.js # renders index.js.erb
end
end

Now, rather than always return all of the people in the database, we condi-
tionally return administrators based only on the presence of the :admin
parameter. Finally, to respond properly to Ajax requests, we added the format.js
line to the respond_to() block. This signals that we can respond to requests with
JavaScript and that the default rendering action will take place, which in our
case will be the rendering of the file app/views/people/index.js.erb:

rr2/ajax_with_jquery/app/views/people/index.js.erb
<% link_text = params[:admin] ? "Admins" : "All" %>
<% href = params[:admin] ?

people path : people path(:admin => true) %>
$("#toggle").html("Showing <%= link text %> (toggle)");
$("#toggle").attr("href", "<%= href %>");
$("#people").html('<%= escape javascript(render @people) %>');

This is the final piece of the puzzle. To fully understand how it works, we’ll
need to look at the structure of our normal index view, app/views/peo-
ple/index.html.erb. Here’s the part that renders our people list:

rr2/ajax_with_jquery/app/views/people/index.html.erb
<ul id='people'>

<%= render @people %>

Notice we have an unordered list with the id “people.” For the list items, we
simply render a collection of @people, which implicitly calls app/views/people/ per-
son.erb in a loop. Here’s that partial:

rr2/ajax_with_jquery/app/views/people/_person.erb
<%= link to person.name, person %>

So, looking back to our index.js.erb file, you can see that the job of this file is
to render JavaScript code back to the browser. Since the filename ends with
erb, Rails will run this JavaScript code through the ERB templating system,
allowing us to insert dynamic server-generated code. The first five lines replace

http://media.pragprog.com/titles/rr2/code/rr2/ajax_with_jquery/app/controllers/people_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/ajax_with_jquery/app/views/people/index.js.erb
http://media.pragprog.com/titles/rr2/code/rr2/ajax_with_jquery/app/views/people/index.html.erb
http://media.pragprog.com/titles/rr2/code/rr2/ajax_with_jquery/app/views/people/_person.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

124 User Interface Recipes

the toggle link from our view so that it properly indicates whether we're
viewing everyone or just administrators and conditionally includes the admin
parameter for the next click.

The final line of the template generates JavaScript to replace the contents of
the element with the ID “people” (our unordered list), with the contents of
rendering the _person.erb partial for each item in the @people list.

Upon rendering this template and returning it to the browser, the calling
jQuery code will evaluate the JavaScript in the scope of the already loaded
page. So, our .js.erb view enables us to write JavaScript on the server that runs
locally in the already loaded page of a browser client. Powerful stuff!

Here we’'ve seen how to generate an Ajax link. The same can be done using
the form_for(), form_tag(), and button_to() helpers. In each case, an option called
:remote results in the “data-remote” being set and the rails.js file hooking in
appropriately.

Now that you see how easy it is to create Ajax effects for your application,
avoid the temptation to apply it everywhere. Sometimes the simplest user
interface is just a plain old page refresh.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 36

Create One Form for Many Models

Problem

In a well-designed database, tables are partitioned according to their meanings
in the application domain and the most efficient methods of access. As
database programmers, we spend a lot of time and energy making sure our
databases are well-designed. Unfortunately, this design doesn’t always
translate well into our user interfaces. What'’s good for a relational database
management system may not be good for a human trying to do data entry.
Go figure.

The mismatch between design and Ul is a particular problem when we want
to create a form for entering or editing data that belongs to two or more
models. With the form_for() helper that ships with Rails, we can only create
forms that wrap one ActiveModel object. So, how can we create a form we can
use to interact with data from multiple, associated models?

Solution

The keys to creating multimodel forms in Rails are Active Record’s
accepts_nested attributes for() method and Action View’s fields_for() method.

Imagine we have a Recipe model with a has_many() association to ingredients.
The model code might look like this:

rr2/nested_forms/app/models/recipe.rb

class Recipe < ActiveRecord::Base
has many :ingredients

end

rr2/nested_forms/app/models/ingredient.rb

class Ingredient < ActiveRecord: :Base
belongs to :recipe

end

A recipe has a name and a long text field of instructions. An ingredient belongs
to arecipe and has a name and a quantity. Recipes can have many ingredients.

When users create a recipe entry in the site’s user interface, they aren’t going
to think of each ingredient as a separate record, even though that’s how we've

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/recipe.rb
http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/ingredient.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

126 * User Interface Recipes

chosen to model them in the database. They're going to want to create a recipe
and its ingredients on a single form. We can enable this using the built-in
view helper fields_for().

When we create a form with form_for(), it yields an ActionView::Helpers::FormBuilder
to the block in our view. Rails developers usually call this local variable f. The
FormBuilder is responsible for wrapping the object for which the form is being
built, binding to any existing data in that object, and forming the necessary
parameter names to match the Rails parameter conventions also used by our
controllers.

If we call the fields_for() helper on the FormBuilder, Rails constructs a new FormBuilder
instance for us, but this time it wraps an associated record or set of records
rather than the primary subject of the form. Here’s an example that wraps
our Recipe and Ingredient models:

rr2/nested_forms/app/views/recipes/new.html.erb
<h1>Add a Recipe</hl>
<%= form _for @recipe do |f| %>

<p>

<%= f.label :name %>

<%= f.text_field :name %>

</p>

<p>
<%= f.label :instructions %>
<%= f.text area :instructions %>
</p>
<h2>Ingredients</h2>
<p>
<%= f.fields for(:ingredients) do |ingredients form| %>
<%= ingredients form.label :name %>
<%= ingredients_form.text_field :name %>
<%= ingredients form.label :quantity %>
<%= ingredients form.text field :quantity %>
<% end %>
</p>
<%= f.submit %>
<% end %>

To signal to the model that we're going to be pulling in all of these associated
attributes from the form, we’ll add the following declaration to our Recipe
model:

rr2/nested_forms/app/models/recipe.rb
accepts nested attributes for :ingredients

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/views/recipes/new.html.erb
http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/recipe.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create One Form for Many Models ¢ 127

Combined, these examples create a single form that posts, by convention, to
the RecipesController’s create() action. However, in addition to the usual fields for
the @recipe object, it also wraps fields for a new Ingredient. This seems great so
far, but if we were to load this page in our browser, we’d be greeted with an
empty list of Ingredients and no way to add one. This is because the fields_for()
method generates fields for an existing object. If we want to add new Ingredients,
we need to first create empty Ingredient objects and associate them with the
Recipe.

One way to do that would be to add a new Ingredient to the @recipe when we
instantiate it in the new() action in the controller. That might look something
like this:

rr2/nested_forms/app/controllers/recipes_controller.rb
def new

@recipe = Recipe.new(:ingredients => [Ingredient.new])
end

With this in place, we should see one empty slot for an Ingredient when we view
the new Recipe form. Let’s look at the generated HTML for the part of the form
that wraps associated Ingredients:

<h2>Ingredients</h2>
<p>

<label for="recipe ingredients attributes 0 name">
Name
</label>
<input id="recipe_ingredients_attributes 0 name"
name="recipe[ingredients attributes][0] [name]"
size="30"
type="text" />
<label for="recipe ingredients_attributes 0 quantity">
Quantity
</label>
<input id="recipe ingredients attributes 0 quantity"
name="recipe[ingredients attributes][0][quantity]"
size="30"
type="text" />
</p>

From this generated HTML source we can start to get a feeling for how Rails
will parse and process this form for our controller. If we submit this form with
no values, we'll see the following param structure on the server:

{"utf8"=>"/")
"authenticity token"=>"dUdoPRMb9EFdX0oCF6wJOyhK7R2PAUQ9Dkz3epCOEdM=",
"recipe"=>{

"name"=>"",

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/controllers/recipes_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

128 User Interface Recipes

"instructions"=>"",
"ingredients attributes"=>{"0"=>{"name"=>"", "quantity"=>""}}},
"commit"=>"Create Recipe"

}

Notice that the ingredients_attributes key is nested in the main recipe Hash, which
means as per Rails convention, the method ingredients_attributes=() will be invoked
when a new Recipe is instantiated with this data. Guess what the accepts_nest-
ed_attributes_for() macro does? That’s right! It metaprograms a method onto
Recipe, which defines ingredients_attributes=().

If all we need to do is add one ingredient to a Recipe when we create it, we're
done. But this still leaves a little to be desired. For example, every recipe is
likely to need more than one ingredient, so providing for only a single addition
isn’t so great. Also, when we're editing an existing recipe, it might be nice to
be able to delete associated ingredients. Let’s tackle those two problems.

There are many ways to allow users to add ingredients. The simplest way is
to simply preallocate a number of empty ingredients whenever the form is
loaded. Rather than hard-code this allocation into the controller as we saw
in the previous example, let’'s make a nice model-level method to do it for us.
We'll add a new instance method to the Recipe class:

rr2/nested_forms/app/models/recipe.rb
def with blank ingredients(n = 5)
n.times do
ingredients.build
end
self
end

Now in our call to form_for(), we can add a reference to this method. Because
with_blank_ingredients() returns self, its return value can be passed directly into
form_for():

rr2/nested_forms/app/views/recipes/new_prealloc.html.erb
<%= form for @recipe.with blank ingredients do |f| %>

Now five blank ingredients will appear on the form. If we fill out the form,
those ingredients will be saved. If we were to use this form for our edit() action,
the existing ingredients would appear as well as five blank ingredient fields.
Preallocating a set number of blank form elements is a little ugly, but it works.
The one major problem with this implementation is that when we save the
form, the blank ingredients that we did not fill in will also be saved. We can
fix that by adding an option to our accepts_nested_attributes_for() call, as shown in
the following code:

http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/models/recipe.rb
http://media.pragprog.com/titles/rr2/code/rr2/nested_forms/app/views/recipes/new_prealloc.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create One Form for Many Models ® 129

accepts nested attributes for :ingredients,
:reject if => lambda { |attrs|
attrs.all? { |key, value| value.blank? }
}

This tells the ingredients_attributes=() not to save any Ingredient records whose
passed form values are blank.

Finally, let’s look at how to remove existing child records in a nested form.
One option is, of course, to simply create a button next to each Ingredient row
on the form that calls the destroy() action in the IngredientsController. But, our goal
here is to allow our users to do as much as possible on this one form, and
sending them on round-trips with page refreshes defeats the purpose. So,
instead, we can take advantage of yet another Rails convention.

If in our nested form fields we create an attribute called _destroy, we can use
it to ask accepts_nested attributes_for() to automatically destroy nested records for
us. Here’s what we would have to add to our view:

<%= unless ingredients_form.object.new_record?
ingredients form.check box(' destroy') +
ingredients form.label(' destroy', 'Remove')
end %>

So, if we're working with an Ingredient that has yet to be saved, it doesn’t make
sense to ask to destroy it. If the record has been saved, we generate a checkbox
with the special attribute name _destroy. All that’s left to do now is to tell
accepts_nested_attributes_for() that it’'s OK to destroy records. We do that with the
:allow_destroy option:

accepts nested attributes for :ingredients,
:reject if => lambda { |attrs|
attrs.all? { |key, value| value.blank? }

}I
:allow_destroy => true

And, now, if we pass down a value for the destroy attribute associated with
an Ingredient, Active Record will destroy that record for us!

Rather than preallocate an arbitrary number of new records for a nested form,
it's common practice to use JavaScript to generate those rows. Using your
favorite JavaScript library, it can be trivial to templatize and dynamically add
elements to the browser’s document object model. The trick is in understand-
ing the structure necessary for those new elements. If we look at the generated
HTML for one of the Ingredient elements in our solution, we’ll see something
like this:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

130 * User Interface Recipes

<input id="recipe_ingredients_attributes 0 name"
name="recipe[ingredients attributes][0] [name]"
size="30"
type="text" />

The secret here is that the literal “0” doesn’t have to be a number! It just has
to be unique in the set of values we pass from the browser. So, when using
JavaScript to dynamically generate nested form elements, you can use any
trick for generating a per-form unique value. A good choice, for example,
might be to use the current timestamp.

An important point to note about nested forms is that although Rails makes
it relatively painless to implement them, big forms can clutter the view and
make life harder for your users. Before turning to a complex nested form on
your next application, ask yourself whether it would be better for the user to
break the form into multiple steps.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 37
Cache Local Data with HTML5 Data Attributes

Problem

Before the introduction of HTML5, if you were creating a rich, JavaScript-
driven HTML user interface and wanted to store data in the browser for use
by elements on the page, you were on your own. You could certainly store
data in a JavaScript structure and access it by element id. Or you could create
a custom XHTML namespace. But any solution required some manual work,
and anyone who followed you on the project had to learn your way of doing
things.

HTML5 introduces a standard solution to this problem with its new data-*
attributes. How can we best use these from Rails applications?

Solution

You can create tags that store local data with the new Rails 3.1+ :data option.
This gives us a convenient mechanism for generating HTML5 tags with data-*
attributes, a feature available with HTML 5. In this recipe, we’ll generate a
page with data-* and then show how to read those options using CoffeeScript.

The first step is to generate an HTML template containing data attributes. As
an example, we’ll create a simple contact management app. We want to gen-
erate a sparse list of contact names but show more detailed information about
the contact when a user hovers over the name with a mouse. We'll start with
the default scaffolded index() action and a basic Contact model containing fields
for name, city, state, and country.

Here’s code to list the Contact records like this:

rr2/html5-data/app/views/contacts/index.html.erb
<hl>Listing contacts</hl>

<% @contacts.each do |contact| %>
<%= content tag for(:1li,
contact,
:data => {
:city => contact.city,
:name => contact.name,

http://media.pragprog.com/titles/rr2/code/rr2/html5-data/app/views/contacts/index.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

132 * User Interface Recipes

:country => contact.country}) do %>
<%= contact.name %> from <%= contact.city %>
<% end %>
<% end %>

<%= link _to 'New Contact', new_contact _path %>
<div id='tip' style='display:none'>
</div>

There isn’t much new here. Except for one feature, it’s all the same view code
Rails developers have been writing for years. The exception is that when we
generate the elements, we use content tag_for()’s :data option to specify a Hash
of data elements we want embedded in the generated element. So, though
our element shows only the contact’s name, the element itself has more
information embedded. An example contact list’s source might look like this:

<li class="contact" data-city="New Orleans"
data-country="USA" data-name="Chad Fowler" id="contact 1">
Chad Fowler from New Orleans

<li class="contact" data-city="0Oak Park" data-country="USA"
data-name="Donald Shimoda" id="contact 2">
Donald Shimoda from Oak Park

<li class="contact" data-city="Tokyo" data-country="Japan"
data-name="Toru Okada" id="contact 3">
Toru Okada from Tokyo

Now that we've successfully embedded data into the list elements, we’ll write
some CoffeeScript to display it. We have prepared an empty, hidden <div> at
the bottom of our index() view with the id set to <tip>. Our CoffeeScript code
will fill this element with additional contact information when a user hovers
over the corresponding list element. Here’s our CoffeeScript file, which we've
put in app/assets/javascripts/contacts.js.coffee:

rr2/html5-data/app/assets/javascripts/contacts.js.coffee
$ ->
$('.contact').bind 'mouseenter', (event) =>
contact = event.target
$('#tip').html text summary for(contact)
$('#tip').show()
$('.contact').bind 'mouseleave', (event) =>
$('#tip') .hide()

http://media.pragprog.com/titles/rr2/code/rr2/html5-data/app/assets/javascripts/contacts.js.coffee
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Cache Local Data with HTML5 Data Attributes ® 133

As of Rails 3.1, Rails will automatically compile CoffeeScript files into JavaScript in

development mode. Simply edit CoffeeScript files in your app/assets/javascripts directory,
and Rails will compile them into JavaScript and serve them as requests are made.

Here we're using jQuery’s ability to run code when the document is ready.
The code binds the <mouseenter> event to set the tip element’s HTML to a
text summary of the contact record and show it. Then on a <mouseleave>,
we re-hide the tip. The text_summary_for() function simply concatenates a string
of text to be rendered into the tip element:

rr2/html5-data/app/assets/javascripts/contacts.js.coffee
text summary for = (contact) =>
contact.dataset['name'] +

" lives in " +

contact.dataset['city'] +

n in n +

contact.dataset['country']
That’s all there is to it! As you can see, HTML5 data attributes make in-element
data storage simple, and the addition of the :data option in Rails 3.1 makes it
even cleaner.

Also See

e For more information on new features of HTML5, see Brian Hogan’s HTML5
and CSS3: Develop with Tomorrow’s Standards Today [Hog10].

e To learn more about CoffeeScript, check out the CoffeeScript website at
http://jashkenas.github.com/coffee-script/. Another alternative, Trevor Burnham'’s
CoffeeScript: Accelerated JavaScript Development [Burl1], is an excellent
guide to the language.

report erratum - discuss

http://media.pragprog.com/titles/rr2/code/rr2/html5-data/app/assets/javascripts/contacts.js.coffee
http://jashkenas.github.com/coffee-script/
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Part IV

Testing Recipes

Rails is an “opinionated” application framework. It
pushes its opinions on you through conventions
and automation. In a vanilla Rails workflow, the
shortest command possible causes all of your appli-
cation’s automated tests to run. This is Rails telling
you something: testing is important, and you should
do it all the time! These recipes show you how to
test your models, controllers, views, and emails
using both the built-in features of Rails and a col-
lection of the leading-edge testing techniques and
third-party tools.

Recipe 38

Automate Tests for Your Models

Problem

A well-written Rails application captures all of its business logic in its models.
Controllers and views let the outside world interact with those models. So, it
stands to reason that most of your work as a Rails developer is going to
happen implementing business rules in the model layer of the MVC framework.

If you're spending most of your time writing business rules in model files, it
would be really convenient to test them without the interruption of having to
wire the application’s controllers and views to the models, start up the local
development server, and then click links and fill out forms by hand. If you're
the lone developer and the only one who knows how to performs those man-
ual checks, you’ll be left with a system that’s hard to maintain and harder to
test. Chances are you’ll forget the details your application over time, and
you’re unlikely to take the time to step through the entire application each
time you make a change.

An automated test is clearly the answer. How can we automate the testing of
the business logic of our application?

Solution

The way to automate your business logic tests is to implement them as Rails
unit tests, making use of the unit test and test fixture files that Rails gener-
ates, as well as its test() and assert() methods. The test files are automatically
generated whenever you create a new model and are stored in the test/units/
directory of your application.

If you haven't started down the path of automated testing yet, you should
have at least noticed that every time you generate a model (or really anything)
in Rails, a set of tests is generated along with it. Let’s look at an example:

$ rails g model Song title:string album_id:integer duration_in_seconds:integer
invoke active record

create db/migrate/20101101225558 create songs.rb

create app/models/song.rb

invoke test_unit

create test/unit/song test.rb create test/fixtures/songs.yml

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Automate Tests for Your Models ® 137

In the preceding snippet, we generated a simple Song model, and with it,
without us asking for it, Rails generated two extra files: a unit test and a test
fixture file. For now let’s focus on the unit test in test/unit/song_test.rb. Here’s
what we get by default:

rr2/testing_your_models/test/unit/song_test.rb
require 'test helper!'

class SongTest < ActiveSupport::TestCase
Replace this with your real tests.
test "the truth" do
assert true
end
end

There isn’t much there yet, but it’s a great start. With this code in place, after
applying the migration Rails generated, we can already execute the test for a
satisfying result. Let’s give it a go.

rake test:units

(in /testing your models) Loaded suite

rake-0.8.7/1lib/rake/rake test loader

Started .

Finished in 0.028537 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Test run options: --seed 244

Success! The important line is the one that shows how many tests, assertions,
failures, errors, and skips were encountered during the test run. I'm working
in a fresh application here, so this SongTest is the only test in the system. And
as you can see, that test passed. What did we test?

Let’s look at the code in test/unit/song_test.rb again. The first line loads the Rails
testing framework. This is a superset of Ruby’s built-in Test::Unit framework,
adding Rails-specific features and some syntax sugar. Then we define a class,
SongTest, which is a subclass of ActiveSupport::TestCase. That’s where all of the
magic comes from. Think of a TestCase as a group of related tests. In this case,
this is where we’ll put all tests for our new Song model.

This brings us to the real heart of the matter: the actual test. In Rails test
cases, tests are defined by calling the test() method, passing in a name for the
test and then a block of code that implements the test. The essence of each
test is its assertions. An assertion is defined as a statement of refutable truth.
For example, I can assert that my name is Chad. This is true, so the assertion
passes. I could assert that I weigh forty pounds. This is not true, so that
assertion would fail.

http://media.pragprog.com/titles/rr2/code/rr2/testing_your_models/test/unit/song_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

138 © Testing Recipes

The most basic assertion available in the Test::Unit framework is assert(), which
we see in this autogenerated test. You pass a boolean value to assert() along
with an optional message to be displayed if the assertion fails. Any boolean
false value will cause the assertion to fail. Otherwise, the assertion passes.
So, this test, given the literal true, will always pass. If we were to change the
true to false or nil, the assertion would fail as follows:

$ rake test:units

(in /Users/chad/src/rr2/Book/code/rr2/testing your models)
Loaded suite rake-0.8.7/1ib/rake/rake test loader

Started

F

Finished in 0.030958 seconds.

1) Failure:
test the truth(SongTest) [test/unit/song test.rb:7]:
Failed assertion, no message given.

1 tests, 1 assertions, 1 failures, 0 errors, 0 skips

Test run options: --seed 22019
rake aborted!
Command failed with status (1): [/bin/...]

(See full trace by running task with --trace)

We can see that an assertion failed on line 7 of song test.rb and that we had
one failure altogether. The autogenerated test is clearly useful only as a
placeholder, but it’s a good placeholder in that it actually runs. To write our
own first test, we simply need to change the name of the test and then make
real assertions about real code. Let’s replace the autogenerated test with:

rr2/testing_your_models/test/unit/song_test.rb
class SongTest < ActiveSupport::TestCase
test "should be findable by title" do
song = Song.create(:title => "Bat Chain Puller")
assert_equal song, Song.find by title("Bat Chain Puller")
end
end

If we run this code, we’ll find once again we have a passing single test. In this
test, we used the assert_equal() method, into which we pass an expected value
followed by an actual value. assert_equal() compares the two values and fails if
they aren’t equal. This is probably the most useful of all of Test::Unit's assertions.
You can go a long way with just these two if you're just getting started.

So far, we've only tested ActiveRecord itself, which isn’t ultimately a very useful
exercise for anything other than learning. Also, we're writing tests for code

http://media.pragprog.com/titles/rr2/code/rr2/testing_your_models/test/unit/song_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Automate Tests for Your Models ® 139

that already exists. If we continued this way, you might imagine spending a
great deal of time coding your business logic and then coming back afterwards
and writing test after test for that business logic. Please don’t do it that way.

As much as we developers like to pretend we are OK with doing it, testing is
boring. If I have a huge pile of code and I'm asked to write tests for it, I'm
going to be unproductive and demotivated. However, I do like to specify how
I want my code to look just before I write it. When I have to write a new feature,
I ask myself, “If there were a perfect way to do this already in the system,
what would it look like?” Then I write that code. My typical day of programming
involves repeatedly imagining the “perfect” solution, implementing it, and
repeating that process.

Here’s the cool part: we can do this in tests. This process is called Test-Driven
Development, or TDD for short. When done right, some people also call it
Behavior-Driven Development, or BDD. It doesn’t really matter what we call
it. It’s a productive process, it generates repeatable automated tests, and it's
Jun. Let’s try adding a feature to our model this way.

I'd like to introduce the concept of an Album to the system. I want Songs to
belong to Albums, so I'm going to use a has_many() relationship from Album to
Song. Once that’s done, I'd like to be able to ask an Album for its duration, which
it should get by calculating the duration of the songs. First I'll generate the
model and declare the relationships:

$ rails g model Album title:string artist:string
invoke active record

create db/migrate/20101102002840 create albums.rb
create app/models/album.rb

invoke test unit

create test/unit/album test.rb

create test/fixtures/albums.yml

$ rake db:migrate

(in /rr2/testing your models)

== CreateAlbums: migrating

== (CreateAlbums: migrated (0.0013s)
The Album model itself will look like this for now:

rr2/testing_your_models/app/models/album_has_many.rb
class Album < ActiveRecord: :Base

has_many :songs
end

Now let’s go into our new AlbumTest and think about how we want this feature
to work. I often start by creating a new test and just writing the assertion I'm

http://media.pragprog.com/titles/rr2/code/rr2/testing_your_models/app/models/album_has_many.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

140 * Testing Recipes

attempting to make. That gives me a clear goal. So, I might start with some-
thing like this:
test "should be able to report duration based on \

the combined duration of its songs" do

assert _equal 15, album.duration
end

We haven’t even specified what album is assigned to yet, so this isn’'t enough
code. But we can guess that we're going to have some instance of Album on
which we’ll be able to call a method called duration(). Also, notice how descriptive
the test name is. We're specifying a behavior we expect from the system, not
just naming a piece of code we're running. Readers of this code later will be
able to read the test name and understand what the code does. Let’s code
the rest of the test:

rr2/testing_your_models/test/unit/album_test.rb
test "should be able to report duration based \
on the combined duration of its songs" do
album = Album.create
3.times do
album.songs.create(:duration in seconds => 5)

end
assert _equal 15, album.duration

end

If we run our tests now, we see an error complaining that the duration() method
doesn’t exist on Album. That's what we expected. We wrote a test for it and
then ran the test to make sure it wasn’t already there. Now it’s time to write
that method in the Album class.

rr2/testing_your_models/app/models/album.rb
def duration

songs.sum(&:duration _in seconds)
end

One little test and one little method to make it pass. Nice and simple. That’s
the rhythm of Test-Driven Development.

Testing is a deep topic, and there are many tools and tricks surrounding it.
If you're new to testing, my advice is to keep it simple. Stick with the built-in
tools and rely heavily on assert() and assert_equal(). Don’t be intimidated by the
many choices available. Testing is better than not testing.

http://media.pragprog.com/titles/rr2/code/rr2/testing_your_models/test/unit/album_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/testing_your_models/app/models/album.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 39

Test Your Controllers

Problem

Testing web applications is difficult. Setting up a server and database and
connecting to a running web application can be brittle and hard to automate
completely. And despite advances in web browser automation, testing with a
browser that crawls a site is both slow and error prone.

Still, though, testing just your models is not enough. You need automated
tests for your controller code. How can you create controller tests that are
dependable and fast enough to be consistently used?

Solution

Whenever you generate a controller, Rails also generates a placeholder test
for that controller. The tests for controllers are placed in the test/functional
directory. These tests give you a harness for in-memory testing of your
controllers.

If you have a testing background, you may have some preconceived notions
about what “functional” testing means. Abandon them now. In Rails, the tests
in test/functional are for testing a single controller. If you want to test the
behavior of, say, your RecipesController, you can put your tests in test/function-
alfrecipes_controller_test.rb. If we generate an empty controller, Rails will create a
test file for us that looks something like this:

require 'test helper!'

class RecipesControllerTest < ActionController::TestCase
Replace this with your real tests.
test "the truth" do
assert true
end
end

To run all of our controller tests, we can use the following command:

$ rake test:functionals
(in /code/rr2/controller tests)
Loaded suite rake-0.8.7/rake test loader

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

142 * Testing Recipes

Started

#inished in 0.027007 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips
Test run options: --seed 58489

Now that we have a working test, let’s replace the stubbed code with something
real. Imagine our recipe index page has been written to display the most
recently added recipes so users visiting the site can quickly see the freshest
activity. We implement this with the standard index action, but we want to
test to make sure the recipes returned are limited to those already published
and do not include any scheduled for future publication. This allows site
administrators to prepopulate content for the site for phased releases to the
site’s visitors.

The first thing we’ll want to do is to set up some test data. Using the tech-
niques described in Recipe 45, Create Dynamic Test Fixtures, on page 168, we
can quickly create fixtures, such as the following, with which to test:

rr2/controller_tests/test/fixtures/recipes.yml
Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html
<% 10.times do |n| %>
recipe <%= n %>:
name: Recipe Number <%= n %>
ingredients: Eggs, flour, onion
difficulty: I
published at: <%= 3.days.ago %>
<% end %>

for _tomorrow:
name: The recipe we'll publish tomorrow
ingredients: Beef, tofu, greek yogurt, cilantro
difficulty: 2
published at: <%= 1.day.from now %>

Now let’s write a test that executes the index action and checks its output:

rr2/controller_tests/test/functional/recipes_controller_test.rb
test "index only shows recipes which are already published" do
recipe_in_the future = recipes(:for_tomorrow)
get :index
assert _response :success
assert not nil assigns(:recipes)
assert l!assigns(:recipes).include?(recipe_in the future),
"Should not have returned recipes that are not yet published"
assert select "tr.recipe", :count => assigns(:recipes).size
end

http://media.pragprog.com/titles/rr2/code/rr2/controller_tests/test/fixtures/recipes.yml
http://media.pragprog.com/titles/rr2/code/rr2/controller_tests/test/functional/recipes_controller_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Your Controllers ® 143

First, we reference the recipe from our fixture that has not yet been published.
We save this in the variable recipe_in_the future and then use the get() method to
exercise the index() action. Rails functional tests provide five methods for sim-
ulating HTTP traffic to an application: get(), put(), post(), delete(), and head(). Each
of the five methods sets up test request and response objects and then exe-
cutes our controller code in memory. This means our tests run very quickly,
since we don’t have to run a server or make HTTP connections, while our
application code executes exactly as if we were running full web requests.

The call to get :index runs our index() action and its associated view. After this,
we can use the built-in assertion methods to check that the application code
behaved as expected.

The first one we use here, assert_response(), checks the actual HTTP response
code of the action. The assert response() method accepts either a literal code
number (e.g., 200) or a symbol representing a range of responses. In this
example, we check that the server action responds with a success condition
(HTTP status code 200) as opposed to a :redirect, :missing, or general :error.

Next, we use a special controller test method called assigns() to look at the
value of the instance variable called @recipes. It's unusual in testing to access
an object’s instance variables, but in the case of Rails controllers, instance
variables are used to communicate values to their views. So, it makes sense
to reference these variables in our tests. The assigns() method takes a symbol
that should be the variable name from the controller without the @ sign. In
this case, we first check that this value has been set to something non-nil
after which we verify that the recipe with a future published_at time is not in
the list of returned recipes.

Finally, we call the assert_select() method, which allows us to make assertions
about the structure of the rendered view. In this case, we pass in the CSS
selector “tr.recipe,” which selects HTML table rows with the class recipe. The
:count option states that we expect the same number of table rows as we have
results in our @recipes instance variable.

We've successfully tested an action! But this was a pretty simple call to the
action. We didn’t pass any parameters. Fortunately, the functional test HTTP
simulation methods make it very easy to pass parameters into the calls to
our actions.

Here’s an HTTP POST operation that passes a structured form like the ones
we typically use when we create Active Record objects:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

144 * Testing Recipes

rr2/controller_tests/test/functional/recipes_controller_test.rb

post :create, :recipe => {
:name => "Haggis Cupcake",
:ingredients => "Haggis, Flour, Sugar"

}

The second, optional parameter to post() (and get() and the other HTTP simula-
tion methods) is a Hash, which will be passed directly in as the params() of the
request. Simple! And, the convenient argument list doesn’t stop there.

