

What Readers Are Saying About Metaprogramming Ruby

Reading this book was like diving into a new world of thinking. I tried

a mix of Java and JRuby metaprogramming on a recent project. Using

Java alone would now feel like entering a sword fight carrying only

a banana, when my opponent is wielding a one-meter-long Samurai

blade.

Sebastian Hennebrüder

Java Consultant and Trainer, laliluna.de

This Ruby book fills a gap between language reference manuals and

programming cookbooks. Not only does it explain various meta-

programming facilities, but it also shows a pragmatic way of making

software smaller and better. There’s a caveat, though; when the new

knowledge sinks in, programming in more mainstream languages will

start feeling like a chore.

Jurek Husakowski

Software Designer, Philips Applied Technologies

Before this book, I’d never found a clear organization and explanation

of concepts like the Ruby object model, closures, DSLs definition, and

eigenclasses all spiced with real-life examples taken from the gems we

usually use every day. This book is definitely worth reading.

Carlo Pecchia

Software Engineer

I’ve had a lot of trouble finding a good way to pick up these meta-

programming techniques, and this book is bar none the best way to

do it. Paolo Perrotta makes it painless to learn Ruby’s most complex

secrets and use them in practical applications.

Chris Bunch

Software Engineer

Metaprogramming Ruby
Program Like the Ruby Pros

Paolo Perrotta

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Paolo Perrotta.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-47-6

ISBN-13: 978-1-934356-47-0

Printed on acid-free paper.

P1.0 printing, January 2010

Version: 2010-1-29

http://www.pragprog.com

To Carlo.

Contents
Foreword 10

Acknowledgments 11

Introduction 13

The “M” Word . 14

About This Book . 21

About You . 24

I Metaprogramming Ruby 26

1 Monday: The Object Model 27

1.1 Monday with Bill . 27

1.2 Open Classes . 28

1.3 The Truth About Classes 33

1.4 Quiz: Missing Lines . 45

1.5 What Happens When You Call a Method? 46

1.6 Quiz: Tangle of Modules 56

1.7 Object Model Wrap-Up 59

2 Tuesday: Methods 60

2.1 A Duplication Problem 61

2.2 Dynamic Methods . 63

2.3 method_missing() . 71

2.4 Quiz: Bug Hunt . 82

2.5 More method_missing() 84

3 Wednesday: Blocks 91

3.1 How to Handle Hump Day 92

3.2 Quiz: Ruby# . 93

3.3 Closures . 96

3.4 instance_eval() . 105

CONTENTS 8

3.5 Callable Objects . 108

3.6 Writing a Domain-Specific Language 116

3.7 Quiz: A Better DSL . 118

4 Thursday: Class Definitions 122

4.1 Class Definitions Demystified 123

4.2 Quiz: Class Taboo . 130

4.3 Singleton Methods . 132

4.4 Eigenclasses . 137

4.5 Quiz: Module Trouble 150

4.6 Aliases . 152

4.7 Quiz: Broken Math . 157

5 Friday: Code That Writes Code 160

5.1 Leading the Way . 160

5.2 Kernel#eval . 163

5.3 Quiz: Checked Attributes (Step 1) 173

5.4 Quiz: Checked Attributes (Step 2) 176

5.5 Quiz: Checked Attributes (Step 3) 178

5.6 Quiz: Checked Attributes (Step 4) 179

5.7 Hook Methods . 180

5.8 Quiz: Checked Attributes (Step 5) 186

6 Epilogue 188

II Metaprogramming in Rails 189

7 The Design of ActiveRecord 190

7.1 Preparing for the Tour 191

7.2 The Design of ActiveRecord 193

7.3 Lessons Learned . 202

8 Inside ActiveRecord 206

8.1 Dynamic Attributes . 206

8.2 Dynamic Finders . 214

8.3 Lessons Learned . 219

9 Metaprogramming Safely 224

9.1 Testing Metaprogramming 224

9.2 Defusing Monkeypatches 232

9.3 Lessons Learned . 237

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=8

CONTENTS 9

III Appendixes 239

A Common Idioms 240

A.1 Mimic Methods . 240

A.2 Nil Guards . 243

A.3 Tricks with Method Arguments 244

A.4 Self Yield . 248

A.5 Symbol#to_proc() . 249

B Domain-Specific Languages 252

B.1 The Case for Domain-Specific Languages 252

B.2 Internal and External DSLs 254

B.3 DSLs and Metaprogramming 255

C Spell Book 256

C.1 The Spells . 256

D Bibliography 268

Index 269

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=9

Foreword
Ruby inherits characteristics from various languages — Lisp, Small-

talk, C, and Perl, to name a few. Metaprogramming comes from Lisp

(and Smalltalk). It’s a bit like magic, which makes something astonish-

ing possible. There are two kinds of magic: white magic, which does

good things, and black magic, which can do nasty things. Likewise,

there are two aspects to metaprogramming. If you discipline yourself,

you can do good things, such as enhancing the language without

tweaking its syntax by macros or enabling internal domain-specific

languages. But you can fall into the dark side of metaprogramming.

Metaprogramming can confuse easily.

Ruby trusts you. Ruby treats you as a grown-up programmer. It gives

you great power such as metaprogramming. But you need to remember

that with great power comes great responsibility.

Enjoy programming in Ruby.

matz

October 2009

Acknowledgments
Before I begin, I need to thank a few people. I’m talking to you, gen-

tlemen: Joe Armstrong, Satoshi Asakawa, Paul Barry, Emmanuel Ber-

nard, Roberto Bettazzoni, Ola Bini, Piergiuliano Bossi, Simone Busoli,

Andrea Cisternino, Davide D’Alto, Mauro Di Nuzzo, Marco Di Timo-

teo, Mauricio Fernandez, Jay Fields, Michele Finelli, Neal Ford, Flo-

rian Frank, Sanne Grinovero, Federico Gobbo, Florian Groß, Sebastian

Hennebrüder, Doug Hudson, Jurek Husakowski, Lyle Johnson, Luca

Marchetti, MenTaLguY, Carlo Pecchia, Andrea Provaglio, Mike Roberts,

Martin Rodgers, Jeremy Sydik, Andrea Tomasini, Marco Trincardi, Ivan

Vaghi, Giancarlo Valente, Davide Varvello, Jim Weirich, and the dozens

of readers who reported problems and errata while this book was in

beta. Whether you provided reviews, quotes, fixes, opinions, or moral

support, there’s at least one line in this book that changed for the bet-

ter because of you. Did I say one line? For some of you, make that “a

few chapters.” In particular, Ola, Satoshi, and Jurek deserve a special

place on this page and my enduring gratitude.

Thanks to the staff at the Pragmatic Bookshelf: Janet Furlow, Seth

Maislin, Steve Peter, Susannah Davidson Pfalzer, and Kim Wimpsett.

Dave and Andy, thank you for believing in this project when times got

rough. Jill, thank you for making my awkward prose look so effortless.

Our crunch week in Venice was a lot of hard work, but it was definitely

worth it. And speaking of Venice: thank you, Lucio, for being such a

dear old friend.

Mom and Dad, thank you for your support, for your love, and for never

asking why I was taking so long to finish this book.

Most authors’ closing thanks go to their partners, and now I know why.

When you’re about to finish a book, you turn back to the day when

you started writing, and it feels so far away. I remember writing over

lunch breaks, nights, and weekends, locked for days or weeks inside

ACKNOWLEDGMENTS 12

my study, a hotel room in some foreign city, or a seashore house that

would have suited a hermit. It’s such a lonesome endeavor—and yet, I

never felt alone. Thank you, Mirella.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=12

Will write code that writes code that writes code for food.

Martin Rodgers

Introduction
Metaprogramming. . . it sounds cool! It sounds like a design technique

for high-level enterprise architects or a fashionable buzzword that has

found its way into press releases.

In fact, far from being an abstract concept or a bit of marketing-speak,

metaprogramming is a collection of down-to-earth, pragmatic coding

techniques. It doesn’t just sound cool; it is cool. Here are some of the

things you can do with metaprogramming in the Ruby language:

• Say you want to write a Ruby program that connects to an external

system—maybe a web service or a Java program. With metapro-

gramming, you can write a wrapper that takes any method call

and routes it to the external system. If somebody adds methods

to the external system later, you don’t have to change your Ruby

wrapper; the wrapper will support the new methods right away.

That’s magic!

• Maybe you have a problem that would be best solved with a pro-

gramming language that’s specific to that problem. You could go

to the trouble of writing your own language, custom parser and

all. Or you could just use Ruby, bending its syntax until it looks

like a specific language for your problem. You can even write your

own little interpreter that reads code written in your Ruby-based

language from a file.

• You can remove duplication from your Ruby program at a level

that Java programmers can only dream of. Let’s say you have

twenty methods in a class, and they all look the same. How about

defining all those methods at once, with just a few lines of code?

Or maybe you want to call a sequence of similarly named meth-

ods. How would you like a single short line of code that calls all

the methods whose names match a pattern—like, say, all methods

that begin with test?

THE “M” WORD 14

• You can stretch and twist Ruby to meet your needs, rather than

adapt to the language as it is. For example, you can enhance any

class (even a core class like Array) with that method you miss so

dearly, you can wrap logging functionality around a method that

you want to monitor, you can execute custom code whenever a

client inherits from your favorite class. . . the list goes on. You are

limited only by your own, undoubtedly fertile, imagination.

Metaprogramming gives you the power to do all these things. Let’s see

what it looks like.

The “M” Word

You’re probably expecting a definition of metaprogramming right from

the start. Here’s one for you:

Metaprogramming is writing code that writes code.

We’ll get to a more precise definition in a short while, but this one will

do for now. What do I mean by “code that writes code,” and how is that

useful in your daily work? Before I answer those questions, let’s take a

step back and look at programming languages themselves.

Ghost Towns and Marketplaces

Think of your source code as a world teeming with vibrant citizens:

variables, classes, methods, and so on. If you want to get technical,

you can call these citizens language constructs.

In many programming languages, language constructs behave more

like ghosts than fleshed-out citizens: you can see them in your source

code, but they disappear before the program runs. Take C++, for exam-

ple. Once the compiler has finished its job, things like variable and

method have lost their concreteness; they are just locations in mem-

ory. You can’t ask a class for its instance methods, because by the time

you ask the question, the class has faded away. In languages like C++,

runtime is an eerily quiet place—a ghost town.

In other languages, such as Ruby, runtime looks more like a busy mar-

ketplace. Most language constructs are still there, buzzing all around.

You can even walk up to a construct and ask it questions about itself.

This is called introspection. Let’s watch introspection in action.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=14

THE “M” WORD 15

Code Generators and Compilers

In metaprogramming, you write code that writes code. But isn’t
that what code generators and compilers do? For example,
you can write annotated Java code and then use a code gen-
erator to output XML configuration files. In a broad sense, this
XML generation is an example of metaprogramming. In fact,
many people think about code generation when the “m” word
comes up.

This particular brand of metaprogramming implies that you use
a program to generate or otherwise manipulate a second, dis-
tinct program—and then you run the second program. After
you run the code generator, you can actually read the gener-
ated code and (if you want to test your tolerance for pain) even
modify it by hand before you finally run it. This is also what hap-
pens under the hood with C++ templates: the compiler turns
your templates into a regular C++ program before compiling
them, and then you run the compiled program.

In this book, I’ll stick to a different meaning of metaprogram-
ming, focusing on code that manipulates itself at runtime. Only
a few languages can do that effectively, and Ruby is one of
them. You can think of this as dynamic metaprogramming to
distinguish it from the static metaprogramming of code gener-
ators and compilers.

Introspection

Take a look at this code:

Download introduction/introspection.rb

class Greeting

def initialize(text)

@text = text

end

def welcome

@text

end

end

my_object = Greeting.new("Hello")

I defined a Greeting class and created a Greeting object. I can now turn

to the language constructs and ask them questions.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/introduction/introspection.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=15

THE “M” WORD 16

my_object.class # => Greeting

my_object.class.instance_methods(false) # => [:welcome]

my_object.instance_variables # => [:@text]

I asked my_object about its class, and it replied in no uncertain terms:

“I’m a Greeting.” Then I asked the class for a list of its instance methods.

(The false argument means, “List only instance methods you defined

yourself, not those ones you inherited.”) The class answered with an

array containing a single method name: welcome(). I also peeked into

the object itself, asking for its instance variables. Again, the object’s

reply was loud and clear. Since objects and classes are first-class citi-

zens in Ruby, you can get a lot of information out of running code.

However, this is only half the picture. Sure, you can read language

constructs at runtime, but what about writing them? What if you want

to add new instance methods to Greeting, alongside welcome(), while

the program is running? You might be wondering why on Earth anyone

would want to do that. Allow me to explain by telling a story.

The Story of Bob, Metaprogrammer

Bob, a Java coder who’s just starting to learn Ruby, has a grand plan:

he’ll write the biggest Internet social network ever for movie buffs. To do

that, he needs a database of movies and movie reviews. Bob makes it a

practice to write reusable code, so he decides to build a simple library

to persist objects in the database.

Bob’s First Attempt

Bob’s library maps each class to a database table and each object to

a record. When Bob creates an object or accesses its attributes, the

object generates a string of SQL and sends it to the database. All this

functionality is wrapped in a base class:

Download introduction/orm.rb

class Entity

attr_reader :table, :ident

def initialize(table, ident)

@table = table

@ident = ident

Database.sql "INSERT INTO #{@table} (id) VALUES (#{@ident})"

end

def set(col, val)

Database.sql "UPDATE #{@table} SET #{col}='#{val}' WHERE id=#{@ident}"

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/introduction/orm.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=16

THE “M” WORD 17

def get(col)

Database.sql("SELECT #{col} FROM #{@table} WHERE id=#{@ident}")[0][0]

end

end

In Bob’s database, each table has an id column. Each Entity stores the

content of this column and the name of the table to which it refers.

When Bob creates an Entity, the Entity saves itself to the database.

Entity#set() generates SQL that updates the value of a column, and

Entity#get() generates SQL that returns the value of a column. (In case

you care, Bob’s Database class returns record sets as arrays of arrays.)

Bob can now subclass Entity to map to a specific table. For example,

class Movie maps to a database table named movies:

class Movie < Entity

def initialize(ident)

super("movies", ident)

end

def title

get("title")

end

def title=(value)

set("title", value)

end

def director

get("director")

end

def director=(value)

set("director", value)

end

end

A Movie has two methods for each field: a reader such as Movie#title()

and a writer such as Movie#title=(). Bob can now load a new movie into

the database by firing up the Ruby command-line interpreter and typ-

ing the following:

movie = Movie.new(1)

movie.title = "Doctor Strangelove"

movie.director = "Stanley Kubrick"

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=17

THE “M” WORD 18

This code creates a new record in movies, which has values 1, Doc-

tor Strangelove, and Stanley Kubrick for the fields id, title, and director,

respectively.1

Proud of himself, Bob shows the code to his older, more experienced

colleague Bill. Bill stares at the screen for a few seconds and proceeds

to shatter Bob’s pride into tiny little pieces. “There’s a lot of duplicated

code here,” Bill says. “You have a movies table with a title column in

the database, and you have a Movie class with a @title field in the code.

You also have a title() method, a title=() method, and two "title" string

constants. You can solve this problem with way less code if you sprinkle

some metaprogramming magic over it.”

Enter Metaprogramming

At the suggestion of his expert-coder friend, Bob looks for a meta-

programming-based solution. He finds that very thing in the Active-

Record library, a popular Ruby library that maps objects to database

tables.2 After a short tutorial, Bob is able to write the ActiveRecord ver-

sion of the Movie class:

class Movie < ActiveRecord::Base

end

Yes, it’s as simple as that. Bob just subclassed the ActiveRecord::Base

class. He didn’t have to specify a table to map Movies to. Even better,

he didn’t have to write boring, almost identical methods such as title()

and director(). Everything just works:

movie = Movie.create

movie.title = "Doctor Strangelove"

movie.title # => "Doctor Strangelove"

The previous code creates a Movie object that wraps a record in the

movies table, then accesses the record’s title field by calling Movie#title()

and Movie#title=(). But these methods are nowhere to be found in the

source code. How can title() and title=() exist, if they’re not defined any-

where? You can find out by looking at how ActiveRecord works.

The table name part is straightforward: ActiveRecord looks at the name

of the class through introspection and then applies some simple con-

1. You probably know this already, but it doesn’t hurt to refresh your memory: in Ruby,

movie.title = "Doctor Strangelove" is actually a disguised call to the title=() method—the same

as movie.title=("Doctor Strangelove").
2. ActiveRecord is part of Rails, the quintessential Ruby framework. You’ll read more

about Rails and ActiveRecord in Chapter 7, The Design of ActiveRecord, on page 190.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=18

THE “M” WORD 19

ventions. Since the class is named Movie, ActiveRecord maps it to a

table named movies. (This library knows how to find plurals for English

words.)

What about methods like title=() and title(), which access object attri-

butes (accessor methods for short)? This is where metaprogramming

comes in: Bob doesn’t have to write those methods. ActiveRecord de-

fines them automatically, after inferring their names from the database

schema. ActiveRecord::Base reads the schema at runtime, discovers that

the movies table has two columns named title and director, and defines

accessor methods for two attributes of the same name. This means that

ActiveRecord defines methods such as Movie#title() and Movie#director=()

out of thin air while the program runs!3

This is the “yang” to the introspection “yin”: rather than just reading

from the language constructs, you’re writing into them. If you think

this is an extremely powerful feature, well, you would be right.

The “M” Word Again

Now you have a more formal definition of metaprogramming:

Metaprogramming is writing code that manipulates language constructs

at runtime.

How did the authors of ActiveRecord apply this concept? Instead of

writing accessor methods for each class’s attributes, they wrote code

that defines those methods at runtime for any class that inherits from

ActiveRecord::Base. This is what I meant when I talked about “writing

code that writes code.”

You might think that this is exotic, seldom-used stuff, but if you look

at Ruby, as we’re about to do, you’ll see that it’s used all around the

place.

Metaprogramming and Ruby

Remember our earlier talk about ghost towns and marketplaces? If you

want to “manipulate language constructs,” those constructs must exist

at runtime. In this respect, some languages are definitely better than

others. Take a quick glance at a few languages and how much control

they give you at runtime.

3. The real implementation of accessors in ActiveRecord is a bit more subtle than I

describe here, as you’ll see in Chapter 8, Inside ActiveRecord, on page 206.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=19

THE “M” WORD 20

A program written in C spans two different worlds: compile time, where

you have language constructs such as variables and functions, and

runtime, where you just have a bunch of machine code. Since most

information from compile time is lost at runtime, C doesn’t support

metaprogramming or introspection. In C++, some language constructs

do survive compilation, and that’s why you can ask a C++ object for its

class. In Java, the distinction between compile time and runtime is even

fuzzier. You have enough introspection available to list the methods of

a class or climb up a chain of superclasses.

Ruby is arguably the most metaprogramming-friendly of the current

fashionable languages. It has no compile time at all, and most con-

structs in a Ruby program are available at runtime. You don’t come up

against a brick wall dividing the code that you’re writing from the code

that your computer executes when you run the program. There is just

one world.

In this one world, metaprogramming is everywhere. In fact, metapro-

gramming is so deeply entrenched in the Ruby language that it’s not

even sharply separated from “regular” programming. You can’t look at

a Ruby program and say, “This part here is metaprogramming, while

this other part is not.” In a sense, metaprogramming is a routine part

of every Ruby programmer’s job.

To be clear, metaprogramming isn’t an obscure art reserved for Ruby

gurus, and it’s also not a bolt-on power feature that’s useful only for

building something as sophisticated as ActiveRecord. If you want to

take the path to advanced Ruby coding, you’ll find metaprogramming

at every step. Even if you’re happy with the amount of Ruby you already

know and use, you’re still likely to stumble on metaprogramming in

your coding travels: in the source of popular frameworks, in your fa-

vorite library, and even in small examples from random blogs. Until

you master metaprogramming, you won’t be able to tap into the full

power of the Ruby language.

There is also another, less obvious reason why you might want to learn

metaprogramming. As simple as Ruby looks at first, you can quickly

become overwhelmed by its subtleties. Sooner or later, you’ll be ask-

ing yourself questions such as “Can an object call a private method on

another object of the same class?” or “How can you define class meth-

ods by importing a module?” Ultimately, all of Ruby’s seemingly compli-

cated behaviors derive from a few simple rules. Through metaprogram-

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=20

ABOUT THIS BOOK 21

ming, you can get an intimate look at the language, learn those rules,

and get answers to your nagging questions.

Now that you know what metaprogramming is about, you’re ready to

dive in this book.

About This Book

Part I, Metaprogramming Ruby, is the core of the book. It tells the story

of your week in the office, paired with Bill, an experienced Ruby coder:

• Ruby’s object model is the land in which metaprogramming lives.

Chapter 1, Monday: The Object Model, on page 27 provides a map

to this land. This chapter introduces you to the most basic metapro-

gramming techniques. It also reveals the secrets behind Ruby

classes and method lookup, the process by which Ruby finds and

executes methods.

• Once you understand method lookup, you can do some fancy

things with methods: you can create methods at runtime, inter-

cept method calls, route calls to another object, or even accept

calls to methods that don’t exist. All these techniques are ex-

plained in Chapter 2, Tuesday: Methods, on page 60.

• Methods are just one member of a larger family also including enti-

ties such as blocks and lambdas. Chapter 3, Wednesday: Blocks,

on page 91, is your field manual for everything related to these

entities. It also presents an example of writing a domain-specific

language, a powerful conceptual tool that’s gaining popularity in

today’s development community. And, of course, this chapter

comes with its own share of tricks, explaining how you can pack-

age code and execute it later or how you can carry variables across

scopes.

• Speaking of scopes, Ruby has a special scope that deserves a close

look: the scope of class definitions. Chapter 4, Thursday: Class

Definitions, on page 122, talks about this scope and introduces

you to some of the most powerful weapons in a metaprogrammer’s

arsenal. It also introduces eigenclasses (also known as singleton

classes), the last concept you need to make sense of Ruby’s most

perplexing features.

• Finally, Chapter 5, Friday: Code That Writes Code, on page 160

puts it all together through an extended example that uses tech-

niques from all the previous chapters. The chapter also rounds out

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=21

ABOUT THIS BOOK 22

your metaprogramming training with two new topics: the some-

what controversial eval() method and the callback methods that

you can use to intercept object model events.

Part II of the book, Metaprogramming in Rails, is a case study in meta-

programming. It contains three short chapters that focus on different

areas of Rails, the flagship Ruby framework. By looking at Rails’ source

code, you’ll see how master Ruby coders use metaprogramming in the

real world to develop great software.

Before you get down to reading this book, you should know about the

three appendixes. Appendix A, on page 240, describes some common

techniques that you’ll probably find useful even if they’re not, strictly

speaking, metaprogramming. Appendix B, on page 252, is a look at

domain-specific languages. Appendix C, on page 256, is a quick refer-

ence to all the spells in the book, complete with code examples.

“Wait a minute,” I can hear you saying. “What the heck are spells?” Oh,

right, sorry. Let me explain.

Spells

This book contains a number of metaprogramming techniques that you

can use in your own code. Some people might call these patterns or

maybe idioms. Neither of these terms is very popular among Rubyists,

so I’ll call them spells instead. Even if there’s nothing magical about

them, they do look like magic spells to Ruby newcomers!

You’ll find references to spells everywhere in the book. I reference a

spell by using the convention Blank Slate (84) or String of Code (163),

for example. The number in parentheses is the page where the spell

receives a name. If you need a quick reference to a spell, in Appendix C,

on page 256, you’ll find a complete spell book.

Quizzes

Every now and then, this book also throws a quiz at you. You can skip

these quizzes and just read the solution, but you’ll probably want to

solve them just because they’re fun.

Some quizzes are traditional coding exercises; others require you to get

off your keyboard and think. All quizzes include a solution, but most

quizzes have more than one possible answer. Go wild and experiment!

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=22

ABOUT THIS BOOK 23

Notation Conventions

Throughout this book, I use a typewriter-like font for code examples.

To show you that a line of code results in a value, I print that value as

a comment on the same line:

-1.abs # => 1

If a code example is supposed to print a result rather than return it, I

show that result after the code:

puts 'Testing... testing...'

⇒ Testing... testing...

In most cases, the text uses the same code syntax that Ruby uses:

MyClass.my_method is a class method, MyClass::MY_CONSTANT is a con-

stant defined within a class, and so on. There are a couple of exceptions

to this rule. First, I identify instance methods with the hash notation,

like the Ruby documentation does (MyClass#my_method). This is useful

when trying to differentiate class methods and instance methods. Sec-

ond, I use a hash prefix to identify eigenclasses (#MyEigenclass).

Some of the code in this book comes straight from existing open source

libraries. To avoid clutter (or to make the code easier to understand

in isolation), I’ll sometimes take the liberty of editing the original code

slightly. However, I’ll do my best to keep the spirit of the original source

intact.

Unit Tests

This book follows two developers as they go about their day-to-day

work. As the story unfolds, you may notice that the developers rarely

write unit tests. Does this book condone untested code?

Please rest assured that it doesn’t. In fact, the original draft of this

book included unit tests for all code examples. In the end, I found that

those tests distracted from the metaprogramming techniques that are

the meat of the book—so the tests fell on the cutting-room floor.

This doesn’t mean you shouldn’t write tests for your own metaprogram-

ming endeavors! In fact, you’ll find specific advice on testing metapro-

gramming code in Chapter 9, Metaprogramming Safely, on page 224.

Ruby Versions

One of the joys of Ruby is that it’s continuously changing and improv-

ing. However, this very fluidity can be problematic when you try a piece

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=23

ABOUT YOU 24

of code on the latest version of the language only to find that it doesn’t

work anymore. This is not overly common, but it can happen with

metaprogramming, which pushes Ruby to its limits.

As I write this text, the latest stable release of Ruby is 1.9.1 and is

labeled a “developer” version. Developer versions are meant as test beds

for new language features, but Ruby 1.9 is generally considered stable

enough for real production work—so I used it to write this book. You

can stick with Ruby 1.8 if you prefer. Throughout the text, I’ll tell you

which features behave differently on the two versions of Ruby.

The next production version of Ruby is going to be Ruby 2.0, which will

likely introduce some big changes. At the time of writing this book, this

version is still too far away to either worry or rejoice about. Once 2.0

comes out, I’ll update the text.

When I talk about Ruby versions, I’m talking about the “official” inter-

preter (sometimes called MRI for Matz’s Ruby Interpreter4). To add to

all the excitement (and the confusion) around Ruby, some people are

also developing alternate versions of the language, like JRuby, which

runs on the Java Virtual Machine,5 or IronRuby, which runs on the

Microsoft .NET platform.6 As I sit here writing, most of these alternate

Ruby implementations are progressing nicely, but be aware that some

of the examples in this book might not work on some of these alternate

implementations.

About You

Most people consider metaprogramming an advanced topic. To play

with the constructs of a Ruby program, you have to know how these

constructs work in the first place. How do you know whether you’re

enough of an “advanced” Rubyist to deal with metaprogramming? Well,

if you understood the code in the previous sections without much trou-

ble, you are well equipped to move forward.

If you’re not confident about your skills, you can take a simple self-

test. Which kind of code would you write to iterate over an array? If

you thought about the each() method, then you know enough Ruby

to follow the ensuing text. If you thought about the for keyword, then

4. http://www.ruby-lang.org

5. http://jruby.codehaus.org

6. http://www.ironruby.net

Report erratum

this copy is (P1.0 printing, January 2010)

http://www.ruby-lang.org
http://jruby.codehaus.org
http://www.ironruby.net
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=24

ABOUT YOU 25

you’re probably new to Ruby. In the second case, you can still embark

on this metaprogramming adventure—just take an introductory Ruby

text along with you!7

Are you on board, then? Great! Let’s dive in.

7. I suggest the seminal Pickaxe [TFH08] book. You can also find an excellent interactive

introduction in the Try Ruby! tutorial on http://tryruby.sophrinix.com.

Report erratum

this copy is (P1.0 printing, January 2010)

http://tryruby.sophrinix.com
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=25

Part I

Metaprogramming Ruby

Chapter 1

Monday: The Object Model
Just glance at any Ruby program, and you’ll see objects everywhere.

Do a double take, and you’ll see that objects are just citizens of a larger

world that also includes language constructs such as classes, modules,

and instance variables. Metaprogramming manipulates these language

constructs, so you need to know a few things about them right off

the bat.

You are about to dig into the first concept: all these constructs live to-

gether in a system called the object model. The object model is where

you’ll find answers to questions such as “Which class does this method

come from?” and “What happens when I include this module?”

Delving into the object model, at the very heart of Ruby, you’ll learn

some powerful techniques, and you’ll also learn how to steer clear of a

few pitfalls. Monday promises to be a full day, so set your IM status to

Away, hold all your calls, grab an extra donut, and get ready to start!

1.1 Monday with Bill

Where you meet Bill, your new mentor and programming buddy.

Welcome to your new job as a Ruby programmer. After you’ve settled

yourself at your new desk with a shiny, latest-generation monitor and

a cup of coffee, you can meet Bill, your mentor, experienced in all things

Ruby. Yes, you have your first assignment at your new company, a new

language to work with, and a new pair-programming buddy. What a

Monday!

Your assignment is with the Enterprise Integration Department (which

is corporate-speak for “the folks hammering the legacy systems back

OPEN CLASSES 28

into shape”). Given that Ruby is a new language for you, you’ve been

practicing for a few weeks already. Bill, who has some months of Ruby

under his belt, looks like a nice chap, so you know you’re going to have

a good time—at least until your first petty fight over coding conventions.

The boss wants you and Bill to get to know each other, so she’s asked

the two of you to review the source of a small application called Book-

worm. The company developed Bookworm to manage its large internal

library of books. The program has slowly grown out of control as many

different developers added their pet features to the mix, from text pre-

views to magazine management and the tracking of borrowed books. As

a result, the Bookworm source code is in dire need of refactoring. You

and your new pal Bill have been selected to whip the Bookworm source

back into shape.

You and Bill are ready to get to work. With Bill sitting next to you at

your desk, you fire up your text editor.

1.2 Open Classes

Where Bill gives you your first taste of Ruby classes.

You and Bill have been browsing through the Bookworm source code

for a few minutes when you spot your first refactoring opportunity. To

print book titles on limited supports like tape labels, Bookworm has

a function that strips all punctuation and special characters out of a

string, leaving only alphanumeric characters and spaces:

Download object_model/alphanumeric.rb

def to_alphanumeric(s)

s.gsub /[^\w\s]/, ''

end

This method also comes with its own unit test:

require 'test/unit'

class ToAlphanumericTest < Test::Unit::TestCase

def test_strips_non_alphanumeric_characters

assert_equal '3 the Magic Number', to_alphanumeric('#3, the *Magic, Number*?')

end

end

“This to_alphanumeric() method is not very object oriented, is it?” Bill

muses. “It’d be better if we could just ask the string to convert itself,

rather than pass it through an external method.”

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/object_model/alphanumeric.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=28

OPEN CLASSES 29

Even though you’re the new guy on the block, you can’t help but inter-

rupt. “But this is just a regular String. To add methods to it, we’d have

to write a whole new AlphanumericString class. I’m not sure it would be

worth it.”

“I think I have a simpler solution to this problem,” Bill replies. He opens

the String class and plants the to_alphanumeric() method there:

class String

def to_alphanumeric

gsub /[^\w\s]/, ''

end

end

Bill also changes the callers to use String#to_alphanumeric(). For exam-

ple, the test becomes as follows:

require 'test/unit'

class StringExtensionsTest < Test::Unit::TestCase

def test_strips_non_alphanumeric_characters

assert_equal '3 the Magic Number', '#3, the *Magic, Number*?'.to_alphanumeric

end

end

To understand Bill’s trick, you need to know a thing or two about Ruby

classes. Bill is only too happy to teach you. . . .

Inside Class Definitions

In Ruby there is no real distinction between code that defines a class

and code of any other kind. You can put any code you want in a class

definition, as Bill demonstrates with a quick example:

3.times do

class C

puts "Hello"

end

end

⇒ Hello

Hello

Hello

Ruby executed the code within the class just as it would execute any

other code. Does that mean you defined three classes with the same

name? The answer is no, as Bill demonstrates with a second example:

class D

def x; 'x'; end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=29

OPEN CLASSES 30

Where Should You Put Your Methods?

In Section 1.2, Open Classes, on page 28, Bill demonstrates how
you can move the to_alphanumeric() method to the String class.
But even if you can do this, you might wonder whether you
should do it. Is it right to have every string in the system expose
a to_alphanumeric() method? Wouldn’t it be better to leave the
String class alone?

This time around, you’re dealing with a pretty generic func-
tionality that makes sense for all strings—so you can argue it
makes sense to follow Bill’s suggestion and put alphanumeric
conversion in the String class. In general, however, you should
think hard before you pollute Ruby’s standard libraries with a
lot of domain-specific methods. After all, a class such as String

already comes with loads of methods that you have to remem-
ber.