Here’s a call to the show() action, which not only passes a parameter but also
sets a value in session using the third optional argument to get():

rr2/controller_tests/test/functional/recipes_controller_test.rb
get :show, {:id => @recipe.id}, :user id => 123
assert _response :success

Anything you pass into Hash in the third parameter to an action invocation
will be accessible in session() in your action. This is a great way to simulate
user authentication for a test request. Speaking of session(), if you need to
check the values in session() as part of your test, you can do so using the session()
method, which returns the Hash of what was put in session during the execu-
tion of your action. Here’s an example:

rr2/controller_tests/test/functional/sessions_controller_test.rb
test "can authenticate with user and password" do

post :create, :username => "kurt", :password => "mOth3r-night"
assert_equal users(:kurt).id, session[:user_id]
end

Be careful how detailed your view-level tests become. Once you've seen the
beauty of assert_select(), it's tempting to check every aspect of the view. But if
your tests dig too deeply into the look and feel of your application, they’re
going to be brittle and make change more difficult. Use assert_select() to check
the semantic structure of your documents, and leave the look-and-feel testing
to a human.

Also See

Recipe 45, Create Dynamic Test Fixtures, on page 168

http://media.pragprog.com/titles/rr2/code/rr2/controller_tests/test/functional/recipes_controller_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/controller_tests/test/functional/recipes_controller_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/controller_tests/test/functional/sessions_controller_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 40

Test Your Helpers

Problem

You have been extracting your view logic into nice, clean helpers. Since these
helpers are used throughout your application, you want to make sure they're
well tested. But how do you write unit tests for your helpers?

Solution

Rails provides a special type of test case for helper testing called ActionView: Test-
Case. Whenever we generate a controller, Rails generates a test case for the
controller’s associated helper. These generated test cases have access to
everything they need to execute helper methods as if being called from a view.

Let’s say we have created a set of helper methods that build a navigation bar
for the recipe section of our site. The helpers might look like this:

rr2/helper_tests/app/helpers/recipes_helper.rb
module RecipesHelper

def tabs(current tab)
content tag(:div,
links(current tab),
:id => "tabs"
)
end

def links(current tab)
nav_items.map do |tab_name, path]|
args = tab name, path
if tab_name == current_tab
args << {:class => 'current'}
end
link to *args
end.join(separator).html safe
end

def nav_items
{
"New" => new recipe path,
"List" => recipes path,

http://media.pragprog.com/titles/rr2/code/rr2/helper_tests/app/helpers/recipes_helper.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

146 * Testing Recipes

"Home" => root_path

}

end

def separator
content _tag(:span, "|", :class => "separator").html safe
end
end

The RecipesHelper class calls its tabs() method, passing in the name of the cur-
rently selected tab. The tabs() helper then generates the HTML-formatted tab
list, which we can then display in a header or sidebar. Since we’'ve separated
this helper into a number of smaller methods, we can start with a simple test.
Let’s first make sure our separator() method behaves as expected.

In this case, we're testing the RecipesHelper, so we’ll put our tests in the gener-
ated test/unit/helpers/recipe_helper test.rb file. Now that we know where our test case
is, testing the separator() method is easy. We simply call it and check its output,
using code like the following:

rr2/helper_tests/test/unit/helpers/recipes_helper_test.rb
class RecipesHelperTest < ActionView: :TestCase
test "can generate a separator" do
assert _equal %qg{|}, separator
end
end

Since we’re in RecipesHelperTest, the test case automatically loads and includes
the RecipesHelper for us. Not bad! Let’s take it a little further and test the actual
tabs() method.

The tabs() method is a greater challenge because its output is more complex.
Checking its return value with the assert_equal() would be brittle and require
us to tie our tests too closely to the output on the page. It would be easier to
check the structure of the resulting HTML. To do that, we’ll use assert_select().
But the assert_select() assumes that a view has already been rendered. So, how
do we render something in our helper test so that we can use assert_select() to
validate it? The answer is to use the built-in render() method.

Here’s a simple test that renders the tabs() method and then validates that a
<div> with the ID of “tabs” appears in the resulting document:

rr2/helper_tests/test/unit/helpers/recipes_helper_test.rb
test "generates a list of links" do
render :text => tabs("New")
assert select "div[id='tabs']"
end

http://media.pragprog.com/titles/rr2/code/rr2/helper_tests/test/unit/helpers/recipes_helper_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/helper_tests/test/unit/helpers/recipes_helper_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Your Helpers 147

We use the render() method’s :text option to provide an easy way to call our
helper, preparing its output for inspection by assert_select(). Then assert_select()
uses the CSS selector to ensure that at least one matching <div> exists.

Finally, we can test the helper’s ability to properly set which tab is the current
tab:

rr2/helper_tests/test/unit/helpers/recipes_helper_test.rb
test "highlights current tab correctly" do
render :text => tabs("New")
assert select "a[class='current']" do |anchors]|
anchors.each do |anchor|
assert _equal new recipe path, anchor.attributes['href']
end
end
end

We see now that helpers are easy to test independently. For clean, testable
views, use helpers whenever possible. Using helpers allows you to keep Ruby
code out of your views and makes your view logic easier to write automated
tests for.

http://media.pragprog.com/titles/rr2/code/rr2/helper_tests/test/unit/helpers/recipes_helper_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 41

Test Your Outgoing Mailers

Problem

Action Mailer objects are the right place to put your mail-related logic. We all
know that controllers should be lightweight, delegating logic to models and
other objects as necessary. When that logic is mail-related, it belongs in a
mailer.

Where there’s logic, there’s a need to write automated tests for that logic! How
do we test our outgoing mail functionality?

Solution

When you generate a new Action Mailer, Rails automatically generates a test
case. This test is very much like any other Rails test. We instantiate the object
we want to check, and then we make assertions about it.

Conveniently, calling any mailer method returns a reference to that generated
mail message. This reference is returned in the form of a Mail::Message object.
A Mail::Message encapsulates all of the important information you'd expect to
find about an email, including the subject of the message, the destination
email addresses, and the body of the message.

$ rails g mailer ReceiptMailer receipt

create app/mailers/receipt mailer.rb
invoke erb

create app/views/receipt mailer

create app/views/receipt mailer/receipt.text.erb
invoke test unit

create test/functional/receipt mailer test.rb

Similar to controller tests, Action Mailer ships with a special Test::Unit::TestCase
called ActionMailer::TestCase that automates various aspects of mailer testing. It
also generates an example test for each mailer method listed on the command
line during generation. Here’s what the full generated test case looks like for
the mailer we just created:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Your Outgoing Mailers ® 149

rr2/email_tests/test/functional/receipt_mailer_test_pristine.rb
require 'test helper!'

class ReceiptMailerTest < ActionMailer::TestCase

test "receipt" do
mail = ReceiptMailer.receipt
assert _equal "Receipt", mail.subject
assert _equal ["to@example.org"], mail.to
assert _equal ["from@example.com"], mail.from
assert match "Hi", mail.body.encoded

end

end

So, as the example demonstrates, after we've run our custom mailer method,
we can check that it generated the correct values for each of these important
message fields using assertions. What if we want to actually check that an
attempt was made to deliver a message? Easy! We can assert that the mail
was sent with a built-in helper, assert_emails(), and its opposite, assert_no_emails().
Here’s an example, testing customer mailer functionality that sends a receipt
for online transactions only to customers who have indicated that they want
email receipts:

rr2/email_tests/test/functional/receipt_mailer_test.rb
test "only sends receipts to customers who opt in for notifications" do
customer = Customer.create!(:email opt in => false)
order = customer.orders.create! (:product => products(:rails studio ticket))
assert no _emails do
ReceiptMailer.send_receipt_if opted_in(order)
end

order.customer.update attribute(:email opt in, true)

assert _emails 1 do
ReceiptMailer.send receipt if opted in(order)

end

end

And, here’s the simple class-level method we're calling from our test:

rr2/email_tests/app/mailers/receipt_mailer.rb
class ReceiptMailer < ActionMailer::Base
class << self
def send receipt if opted in(order)
if order.customer & order.customer.email opt in?
receipt(order).deliver
end
end
end

http://media.pragprog.com/titles/rr2/code/rr2/email_tests/test/functional/receipt_mailer_test_pristine.rb
http://media.pragprog.com/titles/rr2/code/rr2/email_tests/test/functional/receipt_mailer_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/email_tests/app/mailers/receipt_mailer.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

150 © Testing Recipes

We can see from the test that in the case of a customer set to not receive
emails, we use assert no_emails(), which ensures that the code passed in the
associated block does not result in an email being sent. When we set the
Customer to opt into email notifications, we use assert_emails() to assert that
exactly one email is sent during the execution of its associated block.

Believe me when I say you don’t want real emails sent from your automated
tests. As the recipient of my share of unit test spam, I'm pleased to inform
you that Action Mailer automatically stubs out the delivery of email in your
tests. This is done by setting the attribute ActionMailer::Base.delivery_method() to
‘test. With the delivery method set to :test, Action Mailer pushes each message
into a list of delivered messages that you can access via the attribute Action-
Mailer::Base.deliveries(). ActionMailer::TestCase sets the delivery method for you, so
you don’'t have to worry about forgetting it.

Internally, assert_emails() and assert_no_emails() both use ActionMailer::Base.deliveries()
to perform their validations. If you ever need to validate the contents of
delivered messages—not just count them—you’ll find that the ActionMail-
er::Base.deliveries() contains an Array of Mail::Message objects that you can inspect.

These simple ingredients account for almost anything you’d need in daily
mailer testing. Given how easy mailer tests are to write, don’t let your emails
go untested. Remember that once an email is sent, there’s no way to take it
back. If email is an important part of your application’s business, automated
tests are a must!

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 42

Test Across Multiple Controllers

Problem

We saw in Recipe 39, Test Your Controllers, on page 141 how easy it is to test
a single controller, but sometimes that’s not enough. How do you test an
entire purchase flow on an e-commerce site? How about the process of signing
up for a site, confirming the registration, and then logging in? To test these
scenarios, we need to write tests for a multistep process that spans multiple
controllers.

Solution

Integration tests are the feature of Rails that take testing your applications
to a high level. They are the next logical progression in the existing series of
available tests:

Unit tests
Unit tests are narrowly focused on testing a single model.

Functional tests
Functional tests are focused on testing a single controller and the inter-
actions between the models it employs.

Integration tests
Integration tests are broad, user story-level tests that verify the interac-
tions between the various actions supported by the application, across
all controllers.

This makes it easier to duplicate session management and routing bugs in
your tests. What if you had a bug that was triggered by certain cruft accumu-
lating in a user’s session? It’s hard to mimic that with functional tests. For
an example, consider a fictional financial application. We have a set of “stories”
describing how the application should function:

e Bob wants to sign up for access. He goes to the login page, clicks the Sign
Up link, and fills out the form. After submitting the form, a new ledger is
created for him, and he is automatically logged in and taken to the
overview page.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

152 * Testing Recipes

e Jim, an experienced user, has received a new credit card and wants to
set up a new account for it. He logs in, selects the ledger he wants to add
the account to, and adds the account. He is then forwarded to the register
for that account.

e Stacey is a disgruntled user who has decided to cancel her account. Log-
ging in, she goes to the “account preferences” page and cancels her
account. Her data is all deleted, and she is forwarded to a “sorry to see

you go” page.

Starting with the first story, we might write something like the following. We'll
create the file stories_test.rb in the test/integration directory.

rr2/integration_testing/test/integration/stories_test.rb
class StoriesTest < ActionDispatch::IntegrationTest

test "signup new person" do
get "/login"
assert _response :success
assert template "login/index"

get "/signup"
assert_response :success
assert template "signup/index"

post "/signup", :name => "Bob", :username => "bob", :password => "secret"
assert response :redirect
follow redirect!
assert_response :success
assert template "ledger/index"
end
end

Run this by invoking the file directly via Ruby or by typing the following:
$ rake test:integration

The code is pretty straightforward. First, we get the /login URL and assert that
the response is what we expect. Then, we get the /signup URL, post the data
to it, and follow the redirect through to the ledger.

However, one of the best parts of the integration framework is the ability to
extract a testing DSL'' from your actions, making it really easy to tell stories
like this. At the simplest, we can do that by adding some helper methods to
the test. Here’s a revised version of our test method and its new helpers:

11. Domain-specific language

http://media.pragprog.com/titles/rr2/code/rr2/integration_testing/test/integration/stories_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

rr2/integration_testing/test/integration/stories_test.rb
test "signup new person" do

go_to login

go_to signup

signup :name => "Bob", :username => "bob",
end

private
def go to login
get "/login"
assert _response :success
assert template "login/index"
end

def go to signup
get "/signup"
assert _response :success
assert template "signup/index"
end

def signup(options)
post "/signup", options
assert_response :redirect
follow _redirect!
assert _response :success
assert template "ledger/index"
end

Test Across Multiple Controllers ® 153

:password => "secret"

Now you can reuse those actions in other tests, making your tests very
readable and easy to build. But it can be even neater! Taking advantage of
ActionController::IntegrationTest’s open_session() method, you can create your own
session instances and decorate them with custom methods. Think of a session
as a single user’s experience with your site. Consider this example:

rr2/integration_testing/test/integration/stories_test.rb

class StoriesTest < ActionDispatch::IntegrationTest

test "signup new person" do
new_session do |bob]|
bob.goes to login
bob.goes to signup

bob.signs up with :name => "Bob", :username => "bob", :password => "secret"

end
end

private
module MyTestingDSL

def goes to login
get "/login"

http://media.pragprog.com/titles/rr2/code/rr2/integration_testing/test/integration/stories_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/integration_testing/test/integration/stories_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

154 * Testing Recipes

assert_response :success
assert template "sessions/new"
end

def goes to signup
get "/signup"
assert _response :success
assert template "users/new"
end

def signs up with(options)
post "/users", options
assert _response :redirect
follow redirect!
assert response :success
assert template "ledgers/index"
end
end

def new session
open_session do |sess|
sess.extend (MyTestingDSL)
yield sess if block given?
end
end
end

The new_session() method at the bottom simply uses open_session() to create a new
session and decorate it by mixing in our DSL module. By adding more methods
to the MyTestingDSL module, you build up your DSL and make your tests richer
and more expressive. You can even use named routes in your tests to ensure
consistency between what your application is expecting and what your tests
are asserting! Here’s an example:

def goes to login
get login url

end

Note that the new_session() method will actually return the new session as well.
This means you could define a test that mimicked the behavior of two or more
users interacting with your system at the same time:

rr2/integration_testing/test/integration/stories_test.rb
class StoriesTest < ActionDispatch::IntegrationTest

test "multiple users" do
jim new _session as(:jim)
bob = new _session_as(:bob)
stacey = new session_as(:stacey)

http://media.pragprog.com/titles/rr2/code/rr2/integration_testing/test/integration/stories_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Across Multiple Controllers ® 155

jim.selects ledger(:jims)
jim.adds account(:name => "checking")
bob.goes to preferences
stacey.cancels_account

end

private

module MyTestingDSL
attr reader :person
def logs in as(person)
@person = people(person)
post session url,
:username => @person.username,
:password => @person.password
is redirected to "ledgers/index"
end
def goes to preferences
...
end
def cancels account
...
end
end

def new_session_as(person)
new_session do |sess|
sess.goes_to login
sess.logs in_as(person)
yield sess if block given?
end
end
end

To further demonstrate how these DSLs can be built, let’s implement the
second of the three stories described at the beginning of this article: Jim
adding a credit-card account:

rr2/integration_testing/test/integration/stories_test.rb
test "add new account" do
new session as(:jim) do |jim|
jim.selects ledger(:jims)
jim.adds_account(:name => "credit card")
end
end
private
module MyTestingDSL
attr _accessor :ledger

http://media.pragprog.com/titles/rr2/code/rr2/integration_testing/test/integration/stories_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

156 * Testing Recipes

def is redirected_to(template)
assert response :redirect
follow redirect!
assert response :success
assert template(template)
end

def selects ledger(ledger)
@ledger = ledgers(ledger)
get ledger url(:id => @ledger.id)
assert response :success
assert template "ledgers/index"
end

def adds account(options)
post accounts url(:id => @ledger.id), options
is redirected to "ledgers/index"
end
end

Integration tests with DSLs make your code more readable and make testing
more fun. And, if testing is fun, you're more likely to do it.

You may notice that individual integration tests run slower than individual
unit or functional tests. That’s because they test so much more. Each of the
tests shown in this recipe tests multiple requests. Most functional tests test
only one. Also, integration tests run through the entire stack—from the dis-
patcher, through the routes, into the controller, and back. Functional tests
skip straight to the controller.

Credit

Rails core alumni member Jamis Buck wrote this recipe.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 43

Focus Your Tests with Mocking and Stubbing

Problem

In complex systems, testing can get difficult. Complex systems are riddled
with dependencies, some of which are impossible for us to control as develop-
ers. As the IT world gets more distributed, more and more of our applications
will depend on one or many external services. Sometimes these are services
created and maintained within your organization. Sometimes they are com-
pletely separate, as is the case with payment gateways, email service providers,
and social networks. Automated tests that depend on systems whose state
isn’t guaranteed to be controllable or consistent become brittle very quickly.

In the face of complex applications with both internal and external dependen-
cies, how do you focus your tests strictly on specific parts of your code?
Additionally, how can you ensure that your code interacts appropriately with
its dependencies?

Solution

You can use mocking and stubbing to temporarily override the behavior of
your code’s dependencies for a test, eliminating the coupling of a test to the
implementation of its code’s dependencies. In this recipe, we’ll use the Mocha
framework to replace the behavior of dependencies as well as set expectations
of how those dependencies should be interacted with by the code under test.
We'll see how to use Mocha to simplify and decouple tests for both an external
dependency as well as to more clearly focus our tests even when there are no
dependencies.

The first step in setting up Mocha in your application is to add it to your
application’s Gemfile and run bundle install. The Gemfile entry is trivial:

rr2/mocking/Gemfile
gem 'mocha', :require => false

Now that we have Mocha set up, let’s look at a real example. Imagine we have
created a diary application that posts to a social activity stream. Any time a
user posts a diary entry on our site, we want it to post a notice to the external

http://media.pragprog.com/titles/rr2/code/rr2/mocking/Gemfile
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

158 * Testing Recipes

social activity stream via a supplied Ruby gem. We accomplish this using an
after_create() hook in our DiaryEntry model. Here’s the DiaryEntry class:

rr2/mocking/app/models/diary_entry.rb
require 'social activity stream'
class DiaryEntry < ActiveRecord: :Base
belongs to :user
after create :post notice to social stream
def post notice to social stream
SocialActivityStream.notice(:user => user.social stream id,
:body => %{A new diary entry called
#{title} has been created. Check it out!})
end
end

This is simple enough. After we create any DiaryEntry instance, our ActiveRecord
hook will automatically use the SocialActivityStream class, passing in a locally
stored copy of the user’s id on the remote site, to create a new notice in the
stream. The implementation details of that class are beyond our control. All
we know about it is that it makes an HTTP call to a web service, pushing in
the data we provide. It being Ruby, we could go read the code, but we don’t
need to, and we don’t maintain the code.

The after_create() hook works fine until we start running our tests. But, as we
run our application’s unit tests many times per hour, we discover that a test
user’s social activity stream is filling up with test content! Every time a new
DiaryEntry is created in our unit tests, its body is posted to the remote site.
Oops. How do we turn this off while testing?

This is where stubbing comes in. Stubbing a method means to override its
implementation, providing a default implementation on which the calling code
can rely. We can use this to override the behavior of the SocialActivityStream.notice()
so it does nothing while in our tests. Here’s a unit test that stubs the
SocialActivityStream.notice() method:

rr2/mocking/test/unit/diary_entry_test.rb
test "can create a diary entry" do
SocialActivityStream.stubs(:notice).returns nil
assert difference "DiaryEntry.count" do
DiaryEntry.create! (title: "Hallo Wherld",
body: "Kaint spale sahree",
user: users("chad"))
end
end

For the purpose of the assertion in this test, it doesn’t matter whether our
code posts to the social activity stream. That’s not what we're testing. So, we

http://media.pragprog.com/titles/rr2/code/rr2/mocking/app/models/diary_entry.rb
http://media.pragprog.com/titles/rr2/code/rr2/mocking/test/unit/diary_entry_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Focus Your Tests with Mocking and Stubbing ¢ 159

simply “stub out” the SocialActivityStream.notice() method to tell it to do nothing.
We do this using the stubs(), which Mocha conveniently adds to every object
in the system. The stubs() method accepts a method name and returns a con-
figuration object on which you can specify other options such as the return
value of the stubbed method. Here, we've asked Mocha to cause the notice()
method to return nil whenever invoked.

We now have a way for our tests to ignore calls to the SocialActivityStream.notice().
But how do we test that the notice method is being properly called? The fact
that we're calling it is a real part of our application’s requirements, so we
can’t just ignore it simply because it's hard to test. That’s where mocking
comes in. With mocking, not only can we stub a method’s behavior, but we
can set the expectation that it will be called and with a set of expected
parameters.

In the following test, we use Mocha’s expects() method to indicate that during
the execution of this test, we expect the code that’s under test to invoke the
SocialActivityStream.notice() method with a given set of parameters:

rr2/mocking/test/unit/diary_entry_test.rb
test "post a notice to the social activity stream on creation" do
title = "Ode to a House DJ"
SocialActivityStream.expects(:notice).
with(user: users("chad").social stream id,
body: %{A new diary entry called #{title}
has been created. Check it out!}).
returns(nil)
DiaryEntry.create! (title: title,
body: "Thump thump thump thump",
user: users("chad"))
end

Like the stubs() method, Mocha adds the expects() method to all objects in the
system. Its behavior is similar to stubs(), in that the expects() method overrides
the existing implementation of the named method and can be configured to
return a predetermined value. Additionally, the configuration object returned
by expects() supports the method with(), which allows us not only to specify that
we expect this method to be called but to declare which parameters should
be passed in for the expectation to pass.

In turn, Mocha effectively sets up an assertion as part of the test. Let’s
experiment with this and show what would happen if we didn’t meet the
expectation. We’ll temporarily comment out the call to SocialActivityStream.notice()
in our DiaryEntry class and rerun the test. Here’s the relevant part of the output:

http://media.pragprog.com/titles/rr2/code/rr2/mocking/test/unit/diary_entry_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

160 ® Testing Recipes

$ rake
LOADED SUITE test,test/performance,test/unit

DiaryEntryTest

test can_create_a _diary_entry PASS
test post a notice to the social activity stream on creation FAIL

not all expectations were satisfied
unsatisfied expectations:
- expected exactly once, not yet invoked: SocialActivityStream.notice(
ruser => 1123,
:body => 'A new diary entry to a House DJ created...it out!')

pass: 1, fail: 1, error: O
total: 2 tests with 2 assertions in 0.186694 seconds

As you can see, mocks act as implicit assertions. We expect our mocked
method to be called in a certain way. If it’s not called in that way, Mocha
considers the test to have failed.

Let’s look at one last example of how Mocha can help us focus our tests. This
time, we’ll look at a scaffold-generated controller and its test. Here’s the create()
action for our DiaryEntriesController:

rr2/mocking/app/controllers/diary_entries_controller.rb
def create
@diary entry = DiaryEntry.new(params[:diary entry])

respond_to do |format|
if @diary entry.save
format.html { redirect to @diary entry,
:notice => 'Diary entry was successfully created.' }
format.json { render :json => @diary entry,
:status => :created,
:location => @diary entry }
else
format.html { render :action => "new" }
format.json { render :json => @diary entry.errors,
:status => :unprocessable entity }
end
end
end

This is the default code generated by the Rails scaffold generator. To say this
is code is hard to test is a bit of a stretch, but there is one wrinkle that makes
it messy. There are two branches of execution. When a diary entry saves
properly, we go down the happy path. When the validations fail, we go down
the other path and show validation error messages. The reason this is messy

http://media.pragprog.com/titles/rr2/code/rr2/mocking/app/controllers/diary_entries_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Focus Your Tests with Mocking and Stubbing ® 161

to test is that the most obvious way to get both paths executed is to present
both valid and invalid form data to the create() action.

It seems reasonable at first, but as soon as you have to make one change to
your validation rules, you’ll see why this is no good. Every validation change
in your model will result in you being forced to go into your controller’s test
and make a change. You would then be testing both the model’s validation
logic and the controller’s logic in the same test. That’'s not what a functional
test is for! With stubbing, we can get around that problem:

rr2/mocking/test/functional/diary_entries_controller_test.rb
require 'test helper!'

class DiaryEntriesControllerTest < ActionController::TestCase
setup do
@diary entry = diary entries(:one)
SocialActivityStream.stubs(:notice)
end

test "should redirect to diary entry page after create" do
DiaryEntry.stubs(:new).returns(@diary entry)
@diary entry.expects(:save).returns true
post :create, :diary entry => @diary entry.attributes
assert redirected to diary entry path(@diary entry)

end

test "should redisplay the form on invalid create" do
DiaryEntry.stubs(:new).returns(@diary entry)
@diary entry.expects(:save).returns false
post :create, :diary entry => @diary entry.attributes
assert template 'new'
end
end

Rather than being forced to construct valid and invalid attribute sets for a
DiaryEntry, our tests are free to exercise the branches in the controller by telling
the @diary_entry’s save() method to return true or false at will, simulating the valid
and invalid states of a DiaryEntry. Our functional test isn’t concerned with what
makes a DiaryEntry valid. That’s not its job. The functional test’s job is to ensure
that the controller behaves as expected in both valid and invalid DiaryEntry
states.

Also See

e While we've covered most of what you need to know to be productive with
Mocha, there’s a lot more to learn when you start to dig in. See Mocha’s
website at http://mocha.rubyforge.org for complete documentation.

http://media.pragprog.com/titles/rr2/code/rr2/mocking/test/functional/diary_entries_controller_test.rb
http://mocha.rubyforge.org
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

162 * Testing Recipes

¢ Since you typically need Mocha only when testing, consider using Bundler
groups as detailed in Recipe 58, Use Bundler Groups to Manage Per-Envi-
ronment Dependencies, on page 224.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 44

Extract Test Fixtures from Live Data

Problem

You want to take advantage of the unit testing features in Rails, but your
data model is complex, and manually creating all those fixtures sounds like
a real drag. You've implemented enough of your application that you're able
to populate its database via the application’s interface—a far better interface
than plain-text YAML files! Now you have a rich set of data that would be
great for unit testing. How do you create fixtures from that existing data?

Solution

Active Record gives us all the ingredients we need to generate fixtures from
our existing data. The basic steps are as follows:

Establish a connection to the database.

Query the database for the names of its tables.

Select the data for each table in turn, and convert it into YAML.
Generate a unique name for the data in the row.

Write the results to a file named after the table name.

Ol N =

Let’s use a simple database model to demonstrate. We’ll create a model to
represent people and the clubs they are members of. First we’ll create the
models. We might normally create the table definitions first, but we're going
to use the models to create sample data during our migration.

rr2/fixture_dump/app/models/person.rb
class Person < ActiveRecord::Base

has_many :memberships

has _many :clubs, :through => :memberships
end

rr2/fixture_dump/app/models/club.rb
class Club < ActiveRecord: :Base

has_many :memberships

has _many :people, :through => :memberships
end

http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/app/models/person.rb
http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/app/models/club.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

164 * Testing Recipes

rr2/fixture_dump/app/models/membership.rb
class Membership < ActiveRecord::Base
belongs to :club
belongs to :person
end

People can belong to many clubs, and clubs can have many members. The
Active Record migration files should look like the following:

rr2/fixture_dump/db/migrate/20101219180605_create_people.rb
class CreatePeople < ActiveRecord::Migration
def self.up
create table :people do |t]|
t.string :name
t.timestamps
end
end

def self.down
drop_table :people
end
end

rr2/fixture_dump/db/migrate/20101219180600_create_clubs.rb
class CreateClubs < ActiveRecord::Migration
def self.up
create table :clubs do |t|
t.string :name
t.timestamps
end
end

def self.down
drop_table :clubs
end
end

rr2/fixture_dump/db/migrate/20101219180616_create_memberships.rb
class CreateMemberships < ActiveRecord::Migration
def self.up
create_table :memberships do |[t]
t.integer :person_id
t.integer :club id
t.timestamps
end
end

def self.down
drop_table :memberships
end
end

http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/app/models/membership.rb
http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/db/migrate/20101219180605_create_people.rb
http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/db/migrate/20101219180600_create_clubs.rb
http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/db/migrate/20101219180616_create_memberships.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Extract Test Fixtures from Live Data ® 165

Then, for the sake of demonstration, we’ll generate some sample data in our
db/seeds.rb file. In the real world, we would probably set up a simple set of
scaffolds for data entry, and we could easily create a lot more sample data.

rr2/fixture_dump/db/seeds.rb

chad = Person.create(:name => "Chad")
kelly Person.create(:name => "Kelly")
james = Person.create(:name => "James")

hindi club = Club.create(:name => "Hindi Study Group")
snow_boarders = Club.create(:name => "Snowboarding Newbies")

chad.clubs.concat [hindi club, snow boarders]
kelly.clubs.concat [hindi club, snow boarders]
james.clubs.concat [snow boarders]

[chad, kelly, james].each {|person| person.save}

After we've run the migrations and seed file, we should have two Club objects
and three Person objects in our database. Now let’s load the Rails console and
take some of the steps toward accomplishing our end goal of creating fixtures
from this data:

$ rails console
Loading development environment.
>> ActiveRecord: :Base.connection.tables
=> ["clubs", "clubs people", "people", "schema info"]

Based on the set of steps we laid out at the beginning of this recipe, we're
almost halfway there! But there’s one table in the list that we don’t want to
create fixtures for. The special schema_info table is used by Active Record to
manage migrations, so we wouldn’t want to create fixtures for that. Make a
mental note, and let’s continue through our checklist. We need to issue a query
for each table’s data and convert each row to YAML. We'll start with a single
table:

>> ActiveRecord::Base.connection.select_all("select * from people")
=> [{”name"=>"chad", Ilidll=>lllll}, {Ilnamell=>llKe'LlyII’ Ilidll=>II2II},
{"name"=>"JameS", “id"=>"3"}]

The Active Record connection adapter’s select all() method returns an array of
hash objects, each containing key/value pairs of column name and value for
its respective row. Not coincidentally, it’s trivial to translate these hash objects
into the required YAML format for a fixture:

>> conn = ActiveRecord: :Base.connection
>> puts(conn.select_all("select * from people").map do |row|
row.to yaml
end)

http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/db/seeds.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

166 * Testing Recipes

name: Chad

id: "1

name: Kelly

id: "2

name: James

id: "3

=> nil

We're almost there! At this point, we've tackled all the hard stuff that needs
to be done, so it makes sense to put this code together in a script that we can
keep handy to run when needed. Since most Rails automation tasks are
handled using Rake, we’ll throw together a quick Rake task. You can refer to
Recipe 61, Automate Work with Your Own Ralce Tasks, on page 230 for a full
description of how to create one. We'll create a file called lib/tasks/extract_fix-
tures.rake and populate it with the fruits of our exploration:

rr2/fixture_dump/lib/tasks/extract_fixtures.rake
desc 'Create YAML test fixtures from data in an existing database.
Defaults to development database. Set RAILS ENV to override.'

task :extract fixtures => :environment do
sql = "SELECT * FROM %s"
skip_tables = ["schema info"]
ActiveRecord: :Base.establish connection
(ActiveRecord: :Base.connection.tables - skip tables).each do |table name|

i = "000"

File.open("#{Rails.root}/test/fixtures/#{table name}.yml", 'w') do |file|
data = ActiveRecord::Base.connection.select _all(sql % table name)
file.write data.inject({}) { |hash, record|

hash["#{table name} #{i.succ!}"] = record
hash
}.to yaml
end
end
end

We can now invoke this task by typing rake extract_fixtures in the root directory
of our application. The task uses the Rails environment, so by default it will
dump the fixtures from your development database. To extract the fixtures
from your production database, you would set the RAILS ENV environment
variable to "production".

Note that this task will overwrite any existing fixtures you may have, so be
sure to back up your files before running it.

Running the new Rake task results in fixture files being created under the
test/fixtures/ directory of our application as in the following people.yml file:

http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/lib/tasks/extract_fixtures.rake
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Extract Test Fixtures from Live Data ® 167

rr2/fixture_dump/test/fixtures/people.yml
people 001:
id: 1
name: Chad
created at: 2010-12-19 18:07:42.187541
updated at: 2010-12-19 18:07:42.187541
people 002:
id: 2
name: Kelly
created at: 2010-12-19 18:07:42.246756
updated_at: 2010-12-19 18:07:42.246756
people 003:
id: 3
name: James
created_at: 2010-12-19 18:07:42.249354
updated at: 2010-12-19 18:07:42.249354

Also See

Though Rails ships with support for test fixtures, the Factory approach to
test data has gained traction and may be a cleaner approach. For information
on factories, see Recipe 47, Create Test Data with Factories, on page 176.

Credit

Thanks to Rails core developer Jeremy Kemper for the code on which this
recipe is based.

http://media.pragprog.com/titles/rr2/code/rr2/fixture_dump/test/fixtures/people.yml
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 45

Create Dynamic Test Fixtures

Problem

The Rails framework has done us all a service by building in the ability to
manage test data through fixture files. These files can be either comma-sepa-
rated text files or, more commonly, YAML files. You place sample data in
fixtures that are then loaded before your tests run, giving you test subjects
on which to ensure that your code behaves as you expect.

But even though testing is much easier in the Rails world, creating fixture
data can become tedious when you're working on a big application with a
rich domain. You want to make sure you have samples that represent normal
application usage scenarios as well as edge cases, and creating all that data
—especially when many of the attributes are often inconsequential to the test
you're creating them for—can be tiring and time-consuming.

Rails development is supposed to be fun! How can we take away the tedium
of creating large quantities of test fixtures?

Solution

An often-overlooked feature of the way Rails deals with fixture files is that
before passing them into the YAML parser, it runs them through ERb. ERb
is the same templating engine that powers our default view templates. It
allows you to embed arbitrary Ruby expressions into otherwise static text.

When used in YAML test fixtures, this approach can be extremely powerful.
Consider the following example. This fixture data is a sample of a larger file
used for testing posts to a message board application. A Post in this application
can be a reply to an existing Post, which is specified by the parent_id field.
Imagine how bored you'd get (and how many errors you'd probably commit)
if you had to create dozens more of such posts to test various edge conditions.

rr2/dynamic_fixtures/test/fixtures/posts.yml
first post:
title: First post!
body: I got the first post! I rule!
created at: 2011-01-29 20:03:56
updated at: 2011-01-29 21:00:00

http://media.pragprog.com/titles/rr2/code/rr2/dynamic_fixtures/test/fixtures/posts.yml
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Dynamic Test Fixtures ® 169

user: kelly
reply to first post:
title: Very insightful
body: It's people like you that make participation in
this message board worthwhile. Thank you.
parent: first post
created at: 2011-01-30 08:03:56
updated at: 2011-01-30 08:03:56
user: barney
third level nested child post:
title: This post is buried deep in the comments
body: The content isn't really important. We just want to test
the application's threading logic.
created at: 2011-01-30 08:03:56
updated at: 2011-01-30 08:03:56
parent: reply to first post
user: kelly

As 1 was entering this data into the posts.yml file, by the time I reached the
third entry I was annoyed and starting to copy and paste data without much
thought. For example, the third entry’s purpose in our fictional application
is to provide sample data for testing nested comments. We might need to be
able to show the total nested child count of replies to a post to get a high-
level idea of the activity going on in that part of the discussion.

If that were the case, the only field in the third fixture with any real meaning
is the parent field (which dynamically sets the parent_id field based on fixture
name). That’s the one that associates this post with the child of the root post.
I don’t care about the post’s title or body, and I don’t care who posted it. I
just need a post to be there and be counted.

Since fixtures are preprocessed through ERb, we can use embedded Ruby
snippets to generate fixture data. Assuming we want to test a greater number
of posts than three, let’s generate a block of posts, randomly disbursed under
the existing thread:

rr2/dynamic_fixtures/test/fixtures/posts.yml
<% l.upto(50) do |number| %>
child post <%= number %>:
title: This is auto-generated reply number <%= number %>
body: We're on number <%= number %>
created at: 2011-01-30 08:03:56
updated at: 2011-01-30 08:03:56
<%# Randomly choose a parent from a post we've already generated -%>
parent: child post <%= rand(number - 1) + 1 %>
user: <%= S%w(kelly barney).shuffle.first %>
<% end %>

http://media.pragprog.com/titles/rr2/code/rr2/dynamic_fixtures/test/fixtures/posts.yml
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

170 © Testing Recipes

Now, if we load our fixtures, we can see that we have fifty-three Posts in our
database:

$ rake db:fixtures:load

(in /Users/chad/src/rr2/Book/code/rr2/dynamic_fixtures)
$ rails runner 'puts Post.count'’

53

Wonderful! Now what if we wanted to do something smart with the dates?
For example, we might want to test that when a post is updated, it is moved
back to the top of the list and redisplayed as if new. Of course, we could do
that by copying and pasting dates and then hand-editing them, but who wants
to spend their time that way? We can save ourselves some time, some pain,
and probably a few self-inflicted bugs by delegating to some helper methods.

Here’s how we’d do that:

rr2/dynamic_fixtures/test/fixtures/posts.yml
<%
def today
Time.now.to s(:db)
end
def next_week
1.week.from now.to s(:db)
end
def last week
1.week.ago.to s(:db)
end
%>
post_from_last_week:
title: Pizza
body: Last night I had pizza. I really liked that story from AWDWR. :)
created at: <%= last week %>
updated_at: <%= last week %>
user: kelly
post created in future should not display:
title: Prognostication
body: I predict that this post will show up next week.
created at: <%= next week %>
updated at: <%= next week %>
user: kelly
updated post displays based on updated time:
title: This should show up as posted today.
body: blah blah blah
created_at: <%= last_week %>
updated at: <%= today %>
user: barney

Not only does this technique save time and reduce the chance for error, but
it’s also a lot easier to read. The words next week carry a lot more semantic

http://media.pragprog.com/titles/rr2/code/rr2/dynamic_fixtures/test/fixtures/posts.yml
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Dynamic Test Fixtures ® 171

significance than a hard-coded date. They tell you not just what the data is
but a little of why it’s set the way it is. Other dated-related method names
such as month_end_closing_date() or random_date_last_year() could convey significance
(or insignificance) of a value. And, of course, there’s no reason to stop with
dates. This is ERb, which means it’s Ruby, and anything that’s possible with
Ruby is possible in these fixtures.

You probably noticed the calls to, for example, 1.week.ago(). These aren’t includ-
ed with Ruby; also not included is the ability to format a Time object for use
with a database. These methods ship with Rails. Since your fixtures are
loaded in the context of a Rails application, all your model classes, helper
libraries, and the Rails framework itself are available for your use.

Though you can generate fixtures at runtime with ERb, sometimes it’s easier
to pregenerate your fixtures. If you just need a bunch of static data that isn’t
going to change much, you might consider writing a script that creates static
YAML fixtures that you then just check in and manage like usual.

Also See

An increasingly popular approach to fixtures, especially relevant when you
need to generate test data dynamically, is the Factory approach. If you find
yourself getting too deep in code in your YAML fixture files, strongly consider
switching to factories or to using a hybrid of factories and fixtures. For more
on factories, see Recipe 47, Create Test Data with Factories, on page 176.

Another way to quickly generate fixture data is to generate scaffolding for
your models, enter your data via the autogenerated forms, and then dump
your live data into fixtures files. For more information about how to dump
data into fixtures, see Recipe 44, Extract Test Fixtures from Live Data, on page
163.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 46

Measure and Improve Your Test Coverage

Problem

Well-tested code not only is safer to change but is usually better designed.
How do you measure your test coverage?

Solution

To improve test coverage, we first need to be able to measure it so we can
remedy the parts of our application that are being overlooked. We can measure
test coverage using a special tool that inserts itself into our code and keeps
track of all branches of execution during a test run, reporting which lines or
statements weren’t executed as the tests run. There are a number of choices
for test coverage tools, but my favorite is SimpleCov.'” If you haven't already
done so, install SimpleCov now, which we’ll be using in the rest of this recipe
to demonstrate the benefits of a test coverage tool. Once you've installed
SimpleCov, you can hook it into the execution of your tests. To do this, add
the following lines to your test/test helperrb file at the top, before the Rails
environment is loaded:

rr2/test_coverage/test/test_helper.rb
require 'simplecov'
SimpleCov.start

If you require and start SimpleCov after your application code is loaded, it
will not work; SimpleCov must always run first. Once it’s in place, run your
tests as you would without SimpleCov. If all is well, when the test run com-
pletes, you should see a line like this:

Coverage report generated for Unit Tests,
Functional Tests to /Users/chad/src/rr2/Book/code/rr2/test coverage/coverage.
83.33% covered.

SimpleCov has now created a series of HTML documents containing our test
coverage report. The main file to look at is coverage/index.html. The expected
output is shown in Figure 1, A SimpleCouv test coverage report, on page 174.

12. SimpleCov works only with Ruby 1.9 and newer. If you need a test coverage tool for
Ruby 1.8, use RCov, which is documented at http://eigenclass.org/hiki.rb?rcov.

http://media.pragprog.com/titles/rr2/code/rr2/test_coverage/test/test_helper.rb
http://eigenclass.org/hiki.rb?rcov
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Measure and Improve Your Test Coverage ® 173

Installing SimpleCov is, well, simple. Just follow these steps to install and run it.

First, add SimpleCov to your application’s Gemfile:

rr2/test_coverage/Gemfile
gem 'simplecov'

Next, run bundle install to download and install SimpleCov into your bundle:

$ bundle install

Using rake (0.8.7)

Using abstract (1.0.0)
Using activesupport (3.0.6)
Using builder (2.1.2)

Using i18n (0.5.0)

Using activemodel (3.0.6)
Using erubis (2.6.6)

Using simplecov (0.4.0)
Using sqlite3 (1.3.3)
Your bundle is complete! It was installed into /Users/chad/.rvm/gems/ruby-1.9.2-p0

Oh! Our test coverage doesn’t look very good for the Person model! Clicking the
path to any file on the left of this table presents an annotated view of that
file’s source. The Person model’s annotated source looks like Figure 2, SimpleCov
annotation for Person with 67 percent coverage, on page 174.

That explains it. We haven't yet written a test for the full_name() method. That’s
easy to fix. Here’s a new test in the test/unit/person_test.rb file:

rr2/test_coverage/test/unit/person_test.rb
test "can return full name" do

person = Person.new(:first_name => "Clem", :last_name => "Snide")
assert equal "Clem Snide", person.full name
end

Rerunning our tests shows 100 percent coverage for the Person model, as
shown in Figure 3, SimpleCov annotation for Person with 100 percent coverage,
on page 175.

We all try, but sometimes testing can be hard to do. Using a code coverage
tool makes it easier to motivate yourself. You can treat it like a game. Enjoy!

report erratum - discuss

http://media.pragprog.com/titles/rr2/code/rr2/test_coverage/Gemfile
http://media.pragprog.com/titles/rr2/code/rr2/test_coverage/test/unit/person_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

174 * Testing Recipes

All Files (33.06%) C rated about a minute ago

All Files (93.06%)

15 files in total. 72 relevant lines. 67 lines covered and 5 lines missed

Search:
< File % covered % Lines % Relevant Lines < Lines covered < Lines missed
Q ./app/models/person.rb 66.67 % 5 3 2 1
Q ./app/controllers/people_controller.rb 83 40 36 4
Q ./app/controllers/application_controller.rb 100.0% 3 2 2 [4]
Q ./app/helpers/application_helper.rb 100.0 % 2 1 1 0
Q ./app/helpers/people_helper.rb 100.0 % 2 1 0
Q ./config/application.rb 100.0 % 42 7 7 0
Q ./config/boot.rb 6 3 3 0
Q ./config/environment.rb 5 2 2 0
Q ./config/environments [test.rb 35 9 9 0
Q ./config/initializers/backtrace_silencers.rb 100.0 % 7 0 0 0
Q ./config/initializers/inflections.rb 100.0 % 10 0 [4] [4]
Q ./config/initializers/mime_types.rb 100.0 % 5 0 0 0
Q ./config/initializers/secret_token.rb 100.0 % 7 1 1 0
Q ./config/initializers/session_store.rb 100.0 % 8 1 1 0
Q ./config/routes.rb 100.0 % 60 2 2 0
Showing 1 to 15 of 15 entries

Generated by simplecov v0.4.0 and simplecov-html v0.4.3

using Unit Tests, Functional Tests

Figure 1—A SimpleCov test coverage report

ia

./app/models/person.rb
66.67 % covered

Hits
1 «class Person < ActiveRecord::Base 2
2 def full_name 2
3 [first_name, last_name].join(" ") 0
4 end

5 end

Figure 2—SimpleCov annotation for Person with 67 percent coverage

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Measure and Improve Your Test Coverage ® 175

./app/models/person.rb

100.0 % covered

Hits
1 class Person < ActiveRecord::Base 2
z def full_name 2
3 [first_name, last_name].join(" ") 1
4 end

5 end

Figure 3—SimpleCov annotation for Person with 100 percent coverage

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 47

Create Test Data with Factories

Problem

Rails introduced test fixtures early on as the built-in mechanism for repro-
ducibly creating sample data for unit tests. Although fixtures are a big
improvement over the way most people were doing sample test data in 2005,
their limitations quickly become apparent. They are inflexible and on a large
scale can become difficult to manage.

We need a more flexible, maintainable solution for generating sample data
for our tests.

Solution

The Rails community has evolved toward using a technique called factories
for test data. In the world of object-oriented software design, factory refers to
a design pattern'® describing how to create objects in a clean, decoupled
manner. In Rails testing, factories generate sample data for tests. The most
popular implementation of this technique is a library called “factory_girl,”
written by the Rails consultancy thoughtbot.'* With factory_girl, we can create
generators for Active Record objects with default data. Additionally, these
generators can be overridden on a per-instance basis. Let’s give it a try.

First we’ll add factory_girl to our application’s Gemfile. Since we're only going
to use factory_girl in our tests, we can add it to the “test” environment, as
discussed in Recipe 58, Use Bundler Groups to Manage Per-Environment
Dependencies, on page 224:

rr2/factories/Gemfile
group :test do

gem 'factory girl rails'
end

To use factory_girl in a Rails application, we install the “factory_girl rails”
gem.

13. See Design Patterns [GHJV95] for a full description of the Factory pattern.
14. http://thoughtbot.com

http://media.pragprog.com/titles/rr2/code/rr2/factories/Gemfile
http://thoughtbot.com
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Test Data with Factories ® 177

After updating our application’s bundle, we can use factory_girl in our tests.
First, we define a factory. We can do this in any code that our tests load.
Here’s an example definition for a Product model:

rr2/factories/test/unit/product_test.rb

Factory.define :product do |product|
product.name "A product"
product.price 20
product.listed on 3.days.ago

end

This defines a generator that we can use to create sample Product objects for
our tests. As a simple example, let’s say we want to write a new method, free?(),
for Product instances. Using our factory, we can test the method like this:

rr2/factories/test/unit/product_test.rb
test "A product with a price greater than zero is not free" do
@product = Factory.build(:product)
assert !@product.free?,
"Should not have been free since it has a non-zero price"
end

Here, we use the Factory.build() method to generate an instance of the factory
we defined earlier. Because we have provided default values for the factory,
our new object is created with those values. Specifically, this means that
@product has a price of 20, so it is not free. When we use the build() method,
factory girl creates instances in memory but doesn’t save them to the
database. That’s good for tests like this one where a database save isn’t nec-
essary (and slows down test performance needlessly). If we wanted to test
code that required a database save, we could use Factory.create() instead.

What if we wanted to override one or more of the default values in the factory?
Easy! Just pass the overridden values in as a Hash when you generate the
object:
rr2/factories/test/unit/product_test.rb
test "A product not yet listed is not in stock" do

@product = Factory.build(:product, :listed on => 2.days.from now)

assert !@product.in stock?,

"Should not have been in stock since it's listed in the future"
end

This test checks that a Product listed in the future doesn’t report itself as being
in stock. To do that, we create a new Product instance using the factory but
set just the listed_on attribute to have a different value. This makes what we're
testing more explicit. We still have the other default values, but we don’t care
about them for this test.

http://media.pragprog.com/titles/rr2/code/rr2/factories/test/unit/product_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/factories/test/unit/product_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/factories/test/unit/product_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

178 * Testing Recipes

Sometimes we need to dynamically generate attribute values based on other
attributes in our sample data. For example, imagine our products have SKU
codes that are manually set by the maintainers of our hypothetical product
catalog system. They usually consist of the product name capitalized followed
by a unique identifier. To generate this automatically for our tests, we could
do something like this:

rr2/factories/test/unit/product_test.rb
Factory.define :product do |product|

product.name "A product"

product.price 20

product.listed on 3.days.ago

product.sku { |prod| [prod.name.gsub(/ /, '-').upcase, "-", rand(999)].join}
end

test "Demonstrating dynamically generated values" do
@product = Factory.build(:product)
assert match /~A-PRODUCT-[0-9]+$%$/, @product.sku
end

Rather than pass a value directly in for the product’s SKU, we pass a block.
factory_girl sees the block and runs it, passing in the Product instance with its
static values populated. We then return the dynamically generated value for
this attribute from the block.

One thing fixtures never did well was associations. Factories make this much
easier to follow. Let’s add a one-to-many relationship between categories and
products. A Product now belongs to a Category. To set up a sample Category for a
Product, we can configure the factory like this:

rr2/factories/test/unit/product_test.rb

Factory.define :category do |category|
category.name "Goods"

end

Factory.define :product do |product|
product.name "A product"
product.price 20
product.listed on 3.days.ago
product.sku { |prod| [prod.name.gsub(/ /, '-').upcase, "-", rand(999)].join}
product.category {|prod| prod.association(:category, :name => "Stuff")}
end

test "A product belongs to a category" do
@product = Factory.build(:product)
assert _equal "Stuff", @product.category.name
end

http://media.pragprog.com/titles/rr2/code/rr2/factories/test/unit/product_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/factories/test/unit/product_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Test Data with Factories ® 179

First we set up the new factory for the Category model. Then we add the category()
attribute to our product factory definition. As in the previous example, if a
block is passed to the attribute call in the factory, the populated model is
returned. From here, we can call factory_girl’s association() method, which allows
us to instantiate and connect an object from another factory. In this case, we
use the :category factory, setting its name to an explicit value via the standard
second argument used when calling Factory.build().

Finally, it would be good if we could generate similarly configured objects of
the same class reproducibly. For example, we might want to write a series of
tests that reference products that are not yet listed. Rather than repeat our-
selves in the tests, we can use factory inheritance to get the job done. The
following defines a factory for products not yet listed:

rr2/factories/test/unit/product_test.rb

Factory.define :not yet listed, :parent => :product do |product|
product.listed on 1l.week.from now

end

We name the factory :not yet listed and specify its :parent to be :product. Now,
whenever we build or create a :not_yet listed object, it will create a Product with
all of the values from the :product factory and the overridden value for listed_on
from our child factory.

Factory definitions are just Ruby code. That makes them very easy to work
with. It also makes it tempting to store them in separate files and require()
them into your tests. In fact, this is so common that factory_girl automatically
loads factories from any Ruby file in the spec/factories/ or test/factories directory.

While this might be a good way to organize code with many factories, try to
resist the temptation to move your factories out of view too soon. Err on the
side of littering your tests with factory definitions. Why? For the same reason
factories were created in the first place. If your sample data definitions are
tucked away outside your tests, they become opaque to the reader of the test
code. Defining them local to the tests that use them makes it very clear what
the tests are actually testing. Getting it right is a balance.

Also See

For information on how to add dependencies to your test environment but
not to your development and production environments, see Recipe 58, Use
Bundler Groups to Manage Per-Environment Dependencies, on page 224.

http://media.pragprog.com/titles/rr2/code/rr2/factories/test/unit/product_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Part V

Email Recipes

Decades after the invention of the Internet, email
for the average user remains its killer application.
While Rails is primarily a web application frame-
work, its email capabilities are considerable. In
these recipes, we’ll look at both how to generate
rich outgoing emails as well as how to process in-
coming email.

Recipe 48

Send Gracefully Degrading Rich-Content Emails

Problem

Despite the historic hoopla over the World Wide Web, the real killer app of
the Internet has always been email. Even as the Web evolves, email is taking
on an ever-increasing role in the dissemination of information. Modern web
applications are about making things easier for the user. And with the Web’s
information fire hose showing no sign of letting up, receiving information by
email makes it easier for users to keep up with what’s happening in each of
many web applications that they may be subscribed to.

That said, the Web has spoiled all of us email users. We're so used to the rich
experience of using a well-designed HTML-based application that the plain-
text emails that suited us in the past look dull by comparison. It’'s so much
harder to make out what’s important in a plain-text message. So, over time,
email has become richer. How we build our applications so that it’s possible
to distribute an email message without having to worry whether the recipient
will be a simple text-based mail client or the HTML-friendly Apple Mail client?

Solution

The Internet Engineering Task Force (IETF) has defined a standard MIME
type called multipart/alternative that is designed to solve this problem. Messages
with the multipart/alternative MIME type are structured exactly like messages of
type multipart/mixed, which is the typical MIME type of a mail message with one
or more attachments. But, though structurally identical, multipart/alternative
messages are interpreted differently by their receivers.

Each part of a multipart/alternative-encoded message is assumed to be an alter-
native rendering of the same information. Upon receiving a message in the
multipart/alternative format, a mail client can then choose which format suits it
best.

Rails gives us an easy way to send multipart/alternative messages. Let’s explore!

Assuming we've already generated an application to work with, we’ll generate
a new mailer class to hold our code:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Send Gracefully Degrading Rich-Content Emails ® 183

$ rails g mailer Notifier multipart_alternative_rich
create app/mailers/notifier.rb
invoke erb

create app/views/notifier

Create app/views/notifier/multipart alternative rich.text.erb
invoke test unit

create test/functional/notifier test.rb

We also asked the generator to set up multipart_alternative_rich() as a mail method
for us. We'll edit this method to add our own logic. The multipart_alternative_rich()
method should look like the following;:
rr2/gracefully_degrading_rich_text_emails/app/mailers/notifier.rb

class Notifier < ActionMailer: :Base
default :from => "from@example.com"

def multipart_alternative rich
@greeting = "Hi"

mail :to => "chad+rails3recipes@chadfowler.com"
end

end

The Rails 3 mailer API is sleek and simple. In the generated code, the example
instance variable @greeting is set to be passed to the view, and we call the mail()
to actually generate the mail to a recipient.

The plain-text version of the view looks like this:

rr2/gracefully_degrading_rich_text_emails/app/views/notifier/multipart_alternative_rich.text.erb
Notifier#multipart_alternative rich

<%= @greeting %>,
find me in app/views/app/views/notifier/multipart alternative rich.text.erb

Now let’s turn this mailer into a multipart/alternative mailer! All we have to do is
to define additional views under app/views/notifier with the base part of the file-
name set to notifier and the middle part of the filename set to a reference to a
content type. For example, we might create a file called app/views/notifier/multi-
part_alternative_rich.html.erb to contain our HTML version of the mail:

rr2/gracefully_degrading_rich_text_emails/app/views/notifier/multipart_alternative_rich.html.erb
This is the <h1l>HTML</h1l> version of our mail.

Visit the Pragmatic Bookshelf.

We can still reference this: <%= @greeting %>

That’s all there is to it! We can now deliver a message and see how it looks:

http://media.pragprog.com/titles/rr2/code/rr2/gracefully_degrading_rich_text_emails/app/mailers/notifier.rb
http://media.pragprog.com/titles/rr2/code/rr2/gracefully_degrading_rich_text_emails/app/views/notifier/multipart_alternative_rich.text.erb
http://media.pragprog.com/titles/rr2/code/rr2/gracefully_degrading_rich_text_emails/app/views/notifier/multipart_alternative_rich.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

184 * Email Recipes

$ rails runner "Notifier.multipart_alternative_rich.deliver"

On my Macbook Pro, this message looks like this:

This is the

HTML

version of our mail. Visit the Pragmatic Bookshelf. We can still reference this: Hi

The same message on the console-based mutt email client (http://www.mutt.org/)
looks like this:

From: chad@chadfowler.com
o: chad+rails3recipes@chadfowler.com
Subject: Multipart alternative rich

otifier#multipart_alternative_rich

Hi, find me in app/views/app/views/notifier/multipart_alternative_rich.text.erb

How did this work? It’s all about the conventions. Rails saw multiple templates
matching the name of the mail we were sending and automatically set the
MIME type of the message to multipart/alternative and rendered all of the templates
as parts of the mail. If we wanted to create even more parts to the message,
we’d simply need to create more files with names starting with the name of
the mailer and using different content types. Simple!

Since Rails makes it so easy to send multipart/alternative-formatted messages,
you won'’t ever again risk sending HTML to a client that might not be able to
read it.

Also See

Reader Peter Michaux points out that going beyond the simple HTML example
here, you might want to use images and CSS in your HTML-formatted mails.
You need to consider a number of issues when you do this. CampaignMonitor
has an excellent article available at http://www.campaignmonitor.com/blog/archives/2006/
03/a_guide_to css_1.html.

http://www.mutt.org/
http://www.campaignmonitor.com/blog/archives/2006/03/a_guide_to_css_1.html
http://www.campaignmonitor.com/blog/archives/2006/03/a_guide_to_css_1.html
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 49

Send Email with Attachments

Problem

You need to send emails with attachments from your Rails application.

Solution

Action Mailer makes it easy to send rich email with attachments using its
attachments[]=() method. Let’s walk through a simple example.

First we’ll generate a controller to provide an interface to the user. Let’s call
it SpamController:
$ rails generate controller spam

create app/controllers/spam controller.rb
invoke erb

create app/views/spam
invoke test unit
create test/functional/spam_controller_test.rb

invoke helper

create app/helpers/spam_helper.rb

invoke test_unit

create test/unit/helpers/spam helper test.rb

Next we’ll generate a mailer. We’'ll call our mailer Spammer and have the gener-
ator create a single mail method called spam_with_attachment():
$ rails generate mailer Spammer spam_with_attachment

create app/mailers/spammer.rb
invoke erb

create app/views/spammer

Create app/views/spammer/spam with attachment.text.erb
invoke test unit

create test/functional/spammer test.rb

We'll look at the implementation of the mailer shortly. First let’s focus on the
user interface.

We'll start with a mail form. We'll put it in the file index.html.erb in the app/views/
spam/ directory. The form accepts a name, a recipient email address, and a
file upload. Notice that the call to form_tag() declares the form to be multipart.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

186 * Email Recipes

This is necessary in order to submit both the normal form data and the
uploaded files. Here’s the code for the form:

rr2/SendingEmailsWithAttachments/app/views/spam/index.html.erb
<%= form tag send spam path, :multipart => true do %>
<p>
<%= label_tag :name %>
<%= text_field tag :name %>
</p>

<p>

<%= label tag :email %>

<%= text field tag :email %>
</p>

<p>
<%= label tag :file %>
<%= file field tag :file %>
</p>
<%= submit tag "Spam!" %>
<% end %>

As you can see, the form submits to a route called send_spam(), which we have
pointed to the SpamController’s send_spam() action. The send_spam() action’s primary
job is to delegate to an Action Mailer class. We'll do that and just redirect
back to the form. After all, we've called this thing Spammer, so it’s safe to assume
that its users will want to send one mail after another.

Here’s the entire SpamController class:

rr2/SendingEmailsWithAttachments/app/controllers/spam_controller.rb
class SpamController < ApplicationController
def send spam
Spammer.spam with attachment(params|[:name],
params[:email],
params[:file]).deliver
redirect to spam form url, :notice => "Keep 'em coming!"
end
end

We're almost there. All that’s left is to implement the actual mailer. The
mailer is implemented as a pair of files: the mailer itself and the template it
uses to render a message body. The view is a dead-simple ERb template that’s
named after the send method on the mailer class, which in this case is
spam_with_attachment.text.erb.

rr2/SendingEmailsWithAttachments/app/views/spammer/spam_with_attachment.text.erb
Hello <%= @name %>! Have some spam!

The real work happens in the mailer class. Here’s what ours looks like:

http://media.pragprog.com/titles/rr2/code/rr2/SendingEmailsWithAttachments/app/views/spam/index.html.erb
http://media.pragprog.com/titles/rr2/code/rr2/SendingEmailsWithAttachments/app/controllers/spam_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/SendingEmailsWithAttachments/app/views/spammer/spam_with_attachment.text.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Send Email with Attachments ¢ 187

rr2/SendingEmailsWithAttachments/app/mailers/spammer.rb
class Spammer < ActionMailer::Base
default :from => "from@example.com"
def spam with attachment(name, email, file)
@name = name
attachments[file.original filename] = file.read
mail :to => email, :subject => "Have a Can of Spam!"
end
end

The method starts by setting the name to an instance variable called @name.
As is the case with actions and their views, setting the instance variable allows
us to reference the name argument in the view.

Next is the code for adding the attachment. To add an attachment, we call
the attachments[]=() method, passing in the filename for the attachment and
the actual attachment data. In this case, both of those pieces of information
are pulled from the uploaded file object we passed in from the controller. Had
we needed to explicitly set the MIME type for the attachment, instead of
passing the file content directly into the attachments[]=(), we could have passed
a Hash containing values for :mime_type and :content.