You do have alternatives to using an Open Class (31). You
could define a new AlphanumericString class or even add spe-
cific methods like to_alphanumeric() only to a few, selected
strings (you’ll learn how to do that in the discussion of Single-
ton Methods (133)). You’ll learn more Open Class alternatives
and variations in the rest of this book.

class D

def y; 'y'; end

end

obj = D.new

obj.x # => "x"

obj.y # => "y"

When the previous code mentions class D for the first time, no class

by that name exists yet. So, Ruby steps in and defines the class—and

the x() method. At the second mention, class D already exists, so Ruby

doesn’t need to define it. Instead, it just reopens the existing class and

defines a method named y() there.

In a sense, the class keyword in Ruby is more like a scope operator than

a class declaration. Yes, it does create classes that don’t yet exist, but

you might argue that it does this as a side effect. For class, the core

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=30

OPEN CLASSES 31

job is to move you in the context of the class, where you can define

methods.

You might think that Bill is just nitpicking here, but this distinction

about the class keyword is not an academic detail. It has an important

practical consequence: you can always reopen existing classes, even

standard library classes such as String or Array, and modify them on the

fly. You can simply call this technique Open Class. Spell: Open Class

To demonstrate how people use Open Classes in practice, Bill runs

through a quick example from a real-life library.

The Money Example

As an example of Open Classes, Bill opens your eyes to the Money gem,

a set of utility classes for managing money and currencies.1 Here’s how

you create a Money object:

cents = 9999

99.99 US Dollars:

bargain_price = Money.new(cents)

As a shortcut, you can also convert any number to a Money object by

calling Numeric#to_money():

100.00 US Dollars:

standard_price = 100.to_money()

Since Numeric is a standard Ruby class, you might wonder where the

Numeric#to_money method comes from. Look through the source of the

Money gem, and you’ll find code that reopens Numeric and defines that

method:

Download gems/money-2.1.3/lib/money/core_extensions.rb

class Numeric

def to_money

Money.new(self * 100)

end

end

It’s quite common for libraries to use Open Classes this way.

The Problem with Open Classes

You and Bill don’t have to look much further before you stumble upon

another opportunity to use Open Classes. The Bookworm source con-

tains a method that replaces elements in an array.

1. Money was written by Tobias Luetke. Install it with gem install money.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/money-2.1.3/lib/money/core_extensions.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=31

OPEN CLASSES 32

Download object_model/replace.rb

def replace(array, from, to)

array.each_with_index do |e, i|

array[i] = to if e == from

end

end

Instead of focusing on the internal workings of replace(), you can look

at Bookworm’s unit tests to see how that method is supposed to be

used:

def test_replace

book_topics = ['html', 'java', 'css']

replace(book_topics, 'java', 'ruby')

expected = ['html', 'ruby', 'css']

assert_equal expected, book_topics

end

This time, you know what to do. You grab the keyboard (taking advan-

tage of Bill’s slower reflexes) and move the method to the Array class:

class Array

def replace(from, to)

each_with_index do |e, i|

self[i] = to if e == from

end

end

end

Then you change all calls to replace() into calls to Array#replace(). For

example, the test becomes as follows:

def test_replace

book_topics = ['html', 'java', 'css']

book_topics.replace('java', 'ruby')

expected = ['html', 'ruby', 'css']

assert_equal expected, book_topics

end

Everything looks like it’s in order until you run Bookworm’s unit tests.

Not only do they break, but the failing tests seem to have nothing to do

with the code you just edited. Bummer! What gives?

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/object_model/replace.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=32

THE TRUTH ABOUT CLASSES 33

Monkey See, Monkey Patch

Your pal Bill comes to the rescue. “I think I know what just happened,”

he mumbles. He fires up an irb session and gets a list of all methods in

Ruby’s standard Array that begin with re:2

[].methods.grep /^re/ # => [:replace, :reject, :reject!, :respond_to?, ...

Yipes! In looking at the irb output, you spot the problem. Class Array

already has a method named replace(). When you defined your own

replace() method, you inadvertently overwrote the original replace(), a

method that some other part of Bookworm was relying on.

This is the dark side to Open Classes: if you casually add bits and

pieces of functionality to classes, you can end up with bugs like the

one you just encountered. Some people would frown upon this kind of

reckless patching of classes, and they would refer to the previous code

with a derogatory name: they’d call it a Monkeypatch. Spell: Monkeypatch

You and Bill then rename your own version of Array#replace() to Array#

substitute() and fix both the tests and the calling code. You just learned

a lesson the hard way, but that didn’t spoil your attitude. If anything,

this incident piqued your curiosity about Ruby classes. As it turns out,

Bill is only too happy to tell you more about this topic.

1.3 The Truth About Classes

Where Bill reveals surprising facts about objects, classes, and constants.

“At this stage,” Bill observes, “it’s probably a good idea to take a break

from coding and give a long, hard look at the theory behind Ruby

classes.” He warns you that this will be a lot of theory in a single shot

and adds that there is no escaping this if you want to understand the

mechanics behind Ruby classes and objects.

“I’ll be asking for your full attention, so let’s go find a quiet place to

talk.” He grabs your arm and hustles you to the conference room.

2. You probably already know about irb, the interactive Ruby interpreter. You might

want to keep an irb session open at all times to run quick experiments as you read

through this book—or any other Ruby book, for that matter.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=33

THE TRUTH ABOUT CLASSES 34

Is Monkeypatching Evil?

In Section 1.2, Monkey See, Monkey Patch, on the previous
page, Bill told you that Monkeypatch is a derogatory term.
However, the same term is sometimes used in a positive sense,
to refer to Open Classes (31) in general. You might argue that
there are two types of Monkeypatches (33). Some happen by
mistake, like the one that you and Bill experienced, and they’re
invariably evil. Others are applied on purpose, and they’re
quite useful—especially when you want to bend an existing
library to your needs.

Even when you think you’re in control, you should still Monkey-
patch with care. Like any other global modification, Monkey-
patches can be difficult to track in a large code base. (Some
languages solve this problem with selector namespaces, which
are like Monkeypatches confined to a limited scope. This fea-
ture might eventually find its way into Ruby 2.0—but don’t hold
your breath.)

So, Monkeypatches are useful but also dangerous. How do you
minimize their dangers while still reaping their benefits? Care-
fully check the existing methods in a class before you define
your own methods. Be aware that some changes are riskier
than others. For example, adding a new method is usually safer
than modifying an existing one. Also, test your code thoroughly.

You’ll see more defensive techniques to manage Monkey-
patches in Section 9.2, Defusing Monkeypatches, on page 232.

What’s in an Object

“Let’s start with the basics: objects and classes,” Bill announces as you

take your place in the conference room. He opens his laptop, launches

irb, and types some code:

class MyClass

def my_method

@v = 1

end

end

obj = MyClass.new

obj.class # => MyClass

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=34

THE TRUTH ABOUT CLASSES 35

Bill homes in on the obj object. If you could open the Ruby interpreter

and look into obj, what would you see?

Instance Variables

Most importantly, objects contain instance variables. You’re not really

supposed to peek at them, but you can do that anyway by calling

Object#instance_variables(). Bill’s example object has just a single in-

stance variable:

obj.my_method

obj.instance_variables # => [:@v]

Unlike in Java or other static languages, in Ruby there is no connection

between an object’s class and its instance variables. Instance variables

just spring into existence when you assign them a value, so you can

have objects of the same class that carry different sets of instance vari-

ables. For example, if Bill hadn’t called obj.my_method(), then obj would

have no instance variable at all. You can think of the names and values

of instance variables as keys and values in a hash. Both the keys and

the values can be different for each object.

Bill stretches his arms in an attempt at dramatic gesturing. “That’s all

there is to know about instance variables really. Now, let’s move on to

methods.”

Methods

Besides having instance variables, objects also have methods. You can

get a list of an object’s methods by calling Object#methods(). Most ob-

jects (including obj in Bill’s example code) inherit a number of meth-

ods from Object, so this list of methods is usually quite long. Bill uses

Array#grep() to show you that my_method() is in obj’s list:3

obj.methods.grep(/my/) # => [:my_method]

If you could pry open the Ruby interpreter and look into obj, you’d

notice that this object doesn’t really carry a list of methods. On the

inside, an object simply contains its instance variables and a reference

to its class.4 So, where are the methods?

3. In earlier versions of Ruby, Object#methods() returned a list of strings. Starting with

Ruby 1.9, it now returns a list of symbols.
4. To be precise, it also contains a unique identifier (the one returned by

Object#object_id()) and a set of flags that mark special states such as “tainted” or “frozen.”

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=35

THE TRUTH ABOUT CLASSES 36

Figure 1.1: Instance variables live in objects, and methods live in

classes.

Bill walks over to the conference-room whiteboard and starts scribbling

all over it. “Think about it for a minute,” he says, drawing Figure 1.1.

“Objects that share the same class also share the same methods, so the

methods must be stored in the class, not the object.”

While you’re looking at the picture, Bill also takes the chance to high-

light an important distinction in the terminology. You can rightly say

that “obj has a method called my_method(),” meaning that you’re able to

call obj.my_method(). By contrast, you shouldn’t say that “MyClass has

a method named my_method().” That would be confusing, because it

would imply that you’re able to call MyClass.my_method() as if it were a

class method.

To remove the ambiguity, you should say that my_method() is an

instance method (not just “a method”) of MyClass, meaning that it’s

defined in MyClass, and you actually need an instance of MyClass to call

it. It’s the same method, but when you talk about the class, you call

it an instance method, and when you talk about the object, you simply

call it a method. Remember this distinction, and you won’t get confused

when writing introspective code like this:

String.instance_methods == "abc".methods # => true

String.methods == "abc".methods # => false

Bill wraps it all up: an object’s instance variables live in the object itself,

and an object’s methods live in the object’s class. That’s why objects of

the same class share methods but don’t share instance variables.

That’s all you really have to know about objects, instance variables, and

methods. But since he’s brought classes into the picture, Bill suggests

you take a closer look.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=36

THE TRUTH ABOUT CLASSES 37

Classes Revisited

“Now, my friend, this might be the most important thing you’ll ever

learn about the Ruby object model,” Bill exclaims, pausing for dramatic

effect. “Classes themselves are nothing but objects.”

Since a class is an object, everything that applies to objects also applies

to classes. Classes, like any object, have their own class, as instances

of a class called Class:

"hello".class # => String

String.class # => Class

Like any object, classes also have methods. Remember what Bill cov-

ered in Section 1.3, What’s in an Object, on page 34? The methods of

an object are also the instance methods of its class. This means that

the methods of a class are the instance methods of Class:

inherited = false

Class.instance_methods(inherited) # => [:superclass, :allocate, :new]

You already know about new(), because you use it all the time to cre-

ate objects. The allocate() method plays a support role to new(), and

superclass() does exactly what its name suggests, returning the class’s

superclass:

String.superclass # => Object

Object.superclass # => BasicObject

BasicObject.superclass # => nil

All classes ultimately inherit from Object, which in turn inherits from

BasicObject, the root of the Ruby class hierarchy.5 Bill also shows you

the superclass of Class:

Class.superclass # => Module

Module.superclass # => Object

So, a class is just a souped-up module with three additional methods—

new(), allocate(), and superclass()—that allow you to create objects or

arrange classes into hierarchies. Apart from these (admittedly impor-

tant) differences, classes and modules are pretty much the same. Most

of what you will learn about classes also applies to modules, and

vice versa.

5. Before Ruby 1.9, the root of the Ruby object hierarchy was Object. Ruby 1.9 intro-

duced BasicObject as a superclass of Object. You’ll have to wait until the sidebar on page 89

to understand the reason why BasicObject even exists.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=37

THE TRUTH ABOUT CLASSES 38

Figure 1.2: Classes are just objects.

Bill concludes his lecture on classes with a piece of code and a white-

board diagram:

class MyClass; end

obj1 = MyClass.new

obj2 = MyClass.new

“See?” Bill asks, pointing at the diagram (Figure 1.2). “Classes and reg-

ular objects live together happily.”

According to your programming pal, there’s one last wrinkle in the

“Classes are objects” theme: just like you do with regular objects, you

hold onto classes with references. If you look at the previous code, you’ll

see that obj1 and MyClass are both references—the only difference being

that obj1 is a variable, while MyClass is a constant. To put this differ-

ently, just as classes are nothing but objects, class names are nothing

but constants. Bill takes the opportunity to dive into a sermon about

constants.6

Constants

Any reference that begins with an uppercase letter, including the names

of classes and modules, is a constant. The scope of constants follows

6. This information is important but not strictly necessary on your first pass through

this chapter. If you want, you can safely snooze through Bill’s talk on constants, jumping

straight to Section 1.3, Objects and Classes Wrap-Up, on page 43, and come back to the

discussion of constants later.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=38

THE TRUTH ABOUT CLASSES 39

But Aren’t Java Classes Objects, Too?

It’s true that classes in both Java and C# are themselves
instances of a class named Class. C# even allows you to add
methods to existing classes, pretty much like Ruby’s Open
Classes (31) do.

However, classes in Java and C# are quite different from, and
more limited than, regular objects. For example, you can’t cre-
ate a class at runtime, change a class’s methods, or pull most
other tricks from this book. In a sense, Class objects are more
like class descriptors than “real” classes, in the same way that
Java’s File class is a file descriptor rather than the actual file.

This flexibility is typical of Ruby’s metaprogramming: while other
languages allow you to read class-related information, Ruby
allows you to write that information at runtime. For example,
as you will see in Chapter 4, Thursday: Class Definitions, on
page 122, you can actually call Class.new to create new classes
at runtime.

What Are Modules Good For?

In Section 1.3, Classes Revisited, on page 37, you learned that
a module is basically a bunch of instance methods and that
a class is just a module with a couple of additional features (a
superclass and a new() method). Actually, classes and modules
are so closely related that you might wonder why this distinction
exists at all. Couldn’t Ruby get away with a single “thing” that
plays both roles?

The main reason for having both modules and classes is clarity:
by carefully picking either a class or a module, you can make
your code more explicit. Usually, you pick a module when you
mean it to be included somewhere (or maybe to be used as
a Namespace (41)), and you pick a class when you mean it to
be instantiated or inherited. So, although you can use classes
and modules interchangeably in many situations, you’ll proba-
bly want to make your intentions clear by using them for differ-
ent purposes.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=39

THE TRUTH ABOUT CLASSES 40

Figure 1.3: Bill’s napkin drawing of a constants tree

its own special rules, different from the scope of variables.7 Your pair-

programming partner Bill shows you a quick example:

module MyModule

MyConstant = 'Outer constant'

class MyClass

MyConstant = 'Inner constant'

end

end

Ignoring the whiteboard behind him, Bill picks up a napkin from his

shirt pocket and sketches out the constants in this code (Figure 1.3).

As he points out, all the constants in a program are arranged in a tree

similar to a file system, where modules (and classes) are directories

and regular constants are files. Just like in a file system, you can have

multiple files with the same name, as long as they live in different direc-

tories. You can even refer to a constant by its path, just as you’d do with

a file. For example, you can write MyModule::MyClass::MyConstant.8

7. Apart from this difference, a Ruby constant is very similar to a variable—to the extent

that you can change the value of a constant, although you will get a warning from the

interpreter. If you’re in a destructive mood, you can even break Ruby beyond repair by

changing the value of the String class name.
8. You can read more about the paths of constants in the sidebar on page 42.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=40

THE TRUTH ABOUT CLASSES 41

The similarities between Ruby constants and files go even further: you

can use modules to organize your constants, the same way that you use

directories to organize your files. As usual, Bill has an example handy.

The Rake Example

The first versions of Rake, the popular Ruby build system, defined clas-

ses with obvious names such as Task and FileTask.9 These names had a

good chance of clashing with other class names from different libraries.

To prevent clashes, recent versions of Rake define the classes inside a

Rake module:

Download gems/rake-0.8.7/lib/rake.rb

module Rake

class Task

...

Now the full name of the Task class is Rake::Task, which is unlikely to

clash with someone else’s name. A module such as Rake, which only

exists to be a container of constants, is called a Namespace. Spell: Namespace

What if you have an old Rake build file lying around, one that still ref-

erences the earlier, non-namespaced class names? To maintain com-

patibility with older build files, Rake provides a command-line option

named classic-namespace. This option loads an additional source file

that assigns the new, safer constant names to the old, unsafe ones:

Download gems/rake-0.8.7/lib/rake/classic_namespace.rb

Task = Rake::Task

FileTask = Rake::FileTask

FileCreationTask = Rake::FileCreationTask

...

Now both Task and Rake::Task reference the same Class instance, so you

can use either constant. (Of course, now that you have the old names

around, you have to worry about clashes again—so it would probably

be a good idea to update your build file instead.)

Enough of this digression on constants. It’s time to go back to the focus

of Bill’s improvised lecture—objects and classes—and wrap up what

you’ve just learned.

9. Rake was written by Jim Weirich. Install it with gem install rake.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/rake-0.8.7/lib/rake.rb
http://media.pragprog.com/titles/ppmetr/code/gems/rake-0.8.7/lib/rake/classic_namespace.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=41

THE TRUTH ABOUT CLASSES 42

The Paths of Constants

In Section 1.3, Constants, on page 38, you learned that con-
stants are nested like directories and files. Also like directories
and files, constants are uniquely identified by their paths. Con-
stants’ paths use a double colon as a separator (this is akin to
the scope operator in C++):

module M
class C
X = 'a constant'

end

C::X # => "a constant"
end

M::C::X # => "a constant"

If you’re sitting deep inside the tree of constants, you can pro-
vide the absolute path to an outer constant by using a leading
double colon as root:

module M
Y = 'another constant'

class C
::M::Y # => "another constant"

end
end

The Module class also provides an instance method and a class
method that, confusingly, are both called constants(). Mod-

ule#constants() returns all constants in the current scope, like
your file system’s ls command (or dir command, if you’re running
Windows). Module.constants() returns all the top-level constants
in the current program, including class names:

M.constants # => [:C, :Y]
Module.constants[0..1] # => [:Object, :Module]

Finally, if you need the current path, check out Module.nesting():

module M
class C
module M2
Module.nesting # => [M::C::M2, M::C, M]

end
end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=42

THE TRUTH ABOUT CLASSES 43

Pruning Your Tree of Constants

Imagine finding a motd.rb file on the Net that displays a “mes-
sage of the day” on the console. You want to incorporate this
code into your latest program, so you load the file to execute it
and display the message:

load('motd.rb')

Using load(), however, has a side effect. The motd.rb file proba-
bly defines variables and classes. Although variables fall out of
scope when the file has finished loading, constants don’t. As a
result, motd.rb can pollute your program with the names of its
own constants—in particular, class names.

You can force motd.rb to keep its constants to itself by passing
a second, optional argument to load():

load('motd.rb', true)

If you load a file this way, Ruby creates an anonymous mod-
ule, uses that module as a Namespace (41) to contain all the
constants from motd.rb, and then destroys the module.

The require() method is quite similar to load(), but it’s meant for a
different purpose. You use load() to execute code, and you use
require() to import libraries. That’s why require() has no second
argument: those leftover class names are probably the reason
why you imported the file in the first place.

Objects and Classes Wrap-Up

What’s an object? It’s just a bunch of instance variables, plus a link to

a class. The object’s methods don’t live in the object—they live in the

object’s class, where they’re called the instance methods of the class.

What’s a class? It’s just an object (an instance of Class), plus a list of

instance methods and a link to a superclass. Class is a subclass of

Module, so a class is also a module.

Like any object, a class has its own methods, such as new(). These are

instance methods of the Class class. Also like any object, classes must

be accessed through references. You already have a constant reference

to each class: the class’s name.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=43

THE TRUTH ABOUT CLASSES 44

“That’s pretty much all there is to know about objects and classes,”

Bill asserts. “If you can understand this, you’re well on your way to

understanding metaprogramming. Now, let’s turn back to the code.”

Another Learning Opportunity

It takes only a short while for you and Bill to get a chance to apply your

newfound knowledge about classes. After ten minutes sifting through

the Bookworm source code, you stumble upon a class that represents

a snippet of text out of a book:

class TEXT

...

Since the names of Ruby classes are conventionally camel cased,10 you

and Bill rename this class Text:

class Text

...

You change the name of the class everywhere it’s used, you run the unit

tests, and—surprise!—the tests fail with a cryptic error message:

⇒ TypeError: Text is not a class

“D’oh! Of course it is,” you exclaim. Bill is as puzzled as you are, so it

takes the two of you some time to find the cause of the problem. As it

turns out, the Bookworm application requires a popular library named

ActionMailer. ActionMailer, in turn, uses a text-formatting library that

defines a module named—you guessed it—Text:

module Text

...

That’s where the problem lies: since Text is already the name of a mod-

ule, Ruby complains that it can’t also be the name of a class at the

same time. In a sense, you were lucky that this name clash was read-

ily apparent. If ActionMailer’s Text had been a class, you might have

never noticed that this name already existed. Instead, you’d have inad-

vertently Monkeypatched (33) the existing Text class, with unpredictable

results. (On the other hand, as Bill puts it, “That’s what unit tests

are for.”)

10. In camel case, words are chained together, and the first letter of each word is capital-

ized, as in ThisTextIsCamelCased.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=44

QUIZ: MISSING LINES 45

Figure 1.4: Bill’s object model diagram again

Fixing the clash between your Text class and ActionMailer’s Text module

is as easy as wrapping your class in a Namespace (41):

module Bookworm

class Text

...

You and Bill also change all references to Text into references to Book-

worm::Text. It’s unlikely that an external library defines a class named

Bookworm::Text, so you should be safe from clashes now.

That was a lot of learning in a single sitting! You deserve a break and a

cup of coffee—and a little quiz.

1.4 Quiz: Missing Lines

Where you prove to Bill that you can find your way around the Ruby

object model.

Back in Section 1.3, Classes Revisited, on page 37, Bill showed you how

objects and classes are related. As an example, he used a snippet of

code (reprinted here) and a whiteboard diagram (shown in Figure 1.4):

class MyClass; end

obj1 = MyClass.new

obj2 = MyClass.new

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=45

WHAT HAPPENS WHEN YOU CALL A METHOD? 46

Bill had drawn arrows to show you some of the connections between

the program entities. Now he’s asking you to add more lines and boxes

to the diagram and answer these questions:

• What’s the class of Object?

• What’s the superclass of Module?

• What’s the class of Class?

• Imagine that you execute this code:

obj3 = MyClass.new

obj3.instance_variable_set("@x", 10)

Can you add obj3 to the diagram?

You can use irb and the Ruby documentation to find out the answers.

Quiz Solution

Your enhanced version of Bill’s diagram is in Figure 1.5, on the next

page. As you can easily check in irb, the superclass of Module is Object.

You don’t even need irb to know what the class of Object is: since

Object is a class, its class must be Class. This is true of all classes,

meaning that the class of Class must be Class itself. Don’t you just love

self-referential logic?

Finally, calling instance_variable_set() blesses obj3 with its own instance

variable @x. If you find this concept surprising, remember that in a dy-

namic language such as Ruby every object has its own list of instance

variables, independent of other objects—even other objects of the same

class.

1.5 What Happens When You Call a Method?

Where you learn that a humble method call requires a lot of work on

Ruby’s part and you shed light on a twisted piece of code.

After some hours working on Bookworm, you and Bill already feel con-

fident enough to fix some minor bugs here and there—but now, as your

working day is drawing to a close, you find yourself stuck. Attempting

to fix a long-standing bug, you’ve stumbled upon a tangle of classes,

modules, and methods that you can’t make head or tail of.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=46

WHAT HAPPENS WHEN YOU CALL A METHOD? 47

Figure 1.5: Bill’s diagram, enhanced by you

“Stop!” Bill shouts, startling you. “This code is too complicated! To

understand it, you have to learn in detail what happens when you call

a method.” And before you can react, he dives into yet another lecture.

When you call a method, Bill explains, Ruby does two things:

1. It finds the method. This is a process called method lookup.

2. It executes the method. To do that, Ruby needs something called

self.

This process—find a method and then execute it—happens in every

object-oriented language. In a very dynamic language like Ruby, how-

ever, it’s particularly important that you understand the process in

depth. Have you ever found yourself wondering where a particular

method was defined? If you have, then you should definitely know more

about method lookup and self.

Bill is going to explain method lookup first, and he’ll come around to

self later.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=47

WHAT HAPPENS WHEN YOU CALL A METHOD? 48

Method Lookup

You already know about the simplest case of method lookup. Look back

at Figure 1.1, on page 36. When you call a method, Ruby looks into

the object’s class and finds the method there. Before you look at a

more complicated example, though, you need to know about two new

concepts: the receiver and the ancestors chain.

The receiver is simply the object that you call a method on. For example,

if you write my_string.reverse(), then my_string is the receiver.

To understand the concept of an ancestors chain, just look at any Ruby

class. Then imagine moving from the class into its superclass, then

into the superclass’s superclass, and so on, until you reach Object (the

default superclass) and then, finally, BasicObject (the root of the Ruby

class hierarchy). The path of classes you just traversed is the ancestors

chain of the class. (The ancestors chain also includes modules, but

forget about them for now. Bill will get around to modules in a bit.)

Now that you know what a receiver is and what an ancestors chain is,

you can sum up the process of method lookup in a single sentence:

to find a method, Ruby goes in the receiver’s class, and from there

it climbs the ancestors chain until it finds the method. Bill grabs the

keyboard and writes an example:

Download object_model/lookup.rb

class MyClass

def my_method; 'my_method()'; end

end

class MySubclass < MyClass

end

obj = MySubclass.new

obj.my_method() # => "my_method()"

As he draws Figure 1.6, on the next page, Bill wraps up the process of

method lookup.11 When you call my_method(), Ruby goes right from obj,

the receiver, into MySubclass. Since it can’t find my_method() there, Ruby

continues its search by going up into MyClass, where it finally finds the

11. If you’re used to UML diagrams, this picture might look confusing to you. Why is obj,

a humble object, hanging around in the same diagram with a class hierarchy? Don’t get

confused—this is not a class diagram. Every box in the diagram is an object. It’s just that

some of these objects happen to be classes, and classes are linked together through the

superclass() method.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/object_model/lookup.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=48

WHAT HAPPENS WHEN YOU CALL A METHOD? 49

Figure 1.6: Method lookup goes “one step to the right, then up.”

method. If it hadn’t found the method there, Ruby would have climbed

higher up the chain into Object and then BasicObject. Because of the

way most people draw diagrams, this behavior is also called the “one

step to the right, then up” rule: go one step to the right into the receiver’s

class, and then go up the ancestors chain until you find the method.

“You don’t even have to draw the ancestors chain like I did,” Bill adds.

Instead, he shows you how to ask a class for its ancestors chain with

the ancestors() method:

MySubclass.ancestors # => [MySubclass, MyClass, Object, Kernel, BasicObject]

“Hey, what’s Kernel doing there in the ancestors chain?” you ask. “You

told me about a chain of superclasses, but I’m pretty sure that Kernel is

a module, not a class.”

“Whoops, you’re right!” Bill exclaims, slapping his forehead. “I forgot to

tell you about modules. They’re easy. . . .”

Modules and Lookup

You learned that the ancestors chain goes from class to superclass.

Actually, the ancestors chain also includes modules.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=49

WHAT HAPPENS WHEN YOU CALL A METHOD? 50

Bill shows you an example:

Download object_model/lookup_modules.rb

module M

def my_method

'M#my_method()'

end

end

class C

include M

end

class D < C; end

D.new.my_method() # => "M#my_method()"

When you include a module in a class (or even in another module),

Ruby plays a little trick. It creates an anonymous class that wraps the

module and inserts the anonymous class in the chain, just above the

including class itself:12

D.ancestors # => [D, C, M, Object, Kernel, BasicObject]

As he draws Figure 1.7, on the following page, Bill also explains that

these “wrapper” classes are called include classes (or sometimes proxy

classes). Include classes are a well-kept secret of Ruby. The superclass()

method pretends that they don’t even exist, and in general you can-

not access them from regular Ruby code. Still, you should know about

them, if nothing else because they can help you make sense of complex

hierarchies with lots of modules.

“While we’re here,” Bill continues, “I’d also like to tell you about that

Kernel module that keeps popping up everywhere.”

The Kernel

Ruby includes some methods, such as print(), that you can call from

anywhere in your code. It looks like each and every object has the

print() method. As Bill is quick to show you, methods such as print()

are actually private instance methods of module Kernel:

Kernel.private_instance_methods.grep(/^pr/) # => [:printf, :print, :proc]

The trick here is that class Object includes Kernel, so Kernel gets into

every object’s ancestors chain. And since you’re always sitting inside

12. If you’re using Ruby 1.8 or a previous version, don’t get confused by BasicObject. This

class didn’t exist before Ruby 1.9.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/object_model/lookup_modules.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=50

WHAT HAPPENS WHEN YOU CALL A METHOD? 51

Figure 1.7: Method lookup with modules

an object, you can call the Kernel methods from anywhere. This gives

you the illusion that print is a language keyword, when it’s actually a

method. “Neat, isn’t it?” Bill says.13

You can take advantage of this mechanism yourself: if you add a

method to Kernel, this Kernel Method will be available to all objects. Spell: Kernel Method

To prove this is actually useful, Bill shows you an example from one of

Ruby’s most popular libraries.

13. If you’re not convinced that you’re always inside an object, wait for the sidebar on

page 54.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=51

WHAT HAPPENS WHEN YOU CALL A METHOD? 52

The RubyGems Example

RubyGems, the Ruby package manager, includes a gem() method that

activates a specific version of a gem:14

require 'rubygems'

gem 'rails', '= 2.3.2'

You can call gem() from anywhere because it’s a Kernel Method (51),

which you can verify by peeking into the RubyGems source code:

Download gems/rubygems-update-1.3.3/lib/rubygems.rb

module Kernel

def gem(gem_name, *version_requirements)

...

“After this foray into Ruby modules and the Kernel,” Bill says, “we can

go back to our original track.”

Method Execution

Bill sums up what you’ve learned so far. When you call a method, Ruby

does two things: first, it finds the method, and second, it executes the

method. Up to now, you focused on the finding part. Now you can finally

look at the execution part.

Imagine being the Ruby interpreter. Somebody called a method named,

say, my_method(). You found the method by going “one step to the right,

then up,” and it looks like this:

def my_method

temp = @x + 1

my_other_method(temp)

end

To execute this method, you need to answer two questions. First, what

object does the instance variable @x belong to? And second, what object

should you call my_other_method() on?

Being a smart human being (as opposed to a dumb computer pro-

gram), you can probably answer both questions intuitively: both @x and

my_other_method() belong to the receiver—the object that my_method()

was originally called upon. However, Ruby doesn’t have the luxury of

intuition. When you call a method, it needs to tuck away a reference to

the receiver. Thanks to this reference, it can remember who the receiver

is as it executes the method.

14. RubyGems was written by Chad Fowler, Rich Kilmer, Jim Weirich, and others.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/rubygems-update-1.3.3/lib/rubygems.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=52

WHAT HAPPENS WHEN YOU CALL A METHOD? 53

That reference to the receiver can be useful for you, as well—so Bill

gives you the lowdown on it.

Discovering self

Every line of Ruby code is executed inside an object—the so–called cur-

rent object. The current object is also known as self, because you can

access it with the self keyword.

Only one object can take the role of self at a given time, but no object

holds that role for a long time. In particular, when you call a method,

the receiver becomes self. From that moment on, all instance variables

are instance variables of self, and all methods called without an explicit

receiver are called on self. As soon as your code explicitly calls a method

on some other object, that other object becomes self.

Bill writes an artfully complicated example to show you self in action:

Download object_model/self.rb

class MyClass

def testing_self

@var = 10 # An instance variable of self

my_method() # Same as self.my_method()

self

end

def my_method

@var = @var + 1

end

end

obj = MyClass.new

obj.testing_self # => #<MyClass:0x510b44 @var=11>

As soon as you call testing_self(), the receiver obj becomes self. Because

of that, the instance variable @var is an instance variable of obj, and the

method my_method() is called on obj(). As my_method() is executed, obj

is still self, so @var is still an instance variable of obj. Finally, testing_self()

returns a reference to self (you can also check the output to verify that

@var is now worth 11).

“If you want to become a master of Ruby,” Bill warns you, “you should

always know which object has the role self at any given moment.” In

most cases, that’s easy. You just have to track which object was the

last method receiver. However, there are some corner cases that you

should be aware of, and Bill wants to show you one of them right away.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/object_model/self.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=53

WHAT HAPPENS WHEN YOU CALL A METHOD? 54

The Top Level

In Section 1.5, Discovering self , on the preceding page, you
learned that every time you call a method on an object, that
object becomes self. But then, who’s self if you haven’t called
any method yet? You can run irb and ask Ruby itself for an
answer:

self # => main
self.class # => Object

As soon as you start a Ruby program, you’re sitting within an
object named main that the Ruby interpreter created for you.∗

This object is sometimes called the top-level context, because
it’s the object you’re in when you’re at the top level of the call
stack: either you haven’t called any method yet or all the meth-
ods that you called have returned.

∗. In case you’re wondering, Ruby’s main has nothing to do with the main()

functions in C and Java.

Class Definitions and self

Usually the role of self is taken by the last object who received a method

call. However, in a class or module definition (and outside of any meth-

od), the role of self is taken by the class or module:

class MyClass

self # => MyClass

end

This detail is not going to be useful right now, but it will become a

central concept in Chapter 4, Thursday: Class Definitions, on page 122.