If we needed to, we could have attached multiple files here. Simply call
attachments[]=() with a different filename for each attachment.

If you're sending HTML email, you may want to do inline attachments. This
allows you to, for example, embed images in the message. ActionMailer makes
this trivial. Here’s a rewritten version of our mailer and view that embeds an
uploaded image in an email message:

rr2/SendingEmailsWithAttachments/app/mailers/spammer.rb
class Spammer
def spam with attachment inline(name, email, file)
@name = name
attachments.inline['photo.png'] = file.read
mail :to => email, :subject => "Have a Can of Spam!"
end
end

rr2/SendingEmailsWithAttachments/app/views/spammer/spam_with_attachment_inline.html.erb
<hl>Hurray!</h1>

I hope this is a picture!

<%= image tag attachments['photo.png'].url %>

The only difference in the mailer is that instead of calling attachments[]=(), we
call attachments.inline[]=(). In the view, ActionMailer gives us a mechanism to refer
to the URL of an attachment, which makes it possible to embed the image in
the message using image_tag().

http://media.pragprog.com/titles/rr2/code/rr2/SendingEmailsWithAttachments/app/mailers/spammer.rb
http://media.pragprog.com/titles/rr2/code/rr2/SendingEmailsWithAttachments/app/mailers/spammer.rb
http://media.pragprog.com/titles/rr2/code/rr2/SendingEmailsWithAttachments/app/views/spammer/spam_with_attachment_inline.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 50

Test Incoming Email

Problem

You are developing an application that processes incoming email messages.
Your development process is too slow and complicated if you have to send an
email and wait every time you make a change to the email processor. Some
of your team’s developers don’t have the ability to easily start an email server
on their development computers, so until now, the development of the email-
processing component has been limited to developers whose computers have
a working email server. You need a working test harness that will let you test
your email-processing code.

Solution

Support for testing incoming email with Action Mailer isn’t as explicit as it is
with outgoing email. There are test harnesses in place to access all the mail
you've sent with Action Mailer, but there are no such explicit clues as to how
to test incoming mail processing.

Fortunately, though not quite as obvious as testing outgoing email, it’'s not
any more difficult to test incoming email. To test incoming mail, we will sim-
ulate mail being piped into our mailer by passing in raw, unprocessed mail
messages and allowing our mailer to process them exactly as they’'d be pro-
cessed in a production deployment.

To understand this, let's quickly review how to set up an incoming email
processor. For the sake of a brief discussion, we’ll assume we're using send-
mail and procmail. For detailed information on setting up your system to
process mail with Rails, see Agile Web Development with Rails [RTH11].

On a typical sendmail system, you can set up a .forward file in your home
directory, specifying an email address to which to forward your incoming
mail. If, instead of an email address, you specify a pipe symbol (|) followed
by the name of a program, incoming email will be piped to that program’s
standard input for processing. A simple example .forward file might look like
the following:

"|procmail"

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Incoming Email ® 189

The procmail program will then look in the user’s home directory for a file
called .procmailrc, which will tell procmail how to process incoming mail based
on a configurable set of rules. We won't go into what those rules mean here,
but suffice to say that the following .procmailrc file tells procmail to pipe all
incoming email to a Rails application called mail_receiver—specifically to its
Receiver class. (We've split the command onto multiple lines to make it fit the
page.) Here’s the file:

10 C

*

| c¢d /home/listener/mail receiver && \
rails runner 'Receiver.receive(STDIN.read)'

This is where it gets interesting from the perspective of writing tests:

Receiver.receive(STDIN. read)

The Action Mailer mail receiver simply accepts a raw email message, which
in this case we've configured to come in via the application’s standard input.
What this means is that to run the mail receiver in a test, all we have to do
is get the raw text of an email message and pass it into our mail receiver’s
receive() method.

Let’s stop talking about it and start cookin’!

If youre like me, your email inbox is flooded with not-to-miss business
opportunities every day. Whether it's a sweet deal on a miracle diet pill or the
chance to make millions of dollars just by helping someone transfer some
money from one bank account to another, I'm constantly worried that I get
too many emails from friends and family, and I might not notice one of these
gems as a result. So, to demonstrate how to test incoming email processors
in Rails, we’ll start on a little application to help us sort through all of these
incoming opportunities to make sure we don’'t miss any of them.

First we’ll set up a mailer using the rails generate command:

chad> rails generate mailer Receiver
create app/mailers/receiver.rb
invoke erb

create app/views/receiver
invoke test unit
create test/functional/receiver test.rb

As is typical in Rails for code that sets up a mailer, not only did the generator
create a skeleton for our mail receiver implementation, but it set up a test
file for us as well. Let’s look at the file in its pristine form before we start
spicing it up:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

190 * Email Recipes

rr2/testing_incoming_email/test/functional/receiver_test_pristine.rb
require 'test helper!'

class ReceiverTest < ActionMailer::TestCase
test "the truth" do
assert true
end

end

This file is pretty simple. It's a basic-looking unit test; however, you’ll notice
that the class inherits from ActionMailer::TestCase, which gives us some extra
mail-specific functionality. The functionality most applicable to us now is
ActionMailer::TestCase’s read_fixture() method. It’s not magic, but it gives us a clue
as to how we should manage the raw email text we're going to be stuffing into
our mail receiver. Namely, we can store each message in a text file under our
application’s test/fixtures/receiver directory. If we do that, we need to call only the
generated read_fixture() method and pass the returned data into our Receiver
class’s receive() method.

Now, all we need is some raw email text. Since it's just text, we could construct
it by hand, but we have spam to read, and time is money!

It turns out that though most of us don’t need to use it much, most email
clients have the ability to show you the raw source of an email message. If
you can do this with your email client, you can send yourself test emails with
the desired characteristics or pull existing email from your inbox and then
just copy and paste their raw source into a text file to save into your fixtures
directory.

Since we're going to be writing code to help us sort through the many money-
making opportunities in our inboxes, I'll pull out a relevant email. The text
of the raw email is as follows:

Return-Path: <webmaster@elboniabank.com>

Received: from [192.168.0.100] (c-192-168-0-1.sd.o.nonex.net [192.168.0.100])
by rasp.chadfowler.com (8.12.10/8.12.10) with ESMTP id jBLUc021232
for <chad@chadfowler.com>; Wed, 21 Dec 2015 11:19:40 -0500

Mime-Version: 1.0 (Apple Message framework v746.2)

Content-Transfer-Encoding: 7bit

Message-Id: <E75372B2-32AD-402B-B930-5421238557921@chadfowler.com>

Content-Type: text/plain; charset=US-ASCII; format=flowed

To: chad@chadfowler.com

From: N'Dugu Wanaskamya <webmaster@elboniabank.com>

Subject: CONFIDENTIAL OPPORTUNITY

Date: Wed, 21 Dec 2015 04:19:00 -0700

Bulwayo, Republic of Elbonia.

http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/test/functional/receiver_test_pristine.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Incoming Email ® 191

MY PLEASURE,

This is a proposal in context but actually an appeal soliciting for your
unreserved assistance in consummating an urgent transaction requiring
maximum confidence. Though this approach appears desperate,I can assure
you that whatever questions you would need to ask or any other thing you
will need to know regarding this proposal, will be adequately answered
to give you a clearer understanding of it so as to arrive at a
successful conclusion.

No doubt this proposal will make you apprehensive, please i employ you
to observe utmost confidentiality and rest assured that this transaction
would be most profitable for both of us. Note also that we shall require
your assistance to invest our share in your country.

Thanks and Regards,
Mr. N'Dugu Wanaskamya
First Bank of Elbonia

We'll save this text in a file called confidential_opportunity in the directory test/fix-
tures/receiver under our application’s root directory. We can now write a simple
test to make sure things are working as expected. Add the following to your
receiver test.rb file:

rr2/testing_incoming_email/test/functional/receiver_test.rb

test "fixtures are working" do
email text = read fixture("confidential opportunity").join
assert match /opportunity/i, email text

end

This is just a smoke test to make sure we can get to the fixture and that it
produces a String that can be fed into our mail receiver. Run the test. It should
work. If it doesn’t, you probably have a file in the wrong place. If you retrace
your steps, you'll find it in a jiffy:

chad> ruby -I test test/functional/receiver_test.rb

Loaded suite test/unit/receiver test
Started

ReceiverTest:
PASS fixtures are working (0.39s)

Finished in 0.393521 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Now that we have the safety net set up, we can start actually writing some
code. The goal of our application is to somehow separate the emails we care
about from the ones that just clutter up our mailboxes. To that end, we’ll

http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/test/functional/receiver_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

192 * Email Recipes

create a simple model to store messages and to rate them numerically. The
higher the rating, the more “interesting” the message is. We won'’t look at the
details of the data model here, but just keep in mind that we have a model
named MailMessage (with a corresponding mail_messages table) that has the
expected subject, body, sender, and so on, attributes as well as a numeric rating
attribute.

We'll start small and test the simple processing of a message to make sure it
gets added to the database. Let’s write the test first:

rr2/testing_incoming_email/test/functional/receiver_test.rb
test "incoming mail gets added to the database" do
assert difference "MailMessage.count" do
email text = read fixture("confidential opportunity").join
Receiver.receive(email text)
assert _equal "CONFIDENTIAL OPPORTUNITY", MailMessage.last.subject
end
end

This test will fail, since our mail receiver is unimplemented. Go ahead and
run it. Watch it fail now, and it’ll feel better when it passes.

chad> rake test:functionals
Started

ReceiverTest:
PASS fixtures are working (0.03s)
ERROR incoming mail gets added to the database (0.17s)
NoMethodError: undefined method “receive' for #<Receiver:...>
action mailer/base.rb:421:in “block in receive'

Finished in 0.208125 seconds.

2 tests, 1 assertions, 0 failures, 1 errors, 0 skips

Now we’ll make it pass. Let’s implement the mail receiver. Edit your app/mail-
ers/receiver.rb, and define a receive() method like this:

rr2/testing_incoming_email/app/mailers/receiver.rb
def receive(email)
MailMessage.create(:subject => email.subject, :body => email.body.to s,
:sender => email.from, :rating => 0)
end

We simply create a new instance of the MailMessage class and populate it with
the contents of the incoming email. But we have the rating() set to 0. Let’s put
in a simple rule to increase the rating of any email that contains the word
opportunity. Again, we’ll start with the test:

http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/test/functional/receiver_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/app/mailers/receiver.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Incoming Email ® 193

rr2/testing_incoming_email/test/functional/receiver_test.rb
test "email containing opportunity rates higher" do
email text = read fixture("confidential opportunity").join
Receiver.receive(email_text)
assert MailMessage.find by subject("CONFIDENTIAL OPPORTUNITY").rating > 0
end

And the simplest possible implementation would look like some variation of
this:

rr2/testing_incoming_email/app/mailers/receiver.rb
def receive(email)
rating = 0
if([email.subject, email.body].any?{|string| string =~ /opportunity/i})
rating += 1

end
MailMessage.create(:subject => email.subject, :body => email.body.to s,
:sender => email.from, :rating => rating)
end

It's easy to see how you could continue to iterate this way, decreasing a
message’s rating if it’s from a friend or family member or increasing the rating
if the mail’s origin is the Republic of Elbonia (known to be a hotbed of high-
return financial opportunities for the open-minded entrepreneur). We'll leave
you to season to taste in this regard. But what if you need to check a message’s
attachments? How do you test that?

Mail attachments, though usually made of nontextual materials, are encoded
as text for transfer over the Internet. This is lucky for us, because it means
we don’t have to change our approach at all. The following is what the raw
text of an email with an attachment would look like:

rr2/testing_incoming_email/test/fixtures/receiver/latest_screensaver

Return-Path: <chad@chadfowler.com>

Received: from [192.168.0.100] (c-24-8-92-53.hsdl.co.comcast.net ..)
Mime-Version: 1.0 (Apple Message framework v746.2)

To: chad@chadfowler.com

Message-Id: <689771CD-862F-49CB-BOE8-94C1517EB5C5@chadfowler. com>
Content-Type: multipart/mixed; boundary=Apple-Mail-1-231420468

From: Chad Fowler <chad@chadfowler.com>

Subject: The latest new screensaver!

Date: Thu, 22 Dec 2015 19:28:46 -0700

X-Mailer: Apple Mail (2.746.2)

X-Spam-Checker-Version: SpamAssassin 2.63 (2004-01-11) on nsl.chadfowler.com
X-Spam-Level: *

X-Spam-Status: No, hits=1.2 required=5.0 ...

--Apple-Mail-1-231420468

http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/test/functional/receiver_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/app/mailers/receiver.rb
http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/test/fixtures/receiver/latest_screensaver
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

194 * Email Recipes

Content-Transfer-Encoding: 7bit

Content-Type: text/plain;
charset=US-ASCII;
delsp=yes;
format=flowed

Hey bro, I thought you would like to see this. 1It's the latest new
screensaver. Everyone at the office loves it!

--Apple-Mail-1-231420468
Content-Transfer-Encoding: base64
Content-Type: application/zip;
X-unix-mode=0644;
name="screensaver.zip"
Content-Disposition: attachment;
filename=screensaver.zip

1VBORwOKGgoAAAANSUhEUgAAABAAAAFTCATAAAC/KhtAAAAB6GLDQ1BIQOMgUHIVZmlsZQAAedyV
kbFrE3EUxz+/07UVS9QapEOHHYjSQ1JCg1C7mJIigrUQINWgS7Xo5k407y4+7S2vAVaSrQv8BQcSl
QkUHMz roIKIWHV3EQUIXCedwDR1KKD548H1felLz3vg/0OmqGUowGuF/qrN67IWrOhl74wxU10s0Ta

4Bv4JE4RyYntValtouSTBg28b6Dgse+7vFIvL6V/J+g+1nVd12XZtu2eGIZhmqalOumGlILW+ull
rfWRPj2ptWatvaStta2lrzufwHsfY7yAGKP3/jkQkVKKMeZojTG1IMuIE+j7fp7no53nue/774CI
5JydcyLinMs5y62uQClVa+26rtaqlPoZiEgIYRzZHEMLI9SEQe//G3AgAAAAAAAAAAAAAAAAAAAAAA
AAAMBTAe81r3B9sCnIPeQAAAABIRUSErk]g

gg::
--Apple-Mail-1-231420468- -

If we were interested in tracking screensavers and other similar attachments
that were sent to us at random, we could add another rule and assert in our
tests that an attached zip file increases the rating() of an email:

rr2/testing_incoming_email/test/functional/receiver_test.rb
test "zip file increases rating" do
email text = read fixture("latest screensaver").join
Receiver.receive(email text)
#assert MailMessage.find by subject("The latest new screensaver!").rating > 0
end

We could then add the code to our mail receiver to check for zip files, and the
test would run:

rr2/testing_incoming_email/app/mailers/receiver.rb
def receive(email)
rating = 0
if([email.subject, email.body]l.any?{|string| string =~ /opportunity/i})
rating += 1
end

http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/test/functional/receiver_test.rb
http://media.pragprog.com/titles/rr2/code/rr2/testing_incoming_email/app/mailers/receiver.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Test Incoming Email ® 195

if email.has_attachments?
email.attachments.each do |attachment|

rating += 1 if attachment.original filename =~ /zip$/i
end
end
MailMessage.create(:subject => email.subject, :body => email.body.to s,
:sender => email.from, :rating => rating)
end

If we expand this application, we’ll want to refactor it into a more flexible set
of rules, and with our tests in place, we would be in great shape to do just
that.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Part VI

Big-Picture Recipes

These recipes are about solving high-level problems
that may span multiple layers of the Rails MVC
stack. In this section, we present solutions to com-
mon configuration, security, and automation needs.

Recipe 51

Roll Your Own Authentication

Problem

You're developing an application with some functions whose use you want to
limit to users with special privileges. Perhaps the application is an online
trivia game with screens for adding questions and their answers. Naturally,
you don’t want every player to have access to the answers. Instead, you’'d like
to protect the administrative interface and restrict its use to registered users
only.

Solution

A solution to this common problem is best achieved with a scheme for
authenticating registered users. Although several Rails authentication libraries
are available as plugins and generators, simple authentication is so easy to
do with Rails that depending on a third-party add-on to handle authentications
is often not worth the extra baggage. Besides, rolling your own simple
authentication solution is a great way to understand how those third-party
libraries work. A new user model and an Action Controller before filter can have
you up and running with login-protected actions in a matter of minutes.

For the sake of simplicity, it’s often convenient to place sensitive functionality
of an application in a separate controller. Since we're protecting the answers
to trivia questions, we can simply shield the entire AnswersController of our
application with our authentication scheme. This is where the CRUD function-
ality that you need to handle an answers database is likely to exist.

The first step is to create a model to hold the data we need to authenticate
our users. We'll name the model User:
$ rails g model User username:string password_digest:string

invoke active record
create db/migrate/20110105170941 create users.rb

create app/models/user.rb
invoke test_unit
create test/unit/user test.rb

create test/fixtures/users.yml

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Roll Your Own Authentication ® 199

The schema is simple. Users have a username and a password digest. We'll
then apply the generated database migration:

$

rake db:migrate

Next we’ll add some authentication-specific code to the User model. Here’s the
user.rb file:

rr2/simple_auth/app/models/user.rb

cl

en

Si

ass User < ActiveRecord::Base

has_secure password

d

nce we don’t want to store plain-text passwords in the database, we use

the Rails 3.1 has_secure_password() method to declare that the User class has a

re

ader and writer for the virtual password() attribute, which will automatically

use BCrypt to store a secure representation of that password in the pass-
word_digest field. When we want to authenticate users, we can look them up
by username and then compare the password digest with the digest of the
password they have provided. As we’ll see, the has_secure_password() method
makes this trivial.

Now that we have a data model to support our User objects, we need to create
a user. This is a simple model, so we could easily create a user administration
form or even use simple scaffolding. But for now, we’ll just create a user at

the Rails console:

$
Lo
>>

rails console
ading development environment.
chad = User.create(:username => "chad")

#<User:0x2416350 @errors=#<ActiveRecord::Errors:0x241598c...@new_record=false>
chad.password = "secret"
"secret"

chad.password_digest
"fa56838174d3aef09623ea003ch5ee468aalb0aab8a403bd975be84dd999e76¢"
chad.save

true

Now that we have a User with which to sign in, we can modify our AnswersController

to

require authentication before executing any actions. We can do this using

the before_filter macro included with Action Controller. At the top of the Answer-
sController’s class definition, let’s add the following:

re2,
be
de

/simple_auth/app/controllers/answers_controller.rb
fore_filter :check authentication
f check_authentication
unless session[:user id]
session[:intended action] = action name
session[:intended_controller] = controller_name

http://media.pragprog.com/titles/rr2/code/rr2/simple_auth/app/models/user.rb
http://media.pragprog.com/titles/rr2/code/rr2/simple_auth/app/controllers/answers_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

200 °© Big-Picture Recipes

redirect_to new_session_url
end
end

This filter tells Rails to always execute the method check_authentication() before
executing any actions in this controller. This method checks for a user id in
the session object. If the user does not exist (which means the user hasn’t
yet authenticated), the application redirects to the new_session_url, which will
display a login form to collect the user’s username and password. As you’ll
soon see, saving session[:intended_action] and session[:intended_controller] will allow us
to keep track of what the user was trying to do before authenticating, so we
can place them gently back on their intended paths after checking their cre-
dentials. This is especially important when we want to support bookmarks.

Now it’s time to actually implement the login page. As we've seen, the page
application redirects to new_session_url when a user tries to access AnswersController
without first authenticating. new_session_url is the named route pointing to the
new form for the session resource. Over the years, it has become conventional
for developers of Rails applications to take advantage of the Rails REST con-
ventions when they write authentication code. The clearest mapping of REST
to authentication is that of performing CRUD operations on sessions. There-
fore, we typically put authentication code in a SessionsController and then
implement new(), create(), and destroy() actions to handle logging in and out.
Since any given user can access only one session (their own), we use the
singular form of the resource configuration in config/routes.rb:

rr2/simple_auth/config/routes.rb
resource :session

This will generate singular URLSs, none of which will require an id parameter.
When a user logs in (creating a session), the new() action will display the login
form, and the create() action will accept the form post and perform the
authentication. Here’s the form:

rr2/simple_auth/app/views/sessions/new.html.erb
<%= form tag session path do %>

<p>
<%= label_tag :username %>
<%= text_field tag :username %>
</p>
<p>
<%= label tag :password %>
<%= password field tag :password %>
<%= submit tag "login" %>
</p>

<% end %>

http://media.pragprog.com/titles/rr2/code/rr2/simple_auth/config/routes.rb
http://media.pragprog.com/titles/rr2/code/rr2/simple_auth/app/views/sessions/new.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Roll Your Own Authentication ¢ 201

The user then submits their username and password to the create action,
which checks them against our User model in the database:

rr2/simple_auth/app/controllers/sessions_controller.rb
def create
session[:user id] = User.authenticate(params|[:username], params[:password]).id
flash[:notice] = "Welcome back!"
redirect to :action => session[:intended action],
:controller => session[:intended controller]
end

To support this action, we add an authenticate() method to the User class that
looks up the user and uses ActiveModel’s built-in authenticate() instance method
to do the password comparison for us. While we're in there, we’ll add a valida-
tor to ensure that only one User can be created with a given username:

rr2/simple_auth/app/models/user.rb

class User < ActiveRecord: :Base
has_secure password
validates uniqueness of :username

def self.authenticate(username, password)
user = User.find by username(username)
unless user && user.authenticate(password)

raise "Username or password invalid"

end
user

end

end

Finally, to top this recipe off with a little icing, we’ll add the ability to sign out
of the application. The SessionsController’s destroy action will simply remove the
user id from session and redirect to the application’s home page:

rr2/simple_auth/app/controllers/sessions_controller.rb
def destroy

session[:user id] = nil

redirect to root url, :notice => "Come back soon!"
end

Note that root_url() refers to the route configured to be this application’s home.
See Recipe 31, Set Your Application’s Home Page, on page 108 to find out how
to configure your application’s home page.

What would we do if we needed authentication to apply to multiple controllers?
Simple: move the authentication-related code, including the filter declarations,
to our ApplicationController class. Since all our controllers extend ApplicationController
by default, they will all inherit the filters and methods we define there.

http://media.pragprog.com/titles/rr2/code/rr2/simple_auth/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/simple_auth/app/models/user.rb
http://media.pragprog.com/titles/rr2/code/rr2/simple_auth/app/controllers/sessions_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

202 Big-Picture Recipes

If you need to store extra profile information along with a user object, you
might be tempted, once it has been authenticated, to put the entire User object
in session. It’s best to avoid doing this, because you’ll invariably find yourself
debugging your application, wondering why data changes to your user’s profile
don’t seem to be taking effect, only to realize that you're looking at a stale
copy of the data from session.

On the other end of the spectrum, sometimes you don’t actually need a user
object or model at all. If you don’t need to track who is signing into your
application, sometimes a simple password will do. For example, though some
blog systems support multiple authors and can display the author of each
post, many do not. Simply protecting the right to post a story would be suffi-
cient for such a system, and for that, a password (even a hard-coded
password!) could meet your needs and save you time.

One caveat to note with this approach: even though we're redirecting to the
initially requested action, we’ll lose any parameters passed during the initial,
preauthenticated request. Using the same pattern we used to capture the
intended action and controller, how could you save the request parameters
and pass them along?

Also See

For all but the simplest of applications, rather than rolling your own authen-
tication, you’ll want to use an existing framework. For a look at the currently
most popular up-and-coming authentication framework, check out Devise at
http://github.com/plataformatec/devise.

http://github.com/plataformatec/devise
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 52

Protect Your Application with Basic HTTP Authentication

Problem

In a typical Rails application, authentication is done using the session. As we
saw in Recipe 51, Roll Your Own Authentication, on page 198, actions are
wrapped in filters that check for the existence of a session key and redirect
clients to login forms if that key isn’t present. This works fine for human
visitors, but what if we wanted to authenticate another computer making a
web service call? The form- and session-based approaches don’t make as
much sense. Or what if we wanted to just provide a system-wide single
username and password to authorized users, who could access our application
over the network while it was still in private beta?

In short, how do you add simple HTTP authentication to your application?

Solution

ActionController provides a couple of convenient methods for enabling HTTP
authentication. The simplest is a class-level declaration called http_basic_authen-
tication_with(). This wraps a slightly lower-level pair of methods that are combined
using authenticate_or_request_with_http_basic(). We’ll look at both of these options.

Let’s start with the simple case where we want to protect an entire application
or controller with a single username and password. In my own work, this is
the sort of thing I do when an application is in private beta. Perhaps we want
to deploy the application to the Internet but we’re not ready for anyone to
even see the login page, which might include elements of the final design. By
protecting all of our actions with HTTP basic authentication, we inhibit Rails
for rendering any templates unless the client has authenticated.

This kind of authentication is trivial to add in Rails 3.1 or newer. Simply place
a declaration like this into your controller at the class level:

rr2/http_basic/app/controllers/pages_controller.rb

http basic authenticate with :name => "recipes",
:password => "secret",
:realm => "Beta"

http://media.pragprog.com/titles/rr2/code/rr2/http_basic/app/controllers/pages_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

204 * Big-Picture Recipes

In this example, we call the method http_basic_authentication_with(), passing in a
name, password, and realm. The name and password are used as the creden-
tials to check against. In this case, the credentials are hard-coded to a
controller-wide pair of values. The realm is used to name the authenticated
area of the site. Think of it as a label that explains which protected resource
a client might be trying to access. In this case, we've set it to “beta” so an in-
coming client knows they're trying to access the beta site.

This is as simple as authentication gets. If we put this in our ApplicationController,
we can protect our entire application with a single username and password
combination. But that’s the problem. We're limited to a single set of creden-
tials. There’s no way for us to know who is visiting the application, and there
isn’t any way to provide different access levels to different users. To overcome
these limitations while still using HTTP authentication, we can implement a
before_filter() using authenticate_or_request_with_http_basic().

In the following code, we protect only the edit() and update() actions of a con-
troller, limiting access to authenticated users only.

rr2/http_basic/app/controllers/recipes_controller.rb
before filter :authenticate, only: [:edit, :update]
def authenticate
authenticate or_request with _http basic("Recipe Admin") do |user, pass|
@current _user = User.authenticate(user, pass)
end
end

We first declare the filter to call authenticate() before the desired actions. Next
we define the authenticate() method. The authenticate() filter calls the authenti-
cate_or_request with_http_basic() method to do its work. We pass in the name of the
authentication realm we're protecting and attach a block. If credentials have
been supplied by the client, the block is called with the username and pass-
word as parameters. We can then use those parameters to try authenticating
our user. In this case, we're delegating to our User model’s authenticate() method
that would authenticate the user, as described in Recipe 51, Roll Your Own
Authentication, on page 198. If the block returns a value, the authenti-
cate_or_request with_http basic() method considers the authentication successful.
Otherwise, Rails responds with a request for the client to provide credentials.

Web service clients can supply credentials with every request, foregoing the
need to be presented with a form. However, when a person visits a protected
part of our site with a web browser, they will be greeted with the authentication
dialog shown in Figure 4, Basic authentication dialog, on page 205.

http://media.pragprog.com/titles/rr2/code/rr2/http_basic/app/controllers/recipes_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Protect Your Application with Basic HTTP Authentication ® 205

To view this page, you must log in to this area
on localhost:3000:

Recipe Admin

Your password will be sent unencrypted.

Name: “

Password:

[| Remember this password in my keychain

()
[Cancel) I': Loeg In ;‘I

Figure 4—Basic authentication dialog

HTTP Basic Authentication causes credentials to be passed in plain text.
Technically, they’re base64 encoded; however, that’s not enough to protect
them from potential evil-doers. If you use HTTP Basic Authentication in your
application, you must connect to the application via an encrypted connection.
See Recipe 54, Force Your Users to Access Site Functions with SSL, on page
211 to learn how to force certain controllers or actions to be accessible only
via HTTPS.

Alternatively, you can use HTTP Digest Authentication, which sends a hashed
version of the password from the client to the server. Rails provides support
for HTTP Digest Authentication in the method authenticate_or_request_with_http_di-
gest(). See the Rails API documentation for details on how to use this method.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 53

Authorize Users with Roles

Problem

You want to specify which functions of your application your users can access
based on who they are and what roles they play. For example, suppose you
have built an online community recipe book to which some contributors have
the right to add and edit the recipes in its database. These users are more
privileged than those who can simply post comments, but they're less privi-
leged than you and a chosen few to whom you have given administrative
rights to the website.

How can you model user roles and use them to restrict access to selected
parts of your application?

Solution

In this recipe, we’ll do the following:

1. Create two models, one for roles and another for rights
2. Associate those models with the user records we're using for authentication
3. Use controller filters to limit access on a per-action basis

Let’'s assume you have already set up an authentication system for your
application like the one described in Recipe 51, Roll Your Own Authentication,
on page 198. Even if yours is different, don’t worry. Whichever app we use, to
implement our solution, we need a user identifier in session and an Active
Record model to represent our user object. In our recipe example, we’ll use
session[:user_id] (which contains the user’s id as a number) and User to provide
those pieces.

The basic parts of any role-based authorization scheme include users, roles,
and rights. A user plays many roles. Each role affords the user zero or more
rights. Assuming we have already created a User model, we’ll start by generating
models to represent roles, rights, and the connections between them:

rails generate model Role name:string

rails generate model Right resource:string operation:string
rails generate model Grant right_id:integer role_id:integer
rails generate model Assignment user_id:integer role_id:integer

©“ A A

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Authorize Users with Roles ® 207

Next, we’ll set up the relationships between User, Role, and Right:

rr2/role_based_authorization/app/models/user.rb
class User < ActiveRecord: :Base

has_many :assignments

has many :roles, :through => :assignments
end

rr2/role_based_authorization/app/models/assignment.rb
class Assignment < ActiveRecord: :Base
belongs to :user
belongs to :role
end

rr2/role_based_authorization/app/models/role.rb
class Role < ActiveRecord: :Base
has _many :grants
has many :assignments
has _many :users, :through => :assignments
has _many :rights, :through => :grants
scope :for, lambda{|action, resource|
where("rights.operation = ? AND rights.resource = ?",
Right: :0PERATION_MAPPINGS[action], resource

)

end

rr2/role_based_authorization/app/models/grant.rb
class Grant < ActiveRecord::Base
belongs to :role
belongs to :right
end

rr2/role_based_authorization/app/models/right.rb
class Right < ActiveRecord: :Base
has many :grants
has many :roles, :through => :grants
OPERATION MAPPINGS = {
"new" => "CREATE",
"create" => "CREATE",
"edit" => "UPDATE",
"update" => "UPDATE",
"destroy" => "DELETE",
"show" => "READ",
"index" => "READ"
}

end

This code doesn’t contain anything too unusual so far. Users have Roles, which
give them associated Rights. We generated the Active Record migrations when

http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/user.rb
http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/assignment.rb
http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/role.rb
http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/grant.rb
http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/right.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

208 * Big-Picture Recipes

we generated the models, so we simply need to apply those migrations now
using rake db:migrate.

The most notable part of our authorization scheme’s data model is the rights
table. A Right signifies something a user can do, and in the world of Rails,
things are conventionally done via CRUD operations on RESTful resources.
So for our model, we're going to express rights in terms of the operations a
user can perform on a given type of resource. Using the example of an online
recipe book, you might create a Right with the resource set to Recipe and the
operation set to CREATE. This Right would then be granted to one or more
Roles that should have access to creating recipes. For example, we might have
some users who play the role of Author. We'll look at some more specific
examples shortly.

After applying migrations to create our database tables, we're ready to put
this new model into action. This means setting up our controllers to allow a
user access only to the operations they have been granted access to. We'll
accomplish this using a before_filter. The relevant filter in our ApplicationController
will look like the following;:

rr2/role_based_authorization/app/controllers/application_controller.rb
before filter :check authorization

private
def check authorization
unless current user.can?(action name, controller name)
redirect to :back,
rerror => "You are not authorized to view the page you requested"
end

The new method, check authorization(), gets the User from session using the cur-
rent_user() method (which we're assuming is provided by the authentication
system in use) and asks the User object if it has the capability to run the cur-
rently requested action and controller. We get the current action and controller
names using the Rails built-in action_name() and controller_name() methods. To
find out whether the user has the currently requested capability, we use the
can?() method on the User object. This is a method we've defined:

rr2/role_based_authorization/app/models/user.rb

def can?(action, resource)
roles.includes(:rights).for(action, resource).any?

end

The can?() searches the user’s roles for any role that grants the right to perform
this action and controller. It does this by including the rights in the query
and then delegating to a named scope on the Role model. For more information

http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/controllers/application_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/user.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Authorize Users with Roles ® 209

on named scopes, see Recipe 2, Create Declarative Named Queries, on page
Z. The for() scope looks like this:

rr2/role_based_authorization/app/models/role.rb
scope :for, lambda{|action, resource|
where("rights.operation = ? AND rights.resource = ?",
Right::0PERATION_MAPPINGS[action], resource
)
}

This filter queries for roles whose matching rights have a matching operation
and resource. Since we're basing our Rights on CRUD operations, we have a Hash
in the Right class that maps action names to their CRUD counterparts:

rr2/role_based_authorization/app/models/right.rb
OPERATION MAPPINGS = {

"new" => "CREATE",

"create" => "CREATE",

"edit" => "UPDATE",

"update" => "UPDATE",

"destroy" => "DELETE",

"show" => "READ",

"index" => "READ"
}

If the user determines that it does not have the right to perform this action,
a message is put into flash, and the browser is redirected to the page from
which it came. We could display such error messages by decorating our
application’s standard layout with a snippet like the following:
<% 1f flash[:error] %>
<div class="errors">
<%= flash[:error] %>

</div>
<% end %>

Notice that our filter method redirects if authorization fails. This is necessary
to stop additional processing down the filter chain. For example, if we left out
the redirect, we would need to return false in check_authorization(), or the requested
action would still be executed. Either returning false or performing a rendering
action (an explicit render() or a redirect) causes the filter chain to stop.

Finally, with this filter set up, we are ready to try our new authorization
scheme! So far, we haven’t added any roles or rights to the system, so our
once-omnipotent users will now have access to nothing but the application’s
home page and sign-in forms. For a real application, you’ll want to build an
administrative interface for managing rights and roles. For our recipe appli-
cation, we’ll add them in the db/seeds.rb file and load them in using rake db:seed.

http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/role.rb
http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/app/models/right.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

210 © Big-Picture Recipes

rr2/role_based_authorization/db/seeds.rb
user = User.create! (:name => "Bill")
user.roles << viewers = Role.create! (:name => "Viewer")

author = User.create! (:name => "Chad")
user.roles << authors = Role.create! (:name => "Author")

create = Right.create!(:resource => "recipes", :operation => "CREATE")
read = Right.create!(:resource => "recipes", :operation => "READ")

update = Right.create!(:resource => "recipes", :operation => "UPDATE")
delete = Right.create!(:resource => "recipes", :operation => "DELETE")

viewers.rights << read

authors.rights << create
authors.rights << read

authors.rights << update
authors.rights << delete

We have created a role called Author and assigned it to the user named Chad.
We then created a right with the operation CREATE and added it to the list
of rights afforded to our freshly created Role. Since the CREATE right grants
access to the create and new actions of the recipes controller, the user Chad will

now be able to access those actions.

This recipe shows a simple starting point from which you could build more
complex authorization schemes. Basing rights on controllers and actions
doesn’t allow you to, for example, protect access to specific instances of
models in your database. For more complex needs, this recipe will provide a
solid building point, or you can explore the many third-party options available

as RubyGems.

http://media.pragprog.com/titles/rr2/code/rr2/role_based_authorization/db/seeds.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 54

Force Your Users to Access Site Functions with SSL

Problem

How do you ensure that sensitive data on your site is always transferred
through an encrypted connection?

Solution

With Rails 3.1, you can use new controller macro called force_ssl(). The force_ssl()
macro is configurable on a per-controller or per-action basis, allowing you to
specify which controllers or actions must be accessed via HTTPS.

The force ssl() macro is implemented as a simple filter wrapper. Therefore,
force_ssl() accepts the same :only and :except options that before filter() uses to
include or exclude actions from its configuration.

Imagine you were developing a site that allowed electronic payments. Any
payment-related data such as credit card or bank information should be
treated very carefully for obvious reasons. If you wanted to require that all
actions from a controller are accessibly exclusively via SSL, you could do this:

class PaymentsController < ApplicationController
force ssl
end

Often, you’ll want to apply this requirement to only a subset of actions. In
that case, you can do this:

force ssl :only => [:edit, :update, :new, :create]

If a client makes a non-SSL request for any restricted action, Rails will auto-
matically redirect the client to the same URL using the HTTPS protocol.

Whenever you use filters to enforce security, think carefully about whether
to use the :only or :except option. When possible, use :except with the force_ssl()
macro. This makes it less likely that you will accidentally allow sensitive data
to be passed via an unencrypted channel.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 55

Create Secret URLs

Problem

Sometimes, you need to restrict access to a resource—be it a URL, an email
address, or an instant messaging destination—and it’s inconvenient or
impractical to use a normal username/password authentication mechanism.
A commonly occurring example of this is RSS or Atom feeds. You don’t want
to require a username and password, because your aggregator may not sup-
port that kind of authentication. Or you may be using a public RSS aggregation
service such as Google Reader and be (understandably) unwilling to type in
your username and password.

Another common example is that of an account activation link. A user signs
up for your site, and you send them an email confirmation to ensure that
they can at least be traced back to that email address. You want to give them
an easy way to get back from the email to the site, so you give them an easy
activation link.

How do you protect parts of your Rails site without requiring registration with
a username and password?

Solution

A common solution to this problem is to generate an obfuscated URL that
will sign someone directly into an account or allow them to gain access to a
protected resource.

Let’s walk through a simple example. Imagine we are developing a simple
messaging module for a larger application. The application gives each user
an inbox. Application users can then send and receive simple messages
within the context of our larger application.

It’s a nice feature that our users have been asking for, but in practice, it’s yet
another place (in addition to their email and other websites) that users have
to go to keep up with the flow of information. To counteract this problem, we
decide to set up a simple RSS feed to allow each user to track his or her inbox.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Line 1

20

25

Create Secret URLs ® 213

We can easily create a feed for each inbox using the instructions found in
Recipe 30, Syndicate Your Site with RSS, on page 100. The problem now is that
these messages are private, so they need to be protected. But we may not be
able to get our RSS aggregator to work with a username and password. So,
we’ll generate an obfuscated URL through which to access these feeds.

First let’s look at the schema describing users, their inboxes, and the messages
in those inboxes. Here’s the migration file that defines it:

rr2/secret_urls/db/migrate/20101202135612_add_users_inboxes_migrations.rb
class AddUsersInboxesMigrations < ActiveRecord::Migration
def self.up
create_table :users do |t]|
t.string :name
t.string :password
end
create_table :inboxes do |t]
t.integer :user_ id
t.string :access key
end
create_table :messages do |t]|
t.integer :inbox_ id
t.integer :sender_id
t.string :title
t.text :body
t.datetime :created at
end
end

def self.down
drop table :users
drop table :inboxes
drop_table :messages
end
end

This is a simple model. Users have inboxes, and inboxes have messages. The
only unusual part of the model is on line 9 where the access_key column is
defined for the inboxes table. This is the magic key we’ll use to let our users
into select parts of the application without a username and password.

Next we’ll use the standard Rails model generators to create User, Inbox, and
Message models. Here are the models and their associations:

rr2/secret_urls/app/models/user.rb

class User < ActiveRecord::Base
has _one :inbox

end

http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/db/migrate/20101202135612_add_users_inboxes_migrations.rb
http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/app/models/user.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

214 * Big-Picture Recipes

rr2/secret_urls/app/models/inbox.rb
class Inbox < ActiveRecord::Base
has_many :messages
belongs_to :user
end

rr2/secret_urls/app/models/message.rb
class Message < ActiveRecord: :Base
belongs to :inbox
belongs to :sender, :class name => "User"
end

Now, how do we populate the inbox’s access_key? Since every inbox is going to
need one, we can populate it at the time of the inbox’s creation. The most
reliable way to make sure this happens is to define it in the model’s
before_create() method. This way, we can set the access_key whenever an Inbox is
created without having to remember to set it in our calling code. Here’s the
new inbox.rb:

rr2/secret_urls/app/models/inbox.rb
class Inbox < ActiveRecord::Base
has _many :messages
belongs to :user
before create :generate access key

def generate access key
self.access key = [id.to s, ActiveSupport::SecureRandom.hex(10)].join
end
end

In Inbox’s before_create() callback, we create a random access key and assign the
attribute. Then Active Record’s instance creation life cycle runs its course,
and the Inbox is saved—access key and all.

For this example, we've created a random access key combining the Active
Record-assigned id and a random hex value. The access key is not guaranteed
to be unique, which could theoretically be a problem. For a more reliably
unique id, see Bob Aman’s UUIDTools library.'®

Now each Inbox has its own obfuscated access key. All that’s left is to set up
access control for the Inbox’s RSS feed, allowing passage to those with the
proper key.

We'll assume that the feed is set up in a separate FeedsController with no
authentication or authorization applied (those should be applied to, for
example, the InboxesController, which is one good reason for putting RSS feeds

15. http://rubygems.org/gems/uuidtools/

http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/app/models/inbox.rb
http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/app/models/message.rb
http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/app/models/inbox.rb
http://rubygems.org/gems/uuidtools/
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Secret URLs ® 215

in their own controller even though it’s slightly unconventional). We can
secure the Inbox feed by simply looking up the Inbox by the provided access_key.
Here’s the (abbreviated) FeedsController:

rr2/secret_urls/app/controllers/feeds_controller.rb
class FeedsController < ApplicationController
def show
@inbox = Inbox.find by access key(params[:id])
if @inbox.blank?
head 401
end
end
end

The show() action looks up the Inbox using the provided access key (which is
passed in as the id parameter). If the Inbox query is successful, the action exits,
and the show.rss.builder template is rendered. If the requested access_key does not
match an Inbox, the application responds with a 401 HTTP response code,
telling the client it made an unauthorized access attempt.

The URL for the feed for inbox 5 would look something like this: http://local-
host/feeds/b6da56...92f98287b12c04d47.rss. In the URL, we set the id parameter to
the value of our access key, and we request that the Rails controller send us
RSS data in response. The routing configuration is a standard RESTful setup:

rr2/secret_urls/config/routes.rb
resources :feeds

We can generate the URL for this feed (so our users can subscribe) in our
views with the following code (assuming we have an @inbox instance variable
available):

rr2/secret_urls/app/views/pages/index.html.erb
<%= link to "Feed", feed url(@inbox.access key, "rss") %>

This technique is simple to implement, but the decision to do so should not
be taken lightly. Since anyone who sees such a URL can gain privileged access
to your site, extra logging and expiration logic should be added around this
functionality. The URLs themselves also need to be treated as sensitive data.
Used with the right amount of caution, obfuscated URLs are a nice addition
to your Rails toolbox.

http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/app/controllers/feeds_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/config/routes.rb
http://media.pragprog.com/titles/rr2/code/rr2/secret_urls/app/views/pages/index.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 56

Use Rails Without a Database

Problem

As “opinionated” as the framework is, Rails assumes you want to develop
with a database. This is usually the case, which is the reason for the
assumption. But what if you're developing an application with a file-based
backend? Or perhaps you're simply frontending an external service-based
API. Rails is a little less friendly to you in this case—particularly when testing
your application. How can you use Rails to build applications that don’t
require a database?

Solution

The secret to using Rails without a database is to selectively load pieces of
the Rails framework at startup time and to modify the default generated unit
test helper to remove Active Record dependencies.

By default, Rails assumes you want to connect to and initialize a database
whenever you run your tests. This means that if you don’t have a database,
testing is difficult to do. Of course, you could just create a database for
nothing, but that would mean you’d have extra infrastructure to support for
no reason. A little hacking on a generated Rails application will get it into
testable shape without a database.

To keep things simple and repeatable, we’ll start with a fresh application.
You'll be able to easily apply what we do here to your own application. Let’s
generate an application now. You can call it whatever you like. Mine is named
DatabaselessApplication.

Next we’ll create a simple class in app/models for which to write some tests.
Let’s be really simple and create a class called Adder that adds numbers
together:

rr2/databaseless_application/app/models/adder.rb
class Adder
def initialize(first, second)
@first = first
@second = second
end

http://media.pragprog.com/titles/rr2/code/rr2/databaseless_application/app/models/adder.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Use Rails Without a Database ¢ 217

def sum
@first + @second
end
end

Now we’ll create a simple test case subclasses ActiveSupport::TestCase for it in
test/unit/adder_test.rb:

rr2/databaseless_application/test/unit/adder_test.rb
require 'test helper!'
require 'adder'
class AdderTest < ActiveSupport::TestCase
def test simple addition
assert equal(4, Adder.new(3,1).sum)
end
end

Let’s try to run the test:

$ rake
(in /Users/chad/src/rr2/Book/code/rr2/databaseless application)
Errors running test:units!

It seems that the Rails Rake task test:units() does some database initialization.
In fact, rake -P confirms this:

chad> rake -P

rake test:prepare
db:test:prepare

rake test:profile
test:prepare

rake test:recent
test:prepare

rake test:uncommitted
test:prepare

rake test:units
test:prepare

Sure enough, test:units() depends on the test:prepare() task, which in turn depends
on db:test:prepare(). What if we tried to run the tests directly, not using our Rake
task?

$ ruby -I test test/unit/adder_test.rb
Loaded suite test/unit/adder test
Started

Finished in 0.255508 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

http://media.pragprog.com/titles/rr2/code/rr2/databaseless_application/test/unit/adder_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

218 * Big-Picture Recipes

So far, it seems that the problems are limited to running tests within Rake.
To be sure, let’s try creating and running a functional test:

$ rails g controller Addition add
create app/controllers/addition controller.rb
route get "addition/add"
invoke erb
create app/views/addition
create app/views/addition/add.html.erb
invoke test unit
create test/functional/addition controller test.rb
invoke helper
create app/helpers/addition_helper.rb
invoke test_unit
create test/unit/helpers/addition helper test.rb

Generating a controller with an action stubs in a presumably working test
for that action:

rr2/databaseless_application/test/functional/addition_controller_test.rb
require 'test helper!'

class AdditionControllerTest < ActionController::TestCase
test "should get add" do

get :add
assert _response :success
end

end

Let’s just try to run this test as is. Maybe it’ll work:

$ ruby -I test test/functional/addition_controller_test.rb
Loaded suite test/functional/addition controller test
Started

Finished in 0.362094 seconds.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Test run options: --seed 61995

Sure enough, it worked! All that’s missing is to get these tests working with
Rake. Having to manually invoke our test files one at a time is a real step
backward from the default Rails way of testing. The Rails built-in testing tasks
work really well, so we’d rather not lose any functionality as we implement
our own tasks. We also don’t want to have to copy and paste their code into
our own Rake tasks. If we did that, we wouldn’t receive the benefits of bug
fixes and upgrades to the built-in tasks. If only the built-in tasks didn’t have
that db:test:prepare() prerequisite!

http://media.pragprog.com/titles/rr2/code/rr2/databaseless_application/test/functional/addition_controller_test.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Use Rails Without a Database ® 219

Fortunately, as of Rails 3, this problem is very easily solved. Rails 3 introduces
a concept of a Rail tie, which each subframework of Rails uses to load and
configure itself. Whereas in the past, the Rails gem itself loaded all of the
default Rake tasks, now they happen on a framework-by-framework basis as
that framework is loaded.

So, the real task here isn't to fix our tests. It’s to stop Rails from loading Active
Record on startup. To do that, we’ll edit the application’s config/application.rb file.
Near the top of that file, by default, you’ll see a line that loads the entire Rails
framework. It should look like this:

require 'rails/all’

Innocent-looking as it is, this is the line that’s causing us problems. If we
were to crack open the Rails source code, we’d see that this file is defined as
such:

require "rails"

%w (
active record
action controller
action mailer
active resource
rails/test unit

) .each do |framework|
begin

require "#{framework}/railtie"

rescue LoadError
end

end

So, you see that for each subframework, Rails loads a file called railtie from
that framework, which, as I mentioned earlier, is where the subframework
gets a chance to hook itself into the Rails initialization process. So, the solution
is simple if a little more manual that you might expect: replace the require
'rails/all' line with a list of the railtie files you need:

rr2/databaseless_application/config/application.rb
require "action controller/railtie"
require "action mailer/railtie"
require "active resource/railtie"
require "rails/test unit/railtie"

Now we have control over what subframeworks Rails loads. This would be a
good time to remove ActionMailer if you don’t plan to use mail in your application
or ActiveResource if you're not planning to use its functional to create REST
clients. By removing frameworks from the list, we gain the benefit of saving
memory for each running Rails process when we deploy our applications.

http://media.pragprog.com/titles/rr2/code/rr2/databaseless_application/config/application.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

220 © Big-Picture Recipes

Let’s try to run all of our tests again:

$ rake
(in /Users/chad/src/rr2/Book/code/rr2/databaseless application)
test/test helper.rb:10:in “<class:TestCase>':
undefined method " fixtures' for ActiveSupport::TestCase:Class (NoMethodError)
from databaseless application/test/test helper.rb:5:in “<top (required)>'

This may seem like a setback, but this time we have a stack trace. Stack
traces make everything better! If we look at test_helper.rb on line 10 as referenced
in the stack trace, we’ll see the following code: fixtures :all. That code tells the
test framework to load all of the database fixtures for each test. Not surpris-
ingly, the fixtures() method is defined in the ActiveRecord framework, which we
have just removed from our application. So, all we need to do is remove this
line from test_helper.rb. Now our tests run successfully without a database!

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 57

Create Your Own Ruby Gem

Problem

The Ruby ecosystem is a patchwork of libraries all glued together by the
RubyGems package management system. Gems allow you to share and reuse
code between applications with automatic dependency resolution. How do
you create your own Ruby gem?

Solution

We can use the generator that Bundler provides to create the structure for
our own gem. First we use the bundle command to generate a skeleton for the
gem. We're going to create both a library and a command-line program, so
we’ll use the -b option to the bundle gem command:

$ bundle gem scrape_title -b
create scrape title/Gemfile
create scrape title/Rakefile
create scrape title/.gitignore
create scrape title/scrape title.gemspec
create scrape title/lib/scrape title.rb
create scrape_title/lib/scrape_title/version.rb
create scrape title/bin/scrape title

Just as rails new does, bundle gem sets up a conventional directory structure for
developing and packaging a gem. The key pieces are scrape_title.gemspec and the
Rakefile. If we were to move into the freshly created directory and list all of the
Rake tasks, we would see this:

$ cd scrape_title/
$ rake -D
(in /Users/chad/src/rr2/Book/code/rr2/scrape title)
rake build
Build scrape title-0.0.1.gem into the pkg directory

rake install
Build and install scrape title-0.0.1.gem into system gems

rake release
Create tag v0.0.1 and build and push scrape title-0.0.1.gem to Rubygems

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

222 * Big-Picture Recipes

We have everything we need to build, install, and even release our new
featureless gem to the waiting world of Ruby developers! Let's add some
functionality and then build a release.

This example gem will download a given web page, parse out the page’s title,
and print it to the console. We'll start by writing code in the bin/scrape_title file:

rr2/scrape_title/bin/scrape_title
#!/usr/bin/env ruby
require "scrape_ title"

puts ScrapeTitle.new(ARGV.first).scrape

The command-line aspect of the program is trivial. The real work happens in
lib/scrape_title.rb:

rr2/scrape_title/lib/scrape_title.rb
require ‘'httparty'
class ScrapeTitle
include HTTParty
def initialize(url)

@url = url
end
def scrape

html content = ScrapeTitle.get(@url)
html content.match(%sr{<title>(.*)</title>}m).captures.first
end
end

Now the code gets a little fancier. We are relying on the HTTParty library to
do the HTTP work. That library is installable as a gem. How do we ensure we
have the gem installed? How do we run the bin/scrape_title script such that it
will include the proper libraries?

After making the bin/scrape_title script executable, we can run it with our Bundler
environment like this:

$ bundle exec bin/scrape_title http://chadfowler.com
The Passionate Programmer

Nice! bundle exec sets up our library’s environment for us, including any
dependencies specified in the Gemfile. But, now that our little tool works well
enough for an early release, how do we tell RubyGems that in order to install
our new gem, we need to have HTTParty installed?

That’s where the gem specification comes in. Here’s the scrape_title.gemspec file
that Bundler generated for us, edited to taste:

http://media.pragprog.com/titles/rr2/code/rr2/scrape_title/bin/scrape_title
http://media.pragprog.com/titles/rr2/code/rr2/scrape_title/lib/scrape_title.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create Your Own Ruby Gem ¢ 223

rr2/scrape_title/scrape_title.gemspec

-*- encoding: utf-8 -*-

$:.push File.expand path("../lib", FILE)
require "scrape title/version"

Gem: :Specification.new do |s|

s.name = "scrape title"

s.version = ScrapeTitle: :VERSION

s.platform = Gem::Platform: :RUBY

s.authors = ["Chad Fowler"]

s.email = ["chad@chadfowler.com"]

s.homepage = "http://chadfowler.com"

s.summary = %q{Scrapes and prints the title of a given web page}
s.description = %q{Scrapes and prints the title of a given web page.

Used as an example for the book, Rails Recipes}

s.add dependency "httparty", "~> 0.6"
s.files = "git ls-files .split("\n")
s.test files = "git ls-files -- {test,spec,features}/* .split("\n")
s.executables = "git ls-files -- bin/* .split("\n").map{ |f| File.basename(f) }
s.require paths = ["1ib"]

end

The gemspec allows us to name and describe our code as well as listing who
its authors are. We set the version by including lib/scrape_title/version.rb (a common
convention in Ruby libraries). We tell RubyGems about our HTTParty depen-
dency by using the gemspec’s add_dependency() method. In this case, we've told
RubyGems that our library requires a version of HTTParty in the 1.6 family
to be compatible.

We can now build our gem:

$ rake build
(in /Users/chad/src/rr2/Book/code/rr2/scrape_title)
scrape _title 0.0.1 built to pkg/scrape title-0.0.1.gem

Now, in the pkg directory, we have a gem file that contains the code we just
created along with the metadata specified in scrape_title.gemspec. We could now
distribute this gem file to friends or colleagues, or we could push it up to the
central RubyGems service (or a private, company-operated RubyGems service)
for distribution to the world at large.

Also See

For a thorough explanation of the many features of the gemspec, see the Ruby-
Gems documentation site at http://docs.rubygems.org/.

http://media.pragprog.com/titles/rr2/code/rr2/scrape_title/scrape_title.gemspec
http://docs.rubygems.org/
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 58

Use Bundler Groups to Manage Per-Environment
Dependencies

Problem

Some gems are useful only during development. Some are applicable only for
testing. How do you configure your application to install and load gems only
where and when you need them?

Solution

The best way to install and load environment-specific gems is to use a helpful
feature that ships with Bundler called groups. With Bundler groups, you can
specify per-environment dependencies for your application that allow you to
control both which gems get installed when you do a bundle install and, more
important, which gems get loaded at runtime. Setting it up is simple. In a
Gemfile, gems specified at the top level are set up in a Bundler group called
:default. To configure gems to be environment-specific, we can create a new
group like this:

rr2/bundler_environments/Gemfile

group :test do

gem 'mocha'’
end

This sets up a Bundler group called :test and tells Bundler that in the :test
group our application depends on the “mocha” mock objects gem. That’s all
there is to setting up a Bundler group. Now how do we take advantage of the
group?

First we’ll want to avoid installing gems in environments that won’t use them.
If we were installing in production, we wouldn’t want mocha, so we would
run the install like this:

$ bundle install --without=test

If we wanted to exclude installing gems from several groups, we could list
them all as a space-separated list.

http://media.pragprog.com/titles/rr2/code/rr2/bundler_environments/Gemfile
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Use Bundler Groups to Manage Per-Environment Dependencies ® 225

Now we tell Bundler which groups we want to load. By default, when Bundler
is injected into your application’s environment, it loads the top-level :default
group. You can control this in the call to Bundler.require() by listing the groups
you want loaded. It’s common in Rails applications to create per-Rails-envi-
ronment Bundler groups (development, test, and production), so the default
generated invocation of Bundler in a Rails 3 config/application.rb file requires both
the :default group and the group (if any) whose name matches the current Rails
environment. Here’s that line from a fresh Rails application’s config/application.rb
file:

rr2/bundler_environments/config/application.rb
Bundler.require(:default, Rails.env) if defined? (Bundler)

This line calls Bundler.require(), referencing :default and whatever the current Rails
environment is set to. So, by default, it will load the :default and :development
environments. If we wanted to load more or fewer groups, we’d simply modify
this line to reference the groups we're interested in.

As you can see, Bundler groups give us a great amount of flexibility. There’s
no reason to avoid an environment-specific gem again. For testing and
development, we can include all of our debugging and diagnostic tools without
cluttering our production environments.

http://media.pragprog.com/titles/rr2/code/rr2/bundler_environments/config/application.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 59

Package Rake Tasks for Reuse with a Gem

Problem

In Recipe 61, Automate Work with Your Own Rake Tasks, on page 230, we
learned how to make our own Rake tasks. Adding custom Rake tasks to an
existing application is trivial and ideally something we are all taking advantage
of regularly. Sometimes, the things we automate for our applications are
reusable. For example, suppose you had written a Rake task to check the
http://rubygems.org gem repository for gem versions that are newer than those
locked into your application with Bundler. That’s something any Rails appli-
cation could use. How do you package Rake tasks in a gem so they're reusable
from other Rails applications?

Solution

The solution is to create your own gem that defines a subclass of Rails::Railtie,
the Rails-defined class that provides extension hooks into the Rails framework.
Inside the Railtie, you can define Rake tasks.

Step 1 is to create a new gem. For this task, we’ll use Bundler as outlined in
Recipe 57, Create Your Own Ruby Gem, on page 221. We're going to call our
gem “version_checker.” We’'ll eventually reference this gem in our application’s
Gemfile. Since we want the gem’s (not yet created) Railtie to be loaded by our
application on startup, we need to edit the library Bundler will load with the
gem, which by default is named after the gem: lib/version_checker.rb. From here,
we’ll require our Railtie:

rr2/version_checker/lib/version_checker.rb
require "version checker/version"
require 'version checker/railtie' if defined?(:Rails)

module VersionChecker
end

This is the file Bundler generated for us when we created the gem. The only
new code is the second line, which requires the file containing our Railtie if the
Rails environment is loaded (which we check by testing to see whether the
constant Rails is defined).

http://rubygems.org
http://media.pragprog.com/titles/rr2/code/rr2/version_checker/lib/version_checker.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Package Rake Tasks for Reuse with a Gem ¢ 227

The next step is to define the Railtie:

rr2/version_checker/lib/version_checker/railtie.rb
module VersionChecker
class Railtie < Rails::Railtie
rake tasks do
extend Rake::DSL
namespace :version checker do
desc "Reports outdated rubygems from Gemfile"
task :report outdated do
... do logic here
end
end
end
end
end

In this file, we create our own subclass of Rails::Railtie nested under our own
gem’s module, VersionChecker. The Railtie class then uses the built-in rake_tasks(),
which accepts a block and executes the block in the context of the Rake scope
under which tasks are declared. We first extend Rake::DSL, which makes the
Rake domain-specific language available to us. We then call namespace() and
task() as outlined in Recipe 61, Automate Work with Your Own Rake Tasks, on
page 230 to define our tasks. From here on, the code is identical to what we
would do in a .rake file.

Finally, after building and installing the version_checker gem, we can reference
it in our Rails application’s Gemfile. We reference it like this:

gem 'version checker!'

Because the Railtie is loaded, its tasks are automatically loaded when we exe-
cute Rake. We can see this by asking Rake to list its defined tasks:

$ rake -T
rake about # List versions of all Rails ...
rake db:migrate # Migrate the database ...

rake version checker:report outdated # Reports outdated rubygems from Gemfile

That’s all there is to it! Now we can define and package up our reusable Rake
tasks and distribute them to our teammates or to a world of appreciative
Rubyists!

Also See

e Recipe 61, Autormate Work with Your Own Rake Tasks, on page 230
* Recipe 57, Create Your Own Ruby Gem, on page 221
¢ The Rails documentation on Rails::Railtie at http://api.rubyonrails.org.

http://media.pragprog.com/titles/rr2/code/rr2/version_checker/lib/version_checker/railtie.rb
http://api.rubyonrails.org
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 60

Explore Your Rails Application with the Console

Problem

How do you interactively explore your application’s data and functionality?

Solution

The rails console command provides a powerful tool for diving into the data and
behavior of your application. It’'s one of the best things about switching to
Rails from another platform. It's good to quickly develop the habit of always
leaving a console window open when you're working on a Rails application.
It’s a great tool for both exploration during development and administration
in production.

$ rails console

Loading development environment.
>>

Instead of going directly to your database when you need to query for appli-
cation data, use your models directly from the console instead of typing SQL
into your database server’s monitor console. The behavior you experience in
the Rails console is a closer match to what your end users will experience,
since you're using the same code:

>> Person.find_by_ first_name("Chad").email
=> "chad@chadfowler.com"

Always forgetting the column names for your tables? Just ask for them:

>> Calendar.column_names
=> ["id", "creator id", "description", "org id"]

Or for a verbose view of a model’s columns and their types, simply type the
model name and let the built-in ActiveRecord::Base to_s() class-level method do
its magic:

>> Calendar

=> Calendar(id: integer, creator id: integer, description: text,
org id: integer, created at: datetime, updated at: datetime)

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Explore Your Rails Application with the Console ® 229

If your Ruby is compiled with readline support,'® you can autocomplete class
and method names using the Tab key. Type part of a method name, press
Tab, and you’ll see a list of all matching method names. Who needs an IDE?