For now, you can set it aside.

Everything that you learned about method execution can be summed

up in a few short sentences. When you call a method, Ruby looks up the

method by following the “one step to the right, then up” rule and then

executes the method with the receiver as self. There are some special

cases in this procedure (for example, when you include a module), but

there are no exceptions.

While you’re lost in thought, pondering the elegant simplicity of the

Ruby object model, Bill has beaten you to the keyboard, and he’s ready

to throw a quiz at you.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=54

WHAT HAPPENS WHEN YOU CALL A METHOD? 55

What private Really Means

Now that you know about self, you can cast a new light over
Ruby’s private keyword. Private methods are governed by a
single simple rule: you cannot call a private method with an
explicit receiver. In other words, every time you call a private
method, it must be on the implicit receiver—self. Let’s see a cor-
ner case:

class C
def public_method
self.private_method

end

private

def private_method; end
end

C.new.public_method

⇒ NoMethodError: private method ‘private_method' called [...]

You can make this code work by removing the self keyword.

This contrived example shows that private methods come from
two rules working together: first, you need an explicit receiver
to call a method on an object that is not yourself, and second,
private methods can be called only with an implicit receiver. Put
these two rules together, and you’ll see that you can only call
a private method on yourself. You can call this the “private rule.”

You could find Ruby’s private methods perplexing—especially
if you come from Java or C#, where private behaves very differ-
ently. When you’re in doubt, just go back to the private rule, and
everything will make sense. Can object x call a private method
on object y if the two objects share the same class? The answer
is no, because no matter which class you belong to, you still
need an explicit receiver to call another object’s method. Can
you call a private method that you inherited from a superclass?
The answer is yes, because you don’t need an explicit receiver
to call inherited methods on yourself.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=55

QUIZ: TANGLE OF MODULES 56

1.6 Quiz: Tangle of Modules

You can finally go back to the problem that prompted Bill to launch into

his discussion on method lookup and self. You’ve had trouble making

sense of a complicated arrangement of classes and modules. Here’s the

confusing part:

Download object_model/tangle.rb

module Printable

def print

...

end

def prepare_cover

...

end

end

module Document

def print_to_screen

prepare_cover

format_for_screen

print

end

def format_for_screen

...

end

def print

...

end

end

class Book

include Document

include Printable

...

end

Another source file creates a Book and calls print_to_screen():

b = Book.new

b.print_to_screen

According to the company’s bug management application, there is a

problem with this code: print_to_screen() is not calling the right print()

method. The bug report doesn’t provide any more details.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/object_model/tangle.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=56

QUIZ: TANGLE OF MODULES 57

Can you guess which version of print() gets called—the one in Printable

or the one in Document? Try drawing the chain of ancestors on paper.

How can you quickly fix the code so that print_to_screen() calls the other

version of print() instead?

Quiz Solution

You can ask Ruby itself for the ancestors chain of Book:

Book.ancestors # => [Book, Printable, Document, Object, Kernel, BasicObject]

If you draw this ancestors chain on your whiteboard, it will look like

Figure 1.8, on the following page. Let’s see how Ruby builds the chain.

Since Book doesn’t have an explicit superclass, it implicitly inherits

from Object, which, in turn, includes Kernel and inherits from BasicOb-

ject. When Book includes Document, Ruby creates an include class for

Document and adds it to Book’s ancestors chain right above Book itself.

Immediately after that, Book includes Printable. Again, Ruby creates an

include class for Printable and slips it in the chain right above Book,

pushing up the rest of the chain—from Document upward.

When you call b.print_to_screen, the object referenced by b becomes self,

and method lookup begins. Ruby finds the print_to_screen() method in

Document, and that method then calls other methods—including print().

All methods called without an explicit receiver are called on self, so

method lookup starts once again from Book (self’s class) and goes up

until it finds a method named print(). The lowest print() in the chain is

Printable#print(), so that’s the one that gets called.

The bug report hints that the original author of the code intended to

call Document#print() instead. In real production code, you’d probably

want to get rid of this confusion and rename one of the clashing print()

methods. However, if you just want to solve this quiz, the cheapest way

to do it is to swap the order of inclusion of the modules in Book so that

Document gets lower than Printable in the ancestors chain:

Download object_model/tangle_untwisted.rb

module Printable

...

end

module Document

...

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/object_model/tangle_untwisted.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=57

QUIZ: TANGLE OF MODULES 58

Figure 1.8: The ancestors chain of the Book class

class Book

include Printable

include Document

ancestors # => [Book, Document, Printable, Object, Kernel, BasicObject]

end

Bill points out that the previous code implicitly calls ancestors() on Book,

because in a class definition the role of self is taken by the class. He

also hints at another interesting detail: the ancestors chain of Book also

contains a third method named print()—but Bill is not telling you where

it is. If you’re curious, you’ll have to find it yourself, maybe with some

help from your friend irb.

It’s almost time to go home after an exhausting, but very satisfying, day

of work. But before you call it a day, Bill does a complete wrap-up of

what you learned.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=58

OBJECT MODEL WRAP-UP 59

1.7 Object Model Wrap-Up

Here’s a checklist of what you learned today:

• An object is composed of a bunch of instance variables and a link

to a class.

• The methods of an object live in the object’s class (from the point

of view of the class, they’re called instance methods).

• The class itself is just an object of class Class. The name of the

class is just a constant.

• Class is a subclass of Module. A module is basically a package of

methods. In addition to that, a class can also be instantiated (with

new()) or arranged in a hierarchy (through its superclass()).

• Constants are arranged in a tree similar to a file system, where

the names of modules and classes play the part of directories and

regular constants play the part of files.

• Each class has an ancestors chain, beginning with the class itself

and going up to BasicObject.

• When you call a method, Ruby goes right into the class of the

receiver and then up the ancestors chain, until it either finds the

method or reaches the end of the chain.

• Every time a class includes a module, the module is inserted in

the ancestors chain right above the class itself.

• When you call a method, the receiver takes the role of self.

• When you’re defining a module (or a class), the module takes the

role of self.

• Instance variables are always assumed to be instance variables of

self.

• Any method called without an explicit receiver is assumed to be a

method of self.

Checked. . . checked. . . done! Now it’s time to go home before your brain

explodes with all the information you crammed into it today.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=59

Chapter 2

Tuesday: Methods
Yesterday you learned about the Ruby object model and how to make

Ruby classes sing and dance for you. Today you’re holding all calls to

focus on methods.

As you know, the objects in your code talk to each other all the time.

Some languages—Java, for one—feature a compiler that presides over

this chatting. For every method call, the compiler checks to see that

the receiving object has a matching method. This is called static type

checking, and the languages that adopt it are called static languages.

So, for example, if you call talk_simple() on a Lawyer object that has no

such method, the compiler protests loudly.

Dynamic languages—such as Python and Ruby—don’t have a compiler

policing method calls. As a consequence, you can start a program that

calls talk_simple() on a Lawyer, and everything works just fine—that is,

until that specific line of code is executed. Only then does the Lawyer

complain that it doesn’t understand that call.

Admittedly, that’s one advantage of static type checking: the compiler

can spot some of your mistakes before the code runs. Before you ask the

obvious question, realize that this protectiveness comes at a high price.

Static languages force you to write lots of tedious, repetitive methods—

these are the so-called boilerplate methods—just to make the compiler

happy. (If you’re a Java programmer, just think of all the “get” and “set”

methods you’ve written in your life or the innumerable methods that do

nothing but delegate to some other object.)

A DUPLICATION PROBLEM 61

In Ruby, boilerplate methods aren’t a problem, because you can eas-

ily avoid them with techniques that would be impractical or just plain

impossible in a static language. In this chapter, we home in on those

techniques.

2.1 A Duplication Problem

Where you and Bill have a problem with duplicated code.

Your boss is happy with the job that you and Bill did yesterday. Today,

she gives the two of you a more serious integration assignment.

To give you a bit of history, some folks in the purchasing department

are concerned that developers are spending oodles of company money

on computing gear. To make sure things don’t get out of hand, they’re

requesting a system that automatically flags expenses more than $99.

(You read that right: ninety-nine. The purchasing department isn’t fool-

ing around.)

Before you and Bill, some developers took a stab at the project, coding

a report that lists all the components of each computer in the company

and how much each component costs. To date they haven’t plugged in

any real data. Here’s where you and Bill come in.

The Legacy System

Right from the start, the two of you have a challenge on your hands: the

data you need to load into the already established program is stored in

a legacy system stuck behind an awkwardly coded class named DS (for

“data source”):

Download methods/computer/data_source.rb

class DS

def initialize # connect to data source...

def get_mouse_info(workstation_id) # ...

def get_mouse_price(workstation_id) # ...

def get_keyboard_info(workstation_id) # ...

def get_keyboard_price(workstation_id) # ...

def get_cpu_info(workstation_id) # ...

def get_cpu_price(workstation_id) # ...

def get_display_info(workstation_id) # ...

def get_display_price(workstation_id) # ...

...and so on

DS#initialize() connects to the data system when you create a new DS()

object. The other methods—and there are dozens of them—take a work-

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/data_source.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=61

A DUPLICATION PROBLEM 62

station identifier and return descriptions and prices for the computer’s

components. The output is in the form of strings, with prices expressed

as integer numbers rounded to the nearest dollar. With Bill standing by

to offer moral support, you quickly try the class in irb:

ds = DS.new

ds.get_cpu_info(42) # => 2.16 Ghz

ds.get_cpu_price(42) # => 150

ds.get_mouse_info(42) # => Dual Optical

ds.get_mouse_price(42) # => 40

It looks like workstation number 42 has a 2.16GHz CPU and a luxuri-

ous $40 dual optical mouse. This is enough data to get you started.

Double, Treble. . . Trouble

You and Bill have to wrap DS into an object that fits the reporting appli-

cation. This means each Computer must be an object. This object has a

single method for each component, returning a string describing both

the component and its price. Remember that price limit the purchasing

department set? Keeping this requirement in mind, you know that if the

component costs $100 or more, the string must begin with an asterisk

to draw people’s attention.

You kick off development by writing the first three methods in the Com-

puter class:

Download methods/computer/boring.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def mouse

info = @data_source.get_mouse_info(@id)

price = @data_source.get_mouse_price(@id)

result = "Mouse: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def cpu

info = @data_source.get_cpu_info(@id)

price = @data_source.get_cpu_price(@id)

result = "Cpu: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/boring.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=62

DYNAMIC METHODS 63

def keyboard

info = @data_source.get_keyboard_info(@id)

price = @data_source.get_keyboard_price(@id)

result = "Keyboard: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

...

end

At this point in the development of Computer, you find yourself bogged

down in a swampland of repetitive copy and paste. You have a long list

of methods left to deal with, and you should also write tests for each

and every method, because it’s easy to make mistakes in duplicated

code. This is getting boring fast—not to mention painful.

Bill is right there with you, verbalizing precisely what’s going through

your head: “This is just the same method again and again, with some

minor changes.” You turn to each other and ask simultaneously, as if

on cue, “How can we refactor it?”

Bill’s Plan

“I can think of not one but two different ways to remove this duplica-

tion,” Bill brags. He suggests using either Dynamic Methods or a special

method called method_missing(). By trying both solutions, you and Bill

can decide which one you like better. You agree to start with Dynamic

Methods and get to method_missing() after that.

2.2 Dynamic Methods

Where you learn how to call and define methods dynamically and remove

the duplicated code.

“As I mentioned, we can remove the duplication in our code with either

Dynamic Methods or method_missing(),” Bill recalls. “Forget about

method_missing() for now—we’ll get to that this afternoon. To introduce

Dynamic Methods, allow me to tell you a story from my youth,” he says.

“When I was a young developer learning C++,” Bill muses, “my men-

tors told me that when you call a method, you’re actually sending a

message to an object. It took me a while to get used to that concept.

Of course, if I’d been using Ruby back then, that notion of sending

messages would have come more naturally to me.” Bill launches into a

mini-presentation.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=63

DYNAMIC METHODS 64

Calling Methods Dynamically

When you call a method, you usually do so using the standard dot

notation:

Download methods/dynamic_call.rb

class MyClass

def my_method(my_arg)

my_arg * 2

end

end

obj = MyClass.new

obj.my_method(3) # => 6

Bill demonstrates how you can also call MyClass#my_method() using

Object#send() in place of the dot notation:

obj.send(:my_method, 3) # => 6

The previous code still calls my_method(), but it does so through send().

The first argument to send() is the message that you’re sending to the

object—that is, the name of a method. You can use a string or a symbol,

but symbols are considered more kosher (see the sidebar on the next

page). Any remaining arguments (and the block, if one exists) are simply

passed on to the method.

“Wait a minute,” you interject. “Why on Earth would I use send() instead

of the plain old dot notation?” Bill is glad you asked, pointing out that

this is one of the cool things about Ruby. With send(), the name of the

method that you want to call becomes just a regular argument. You can

wait literally until the very last moment to decide which method to call,

while the code is running. This technique is called Dynamic Dispatch, Spell: Dynamic Dispatch

and you’ll find it wildly useful. To help reveal its magic, Bill shows you

a couple of real-life examples.

The Camping Example

One example of Dynamic Dispatch comes from Camping, a minimalist

Ruby web framework. A Camping application stores its configuration

parameters as key-value pairs in a file created with YAML, a simple and

very popular serialization format.1

1. Camping, a framework written by “_why the lucky stiff,” can be installed with gem

install camping. YAML stands for “Yaml Ain’t Markup Language,” and you can learn more

about it at http://www.yaml.org.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/dynamic_call.rb
http://www.yaml.org
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=64

DYNAMIC METHODS 65

Symbols

If you prefix any sequence of characters with a colon (actu-
ally, any sequence that would make a legal variable name), it
becomes a symbol:

x = :this_is_a_symbol

Symbols and strings are not related, and they belong to entirely
different classes. Nevertheless, symbols are similar enough
to strings that most Ruby beginners are confused by them.
“What’s the point of having symbols at all? Why can’t I just use
regular strings everywhere?” they ask.

Different people will provide different answers to these ques-
tions. Some might point out that symbols are different from
strings because symbols are immutable: you can change the
characters inside a string, but you can’t do that for sym-
bols. Also, some operations (such as comparisons) are faster
on symbols than they are on strings. But, choosing between
symbols and strings basically comes down to conventions. In
most cases, symbols are used as names of things—in particular,
names of metaprogramming-related things such as methods.

For example, when you call Object#send(), you need to pass
it the name of a method as a first argument. Although send()
accepts this name as either a symbol or a string, symbols are
usually considered more appropriate:

rather than: 1.send("+", 2)
1.send(:+, 2) # => 3

Regardless, you can easily convert a string to a symbol (by call-
ing either String#to_sym() or String#intern()) or back (by calling
either Symbol#to_s() or Symbol#id2name()).

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=65

DYNAMIC METHODS 66

The configuration file for a blog application might look like this:

admin : Bill

title : Rubyland

topic : Ruby and more

Camping copies keys and values from the file into its own configuration

object. (This object is an OpenStruct. You can read more about this class

in Section 2.3, The OpenStruct Example, on page 75.) Assume that you

store your application’s configuration in a conf object. In an ideal world,

the configuration code for the blog application would look like this:

conf.admin = 'Bill'

conf.title = 'Rubyland'

conf.topic = 'Ruby and more'

The sad fact is, in real life, Camping’s source can’t contain this kind of

code. That’s because it can’t know in advance which keys you need in

your specific application—so it can’t know which methods it’s supposed

to call. It can discover the keys you need only at runtime, by parsing the

YAML file. For this reason, Camping resorts to Dynamic Dispatch. For

each key-value pair, it composes the name of an assignment method,

such as admin=(), and sends the method to conf:

Download gems/camping-1.5/bin/camping

Load configuration if any

if conf.rc and File.exists?(conf.rc)

YAML.load_file(conf.rc).each do |k,v|

conf.send("#{k}=", v)

end

end

Neat, huh?

The Test::Unit Example

Another example of Dynamic Dispatch (64) comes from the Test::Unit

standard library. Test::Unit uses a naming convention to decide which

methods are tests. A TestCase looks inside its own public methods and

selects the methods that have names starting with test:

method_names = public_instance_methods(true)

tests = method_names.delete_if {|method_name| method_name !~ /^test./}

Now TestCase has an array of all test methods. Later, it uses send() to call

each method in the array.2 This particular flavor of Dynamic Dispatch

2. To nitpick, TestCase uses a synonym of send() named __send__(). You’ll find out why in

the sidebar on page 87.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/camping-1.5/bin/camping
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=66

DYNAMIC METHODS 67

Privacy Matters

Remember what Spiderman’s uncle used to say? “With great
power comes great responsibility.” The Object#send() method
is very powerful—perhaps too powerful. In particular, you can
call any method with send(), including private methods. Short
of using a Context Probe (105), this is the easiest way to peek
into an object’s private matters.

Some Rubyists think that send() makes it too easy to unwillingly
break encapsulation. Ruby 1.9 experimented with changing
send()’s behavior, but the changes were ultimately reverted. As
of Ruby 1.9.1, send() can still call private methods—and many
libraries use it just for that purpose. On the other hand, you have
a new public_send() method that respects the receiver’s pri-
vacy.

is sometimes called Pattern Dispatch, because it filters methods based Spell: Pattern Dispatch

on a pattern in their names.

Bill leans back in his chair. “Now you know about send() and Dynamic

Dispatch, but there is more to Dynamic Methods than that. You’re not

limited to calling methods dynamically. You can also define methods

dynamically. I’ll show you how.”

Defining Methods Dynamically

You can define a method on the spot with Module#define_method(). You

just need to provide a method name and a block, which becomes the

method body:

Download methods/dynamic_definition.rb

class MyClass

define_method :my_method do |my_arg|

my_arg * 3

end

end

obj = MyClass.new

obj.my_method(2) # => 6

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/dynamic_definition.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=67

DYNAMIC METHODS 68

define_method() is executed within MyClass, so my_method() is defined as

an instance method of MyClass.3 This technique of defining a method at

runtime is called a Dynamic Method. Spell: Dynamic Method

You learned how to use Module#define_method() in place of the def key-

word to define a method and how to use send() in place of the dot nota-

tion to call a method. Now you can go back to your and Bill’s original

problem and put this knowledge to work.

Refactoring the Computer Class

Recall the code that pulled you and Bill into this dynamic discussion:

Download methods/computer/boring.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def mouse

info = @data_source.get_mouse_info(@id)

price = @data_source.get_mouse_price(@id)

result = "Mouse: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def cpu

info = @data_source.get_cpu_info(@id)

price = @data_source.get_cpu_price(@id)

result = "Cpu: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def keyboard

info = @data_source.get_keyboard_info(@id)

price = @data_source.get_keyboard_price(@id)

result = "Keyboard: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

...

end

3. There is also an Object#define_method() that defines a Singleton Method (133).

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/boring.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=68

DYNAMIC METHODS 69

Now that you know about send() and define_method(), you and Bill can

get to work and remove the duplication in Computer. Time to refactor!

Step 1: Adding Dynamic Dispatches

You and Bill start, extracting the duplicated code into its own message-

sending method:

Download methods/computer/send.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def mouse

component :mouse

end

def cpu

component :cpu

end

def keyboard

component :keyboard

end

def component(name)

info = @data_source.send "get_#{name}_info", @id

price = @data_source.send "get_#{name}_price", @id

result = "#{name.to_s.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

end

A call to mouse() is delegated to component(), which in turn calls DS#

get_mouse_info() and DS#get_mouse_price(). The call also writes the cap-

italized name of the component in the resulting string. (Since compo-

nent() expects the name as a symbol, it converts the symbol to a string

with Symbol#to_s().) You open an irb session and smoke-test the new

Computer:

my_computer = Computer.new(42, DS.new)

my_computer.cpu # => * Cpu: 2.16 Ghz ($220)

This new version of Computer is a step forward, because it contains

far fewer duplicated lines, but you still have to write dozens of similar

methods. To avoid writing all those methods, use define_method().

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/send.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=69

DYNAMIC METHODS 70

Step 2: Generating Methods Dynamically

You and Bill refactor Computer to use define_method():

Download methods/computer/dynamic.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def self.define_component(name)

define_method(name) {

info = @data_source.send "get_#{name}_info", @id

price = @data_source.send "get_#{name}_price", @id

result = "#{name.to_s.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

}

end

define_component :mouse

define_component :cpu

define_component :keyboard

end

Note that define_method() is executed inside the definition of Computer,

where Computer is the implicit self.4 This means you’re calling define_

component() on Computer, so it must be a class method.

You quickly test the slimmed-down Computer class in irb and discover

that it still works. This is great news!

Step 3: Sprinkling the Code with Introspection

The latest Computer contains minimal duplication, but you can push it

even further and remove the duplication altogether. How? By getting rid

of all the define_component() methods. You can do that by introspecting

the data_source argument and extracting the names of all components:

Download methods/computer/more_dynamic.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

data_source.methods.grep(/^get_(.*)_info$/) { Computer.define_component $1 }

end

4. See Section 1.5, Discovering self , on page 53.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/dynamic.rb
http://media.pragprog.com/titles/ppmetr/code/methods/computer/more_dynamic.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=70

METHOD_MISSING() 71

def self.define_component(name)

define_method(name) {

info = @data_source.send "get_#{name}_info", @id

price = @data_source.send "get_#{name}_price", @id

result = "#{name.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

}

end

end

The new line in initialize() is where the magic happens. To understand

it, you need to know a couple of things. First, if you pass a block

to String#grep(), the block is evaluated for each element that matches

the regular expression. Second, the string matching the parenthesized

part of the regular expression is stored in the global variable $1. So,

if data_source has methods named get_cpu_info() and get_mouse_info(),

this code ultimately calls Computer.define_component() twice, with the

strings "cpu" and "mouse". Note that you’re calling define_component()

with a string rather than a symbol, so you don’t need to convert the

argument to string.

The duplicated code is finally gone for good. As a bonus, you don’t even

have to write or maintain the list of components. If someone adds a

new component to DS, the Computer class will support it automatically.

Wonderful!

Let’s Try That Again!

Your refactoring was a resounding success, but Bill is not willing to

stop here. “We said that we were going to try two different solutions

to this problem, remember? We’ve only found one, involving Dynamic

Dispatch (64) and Dynamic Methods (68).” Although it has served the

two of you well, to be fair, you need to give the other solution a chance.

“For this second solution,” Bill continues, “we need to talk about some

strange methods that are not really methods and a very special method

named method_missing().”

2.3 method_missing()

Where you listen to spooky stories about Ghost Methods and dynamic

proxies and you try a second way to remove duplicated code.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=71

METHOD_MISSING() 72

“With Ruby, there’s no compiler to enforce method calls,” Bill pro-

nounces. “This means you can call a method that doesn’t exist.” For

example:

Download methods/method_missing.rb

class Lawyer; end

nick = Lawyer.new

nick.talk_simple

⇒ NoMethodError: undefined method ‘talk_simple' for #<Lawyer:0x3c848> [...]

Do you remember how method lookup works? When you call talk_simple,

Ruby goes into nick’s class and browses its instance methods. If it can’t

find talk_simple() there, it searches up the ancestors chain into Object

and eventually into Kernel.

Since Ruby can’t find talk_simple() anywhere, it admits defeat by calling

a method named method_missing() on nick, the original receiver. Ruby

knows that method_missing() is there, because it’s an instance method

of Kernel that every object inherits.

You and Bill decide to experiment by calling method_missing() yourselves.

It’s a private method, but you can get to it through send():5

nick.send :method_missing, :my_method

⇒ NoMethodError: undefined method ‘my_method' for #<Lawyer:0x3c7f8>

You’ve just done exactly what Ruby does. You told the object, “I tried

to call a method named my_method() on you, and you didn’t under-

stand.” Kernel#method_missing() responded by raising a NoMethodError.

This is what method_missing() does for a living. It’s like an object’s dead-

letter office, the place where unknown messages eventually end up (and

also, the place where NoMethodErrors come from).

Overriding method_missing()

Most likely, you will never need to call method_missing() yourself.

Instead, you can override it to intercept unknown messages. Each

message landing on method_missing()’s desk includes the name of the

method that was called, plus any arguments and blocks associated with

the call.

5. See the sidebar on page 67.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/method_missing.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=72

METHOD_MISSING() 73

Download methods/more_method_missing.rb

class Lawyer

def method_missing(method, *args)

puts "You called: #{method}(#{args.join(', ')})"

puts "(You also passed it a block)" if block_given?

end

end

bob = Lawyer.new

bob.talk_simple('a', 'b') do

a block

end

⇒ You called: talk_simple(a, b)

(You also passed it a block)

Overriding method_missing() allows you to call methods that don’t really

exist. Let’s take a closer look at these Ghost Methods.

Ghost Methods

When you need to define many similar methods, you can spare yourself

the definitions and just respond to calls through method_missing(). This

is like saying to the object, “If they ask you something and you don’t

understand, do this.”

A message that’s processed by method_missing() looks like a regular call

from the caller’s side but has no corresponding method on the receiver’s

side. This is named a Ghost Method. The following are some Ghost Spell: Ghost Method

Method examples.

The Ruport Example

Ruport is a Ruby reporting library.6 You can use the Ruport::Data::Table

class to create tabular data and convert it to different formats—text, for

example:

Download methods/ruport_example.rb

require 'ruport'

table = Ruport::Data::Table.new :column_names => ["country", "wine"],

:data => [["France", "Bordeaux"],

["Italy", "Chianti"],

["France", "Chablis"]]

puts table.to_text

6. You can install Ruport, by Gregory T. Brown, with gem install ruport.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/more_method_missing.rb
http://media.pragprog.com/titles/ppmetr/code/methods/ruport_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=73

METHOD_MISSING() 74

⇒ +--------------------+

| country | wine |

+--------------------+

| France | Bordeaux |

| Italy | Chianti |

| France | Chablis |

+--------------------+

Let’s say you select only the French wines and convert them to comma-

separated values:

found = table.rows_with_country("France")

found.each do |row|

puts row.to_csv

end

⇒ France, Bordeaux

France, Chablis

What you just did is call a method named rows_with_country() on Ruport::

Data::Table. But how could the author of this class know you were going

to have a column named country? The fact is, the author didn’t know

that. If you look inside Ruport, you see that both rows_with_country() and

to_csv() are Ghost Methods:

Download gems/ruport-1.6.1/lib/ruport/data/table.rb

class Table

def method_missing(id,*args,&block)

return as($1.to_sym,*args,&block) if id.to_s =~ /^to_(.*)/

return rows_with($1.to_sym => args[0]) if id.to_s =~ /^rows_with_(.*)/

super

end

...

A call to rows_with_country() becomes a call to a more traditional-looking

method, rows_with(:country), which takes the column name as an argu-

ment. Also, a call to to_csv() becomes a call to as(:csv). If the method

name doesn’t start with either of these two prefixes, Ruport falls back

to Kernel#method_missing(), which throws a NoMethodError. (That’s what

the super keyword is for.)

Ghost Methods like rows_with_country() are just syntactic sugar; they

can’t do anything that a regular method couldn’t. Still, you have to

admit, they look sexier than regular methods. If you use Ruport to

define new output formats (say, xsl) or new columns (say, price), you’ll

get methods such as to_xsl() and rows_with_price() automatically.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/ruport-1.6.1/lib/ruport/data/table.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=74

METHOD_MISSING() 75

This example focused on very specific libraries, but Ghost Methods are

also widely used in Ruby’s built-in, standard libraries. Consider this

next example.

The OpenStruct Example

The OpenStruct class is a little bit of magic from the Ruby standard

libraries. The attributes of an OpenStruct object work like Ruby vari-

ables. If you want a new attribute, just assign it a value, and it will

spring into existence:

require 'ostruct'

icecream = OpenStruct.new

icecream.flavor = "strawberry"

icecream.flavor # => "strawberry"

This works because the attributes of an OpenStruct object are actually

Ghost Methods. OpenStruct#method_missing() catches the call to flavor=()

and chops off the "=" at the end to get the attribute name. Then it stores

the attribute name and its value into a hash. When you call a method

that doesn’t end with an "=", method_missing() looks up the method name

in the hash and returns the result. The code from OpenStruct is a tad

complex, because it covers special cases such as error conditions. How-

ever, it’s easy to write your own, simplified version of an open structure:

Download methods/my_ostruct.rb

class MyOpenStruct

def initialize

@attributes = {}

end

def method_missing(name, *args)

attribute = name.to_s

if attribute =~ /=$/

@attributes[attribute.chop] = args[0]

else

@attributes[attribute]

end

end

end

icecream = MyOpenStruct.new

icecream.flavor = "vanilla"

icecream.flavor # => "vanilla"

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/my_ostruct.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=75

METHOD_MISSING() 76

Dynamic Proxies

Ghost Methods (73) are usually icing on the cake, but some objects actu-

ally rely almost exclusively on them. These objects are often wrappers

for something else—maybe another object, a web service, or code writ-

ten in a different language. They collect method calls through method_

missing() and forward them to the wrapped object. Bill decides to demon-

strate this technique. “I’ll give you a real-life example, but it’s going to

be a tad complex,” he warns you. “So, I’ll have to ask for your full atten-

tion for a few minutes. Have you ever used Flickr?”

The Flickr Example

Flickr7 is an online service that people use to upload and “tag” (that is,

label) photographs. It also exposes a public HTTP API, which provides

methods such as flickr.people.findByUsername(). You pass a username to

this method, and it returns the identifier of that user. You can call

methods such as findByUsername() with a regular HTTP GET, for example

by writing the following URL in a browser.8 You must also provide an

API key, which you can get for free from http://www.flickr.com/services/

api/keys/:

http://api.flickr.com/services/rest/?method=flickr.people.findByUsername&

username=duncandavidson&api_key=your API key here

You’ll get back a snippet of XML containing the identifier for user

duncandavidson:

⇒ <rsp stat="ok">

<user id="59532755@N00" nsid="59532755@N00">

<username>duncandavidson</username>

</user>

</rsp>

Now that you have a user identifier, you can access the user’s data. For

example, you can get duncandavidson’s photo tags by calling flickr.tags.

getListUser(). But instead of using HTTP, you can do that through the

flickr gem, a Ruby wrapper for Flickr.9 Just replace the dots in the Flickr

7. http://www.flickr.com

8. The Flickr API may have changed by the time you read this. As you’ll see, this ten-

dency of online services to evolve is the point of the whole example—but it may prove

inconvenient if you want to try the code on your computer. Here, you just need to trust

that this example is running fine on the author’s computer. (You’re probably thinking,

“Hmm, where have I heard that before?”)
9. The flickr gem was written by Scott Raymond. Install it with gem install flickr.

Report erratum

this copy is (P1.0 printing, January 2010)

http://www.flickr.com/services/api/keys/
http://www.flickr.com/services/api/keys/
http://api.flickr.com/services/rest/?method=flickr.people.findByUsername&
http://www.flickr.com
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=76

METHOD_MISSING() 77

method name with underscores so that it becomes a valid Ruby method

name:

require 'flickr'

flickr = Flickr.new([your API key here])

xml = flickr.tags_getListUser('user_id'=>'59532755@N00')

tags = xml['who']['tags']['tag']

tags.grep /rails/ # => ["railsconf07", "railsconf08", "railsconf09", ...

The Flickr class converts the XML returned from Flickr to a tree-like

object. The previous code peers into this object and finds out that this

duncandavidson guy is a regular at Rails conferences.

What if the Flickr API gets extended? You might assume that you’d

have to wait for an updated version of the flickr library. Actually, the

library supports changes in the API without flinching. In fact, the ver-

sion of the Flickr API used to write this example was written before the

flickr.tags.getListUser() method became available.

This library manages to support new methods in the Flickr API even

before they’re written, thanks to a little bit of metaprogramming magic:

if you look into the source of the flickr library, you see that Flickr#tags_get-

ListUser() and the other Flickr API methods are actually Ghost Methods:

Download gems/flickr-1.0.2/flickr.rb

class Flickr

Takes a Flickr API method name and set of parameters;

returns an XmlSimple object with the response

def request(method, *params)

response =

XmlSimple.xml_in(http_get(request_url(method, params)),

{ 'ForceArray' => false })

raise response['err']['msg'] if response['stat'] != 'ok'

response

end

def method_missing(method_id, *params)

request(method_id.id2name.gsub(/_/, '.'), params[0])

end

...

Flickr#method_missing() replaces all underscores in the method name with

dots. Then it takes the first argument of the method, which it assumes

to be an array of arguments, and forwards the name and arguments to

Flickr#request(). In turn, this method forwards the call to Flickr via HTTP,

checks the resulting XML for errors, and finally returns it.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/flickr-1.0.2/flickr.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=77

METHOD_MISSING() 78

Delegates

You can get a quick, ready-to-use Dynamic Proxy (78) by using
Ruby’s delegate library:

Download methods/delegator.rb

require 'delegate'

class Assistant
def initialize(name)
@name = name

end

def read_email
"(#{@name}) It's mostly spam."

end

def check_schedule
"(#{@name}) You have a meeting today."

end
end

class Manager < DelegateClass(Assistant)
def initialize(assistant)
super(assistant)

end

def attend_meeting
"Please hold my calls."

end
end

DelegateClass() is a Mimic Method (241) that creates and
returns a new Class. This class defines a method_missing() that
forwards calls to a wrapped object, such as an Assistant. Man-

ager inherits this method_missing(), so it becomes a proxy of the
wrapped object. As a result, the Manager forwards to her Assis-

tant all the messages she doesn’t understand:

frank = Assistant.new("Frank")
anne = Manager.new(frank)
anne.attend_meeting # => "Please hold my calls."
anne.read_email # => "(Frank) It's mostly spam."
anne.check_schedule # => "(Frank) You have a meeting today."