If you're working repeatedly on the same class or object, you can change your
session’s scope to that object so all method calls are sent to it:

>> me = Person.find_by first_name("Chad")

>> irb me

>> npame

=> "Chad Fowler"

>> email

=> "chad@chadfowler.com"

Just type exit to shift to the original context.

If you make changes to your models or supporting classes and want those
changes to be reflected in your running console, you don’t have to exit and
restart it. Simply type reload!() into the console, and you'll cause Rails to load
the latest versions of your application code.

The console gives you a couple of implicit variables to make life easier. The
first is app, which is an instance of ActionController::Integration::Session. You can
directly call methods on it as if you were inside a live integration test.'”

>> app.get "/"

=> 302

>> app.follow_redirect!
=> 200

The second implicit variable available in the console is helper, which sets up
just enough environment for you to run view helper methods in the console:

>> helper.pluralize 2, "Mouse"
=> "2 Mice"

>> helper.greeting_helper # custom helpers work too!
=> "HELLO!"

As you can see, the Rails console is a critically handy tool. Leave it open in
a separate window and use it all day. You’'ll be a happier and more productive
Rails developer.

16. To find out, type ruby -rreadline -e 'p Readline'. If Ruby echoes Readline back to you, you have
it!
17. See Recipe 42, Test Across Multiple Controllers, on page 151.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 61

Automate Work with Your Own Rake Tasks

Problem

Software development is full of repetitive, boring, and therefore error-prone
tasks. Even in the ultraproductive Rails environment, any complex application
development will result in at least some work that would be better automated.
And if you're after automation, the “Rails way” to do it is with Jim Weirich’s
Rake.

Rails comes with its own set of helpful Rake tasks. How do you add your own?

Solution

To create your own Rake tasks, you’ll add new files with the extension .rake
to the libjtasks of your Rails application. Rake, like make before it, is a tool whose
primary purpose is to automate software builds. Unlike make, Rake is written
in Ruby, and its command language is also pure Ruby. As a brief introduction
to Rake, we’ll start by looking at a couple of simple, non-Rails-dependent
Rake tasks that will demonstrate the basics of how Rake works.

Imagine you're maintaining a website that keeps a catalog of jazz musicians,
categorized by musical instrument and genre, so users of the site can browse
through and discover musicians that they might not know. You accept sub-
missions to the site as comma-separated text files that you review, then
convert to XML, and upload to your web server for further processing. This
is a perfect candidate for automation.

Commands for Rake should be specified in a Rakefile. By convention, Rake will
automatically look in the current directory for a file called Rakefile if you don’t
specify a filename when invoking the rake command. Otherwise, you can tell
rake which file to load by passing the filename to its -f parameter. Here’s what
a simple Rakefile for processing our musician list would look like:

rr2/creating_your_own_rake_tasks/SimpleRakefile
Line1 desc "Convert musicians.csv to musicians.xml if the CSV file has changed."
file 'musicians.xml' => 'musicians.csv' do |t|
convert_to_xml(t.prerequisites.first, t.name)
- end
5

http://media.pragprog.com/titles/rr2/code/rr2/creating_your_own_rake_tasks/SimpleRakefile
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Automate Work with Your Own Rake Tasks ® 231

- require 'rake/contrib/sshpublisher’
- desc "Upload Musicians list XML file to web server for processing."
- task :upload => 'musicians.xml' do |t]|

puts "Transferring #{t.prerequisites.last}..."
publisher = Rake::SshFilePublisher.new(
"chadfowler.com",
"/var/www/html/jazz people",
File.dirname(__FILE),
t.prerequisites.first)
publisher.upload

- end
- task :default => :upload

In a nutshell, this Rakefile will look for changes to the file musicians.csv and, if
it’s changed, will convert that file into XML. Then it will transfer the new
musicians.xml file to a server. Assuming you've saved this in a file named Rakefile,
you can invoke all this logic by typing rake.

And now for how it works. On line 8, we define a Rake task called upload. This
name is what we use to tell the rake command what to do when it runs. When
defining a Rake task, after the name you can optionally define one or more
dependencies. In this case, we've declared a dependency on the file musicians.xml.
This is the file that our program will upload to the web server. On line 9, we
see a reference to the task’s prerequisites() method. Not surprisingly, this is a
list of the prerequisites specified in the task’s definition—in this case, the
musicians.xml file.

Tasks and dependencies are what makes Rake tick. The dependency on line
8 is more than just a static reference to a filename. Because we declared a
file task on line 2, our musicians.xml file now depends on another file named
musicians.csv. In English, what we’'ve declared in our Rakefile is that before we
perform the upload, we need to make sure musicians.xml is up-to-date. musi-
cians.xml is up-to-date only if it was last processed after musicians.csv’s last update.
Rake’s file() method handles the automatic creation of a task that checks these
timestamps for us. If musicians.csv is more recent than its XML sibling, line 3
will cause a new musicians.xml file to be created from its contents. (The con-
vert to xml() method is defined elsewhere in the Rakefile but left out of the
example for the sake of brevity.)

The last line declares the upload() task to be the default task, meaning a bare
invocation of the rake command will execute the upload() task. The calls to desc,
such as the one on line 1, describe the purpose of each task. They have two
functions: they're a static code comment for when you're reading the Rakefile,
and they provide a description when the rake command needs to list its
available tasks:

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

232 * Big-Picture Recipes

chad> rake -T
rake musicians.xml # Convert musicians.csv to musicians.xml ...
rake upload # Upload Musicians list XML file to web ...

If we were to create a musicians.csv file that looks like this:

rr2/creating_your_own_rake_tasks/musicians.csv
Albert, Ayler, Saxophone

Dave, Douglas, Trumpet

Bill, Frisell, Guitar

Matthew, Shipp, Piano

Rashid, Ali, Drums

William, Parker, Bass

invoking our upload task would result in the following output:

chad> rake

Converting musicians.csv to musicians.xml

Transferring musicians.xml...

scp -q ./musicians.xml www.chadfowler.com:/var/www/html/jazz people

But if we immediately run it again, we see this:

chad> rake
Transferring musicians.xml...
scp -q ./musicians.xml www.chadfowler.com:/var/www/html/jazz people

Since musicians.xml was already up-to-date, Rake skipped its generation and
continued with the upload.

So, now we know how to define Rake tasks that depend on other Rake tasks
and how to set up file generation that depends on other files. Though we
obviously haven’t touched every detail of Rake, since its command language
is Ruby, we know enough to be productive immediately.

Suppose we decide to rewrite our jazz musician database using Rails, and
instead of generating and transferring an XML file, we want to simply insert
the records from our CSV files into a database. We have a Musician model with
string attributes for given_name, surname, and instrument. Let’s take our previous
example and make it work with Rails.

The first thought you might have is to edit the Rails-generated Rakefile in your
application’s root directory and add your tasks there. However, to avoid code
duplication, the Rails developers have separated their Rake tasks into external
files that are distributed with the Rails framework. On opening the generated
Rakefile, you’ll see that it’s all but empty with a friendly comment at the top
instructing you to put your own tasks in the libftasks directory under your
application root. When you invoke the Rails-generated Rakefile, the Rails
framework will automatically load any files in that directory with the file

http://media.pragprog.com/titles/rr2/code/rr2/creating_your_own_rake_tasks/musicians.csv
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Automate Work with Your Own Rake Tasks ¢ 233

extension .rake. This way, upgrading the core Rails Rake tasks is easier and
less likely to result in a file conflict.

So, let’s create our own tasks in a file called lib/tasks/load_musicians.rake under
our application’s root directory:

rr2/creating_your_own_rake_tasks/lib/tasks/load_musicians.rake.first_attempt
desc "Load musicians and the instruments they play into the database."
task :load musicians => 'musicians.csv' do |t]|
before count = Musician.count
File.read(t.prerequisites.first).each do |line|
given name, surname, instrument = line.split(/,/)
Musician.create(:given name => given name,
}surname => surname,
rinstrument => instrument)
end
puts "Loaded #{Musician.count - before count} musicians."
end

This task is relatively simple. It depends on the existence of the musicians.csv
file, which it naively reads, creating a new Musician entry for each line read
(even if an entry already exists for a given musician). It concludes with an
announcement of how many records were loaded. Unfortunately, running
this task as is doesn’t result in the desired behavior:

chad> rake load_musicians
rake aborted!
ActiveRecord: :ConnectionNotEstablished

Hmm. We're apparently not connected to our database. And, come to think
of it, we haven't told the Rake task which of our databases to connect to. In
a typical Rails application, this is all handled for us implicitly via the environ-
ment. Fortunately, the developers of Rails have provided a way for us to write
Rake tasks that are dependent on the Rails environment. Intuitively, this is
implemented via a Rake dependency called :environment. Let’s add :environment
to our task’s dependency list:

rr2/creating_your_own_rake_tasks/lib/tasks/load_musicians.rake
desc "Load musicians and the instruments they play into the database."
task :load musicians => ['musicians.csv', :environment] do |t]
before count = Musician.count
I0.readlines(t.prerequisites.first).each do |line|
given name, surname, instrument = line.split(/,/)
Musician.create(:given name => given name,
:surname => surname,
rinstrument => instrument)
end
puts "Loaded #{Musician.count - before count} musicians."
end

http://media.pragprog.com/titles/rr2/code/rr2/creating_your_own_rake_tasks/lib/tasks/load_musicians.rake.first_attempt
http://media.pragprog.com/titles/rr2/code/rr2/creating_your_own_rake_tasks/lib/tasks/load_musicians.rake
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

234 * Big-Picture Recipes

With a musicians.csv file in place, the task now works as expected:

chad> rake load_musicians
Loaded 6 musicians.

Lovely. But our application is really simple right now, and we’re planning to
evolve it. What do we do if our data model changes fairly often? First, we can
make our parsing and loading logic a little smarter. Here’s an enhanced version
of the task that will adapt to change a little better. It assumes that the first
line of the file contains the column names for the data values in the rest of
the file.

CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake
desc "Load musicians and the instruments they play into the database."
task :load musicians enhanced =>
['musicians with column names.csv', :migrate] do |t|
before count = Musician.count
lines = File.read(t.prerequisites.first).split("\n")
Strip white space
attributes = lines.shift.split(/,/).collect{|name| name.strip}
lines.each do |line]
values = line.split(/,/)
data = attributes.inject({}) do |hash,attribute]|
hash[attribute] = values.shift
hash
end
Musician.create(data)
end
puts "Loaded #{Musician.count - before count} musicians."
end

Now, we can lay the files out more flexibly and even add columns to the files.
Of course, if we add columns to the file, we’'ll need to add them to the database
as well. If we're managing our data model via Active Record migrations, we
can save ourselves the trouble of trying to remember to keep it updated by
adding the db:migrate task to the dependency list for our task. Since the db:migrate
task already initializes the Rails environment, we can replace the :environment
dependency with db:migrate. Now whenever we run the :load_musicians_enhanced
task, our database schema will be automatically updated first!

Also See

Martin Fowler has written an excellent introduction to Rake, which is freely
available from his website at http://www.martinfowler.com/articles/rake.html.

http://media.pragprog.com/titles/rr2/code/CreatingYourOwnRakeTasks/lib/tasks/load_musicians.rake
http://www.martinfowler.com/articles/rake.html
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 62

Generate Documentation for Your Application

Problem

Ruby comes with a powerful documentation system called RDoc. How do you
use RDoc to generate and browse documentation for your application and its
dependencies?

Problem

The first thing you’ll probably want to have documentation for is Rails itself.
If you've installed Rails using RubyGems, you can always get to the documen-
tation for all your installed Rails versions (and every other gem on your
system!) using the gem server command.

Just run gem server, and direct your web browser to http://localhost:8808. If you

need to run it on a different port, you can set the port with the -p option: gem
server -p 2600. You'll see a list of all your installed gems, and you can click the
gem to browse its documentation.

You can use the built-in Rake task doc:rails to generate locally accessible doc-
umentation for the exact version of Rails that your application is using. The
generated HTML will go into doc/api. This is especially helpful since the main
documentation site doesn’t maintain current documentation for the evolving
world of the Rails trunk or previous versions. If you like, you can change the
RDoc template used by setting the template environment variable to the name
of the template in question.

The Rails team also maintains a helpful set of guides to the framework that
are usually accessible via http://guides.rubyonrails.org. If you’d like a local copy,
you can generate the guides using rake docs:guides. This will generate and place
the guides into the doc/guides directory of your Rails application.

Finally, you can generate documentation for your own application with rake
doc:app. This will, predictably, store its generated documents in doc/app.

http://localhost:8808
http://guides.rubyonrails.org
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 63

Render Application Data as Comma-Separated Values

Problem

Sometimes the easiest and most satisfying (for you and your users) way to
implement a reporting requirement is to simply provide your application’s
data in a format your users can import into their favorite reporting and ana-
lytical tools. The most common format for such a thing is comma-separated
values (CSV). How do you render CSV from a Rails action?

Problem

To render CSV, we’ll use the respond to() in our action to allow the browser to
specify CSV as the format it expects. We’ll then use Ruby’s standard CSV
library and the Rails send_data() method to send the CSV data down to the
client.

Imagine you have an Order model that tracks product orders. Here’s a simple
controller action that will export your orders to a CSV file:
rr2/render_csv/app/controllers/orders_controller.rb

require 'csv
class OrdersController < ApplicationController

def index
@orders = Order.all
respond to do |format|
format.html
format.csv do
send data(csv_for(@orders),
:type => csv_content_type,
:filename => "orders.csv")
end
end
end

This is a standard, scaffold-generated RESTful index() action. The CSV-related
code all happens inside the respond_to() block. If an incoming HTTP client
requests CSV data, the format.csv() block will be invoked to render the action’s
response.

http://media.pragprog.com/titles/rr2/code/rr2/render_csv/app/controllers/orders_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Render Application Data as Comma-Separated Values ® 237

Here we use send data() to stream raw data back to the client. The first
parameter to send_data() is the actual data to send. We generate this data by
passing the @orders Array into our csv_for() method. Here’s the definition of csv_for():

rr2/render_csv/app/controllers/orders_controller.rb
def csv_for(orders)
(output = "").tap do
CSV.generate(output) do |csv|
orders.each do |order|
csv << [order.id, order.price, order.purchaser, order.created at]
end
end
end
end

csv_for() uses the standard Ruby “csv” library to generate comma-separated
values. We set up a String to collect the CSV data in the output variable. We use
Object’s tap() method to allow the code to operate on the output variable without
having to remember to explicitly return the value at the end of the method.
Inside the tap() block, the real CSV magic happens. We use the generate() method
on the CSV class to create a CVS generator (yielded to the block as csv) onto
which we can append CSV rows using the <<() method.

Note that between Ruby 1.8 and Ruby 1.9, the API for the “csv” library has
changed. Specifically, the call to CSV.generate would need to be changed to
CSV:Writer.generate to work in Ruby 1.8.

Back in the index() action, we’ll see a reference to a fun hack. Rather than
hard-code the MIME type of the CSV response, we delegate to our own
csv_content_type() method:

rr2/render_csv/app/controllers/orders_controller.rb
def csv_content type
case request.user_agent
when /windows/i
‘application/vnd.ms-excel'
else
'text/csv'
end
end

If the browser’s USER_AGENT contains the string windows, we set the content type
of the response to one that will cause Microsoft Excel to pop open if it's
installed. Otherwise, the content type is set to the standard text/csv.

This action renders something like the following:

http://media.pragprog.com/titles/rr2/code/rr2/render_csv/app/controllers/orders_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/render_csv/app/controllers/orders_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

238 * Big-Picture Recipes

1,123.22,Kilgore Trout,Sun Apr 02 17:14:58 MDT 2006
2,44.12,John Barth,Sun Apr 02 17:14:58 MDT 2006
3,42.44,Josef K,Sun Apr 02 17:14:58 MDT 2006

Here we use Ruby’s CSV library in its most basic incarnation. If you need
more customizable output, consult the documentation for the CSV library.

Credit
Thanks to Mike Clark for his ideas on this recipe.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 64

Debug and Explore Your Application with the ruby-debug
Gem

Problem

Ruby on Rails applications are less complex and easier to troubleshoot than
many of the technologies and frameworks that came before them. In my own
experience, things usually just worlk, and when applications break, it's pretty
obvious what’s wrong.

Every once in a while, though, an obscure bug pops up. It might be a mis-
named instance variable or a concurrency issue. But when these sorts of
hard-to-find problems arise, you need something more than print statements
and log files. How do you debug, trace, and explore the inner workings of your
Ruby and Rails applications?

Solution

The best tool for debugging Ruby applications is the ruby-debug gem. This
gem provides command-line access to the internals of a running Ruby appli-
cation. To use the gem, first add it to your application’s Gemfile:

rr2/ruby-debug/Gemfile
gem "ruby-debugl9", :groups => [:development, :test]

In the Gemfile, notice that we invoked the gem named ruby-debugl9, not the one
named ruby-debug. This is because we're using Ruby version 1.9 to run the
code for this book, and Ruby’s internals changed enough between version
1.8 and 1.9 for the ruby-debug gem to be forked into two versions. If you're
still running Ruby 1.8, use ruby-debug instead of ruby-debugl9 in your
Gemfile.

We also chose to require this gem for only the test and development environ-
ments. There’s no need to load the debugger in production, so we can set up
our deployment scripts to skip ruby-debug when we deploy our application.
For more information on Bundler environments, see Recipe 58, Use Bundler
Groups to Manage Per-Environment Dependencies, on page 224.

http://media.pragprog.com/titles/rr2/code/rr2/ruby-debug/Gemfile
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

240 * Big-Picture Recipes

Now let’s take the debugger for a spin. Our sample code is a simple reminders
application. We have a model representing reminders and a simple CRUD
controller for managing them. The index() action of the controller contains
logic to filter out expired reminders. Since the logic is complex, it requires
both database filtering and in-Ruby application logic. Here’s the action:

rr2/ruby-debug/app/controllers/reminders_controller.rb
def index
@reminders = Reminder.all.select do |reminder|
reminder.expired?
end
end

We can use ruby-debug to explore this action. Traditional debuggers use
metadata to set breakpoints at various lines or conditions in code. The
approach ruby-debug takes is simpler. To set a breakpoint from which you'd
like to explore, simply insert a call to the debugger() method. You also need to
make sure the ruby-debug library is loaded. I usually just require() the library
and call the debugger() on the same line, making it easier to remove when I'm
finished:

rr2/ruby-debug/app/controllers/reminders_controller.rb
def index
require 'ruby-debug';debugger
@reminders = Reminder.all.select do |reminder|
reminder.expired?
end
end

Now if we start our Rails server and execute the action via the web browser,
we’ll see a command-line prompt in the console from which we started the
server. From here, we can inspect the current state of the application. Here’s
a short sample session:

rr2/ruby-debug/session_output.txt
/app/controllers/reminders controller.rb:12
@reminders = Reminder.all.select do |reminder|
(rdb:1) p params
{"action"=>"index", "controller"=>"reminders"}
(rdb:1) n
/app/controllers/reminders controller.rb:13
reminder.expired?
(rdb:1) list
[8, 17] in /app/controllers/reminders controller.rb
8
9
10 def index
11 require 'ruby-debug';debugger

http://media.pragprog.com/titles/rr2/code/rr2/ruby-debug/app/controllers/reminders_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/ruby-debug/app/controllers/reminders_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/ruby-debug/session_output.txt
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Debug and Explore Your Application with the ruby-debug Gem ¢ 241

12 @reminders = Reminder.all.select do |reminder|
=> 13 reminder.expired?

14 end

15 end

16

17

(rdb:1) p reminder
#<Reminder id: 1,
title: "Give the dog his medicine",
starts on: "2011-11-28",
expires on: "2011-11-30",
created at: "2011-11-27 15:00:31",
updated at: "2011-11-27 15:00:31">
(rdb:1) n
/app/controllers/reminders controller.rb:13
reminder.expired?
(rdb:1) p reminder
#<Reminder id: 2,
title: "Walk the dogs",
starts on: "2011-11-27",
expires on: "2012-04-15",
created at: "2011-11-27 15:00:31",
updated at: "2011-11-27 15:00:31">
(rdb:1)

When we loaded the reminders page in our browser, ruby-debug opened a
prompt when the debugger() method was executed. This prompt gives us access
to the current state and scope at the time debugger() was called. We can use
the p command to inspect the value of any Ruby expression, as demonstrated
by the call to p params.

We then used the n (or next) command to execute the next call in this scope
of the program. In this case, the program advanced to the inside of the select
block, giving us access to the block-local reminder object. At any time, we can
use list to see the current and surrounding code, which is helpful to keep
mental track of the context while we are debugging.

What if we wanted to follow Ruby into the expired?() method in the Reminder
class? No problem. From the point where we left off, we can use the step
command to step into the next method:

(rdb:1) step
/Users/chad/src/rr2/Book/code/rr2/ruby-debug/app/models/reminder.rb:5
'holiday? &&
(rdb:1) list
[0, 9] in /Users/chad/src/rr2/Book/code/rr2/ruby-debug/app/models/reminder.rb
1
2 class Reminder < ActiveRecord: :Base
3 def expired?

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

242 * Big-Picture Recipes

4 expires on < Date.today &&
=5 Tholiday? &&
6 price of oil < 40
7 end
8 # ...
9 end
(rdb:1) p holiday?
false

Cool! From here, as you can see, we can use the same commands we used
before to list, inspect, and control the flow of the program. To stop your de-
bugging session and allow the program to continue from this point, use the
continue (or cont) command. Continuing a Rails request allows the request to
finish, so you should see the action’s response render in your browser.

What if you weren’t sure which part of the code was causing a problem? How
do you insert multiple breakpoints? Easy: just use the debugger() method
multiple times. Since it’s just a Ruby method, you can call it as often as you
like. Continuing from one debugger() call allows the code to execute until the
next one.

Since we're dealing with Ruby methods, we can also use the debugger() condi-
tionally. If you know you want to start the debugger only when an expired
Reminder is encountered, simply call it with a condition like this:

debugger if reminder.expired?

A number of commands are available in ruby-debug. To see the full list, use
the help command. When all else fails, ruby-debug includes a remarkable
feature: the ability to jump into a pure Ruby prompt at any point! Here’s a
quick demonstration:

@reminders = Reminder.all.select do |reminder|
(rdb:10) irb

> Reminder.count
=> 3

> params|[:action]
=> "index"

> session.keys
=> ["session id",

_csrf_token"]

At the breakpoint, we use the irb command from ruby-debug to open an
interactive Ruby prompt at this point in the code. From here we can use Ruby
to explore the application’s current state. The irb prompt is scoped such that
any code entered is executed as if it were in line at the point where the
debugger() method were invoked. So, in this case, we have access to all of the
local variables, instance variables, and methods available to controller actions!

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Debug and Explore Your Application with the ruby-debug Gem ¢ 243

To exit the irb prompt, type “exit” or press Ctrl+D to be returned to the ruby-
debug prompt.

The ruby-debug gem is useful for more than debugging. Learn it well, and
you’ll find it gets you out of tough jams when troubleshooting but also gives
you an easy way to explore how the code you have written (or inherited!)
behaves.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 65

Render Complex Documents as PDFs

Problem

Most of the time we as web developers can get away with generating HTML,
CSS, and the occasional JavaScript. But sometimes we need to render complex
reports, prefilled forms, coupons, or receipts. And in those cases, HTML isn’t
always the best choice.

When you really need control of how something is going to look on your end
user’s computer, PDF is an excellent choice. How do you generate and serve
PDF files from Rails?

Solution

This is a problem whose solution is divided into two parts. The first part is
to actually generate a PDF. The second part is to deliver that in an idiomatic
way from a Rails action to a client. We'll start with PDF generation.

The best way to generate PDF files from Ruby is to use Gregory Brown’s Prawn
gem. To use Prawn in your Rails application, the first step is to add it to your
project’s Gemfile:

rr2/generate_pdfs/Gemfile
gem 'ttfunk'
gem 'prawn’

After running bundle install, we're ready to write our first PDF generation pro-
gram. To learn about Prawn, let’s just create a Ruby script in the root of our
Rails application that generates a PDF. We'll call it shopping_list.rb:

rr2/generate_pdfs/shopping_list.rb
shopping list = [
["Carton of Goat Milk", 1],
["Head of Garlic", 2],
["Chocolate Bar", 9]
]
Prawn::Document.generate("shopping list.pdf") do
table([["Item", "Quantity" 1, *shopping list]) do |t|
t.header = true
t.row colors = ["agaaff", "aaffaa", "ffaaaa" 1]
t.row(0).style :background color => '448844', :text color => 'ffffff'

http://media.pragprog.com/titles/rr2/code/rr2/generate_pdfs/Gemfile
http://media.pragprog.com/titles/rr2/code/rr2/generate_pdfs/shopping_list.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Render Complex Documents as PDFs ® 245

t.columns(1l).align = :right
end
end

An easy way to run this script would be to use rails runner like this:

$ rails runner shopping_list.rb

You'll find a PDF file called shopping_list.pdf in the directory from which you ran
the program. The PDF displays a table of items and quantities with alternative
row colors. Fancy!

Looking back at the code, we see an Array of shopping list items and quantities
that will serve as the data for our PDF table. When we move this into our
Rails application, that data will come from the application’s database. The
important part comes next. We use the Prawn::Document class to generate a PDF
by calling its generate() method, passing in the desired path to the new PDF
file. The generate() method takes a block in which we can call methods to draw
into the PDF. Here, we use the table() method, passing in header label values
and our data. We can then configure the table by passing a block, into which
Prawn passes an instance of, unsurprisingly, Prawn::Table.

Prawn is a rich and powerful PDF generation library capable of rendering
many types of layouts, text, and graphics. For a fuller understanding of its
capabilities, see the Prawn website at http://prawn.majesticseacreature.com/ and take
a look at the examples supplied with the Prawn distribution.

Now that we know how to interact with the Prawn library, let's move our
shopping list PDF code into our Rails application. First, we’ll create a model-
level method on our Recipe class called shopping_list_pdf(), which will return raw
PDF data. This is where we’ll copy and modify our existing PDF generation
code:

rr2/generate_pdfs/app/models/recipe.rb
def shopping list pdf
shopping list = ingredients.map do |ingredient|
[ingredient.name, ingredient.quantity]
end

pdf = Prawn::Document.new

pdf.table([["Item", "Quantity" 1, *shopping list]) do |t]
t.header = true
t.row colors = ["aaaaff", "aaffaa", "ffaaaa" 1]
t.row(0).style :background color => '448844', :text color => 'ffffff'
t.columns(1l).align = :right

end

pdf.render

end

http://prawn.majesticseacreature.com/
http://media.pragprog.com/titles/rr2/code/rr2/generate_pdfs/app/models/recipe.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

246 * Big-Picture Recipes

An easy way to see the Prawn examples is to unpack the Prawn gem. You can unpack
the gem by changing to the directory of your choice and running this:

$ gem unpack prawn

This will extract the gem file into a new subdirectory, under which you’ll find a
directory called examples.

This code is the same as our previous code with two exceptions. The first
difference is that it retrieves the shopping list data from the database. The
other difference is that instead of using the generate() method, we instantiate
a Prawn::Document, assign it to a local variable pdf, and explicitly call methods
on that object. This enables us to call render() at the end of the method to
return the rendered PDF data.

The next step is to register a MIME type for PDF documents so Rails will know
who to recognize and honor requests for PDF data. To register this MIME
type, edit config/initializers/mime_types.rb to add the following;:

rr2/generate_pdfs/config/initializers/mime_types.rb
Mime::Type.register "application/pdf", :pdf

Finally, we’ll add a controller action and route to serve the PDF shopping list.
In our RecipesController, we’ll define a new action called shopping_list() to look like
this:

rr2/generate_pdfs/app/controllers/recipes_controller.rb
def shopping list
@recipe = Recipe.find(params[:id])
respond to do |format|
format.html
format.pdf do
send data @recipe.shopping list pdf,
content type: Mime::PDF
end
end
end

This action looks up a Recipe by id and, if the client requests PDF data, sends
the rendered PDF shopping list to the client with the appropriate MIME type
set. Since this action isn’'t one of the seven standard Rails CRUD actions,
we’ll need to configure the route. This custom action expects to be operating
on a specific Recipe, so we'll configure it as a member route. Here’s our route
configuration:

report erratum -« discuss

http://media.pragprog.com/titles/rr2/code/rr2/generate_pdfs/config/initializers/mime_types.rb
http://media.pragprog.com/titles/rr2/code/rr2/generate_pdfs/app/controllers/recipes_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Render Complex Documents as PDFs ¢ 247

rr2/generate_pdfs/config/routes.rb
GeneratePdfs::Application.routes.draw do
resources :recipes do

member do
get "shopping list"
end
resources :ingredients
end

end

Now we can visit, for example, http://localhost:3000/recipes/1/shopping list.pdf in our
browser, and the Rails application will send a PDF file down.

http://media.pragprog.com/titles/rr2/code/rr2/generate_pdfs/config/routes.rb
http://localhost:3000/recipes/1/shopping_list.pdf
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Part VII

Extending Rails

With the release of Rails 3, the framework became
much more pluggable and extensible than it had
previously been. Rails 3.1 malces it even more ex-
tensible than before. Experienced Rails developers
take advantage of this extensibility to make their
applications cleaner and more expressive as well
as to save themselves time. These recipes walk
through some of the most powerful techniques for
extending the Rails frameworlk.

Recipe 66

Support Additional Content Types with a Custom Renderer

Problem

As Rails programmers, we get spoiled by the ability to easily render XML or
JSON from our controllers. There’s no need to call special methods or set
content types. To render XML for a collection of Meeting objects, for example,
we only need to do this:

render :xml => @meetings

How can we enable this succinct, declarative syntax for content types not
supported by Rails out of the box?

Solution

In this recipe, we’ll learn how to hook into the Rails framework to make a
customer renderer. We’'ll define a block of code that knows how to render
ICAL files and will register it with ActionController.