The flickr library also provides object-oriented wrappers for the Flickr

API, but ultimately all these wrappers call Flickr#method_missing(). An

object that catches Ghost Methods and forwards them to another ob-

ject, maybe wrapping some logic around the call, is called a Dynamic

Proxy. Spell: Dynamic Proxy

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/delegator.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=78

METHOD_MISSING() 79

Refactoring the Computer Class (Again)

“OK, you now know about method_missing(),” Bill observes. “Let’s go

back to the Computer class and remove the duplication.”

Once again, here’s the original Computer class:

Download methods/computer/boring.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def mouse

info = @data_source.get_mouse_info(@id)

price = @data_source.get_mouse_price(@id)

result = "Mouse: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def cpu

info = @data_source.get_cpu_info(@id)

price = @data_source.get_cpu_price(@id)

result = "Cpu: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def keyboard

info = @data_source.get_keyboard_info(@id)

price = @data_source.get_keyboard_price(@id)

result = "Keyboard: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

...

end

Computer is just a wrapper that collects calls, tweaks them a bit, and

routes them to a data source. To remove all those duplicated methods,

you and Bill can turn Computer into a Dynamic Proxy.

Refactor It!

It only takes a method_missing() to remove all the duplication from the

Computer class.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/boring.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=79

METHOD_MISSING() 80

Download methods/computer/proxy.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def method_missing(name, *args)

super if !@data_source.respond_to?("get_#{name}_info")

info = @data_source.send("get_#{name}_info", args[0])

price = @data_source.send("get_#{name}_price", args[0])

result = "#{name.to_s.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

end

What happens when you call a method such as Computer#mouse()? The

call gets routed to method_missing(), which checks whether the wrapped

data source has a get_mouse_info() method. If it doesn’t have one, the

call falls back to Kernel#method_missing(), which throws a NoMethodError.

If the data source knows about the component, the original call is con-

verted into two calls to DS#get_mouse_info() and DS#get_mouse_price().

The values returned from these calls are used to build the final result.

You try the new class in irb:

my_computer = Computer.new(42, DS.new)

my_computer.cpu # => * Cpu: 2.16 Ghz ($220)

Hey! It worked.

Overriding respond_to?()

Bill is concerned about one last detail. As he points out, you called

mouse() and its ilk Ghost Methods—but they’re not really methods. For

example, they don’t appear in the generated documentation, and they’re

not listed by Object#methods(). Also, if you specifically ask a Computer

whether it responds to a Ghost Method, it will flat-out lie:

cmp = Computer.new(0, DS.new)

cmp.respond_to?(:mouse) # => false

You can avoid this kind of lie in your code if you override respond_to?()

when you override method_missing():

class Computer

def respond_to?(method)

@data_source.respond_to?("get_#{method}_info") || super

end

...

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/proxy.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=80

METHOD_MISSING() 81

const_missing()

If you like Object#method_missing(), you should also check
out Module#const_missing(). When you reference a constant
that doesn’t exist, Ruby passes the name of the constant to
const_missing() as a symbol.

You can define const_missing() on a specific Namespace (41)
(either a module or a class). If you define it on the Object class,
then all objects inherit it, including the top-level main object:

def Object.const_missing(name)
name.to_s.downcase.gsub(/_/, ' ')

end

MY_CONSTANT # => "my constant"

Now Computer#respond_to?() knows about Ghost Methods:

cmp.respond_to?(:mouse) # => true

The call to super in respond_to?() guarantees that the default respond_

to?() is called for all other methods.

You might think that it would also be a good idea to override Object#

methods() so that it takes Ghost Methods into account. Bill concedes

that this overriding would be sensible in some cases, but not in every

case. For example, you probably don’t want to override methods() on

an object that responds to thousands, or maybe infinite, Ghost Method

calls. After a brief debate, you and Bill decide that you can live with the

default Object#methods() in this particular case and move on to wrap

up your work.

Refactoring Wrap-Up

You solved the same problem in two different ways. The first version

of Computer introspects DS to get a list of methods to wrap and uses

Dynamic Methods (68) and Dynamic Dispatches (64), which delegate

to the legacy system. The second version of Computer does the same

with Ghost Methods (73). Bill likes the second version better (he’s a

method_missing() kind of guy), so you send that to the folks in purchas-

ing. You and your pal Bill pat each other on the back and head out for

a well-deserved lunch break and an unexpected quiz.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=81

QUIZ: BUG HUNT 82

2.4 Quiz: Bug Hunt

Where you and Bill discover that bugs in a method_missing() can be diffi-

cult to squash.

Over lunch, Bill has a quiz for you. “My previous team followed a cruel

office ritual,” he says. “Every morning, each team member picked a

random number. Whoever got the smallest number had to take a trip

to the nearby Starbucks and buy coffee for the whole team.”

Bill explains that the team even wrote a class that was supposed to

provide a random number (and some Wheel of Fortune–style suspense)

when you called the name of a team member. Here’s the class:

Download methods/bug_hunt.rb

class Roulette

def method_missing(name, *args)

person = name.to_s.capitalize

3.times do

number = rand(10) + 1

puts "#{number}..."

end

"#{person} got a #{number}"

end

end

You can use the Roulette like this:

number_of = Roulette.new

puts number_of.bob

puts number_of.frank

And here’s what the result is supposed to look like:

⇒ 5...

6...

10...

Frank got a 10

7...

4...

3...

Bob got a 3

“Unfortunately,” Bill continues, “this code didn’t work as expected. Can

you spot the problem? If you can’t, try running it on your computer.

Now, can you explain the result?”

Quiz Solution

The Roulette contains a bug that causes an infinite loop. It prints a long

list of numbers and finally crashes.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/bug_hunt.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=82

QUIZ: BUG HUNT 83

⇒ 2...

7...

1...

5...

(...more numbers here...)

bug_hunt.rb:7:in ‘method_missing': stack level too deep (SystemStackError)

This bug is nasty and difficult to spot. The variable number is defined

within a block (the block that gets passed to times()) and falls out of

scope by the last line of method_missing(). When Ruby executes that line,

it can’t know that the number there is supposed to be a variable. As a

default, it assumes that number must be a parentheses-less method call

on self.

In normal circumstances, you would get an explicit NoMethodError that

makes the problem obvious. But in this case you have a method_

missing(), and that’s where the call to number() ends. The same chain

of events happens again—and again and again—until the call stack

overflows.

This is a common problem with Ghost Methods: since unknown calls

become calls to method_missing(), your object might accept a call that’s

just plain wrong. Finding a bug like this one in a large program can be

pretty painful.

To avoid this kind of trouble, don’t introduce more Ghost Methods than

necessary. For example, Roulette might be better off if it simply accepts

the names of people on Frank’s team. Also, remember to fall back on

Kernel#method_missing() when you get a call that you don’t know how to

deal with. Here’s a better Roulette:

Download methods/bug_hunt_solution.rb

class Roulette

def method_missing(name, *args)

person = name.to_s.capitalize

super unless %w[Bob Frank Bill].include? person

number = 0

3.times do

number = rand(10) + 1

puts "#{number}..."

end

"#{person} got a #{number}"

end

end

You can also develop this code in bite-sized steps. Start by writing reg-

ular methods; then, when you’re confident that your code is working,

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/bug_hunt_solution.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=83

MORE METHOD_MISSING() 84

refactor the methods to a method_missing(). This way, you won’t inad-

vertently hide a bug behind a Ghost Method.

2.5 More method_missing()

Where you and Bill learn to avoid another common method_missing() trap.

As you’ve just seen, method_missing() has its own share of problems.

Now you’re going to experience some more yourself, but don’t panic.

This will be a great opportunity to learn a new spell.

When Methods Clash

Once you get back from lunch, you find an unexpected problem waiting

for you at the office. The developer who wrote the reporting application

stumbled upon what he thinks is “the strangest bug ever”: the Computer

class can’t retrieve information about the workstations’ displays. All the

other methods work fine, but Computer#display() doesn’t.

You try the display() method in irb, and sure enough, it fails:

my_computer = Computer.new(42, DS.new)

my_computer.display # => nil

Why does Computer#display() return nil? You triple-check the code and

the back-end data source, but everything seems to be fine. Bill has a

sudden insight, and he lists the instance methods of Object that begin

with a d:

Object.instance_methods.grep /^d/ # => [:dup, :display, :define_singleton_method]

It seems that Object defines a method named display() (a seldom-used

method that prints an object on a port and always returns nil). Com-

puter inherits from Object, so it gets the display() method. The call to

Computer#display() finds a real method by that name, so it never lands

on method_missing(). You’re calling a real, live method instead of a Ghost

Method (73).

This problem tends to crop up with Dynamic Proxies (78). Whenever

the name of a Ghost Method clashes with the name of a real, inherited

method, the latter wins. If you don’t need the inherited method, you

can fix the problem by removing it. To stay on the safe side, you might

want to remove most inherited methods from your proxies right away.

The result is called a Blank Slate, a class that has fewer methods than Spell: Blank Slate

the Object class itself.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=84

MORE METHOD_MISSING() 85

You can remove a method in two easy ways. The drastic Module#undef_

method() removes all methods, including the inherited ones. The kinder

Module#remove_method() removes the method from the receiver, but it

leaves inherited methods alone. For your current job, undef_method() is

the way to go. Before you and Bill start hacking away, though, let’s look

at a concrete example.

The Builder Example

The Builder library is an XML generator with a twist.10 You can generate

XML tags by calling methods on Builder::XmlMarkup:

Download methods/builder_example.rb

require 'builder'

xml = Builder::XmlMarkup.new(:target=>STDOUT, :indent=>2)

xml.coder {

xml.name 'Matsumoto', :nickname => 'Matz'

xml.language 'Ruby'

}

⇒ <coder> <name nickname="Matz">Matsumoto</name> <language>Ruby</language> </coder>

Builder cleverly bends the syntax of Ruby to support nested tags, attri-

butes, and other niceties. The core idea of Builder is simple: calls like

name() and language() are processed by XmlMarkup#method_missing(),

which generates an XML tag for every call.

Now pretend you have to generate a piece of XML describing a university

course. It might look like this:

⇒ <semester> <class>Egyptology</class> <class>Ornithology</class> </semester>

So, you’d have to write code like this:

Download methods/builder_example.rb

xml.semester {

xml.class 'Egyptology'

xml.class 'Ornithology'

}

You may be wondering whether the calls to class() clash with the inher-

ited method class() in Object. They don’t, because the XmlMarkup class

in Builder inherits from a Blank Slate (84), which removes class() and

most other methods from Object.

10. Builder was written by Jim Weirich. Install it with gem install builder.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/builder_example.rb
http://media.pragprog.com/titles/ppmetr/code/methods/builder_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=85

MORE METHOD_MISSING() 86

Performance Anxiety

In these pages, we mention some downsides of Ghost Methods
(73), such as name clashes and mysterious bugs. Some peo-
ple would add another item to this list of weaknesses: in gen-
eral, Ghost Methods are slower than regular methods, because
method lookup tends to take a longer route when you call a
Ghost Method. Here’s a simple benchmark that compares a
concrete method and its ghostly counterpart:

Download methods/methods_benchmark.rb

class String
def method_missing(method, *args)
method == :ghost_reverse ? reverse : super

end
end

require 'benchmark'

Benchmark.bm do |b|
b.report 'Normal method' do
1000000.times { "abc".reverse }

end
b.report 'Ghost method ' do
1000000.times { "abc".ghost_reverse }

end
end

On my computer, the benchmark shows that ghost_reverse() is
about twice as slow as reverse():

⇒ user system total real
Normal method 0.930000 0.010000 0.940000 (0.976292)
Ghost method 1.800000 0.020000 1.820000 (1.871905)

This performance issue is something that you should be aware
of, but usually it’s not really a problem. Avoid guesswork, and
measure your code’s performance with a profiler before you
start worrying too much about optimizations. If the perfor-
mance of Ghost Methods ever turns out to be a problem, you
can sometimes find a middle ground. For example, you might
be able to arrange things so that the first call to a Ghost Method
defines a Dynamic Method (68) for the next calls. You’ll see an
example of this technique and a discussion of its trade-offs in
Chapter 8, Inside ActiveRecord, on page 206.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/methods_benchmark.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=86

MORE METHOD_MISSING() 87

Reserved Methods

Some of the methods in Object are used internally by Ruby. If
you redefine or remove them, the language might break in sub-
tle ways. To make this less likely to happen, Ruby identifies these
methods with a leading double underscore and issues a warn-
ing if you mess with them.

At the time of writing, Ruby has two such reserved methods,
__send__() and __id__(), which are synonyms for send() and
id(). Some libraries, such as Test::Unit, protect themselves from
maverick client code by calling the reserved methods rather
than their “regular” counterparts. In general, you don’t have to
worry that much: just call the regular methods, unless you know
for certain that they’ve been redefined.

Download gems/builder-2.1.2/lib/blankslate.rb

class BlankSlate

Hide the method named +name+ in the BlankSlate class. Don't

hide +instance_eval+ or any method beginning with "__".

def self.hide(name)

if instance_methods.include?(name.to_s) and

name !~ /^(__|instance_eval)/

@hidden_methods ||= {}

@hidden_methods[name.to_sym] = instance_method(name)

undef_method name

end

end

instance_methods.each { |m| hide(m) }

...

The code in BlankSlate assumes that instance_methods() returns an array

of strings. In Ruby 1.9, instance_methods() returns an array of symbols

instead. Expect this code to change slightly when Builder is updated

for Ruby 1.9.

Enough examples. Back to the real thing!

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/builder-2.1.2/lib/blankslate.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=87

MORE METHOD_MISSING() 88

Fixing the Computer Class

You and Bill know what to do now: refactor Computer to transform it

into a Blank Slate (84). This refactoring doesn’t take much:11

Download methods/computer/blank.rb

class Computer

instance_methods.each do |m|

undef_method m unless m.to_s =~ /method_missing|respond_to?/

end

...

This’s not purely a blank slate, because you still want to access method_

missing() and respond_to?() in both Computer and Object (through super).

You try the class in irb. The display() method now works, but Ruby

issues a couple of warnings when you load the Computer class:

⇒ blank_slate_2.rb:3: warning: undefining ‘__id__' may cause serious problem

blank_slate_2.rb:3: warning: undefining ‘__send__' may cause serious problem

Ruby is complaining that you also removed two reserved methods (see

the sidebar on the previous page). To stay on the safe side, you can

leave double-underscored methods alone:

Download methods/computer/more_blank.rb

class Computer

instance_methods.each do |m|

undef_method m unless m.to_s =~ /^__|method_missing|respond_to?/

end

...

Now the class runs with no warnings. You’re done, at long last!

Wrapping It Up

Let’s review today’s work. You and Bill started with a Computer class

that contained lots of duplication (the original class is in Section 2.1,

Double, Treble. . . Trouble, on page 62). You managed to remove the

duplication in two different ways.

11. Depending on the Ruby version, instance_methods() can return either strings or sym-

bols, so this code converts method names to strings to be compatible with all versions.

The undef_method() method is not a problem, because it can take either a string or a

symbol.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/blank.rb
http://media.pragprog.com/titles/ppmetr/code/methods/computer/more_blank.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=88

MORE METHOD_MISSING() 89

BasicObject

Starting with Ruby 1.9, Blank Slates (84) are an integral part of
the language. In previous versions of Ruby, Object used to be
the root of the class hierarchy. In Ruby 1.9, Object has a super-
class named BasicObject that provides only a handful of essen-
tial methods:

p BasicObject.instance_methods

⇒ [:==, :equal?, :!, :!=, :instance_eval, :instance_exec, :__send__]

By default, classes still inherit from Object. Classes that inherit
directly from BasicObject are automatically Blank Slates.

Your first attempt relied on Dynamic Methods (68) and Dynamic Dis-

patch (64):

Download methods/computer/more_dynamic.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

data_source.methods.grep(/^get_(.*)_info$/) { Computer.define_component $1 }

end

def self.define_component(name)

define_method(name) {

info = @data_source.send "get_#{name}_info", @id

price = @data_source.send "get_#{name}_price", @id

result = "#{name.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

}

end

end

Your second attempt used a Dynamic Proxy (78) that is also a Blank

Slate (84):

Download methods/computer/final.rb

class Computer

instance_methods.each do |m|

undef_method m unless m.to_s =~ /^__|method_missing|respond_to?/

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/methods/computer/more_dynamic.rb
http://media.pragprog.com/titles/ppmetr/code/methods/computer/final.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=89

MORE METHOD_MISSING() 90

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def method_missing(name, *args)

super if !respond_to?(name)

info = @data_source.send("get_#{name}_info", args[0])

price = @data_source.send("get_#{name}_price", args[0])

result = "#{name.to_s.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def respond_to?(method)

@data_source.respond_to?("get_#{method}_info") || super

end

end

Whichever of the two solutions you like best, neither would be prac-

tical without Ruby’s dynamic capabilities. If you come from a static

language, you’re probably accustomed to spotting and removing dupli-

cation inside your methods. In Ruby, you might want to look for dupli-

cation among methods as well. Then you can remove that duplication

with some of the spells from this chapter.

You and Bill can congratulate yourselves for a day chock-full of collab-

orative coding. It’s time to say goodbye and head out of the office!

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=90

Chapter 3

Wednesday: Blocks
Yesterday you learned a lot about methods and method calls. Now

it’s Wednesday, aka “hump day.” You’re at the midpoint of your week.

What’s on your to-do list on this pivotal day?

Today you and Bill will deal with blocks. You’re probably already famil-

iar with blocks—you can’t write much Ruby code without them. But

what you might not know is that blocks are a powerful tool for control-

ling scope, meaning which variables and methods can be seen by which

lines of code. In this chapter, you’ll discover how this control of scope

makes blocks a cornerstone of Ruby metaprogramming.

Blocks are just one member of a larger family of “callable objects,”

which include objects such as procs and lambdas. This chapter shows

how you can use these and other callable objects to their greatest

advantage—for example, to store a block and execute it later.

Just a short public service announcement before getting started: the

previous chapters never strayed far from the usual object-oriented con-

cepts such as classes, objects, and methods. Blocks have a differ-

ent heritage that can be traced back to “functional programming lan-

guages.”1 If you think in objects and classes, expect to deal with some

novel concepts in this chapter. You’re likely to find these concepts

strange and, at the same time, fascinating.

1. If you like blocks, you’ll probably want to learn more about functional programming.

You have a few good languages and books to choose from, including Lisp [Gra96], Haskell

[Tho99], and Erlang [Arm07]. The most popular new kids on the block are Clojure [Hal09]

and Scala [OSV08].

HOW TO HANDLE HUMP DAY 92

With that sneak peek into what this chapter is all about, it’s now time

to step into the office!

3.1 How to Handle Hump Day

Where you and Bill agree to shun today’s job, make a road map, and

review the basics of blocks.

“Hey, what’re you doing over there? It feels lonely here at my keyboard!”

“Oh, great,” you think to yourself. You’ve barely had time to check your

mail, and Bill is already making his way to your desk, eager to get to

work.

“I talked with the boss about today’s job,” Bill says as he pulls up a

chair. “I won’t go into the details now,” he continues, “but I can tell you

that we’re going to need blocks for today’s project.” He then points out

that, before the two of you jump into the fray, you need to understand

the nuances of blocks. You agree to spend the morning talking about

blocks, putting off today’s project until after lunch.

Today’s Road Map

Bill picks up a sheet of paper on which he has enumerated all the things

he wants to cover. Here’s the list:

• A review of the basics of blocks

• An overview of scopes and how you can carry variables through

scopes by using blocks as closures

• How you can further manipulate scopes by passing a block to

instance_eval()

• How you can convert blocks into callable objects that you can set

aside and call later, such as Procs and lambdas

Bill wastes no time getting started—with a review of the basics.2

Back to the Basics

“Do you remember how blocks work?” Bill queries. “I’ll refresh your

memory with a toy example, just to test you.”

2. If you already know the basics of Ruby blocks, you can skip straight to Section 3.3,

Closures, on page 96.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=92

QUIZ: RUBY# 93

He scrawls this code on your whiteboard:

Download blocks/basics.rb

def a_method(a, b)

a + yield(a, b)

end

a_method(1, 2) {|x, y| (x + y) * 3 } # => 10

You can define a block with either curly braces or the do. . . end key-

words. Most programmers tend to use curly braces for single-line

blocks and do. . . end for multiline blocks. However, this convention is

not rigidly enforced. You’re free to pick the idiom that you prefer for

each block.

Bill explains that you can define a block only when you call a method.

The block is passed straight into the method, and the method can then

call back to the block with the yield keyword.

Optionally, a block can have arguments, like x and y in Bill’s example.

When you call back to the block, you can provide values for its argu-

ments, just like you do when you call a method. Also, like a method, a

block returns the result of the last line of code it evaluates.

The Current Block

Within a method, you can ask Ruby whether the current call includes

a block. You can do that with the Kernel#block_given?() method:

def a_method

return yield if block_given?

'no block'

end

a_method # => "no block"

a_method { "here's a block!" } # => "here's a block!"

If you use yield when block_given?() is false, you’ll get a runtime error.

“OK, we’ve made our way through a refresher of the basics,” Bill says,

“Now let’s apply what we know about blocks to a real-life scenario.”

3.2 Quiz: Ruby#

Where Bill challenges you to do something useful with blocks.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/basics.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=93

QUIZ: RUBY# 94

Bill shares a little secret: “You know, a few months ago I was making a

living out of writing C# code. I don’t miss C# much, but, I must admit,

it does have a few nice features. I’ll show you one of those.”3

The using Keyword

Imagine that you’re writing a C# program that connects to a remote

server and you have an object that represents the connection:

RemoteConnection conn = new RemoteConnection("my_server");

String stuff = conn.readStuff();

conn.dispose(); // close the connection to avoid a leak

This code correctly disposes of the connection after using it. However, it

doesn’t deal with exceptions. If readStuff() throws an exception, then the

last line is never executed, and conn is never disposed of. What the code

should do is manage exceptions, disposing of the connection whether

or not an exception is thrown. Luckily, C# provides a keyword named

using that goes through the whole process for you:

RemoteConnection conn = new RemoteConnection("some_remote_server");

using (conn)

{

conn.readSomeData();

doSomeMoreStuff();

}

The using keyword expects that conn has a method named dispose().

This method is called automatically after the code in the curly braces,

whether or not an exception is thrown.

The Challenge

“This using thing is cool, isn’t it?” Bill exclaims. You nod your head in

agreement. “I challenge you to write a Ruby version of using,” he says,

with what looks like a smirk. He gives you a test case:

Download blocks/using_test.rb

require 'using'

require 'test/unit'

class TestUsing < Test::Unit::TestCase

class Resource

def dispose

@disposed = true

end

3. Please be warned that after all this Ruby, the semicolons and brackets in the next

section might hurt your eyes.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/using_test.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=94

QUIZ: RUBY# 95

def disposed?

@disposed

end

end

def test_disposes_of_resources

r = Resource.new

using(r) {}

assert r.disposed?

end

def test_disposes_of_resources_in_case_of_exception

r = Resource.new

assert_raises(Exception) {

using(r) {

raise Exception

}

}

assert r.disposed?

end

end

Can you write a Ruby version of using and make this test pass? (Don’t

peek at the solution. . . Bill is watching you!)

Quiz Solution

Take a look at this solution to the quiz:

Download blocks/using.rb

module Kernel

def using(resource)

begin

yield

ensure

resource.dispose

end

end

end

You can’t define a new keyword, but you can fake it with a Kernel

Method (51). Kernel#using() takes the managed resource as an argu-

ment. It also takes a block, which it executes. Whether or not the block

completes normally, the ensure clause calls dispose() on the resource to

release it cleanly. In case of an exception, Kernel#using() also rethrows

the exception to the caller.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/using.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=95

CLOSURES 96

Figure 3.1: Code that runs is actually made up of two things: the code

itself and a set of bindings.

“OK, we still remember the basic of blocks,” Bill mumbles, checking the

road map he jotted down in Section 3.1, Today’s Road Map, on page 92.

“Now we can get to the second point: closures.”

3.3 Closures

Where you find there is more to blocks than meets the eye and you learn

how to smuggle variables across scopes.

As Bill notes on a piece of scratch paper (Figure 3.1), a block is not

just a floating piece of code. You can’t run code in a vacuum. When

code runs, it needs an environment: local variables, instance variables,

self. . . . Since these entities are basically names bound to objects, you

can call them the bindings for short. The main point about blocks is

that they are all inclusive and come ready to run. They contain both

the code and a set of bindings.

You’re probably wondering where the block picks up its bindings. When

you define the block, it simply grabs the bindings that are there at that

moment, and then it carries those bindings along when you pass the

block into a method:

Download blocks/closure.rb

def my_method

x = "Goodbye"

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/closure.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=96

CLOSURES 97

yield("cruel")

end

x = "Hello"

my_method {|y| "#{x}, #{y} world" } # => "Hello, cruel world"

Bill notes that when you create the block, you capture the local bind-

ings, such as x. Then you pass the block to a method that has its own

separate set of bindings. In the previous example, those bindings also

include a variable named x. Still, the code in the block sees the x that

was around when the block was defined, not the method’s x, which is

not visible at all in the block. Because of this property, a computer sci-

entist would say that a block is a closure. For the rest of us, this means

a block captures the local bindings and carries them along with it.

So, how do you use closures in practice? To understand that, you need

to take a closer look at the place where all the bindings reside—the

scope. Here you’ll learn to identify the spots where a program changes

scope, and you’ll encounter a particular problem with changing scopes

that can be solved with closures.

Scope

Imagine being a little debugger making your way through a Ruby pro-

gram. You jump from statement to statement until you finally hit a

breakpoint. Now, catch your breath and look around. See the scenery

around you? That’s your scope.

You can see bindings all over the scope. Look down at your feet, and

you see a bunch of local variables. Raise your head, and you see that

you’re standing within an object, with its own methods and instance

variables; that’s the current object, also known as self. Further away,

you see the tree of constants so clear that you could mark your current

position on a map. Squint your eyes, and you can even see a bunch of

global variables off in the distance.4

Now see what happens when you get tired of the scenery and decide to

move on.

4. You already know about the tree of constants from Section 1.3, Constants, on page 38,

as well as the current object from Section 1.5, Discovering self , on page 53. You’ll learn

about global variables in the sidebar on page 101.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=97

CLOSURES 98

Block-Local Variables

A block captures the bindings that are around when you first
define the block. You can also define additional bindings inside
the block, but they disappear after the block ends:

def my_method
yield

end

top_level_variable = 1
my_method do

top_level_variable += 1
local_to_block = 1

end
top_level_variable # => 2
local_to_block # => Error!

A word of warning: in Ruby 1.8 and earlier, block arguments
contain a trap for the unwary. Contrary to what you might
expect, blocks can overwrite local variables by the same
name:

def my_method
yield(2)

end

x = 1
my_method do |x|

do nothing special
end
x # => 2

When you name the block argument x, the block notices that
there is already an x variable in the current context, and it uses
that x as its argument. So, there is only a single x in the previous
code, and it gets assigned the value that you pass to the block.
This surprising behavior used to be a frequent cause of bugs,
but the good news is that it has been fixed in Ruby 1.9.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=98

CLOSURES 99

Changing Scope

This example shows how scope changes as your program runs, tracking

the names of bindings with the Kernel#local_variables() method:

Download blocks/scopes.rb

v1 = 1

class MyClass

v2 = 2

local_variables # => [:v2]

def my_method

v3 = 3

local_variables

end

local_variables # => [:v2]

end

obj = MyClass.new

obj.my_method # => [:v3]

obj.my_method # => [:v3]

local_variables # => [:v1, :obj]

Bill tracks the program as it moves through scopes. It starts within

the top-level scope, where it defines v1.5 Then it enters the scope of

MyClass’s definition. What happens then?

Some languages, such as Java and C#, allow an “inner scope” to see

variables from an “outer scope.” That kind of nested visibility doesn’t

happen in Ruby, where scopes are sharply separated: as soon as you

enter a new scope, the previous bindings are simply replaced by a new

set of bindings. This means that when the program enters MyClass, v1

“falls out of scope” and is no longer visible.

In the scope of the definition of MyClass, the program defines v2 and

a method. The code in the method isn’t executed yet, so the program

never opens a new scope until the end of the class definition. At that

moment, the scope opened with the class keyword is closed forever, and

the program gets back to the top-level scope.

Bill also explains what happens when the program creates a MyClass

object and calls my_method() twice. The first time the program enters

my_method(), it opens a new scope and defines a local variable, v3. Then

the program exits the method, falling back to the top-level scope. At this

5. You became familiar with the top-level scope in the sidebar on page 54.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/scopes.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=99

CLOSURES 100

point, the method’s scope is lost. When the program calls my_method()

a second time, it opens yet another new scope, and it defines a new v3

variable (unrelated to the previous v3, which is now lost). Finally, the

program returns to the top-level scope, where you can see v1 and obj

again. Phew!

Bill stresses the example’s important point: “Whenever the program

changes scope, some bindings are replaced by a new set of bindings.”

Granted, this doesn’t happen to all the bindings each and every time.

For example, if a method calls another method on the same object,

instance variables stay in scope through the call. In general, though,

bindings tend to fall out of scope when the scope changes. In particular,

local variables change at every new scope. (That’s why they’re “local”!)

As you can see, keeping track of scopes can be a boring task. You can

spot scopes more quickly if you learn about Scope Gates.

Scope Gates

There are exactly three places where a program leaves the previous

scope behind and opens a new one:

• Class definitions

• Module definitions

• Methods

Scope changes whenever the program enters (or exits) a class or module

definition or a method. These three borders are marked by the keywords

class, module, and def, respectively. Each of these keywords acts like a

Scope Gate. Spell: Scope Gate

For example, here is Bill’s example program again, with Scope Gates

clearly marked by comments:

v1 = 1

class MyClass # SCOPE GATE: entering class

v2 = 2

local_variables # => ["v2"]

def my_method # SCOPE GATE: entering def

v3 = 3

local_variables

end # SCOPE GATE: leaving def

local_variables # => ["v2"]

end # SCOPE GATE: leaving class

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=100

CLOSURES 101

Global Variables and Top-Level Instance Variables

Global variables can be accessed by any scope:

def a_scope
$var = "some value"

end

def another_scope
$var

end

a_scope
another_scope # => "some value"

The problem with global variables is that every part of the sys-
tem can change them, so, in no time, you’ll find it difficult to
track who is changing what. For this reason, the general rule
is this: when it comes to global variables, use them sparingly, if
ever.

You can sometimes use a top-level instance variable in place
of a global variable. These are the instance variables of the
top-level main object, described in the sidebar on page 54:

@var = "The top-level @var"

def my_method
@var

end

my_method # => "The top-level @var"

You can access a top-level instance variable whenever main

takes the role of self, as in the previous example. When any
other object is self, the top-level instance variable is out of
scope.

class MyClass
def my_method
@var = "This is not the top-level @var!"

end
end

Being less universally accessible, top-level instance variables
are generally considered safer than global variables.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=101

CLOSURES 102

obj = MyClass.new

obj.my_method # => [:v3]

obj.my_method # => [:v3]

local_variables # => [:v1, :obj]

Now it’s easy to see that Bill’s program opens four separate scopes: the

top-level scope, one new scope when it enters MyClass, and one new

scope each time it calls my_method().

There is a subtle difference between class and module on one side and

def on the other. The code in a class or module definition is executed

immediately. Conversely, the code in a method definition is executed

later, when you eventually call the method. However, as you write your

program, you usually don’t care when it changes scope—you only care

that it does.

Now you can pinpoint the places where your program changes scope—

the spots marked by class, module, and def. But what if you want to

pass a variable through one of these spots? This question takes you

back to the topic of blocks.

Flattening the Scope

The more you become proficient in Ruby, the more you get into difficult

situations where you want to pass bindings through a Scope Gate (100):

Download blocks/flat_scope_1.rb

my_var = "Success"

class MyClass

We want to print my_var here...

def my_method

..and here

end

end

Scope gates are quite a formidable barrier. As soon as you walk through

one of them, local variables fall out of scope. So, how can you carry

my_var across not one but two Scope Gates?

Look at the class Scope Gate first. You can’t pass my_var through it, but

you can replace class with something else that is not a Scope Gate: a

method. If you could use a method in place of class, you could capture

my_var in a closure and pass that closure to the method. Can you think

of a method that does the same thing that class does?

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/flat_scope_1.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=102

CLOSURES 103

If you look at Ruby’s documentation, you’ll find the answer: Class.new()

is a perfect replacement for class. You can also define instance methods

in the class if you pass a block to Class.new():

Download blocks/flat_scope_2.rb

my_var = "Success"

MyClass = Class.new do

Now we can print my_var here...

puts "#{my_var} in the class definition!"

def my_method

...but how can we print it here?

end

end

Now, how can you pass my_var through the def Scope Gate? Once again,

you have to replace the keyword with a method. Instead of def, you can

use Module#define_method():6

Download blocks/flat_scope_3.rb

my_var = "Success"

MyClass = Class.new do

puts "#{my_var} in the class definition!"

define_method :my_method do

puts "#{my_var} in the method!"

end

end

MyClass.new.my_method

⇒ Success in the class definition!

Success in the method!

If you replace Scope Gates with methods, you allow one scope to see

variables from another scope. Technically, this trick should be called

nested lexical scopes, but many Ruby coders refer to it simply as “flat-

tening the scope,” meaning that the two scopes share variables as if the

scopes were squeezed together. For short, you can call this spell a Flat

Scope. Spell: Flat Scope

Bill also wants to show you a second spell that pushes the concept of

Flat Scopes even further.

6. You learned about Module#define_method() in the discussion about dynamic methods

(68).

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/flat_scope_2.rb
http://media.pragprog.com/titles/ppmetr/code/blocks/flat_scope_3.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=103

CLOSURES 104

Sharing the Scope

Once you know about Flat Scopes (103), you can do pretty much what-

ever you want with scopes. For example, assume that you want to share

a variable among a few methods, and you don’t want anybody else to

see that variable. You can do that by defining all the methods in the

same Flat Scope as the variable:

Download blocks/shared_scope.rb

def define_methods

shared = 0

Kernel.send :define_method, :counter do

shared

end

Kernel.send :define_method, :inc do |x|

shared += x

end

end

define_methods

counter # => 0

inc(4)

counter # => 4

This example defines two Kernel Methods (51). (Bill had to use Dynamic

Dispatch (64) to access the private method define_method() on Kernel.)

Both Kernel#counter() and Kernel#inc() can see the shared variable. No

other method can see shared, because it’s protected by a Scope Gate

(100)—that’s what the define_methods() method is for. This smart way

to control the sharing of variables is called a Shared Scope. Spell: Shared Scope

With a combination of Scope Gates, Flat Scopes, and Shared Scopes,

you can twist and bend your scopes to see exactly the variables you

need, from the place you want. After gaining this kind of power, you

can ease into Bill’s wrap-up of Ruby scopes.

Scope Wrap-Up

Each Ruby scope contains a bunch of bindings, and the scopes are sep-

arated by Scope Gates (100): class, module, and def. If you want to sneak

a binding or two through a Scope Gate, you can replace the Scope Gate

with a method call: you capture the current bindings in a closure and

pass the closure to the method. You can replace class with Class.new(),

module with Module.new, and def with Module#define_method(). This is a

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/shared_scope.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=104

INSTANCE_EVAL() 105

Flat Scope (103), the basic closure-related spell. If you define multiple

methods in the same Flat Scope, maybe protected by a Scope Gate, all

those methods can share bindings. That’s called a Shared Scope (104).

Bill glances at the road map he created (see Section 3.1, Today’s Road

Map, on page 92). “Now that you’ve gotten a taste of Flat Scopes, we

should move on to something more advanced: instance_eval().”

3.4 instance_eval()

Where you and Bill learn another way to mix code and bindings at will.

Bill shows you a short program to demonstrate Object#instance_eval(),

which evaluates a block in the context of an object:

Download blocks/instance_eval.rb

class MyClass

def initialize

@v = 1

end

end

obj = MyClass.new

obj.instance_eval do

self # => #<MyClass:0x3340dc @v=1>

@v # => 1

end

The block is evaluated with the receiver as self, so it can access the

receiver’s private methods and instance variables, such as @v. Even if

instance_eval() changes self, it leaves all the other bindings alone, as Bill

demonstrates with a few more lines of code:

v = 2

obj.instance_eval { @v = v }

obj.instance_eval { @v } # => 2

The three lines in the previous example are evaluated in the same

Flat Scope (103), so they can all access the local variable v—but the

blocks are evaluated with the object as self, so they can also access

obj’s instance variable @v. In all these cases, you can call the block that

you pass to instance_eval() a Context Probe, because it’s like a snippet Spell: Context Probe

of code that you dip inside an object to do something in there.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/instance_eval.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=105

INSTANCE_EVAL() 106

instance_exec()

Ruby 1.9 introduced a method named instance_exec(). This is
similar to instance_eval(), but it also allows you to pass argu-
ments to the block:

class C
def initialize
@x, @y = 1, 2

end
end

C.new.instance_exec(3) {|arg| (@x + @y) * arg } # => 9

Breaking Encapsulation

At this point, you’re wearing a look of horror on your face. With a Con-

text Probe (105), you can wreak havoc on encapsulation! No data is

private data anymore. “Isn’t that a Very Bad Thing?” you ask.

Bill answers you promptly. Pragmatically, there are some situations

where encapsulation just gets in your way. For one, you might want

to take a quick peek inside an object from an irb command line. In a

case like this, breaking into the object with instance_eval() is often the

shortest route.

The most socially acceptable reason to break encapsulation is arguably

testing. Your pal provides an example.

The RSpec Example

The RSpec gem is a popular library for writing tests.7 Among other

things, it allows you to “stub” specific methods on an object that you

want to test. For example, you can replace a method that accesses a

database with a simple constant result:

Download blocks/rspec.rb

test_object.should_receive(:read_names).and_return(["Bill", "You"])

test_object.read_names # => ["Bill", "You"]

To implement this feature, RSpec plays a few tricks behind the covers.

Among other things, it adds an instance variable named @options to the

object under test. But what if the object happens to already have an

7. RSpec is a project by David Chelimsky and others. Install it with gem install rspec.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/rspec.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=106

INSTANCE_EVAL() 107

instance variable with that name? Will the stubbing feature still work?

The RSpec authors like to eat their own dog food, so they wrote an

RSpec test to check that the stubbing feature works in this edge case.

How would you write such a test? You need an object that has its own

@options variable. The RSpec people get that object by enhancing a reg-

ular object with a Context Probe (105). Here’s their test:

Download gems/rspec-1.2.6/spec/spec/mocks/partial_mock_spec.rb

@object = Object.new

@object.instance_eval { @options = Object.new }

@object.should_receive(:blah)

@object.blah

As an alternative, you might create an entire class that defines @options

in initialize() and then create an object of that class. However, in this

case, a Context Probe lets you get away with just a single line of code.

Clean Rooms

Sometimes you create an object just to evaluate blocks inside it. An

object like that can be called a Clean Room: Spell: Clean Room

Download blocks/clean_room.rb

class CleanRoom

def complex_calculation

...

end

def do_something

...

end

end

clean_room = CleanRoom.new

clean_room.instance_eval do

if complex_calculation > 10

do_something

end

end

A Clean Room is just an environment where you can evaluate your

blocks, and it usually exposes a few useful methods that the block can

call. You’ll find a practical example of a Clean Room in Section 3.7,

Quiz: A Better DSL, on page 118.

“That’s all you have to know about instance_eval(),” Bill promises. “Now

we can get to the last topic in the road map: callable objects.”

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/rspec-1.2.6/spec/spec/mocks/partial_mock_spec.rb
http://media.pragprog.com/titles/ppmetr/code/blocks/clean_room.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=107

CALLABLE OBJECTS 108

3.5 Callable Objects

Where Bill explains how blocks are just part of a larger family and dem-

onstrates how you can set code aside and execute it later.

If you get to the bottom of it, using a block is a two-step process. First,

you set some code aside, and second, you call the block (with yield) to

execute the code. This “package code first, call it later” mechanism is

not exclusive to blocks. There are at least three other places in Ruby

where you can package code:

• In a proc, which is basically a block turned object

• In a lambda, which is a slight variation on a proc

• In a method

Procs and lambdas are the big ones to talk about here. Bill wants to

start with them, and he’ll bring methods back into the picture later.

Proc Objects

Bill starts by pointing out that although most things in Ruby are ob-

jects, blocks are not. But why would you care about that? Imagine that

you want to store a block and execute it later. To do that, you need an

object.

“To solve this problem,” Bill clarifies, “Ruby provides the standard libra-

ry class Proc.” A Proc is a block that has been turned into an object.

You can create a Proc by passing the block to Proc.new. Later, you can

evaluate the block-turned-object with Proc#call():

inc = Proc.new {|x| x + 1 }

more code...

inc.call(2) # => 3

This technique is called a Deferred Evaluation. Spell: Deferred

Evaluation

Ruby also provides two Kernel Methods (51) that convert a block to

a Proc: lambda() and proc(). In a short while, you’ll see that there are

subtle differences between lambda(), proc(), and Proc.new(), but in most

cases you can just use whichever one you like best:

dec = lambda {|x| x - 1 }

dec.class # => Proc

dec.call(2) # => 1

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=108

CALLABLE OBJECTS 109

So far, Bill has shown not one, but three different ways to convert a

block to a Proc. There is also a fourth way, which deserves its own

section.

The & Operator

A block is like an additional, anonymous argument to a method. In

most cases, you execute the block right there in the method, using

yield. There are two cases where yield is not enough:

• You want to pass the block to another method.

• You want to convert the block to a Proc.

In both cases, you need to point at the block and say, “I want to use this

block”—to do that, you need a name. To attach a binding to the block,

you can add one special argument to the method. This argument must

be the last in the list of arguments and prefixed by an & sign. Here’s a

method that passes the block to another method:

Download blocks/ampersand.rb

def math(a, b)

yield(a, b)

end

def teach_math(a, b, &operation)

puts "Let's do the math:"

puts math(a, b, &operation)

end

teach_math(2, 3) {|x, y| x * y}

⇒ Let's do the math:

6

If you call teach_math() without a block, the &operation argument is

bound to nil, and the yield operation in math() fails.

What if you want to convert the block to a Proc? As it turns out, if

you referenced operation in the previous code, you’d already have a Proc

object. The real meaning of the & is this: “This is a Proc that I want to

use as a block.” Just drop the &, and you’ll be left with a Proc again:

def my_method(&the_proc)

the_proc

end

p = my_method {|name| "Hello, #{name}!" }

puts p.class

puts p.call("Bill")

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/ampersand.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=109

CALLABLE OBJECTS 110

⇒ Proc

Hello, Bill!

You now know a bunch of different ways to convert a block to a Proc.

But what if you want to convert it back? Again, you can use the &

operator to convert the Proc to a block:

Download blocks/proc_to_block.rb

def my_method(greeting)

puts "#{greeting}, #{yield}!"

end

my_proc = proc { "Bill" }

my_method("Hello", &my_proc)

⇒ Hello, Bill!

When you call my_method(), the & converts my_proc to a block and

passes that block to the method.

“Now you know how to convert a block to a Proc and back again,” Bill

observes. “Let’s look at a real-life example of a callable object that starts

its life as a lambda and is then converted to a regular block.”

The HighLine Example

The HighLine gem helps you automate console input and output.8 For

example, you can tell HighLine to collect comma-separated user input

and split it into an array, all in a single call. Here’s a Ruby program

that lets you input a comma-separated list of friends:

Download blocks/highline_example.rb

require 'highline'

hl = HighLine.new

friends = hl.ask("Friends?", lambda {|s| s.split(',') })

puts "You're friends with: #{friends.inspect}"

⇒ Friends?
⇐ Bill,Mirella,Luca
⇒ You're friends with: ["Bill", "Mirella", "Luca"]

You call HighLine#ask() with a string (the question for the user) and a

Proc that contains the post-processing code.9 If you read the code of

8. HighLine was written by James Edward Gray II. You can install it with gem install

highline.
9. You might wonder why HighLine requires a Proc argument rather than a simple block.

Actually, you can pass a block to ask(), but that mechanism is reserved for a different

HighLine feature.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/proc_to_block.rb
http://media.pragprog.com/titles/ppmetr/code/blocks/highline_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=110

CALLABLE OBJECTS 111

HighLine#ask(), you’ll see that it passes the Proc to an object of class

Question, which stores the Proc as an instance variable. Later, after col-

lecting the user’s input, the Question passes the input to the stored Proc.

If you want to do something else to the user’s input—say, change it to

uppercase—you just create a different Proc:

name = hl.ask("Name?", lambda {|s| s.capitalize })

puts "Hello, #{name}"

⇒ Name?
⇐ bill
⇒ Hello, Bill!

This is an example of Deferred Evaluation (108).

Procs vs. Lambdas

“We’ve learned a bunch of different ways to turn a block into a Proc:

Proc.new(), lambda(), the & operator. . . ,” Bill says. “In all cases, the

resulting object is a Proc.” You wait patiently for him to go on as he

yawns loudly and stretches his arms.10

“Confusingly, though,” Bill finally continues, “Procs created with

lambda() actually differ in some respects from Procs created any other

way. The differences are subtle but important enough that people refer

to the two kinds of Procs by distinct names: Procs created with lambda()

are called lambdas, while the others are simply called procs.”11

Bill adds a word of warning. The difference between procs and lamb-

das is probably the most confusing feature of Ruby, with lots of special

cases and arbitrary distinctions. There’s no need to go into all the gory

details, but you need to know, at least roughly, the important differ-

ences.

There are two differences between procs and lambdas. One has to do

with the return keyword, and the other concerns the checking of argu-

ments. Let’s start with return.

10. Bill is going through some technical details that you might or might not care about

right now. This is your chance to take a short nap. Or, in book-speak, you can skip over

this section on your first read through this book and go straight to Section 3.5, Methods

Revisited, on page 114. Be sure to return to this section when you want to dig deeper

into Procs and lambdas.
11. Ruby 1.9 introduces a Proc#lambda?() method that returns true if the Proc is a lambda.

Previous versions of Ruby didn’t provide a direct way to tell a lambda from a regular proc.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=111

CALLABLE OBJECTS 112

Procs, Lambdas, and return

The first difference between lambdas and procs is that the return key-

word means different things. In a lambda, return just returns from the

lambda:

Download blocks/proc_vs_lambda.rb

def double(callable_object)

callable_object.call * 2

end

l = lambda { return 10 }

double(l) # => 20

In a proc, return behaves differently. Rather than return from the proc,

it returns from the scope where the proc itself was defined:

def another_double

p = Proc.new { return 10 }

result = p.call

return result * 2 # unreachable code!

end

another_double # => 10

If you’re aware of this behavior, you can steer clear of buggy code like:

def double(callable_object)

callable_object.call * 2

end

p = Proc.new { return 10 }

This fails with a LocalJumpError:

double(p)

The previous program tries to return from the scope where p is defined.

Since you can’t return from the top-level scope, the program fails. You

can avoid this kind of mistake if you avoid using explicit returns:

p = Proc.new { 10 }

double(p) # => 20

Now on to the second important difference between procs and lambdas.

Procs, Lambdas, and Arity

The second difference between procs and lambdas concerns the way

they check their arguments. For example, a particular proc or lambda

might have an arity of two, meaning that it accepts two arguments:

p = Proc.new {|a, b| [a, b]}

p.arity # => 2

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/proc_vs_lambda.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=112

CALLABLE OBJECTS 113

Now, what happens if you call this callable object with three arguments

or a single argument? The long answer to this question is complicated

and littered with special cases.12 The short answer is that, in general,

lambdas tend to be less tolerant than procs (and regular blocks) when

it comes to arguments. Call a lambda with the wrong arity, and it fails

with an ArgumentError. On the other hand, a proc fits the argument list

to its own expectations:

p = Proc.new {|a, b| [a, b]}

p.call(1, 2, 3) # => [1, 2]

p.call(1) # => [1, nil]

If there are too many arguments, a proc drops the excess arguments. If

there are too few arguments, it assigns nil to the missing arguments.

Procs vs. Lambdas: The Verdict

Bill is confident that you now know the differences between procs and

lambdas. But you’re wondering which kind of Proc you should use in

your own code.

Generally speaking, lambdas are more intuitive than procs because

they’re more similar to methods. They’re pretty strict about arity, and

they simply exit when you call return. For this reason, many Rubyists

use lambdas as a first choice, unless they need the specific features

of procs.

Kernel#proc

“What about Proc objects created with Kernel#proc()?” you ask. “Are

these procs or lambdas?” You can ask Ruby itself:

callable = proc { return }

callable.call # fails in Ruby 1.9

Distressingly, the previous code will either succeed or fail, depending on

the version of Ruby you’re using. In Ruby 1.8, Kernel#proc() is actually

a synonym for Kernel#lambda(). Because of loud protest from program-

mers, Ruby 1.9 made proc() a synonym for Proc.new() instead.

“See?” Bill laments. “I told you it was a big mess.”

12. Paul Cantrell wrote a program to explore all special cases. You can find this program

at http://innig.net/software/ruby/closures-in-ruby.rb.

Report erratum

this copy is (P1.0 printing, January 2010)

http://innig.net/software/ruby/closures-in-ruby.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=113

CALLABLE OBJECTS 114

The Stubby Lambda

To make things more complicated, Ruby 1.9 introduces yet
another syntax for defining lambdas—the so-called “stubby
lambda” operator:

p = ->(x) { x + 1 }

Notice the little arrow. The previous code is the same as the
following:

p = lambda {|x| x + 1 }

The stubby lambda is an experimental feature, and it might or
might not make its way into Ruby 2.0.

Methods Revisited

For the sake of completeness, you might want to take one more look at

the last member of the callable objects’ family: methods. If you’re not

convinced that methods, like lambdas, are just callable objects, look at

this code:

Download blocks/methods.rb

class MyClass

def initialize(value)

@x = value

end

def my_method

@x

end

end

object = MyClass.new(1)

m = object.method :my_method

m.call # => 1

By calling Object#method(), you get the method itself as a Method object,

which you can later execute with Method#call(). A Method object is sim-

ilar to a lambda, with an important difference: a lambda is evaluated in

the scope it’s defined in (it’s a closure, remember?), while a Method is

evaluated in the scope of its object.

You can detach a method from its object with Method#unbind(), which

returns an UnboundMethod object. You can’t execute an UnboundMethod,

but you can turn it back into a Method by binding it to an object.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/methods.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=114

CALLABLE OBJECTS 115

unbound = m.unbind

another_object = MyClass.new(2)

m = unbound.bind(another_object)

m.call # => 2

This technique works only if another_object has the same class as the

method’s original object—otherwise, you’ll get an exception. “Good luck

finding a good reason to use this exotic stuff in real life!” Bill says,

smirking.

Finally, you can convert a Method object to a Proc object by calling

Method#to_proc, and you can convert a block to a method with define_

method(). Bill looks up from his examples and makes a pronouncement:

“It’s time for a wrap-up!”

Callable Objects Wrap-Up

Callable objects are snippets of code that you can evaluate, and they

carry their own scope along with them. They can be the following:

• Blocks (they aren’t really “objects,” but they are still “callable”):

Evaluated in the scope in which they’re defined.

• Procs: Objects of class Proc. Like blocks, they are evaluated in the

scope where they’re defined.

• Lambdas: Also objects of class Proc but subtly different from reg-

ular procs. They’re closures like blocks and procs, and as such

they’re evaluated in the scope where they’re defined.

• Methods: Bound to an object, they are evaluated in that object’s

scope. They can also be unbound from their scope and rebound to

the scope of another object.

Different callable objects exhibit subtly different behaviors. In methods

and lambdas, return returns from the callable object, while in procs

and blocks, return returns from the callable object’s original context.

Different callable objects also react differently to calls with the wrong

arity. Methods are stricter, lambdas are almost as strict (save for some

corner cases), and procs and blocks are more tolerant.

These differences notwithstanding, you can still convert from one call-

able object to another, such as by using Proc.new(), Method#to_proc(),

or the & operator.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=115

WRITING A DOMAIN-SPECIFIC LANGUAGE 116

3.6 Writing a Domain-Specific Language

Where you and Bill write some code, at long last.

“Enough talking about blocks,” Bill says. “It’s time to focus on today’s

job. Let’s call it the RedFlag project.”

Bill describes RedFlag as a monitor utility for the people in the sales

department. It should send the sales folks a message when an order is

late or total sales are too low—basically, whenever one of many different

things happens. Sales wants to monitor dozens of different events, and

the list is bound to change every week or so.

Luckily for you and Bill, sales has full-time programmers, so you don’t

have to write the events yourselves. You can just write a simple domain-

specific language that the sales guys can use to define events, like

this:13

event "we're earning wads of money" {

recent_orders = ... # (read from database)

recent_orders > 1000

}

To define an event, you give it a descriptive name and a block of code. If

the block returns true, then you get an alert via mail. If it returns false,

then nothing happens. The system should check all the events every

few minutes.

It’s time to write RedFlag 0.1!

Your First DSL

You and Bill put together a working RedFlag DSL in no time:

Download blocks/monitor_blocks/redflag.rb

def event(name)

puts "ALERT: #{name}" if yield

end

Dir.glob('*events.rb').each {|file| load file }

The entire DSL is just one method and a single line of code. The last

line loads the files with names ending in events.rb, thereby executing

the code in those files. This code is supposed to call back into RedFlag’s

event() method. To test the DSL, you create a file named test_events.rb.

13. If you need a crash course in domain-specific languages (or DSLs for friends), read

Appendix B, on page 252.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/monitor_blocks/redflag.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=116

WRITING A DOMAIN-SPECIFIC LANGUAGE 117

Download blocks/monitor_blocks/test_events.rb

event "an event that always happens" do

true

end

event "an event that never happens" do

false

end

You save both files in the same folder and run redflag.rb:

⇒ ALERT: an event that always happens

“Success!” Bill exclaims, clapping his hands in excitement. “If we sched-

ule this program to run every few minutes, we have a functional first

version of RedFlag. Let’s show it to the boss.”

Sharing Among Events

Your boss is amused by the simplicity of the RedFlag DSL, but she’s

not completely convinced. “The people who write the events will want to

share data among events,” she observes. “Can I do this with your DSL?

For example, can two separate events access the same variable?” she

asks the two of you.

“Of course they can!” you and Bill reply in unison. “We have a Flat Scope

(103).” To prove that, you whip up a new test file:

Download blocks/monitor_blocks/more_test_events.rb

def monthly_sales

110 # TODO: read the real number from the database

end

target_sales = 100

event "monthly sales are suspiciously high" do

monthly_sales > target_sales

end

event "monthly sales are abysmally low" do

monthly_sales < target_sales

end

The two events in this file share a method and a local variable. You run

redflag.rb, and it prints what you expected:

⇒ ALERT: monthly sales are suspiciously high

“OK, this works,” the boss concedes. But she doesn’t like the idea of

variables and methods like monthly_sales() and target_sales cluttering the

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/monitor_blocks/test_events.rb
http://media.pragprog.com/titles/ppmetr/code/blocks/monitor_blocks/more_test_events.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=117

QUIZ: A BETTER DSL 118

top-level scope. “Let me show you what I’d like the DSL to look like

instead,” she says. Without further ado, the boss grabs the keyboard

and starts churning out code like nobody’s business.

3.7 Quiz: A Better DSL

Where you’re unexpectedly left alone to develop a new version of the

RedFlag DSL.

Your boss wants you to add a setup instruction to the RedFlag DSL:

Download blocks/monitor_framework/test_events.rb

event "the sky is falling" do

@sky_height < 300

end

event "it's getting closer" do

@sky_height < @mountains_height

end

setup do

puts "Setting up sky"

@sky_height = 100

end

setup do

puts "Setting up mountains"

@mountains_height = 200

end

In this new version of the DSL, you’re free to mix events and setup

blocks (setups for short). The DSL stills checks events, and it also exe-

cutes all the setups before each event. If you run redflag.rb on the pre-

vious test file, you expect this output:

⇒ Setting up sky

Setting up mountains

ALERT: the sky is falling

Setting up sky

Setting up mountains

ALERT: it's getting closer

A setup can also set variables by using variable names that begin

with an @ sign, like @sky_height and @mountains_height. Events can then

read these variables. Your boss thinks that this feature will encourage

programmers to write clean code: all shared variables are initialized

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/monitor_framework/test_events.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=118

QUIZ: A BETTER DSL 119

together in a setup and then used in events—so it’s easy to keep track

of variables.14

Still amazed by your boss’ technical prowess, you and Bill get down to

business.

Runaway Bill

You and Bill compare the current RedFlag DSL with the new version

your boss has suggested. The current RedFlag executes blocks imme-

diately. The new RedFlag should execute the setups and the events in

a specific order. You start by rewriting the event() method:

def event(name, &block)

@events[name] = block

end

The new event() converts blocks to Procs and stores them in a hash.

The hash is a top-level instance variable, so it’s visible from outside

the event() method.15 At this point, you can write a similar method to

handle setups, and then you can write the code that executes events

and setups in the correct sequence.

As you ponder your next step, Bill slaps his forehead. “I forgot about

tonight’s dinner at the Javaholics Anonymous club!” he exclaims. “I’m

sorry, pal; I need to leave early today.” Before you can say “No way!” Bill

has slipped out the door with surprising agility.

Now it’s up to you alone. Can you complete the new RedFlag DSL and

get the expected output from the test file?

Quiz Solution

You can find many different solutions to this quiz. Here is one:

Download blocks/monitor_framework/redflag.rb

def event(name, &block)

@events[name] = block

end

def setup(&block)

@setups << block

end

14. If you’re used to the test/unit library, you might notice that the boss’ ideas owe a lot to

that.
15. See the sidebar on page 101.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/monitor_framework/redflag.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=119

QUIZ: A BETTER DSL 120

Dir.glob('*events.rb').each do |file|

@setups = []

@events = {}

load file

@events.each_pair do |name, event|

env = Object.new

@setups.each do |setup|

env.instance_eval &setup

end

puts "ALERT: #{name}" if env.instance_eval &event

end

end

Both event() and setup() convert the block to a proc with the & operator.

Then they store away the proc, in @events and @setups, respectively.

These two top-level instance variables are shared by event(), setup(),

and the main code.

Your main code loads the files that end with event.rb. For each file, it

initializes @events and @setups, and then it loads the file. The code in

the file calls back into event() and setup(), adding elements to @events

and @setups.

With all the events and setups loaded, your program iterates through

the events. For each event, it calls all the setup blocks first and then

calls the event itself. Both the setup blocks and the event are converted

from procs to blocks with the & operator, and they’re evaluated in the

context of an Object that acts as a Clean Room (107). The instance

variables in the setups and events are actually instance variables of the

Object. This is the trick that allows setups to define variables for events.

You also run each event in its own Clean Room, so events cannot share

instance variables. (On the other hand, events can share local variables,

because they share the same Flat Scope (103).)

At this point, you can almost hear Bill’s voice resounding in your head

like the voice of Obi-Wan Kenobi: “Those top-level instance variables,

@events and @setups, are like global variables in disguise. Why don’t

you get rid of them?”

An Even Better DSL

To get rid of the global variables (and Bill’s voice in your head), you can

use a Shared Scope (104):

Download blocks/monitor_final/redflag.rb

lambda {

setups = []

events = {}

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/blocks/monitor_final/redflag.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=120

QUIZ: A BETTER DSL 121

Kernel.send :define_method, :event do |name, &block|

events[name] = block

end

Kernel.send :define_method, :setup do |&block|

setups << block

end

Kernel.send :define_method, :each_event do |&block|

events.each_pair do |name, event|

block.call name, event

end

end

Kernel.send :define_method, :each_setup do |&block|

setups.each do |setup|

block.call setup

end

end

}.call

Dir.glob('*events.rb').each do |file|

load file

each_event do |name, event|

env = Object.new

each_setup do |setup|

env.instance_eval &setup

end

puts "ALERT: #{name}" if env.instance_eval &event

end

end

The Shared Scope is contained in a lambda that is called immediately.

The code in the lambda defines the RedFlag methods as Kernel Methods

(51) that share two local variables: setups and events.16 Now those ugly

global variables are gone. The boss will be delighted!

You could improve RedFlag even more. For example, you could push the

concept of a Clean Room a bit further, creating an object of your own

Clean Room class rather than a generic Object. The instance methods

in the Clean Room will then be visible to all the events and setups. With

a playful grin, you add a comment to the code and leave this additional

feature to Bill, your runaway pal.

What a day it has been! You learned a lot about blocks, and you even

wrote your own little DSL. It’s time to sneak out of the office and deposit

yourself in a nearby pub.

16. Old versions of Ruby cannot take a block as the argument to another block. If you

experience trouble running this program, then it’s probably time to upgrade!

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=121

Chapter 4

Thursday: Class Definitions
As you well know, writing object-oriented programs means spending

a good chunk of your time defining classes. In Java and C#, defin-

ing a class is like making a deal between you and the compiler. You

say, “Here’s how my objects are supposed to behave,” and the com-

piler replies, “OK, they will.” Nothing really happens until you create an

object of that class and then call that object’s methods.

In Ruby, class definitions are different. When you use the class key-

word, you aren’t dictating how objects will behave in the future. On the

contrary, you’re actually running code.

If you buy into this notion—that a Ruby class definition is actually reg-

ular code that runs—you’ll be able to cast some powerful spells. Two

such spells that you’ll learn about in this chapter are Class Macros

(136) (methods that modify classes) and Around Aliases (155) (methods

that wrap additional code around other methods). To help you make

the most of these spells, this chapter also describes eigenclasses (also

known as singleton classes), one of Ruby’s most elegant features. Eigen-

classes are an advanced topic, so understanding them will win you

bragging rights among Ruby gurus.

This chapter also comes with a public service announcement: keep

in mind that a class is just a souped-up module, so anything you

learn about classes also applies to modules. Although I won’t repeat

this PSA in every section of this chapter, remember that whenever you

read about a “class definition,” you can also think to yourself ”module

definition.”

CLASS DEFINITIONS DEMYSTIFIED 123

4.1 Class Definitions Demystified

Where you and Bill tread familiar ground: the Bookworm application and

the Ruby object model.

Today you stumble sleepily into the office, craving your Thursday morn-

ing coffee, only to be ambushed by an overexcited Bill. “Hey, buddy!” he

shouts, waving his hands. ”Do you remember Bookworm, the applica-

tion that we refactored Monday? Everybody likes our refactorings, and

the boss is asking for more!”1

“Today we’ll be working on Bookworm again,” Bill explains. “But first,

we need to pin down some theory about class definitions. Let’s start

right where we left off Monday: in the Ruby object model.”

Inside Class Definitions

As you take your first sip of coffee, Bill has already switched to lecture

mode. “You probably think of a class definition as the place where you

define methods. In truth, you can put any code you want in a class

definition.” To demonstrate what he’s jabbering on about, Bill jumps

up and scrawls all over your whiteboard:

class MyClass

puts 'Hello!'

end

⇒ Hello!

Bill goes on to explain that class definitions also return the value of

the last statement, just like methods and blocks do. He fills up more of

your whiteboard:

result = class MyClass

self

end

result # => MyClass

This last example emphasizes a compelling point: in a class (or mod-

ule) definition, the class itself takes the role of the current object self.2

“Classes and modules are just objects, right?” Bill asks—to no one in

particular. “So, why couldn’t a class be self?” Keep this point about class

1. You and Bill worked on Bookworm in Chapter 1, Monday: The Object Model, on

page 27.
2. You learned about this behavior of self in Section 1.5, Class Definitions and self , on

page 54.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=123

CLASS DEFINITIONS DEMYSTIFIED 124

definitions and self in mind, because the concept will become useful a

bit later.

While he’s on the topic of self, Bill takes the opportunity to tell you

about a related concept: that of the current class.

The Current Class

As you know, wherever you are in a Ruby program, you always have

a current object: self. Likewise, you always have a current class (or

module). When you define a method, that method becomes an instance

method of the current class.

Although you can get a reference to the current object through self,

there’s no equivalent keyword to get a reference to the current class.

However, it’s not difficult to keep track of the current class just by look-

ing at the code. Whenever you open a class with the class keyword (or a

module with the module keyword), that class becomes the current class:

class MyClass

The current class is now MyClass...

def my_method

...so this is an instance method of MyClass

end

end

However, the class keyword has a limitation: it needs the name of a

class. Unfortunately, in some situations you may not know the name

of the class that you want to open. For example, think of a method that

takes a class and adds a new instance method to it:

def add_method_to(a_class)

TODO: define method m() on a_class

end

How can you open the class if you don’t know its name? You need some

way other than the class keyword to change the current class. Enter the

class_eval() method.

class_eval()

Module#class_eval() (also known by its alternate name, module_eval())

evaluates a block in the context of an existing class:

Download class_definitions/class_eval.rb

def add_method_to(a_class)

a_class.class_eval do

def m; 'Hello!'; end

end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/class_eval.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=124

CLASS DEFINITIONS DEMYSTIFIED 125

The Current Class and Special Cases

In Section 4.1, The Current Class, on the preceding page, Bill
lectured you about the Ruby interpreter always keeping track
of the current class. And when he said always, he really meant
it. To illustrate Bill’s point, look at this (admittedly contrived)
example:

Download class_definitions/current_class.rb

class MyClass
def method_one
def method_two; 'Hello!'; end

end
end

obj = MyClass.new
obj.method_one
obj.method_two # => "Hello!"

Which class does method_two() belong to? Or, to ask the same
question in a different way, which class is the current class when
method_two() is defined? In this case, the current class cannot
be the same as self, because self is not a class. Instead, the role
of the current class is taken by the class of self: MyClass.