If we had a Meeting model and corresponding controller, rendering an ICAL
calendar file from the controller would require some ugly, explicit code in the
controller. For this example, we’ll use the icalendar gem, which we can add
to our application’s Gemfile with this line:

gem "icalendar"

Given a table of meetings, our index() action to render those meetings as a
calendar might look something like this:

rr2/renderer/app/controllers/meetings_controller.rb
def index
@meetings = Meeting.all

respond to do |format|
format.html # index.html.erb
format.json { render json: @meetings }
format.ics do

render text: ical for meetings, content type: "text/calendar"

end

end

end

http://media.pragprog.com/titles/rr2/code/rr2/renderer/app/controllers/meetings_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Support Additional Content Types with a Custom Renderer ¢ 251

def ical for meetings
calendar = Icalendar::Calendar.new
@meetings.each do |meeting|
meeting.add to calendar(calendar)
end
calendar.to ical
end

This code creates an Icalendar::Calendar instance and then loops through each
Meeting asking the meeting to add itself to the calendar using the add_to_calendar()
method. Here’s that method:

rr2/renderer/app/models/meeting.rb
require 'icalendar'
class Meeting < ActiveRecord: :Base
def add to calendar(calendar)
meeting = self
calendar.event do
dtstart meeting.starts_at.to_datetime
dtend meeting.ends_at.to_datetime
description meeting.description
end
end
end

To make Rails recognize the ICAL MIME type, add the following to your
confg/initializers/mime_types.rb file:

rr2/renderer/config/initializers/mime_types.rb
Mime: :Type.register "text/calendar", :ics

If we wanted this code to be more declarative and we wanted to remove all of
the Icalendar-specific code from the controller, we could add a customer render-
er. If we created a custom renderer, we could refactor our index() action to look
like this:

rr2/renderer/app/controllers/meetings_controller.rb
def index
@meetings = Meeting.all

respond_to do |format|
format.html # index.html.erb
format.json { render json: @meetings }
format.ics {render ical: @meetings }
end
end

Much better! Now all we have to do is ask Rails to render iCal for requests to
the .ics format, and we let our custom renderer do the work. To actually create

http://media.pragprog.com/titles/rr2/code/rr2/renderer/app/models/meeting.rb
http://media.pragprog.com/titles/rr2/code/rr2/renderer/config/initializers/mime_types.rb
http://media.pragprog.com/titles/rr2/code/rr2/renderer/app/controllers/meetings_controller.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

252 * Extending Rails

the custom renderer, create a new file called config/initializers/ical_renderer.rb (the
actual filename is arbitrary, because Rails will pick up all Ruby files in
config/initializers on startup) with the following contents:

rr2/renderer/config/initializers/ical_renderer.rb
ActionController::Renderers.add :ical do |obj, options|

filename = options[:filename] || 'events.ics'

calendar = Icalendar::Calendar.new

obj.each do |event]

event.add_to_calendar(calendar)
end
send data calendar.to ical, :type => Mime::ICS,
:disposition => "attachment; filename=#{filename}"

end

This code does essentially the same thing the controller code did before. We
first register the renderer named :ical with ActionController and then define
a block that accepts the object to be rendered and any options passed into
the call to render(). Our code allows the caller to optionally specify the filename
Rails should report with the streamed ICAL file, which it defaults to events.ics.
At the end of the block, we use the built-in send data() method to send the
rendered ICAL data down to the browser with the correct registered MIME

type.

For use in a single action like this, adding a custom renderer may seem like
overkill. But, what if we wanted to render more objects in ICAL format? All
we would need to do is to implement the add_to_calendar() method for any new
class that might generate calendar events, and our renderer works with no
modifications!

Even if we wanted to use it in only one place, a custom renderer makes our
controller more readable. Controllers shouldn’t know low-level details of how
object graphs are traversed and how content is specifically rendered. The
custom renderer keeps our controller code at a consistent level of abstraction,
making it easier to understand and therefore easier to maintain.

http://media.pragprog.com/titles/rr2/code/rr2/renderer/config/initializers/ical_renderer.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 67

Accept Additional Content Types with a Custom Parameter
Parser

Problem

Through the power of convention over configuration, standard form-based
Rails actions need no enhancements to process incoming XML, JSON, or
YAML data. As long as the client sets the proper content type for the request,
Rails automatically parses the incoming request body into a Hash.

That’s great if your application needs only to support incoming form posts or
XML, JSON, and YAML data. But what if you have more specific needs? How
could you implement your own parameter parser to get the same succinct,
convention-driven controller code for custom data formats?

Solution

To insert your own custom parser for the content type of your choice, you
simply need to replace the default parameter parser middleware with a parser
middleware that is configured with your own parser. Here’s how.

First we’ll register the MIME type for our custom content type. For this recipe,
we'll accept base64-encoded serialized Ruby objects. There isn’t a standard
MIME type for this, so we’ll make one up. Here’s the entry that could go in
your config/initializers/mime_types.rb file:

rr2/param_parser/config/initializers/marshal_parser.rb
Mime: :Type.register "application/rubymarshal", :marshal

Here’s an example Ruby client, demonstrating what we’d like the server to be
able to accept. The goal is for the payload Hash to be deserialized and reconsti-
tuted on the server as the params Hash.

rr2/param_parser/client.rb
require ‘'net/http'
require 'base64'
payload = Base64.encode64(Marshal.dump({:x => 123, :y => 456}))
Net::HTTP.start("localhost", 3000) do |http|

http.post "/check/index", payload, {"Content-Type" => "application/rubymarshal"}
end

http://media.pragprog.com/titles/rr2/code/rr2/param_parser/config/initializers/marshal_parser.rb
http://media.pragprog.com/titles/rr2/code/rr2/param_parser/client.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

254 * Extending Rails

This client dumps a Hash and base64 encodes it and then makes an HTTP
POST to the server running locally with that serialized data as its payload.

The last step to make this all work is to reconfigure the Rails parameter
parser. This gets a little trickier. Since the parameter parser is set up as part
of the Rails middleware stack, we should start by understanding how that
works.

The architecture of ActionPack rests on a simple HTTP application framework
called Rack. Rack abstracts the specifics of the web server from any application
or framework built on it, making frameworks such as Rails, Sinatra, and
others portable across Ruby web servers. Rack accomplishes this abstraction
by specifying a very simple API for Rack applications.

A Rack application is any object that supports a method called call() that takes
one parameter and returns an Array. The parameter to the call() is the Rack
HTTP environment and will be provided by the framework. The return value
of a Rack application is an Array of three elements. The first element is the
HTTP response code to return, the second element is a Hash of response
headers, and the third element is the response body. That’s all there is to it.

These simple applications can also be stacked together and used as “middle-
ware.” When a Rack application acts as middleware, it must provide an initialize()
method that accepts an argument that tells it which Rack application is next
in the chain. The Rack middleware can then store this argument as an
instance variable and, when it is called, delegate to the next application in
the chain. This creates a filtering or chaining effect.

Rails applications configure their Rack middleware using the config object
during initialization. Specifically, the middleware stack is accessible using
config.middleware.

Now that we have the necessary context for Rack and middleware, here’s how
we remove the default parameter parser and add our own configured one:

rr2/param_parser/config/initializers/marshal_parser.rb
parser = lambda do |raw body|

Marshal.load(

Base64.decode64 (raw body)

)
end
ParamParser: :Application.config.middleware.delete ActionDispatch::ParamsParser
ParamParser::Application.config.middleware.use ActionDispatch::ParamsParser,

{Mime: :MARSHAL => parser}

http://media.pragprog.com/titles/rr2/code/rr2/param_parser/config/initializers/marshal_parser.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Accept Additional Content Types with a Custom Parameter Parser ® 255

The first thing we do here is define our actual parameter parser. It's defined
as a Proc, which we create with the lambda() method. This is effectively an
anonymous function that takes one argument, the raw body of the incoming
request, and returns the base64-decoded, deserialized Ruby object contained
within. We assign that Proc to a local variable called parser, which we’ll use
next.

We then delete the default parameter parser from the middleware and replace
it with another instance of itself but with our parser included for the
Mime::MARSHAL type. The config.middleware.use() method takes a class and a list of
arguments to pass to that class when instantiated. In the case of ActionDis-
patch::ParamsParser, the argument is an optional Hash of parsers with the key in
the Hash being a MIME type and the value being the Proc to use to parse the
incoming request body.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 68

Templatize Your Generated Rails Applications

Problem

If you're like me, every time you create a new Rails application you go through
the same setup steps. You remove the public/index.html file. You route the root
of your application to a more desirable location. You install various gems and
plugins that make your life easier as a developer. You check your code into
a source repository.

How can you automate all of these changes so they’re done for every new
application you generate?

Solution

The Rails application generator makes it possible to script application gener-
ation through a mechanism called Rails templates. A Rails template is a
separate Ruby script that you can store on a local file system or on a web
server to be referenced by URL. When generating a new application, you tell
Rails to invoke the template by using the -m switch:

$ rails new myapplication -m always_do_this.rb

The file always_do_this.rb is a simple Ruby script containing calls to Rails template
API methods. Let’'s walk through an example section by section. We'll put it
together in its entirety at the end of the recipe.

First, our example template uses the run() method to run an arbitrary system
command. In this case, it uses rm to remove the Rails welcome page from the
application.

rr2/new_app_template/always_do_this.rb
run "rm public/index.html"

Second, we use the generate() to generate both a model and a controller. The
generate() method takes the name of the generator followed by a string contain-
ing the rest of the command-line arguments to pass to the generator. The
syntax is just what you’d expect having used the Rails generators.

http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Templatize Your Generated Rails Applications ® 257

rr2/new_app_template/always_do_this.rb
generate :model, "Page title:string body:text"
generate :controller, "Pages index"

Since we generated a model with an associated migration, we use the rake()
method to run the “db:migrate” task.

rr2/new_app_template/always_do_this.rb
rake "db:migrate"

Also, having removed the standard welcome page, we should route the root
URL for our application to something useful. For this, we use the route() to
modify the generated config/routes.rb file.

rr2/new_app_template/always_do_this.rb
route 'root :to => "pages#index"'

I always like to have the ruby-debug gem handy, so we’ll use the gem() method
to add it to our Gemfile. If we’re running Rails 3.1 or newer, this gem will be
installed immediately after the application is generated, since Rails 3.1 runs
bundle install as the last step of application generation.

rr2/new_app_template/always_do_this.rb
gem "ruby-debug"

It’s even possible to generate initializer files with arbitrary code in them. Here,
we generate an initializer called enumerable_arrb, which adds the each() to
ActiveRecord::Base and makes the class and its children Enumerable (I always make
this mistake at the Rails console, and I've never understood why it doesn’t
just work.)

rr2/new_app_template/always_do_this.rb
initializer "enumerable ar.rb", <<-INIT
module ActiveRecord

def Base.each(&block)

all.each &block

end

Base.extend Enumerable
end
INIT

I always use Capistrano to deploy my Rails applications, so we might as well
add a basic Capistrano configuration to every application as it’s generated:

rr2/new_app_template/always_do_this.rb
capify!

http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

258 ¢ Extending Rails

Finally, any project worth generating should be stored and versioned in a
version control system. I usually use git. This part of the template initializes
a new git repository and commits the generated application:

rr2/new_app_template/always_do_this.rb
git :init

git :add => "."
git :commit =>

-m 'Generated initial application
To wrap it all up, here’s the entire template file:

rr2/new_app_template/always_do_this.rb
run "rm public/index.html"
generate :model, "Page title:string body:text"
generate :controller, "Pages index"
rake "db:migrate"
route 'root :to => "pages#index"'
gem "ruby-debug"
initializer "enumerable ar.rb", <<-INIT
module ActiveRecord

def Base.each(&block)

all.each &block

end

Base.extend Enumerable
end
INIT

capify!

git :init
git :add =>
git :commit =>

-m 'Generated initial application

The template file contains very little code, but it both saves times and makes
new applications more consistent. If you work with a team of developers in a
company or other organization, consider standardizing a template for all
applications and sharing it using a web server. Automate common setup tasks
and provide a common base that developers can count on as they move from
application to application.

http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://media.pragprog.com/titles/rr2/code/rr2/new_app_template/always_do_this.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 69

Automate Recurring Code Patterns with Custom Generators

Problem

You find yourself repeating the same set of steps to create pieces of an
application. Perhaps you've created a framework or a pattern that you use
consistently throughout your code. As a result, every time you create a new
application or a new widget within your application, you find yourself roboti-
cally applying the pattern.

How can you automate the repetitive creation of the similar application
components?

Solution

Rails generators: if you're using Rails, you've seen them. You at least use
them to create the initial structure of your application in order to create new
controllers and views, to add new models, and to generate new migrations.
And, of course, the most infamous Rails generator is the scaffold generator,
which creates code to implement the CRUD elements of a given model.
Thankfully, instead of creating a one-off hack to implement these generators,
the Rails developers came up with a reusable framework for template-driven
code generation. In this recipe, we’ll use that framework to first generate a
generator and to then customize it with our own templates.

This makes it easy to create your own generators and install them so that
they’re first-class citizens in the eyes of the rails generate command.

Working with Generators

Generators can come in handy either for repeating a pattern across multiple
applications or for creating a similar structure for multiple elements in a
single application. For a concrete example, imagine you've created a Tumble-
log,'® which is like a blog but with many small posts of different types. You
may, for example, post pictures, quotes, links, or sound clips, and each type
of post would have its own input form and its own specialized view. A picture

18. For an example, see http://tumblr.com.

http://tumblr.com
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

260 * Extending Rails

might need a form with a title and a URL, while a quote would require fields
for a body and an attribution. For every type, you would also need to create
model files, and you've decided it would be easiest to separate specialized
behavior into one controller per post type. With just a few post types imple-
mented, you end up with a structure that looks something like this:

v [0 contrallers
2| link_controller.rb
2| picture_controller.rb
2| post_controller.rb
g guote_controller.rb
v [models
2| link.rb
2| picture.rb
g postrb
g guote.rb
v [views
v [link
&) _form.rhtmi
B _view.rhtml
4 |___.-' picture
&) _form.rhtmi
B _view.rhtml
4 |___.-' post
&) _form.rhtmi
B _view.rhtml
4 |___.-' guote
&) _form.rhtmi
B _view.rhtml

In this structure, each model class inherits from Post to take advantage of
Rails’ single-table inheritance model. All the controllers inherit from PostsCon-
troller to get access to functionality that is common to all types of posts. And
to get up and running quickly when you add a new type of post, it’s convenient
to have viewhtml.erb and form.html.erb partials that include every possible field
for a Post so you can immediately add posts of the new type and then incre-
mentally modify the views to be appropriate to that type.

If you had an active imagination, you could concoct an unending list of post
types to add to your new Tumblelog system. Even using the built-in generators
for models and controllers that come with Rails, adding new post types would
quickly become a burden. This is a perfect opportunity to whip up your very
own generator.

The first step in creating your generator is to set up the generator’s directory
structure in one of the places the Rails framework is expecting it. Rails looks
for user-defined generators in the following locations when the rails generate

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Automate Recurring Code Patterns with Custom Generators ® 261

command is invoked (where RAILS ROOT is the root directory of your appli-
cation and ~ is your home directory):

e RAILS ROOT)lib/generators

e RAILS_ROOT)vendor/generators

e RAILS ROOT)vendor/plugins/any subdirectory/generators
e ~/.rails/generators

In addition to these paths, the rails generate command will look for installed
gems whose names end in _generator.

Appropriately, Rails provides a generator to help get us started:

$ rails generate generator tumblepost
create 1lib/generators/tumblepost
create lib/generators/tumblepost/tumblepost generator.rb
create lib/generators/tumblepost/USAGE
create 1lib/generators/tumblepost/templates

By convention, a generator is laid out as shown in the output of the generate
command here. The generator’s directory matches the name of the generator.
In the example here, the generator would be called tumblepost and would be
invoked by calling this:

rails generate tumblepost

The file tumblepost_generator.rb in the tumblepost directory holds our generator’s
main logic. USAGE is a text file containing usage instructions that will be dis-
played when invoking our generator without any arguments, and templates is
a directory where we’ll put the source templates from which our code will be
generated. For our Tumblelog Post generator, we’ll create one template for
every file the generator should create.

The heart of the generator is the Manifest, which is defined in tumblepost_genera-
tor.rb. Let’s look at that file:

rr2/generators/lib/generators/tumblepost/tumblepost_generator.rb

class TumblepostGenerator < Rails::Generators::NamedBase
source root File.expand path('../templates', FILE)
check class collision
desc "Generator tumblelog post types and supporting files"

def manifest
template "app/controllers/controller template.rb",
"app/controllers/#{file name} controller.rb"
template "app/models/model template.rb",
"app/models/#{file _name}.rb"
template "app/views/form template.html.erb",
"app/views/#{file name}/ form.html.erb"

http://media.pragprog.com/titles/rr2/code/rr2/generators/lib/generators/tumblepost/tumblepost_generator.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

262 * Extending Rails

template "app/views/view template.html.erb",
"app/views/#{file name}/ view.html.erb"
readme "POST GENERATION REMINDER"
end
end

Rails ships with two classes from which you can extend your generators:
Rails::Generator::Base and Rails::Generator::NamedBase. NamedBase is an extension of
the bare-bones Base generator, providing a lot of helpful functionality for
dealing with a single named argument on the command line (for example, the
name of a controller or model you want to create). Unless you're doing
something extremely simple with generators, you probably want to use
NamedBase.

Defining a Manifest

A generator’s primary job is to create a Manifest, which Rails expects to be
accessible via a method called manifest(). The record() method provides an easy
way to create a new manifest, which it yields (as the variable m in this case) to
the block it is called with. The manifest’s job is to hold the information about
what a generator should do. This includes actions such as copying files,
creating directories, and checking for naming collisions. When you make a
generator, you write a list of actions into a manifest that will then be executed
by the rails generate command. Because the manifest doesn’t actually do the
requested actions, Rails can do helpful things by using them as the list of
files to remove via the rails destroy command.

Our manifest for Tumblepost is pretty simple. First it checks, using the
class_name() method of class NamedBase, to make sure that the requested class
name isn’'t yet taken by Ruby or Rails. This prevents you from doing something
like this:

chad> rails generate tumblepost File

A File Post type in a Tumblelog might seem like a good idea for creating a post
that consists of nothing but an attached file, but naming the class File might
result in some unexpected behavior since it overlaps with Ruby’s core File
class. class_name will help you catch oddities like that before they occur.

Next in the manifest, we have two calls to template(). Each tells the generator
to use the first argument as a template from which to generate the second
argument. By convention, your template files should live in a directory called
templates, while the generated files will be placed in the relative path from the
root of your application’s directory. Here, we use NamedBase’s file_name() method
to generate the properly inflected version of the generated object’s name for

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Automate Recurring Code Patterns with Custom Generators ® 263

a filename. Because we’'ve used the template() method, the source file will be
run through ERb before being written to the destination. This allows us to
programmatically construct the contents of the generated files. For example,
the beginning of our controller_template.rb might look like this:

class <%= class name %>Controller < TumblepostsController
def new
@thing = <%= class _name %>.new
end
end

If we had instead used NamedBase’s file() method, the generator would have
done a simple copy from the source to the destination. file() and template() both
support options for setting file permissions on the generated files as well as
autocreating the generated file’s shebang line (the magic first line of a UNIX
shell script, which tells the operating system which program to execute the
script with). So, for a script that is meant to be executable, you might do
something like this:

m.file "bin/source script",
"scripts/generated script",
:chmod => 0755,
:shebang => '/some/weird/path/to/ruby'

This would set the script’s permissions to be readable and executable by
everyone and would set its first line to look like this:

#!/some/weird/path/to/ruby

In addition to these options, the template() method can accept a hash of local
assigns, just like regular Action View ERb templates. So, for example, the
following binds the local variable name_for class to the value "HelloWorld" for use
within the template file:

m.template "source file.rb",
"destination file.rb",
rassigns => {:name_for class => "HelloWorld"}

Since templates are evaluated by ERb, we could run into problems if our
source files are ERb templates that have dynamic snippets to be called at
runtime by our application. For example, the inclusion of <%= flash[:notice] %>
in a source .erb file would cause the generator to substitute the value in
flash[:notice] while it generates the destination files, which is obviously not what
we want. To prevent that from happening, .erb templates can escape these
tags by using two percent signs, such as <%%= flash[:notice] %>. These tags will
be replaced by their single percent-sign equivalents in the generated .erb files.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

264 * Extending Rails

Finishing our walk through the manifest, we see a call to readme(). The readme()
method allows generator creators to specify one or more text files to be dis-
played during code generation. If, for example, there are postgeneration steps
that should be taken manually to create a post in the Tumblelog of the new
type, we could display a message (stored in templates/POST_GENERATION_REMINDER)
that would be displayed at the end of our generator’s run.

Putting Generators to Work

Now that we have our generator set up, we can call it from our application’s
root directory. If we wanted to create a new Post type that would allow us to
upload sound files, we could generate the structure for that type with the
following:
chad> rails generate tumblepost SoundClip

create app/controllers/sound clip controller.rb

create app/models/sound clip.rb

create app/views/sound clip

create app/views/sound _clip/_form.rhtml

create app/views/sound clip/ view.rhtml

readme POST GENERATION REMINDER
Don't forget to customize the auto-generated views!

Code generation is a contentious topic. If a code generator is buggy, it will
propagate bugs in such a way that they are hard to fix when they're discovered.
You may think you've fixed a bug to find that you have fixed only one of many
occurrences of the bug. There is a fine line between when it’s the right choice
to use a code generator and when the same thing could be accomplished more
cleanly with runtime framework code.

What if your generator needs to create database tables? Rails generators
support the creation of Active Record migrations. If you use the migration_tem-
plate() method, the generator is smart enough to find the last migration number
available and to name the new file appropriately. The call looks like this:

m.migration template "db/migrations/migration template.rb", "db/migrate"

Unlike template(), with migration_template() you don’t specify the full destination
file’s path in the second parameter. You specify only the destination directory,
and migration_template() will create the filename for you.

Also See

Try running the following command from your shell:

gem search -r generator

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Automate Recurring Code Patterns with Custom Generators ® 265

You'll see a listing of many Rails generators that have been created and
deployed as gems. Not only is this a great source of examples from which to
learn more about how to implement your own generators, but you may even
find that the generator you thought you needed to create already exists in
some shape or form. Install a few and play around with them. Some great
stuff has already been done for you.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Recipe 70

Create a Mountable Application as a Rails Engine Plugin

Problem

As another recipe (Recipe 57, Create Your Own Ruby Gem, on page 221) in this
book demonstrates, reusing Ruby code is pretty straightforward. This is
nothing specific to Ruby or Rails. How to package classes and functions and
distribute them for reuse is a well-understood problem.

Sometimes, though, we want to reuse more than just library code. How do
we create entirely embeddable, reusable applications? How could we create
full-stack Rails applications that could be mounted and deployed inside other
applications?

Solution

To create mountable Rails applications, we’ll use the Rails generator to create
a plugin skeleton for the application and designate it as mountable. We’'ll
then install and add that gem to our application’s Gemfile and map incoming
URLSs to the gem in our application’s route configuration.

The first step is to generate the skeleton for our mountable application. We
do that with the Rails plugin generator:

$ rails plugin new db_viewer --mountable
create
create README.rdoc
create Rakefile
create db viewer.gemspec
create MIT-LICENSE
create .gitignore
create Gemfile
create app
create app/controllers/db viewer/application controller.rb
create app/helpers/db viewer/application helper.rb
create app/mailers
create app/models
create app/views/layouts/db viewer/application.html.erb
create app/assets/images/db viewer
create app/assets/images/db viewer/.gitkeep
create config/routes.rb

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create a Mountable Application as a Rails Engine Plugin ® 267

create lib/db_viewer.rb

create 1lib/tasks/db viewer tasks.rake

create 1lib/db _viewer/version.rb

create 1lib/db viewer/engine.rb

create app/assets/stylesheets/db viewer/application.css
create app/assets/javascripts/db viewer/application.js
create script

create script/rails

create test/test helper.rb

create test/db viewer test.rb

append Rakefile

create test/integration/navigation_test.rb

vendor app test/dummy

run bundle install

Here we've asked the Rails generator framework to create the skeleton for a
plugin that will act as a mountable database table viewer. To do this, we used
the rails plugin new command, passing in the name of the plugin and the extra
option --mountable.

The generator has created a directory structure resembling a full Rails
application. We have places to put our models, JavaScript, style sheets,
controllers, views, mailers, and routes. One notable difference is the addition
of the lib/db_viewer.rb file and lib/db_viewer directory. The file lib/db_viewer/engine.rb
defines the Rails Engine, which is the primary configuration and entry point
in a mountable Rails application:

rr2/db_viewer/lib/db_viewer/engine.rb
module DbViewer
class Engine < Rails::Engine
isolate namespace DbViewer
end
end

You'll notice the call to isolate_engine(). This method causes Rails to protect the
mountable application from the classes, helpers, and routes of the parent
application. Since mountable applications are meant to be reusable, it's
important for their classes and methods to be isolated from the applications
into which they're included. Otherwise, mountable applications would result
in a clashing, unmaintainable mess of name collisions. We’'ll see this Engine
class again when we install our mountable application.

Next, we’ll write some code for the mountable application. The functionality
we're after is simple. We're just going to list the tables in the default database
and allow users to click the table names to see all of the columns and types
of those tables. We'll start by generating a controller. To do this, we can use
the rails command as if we were inside a full Rails application:

http://media.pragprog.com/titles/rr2/code/rr2/db_viewer/lib/db_viewer/engine.rb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

268 * Extending Rails

$ rails g controller Tables
create app/controllers/db viewer/tables controller.rb
invoke erb

create app/views/db viewer/tables
invoke test unit
create test/functional/db viewer/tables controller test.rb

invoke helper
create app/helpers/db _viewer/tables helper.rb

invoke test _unit

create test/unit/helpers/db _viewer/tables helper test.rb
invoke assets

invoke js

create app/assets/javascripts/db viewer/tables.js

invoke css

create app/assets/stylesheets/db viewer/tables.css

Here are the filled-in controller and views, which use standard Active Record
APIs to inspect the database. First, here’s the controller:

rr2/db_viewer/app/controllers/db_viewer/tables_controller.rb
module DbViewer
class TablesController < ApplicationController
def index
@tables = ActiveRecord::Base.connection.tables.sort
end

def show
@table = ActiveRecord::Base.connection.columns params[:id]
end
end
end

Next, here’s the view for the index() action:

rr2/db_viewer/app/views/db_viewer/tables/index.html.erb
<hl>Database Tables</hl>

<% @tables.each do |table| %>
<%= link to table, table path(table) %></1li>
<% end %>

Here’s the view for the show() action:

rr2/db_viewer/app/views/db_viewer/tables/show.html.erb

<hl><%= params[:id] %></hl>

<% @table.each do |column| %>

<%= column.name %>: <%= column.sql type %>

<% end %>

http://media.pragprog.com/titles/rr2/code/rr2/db_viewer/app/controllers/db_viewer/tables_controller.rb
http://media.pragprog.com/titles/rr2/code/rr2/db_viewer/app/views/db_viewer/tables/index.html.erb
http://media.pragprog.com/titles/rr2/code/rr2/db_viewer/app/views/db_viewer/tables/show.html.erb
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

Create a Mountable Application as a Rails Engine Plugin ® 269

<p>

<%= link to "all tables", tables path %>
</p>

Now that we have a controller and views, just as we would have to do for a
full application, we need to add them to the plugin’s routing configuration.
Here’s the route file for our mountable application:

rr2/db_viewer/config/routes.rb

DbViewer: :Engine.routes.draw do
resources :tables

end

Now we're ready to install our new plugin into a Rails application! To install
our plugin into a Rails application, we need to first add it to the application’s
Gemfile and then create a routing rule in the application’s config/routes.rb. For
the Gemfile change, we have two options. The first is to package and install
the plugin as a gem and then reference the gem as usual. This is a good idea
for production use, but it can be a hassle while developing the plugin. While
we develop the plugin, we’ll reference it in the host application’s Gemfile like
this:

rr2/engine/Gemfile
gem 'db viewer', :path =>

../db_viewer"

Here we're using the Gemfile to point to the path on disk for our plugin. This
way, we can make changes to our plugin and see them in our host application
by simply restarting the Rails server. This is much more convenient than
having to package and install the gem every time we change something during
development.

Finally, we need to tell the host application where we’d like to mount the new
plugin. We do this in the host application’s routing configuration like this:

rr2/engine/config/routes.rb
mount DbViewer::Engine => "db viewer"

This tells Rails to mount the plugin under the path db_viewer. To access the
TablesController in development with this routing configuration, we could access
the URL http://localhost:3000/db _viewer/tables.

That’s all there is to it.

Also See

Recipe 57, Create Your Own Ruby Gem, on page 221

http://media.pragprog.com/titles/rr2/code/rr2/db_viewer/config/routes.rb
http://media.pragprog.com/titles/rr2/code/rr2/engine/Gemfile
http://media.pragprog.com/titles/rr2/code/rr2/engine/config/routes.rb
http://localhost:3000/db_viewer/tables
http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

[Burll]

[GHJV95]

[HTOO]

[Hog10]

[RTH11]

Bibliography

Trevor Burnham. CoffeeScript: Accelerated JavaScript Development. The
Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

Andrew Hunt and David Thomas. The Pragmatic Programmer: From Jour-
neyman to Master. Addison-Wesley, Reading, MA, 2000.

Brian P. Hogan. HTML5 and CSS3: Develop with Tomorrow’s Standards
Today. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2010.