The same principle applies if you’re at the top level of your pro-
gram. In that situation, the current class is Object, the class of
main. That’s why, if you define a method at the top level, that
method becomes an instance method of Object.

add_method_to String

"abc".m # => "Hello!"

In case you’re wondering, Module#class_eval() is very different from

Object#instance_eval(), which you learned about earlier in Section 3.4,

instance_eval(), on page 105. instance_eval() only changes self, while

class_eval() changes both self and the current class.3 By changing the

current class, class_eval() effectively reopens the class, just like the class

keyword does.

3. This is not the whole truth: instance_eval() does also change the current class, but

you’ll have to wait for the sidebar on page 141 to learn how exactly. For now, you can

safely ignore the problem and assume that instance_eval() only changes self.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/current_class.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=125

CLASS DEFINITIONS DEMYSTIFIED 126

Deciding Between instance_eval() and class_eval()

If you want to open an object that is not a class, then you can
use instance_eval(). If you want to open a class definition and
define methods with def, then class_eval() should be your pick.
But what if you want to open an object that happens to be a
class (or module) to do something else than using def? Should
you use instance_eval() or class_eval() then?

If all you want is to change self, then both instance_eval() and
class_eval() will do the job nicely. However, you should pick the
method that best communicates your intentions. If you’re think-
ing “I want to open this object, and I don’t particularly care
it’s a class,” then instance_eval() is fine. If you’re thinking “I want
an Open Class (31) here,” then class_eval() is almost certainly a
better match.

Module#class_eval() is actually more flexible than class. You can use

class_eval() on any variable that references the class, while class requires

a constant. Also, class opens a new scope, losing sight of the current

bindings, while class_eval() has a Flat Scope (103). As you learned in

Section 3.3, Scope Gates, on page 100, this means you can reference

variables from the outer scope in a class_eval() block.

Bill takes a huge slurp from his coffee mug. “Permit me to summarize

what we just covered,” he offers.

Current Class Wrap-up

You just learned a few things about class definitions:

• In a class definition, the current object self is the class being

defined.

• The Ruby interpreter always keeps a reference to the current class

(or module). All methods defined with def become instance meth-

ods of the current class.

• In a class definition, the current class is the same as self—the class

being defined.

• If you have a reference to the class, you can open the class with

class_eval() (or module_eval()).

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=126

CLASS DEFINITIONS DEMYSTIFIED 127

“I know what you’re going to ask now,” Bill exclaims. “How on Earth

could this stuff ever be useful in real life?”4 To prove that all this theory

about the current class can come very useful, Bill shows you a trick

called Class Instance Variables.

Class Instance Variables

The Ruby interpreter assumes that all instance variables belong to the

current object self. This is also true in a class definition:

Download class_definitions/class_instance_variables.rb

class MyClass

@my_var = 1

end

“In a class definition,” Bill reminds you, “the role of self belongs to the

class itself, so the instance variable @my_var belongs to the class. Don’t

get confused! Instance variables of the class are different from instance

variables of that class’s objects.” Bill returns to your now nearly illegible

whiteboard to add yet another example:

class MyClass

@my_var = 1

def self.read; @my_var; end

def write; @my_var = 2; end

def read; @my_var; end

end

obj = MyClass.new

obj.write

obj.read # => 2

MyClass.read # => 1

The previous code defines two instance variables. Both happen to be

named @my_var, but they’re defined in different scopes, and they belong

to different objects. To see how this works, you have to remember that

classes are just objects, and you have to track self through the program.

One @my_var is defined with obj as self, so it’s an instance variable of

the obj object. The other @my_var is defined with MyClass as self, so it’s

an instance variable of the MyClass object—a Class Instance Variable. Spell: Class Instance

Variable

If you come from Java, you may be tempted to think that Class Instance

Variables are similar to Java’s “static fields.” Instead, they’re just regu-

4. Actually, there’s a good chance that you were not going to ask that. But you know

Bill. He loves monologues.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/class_instance_variables.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=127

CLASS DEFINITIONS DEMYSTIFIED 128

lar instance variables that happen to belong to an object of class Class.

Because of that, a Class Instance Variable can be accessed only by the

class itself—not by an instance or by a subclass.

“We’ve touched on many things,” Bill summarizes. “The current class,

class definitions, self, class_eval(), Class Instance Variables. . . let’s go

back to Bookworm and put these features together.”

Working on Bookworm Again

The Bookworm source contains very few unit tests, so it’s up to you and

Bill to write tests as you refactor. Sometimes this proves to be difficult,

as is the case with this class:

Download class_definitions/bookworm_classvars.rb

class Loan

def initialize(book)

@book = book

@time = Time.now

end

def to_s

"#{@book.upcase} loaned on #{@time}"

end

end

Loan stores the title of a book and the time when it was loaned—that is,

the time when the object was created. You’d like to write a unit test for

the to_s() method, but to write that test, you’d have to know the exact

time when the object was created. This is a common problem with code

that relies on Time or Date: such code returns a different result every

time it runs, so you don’t know what result to test for.

“I think I have a solution to this problem,” Bill announces. “It’s a bit

involved, so it will require some attention on your part. Here it is.” Back

to the whiteboard he goes:5

class Loan

def initialize(book)

@book = book

@time = Loan.time_class.now

end

def self.time_class

@time_class || Time

end

5. Bill borrowed this idea from Rake’s ftptools.rb and test_ftp.rb files.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/bookworm_classvars.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=128

CLASS DEFINITIONS DEMYSTIFIED 129

Class Variables

If you want to store a variable in a class, you have more options
than just using a Class Instance Variable (127). You can also use
a class variable, identified by an @@ prefix:

class C
@@v = 1

end

Class variables are different from Class Instance Variables,
because they can be accessed by subclasses and by regu-
lar instance methods. (In that respect, they’re more similar to
Java’s static fields.)

class D < C
def my_method; @@v; end

end

D.new.my_method # => 1

Unfortunately, class variables have a nasty habit of surprising
you. Here’s an example:

@@v = 1

class MyClass
@@v = 2

end

@@v # => 2

You get this result because class variables don’t really belong to
classes—they belong to class hierarchies. Since @@v is defined
in the context of main, it belongs to main’s class Object. . . and to
all the descendants of Object. MyClass inherits from Object, so it
ends up sharing the same class variable.

As technically sound as this behavior is, it’s still likely to trip you.
Because of unwelcome surprises like the one shown earlier,
most Rubyists nowadays shun class variables in favor of Class
Instance Variables.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=129

QUIZ: CLASS TABOO 130

def to_s

...

Loan.time_class() returns a class, and Loan#initialize() uses that class to

get the current time. The class is stored in a Class Instance Variable

(127) named @time_class. If @time_class is nil, the Nil Guard (244) in time_

class() returns the Time class as a default.

In production, Loan always uses the Time class, because @time_class()

is always nil. By contrast, the unit tests can rely on a fake time class

that always returns the same value. The tests can assign a value to the

private @time_class variable by using either class_eval() or instance_eval().

Any of the two methods will do here, because they both change self. In

this case, Bill decides that instance_eval() is more appropriate:

class FakeTime

def self.now; 'Mon Apr 06 12:15:50'; end

end

require 'test/unit'

class TestLoan < Test::Unit::TestCase

def test_conversion_to_string

Loan.instance_eval { @time_class = FakeTime }

loan = Loan.new('War and Peace')

assert_equal 'WAR AND PEACE loaned on Mon Apr 06 12:15:50', loan.to_s

end

end

Bill is quite proud of his own coding prowess. “After this,” he says, “I

think we deserve a break—and a quiz!”

4.2 Quiz: Class Taboo

Where you write an entire program without ever using a certain popular

keyword.

“Did you ever play Taboo?” Bill asks.6 “The rules are simple: you’re

given a secret sentence and a list of words that you cannot use (they are

“taboo”). You must help a teammate guess the secret sentence. You can

give your teammate as many suggestions as you want, but you must

never pronounce a taboo word. If you do that, you lose immediately.”

6. See http://www.boardgames.com/taboo.html.

Report erratum

this copy is (P1.0 printing, January 2010)

http://www.boardgames.com/taboo.html
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=130

QUIZ: CLASS TABOO 131

Bill asks you to play taboo with Ruby code. You have only one taboo

word, the class keyword. Here’s your secret sentence:”

class MyClass < Array

def my_method

'Hello!'

end

end

You have to write a piece of code that has exactly the same effect as the

previous one, without ever using the class keyword. Are you up to the

challenge? (Just one hint: look at the documentation for Class#new().)

Quiz Solution

Since a class is just an instance of Class, you can create it by calling

Class#new(). Class#new() also accepts an argument (the superclass of the

new class) and a block that is evaluated in the context of the newborn

class:

c = Class.new(Array) do

def my_method

'Hello!'

end

end

Now you have a variable that references a class, but the class is still

anonymous. Do you remember the discussion about class names in

Section 1.3, Constants, on page 38? The name of a class is just a con-

stant, so you can assign it yourself:

MyClass = c

Interestingly, Ruby is cheating a little here. When you assign an anony-

mous class to a constant, Ruby understands that you’re trying to give a

name to the class, and it does something special: it turns around to the

class and says, “Here’s your new name.” Now the constant references

the Class, and the Class also references the constant. If it weren’t for this

trick, a class wouldn’t be able to know its own name, and you couldn’t

write this:

c.name # => "MyClass"

With a sense of pride, you turn to Bill to show him your solution to the

quiz—but he’s already busy browsing the Bookworm source. It’s time

to get back to the task at hand.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=131

SINGLETON METHODS 132

4.3 Singleton Methods

Where it’s your turn to teach Bill a few tricks.

It’s late morning, and you and Bill are deep in the flow. You’re zipping

through the Bookworm source, deleting some useless lines here, chang-

ing a confusing name there, and generally polishing the code. . . until

you bump into a particularly troublesome refactoring.

The Paragraph class wraps a string and then delegates all calls to the

wrapped string—all of them, that is, except for one method, Paragraph#

title?(), which returns true if a Paragraph is all uppercase.

Download class_definitions/paragraph.rb

class Paragraph

def initialize(text)

@text = text

end

def title?; @text.upcase == @text; end

def reverse; @text.reverse; end

def upcase; @text.upcase; end

#...

Paragraph objects are created in a single place in the Bookworm source

code. Also, Paragraph#title?() is called only once in the whole application,

from a method named index():

def index(paragraph)

add_to_index(paragraph) if paragraph.title?

end

“Dang!” Bill exclaims. “The stupid Paragraph class really doesn’t hold its

own weight. We could scrap it entirely and just use regular Strings, if it

weren’t for the title?() method.”

“Why don’t we Monkeypatch (33) the String class and add the title?()

method right there?” you offer. “I don’t like that solution either,” Bill

mumbles. “A method with that name would make sense only on strings

that represent a paragraph, not on each and every string. What a

conundrum!”

It hurts you to see your pal suffering, so you spring into action. It takes

you a few minutes to Google a solution to Bill’s worries.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/paragraph.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=132

SINGLETON METHODS 133

Introducing Singleton Methods

As it turns out, Ruby allows you to add a method to a single object. For

example, here’s how you can add title?() to a specific string:

Download class_definitions/singleton_methods.rb

str = "just a regular string"

def str.title?

self.upcase == self

end

str.title? # => false

str.methods.grep(/title?/) # => ["title?"]

str.singleton_methods # => ["title?"]

The previous code adds a method named title?() to str. No other object

gets the method—not even other Strings. A method like this one, which

is specific to a single object, is called a Singleton Method. Spell: Singleton Method

“OK,” Bill quips, “but how can Singleton Methods help us solve our

problem?”

Singleton Methods in Action

Thanks to Singleton Methods, you can now fix your problem with the

Bookworm source. You can send any old String to index() if you enhance

that String with a title?() Singleton Method:

Download class_definitions/paragraph.rb

paragraph = "any string can be a paragraph"

def paragraph.title?

self.upcase == self

end

index(paragraph)

Now you can use plain strings in Bookworm and delete the Paragraph

class.

“Dude, you rock!” Bill exclaims. “I knew about Singleton Methods, but

I never realized you could use them this way.”

“Wait a minute,” you reply. “You knew about them? What did you think

they were useful for?”

Bill explains that Singleton Methods aren’t just useful for enhancing

a specific object, like you just did. They’re also the basis for one of

Ruby’s most common features. “What if I told you that you’ve been

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/singleton_methods.rb
http://media.pragprog.com/titles/ppmetr/code/class_definitions/paragraph.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=133

SINGLETON METHODS 134

Duck Typing

Some people are horrified by Singleton Methods (133), thinking
that if each object can have its own methods, no matter which
class it belongs to, then your code is going to become a twisted
tangle of spaghetti.

If you reacted that way yourself, then you’re probably used
to static languages. In a static language such as Java, you
say that an object has type T because it belongs to class T

(or because it implements interface T). In a dynamic language
such as Ruby, the “type” of an object is not strictly related to its
class. Instead, the “type” is simply the set of methods to which
an object can respond.

People refer to this second, more fluid notion of a type as duck
typing. This name comes from this motto: “If it walks like a duck
and quacks like a duck, then it must be a duck.” In other words,
you don’t care that an object is an instance of class Duck. You
just care that it responds to walk() and quack(), whether they’re
regular methods, Singleton Methods (133), or even Ghost Meth-
ods (73).

If you hang around Ruby for a while, you will get used to
duck typing—and after learning a few cool dynamic tricks, you
might even wonder how you could have lived without it in the
first place.

using Singleton Methods all along, without ever knowing it?” Bill asks,

rhetorically.

The Truth About Class Methods

Bill looks at you conspiratorially. “Remember what we talked about

on Monday?7 Classes are just objects, and class names are just con-

stants.” If you remember this concept, then you’ll see that calling a

method on a class is the same as calling a method on an object:

an_object.a_method

AClass.a_class_method

7. Bill is talking about the stuff that you learned in Section 1.3, The Truth About Classes,

on page 33.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=134

SINGLETON METHODS 135

See? The first line calls a method on an object referenced by a variable,

and the second line calls a method on an object (that also happens to

be a class) referenced by a constant. It’s the same syntax.

“But, wait! There’s more,” Bill adds, leaning forward. “Remember how

I told you that you’ve been using Singleton Methods (133) all along?”

That’s really what class methods are: they’re Singleton Methods of a

class. In fact, if you compare the definition of a Singleton Method and

the definition of a class method, you’ll see that they’re the same:

def obj.a_singleton_method; end

def MyClass.another_class_method; end

If you’re writing code in a class definition, you can also take advantage

of the fact that self is the class itself. Then you can use self in place of

the class name to define a class method:

class MyClass

def self.yet_another_class_method; end

end

So, you always define a Singleton Method in the same way:

def object.method

Method body here

end

In the definition shown previously, object can be an object reference, a

constant class name, or self. The syntax might look different in the three

cases—but in truth, the underlying mechanism is always the same.

Nice design, don’t you think?

As Bill is quick to point out, you’re not finished with class methods yet.

There’s a very useful and common spell that relies on class methods

exclusively, and it deserves its own discussion.

Class Macros

“I’m going to introduce you to a very common spell,” Bill announces. He

starts with an example that comes straight from the core of Ruby.

The attr_accessor() Example

Ruby objects don’t have attributes. If you want something that looks

like an attribute, you have to define two Mimic Methods (241), a reader

and a writer:

Download class_definitions/attr.rb

class MyClass

def my_attribute=(value)

@my_attribute = value

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/attr.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=135

SINGLETON METHODS 136

end

def my_attribute

@my_attribute

end

end

obj = MyClass.new

obj.my_attribute = 'x'

obj.my_attribute # => "x"

Writing methods like these (also called accessors) gets boring very

quickly. As an alternative, you can generate accessors by using one

of the methods in the Module#attr_*() family. Module#attr_reader() gen-

erates the reader, Module#attr_writer() generates the writer, and Mod-

ule#attr_accessor() generates both:

class MyClass

attr_accessor :my_attribute

end

All the attr_*() methods are defined on class Module, so you can use them

whenever self is a module or a class. A method such as attr_accessor() is

called a Class Macro. Class Macros look like keywords, but they’re just Spell: Class Macro

regular class methods that are meant to be used in a class definition.

“Now that you know about Class Macros,” Bill sums up, “I think I know

a place in Bookworm’s source code where we can make good use of

them.”

Class Macros Applied

“Look at the Book class!” Bill exclaims, pointing at the Bookworm source

code. “It has methods named GetTitle(), title2(), and LEND_TO_USER(). “Talk

about badly chosen names. By Ruby’s conventions, they should be

named title(), subtitle(), and lend_to(), respectively.”

“Not so fast, buddy,” you jump in. “There are other projects that use

the Book class, and we have no control over these projects. We can’t

just rename the methods. That would break the callers!”

Bill concedes that you’re right but explains that you can rename the

methods if you invent a Class Macro (136) that deprecates the old

names:

Download class_definitions/deprecated.rb

class Book

def title # ...

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/deprecated.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=136

EIGENCLASSES 137

def subtitle # ...

def lend_to(user)

puts "Lending to #{user}"

...

def self.deprecate(old_method, new_method)

define_method(old_method) do |*args, &block|

warn "Warning: #{old_method}() is deprecated. Use #{new_method}()."

send(new_method, *args, &block)

end

end

deprecate :GetTitle, :title

deprecate :LEND_TO_USER, :lend_to

deprecate :title2, :subtitle

end

The deprecate() method takes the old name and the new name of a

method and defines a Dynamic Method (68) that catches calls to the

old name. The Dynamic Method forwards the calls to the renamed

method—but first it prints a warning on the console to notify the callers

that the old name has been deprecated:

b = Book.new

b.LEND_TO_USER("Bill")

⇒ Warning: LEND_TO_USER() is deprecated. Use lend_to().

Lending to Bill

Bill is proud of his solution. “Class Macros (136) are cool, aren’t they?

But if you really want to understand Class Macros, as well as Single-

ton Methods in general, you have to look deeper into the Ruby object

model.”

4.4 Eigenclasses

Where you and Bill place the final piece in the object model puzzle.8

“Now we’re going to tackle the difficult topic of eigenclasses,” Bill com-

mences. “They are the UFOs of the Ruby world: even if you never see

8. This section and Section 4.5, Quiz: Module Trouble, on page 150, contain advanced

material that might take a while for you to digest. If you want, you can snooze through

Bill’s detailed explanations and skip straight to Section 4.6, Aliases, on page 152. Be sure

to come back to these sections later!

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=137

EIGENCLASSES 138

Figure 4.1: Where is the Singleton Method?

one in person, you can find scattered hints of their existence all over

the place. Let’s start our investigation by collecting some evidence.”

The Mystery of Singleton Methods

In Section 1.5, Method Lookup, on page 48, you learned how Ruby finds

methods by going right into the receiver’s class and then up the class

hierarchy. For example:

class MyClass

def my_method; end

end

obj = MyClass.new

obj.my_method

Bill draws Figure 4.1. “When you call my_method(),” he demonstrates,

“Ruby goes right into MyClass and finds the method there.”

So far, so good. Now, what happens if you define a Singleton Method

(133) on obj?

def obj.my_singleton_method; end

If you look at Figure 4.1, you’ll notice that there’s no obvious home

for my_singleton_method() there. The Singleton Method can’t live in obj,

because obj is not a class. It can’t live in MyClass, because if it did,

all instances of MyClass would share it. And it cannot be an instance

method of MyClass’s superclass, Object. So then, where do Singleton

Methods live?

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=138

EIGENCLASSES 139

Figure 4.2: Where is the class method?

Class methods are a special kind of Singleton Method—and just as

baffling:

def MyClass.my_class_method; end

If you look at Figure 4.2, you’ll find that, again, my_class_method() doesn’t

seem to live anywhere in Bill’s diagram. Bill has an explanation ready.

Eigenclasses Revealed

“When you ask an object for its class,” Bill lectures, “Ruby doesn’t

always tell you the whole truth. Instead of the class that you see, an

object can have its own special, hidden class. That’s called the eigen-

class of the object.”

Methods like Object#class() keep the eigenclass carefully hidden, but

you can work around them. Ruby has a special syntax, based on the

class keyword, that places you in the scope of the eigenclass:

class << an_object

your code here

end

If you want to get a reference to the eigenclass, you can return self out

of the scope:

obj = Object.new

eigenclass = class << obj

self

end

eigenclass.class # => Class

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=139

EIGENCLASSES 140

Eigen... what?

The name eigenclass has an eventful history. Each Ruby pro-
grammer seems to have a pet name for these entities. Most
people still call them singleton classes, but this name confus-
ingly recalls the (unrelated) Singleton design pattern. Other
people call them “metaclasses,” meaning “the class of a class.”
This is still a fashionable name for eigenclasses of classes, but it
doesn’t really fit eigenclasses of objects.

Yukihiro “Matz” Matsumoto, the author of Ruby, hasn’t an-
nounced an official name yet—but he seems to like the
mathematician-friendly name eigenclass. The German word
eigen roughly means “one’s own,” so the common translation
of eigenclass is something like “an object’s own class.” This
book sticks with Matz’s vocabulary, but be aware that the term
eigenclass is not as widely used as singleton class.

I also faced another terminology problem while writing this
book: what do I call the methods of an eigenclass? Neither
eigenmethods nor eigenclass methods is easy on the eye. After
a lot of arguing and coffee drinking, I decided to stick with Sin-
gleton Methods, which is still the most common name for these
things.

“That sneaky eigenclass was trying to hide, but we managed to find it!”

Bill exclaims.

Bill’s example also shows that an eigenclass is a class—but a very spe-

cial one. For starters, it’s invisible until you resort to the exotic class

syntax shown earlier. Also, eigenclasses have only a single instance

(that’s why they’re also called singleton classes), and they can’t be

inherited. More important, an eigenclass is where an object’s Singleton

Methods live:

def obj.my_singleton_method; end

eigenclass.instance_methods.grep(/my_/) # => ["my_singleton_method"]

To fully understand the consequences of this last point, you have to

look deeper into Ruby’s object model.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=140

EIGENCLASSES 141

Eigenclasses and instance_eval()

Now that you know about eigenclasses, you can fill in one miss-
ing snippet of knowledge about the instance_eval() method.
In Section 4.1, class_eval(), on page 124, you learned that
instance_eval() changes self, and class_eval() changes both self

and the current class. However, instance_eval() also changes
the current class: it changes it to the eigenclass of the receiver.
This example uses instance_eval() to define a Singleton Method
(133):

Download class_definitions/instance_eval.rb

s1, s2 = "abc", "def"

s1.instance_eval do
def swoosh!; reverse; end

end

s1.swoosh! # => "cba"
s2.respond_to?(:swoosh!) # => false

You’ll rarely, if ever, see instance_eval() used purposefully
to change the current class. The standard meaning of
instance_eval() is this: “I want to change self.”

Method Lookup Revisited

“On Monday,” Bill reminds you, “we talked about the Ruby object model

and method lookup.9 Back then, we had to leave some parts of the

object model unexplored. Eigenclasses are the missing link we needed.”

He promises to demonstrate how, once you understand eigenclasses, all

the bits and pieces in the object model finally fall into place.

Lookup Reviewed

To look into the object model, you need a practical example to focus on.

Bill quickly writes what he calls a “lab rat” program:

class C

def a_method

'C#a_method()'

end

end

9. That happened in Section 1.5, What Happens When You Call a Method?, on page 46.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/instance_eval.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=141

EIGENCLASSES 142

Figure 4.3: A snippet of the object model for Bill’s “lab rat” program

class D < C; end

obj = D.new

obj.a_method # => "C#a_method()"

Can you draw a picture of obj and its ancestors chain? If you do, it will

probably look like Figure 4.3. (For now, you don’t have to bother with

eigenclasses or modules.)

You know that method lookup goes “one step to the right, then up.”

When you call obj.a_method(), Ruby goes right into obj’s class D. From

there, it climbs up the ancestors chain until it finds a_method() in class

C. “Now,” Bill announces, “let’s add eigenclasses to the mix.”

Eigenclasses and Method Lookup

To make your life easier as you experiment with eigenclasses, Bill writes

a helper method that returns the eigenclass of any object.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=142

EIGENCLASSES 143

Class Method Syntaxes

You already know two ways to define a class method. Either
you get in the class’s scope and use self or you use the name of
the class:

class MyClass
def self.my_method; end

end

def MyClass.my_other_method; end

Now you have a third way to define a class method. Since
class methods are just Singleton Methods that live in the class’s
eigenclass, you can just open the eigenclass and define the
method in there:

class MyClass
class << self
def my_method; end

end
end

Which syntax should you use in your daily coding? This is usu-
ally a matter of personal taste. The self form is arguably more
readable for most people, but some coders prefer to acknowl-
edge the eigenclass explicitly. The “class name” syntax is usu-
ally frowned upon by expert Rubyists, because it duplicates the
class name, making it more difficult to refactor.

class Object

def eigenclass

class << self; self; end

end

end

"abc".eigenclass # => #<Class:#<String:0x331df0>>

As you try the eigenclass() method, you also notice that the names that

Ruby assigns to eigenclasses are a bit of a mouthful. In your diagrams,

you and Bill decide to identify eigenclasses with a simple # prefix. By

this convention, #obj is the eigenclass of obj, #C is the eigenclass of C,

and so on.

Armed with the eigenclass() method and your new naming convention,

you can now proceed with your fearless exploration of the object model.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=143

EIGENCLASSES 144

Figure 4.4: Method lookup and eigenclasses

You go back to Bill’s “lab rat” program and define a Singleton Method

(133):

class << obj

def a_singleton_method

'obj#a_singleton_method()'

end

end

“Let’s experiment!” Bill exclaims. “We know that an eigenclass is a class,

so it must have a superclass. Which is the superclass of the eigen-

class?”

obj.eigenclass.superclass # => D

The superclass of obj’s eigenclass is D.10 As you finish sipping your

coffee, Bill adds this newfound knowledge to his diagram of the “lab

rat” object model. The result is shown in Figure 4.4.

10. Some older versions of Ruby disagree with this. Instead, they report that the super-

class of any eigenclass is always #Class. This is a bug in the Ruby interpreter and has

since been fixed. To be sure you don’t stumble into the bug, run this code on Ruby 1.9.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=144

EIGENCLASSES 145

Meta Squared

Eigenclasses are classes, and classes are objects, and objects
have eigenclasses. . . . Can you see where this train of thought is
going? Like any other object, an eigenclass must have its own
eigenclass:

class << "abc"
class << self
self # => #<Class:#<Class:#<String:0x33552c>>>

end
end

If you ever find a practical use for eigenclasses of eigenclasses,
let the world know!

Now you can see how Singleton Methods fit into the normal process of

method lookup. If an object has an eigenclass, Ruby starts looking for

methods in the eigenclass rather than the conventional class, and that’s

why you can call Singleton Methods such as obj#a_singleton_method().

If Ruby can’t find the method in the eigenclass, then it goes up the

ancestors chain, ending in the superclass of the eigenclass—which is

the object’s class. From there, everything is business as usual.

“Now you understand how Singleton Methods work,” Bill notes. “But

what about class methods? Yes, they’re just a special case of Singleton

Methods, but they deserve a closer look.”

Eigenclasses and Inheritance

“Your head might start spinning right about now,” Bill warns you.

“We’re going to look at the connections between classes, eigenclasses,

and superclasses.” This area of the object model can be confusing, but

once it clicks in your mind, it will all look very obvious and elegant. If

you’re stuck, just look at the pictures, or fire up irb and experiment on

your own.

Bill gets back to the keyboard and adds a class method to the “lab rat”

program.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=145

EIGENCLASSES 146

class C

class << self

def a_class_method

'C.a_class_method()'

end

end

end

Now you can explore the resulting object model:11

C.eigenclass # => #<Class:C>

D.eigenclass # => #<Class:D>

D.eigenclass.superclass # => #<Class:C>

C.eigenclass.superclass # => #<Class:Object>

Bill grabs a scrap of paper and draws the diagram in Figure 4.5, on the

following page. This is a somewhat complicated diagram, so you should

understand its notation before you delve into it. The arrows marked

with S link classes to their superclasses, and the arrows marked with C

link objects (including classes) to their classes, which in this case are all

eigenclasses. Bill stresses that the arrows marked with a C do not point

at the same classes that the class() method would return, because the

class() method doesn’t know about eigenclasses. (For example, obj.class()

would return D, even if the class of obj is actually its eigenclass, #obj.)12

Apparently, Ruby organizes classes, eigenclasses, and superclasses in

a very purposeful pattern. The superclass of #D is #C, which is also the

eigenclass of C. By the same rule, the superclass of #C is #Object. Bill

tries to sum it all up, making things even more confusing: “The super-

class of the eigenclass is the eigenclass of the superclass. It’s easy!”

“OK,” you say, “but there must be a reason for Ruby arranging classes,

superclasses, and eigenclasses this way.” Bill confirms, “Sure, there is.

Thanks to this arrangement, you can call a class method on a sub-

class:”

D.a_class_method # => "C.a_class_method()"

11. Because of a bug in the Ruby interpreter, you can get different results if you run this

code on versions of Ruby that are earlier than 1.9.
12. Bill’s diagram goes up to Object and #Object. In a few minutes, you’ll see a diagram

that goes higher up the chain—into BasicObject, #BasicObject, and beyond. Meanwhile, if

you’re a completist, you can draw the Kernel module between Object and BasicObject. On

the other hand, you probably don’t want to include #Kernel in this diagram. Although

modules can have eigenclasses like any other object, the eigenclass of Kernel is not part

of obj’s or #D’s ancestor chains.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=146

EIGENCLASSES 147

Figure 4.5: Eigenclasses of classes

Even if a_class_method() is defined on C, you can also call it on D. This

is probably what you expect, but it’s only possible because method

lookup starts in #D and goes up to #D’s superclass #C, where it finds

the method.

“Ingenious, isn’t it? Now we can finally grasp the entire object model,”

Bill announces.

The Great Unified Theory

“The Ruby object model is a beautiful place,” Bill notes, with a dreamy

expression on his face. “There are classes, eigenclasses, and modules.

There are instance methods, class methods, and Singleton Methods.”

At first glance, it all looks very complex. Look closer, and the complexity

fades away. If you put eigenclasses together with regular classes and

modules, you end up with the seven rules of the Ruby object model:

1. There is only one kind of object—be it a regular object or a module.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=147

EIGENCLASSES 148

2. There is only one kind of module—be it a regular module, a class,

an eigenclass, or a proxy class.13

3. There is only one kind of method, and it lives in a module—most

often in a class.

4. Every object, classes included, has its own “real class,” be it a

regular class or an eigenclass.

5. Every class has exactly one superclass, with the exception of Basi-

cObject (or Object if you’re using Ruby 1.8), which has none. This

means you have a single ancestors chain from any class up to

BasicObject.

6. The superclass of the eigenclass of an object is the object’s class.

The superclass of the eigenclass of a class is the eigenclass of the

class’s superclass. (Try repeating that three times, fast! Then look

back at Figure 4.5, on the preceding page, and it will all make

sense.)

7. When you call a method, Ruby goes “right” in the receiver’s real

class and then “up” the ancestors chain. That’s all there is to know

about the way Ruby finds methods.

Any Ruby programmer can stumble on a difficult question about the

object model. “Which method in this complicated hierarchy gets called

first?” Or maybe, “Can I call this method from that object?” When this

happens to you, review the seven rules listed earlier, maybe draw a

quick diagram of the object model, and you’ll find the answer in no

time at all.

Congratulations! You now understand the entire Ruby object model!

Class Attributes

Bill’s detailed explanation has left you a bit perplexed. “OK,” you say, “I

can see how eigenclasses are useful to understanding the object model.

But how do I use them in practice?”

Bill answers with an example involving Class Macros (136). “Do you

remember the attr_accessor() method?14 It generates attributes for any

object:

13. Proxy classes are actually somewhat different from the rest, because they’re only used

internally by the Ruby interpreter to mix modules in the ancestors chain. You can read

about them in Section 1.5, Modules and Lookup, on page 49.
14. See Section 4.3, The attr_accessor() Example, on page 135.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=148

EIGENCLASSES 149

Download class_definitions/class_attr.rb

class MyClass

attr_accessor :a

end

obj = MyClass.new

obj.a = 2

obj.a # => 2

But what if you want to define an attribute on a class instead?” You

might be tempted to reopen Class and define the attribute there:

class MyClass; end

class Class

attr_accessor :b

end

MyClass.b = 42

MyClass.b # => 42

This works, but it adds the attribute to all classes. If you want an at-

tribute that’s specific to MyClass, you need a different technique. Define

the attribute in the eigenclass:

class MyClass

class << self

attr_accessor :c

end

end

MyClass.c = 'It works!'

MyClass.c # => "It works!"

To understand how this works, remember that an attribute is actually

a pair of methods.15 If you define those methods in the eigenclass, they

become class methods, as if you’d written this:

def MyClass.c=(value)

@c = value

end

def MyClass.c

@c

end

As usual, Bill grabs the nearest available scrap of paper (probably an

important specification document for some high-profile development

15. Read the discussion of Mimic Methods (241) for more details.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/class_attr.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=149

QUIZ: MODULE TROUBLE 150

Figure 4.6: Class attributes live in the class’s eigenclass.

project) and scribbles a diagram all over it. “That’s how you define an

attribute on a class,” he sums up, pointing at Figure 4.6. “You can also

see another interesting detail in this diagram. The superclass of #Basic-

Object is none other than good old Class. This fact explains why you can

call MyClass#b() and MyClass#b=().”

Clearly happy with his own explanation, Bill leans back in his comfy

chair. “Cool stuff, huh? Now, let’s try a little quiz!”

4.5 Quiz: Module Trouble

Where you learn that eigenclasses and modules mix well with each other.

Bill decides it’s time for a story: “Every single day, somewhere in the

world, a Ruby programmer tries to define a class method by including

a module. I tried it myself, but it didn’t work:”

Download class_definitions/module_trouble.rb

module MyModule

def self.my_method; 'hello'; end

end

class MyClass

include MyModule

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/module_trouble.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=150

QUIZ: MODULE TROUBLE 151

MyClass.my_method # NoMethodError!

“You see,” Bill continues, “when a class includes a module, it gets

the module’s instance methods—not the class methods. Class meth-

ods stay out of reach, in the module’s eigenclass.”

“So, how did you find a solution?” you ask. “Oh, I didn’t,” Bill replies,

blushing. “I just asked for the solution on a mailing list, like everybody

else does. But maybe you can find a solution.” Think about the object

model and eigenclasses. How would you modify the code that you just

looked at so that it works as expected?

Quiz Solution

The solution to this quiz is simple and subtle at the same time. First,

define my_method() as a regular instance method of MyModule. Then

include the module in the eigenclass of MyClass.

Download class_definitions/module_trouble_solution.rb

module MyModule

def my_method; 'hello'; end

end

class MyClass

class << self

include MyModule

end

end

MyClass.my_method # => "hello"

my_method() is an instance method of the eigenclass of MyClass. As

such, my_method() is also a class method of MyClass. This technique

is called a Class Extension. Spell: Class Extension

“Brilliant!” Bill gushes. “What about trying the same trick on a regular

object instead of a class?”

Class Methods and include()

Reviewing Class Extensions, you can define class methods by mixing

them into the class’s eigenclass. Class methods are just a special case

of Singleton Methods, so you can generalize this trick to any object.

In the general case, this is called an Object Extension. In the following Spell: Object Extension

example, obj is extended with the instance methods of MyModule:

Download class_definitions/module_trouble_object.rb

module MyModule

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/module_trouble_solution.rb
http://media.pragprog.com/titles/ppmetr/code/class_definitions/module_trouble_object.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=151

ALIASES 152

def my_method; 'hello'; end

end

obj = Object.new

class << obj

include MyModule

end

obj.my_method # => "hello"

obj.singleton_methods # => [:my_method]

If you think that opening the eigenclass is a clumsy way to extend a

class or an object, Bill is ready to show you an alternative technique.

Object#extend

Class Extensions (151) and Object Extensions (151) are common enough

that Ruby provides a method just for them, named Object#extend():

Download class_definitions/module_trouble_extend.rb

module MyModule

def my_method; 'hello'; end

end

obj = Object.new

obj.extend MyModule

obj.my_method # => "hello"

class MyClass

extend MyModule

end

MyClass.my_method # => "hello"

Object#extend() is simply a shortcut that includes a module in the

receiver’s eigenclass. You can always do that yourself, if you so choose.

“Enough talking about eigenclasses today,” Bill announces. “I don’t

want to get a meta-headache, and I have a hunch that we’ll meet up

with eigenclasses again tomorrow. For now, let’s go back to refactoring

Bookworm.”

4.6 Aliases

Where you and Bill learn that a method by any other name is still a

method.

As the day draws to a close, you and Bill find yourself stuck. Many

methods in Bookworm rely on an open source library that retrieves a

book’s reviews from Amazon’s website. Here’s one example:

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/module_trouble_extend.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=152

ALIASES 153

def deserves_a_look?(book)

amazon = Amazon.new

amazon.reviews_of(book).size > 20

end

This code works in most cases, but it doesn’t manage exceptions. If a

remote call to Amazon fails, Bookworm itself should log this problem

and proceed. You and Bill could easily add exception management to

each line in Bookworm that calls deserves_a_look?()—but there are tens

of such lines, and you don’t want to change all of them.

Bill sums up the problem: “We have a method that we can’t modify

directly, because it’s in a library. We want to wrap additional function-

ality around this method so that all clients get the additional function-

ality automatically.” There’s a simple solution to this problem—but to

get there, you need to know about method aliases first.

Method Aliases

You can give an alternate name to a Ruby method by using the alias

keyword:

Download class_definitions/alias.rb

class MyClass

def my_method; 'my_method()'; end

alias :m :my_method

end

obj = MyClass.new

obj.my_method # => "my_method()"

obj.m # => "my_method()"

In alias, the new name for the method comes first, and the original name

comes second. You can provide the names either as symbols or as plain

names without a leading colon. (Most Rubyists would use a symbol.)

Note that alias is a keyword, not a method. That’s why there’s no comma

between the two method names. (“That darn comma trips me up every

time,” Bill admits.) Ruby also provides Module#alias_method(), a method

equivalent to alias. Continuing with the previous example:

class MyClass

alias_method :m2, :m

end

obj.m2 # => "my_method()"

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/alias.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=153

ALIASES 154

Aliases are common everywhere in Ruby, including the core libraries.

For example, String#size() is an alias of String#length().16

“The alias keyword looks easy,” Bill admits, “but it comes with its own

challenges.”

Around Aliases

What happens if you alias a method and then redefine it?

You can try this with a simple program:

Download class_definitions/around_alias.rb

class String

alias :real_length :length

def length

real_length > 5 ? 'long' : 'short'

end

end

"War and Peace".length # => "long"

"War and Peace".real_length # => 13

The previous code redefines String#length(), but the alias still refers to

the original method. This gives you insight into how method redefini-

tion works. When you redefine a method, you don’t really change the

method. Instead, you define a new method and attach an existing name

to that new method. You can still call the old version of the method as

long as you have another name that’s still attached to it.

According to Bill, this idea of aliasing a method and then redefining it

is the basis of an interesting trick—one that deserves its own examples.

The RubyGems Example

The RubyGems library redefines a Kernel Method (51):

Download gems/rubygems-update-1.3.3/lib/rubygems/custom_require.rb

module Kernel

alias gem_original_require require

def require(path) # :doc:

gem_original_require path

rescue LoadError => load_error

16. From the “Useless Ruby Trivia” department: the aliasing record in the Ruby core

libraries might well go to the Integer() class, which calls the same method no less than six

different ways (to_int(), to_i(), floor(), ceil(), round(), and truncate()).

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/around_alias.rb
http://media.pragprog.com/titles/ppmetr/code/gems/rubygems-update-1.3.3/lib/rubygems/custom_require.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=154

ALIASES 155

if load_error.message =~ /#{Regexp.escape path}\z/ and

spec = Gem.searcher.find(path) then

Gem.activate(spec.name, "= #{spec.version}")

gem_original_require path

else

raise load_error

end

end

end

The new Kernel#require() calls the old Kernel#require(). If the old require()

fails to locate a file, the new require() then looks for the file among

the installed gems and eventually loads it—again, delegating to the old

require().

Bill points at the code. “See how the new require() is wrapped around

the old require()? That’s why this trick is called an Around Alias.” You Spell: Around Alias

can write an Around Alias in three simple steps:

1. You alias a method.

2. You redefine it.

3. You call the old method from the new method.

Around Alias is a common spell.17 Just to make sure you got it right,

Bill suggests you check out a second example of an Around Alias.

The JCode Example

Before Ruby 1.9 introduced support for Unicode, people had to cope

with problems like this:

The successor string of "olè" should be "olé". But:

"olè".succ! # => "omè"

If you want Unicode support in Ruby 1.8, you need a library. Some

such libraries rely on the Decorator pattern. They define their own

string class that wraps Ruby strings (call it UnicodeString). A Unicode-

String overrides methods that worry about Unicode, such as succ(), and

forwards all other method calls to the wrapped String. The problem with

this approach is that you have to painstakingly wrap all your Strings

into UnicodeStrings.

To avoid this chore, the JCode standard library shuns Decorators in

favor of an Around Alias (155):

17. Rails programmers use Around Aliases a lot but indirectly. See Section 7.2,

alias_method_chain(), on page 199.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=155

ALIASES 156

class String

alias original_succ! succ!

private :original_succ!

def succ!

if # a custom encoding is enabled...

find successor of encoded string

else

original_succ!

end

end

...

(Note that you can have different visibilities for different aliases. It’s the

method name, not the method itself, that is either public or private.)

Now String#succ works as expected for Unicode strings:

$KCODE = "UTF8"

require 'jcode'

"olè".succ! # => "olé"

Et voilà!

Two Words of Warning

You must be aware of two potential pitfalls when you use Around Alias

(155), although neither is very common in practice.

First, Around Aliases are a form of Monkeypatching (33), and as such,

they can break existing code. Look back at the last section. Although

JCode redefines String#succ, it stops shy of redefining String#length—

probably because that would break libraries that expect the “length”

of a string to be its size in bytes. Instead, JCode defines a separate

String#jlength() method to calculate the length of a Unicode string in

characters. As usual, the more powerful the tricks you pull, the more

testing of code you need to do!

The second potential problem has to do with loading. You should never

load an Around Alias twice, unless you want to end up with an excep-

tion when you call the method. Can you see why?

As you ponder this last wrinkle, Bill is already getting busy with the

Bookworm source.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=156

QUIZ: BROKEN MATH 157

Solving the Amazon Problem

“Remember where our discussion of aliases originated?” Bill asks. “We

wanted to wrap logging and exception handling around the Amazon#

reviews_of() method.” You can do that with an Around Alias (155):

Download class_definitions/bookworm_aliases.rb

class Amazon

alias :old_reviews_of :reviews_of

def reviews_of(book)

start = Time.now

result = old_reviews_of book

time_taken = Time.now - start

puts "reviews_of() took more than #{time_taken} seconds" if time_taken > 2

result

rescue

puts "reviews_of() failed"

[]

end

end

As you admire this smart piece of code, Bill hits you with an unexpected

quiz.

4.7 Quiz: Broken Math

Where you find that one plus one doesn’t always equal two.

Bill has one last quiz for you today.18 “As you know,” he observes, “most

Ruby operators are actually Mimic Methods (241).” For example, the +

operator on integers is syntactic sugar for a method named Fixnum#+().

When you write 1 + 1, the parser internally converts it to 1.+(1).

“The cool thing about methods is that you can redefine them. So, here’s

your challenge: break the rules of math by redefining Fixnum#+() so that

it always returns the correct result plus one.” For example:

1 + 1 # => 3

Quiz Solution

You can solve this quiz with an Open Class (31). Just reopen Fixnum,

and redefine +() so that (x + y) becomes (x + y + 1). Be careful. This is not

18. The idea for this quiz comes straight from the Pickaxe [TFH08] book.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/bookworm_aliases.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=157

QUIZ: BROKEN MATH 158

Don’t Forget Modules!

Even if a class is just a special case of a module, many program-
mers think of classes as “more important” than modules. Old
habits tend to linger, and most of us are used to seeing classes
as the stars of the object-oriented show. Even Bill focused on
classes for most of today’s examples.

However, all the concepts you learned today can be general-
ized from classes to modules. So, when Bill says that “you always
have a current class,” that class might actually be a module;
when he says that “you can define the instance variable of a
class,” that doesn’t stop you from defining the instance variable
of a module; when he says that you have “eigenclasses,” those
could also be “eigenmodules,” and so on.

as easy as it seems. The new version of +() relies on the old version of

+(), so you need an Around Alias (155):19

Download class_definitions/broken_math.rb

class Fixnum

alias :old_plus :+

def +(value)

self.old_plus(value).old_plus(1)

end

end

class BrokenMathTest < Test::Unit::TestCase

def test_math_is_broken

assert_equal 3, 1 + 1

assert_equal 1, -1 + 1

assert_equal 111, 100 + 10

end

end

Now you have the power to wreak havoc on Ruby’s basic arithmetics.

Enjoy this code responsibly!

19. This test breaks under Ruby 1.9 if you’re using the test-unit gem. If this happens to

you, use the Test::Unit standard library instead.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/class_definitions/broken_math.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=158

QUIZ: BROKEN MATH 159

Calling It a Day

You and Bill did a lot of refactoring today, and you also talked about an

awful lot of stuff. Bill sums it all up for you:

• You looked at the effects of class definitions on self (the default

receiver of the methods you call) and on the current class (the

default home of the methods you define).

• You made acquaintance with Singleton Methods and eigenclasses,

gaining new insights into the object model and method lookup.

• You added a few new tricks to your bag, including Class Instance

Variables (127), Class Macros (136), and Around Aliases (155).

While Bill is busy enumerating Ruby features, you quietly slip out of

the office. There’ll be more time to talk tomorrow, and you need to take

a break!

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=159

Chapter 5

Friday: Code That Writes Code
In the previous chapters, you saw many wonderful metaprogramming

spells—but it’s possible that the “m” word has only become fuzzier for

you. The fact is, the original definition of metaprogramming as “writing

code that writes code” doesn’t fit every technique described in this book.

As you master these techniques, you’d be well within your rights to go

back to the basics and ask, “Now, what is metaprogramming again?”

Rather than look for an updated, Wikipedia-worthy definition, for now

I’ll just chicken out and avoid answering your question. After all, when

it comes to metaprogramming, it’s not like there’s a single approach

that you can define in a short sentence. Metaprogramming is more like

a heterogeneous bag of tricks that all happen to revolve around the

Ruby object model. And like any other bag of tricks, metaprogramming

really shines when you mix tricks together, either from the same bag or

from an entirely different one.

Today you’ll learn a few new tricks you can add to that bag, including

one that quite literally “writes code.” But even better, you’ll see how you

can seamlessly blend many tricks to solve a difficult coding challenge.

5.1 Leading the Way

Where your boss challenges you and Bill to write better code than she

can.

Friday, at last! After such an eventful week, you’re looking forward to a

relaxing final day before the weekend. Wouldn’t you know, as soon as

you enter the office, your boss approaches you and your pal Bill.

LEADING THE WAY 161

“You guys did a good job this week,” she says. “You’re really leading

the way as our resident Ruby experts. Looking over your code, I got so

excited about metaprogramming that I decided to learn it myself. But

last night I got stuck on a difficult coding problem. Can you help me?”

she asks.

Having a boss who used to be a programmer and still likes to get her

hands dirty can sometimes be a problem. But you can hardly say no

when your boss is asking for your help.

The Boss’ Challenge

“A few days ago,” your boss recounts, “I learned about the attr_accessor()

method.1 Now I use it all the time to generate my objects’ attributes.”

While she was at it, your boss also came up with the idea of writing

her own Class Macro (136), similar to attr_accessor(), which generates a

validated attribute. “I call it attr_checked(),” she says.

She explains how this attr_checked() method should work, pointing out

that it should take the name of the attribute, as well as a block. The

block is used for validation. If you assign a value to the attribute and

the block doesn’t return true for that value, then you get a runtime

exception.

Your boss’ first requirement is an attr_checked() Class Macro, and she

explains her secondary requirement: “I don’t want this attr_checked()

method to be available to each and every class, because I don’t like

the idea of cluttering standard classes with my own methods. Instead,

a class should gain access to attr_checked() only when it includes a

CheckedAttributes module.” She provides this example:

class Person

include CheckedAttributes

attr_checked :age do |v|

v >= 18

end

end

me = Person.new

me.age = 39 # OK

me.age = 12 # Exception!

1. The attr_accessor() method appeared in Section 4.3, The attr_accessor() Example, on

page 135.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=161

LEADING THE WAY 162

Your boss stops and looks you straight in the eye. “Do you think you

can write CheckedAttributes and attr_checked() for me?” she asks.2

A Development Plan

After a careful analysis of the problem (OK, more like a quick chat at

the coffee machine), you and Bill agree that the boss’ challenge is a bit

too much to handle in a single burst of coding. Instead, you’ll get to a

solution in small steps. For once, instead of engaging in pair program-

ming, Bill proposes sharing roles: he’ll manage the development, and

you’ll write the code. Before you can utter “No way,” he quickly lists the

steps you’ll take:

1. Write a Kernel Method (51) named add_checked_attribute() using

eval() to add a super-simple validated attribute to a class.

2. Refactor add_checked_attribute() to remove eval().

3. Validate attributes through a block.

4. Change add_checked_attribute() to a Class Macro (136) named attr_

checked() that’s available to all classes.

5. Write a module adding attr_checked() to selected classes through

a hook.

“Weren’t we supposed to work as a pair?” you protest. “I don’t even

understand these steps!”

“No worries, buddy,” Bill quips, condescendingly. “You really only need

to learn two things before you start developing: one is a method named

eval(), and the other is the concept of a Hook Method.” He vows to

tell you everything you need to know about eval(), because eval() is

necessary for the first development step. You will deal with Hook Meth-

ods later.

With that, Bill slides into “teaching mode” again. You have no option

but to sigh and follow along.

2. The boss might have been inspired by the attr_validator() method in the Facets library.

Facets is a large collection of useful Ruby snippets (collected and mostly written by

Thomas Sawyer) and also a great source of coding ideas. You can install Facets with

gem install facets.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=162

KERNEL#EVAL 163

5.2 Kernel#eval

Where you learn that, when it comes right down to it, code is just text.

“You already know about instance_eval() and class_eval(),” Bill says,

grabbing the keyboard.3 “Now let me introduce you to the third member

of the *eval family—a Kernel Method (51) that’s simply named eval().”

In a sense, Kernel#eval() is the most straightforward of the three *eval

methods. Instead of a block, it takes a string that contains Ruby code—

a String of Code for short. Kernel#eval() executes the code in the string Spell: String of Code

and returns the result:

Download ctwc/simple_eval.rb

array = [10, 20]

element = 30

eval("array << element") # => [10, 20, 30]

Executing a literal string of Ruby code is a pretty pointless exercise, but

the power of eval() becomes apparent when you compute your Strings

of Code on the fly. You can see an example of this in the popular Capis-

trano library.

The Capistrano Example

Capistrano is a framework for automating the deployment of Ruby

applications.4 Based on Rake, the default Ruby build system, Capis-

trano borrows Rake’s basic idea: you define tasks in a “build file” and

then execute those tasks from a command line. Capistrano also pro-

vides a few predefined tasks, such as this one:

Download gems/capistrano-2.5.5/lib/capistrano/recipes/deploy.rb

namespace :deploy do

task :update do

...

end

end

Tasks can be organized into Namespaces. This particular task belongs

to the deploy Namespace. On a command line, you would call it deploy:

update. Earlier versions of Capistrano didn’t have Namespaces. Back

then, deploy:update was simply named update. But what if you want

to execute an old build file (one that uses the non-namespaced update

3. instance_eval() and class_eval() are covered in Section 3.4, instance_eval(), on page 105,

and Section 4.1, class_eval(), on page 124, respectively.
4. Capistrano was written by Jamis Buck. Install it with gem install capistrano.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/simple_eval.rb
http://media.pragprog.com/titles/ppmetr/code/gems/capistrano-2.5.5/lib/capistrano/recipes/deploy.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=163

KERNEL#EVAL 164

task) on a recent version of Capistrano? To cater to this scenario, Capis-

trano provides a backward-compatibility feature:

Download gems/capistrano-2.5.5/lib/capistrano/recipes/compat.rb

map = { "update" => "deploy:update",

"restart" => "deploy:restart",

"cleanup" => "deploy:cleanup",

...

}

map.each do |old, new|

...

eval "task(#{old.inspect}) do

warn \"[DEPRECATED] `#{old}' is deprecated. Use `#{new}' instead.\"

find_and_execute_task(#{new.inspect})

end"

end

The map hash translates the old task names into the new namespaced

ones. For each key-value pair in the hash, Capistrano evaluates a String

of Code (163) like this one:

task("update") do

warn "[DEPRECATED] 'update' is deprecated. Use 'deploy:update' instead."

find_and_execute_task("deploy:update")

end

This code defines a task named update that warns you to update the

old build file and then falls back to the deploy:update task. Thanks to

this trick, Capistrano can still work with your old build files, but at the

same time, it encourages you to update those files by using the new

task names.

Most Strings of Code feature some kind of string substitution, as is the

case here. For an alternate way to use eval(), you can evaluate arbitrary

Strings of Code from an external source, effectively building your own

simple Ruby interpreter. Let’s check out an example.

The irb Example

You already know about irb, the default Ruby command-line inter-

preter. At its core, irb is just a simple program that parses the stan-

dard input or a file and passes each line to eval(). (This type of program

is sometimes called a Code Processor.) Here’s the line that calls eval(), Spell: Code Processor

deep within irb’s source code:

Download ctwc/irb/workspace.rb

eval(statements, @binding, file, line)

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/capistrano-2.5.5/lib/capistrano/recipes/compat.rb
http://media.pragprog.com/titles/ppmetr/code/ctwc/irb/workspace.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=164

KERNEL#EVAL 165

Binding Objects

If you want to use eval() to its fullest, you should learn about
the Binding class. A Binding is a whole scope packaged as an
object. The idea is that you can create a Binding to capture the
local scope and carry it around. Later, you can execute code
in that scope by using the Binding object in conjunction with
eval(), instance_eval(), or class_eval().

You can create a Binding with the Kernel#binding() method:

Download ctwc/bindings.rb

class MyClass
def my_method
@x = 1
binding

end
end

b = MyClass.new.my_method

You can evaluate code in the captured scope by passing the
Binding as an additional argument to one of the eval*() meth-
ods:

eval "@x", b # => 1

Ruby also provides a predefined constant named
TOPLEVEL_BINDING, which is just a Binding of the top-level
scope. You can use it to access the top-level scope from
anywhere in your program:

class AnotherClass
def my_method
eval "self", TOPLEVEL_BINDING

end
end

AnotherClass.new.my_method # => main

In a sense, you can see Binding objects as a “purer” form of
closures than blocks, because these objects contain a scope
but don’t contain code.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/bindings.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=165

KERNEL#EVAL 166

“Wait a minute, Bill,” you protest. “I can see that the statements argu-

ment is a line of Ruby code, but what about those three additional

arguments?” Amazingly, Bill admits that you’re right, noting that you

haven’t yet talked about eval()’s optional arguments. “Let’s go through

each argument in turn.”

The first optional argument to eval() is a Binding object, and irb can

change this argument to evaluate code in different contexts.5 This hap-

pens, for example, when you open a nested irb session on a specific

object. (Did you know you can do that? If you didn’t, look at the sidebar

on the following page.) irb sets the @binding variable to evaluate your

commands in the context of that object, similar to what instance_eval()

does.

“What about file and line, the remaining two optional arguments to

eval()?” you ask, wondering if Bill even remembers that you are sit-

ting there. These arguments are used to tweak the stack trace in case

of exceptions. Bill demonstrates this by writing a Ruby program that

raises an exception:

Download ctwc/exception.rb

this file raises an Exception on the second line

x = 1 / 0

You can process this program with irb by typing irb exception.rb at the

prompt. If you do that, you’ll get an exception on line 2 of exception.rb:

⇒ ZeroDivisionError: divided by 0

from exception.rb:2:in ‘/'

When irb calls eval(), it calls it with the filename and line number it’s

currently processing. That’s why you get the right information in the

exception’s stack trace. Just for fun, you can hack irb’s source and

remove the last two arguments from the call to eval() (remember to

undo the change afterward):

Download ctwc/irb/workspace.rb

eval(statements, @binding) # , file, line)

Run irb exception.rb now, and the exception reports the file and line

where eval() is called:

⇒ ZeroDivisionError: divided by 0

from /opt/local/lib/ruby/1.8/irb/workspace.rb:53:in ‘/'

5. Binding objects are described in the sidebar on the previous page.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/exception.rb
http://media.pragprog.com/titles/ppmetr/code/ctwc/irb/workspace.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=166

KERNEL#EVAL 167

Nested irb Sessions

While using irb, you can open a nested session that puts you
in the context of a specific object and allows you to execute
code there, pretty much like instance_eval() does. Just use the
irb command:

irb(main):001:0> s = "abc"
=> "abc"
irb(main):002:0> irb s
irb#1(abc):001:0> reverse
=> "cba"
irb#1(abc):002:0> exit # leave the current context
irb(main):003:0>

Look at the irb prompt. The object in parentheses is the current
self, and the #1 postfix means you’re sitting one level deep into
a nested irb session. While this nested session lasts, the object
you passed to the irb command is the top-level self.

This kind of hacking of the stack trace is especially useful when you

write Code Processors.6

Strings of Code vs. Blocks

In Section 5.2, Kernel#eval, on page 163, you learned that eval() is a

special case in the eval*() family: it evaluates a String of Code (163)

instead of a block, like both class_eval() and instance_eval() do. However,

this is not the whole truth. Although it’s true that eval() always requires

a string, instance_eval() and class_eval() can take either a String of Code

or a block.

This shouldn’t come as a big surprise. After all, code in a string is not

that different from code in a block. Strings of Code can even access

local variables like blocks do:7

array = ['a', 'b', 'c']

x = 'd'

array.instance_eval "self[1] = x"

array # => ["a", "d", "c"]

6. However, these days it’s considered good form to use the extra

context parameters everywhere you evaluate a String of Code (163)

so you can get a better stack trace in case of an exception. See

http://olabini.com/blog/2008/01/ruby-antipattern-using-eval-without-positioning-information/.
7. See Section 3.3, Closures, on page 96.

Report erratum

this copy is (P1.0 printing, January 2010)

http://olabini.com/blog/2008/01/ruby-antipattern-using-eval-without-positioning-information/
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=167

KERNEL#EVAL 168

Here Documents

A String of Code (163) can easily span multiple lines. You can
define a multiline string with the usual double quotes, but some
people prefer a different, more specific syntax. This alternate
syntax, known as a here document, opens a string definition
with a double less-than sign (<<) followed by a “termination
sequence” of characters. The string will end on the first line that
contains only the termination sequence:

s = <<END
This is a "multi-line" string
wishing you a great #{Time.now.year + 1}

END

puts s

⇒ This is a "multi-line" string
wishing you a great 2010

Apart from the syntax style, there is no difference between
a string defined as a here document and a regular double-
quoted string.

Because a block and a String of Code are so similar, in many cases you

have the option of using either one. Which one should you choose? The

short answer is that you should probably go for a block whenever you

can, because Strings of Code have a number of downsides. It’s worth

talking about them.

The Trouble with eval()

“Strings of Code are powerful, no doubt about that,” Bill pipes up. “But

with great power comes great responsibility—and danger.”

To start with, Strings of Code don’t always play well with your editor’s

features, such as syntax coloring and autocompletion. Even when they

do get along with everyone, Strings of Code tend to be difficult to read

and modify. Also, Ruby won’t report a syntax error in a String of Code

until that string is evaluated, potentially resulting in brittle programs

that fail unexpectedly at runtime.

Thankfully, these annoyances are minor compared to the biggest issue

with eval(): security. This particular problem calls for a more detailed

explanation.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=168

KERNEL#EVAL 169

Code Injection

“Why is security a major problem when you use eval()?” you ask, raising

your hand like you’re in a classroom. Bill is only too happy to continue

with the lesson. “Assume that, like most people,” he says, “you have

trouble remembering what each of the umpteen methods of Array does.”

As a speedy way to refresh your memory, you can write an eval()-based

utility that allows you to call a method on a sample array and view the

result (call it the array explorer):

Download ctwc/array_explorer.rb

def explore_array(method)

code = "['a', 'b', 'c'].#{method}"

puts "Evaluating: #{code}"

eval code

end

loop { p explore_array(gets()) }

The infinite loop on the last line collects strings from the standard input

and feeds these strings to explore_array(). In turn, explore_array() turns

the strings into method calls on a sample array. For example, if you

feed the string "revert()" to explore_array(), the method will evaluate the

string "['a', 'b', 'c'].revert()". It’s time to test-drive this utility:

⇐ find_index("b")
⇒ Evaluating: ['a', 'b', 'c'].find_index("b")

1
⇐ map! {|e| e.next }
⇒ Evaluating: ['a', 'b', 'c'].map! {|e| e.next }

["b", "c", "d"]

Now imagine that, being a sharing kind of person, you decide to make

this program widely available on the web. You knock out some quick

CGI coding, and—presto!—you have a website where people can call

array methods and see the results. (To follow the current web-naming

fashion, you might call this site “Arroo” or maybe “MeThood.”) Your

wonderful site takes the Internet by storm, until a sneaky user feeds it

a string like this:

⇐ object_id; Dir.glob("*")
⇒ ['a', 'b', 'c'].object_id; Dir.glob("*") => [your own private information here]

This input represents an inconsequential call to the array, followed by

a command that lists all the files in your program’s directory. Oh, the

horror! Your malicious user can now execute arbitrary code on your

computer—code that does something terrible like wipe your hard disk

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/array_explorer.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=169

KERNEL#EVAL 170

clean or, worse, read your saccharine electronic love letters. This kind

of exploit is called a code injection attack.

Defending Yourself from Code Injection

The obvious next question for Bill is, “How can I protect my code from

code injection?” You might parse all Strings of Code (163) to identify

operations that are potentially dangerous. This approach may prove

ineffective, though, because there are so many possible ways to write

malicious code. Trying to outsmart a determined hacker can be dan-

gerous to both your computer and your ego.

When it comes to code injection, some strings are safer than others.

Only strings that derive from an external source can contain malicious

code, so you might simply limit your use of eval() to those strings that

you wrote yourself. Again, this is easier said than done, because in a

live system it can be surprisingly difficult to track which strings come

from where.

With all these challenges, some programmers advocate banning eval()

altogether. Programmers tend to be paranoid about anything that might

possibly go wrong, so this eval() ban turns out to be a pretty popular

choice.8 If you do away with eval(), you’ll have to look for alternate tech-

niques on a case-by-case basis. Remember the Array Explorer utility

from Section 5.2, Code Injection, on the previous page? You can rewrite

it without eval() by using a Dynamic Dispatch (64):

Download ctwc/array_explorer_safe.rb

def explore_array(method, *arguments)

['a', 'b', 'c'].send(method, *arguments)

end

Still, there are times when you might just miss eval(). For example,

the latest, safer version of the Array Explorer requires you to pass the

method name and the method arguments separately. Unfortunately,

this separation would probably make your web interface less conve-

nient. Also, the safer version of explore_array() cannot call methods that

accept a block, such as find(). If you absolutely need to support blocks,

you’ll find you have to allow arbitrary code back into the system.

It’s not easy to hit the sweet spot between too much eval() and no eval()

at all. If you don’t want to abstain from eval() completely, Ruby does

8. Actually, we’re not paranoid. It’s the government putting something in the tap water

that makes us feel that way.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/array_explorer_safe.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=170

KERNEL#EVAL 171

provide some features that make it somewhat safer. Let’s take a look at

them.

Tainted Objects and Safe Levels

Continuing on the topic of security, Bill introduces you to the concept of

tainted objects. Ruby automatically marks potentially unsafe objects—

in particular, objects that come from external sources—as tainted.

Tainted objects include strings that your program reads from web

forms, files, the command line, or even a system variable. Every time

you create a new string by manipulating tainted strings, the result is

itself tainted. Here’s an example program that checks whether an object

is tainted by calling its tainted?() method:

Download ctwc/tainted_objects.rb

read user input

user_input = "User input: #{gets()}"

puts user_input.tainted?

⇐ x = 1
⇒ true

If you had to check every string for taintedness, then you wouldn’t be

in a much better position than if you had simply tracked unsafe strings

on your own. But Ruby also provides the notion of safe levels, which

complement tainted objects nicely. When you set a safe level (which you

can do by assigning a value to the $SAFE global variable), you disallow

certain potentially dangerous operations.

You can choose from five safe levels, from the default 0 (“hippie com-

mune,” where you can hug trees and format hard disks) to 4 (“military

dictatorship,” where you can’t even exit the program freely). A safe level

of 2, for example, disallows most file-related operations. Note that any

safe level greater than 0 also causes Ruby to flat-out refuse to evaluate

tainted strings:

$SAFE = 1

user_input = "User input: #{gets()}"

eval user_input

⇐ x = 1
⇒ SecurityError: Insecure operation - eval

To fine-tune safety, you can explicitly remove the taintedness on Strings

of Code before you evaluate them (you can do that by calling Object#

untaint()) and then rely on safe levels to disallow dangerous operations

such as disk access.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/tainted_objects.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=171

KERNEL#EVAL 172

Kernel#eval() and Kernel#load()

Ruby has methods like Kernel#load() and Kernel#require() that
take the name of a source file and execute code from that file.
If you think about it, evaluating a file is not that different from
evaluating a string. This means load() and require() are some-
what similar to eval(). Although these methods are not really
part of the *eval() family, you can think of them as first cousins.

You can usually control the content of your files, so you don’t
have as many security concerns with load() and require() as
you do with eval(). Still, safe levels higher than 1 do put some
limitations on importing files. For example, a safe level of 2 or
higher prevents you from using load() with a tainted filename.

By using safe levels carefully, you can write a controlled environment

for eval().9 Such an environment is called a Sandbox. Let’s take a look Spell: Sandbox

at a sandbox taken from a real-life library.