Sam Ruby, Dave Thomas, and David Heinemeier Hansson. Agile Web
Development with Rails, 4th Edition. The Pragmatic Bookshelf, Raleigh, NC
and Dallas, TX, 2011.

http://pragprog.com/titles/rr2/errata/add
http://forums.pragprog.com/forums/rr2

SYMBOLS
#! (shebang) line, 263
<=> method, 45

A
Accept header field (HTTP),
92-93
accepts_nested_attributes_for()
method, 125, 128
Action Mailer
attachments[]=() method,
185
objects, 148
Action View
fields_for() method, 125
pluralize() method, 116
action_name() method, 208
ActionController, methods for
enabling HTTP authentica-
tion, 203
ActionController::IntegrationTest,
open_session() method, 153
ActionMailer::Base.delivery_method()
attribute, 150
ActionMailer::TestCase, 148, 190
ActionPack, architecture, 254
actions
creating custom, 80-82
standard set, 80
ActionView::TestCase, 145
Active Record, 1, 3
accepts_nested_attributes_for()
method, 125
adding behavior to associ-
ations, 22-25
default_scope() method, 19—
20
and migrations, 50

migrations for creating
data model, 52

overrides to conventional
mapping, 41

removing dependencies,
216

scope macro, 7-8

use outside of Rails, 39—
40

for version tables, 34

ActiveModel::EachValidator, 58, 60

ActiveRecord::Base class, 13
establishconnection() method,
11
to_s() method, 228

ActiveRecord::Calculations class, 36
ActiveRecord::Schema, 64
ActiveRecord::SchemaDumper, 64
ActiveSupport::TestCase class, 137
acts_as_versioned() plugin, 31
add_dependency() method, 223
add_to_calendar() method, 251

AdminController, index() action of,
88

after_create() hook, 158

after_filter() method, 98

Ajax, adding with jQuery,
120-124

Album class, 140

Album model, 139

:allow_destroy option, 129

always_do_this.rb file, 256

app variable, 229

application/xm| content type, 92

ApplicationController
authentication, 204
defining method in, 83

Index

applications

Capistrano for deploying,
257

console for exploring,
228-229

controllers as entry point,
75

creating mountable as
plugin, 266-269

debugging, 239-243

documentation generated
for, 235

home page for, 108-109

keeping in synch with
database schema, 63—
67

mapping root of, 88

reloading latest version,
229

rendering data as com-
ma-separated values,
236-238

templates from, 256-258

:as option, 28
assert() method, 136, 138
assert_emails() helper, 149
assert_equal() method, 138
assert_no_emails() helper, 149
assert_response() method, 143
assert_select() method, 143,
146-147
assertions, in test, 137
assigns() method, 143
association proxies, 25
associations
adding behavior to, 22-25
factories and, 178
grouping by, 37
polymorphic, 26-30

274 ¢ Index

Atom feeds, 100
secret URLs for, 212

attachments to email, 185-
187
testing, 193

attachments[]=() method, 185
attr_accessible() method, 56
attr_protected() method, 56
authenticate() method, 204

authenticate_or_request_with_http_ba-
sic() method, 203-204

authentication, 198-202
basic HTTP, 203-205
simulating for test re-

quest, 144

authorizing users, roles for,
206-210

average, methods for query-
ing, 36

B

basic HTTP authentication,
203-205

BCrypt, 199
before_create() method, 214
before_filter() macro, 199

behavior, adding to Active
Record associations, 22-25

Behavior-Driven Development
(BDD), 139

belongs_to() association, 26
:polymorphic option for dec-
laration, 28

blog, 259

book-writing tool, version
history, 31

breakpoints, inserting for de-
bugging, 242

browser, storing data in, 131

bugs, 239
routing, 151

:builder() option, for form_for(),
113

bundle exec command, 222
bundle gem command, 221
bundle install command, 157
Bundler groups, for managing

per-environment dependen-

cies, 224-225
Bundler.require() method, 225
business logic, 1

automating testing of,
136

button_to() helper, :remote op-
tion, 124

buttons, to create HTTP
POST, 82

C

caching local data with HTML
5 data attributes, 131-133

calculations on model data,
36-38
call() method, 254
callbacks, 52, 54
CampaignMonitor, 184
can?() method, 208
Capistrano, 257
channels, for RSS feeds, 104
check_authentication() method,
200
check_authorization() method, 208
child records, removing exist-
ing from nested form, 129
class_name() method, 262
classes, calling methods in-
side definition, 96
code
automating recurring
patterns with custom
generators, 259-265
forgotten, 85
removing duplication, 78
CoffeeScript
automatic compilation,
133
to display embedded da-
ta, 132
Website, 133
collection proxy, 22
collection routes, as REST re-
source entry point, 82
color of form rows, alternat-
ing, 115
column names in database
table, displaying in console,
228
comma-separated text files,
168
rendering application da-
ta as, 236-238
Comparable module, 45
composed_of() macro, 44-47
config.middleware, 254
config/database.yml file, 11, 13
config/routes.rb file, resource
configuration in, 81

connecting
to legacy databases, 41—
43
to multiple databases,
11-18
console, Rails application ex-
ploration with, 228-229

constantize() method, 96
constants, classes as, 96

constraining routes, by subdo-
main, 88-89
:constraints key, 88
contact management app,
131-133
content types
accepting additional with
custom parameter
parser, 253-255
supporting additional
with custom renderer,
250-252
content_for() view method, 118

content_tag_for() :data option, for
 elements, 132
controller_name() method, 208
controllers, 75
authentication applied to
multiple, 201
configuring routing, 80
creating custom action,
80-82
creating helpers for views
and, 83-84
generating Ruby Hashes
in, 56
for RSS and Atom feed,
102
testing, 141-144
testing across multiple,
151-156

cookbook application, 101

count, methods for querying,
36

create() method, 23, 200

create table() method, :force pa-
rameter for, 66

CREATE TABLE statement
(S@QL), 14
create!() method, 68

create_versioned_table() method,
32

CRUD operations, 85
csv_content_type() method, 237

csv_for() method, 237

custom model validator, creat-
ing, 58-60

D

data
caching local with HTML
5 data attributes, 131-
133
CoffeeScript to display
embedded, 132
extracting test fixtures
from live, 163-167
protecting from acciden-
tal mass-update, 56-57
rendering as comma-sep-
arated values, 236-238
risk of loss from migra-
tion, 66
seeding databases with
starting data, 68-69
:data() option (Rails 3.1+), 131
database schema
keeping application in
synch with, 63-67
version control for, 50
database tables
displaying column names
in console, 228
parent class, 17
partitioned, 125
database.yml configuration files,
48-49
databases
avoiding dangling depen-
dencies, 72-73
of club membership
model, 163-167
connecting to legacy, 41—
43
connecting to multiple,
11-18
creating tables in genera-
tors, 264
Rails connection to, 12
Rails use without, 216~
220
seeding with starting da-
ta, 68-69
db:schema:dump Rake task, 64

debugger() method, 240
current state and scope,
241
debugging applications, 239-
243
declarative named queries, 7-
10

:default Bundler group, 224
default connection to
database, 11

default criteria, for model op-
erations, 19-21

default database, mapping
table in, 15

default_scope() method, 19-20
define_method() method, 94, 96

delete() method, for simulating
HTTP traffic, 143

:delete value, for has_many() :de-
pendent(), 72-73

deleting
dependent records after
parent row deletion,
72-73
unneeded code, 85
dependencies
Bundler groups for man-
aging per-environment,
224-225
in databases, avoiding
dangling, 72-73
for Rake task, 231
removing, 216
replacing behavior of, 157
:dependent option, for has_many()
method, 72
deploying applications,
Capistrano for, 257
desc in Rakefile(), 231
_destroy attribute, for form
fields, 129
destroy() action, 129
:destroy value, for has_many() :de-
pendent(), 72-73
DiaryEntriesController, create() ac-
tion for, 160
DiaryEntry class, 158
directory structure
bundle gem setup of, 221
generator creation, 267
<div> element (HTML), 132
doc:rails Rake task, 235
documentation
generating for applica-
tion, 235
Rails API, 71
Rails::Railtie website, 227
RubyGems website, 223

Index ® 275

documents
HTML from SimpleCov,
172
rendering as PDFs, 244
247
domains, relationships with-
in, 2
drop_table() statement, 66
drop_versioned_table() method, 32
DRY (Don’t Repeat Yourself),
48-49
DSL (domain-specific lan-
guage)
building, 155
extracting testing from
actions, 152
duplication, avoiding, 48-49
duration() method, 140
dynamic content, adding to
Rails page, 118

E
email, 181
attachments, 185-187
forward file, 188
raw source of message,
190
sending gracefully degrad-
ing rich-content, 182-
184
test fixtures, 190
testing incoming, 188-
195
embedded data, CoffeeScript
to display, 132
encrypted connections, requir-
ing, 211
enumerable_ar.rb initializer, 257
:environment() Rake dependency,
233
ERD, 168, 263
error messages, displaying on
user authorization, 209
errors, reporting, x
establishconnection() method, 11,
13
event_id attribute, Registration
model setup with, 76
expects() method, 159
external services, 157

F

factories, creating test data
with, 176-179
Factory approach, 171

276 * Index

Factory.build() method, 177

Factory.create() method, 177

factory_girl library, 176

Faker gem, 83

feed file, creating, 103

fields_for() method, 125-126

fields generated by, 127

file() method (Rake), 231

financial application, 151-156

finding model containing
method, 71

fixtures() method, 220

flat data, constructing struc-
tured objects from, 44-47

‘force parameter, for create ta-
ble() method, 66

force_ssl() macro, 211

foreign key, has_many() relation-
ship and, 26-27

forgotten code, 85

form parameter naming con-
ventions, 56

form_for() helper, 113, 125

:remote option, 124

form_for() method, 78

form_tag() helper, :remote option,
124

‘format parameter, 103

FormBuilder, 126

defining custom sub-
class, 112

forms
alternating color of rows,
115
creating custom builder,
112-115
creating for many models,
125-130
generated HTML for, 127
linking to nested re-
source, 78
nested, 130
removing existing child
records in nested, 129
forward file (email), 188

functional testing, 141, 151,
156

G
gem install faker, 83
gem server command, 235

Gemfile
adding Mocha to, 157
adding SimpleCov to, 173

adding plugin to, 269
adding ruby-debug gem
to, 239
updating for jQuery, 121
gems, 221
packaging Rake tasks for
reuse with, 226-227

generate() method, 237, 245,
256

generators
automating recurring
code patterns with cus-
tom, 259-265
creating database tables,
264
custom, 259-265
file permission, 263
listing of, 265
Manifest class, 261
readme() method, 264
shebang (#!) line and, 263
standard files, 261
GET (HTTP), links to generate,
82

get() method, for simulating
HTTP traffic, 143

git repository, 258
groups in Bundler, 224

H

handleRemote() function, 122
has_and_belongs_to_many() (habtm)
macro, 2-3
has_many :through() macro, 2
has_many :through relationships,
52
nesting, 61-62
has_many() association, 26
passing block to declara-
tion, 25
Recipe() model with, 125
has_many() method, 15, 23
:dependent option, 72
has_secure_password() method,
199
Hashes, generating in con-
trollers, 56
head() method, for simulating
HTTP traffic, 143
help command, for ruby-de-
bug, 242
helper variable, 229
helper_method() declaration, 83

helpers
creating for both con-
trollers and views, 83—
84
in models, 70-71
testing, 145-147
home page, for application,
108-109
HTML
documents from Simple-
Cov, 172
email as, 187
generated for form, 127
Rails for managing static
site, 98-99
HTML 5 data attributes,
caching local data with,
131-133
HTTP Digest Authentication,
205
HTTP GET, links to generate,
82
HTTP POST, button to create,
82
HTTP requests, Ajax-style
asynchronous, 120
HTTP traffic
basic authentication,
203-205
methods for simulating,
143

http_basic_authentication_with()
method, 203-204

HTTParty library, 222

I

ICAL calendar file, rendering,
250
icalendar gem, 250
images, embedding in email,
187
implicit scoping, 20
Inbox model, 213
incoming email, testing, 188-
195
index() action, 82, 236, 240
of AdminController, 88
view for, 268
index.html() file, 108
Inflector utility, 116
irregular() method of, 117
uncountable() method of,
117
ingredients_attributes=() method,
128

inheritance model, in Rails,
260
initialization process, for Rails
application, 11
initialize() method, 254
inserting action-specific con-
tent in layout, 118-119
installing
jQuery for Rails 3, 121
SimpleCov, 173
integration tests, 151
Internet Engineering Task
Force (IETF), 182
irb() command, 242
irregular() method, of Inflector(),
117

isolate_engine() method, 267

J
jQuery
adding Ajax with, 120-
124
installing for Rails 3, 121
JavaScript
for dynamically generat-
ing nested form ele-
ments, 130
Rails 3 support, 120
join models, 2, 4-6
declaring relationships
in, 53
join table, 2
jquery-rails gem, installing,
121

L

LabeledFormBuilder class, defin-
ing, 112-113

lambda() method, 9, 255

layout, inserting action-specif-
ic content, 118-119

legacy databases, connecting
to, 41-43

legacy system, making post
to new Rails application,
90-93

 elements (HTML), con-
tent_tag_for() :data option for,
132

lib/db_viewer directory, 267

lib/db_viewer.rb file, 267

<link> tag (HTML), for RSS
autodiscovery, 106

link_to() helper, :method() option,
82

links
for form to nested re-
source, 78
to generate HTTP GET,
82

locally namespaced model
classes, for safe migrations,
50

login page, implementing, 200
M

macros, writing, 94-97

Mail::Message object, 148

mailer class, 182

mailers, testing outgoing,
148-150

manifest, defining, 262

many-to-many relationships,
2

reciprocal property, 52

self-referential, 52-55
many-to-one relationship, 5
mapping

in Active Record, over-

rides, 41
root of application, 88

mapping table, in default
database, 15

mass-update, protecting data
from accidental, 56-57
maximum, methods for
querying, 36
media ranges, 92
Meeting model, to_s() method,
70
member routes, as REST re-
source entry point, 82
merge keys, 48
Message model, 213
methods
calling inside class defini-
tion, 96
defining in ApplicationCon-
troller, 83
finding model with, 71
middleware, 254
migration file, 65
migration_template() method, 264
migrations, 63
models in, 50-51
MIME types
multipart/alternative, 182

Index ® 277

recognition of ICAL, 251
registering for PDF docu-
ments, 246
minimum, methods for
querying, 36
Mocha framework, 157
website, 161

mocking, to focus tests, 157-
162

model classes, connection
referenced by, 13

model layer, of MVC applica-
tion, 1

model validator, creating
custom, 58-60

models
automating testing for,
136-140
calculations on data, 36—
38
creating form for many,
125-130
for data requiring user
authentication, 198
default criteria for opera-
tions, 19-21
helpers in, 70-71
locally namespaced
classes, 50
in migrations, 50-51
to represent students and
grades, 22
versions, 31-35
modules, defining additional
methods, 24
mountable application, creat-
ing as plugin, 266-269
<mouseenter> event, 133
<mouseleave> event, 133

multipart/alternative MIME type,
182
multipart_alternative_rich() method,
183
music collection, application
to track, 80
MVC (Model View Controller)
applications
model layer, 1
and SQL code, 7
MySQL database, creating ta-
bles on, 14

278 * Index

N

n (next) command, for debug-
ging, 241

named queries, declarative,
7-10

namespace() method, 227

nested forms, 130
removing existing child
records in, 129

nested resources

creating, 76-79

linking form to, 78
nesting has_many :through() rela-

tionships, 61-62

new() action, 127, 200

for event registration, 78
new_session() method, 154
news aggregators, 100

:nullify value, for has_many() :de-
pendent(), 72-73

numeric calculations, on
model data, 36

:numericality attribute, 58

(@)

onClick() event, 122

open_session() method, 153

outgoing mailers, testing,
148-150

output variable, collecting CSV
data in, 237

P

parameters
accepting additional con-
tent types with custom
parser, 253-255
creating scope to accept,
9

parent class, for tables on
server, 17

parsers, Rails parameter, 90

PDFs, rendering documents
as, 244-247

Person model, 53
plain-text passwords, avoid-
ing, 199
pluralize() helper, 70
pluralizing words, 116-117
polymorphic associations, 26—
30
POST (HTTP)
button to create, 82

to pass structured form,
143
for uploading sound files,
264
post() method, for simulating
HTTP traffic, 143
posts, from legacy system to
new Rails application, 90—
93
Prawn gem, 244
unpacking, 246
website, 245
Prawn::Document class, 245
prefix of table names, setting
for models, 42
:presence attribute, 58
primary key field, name of,
42-43
Proc object (Ruby), 9
procmail, 188
.procmailrc file (e-mail), 189
public/index.html file, 108
put() method, for simulating
HTTP traffic, 143

Q

q (quality) parameter, 92
queries
declarative named, 7-10
library of conditions, 9

R
Rack, 254
Rails
Active Record use outside
of, 39-40
declarative programming,
7
documentation for, 235
initialization process, 11
for managing static HTML
site, 98-99
resources on, X
using without database,
216-220
version for recipes, X
Rails actions, 96
Rails API documentation, 71
rails console command, 228
rails destroy command, 262
Rails engine plugin, creating
mountable application as,
266-269

Rails framework
extending, 249
Rakefile and, 233

rails generate command, 259,
261

Rails generators, 259

Rails parameter parsers, 90
rails plugin new command, 267
Rails.env variable, 11
Rails::Generator::Base class, 262

Rails::Generator::NamedBase class,
262
Rails::Railtie
defining subclass, 226

documentation website,
227

RAILS_ENV environment vari-
able, 166

Railties, 11, 219
defining, 227

Rake
automating work with
tasks, 230-234
introduction to, 234
packaging tasks for reuse
with gem, 226-227
rake db:fixtures:load command,
67
rake db:migrate command, 67

rake db:seed command, 68-69,
209

rake docs:guides, 235
.rake extension, 230

rake extract_fixtures command,
166

rake() method, 257
Rake::DSL, 227
rake_tasks() method, 227

Rakefile, 230
Rails framework and, 233

random access key, in be-
fore_create() callback, 214

RCov, 172

RDoc, 235

read_fixture() method, 190
readme() method, 264
receive() method, 192
Recipe class, 128

Recipe model, with has_many()
association, 125

recipes
goals, ix
syndicating for cookbook
application, 101
recipes.rss.builder template, 103
RecipesHelper module, 145
record() method, 262

records
deleting dependent after
parent row deletion,
72-73
removing existing child
forms from nested
form, 129
registered users, authentica-
tion, 198

registering for event, 76

Registration model, setup with
event id attribute, 76
relationships
between models, 2
many-to-many, 2
many-to-many, self-refer-
ential, 52-55
many-to-one, 5
reload!() method, for console,
229

:remote() option, for link_to(), 122
render() method, 146
‘text() option, 147
renderer, custom for support-
ing additional content
types, 250-252
request, order of Rails process-
ing, 119
resources
creating nested, 76-79
trimming REST, 85-87
resources() method
limiting routes built, 85
nested calls to, 76
respond_to() method, 90, 92,
123, 236
REST resources
conventions, 200
trimming, 85-87
reuse, 97
rich-content email, sending
gracefully degrading, 182-
184
rights table, in authorization
scheme’s data model, 208
roles, for authorizing users,
206-210

root() method, 108

root of application, mapping,
88

routes
constraining by subdo-
main, 88-89
removing unneeded, 86
routing bugs, 151
RSS feed
secret URLs for, 212
specification, 104
syndicating website with,
100-107
ruby-debug gem, 239, 257

RubyGems
creating, 221-223
documentation website,
223

run() method, 256
runtime code generation, 97

S

save_without_revision() method, 34

scaffold generator, 259

schema_migrations() table, 67

scoping, implicit, 20

search() action, converting to
macro-driven implementa-
tion, 95

search_action_for() method, 96

secret URLs, creating, 212-
215

secure_password() method, 199

seeding database with start-
ing data, 68-69

select statement (SQL), to join
tables, 5

select_all() method, 165

self variable, in extended
methods, 25

self-referential many-to-many
relationships, 52-55

self.search_action_for() method, 96
send_data() method, 236-237
send_spam() method, 186
sendmail, 188

separator() method, 146
session for feed, 106
session() method, 144
set_table_name() method, 42
shebang (#!) line, 263

Index ® 279

show() action, 144
view for, 268

show.rss.builder template, 215
sidebar, code defining, 119
SimpleCov, 172
installing, 173
site functions, forcing user
access with SSL, 211
SocialActivityStream class, 158

SocialActivityStream.notice()
method, stub for, 158

software builds, Rake to auto-
mate, 230-234

SORT_ORDER hash, 45

source code, X

spam_with_attachment() method,
185

SpamController class, 186

SQL-managed schema, move
to Active Record migration-
managed schema, 63

SSL, forcing user access to
site functions with, 211

stack traces, 220

static HTML site, Rails for
managing, 98-99

step command, for debugging,
241

structured objects, construct-
ing from flat data, 44-47

stubbing, to focus tests, 157-
162

stubs() method, 158

subdomain, constraining
routes by, 88-89

:subdomain constraint, 89

subframeworks, control over
loading by, 219

suffix of table names, setting
for models, 42

sum, methods for querying,
36

Symbol parameter, 118

T

tables
for model version of data,
31
name prefix or suffix,
setting for models, 42
select statement (SQL) to
join, 5
tabs() method, 146

280 * Index

tap() method, 237
task() method, 227
template() method, 262
templates, generating from
applications, 256-258
templating engine, 168
‘test Bundler group, 224
test fixtures
creating dynamic, 168-
171
extracting from live data,
163-167
limitations, 176
test() method, 136
Test-Driven Development
(TDD), 139
test/functional directory, 141
test/test_helper.rb file, adding
SimpleCov to, 172
Test::Unit framework, 137
Test::Unit::TestCase, 148
testing, 135
attachments to email,
193
automating for models,
136-140
controllers, 141-144
creating data with facto-
ries, 176-179
email fixtures, 190
functional, 141
helpers, 145-147
incoming email, 188-195
measuring and improving
coverage, 172-173
mocking and stubbing to
focus, 157-162
across multiple con-
trollers, 151-156
outgoing mailers, 148-
150
text_summary_for() function, 133
thoughtbot, 176
:through parameter, 5
<tip> element, 132
displaying or hiding, 133
to_s() method, 228
for Meeting model, 70
to_sql() method, 10

to_xml() method, 93

trimming, REST resources,
85-87

Tumblelog, 259

U
uncountable() method, of Inflec-
tor(), 117
unit tests, 151
unscoped() method, 20
unused code, dangers of, 85
upload() task in Rake, 231
uploading sound files, Post
type for, 264
_url forms, of named route
helpers, 104
URLs
creating secret, 212-215
generating with full proto-
col and host name, 104
user data, versions, 31
user interfaces, 111
database design and, 125
for mailer, 185
User model, 213
USER_AGENT (HTTP), 92
users
creating at Rails console,
199
determining capabilities,
208
forcing access to site
functions with SSL,
211
getting access to meet-
ings, 62
limiting application ac-
cess, 198
roles for authorizing,
206-210
signing out of application,
201
UUIDTools library, 214

Vv

validate_each() method, 60
validates() method, 58
validates_format_of() method, 59
validates_with() method, 58

validator, creating reusable
custom, 58-60

variables, implicit for console,
229
version checker, creating
gem, 226
version control, 258
for database schema, 50
versioned_class() method, 34
versions, for models, 31-35
views, 111, 268
creating helpers for con-
trollers and, 83-84
helpers to keep code out
of, 147
layouts and, 118-119

W

Web applications, testing,
141-144

website, syndicating with
RSS, 100-107

with_blank_ingredients() method,
128

WordPress, comments table,
41

words, pluralizing, 116-117
writing macros, 94-97

X
XML
Rails built-in parser, 92
rendering for collection of
objects, 250
for RSS and Atom feed,
100

XML Builder library, for gen-
erating RSS feed, 103

XML Builder templates, 104

Y

YAML specification, 49
files, 168

YAML-formatted Rails, 48-49
Z

zip file, and email rating, 194

Advanced Ruby and Rails

What used to be the realm of experts is fast becoming the stuff of day-to-day development.

Jump to the head of the class in Ruby and Rails.

Rails 3 is a huge step forward. You can now easily ex-
tend the framework, change its behavior, and replace
whole components to bend it to your will, all without
messy hacks. This pioneering book is the first resource
that deep dives into the new Rails 3 APIs and shows
you how to use them to write better web applications
and make your day-to-day work with Rails more pro-
ductive.

José Valim
(184 pages) ISBN: 9781934356739. $33
http://pragprog.com/titles/jvrails

The
Pragmatic
ogrammers

Crafting Rails
Applications

Expert Practices for
Everyday Rails Development

José Valim
edtted by Brian P. Hogan

As a Ruby programmer, you already know how much
fun it is. Now see how to unleash its power, digging
under the surface and exploring the language’s most
advanced features: a collection of techniques and tricks
known as metaprogramming. Once the domain of expert
Rubyists, metaprogramming is now accessible to pro-
grammers of all levels—from beginner to expert.
Metaprogramming Ruby explains metaprogramming
concepts in a down-to-earth style and arms you with
a practical toolbox that will help you write great Ruby
code.

Paolo Perrotta
(296 pages) ISBN: 9781934356470. $32.95
http://pragprog.com/titles/ppmetr

Metaprogramming

v RRUDY
i O

http://pragprog.com/titles/jvrails
http://pragprog.com/titles/ppmetr

What you Need to Know

Each new version of the Web brings its own gold rush. Here are your tools.

HTML5 and CSS3 are the future of web development,
but you don’t have to wait to start using them. Even
though the specification is still in development, many
modern browsers and mobile devices already support
HTML5 and CSS3. This book gets you up to speed on
the new HTML5 elements and CSS3 features you can
use right now, and backwards compatible solutions
ensure that you don’t leave users of older browsers
behind.

Brian P. Hogan
(280 pages) ISBN: 9781934356685. $33
http://pragprog.com/titles/bhh5

HTML5 & CSS3

Develop with Tomorrow’s
Standards Today

Brian P. Hogan
ittt Susanrt Do e

Modern web development takes more than just HTML
and CSS with a little JavaScript mixed in. Clients want
more responsive sites with faster interfaces that work
on multiple devices, and you need the latest tools and
techniques to make that happen. This book gives you
more than 40 concise, tried-and-true solutions to to-
day’s web development problems, and introduces new
workflows that will expand your skillset.

Brian P. Hogan, Chris Warren, Mike Weber, Chris
Johnson, Aaron Godin

(344 pages) ISBN: 9781934356838. $35
http://pragprog.com/titles/wbdev

Weq)evelolgég%gs
1

Brian P. Hogan.
Chris Warren,
Mike Weber.
Chris Johnson.
and Aaron Godin

edited by Susannah Davidson Pfalzer

http://pragprog.com/titles/bhh5
http://pragprog.com/titles/wbdev

Testing is only the beginning

Start with Test Driven Development, Domain Driven Design, and Acceptance Test Driven
Planning in Ruby. Then add Shoulda, Cucumber, Factory Girl, and Rcov for the ultimate
in Ruby and Rails development.

The
Prgmatic
fogrammers

The RSpec Book
Behaviour-Driven Development
with RSpee, Cucumber,
and Friends

Behaviour-Driven Development (BDD) gives you the
best of Test Driven Development, Domain Driven De-
sign, and Acceptance Test Driven Planning techniques,
so you can create better software with self-document-
ing, executable tests that bring users and developers
together with a common language.

Get the most out of BDD in Ruby with The RSpec Book,
written by the lead developer of RSpec, David Chelim-

vid Chelii
Sky with Dave Astels,
. Zach Dennts,
Aslak Hellesoy,

ryan Helmkarmp,
and Dan North

David Chelimsky, Dave Astels, Zach Dennis, Aslak
Hellesgy, Bryan Helmkamp, Dan North

(448 pages) ISBN: 9781934356371. $38.95
http://pragprog.com/titles/achbd

Foreword by Robert C. Martin
(Uncle Bob)

Edted by Jacquelyn Carter I ~

Rails Test Prescriptions is a comprehensive guide to Pfte

testing Rails applications, covering Test-Driven Devel-

opment from both a theoretical perspective (why to

test) and from a practical perspective (how to test effec- Rails Test
tively). It covers the core Rails testing tools and proce- Prescriptions

dures for Rails 2 and Rails 3, and introduces popular
add-ons, including RSpec, Shoulda, Cucumber, Factory
Girl, and Rcov.

Noel Rappin
(368 pages) ISBN: 9781934356647. $34.95
http://pragprog.com/titles/nrtest

Kee?in Your

Application Healthy

Noel Rappin

Bt by Coloen Teporeke

http://pragprog.com/titles/achbd
http://pragprog.com/titles/nrtest

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/titles/rr2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http.//pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http:/pragprog.com/titles/rr2

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http://pragprog.com/write-for-us
Or Call: +1 800-699-7764

http://pragprog.com/titles/rr2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/rr2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Introduction
	What Makes a Good Recipe Book?
	Who's It For?
	Rails Version
	Resources
	Acknowledgments

	Part I—Database Recipes
	Recipe 1. Create Meaningful Many-to-Many Relationships
	Recipe 2. Create Declarative Named Queries
	Recipe 3. Connect to Multiple Databases
	Recipe 4. Set Default Criteria for Model Operations
	Recipe 5. Add Behavior to Active Record Associations
	Recipe 6. Create Polymorphic Associations
	Recipe 7. Version Your Models
	Recipe 8. Perform Calculations on Your Model Data
	Recipe 9. Use Active Record Outside of Rails
	Recipe 10. Connect to Legacy Databases
	Recipe 11. Make Dumb Data Smart with composed_of()
	Recipe 12. DRY Up Your YAML Database Configuration File
	Recipe 13. Use Models Safely in Migrations
	Recipe 14. Create Self-referential Many-to-Many Relationships
	Recipe 15. Protect Your Data from Accidental Mass Update
	Recipe 16. Create a Custom Model Validator
	Recipe 17. Nest has_many :through Relationships
	Recipe 18. Keep Your Application in Sync with Your Database Schema
	Recipe 19. Seed Your Database with Starting Data
	Recipe 20. Use Helpers in Models
	Recipe 21. Avoid Dangling Database Dependencies

	Part II—Controller Recipes
	Recipe 22. Create Nested Resources
	Recipe 23. Create a Custom Action in a REST Controller
	Recipe 24. Create a Helper Method to Use in Both Controllers and Views
	Recipe 25. Trim Your REST Resources
	Recipe 26. Constrain Routes by Subdomain (and Other Conditions)
	Recipe 27. Add Web Services to Your Actions
	Recipe 28. Write Macros
	Recipe 29. Manage a Static HTML Site with Rails
	Recipe 30. Syndicate Your Site with RSS
	Recipe 31. Set Your Application's Home Page

	Part III—User Interface Recipes
	Recipe 32. Create a Custom Form Builder
	Recipe 33. Pluralize Words on the Fly (or Not)
	Recipe 34. Insert Action-Specific Content in a Layout
	Recipe 35. Add Unobtrusive Ajax with jQuery
	Recipe 36. Create One Form for Many Models
	Recipe 37. Cache Local Data with HTML5 Data Attributes

	Part IV—Testing Recipes
	Recipe 38. Automate Tests for Your Models
	Recipe 39. Test Your Controllers
	Recipe 40. Test Your Helpers
	Recipe 41. Test Your Outgoing Mailers
	Recipe 42. Test Across Multiple Controllers
	Recipe 43. Focus Your Tests with Mocking and Stubbing
	Recipe 44. Extract Test Fixtures from Live Data
	Recipe 45. Create Dynamic Test Fixtures
	Recipe 46. Measure and Improve Your Test Coverage
	Recipe 47. Create Test Data with Factories

	Part V—Email Recipes
	Recipe 48. Send Gracefully Degrading Rich-Content Emails
	Recipe 49. Send Email with Attachments
	Recipe 50. Test Incoming Email

	Part VI—Big-Picture Recipes
	Recipe 51. Roll Your Own Authentication
	Recipe 52. Protect Your Application with Basic HTTP Authentication
	Recipe 53. Authorize Users with Roles
	Recipe 54. Force Your Users to Access Site Functions with SSL
	Recipe 55. Create Secret URLs
	Recipe 56. Use Rails Without a Database
	Recipe 57. Create Your Own Ruby Gem
	Recipe 58. Use Bundler Groups to Manage Per-Environment Dependencies
	Recipe 59. Package Rake Tasks for Reuse with a Gem
	Recipe 60. Explore Your Rails Application with the Console
	Recipe 61. Automate Work with Your Own Rake Tasks
	Recipe 62. Generate Documentation for Your Application
	Recipe 63. Render Application Data as Comma-Separated Values
	Recipe 64. Debug and Explore Your Application with the ruby-debug Gem
	Recipe 65. Render Complex Documents as PDFs

	Part VII—Extending Rails
	Recipe 66. Support Additional Content Types with a Custom Renderer
	Recipe 67. Accept Additional Content Types with a Custom Parameter Parser
	Recipe 68. Templatize Your Generated Rails Applications
	Recipe 69. Automate Recurring Code Patterns with Custom Generators
	Recipe 70. Create a Mountable Application as a Rails Engine Plugin

	Bibliography
	Index