The eRB Example

The eRB standard library10 is the default Ruby template system. This

library is a Code Processor (164) that you can use to embed Ruby into

any file, such as this template containing a snippet of HTML:

Download ctwc/template.rhtml

<p>Wake up! It's a nice sunny <%= Time.new.strftime("%A") %>.</p>

The special <%= ... > tag contains embedded Ruby code. When you pass

this template through eRB, the code is evaluated:

Download ctwc/erb_example.rb

require 'erb'

erb = ERB.new(File.read('template.rhtml'))

erb.run

⇒ <p>Wake up! It's a nice sunny Friday.</p>

9. Safe levels are typically used in combination with other techniques, such as threads

and Clean Rooms (107). For more information about safe levels, see Programming Ruby

[TFH08].
10. eRB was written by Masatoshi Seki.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/template.rhtml
http://media.pragprog.com/titles/ppmetr/code/ctwc/erb_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=172

QUIZ: CHECKED ATTRIBUTES (STEP 1) 173

Somewhere in eRB’s source, there must be a method that takes a snip-

pet of Ruby code extracted from the template and passes it to eval().

Sure enough, here it is:

class ERB

def result(b=TOPLEVEL_BINDING)

if @safe_level

proc {

$SAFE = @safe_level

eval(@src, b, (@filename || '(erb)'), 1)

}.call

else

eval(@src, b, (@filename || '(erb)'), 1)

end

end

...

The @src instance variable carries the content of a code tag, and the

@safe_level instance variable contains the safe level required by the user.

If no safe level is set, the content of the tag is simply evaluated. Other-

wise, eRB builds a quick Sandbox (172): it makes sure that the global

safe level is exactly what the user asked for and also creates a Clean

Room (107) to execute the code in a separate scope. (Note that the safe

level is changed only within the proc, and it goes back to its former

value after the proc has been called.)

“Now,” Bill says, finally wrapping up his long explanation, “you know

about eval() and how dangerous it can be. But eval() is great at getting

code up and running quickly. That’s why you can use this method as a

first step to solve your original problem: writing the attribute generator

for the boss.”

5.3 Quiz: Checked Attributes (Step 1)

Where you take your first step toward solving the boss’ challenge, with

Bill peeking over your shoulder.

Bill interrupts your daydreaming about the weekend by asking you to

think back to the development plan the two of you worked out (out-

lined in Section 5.1, A Development Plan, on page 162). “For the first

step of the plan, we have to write an eval()-based method that adds a

super-simple checked attribute to a class,” Bill begins. “Let’s call this

method add_checked_attribute(). It should generate a reader method

and a writer method, pretty much like attr_accessor() does.”

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=173

QUIZ: CHECKED ATTRIBUTES (STEP 1) 174

The add_checked_attribute() method should differ from attr_accessor()

in three ways. First, while attr_accessor() is a Class Macro (136), add_

checked_attribute() is supposed to be a simple Kernel Method (51).

Second, attr_accessor() is written in C, while add_checked_attribute()

should use plain Ruby (and a String of Code (163)). Finally, the method

add_checked_attribute() should add basic validation to the attribute.

You’re supposed to keep validation really basic for now: the attribute

will raise a runtime exception only when you assign it either nil or false.

You’ll deal with more flexible validation down the road.

These requirements are expressed more clearly in a test suite:

Download ctwc/checked_attributes/eval.rb

require 'test/unit'

class Person; end

class TestCheckedAttribute < Test::Unit::TestCase

def setup

add_checked_attribute(Person, :age)

@bob = Person.new

end

def test_accepts_valid_values

@bob.age = 20

assert_equal 20, @bob.age

end

def test_refuses_nil_values

assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = nil

end

end

def test_refuses_false_values

assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = false

end

end

end

Here is the method that you should implement.

(We called the class argument "clazz", because

"class" is a reserved keyword.)

def add_checked_attribute(clazz, attribute)

...

end

Can you implement add_checked_attribute() and pass the test?

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/checked_attributes/eval.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=174

QUIZ: CHECKED ATTRIBUTES (STEP 1) 175

Before You Solve This Quiz. . .

You need to generate an attribute like attr_accessor() does, so you’ll

probably appreciate a short review of attr_accessor().11 When you tell

attr_accessor() that you want an attribute named, say, :my_attr, it gener-

ates two Mimic Methods (241) like these:

def my_attr

@my_attr

end

def my_attr=(value)

@my_attr = value

end

Quiz Solution

Here’s a solution:

def add_checked_attribute(clazz, attribute)

eval "

class #{clazz}

def #{attribute}=(value)

raise 'Invalid attribute' unless value

@#{attribute} = value

end

def #{attribute}()

@#{attribute}

end

end

"

end

Here’s the String of Code (163) that gets evaluated when you call add_

checked_attribute(String, :my_attr):

class String

def my_attr=(value)

raise 'Invalid attribute' unless value

@my_attr = value

end

def my_attr()

@my_attr

end

end

11. We talked about attr_accessor() in Section 4.3, The attr_accessor() Example, on

page 135.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=175

QUIZ: CHECKED ATTRIBUTES (STEP 2) 176

The String class is treated as an Open Class (31), and it gets two new

methods. These methods are almost identical to those that would be

generated by attr_accessor(), with an additional check that raises an

exception if you call my_attr=() with either nil or false.

“We hit the road running!” Bill exclaims. “But remember our plan. We

only used eval() to pass the unit tests quickly; we don’t want to stick

with eval() for the real solution. This takes us to step 2.”

5.4 Quiz: Checked Attributes (Step 2)

Where you make your code eval()-free.

Bill glances at the development plan. “Now,” he announces, “we want

to refactor add_checked_attribute() and replace eval() with regular Ruby

methods.”

You may be wondering why the obsession with removing eval(). How

can add_checked_attribute() be a target for a code injection attack if it’s

meant to be used only by you and your teammates? The problem is, you

never know whether this method might be exposed to the world some

time in the future. Besides, if you rewrite the same method without

using Strings of Code (163), it will only get clearer and more elegant.

These considerations are reason enough to go forward and drop eval()

altogether.

Can you refactor add_checked_attribute() with the same method signa-

ture and the same unit tests but using standard Ruby methods in

place of eval()? Be forewarned that to solve this quiz, you’ll have to do

some research. You’ll probably need to dig through the Ruby standard

libraries for methods that can replace the operations in the current

String of Code. You’ll also need to manage scope carefully so that the

attribute is defined in the context of the right class. (Hint: Remember

Flat Scopes (103)?)

Quiz Solution

To define methods in a class, you need to get into that class’s scope. The

previous version of add_checked_attribute() did that by using an Open

Class (31) inside a String of Code. If you remove eval(), you cannot use

the class keyword anymore, because class won’t accept a variable for the

class name. Instead, you can get into the class’s scope with class_eval().

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=176

QUIZ: CHECKED ATTRIBUTES (STEP 2) 177

Download ctwc/checked_attributes/no_eval.rb

def add_checked_attribute(clazz, attribute)

clazz.class_eval do

...

end

end

You’re in the class now, and you can define the reader and writer meth-

ods. Previously, you did that by using the def keyword in the String

of Code. Again, you can no longer use def, because you won’t know

the names of the methods until runtime. In place of def, you can use

Dynamic Methods (68):

def add_checked_attribute(clazz, attribute)

clazz.class_eval do

define_method "#{attribute}=" do |value|

...

end

define_method attribute do

...

end

end

end

The previous code defines two Mimic Methods (241) that are supposed

to read and write an instance variable. How can the code do this with-

out evaluating a String of Code? If you browse through Ruby’s docu-

mentation, you’ll find two methods that manipulate instance variables:

Object#instance_variable_get() and Object#instance_variable_set(). Let’s

use them:

def add_checked_attribute(clazz, attribute)

clazz.class_eval do

define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless value

instance_variable_set("@#{attribute}", value)

end

define_method attribute do

instance_variable_get "@#{attribute}"

end

end

end

“That’s it!” Bill exclaims. “We now have a method that enters a class

scope and defines instance methods that manipulate instance vari-

ables, and there’s no string-based eval() to speak of! Now that our code

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/checked_attributes/no_eval.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=177

QUIZ: CHECKED ATTRIBUTES (STEP 3) 178

is both working and eval()-free, we can move on to the third step in our

development plan.”

5.5 Quiz: Checked Attributes (Step 3)

Where you sprinkle some flexibility over today’s project.

“To solve the boss’ challenge, we still need to implement a few important

features,” Bill observes. One of these features is described in the third

step of your development plan (in Section 5.1, A Development Plan, on

page 162). Bill explains that, right now, your generated attribute raises

an exception if you assign it nil or false. But it’s supposed to support

flexible validation through a block.

Because this step changes the interface of add_checked_attribute(), it

also calls for an update of the test suite. Bill replaces the two test cases

that checked for nil or false attributes with a single new test case:

Download ctwc/checked_attributes/block.rb

require 'test/unit'

class Person; end

class TestCheckedAttribute < Test::Unit::TestCase

def setup

add_checked_attribute(Person, :age) {|v| v >= 18 }

@bob = Person.new

end

def test_accepts_valid_values

@bob.age = 20

assert_equal 20, @bob.age

end

def test_refuses_invalid_values

assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = 17

end

end

end

def add_checked_attribute(clazz, attribute, &validation)

... (The code here doesn't pass the test. Modify it.)

end

Can you modify add_checked_attribute() so that it passes the new tests?

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/checked_attributes/block.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=178

QUIZ: CHECKED ATTRIBUTES (STEP 4) 179

Quiz Solution

You can pass the tests and solve the quiz by changing a couple of lines

in add_checked_attribute():

def add_checked_attribute(clazz, attribute, &validation)

clazz.class_eval do

define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless validation.call(value)

instance_variable_set("@#{attribute}", value)

end

define_method attribute do

instance_variable_get "@#{attribute}"

end

end

end

“Step 3 was quick,” Bill notes. “On to step 4!”

5.6 Quiz: Checked Attributes (Step 4)

Where you pull a Class Macro (136) from your bag of tricks.

Bill looks back at the development plan in Section 5.1, A Development

Plan, on page 162. “The fourth step,” he announces, “asks us to change

the Kernel Method to a Class Macro (136) that’s available to all classes.”

What this means is that instead of an add_checked_attribute() method,

you and Bill want an attr_checked() method that the boss can use in a

class definition. Also, instead of taking a class and an attribute name,

this new method should take only the attribute name, because the class

is already available as self. Bill offers to update the test case:

Download ctwc/checked_attributes/macro.rb

require 'test/unit'

class Person

attr_checked :age do |v|

v >= 18

end

end

class TestCheckedAttributes < Test::Unit::TestCase

def setup

@bob = Person.new

end

def test_accepts_valid_values

@bob.age = 20

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/checked_attributes/macro.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=179

HOOK METHODS 180

assert_equal 20, @bob.age

end

def test_refuses_invalid_values

assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = 17

end

end

end

Can you write the attr_checked() method and pass the tests?

Quiz Solution

Think back to the discussion of class definitions in Section 4.1, Class

Definitions Demystified, on page 123. If you want to make attr_checked()

available to any class definition, you can simply make it an instance

method of either Class or Module. Let’s go for the first option:

Download ctwc/checked_attributes/macro.rb

class Class

def attr_checked(attribute, &validation)

define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless validation.call(value)

instance_variable_set("@#{attribute}", value)

end

define_method attribute do

instance_variable_get "@#{attribute}"

end

end

end

This code doesn’t even need to call to class_eval(), because when the

method executes, the class is already taking the role of self.

“That’s great!” Bill blurts out. “One more step, and we’ll be done.” For

this last step, however, you need to learn about a feature that you and

Bill haven’t talked about yet: Hook Methods. You decide to take a donut

break, during which Bill does a brain dump on Hook Methods.

5.7 Hook Methods

Where Bill decides it’s time for another lesson in advanced coding.

The object model is an eventful place. Lots of things happen there as

your code runs: classes are inherited, modules are mixed into classes,

and methods are defined, undefined, and removed. Imagine if you could

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/checked_attributes/macro.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=180

HOOK METHODS 181

“catch” these events like you catch a mouse-click event on a graphical

interface. You’d be able to execute code whenever a class is inherited or

whenever a class gains a new method.

Well, it turns out you can do all these things. This program prints a

notification on the screen when a class inherits from String:

Download ctwc/hooks.rb

class String

def self.inherited(subclass)

puts "#{self} was inherited by #{subclass}"

end

end

class MyString < String; end

⇒ String was inherited by MyString

The inherited() method is an instance method of Class, and Ruby calls

it when a class is inherited. By default, Class#inherited() does nothing,

but you can override it with your own code as in the earlier example.

A method such as Class#inherited() is called a Hook Method because you Spell: Hook Method

can use it to hook into a particular event.

More Hooks

Ruby provides a motley bunch of hooks that cover the most newsworthy

events in the object model. Just as you override Class#inherited() to plug

into the life cycle of classes, you can plug into the life cycle of modules

by overriding Module#included():

module M

def self.included(othermod)

puts "M was mixed into #{othermod}"

end

end

class C

include M

end

⇒ M was mixed into C

You can also execute code when a module extends an object by over-

riding Module#extend_object(). Finally, you can execute method-related

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/hooks.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=181

HOOK METHODS 182

events by overriding Module#method_added(), method_removed(), or

method_undefined().12

module M

def self.method_added(method)

puts "New method: M##{method}"

end

def my_method; end

end

⇒ New method: M#my_method

Module#included() is probably the most widely used hook, thanks to a

common metaprogramming spell that’s worthy of an example of its own.

The Merb Example

Merb is a popular framework for web applications. Like many other

web frameworks, Merb centers around the concepts of “controllers” and

“actions.”13 As an example, Bill defines a Merb controller that caches

the result of an action:

Download ctwc/merb_example.rb

class MyController < Merb::Controller

include Merb::Cache::CacheMixin

cache :my_action

def action

...

CacheMixin is a module provided by Merb. When you include CacheMixin

in a controller, that controller gains access to a method named cache()

that you can use to enable the caching of a specific action.

“Wait!” you shout, on a donut-induced sugar high. “The cache() method

is a Class Macro (136), so it must be a class method of MyController.” But

12. These hooks only work for regular instance methods, which live in the object’s

class. They don’t work for Singleton Methods (133), which live in the object’s eigenclass.

To catch Singleton Method events, you can use Kernel#singleton_method_added(), single-

ton_method_removed(), and singleton_method_undefined().
13. Merb is currently being merged with the Rails 3 framework—but as this book is being

published, you can still install the original Merb (written by Ezra Zygmuntowicz, Yehuda

Katz, and others) with gem install merb. This command will also install the merb-cache gem

that Bill is using as his example (written by Ben Burkert). If you’re not familiar with Ruby

web frameworks, all you need to know here is that a controller is a class, and an action is

an instance method of the controller.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/merb_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=182

HOOK METHODS 183

Plugging Into Standard Methods

The notion of hooks extends beyond specialized methods
like Class#inherited() or Module#method_added(). Because most
operations in Ruby are just regular methods, you can easily twist
them into improvised Hook Methods.

For example, in Section 5.7, Hook Methods, on page 180, you
learned how to override Module#included() to execute code
when a module is included. But you can also plug into the same
event, so to speak, from the other side: because you include a
module with the include() method, instead of overriding Mod-

ule#included(), you can override Module#include() itself.

For example:

module M; end

class C
def self.include(*modules)
puts "Called: C.include(#{modules})"
super

end

include M
end

⇒ Called: C.include(M)

There is an important difference between overriding
Module#included() and overriding Module#include(). Mod-

ule#included() exists solely to be used as a Hook Method, and
its default implementation is empty. But Module#include() has
some real work to do: it must actually include the module.
That’s why our hook’s code also should call the base imple-
mentation of Module#include() through super. If you forget super,
you’ll still catch the event, but you won’t include the module
anymore!

As an alternative to overriding, you can turn a regular method
into a Hook Method by using an Around Alias (155). You can
find an example of this technique in Section 4.6, The RubyGems
Example, on page 154.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=183

HOOK METHODS 184

when a class includes a module, it usually gets a bunch of instance

methods and no class methods at all. “How can a mixin like CacheMixin

bend the rules and define class methods on the class that includes it?”

The answer, according to Bill, is the Class Extension (151) spell, where

you define class methods by including a module in the eigenclass in-

stead of in the class itself. If you do that, the methods in the module

become instance methods in the eigenclass, which also makes them

class methods in the class.

“But wait!” you shout (again). “CacheMixin was included by MyController,

not by MyController’s eigenclass.” “That’s true,” Bill is ready to admit.

“But CacheMixin itself pulled a little trick the moment it was included.

Let’s peek into the source:”

Download gems/merb-cache-1.0.11/lib/merb-cache/merb_ext/controller.rb

module Merb::Cache::CacheMixin

def self.included(base)

base.extend(ClassMethods)

end

module ClassMethods

def cache(*actions)

...

Merb::Cache::CacheMixin acts both as a mixin and as a Namespace (41)

for an inner module. This inner module, appropriately named Class-

Methods, defines Class Macros such as cache(). When you include

CacheMixin, you trigger a chain of events:

• Ruby calls a Hook Method (181): the included() method.

• The hook turns back to the including class (which is sometimes

called the inclusor, or the base in this case) and extends it with

the ClassMethods module.

• The extend() method includes the methods from ClassMethods in

the inclusor’s eigenclass.

As a result, cache() and other instance methods get mixed into the

eigenclass, effectively becoming class methods of the inclusor. How’s

that for a complicated code concoction?

Class Extension Mixins

You’ve just seen an example of a mixin that defines class methods (as

opposed to instance methods) on its inclusors. This technique mixes

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/merb-cache-1.0.11/lib/merb-cache/merb_ext/controller.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=184

HOOK METHODS 185

together two previous spells: Class Extensions (151) and Hook Methods

(181). You can call this technique a Class Extension Mixin. Spell: Class Extension

Mixin

It’s time to review the steps you can take to cast this spell on your own:

1. You define a module. Let’s call it MyMixin.

2. You define an inner module of MyMixin (usually named ClassMeth-

ods) that defines some methods. These methods ultimately become

class methods.

3. You override MyMixin#included() to extend() inclusors with Class-

Methods.

Here’s how you can put it all together:

module MyMixin

def self.included(base)

base.extend(ClassMethods)

end

module ClassMethods

def x

"x()"

end

end

end

You can also apply your own variations to this spell. For example, you

can define additional methods directly in MyMixin, outside the ClassMeth-

ods submodule. These methods would then become instance methods

of the including class. This way, you’d get new instance methods and

new class methods just by including a single module. On the other

hand, if you don’t need to define instance methods on the including

class, you can drop the inner module altogether and define all the meth-

ods in the mixin itself:

module MyMixin

def self.included(base)

base.extend(self)

end

def x

"x()"

end

end

No matter how you twist the execution, the basic idea stays the same:

you want a mixin that adds class methods (usually Class Macros (136))

to its inclusors.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=185

QUIZ: CHECKED ATTRIBUTES (STEP 5) 186

Bill interrupts your thoughts. “Now that you know about Hook Meth-

ods, we can take the final step in our development plan and solve

today’s challenge for good.”

5.8 Quiz: Checked Attributes (Step 5)

Where you finally earn Bill’s respect and the title of Master of Metapro-

gramming.

“In case you need to refresh your memory,” Bill offers helpfully, “here’s

the code that we wrote in the previous step of our development:”

class Class

def attr_checked(attribute, &validation)

define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless validation.call(value)

instance_variable_set("@#{attribute}", value)

end

define_method attribute do

instance_variable_get "@#{attribute}"

end

end

end

The previous code defines a Class Macro (136) named attr_checked().

This Class Macro is an instance method of Class, so it’s available to all

classes. Your final task is to restrict access to attr_checked(): it should

be available only to those classes that include a module named Checke-

dAttributes. The test suite for this step is pretty much the same one you

used in step 4, with a single additional line:

Download ctwc/checked_attributes/module.rb

require 'test/unit'

class Person

include CheckedAttributes

attr_checked :age do |v|

v >= 18

end

end

class TestCheckedAttributes < Test::Unit::TestCase

def setup

@bob = Person.new

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/ctwc/checked_attributes/module.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=186

QUIZ: CHECKED ATTRIBUTES (STEP 5) 187

def test_accepts_valid_values

@bob.age = 18

assert_equal 18, @bob.age

end

def test_refuses_invalid_values

assert_raises RuntimeError, 'Invalid attribute' do

@bob.age = 17

end

end

end

Can you remove attr_checked() from Class, write the CheckedAttributes

module, and solve the boss’ challenge?

Quiz Solution

You can write CheckedAttributes as an Class Extension Mixin (185) that

defines attr_checked() as a class method on its inclusors:

module CheckedAttributes

def self.included(base)

base.extend ClassMethods

end

module ClassMethods

def attr_checked(attribute, &validation)

define_method "#{attribute}=" do |value|

raise 'Invalid attribute' unless validation.call(value)

instance_variable_set("@#{attribute}", value)

end

define_method attribute do

instance_variable_get "@#{attribute}"

end

end

end

end

Your boss will be delighted. These are the same Class Macro and mod-

ule that she challenged you to write this morning. If you can write code

like this, you’re on your way to mastering the art of metaprogramming!

The Way of Metaprogramming

“You learned a lot this week, my friend,” Bill says, smiling for the first

time in what seems like a week. “Now you know enough to walk the

metaprogramming path on your own. Before we take off for the week-

end, let me tell you one last story.”

“A master developer,” Bill begins, “sits on top of a mountain,

meditating. . . ”
Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=187

Chapter 6

Epilogue
A master developer was meditating on top of a steep mountain. So deep

was his meditation, so profoundly interwoven his code and his soul,

that he began to snore gently.

A disciple climbed the mountain and interrupted the master’s concen-

tration. “I am struggling terribly, Master,” he said. “I’ve studied many

advanced techniques, but I still don’t know how to apply them correctly.

Tell me, what’s the essence of metaprogramming?”

“Look at this small tree by my side,” the Master replied, languidly wav-

ing his hand. “See how delicately it bends toward the ground, as if

feeding on its own roots? Thus must your code be: simple and plain,

and closing in on itself like a circle.”

“I am still confused, Master,” said the disciple, even more worried than

before. “They always taught me that self-modifying code is bad. How

will I know that I am wielding this art properly?”

“Look over your code with a pure heart and a clean mind,” the mas-

ter coached the disciple. “You will know when the code gets obscure.

Exercise your knowledge to shed light, not to obfuscate and confuse.”

“But Master,” the disciple argued, “I lack experience. I need simple rules

to know right from wrong.”

The master began to get annoyed. “You’re smart enough to learn,

Dude,” he said, “but are you smart enough to forget what you have

learned? There’s no such thing as metaprogramming. It’s just program-

ming all the way through. Now get lost, and let me meditate in peace.”

At those words, the disciple was enlightened.

Part II

Metaprogramming in Rails

Good artists copy, great artists steal.

Pablo Picasso

Chapter 7

The Design of ActiveRecord
In the first part of this book, you spent a week brushing elbows with

another coder and making your way through the internals of Ruby.

You also filled your toolbox with magic metaprogramming tricks like

Dynamic Methods (68) and Class Macros (136).

So, you’ve got the know-how and the tools. But now you might be won-

dering how to combine the knowledge and tools into real-life code. How

can you keep your Open Classes (31) under control? When should you

use a Ghost Method (73) rather than a Dynamic Method (68)? How do

you test your Class Macros (136)? To answer these kinds of questions,

you need more than knowledge and tools. You need experience.

You can’t get experience simply by reading a book, but you can get a

lot of value out of looking at the work of experienced coders. This chap-

ter, together with the two that follow, takes you on a tour through the

source code of Ruby on Rails, the quintessential Ruby project.1 Rather

than an exhaustive exploration of Rails, this tour is like a sightseeing

excursion on one of those open, double-decker buses. I’ll trace a few

scenic routes through the Rails source code and in the process show

you how some of the best Ruby programmers apply metaprogramming

spells to solve real problems.

A last word of warning before we start: in this chapter, I’ll focus on

the good sides of metaprogramming, not on the headaches that meta-

programming might give you. If you wonder whether too much meta-

1. Ruby on Rails (or just “Rails,” for short) was written by David Heinemeier Hansson,

together with a small army of core developers and contributors. The official Rails site is

http://rubyonrails.org.

http://rubyonrails.org

PREPARING FOR THE TOUR 191

programming can make your code unmanageable, please be patient. I’ll

try to address those worries in the next two chapters.

7.1 Preparing for the Tour

Chances are, you already know that Rails is a Model-View-Controller

(MVC) framework for developing database-backed web applications in

Ruby. Rails is so popular that many people get into Ruby just so that

they can use Rails.

Even if you don’t know much about Rails and its features, you can

still follow along on this tour. I’ll focus on the Rails source code, not

on the features. Whenever features are important to understand the

source code, I’ll take the time to demonstrate them. However, if you are

completely new to Rails and MVC frameworks, you might want to read a

quick introduction to the topic before reading the rest of this chapter.2

I’ll also assume that you have RubyGems installed on your system and

that you know what a “gem” is.3

While touring the Rails source code, I’ll show you the snippets of code

that are important to focus on. However, you might also want to keep

the source code handy to explore it on your own. To do that, you need

to install Rails.

Installing Rails

Because Rails is always evolving, it’s quite possible that the source code

has changed significantly by the time you read this chapter. Luckily,

you can easily install the same version of Rails that I used to write this

book, by simply running the following command:

⇒ gem install rails -v 2.3.2

Running this command installs all the gems that make up Rails 2.3.2.

The rails gem just contains helpers such as code generators and Rake

tasks, as well as the glue code that binds together the other gems.

Those gems are the ones that do the real work. The most important

Rails components are ActiveRecord (the “M” in Model-View-Controller,

which maps application objects to database tables), ActionPack (which

2. You can find such an introduction, by Amy Hoy, at

http://slash7.com/articles/2005/2/22/mvc-the-most-vexing-conundrum. If you want to dig deeper,

the canonical book on Rails is Agile Web Development with Rails [TH05].
3. If you don’t, take a look at http://rubygems.org/read/book/1.

Report erratum

this copy is (P1.0 printing, January 2010)

http://slash7.com/articles/2005/2/22/mvc-the-most-vexing-conundrum
http://rubygems.org/read/book/1
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=191

PREPARING FOR THE TOUR 192

contains both the view and the controller), and ActiveSupport (utilities

and core extensions for generic problems such as time calculations,

type conversions, and logging).4

After installing Rails, you’ll find the Rails source code in your gems

directory. To locate this directory on your system, you can ask Ruby-

Gems for its environment information by running the gem environment

command. You’ll get output like this:

⇒ - RUBYGEMS VERSION: 1.3.1

- RUBY VERSION: 1.9.1 (2009-07-16 patchlevel 243) [i386-darwin10]

- INSTALLATION DIRECTORY: /opt/local/lib/ruby1.9/gems/1.9.1

[...]

- GEM PATHS:

- /opt/local/lib/ruby1.9/gems/1.9.1

[...]

Look at the GEM PATHS. Those are the paths where RubyGems installs

your gems. Usually it’s only a single path, where you’ll find a gems

directory that contains all your gems’ source code in subdirectories

named like activerecord-2.3.2. When referring to specific source files, I’ll

give you the files’ paths relative to the GEM PATHS (like: gems/activerecord-

2.3.2/lib/active_record.rb).

The Rails Source Code

As of version 2.3, Rails and its core libraries contain almost 100,000

lines of code (including white lines and comments). You can cram a

lot of information into just a few lines of Ruby code—let alone tens of

thousands. Also, you can barely find a Rails source file that doesn’t

make heavy use of metaprogramming spells and other sophisticated

idioms and techniques. All things considered, the Rails source code

contains enough information to be intimidating.

These challenges shouldn’t stop you from browsing through this won-

derful piece of code. For all its power, size, and cleverness, the Rails

source code is remarkably clear and beautifully written. Start slowly,

don’t get discouraged as you piece together the basics, and soon you

might enter the growing list of Rails contributors.

4. A typical Rails installation also includes a few more gems. Some of these, like rake and

rack, are installed automatically with Rails. If you want to run ActiveRecord programs on

your system, you also need to install a database adapter like sqlite3-ruby. But you can

probably follow along just fine by just reading the examples, without running them.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=192

THE DESIGN OF ACTIVERECORD 193

Also, don’t forget the unit tests. When you’re confronted with a confus-

ing piece of code, reach for its tests and find out how it’s supposed to

be used. Once you understand their intentions, most perplexing lines

of code will suddenly make sense.

Now you have the Rails source code and the tools you need to explore

it. Let’s dive into the first stop on our tour: a quick look at ActiveRecord,

the most iconic of the Rails components.

7.2 The Design of ActiveRecord

ActiveRecord is the part of Rails that takes care of mapping Ruby ob-

jects to database tables. This functionality is called object-relational

mapping, and it allows you to get the best of both the relational data-

base (used for persistence) and object-oriented programming (used for

business logics).

You can use ActiveRecord either in a Rails application or in a regular

program. In a Rails application, you use ActiveRecord in the model—the

“M” of MVC that contains domain objects and business logic. The idea

is that you work with regular Ruby objects to manage your business

logic, and you use ActiveRecord to make sure that those objects are

persisted in your database.

Let’s see a quick example of a stand-alone program that uses Active-

Record, just enough to kick start our tour.

A One-Page ActiveRecord Example

Assume that you already have a file-based SQLite database that fol-

lows ActiveRecord’s conventions. This database contains a table named

ducks, which has a field named name. You want to map the records in

the ducks table to objects of class Duck in your code.

You can start by requiring ActiveRecord and opening a connection to

the database:5

Download rails/ar_example.rb

require 'activerecord'

ActiveRecord::Base.establish_connection :adapter => "sqlite3",

:database => "dbfile"

5. In a Rails application, you wouldn’t need to worry about opening the connection. The

application reads the names of the adapter and the database from a configuration file

and calls establish_connection() for you. You’re using ActiveRecord on its own here, so you

have to open the connection yourself.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/rails/ar_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=193

THE DESIGN OF ACTIVERECORD 194

Ruby Editors and IDEs

Once you start looking at a large library such as Rails, you’ll
probably want a good editor to move faster through the
library’s source code. However, if you’re looking for the Ruby
equivalent of Eclipse or Visual Studio, you’ll probably come out
disappointed. Traditionally, the Ruby community tends to shun
integrated development environments (IDEs) in favor of simpler
text editors such as TextMate∗ (for the Mac) or Komodo Edit.†

How can modern programmers live without automated refac-
torings, code generation, and all the modern bells and whis-
tles? Apart from a certain amount of snobbery, there are prag-
matic reasons for the average Rubyist’s condescension toward
IDEs. Because Ruby code tends to be brief and terse, an IDE’s
management and navigation features are not always as essen-
tial as in more verbose languages. Also, given Ruby’s extremely
dynamic nature, some of the features of full-fledged IDEs (like
automated refactorings and code analysis) are less effective
in Ruby than they are in a static language such as Java or C#.
Finally, popular text editors such as TextMate come with enough
features to compete with full-fledged IDEs and benefit by stay-
ing slimmer and lighter than an IDE.

Still, it’s worth noting that the Ruby support in some IDEs is get-
ting good enough to convince some Rubyists to drop TextMate
in favor of something larger. NetBeans‡ is a free IDE with excel-
lent Ruby support. Aptana RadRails,§ also free, is an Eclipse-
based IDE for Rails development. RubyMine¶ is an excellent
commercial IDE from JetBrains, built on top of the company’s
extremely popular IntelliJ Java IDE.

∗. TextMate is at http://macromates.com/.
†. Komodo Edit is at http://www.activestate.com/komodo.
‡. NetBeans is at http://ruby.netbeans.org.
§. RadRails is at http://www.aptana.com/rails.
¶. RubyMine is at http://www.jetbrains.com/ruby.

Report erratum

this copy is (P1.0 printing, January 2010)

http://macromates.com/
http://www.activestate.com/komodo
http://ruby.netbeans.org
http://www.aptana.com/rails
http://www.jetbrains.com/ruby
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=194

THE DESIGN OF ACTIVERECORD 195

ActiveRecord::Base is the most important class in ActiveRecord. Not only

does it contain class methods that do important stuff like opening

database connections, it’s also the base class of all mapped classes,

such as Duck:

class Duck < ActiveRecord::Base

validates_length_of :name, :maximum => 6

end

The validates_length_of() method is a Class Macro (136). In this example,

it ensures that a Duck’s name cannot exceed six characters. If you try to

save a Duck with a longer name to the database, you’ll get an exception

(if you use the save!() method) or a silent failure (if you use the more

discreet save() method).6

By convention, ActiveRecord automatically maps Duck objects to the

ducks table. By looking at the database schema, it also finds out that

Ducks have a name, and it defines a Ghost Method (73) to access that

field. Thanks to these conventions, you can use the Duck class right

away:

my_duck = Duck.new

my_duck.name = "Donald"

my_duck.valid? # => true

my_duck.save!

I’ve checked that my_duck is valid (its name is six characters at most)

and saved it to the database. Reading it back, you get this:

some_duck = Duck.find(:first)

some_duck.id # => 1

some_duck.name # => "Donald"

some_duck.delete

That’s enough code to give you a sense for how ActiveRecord is sup-

posed to be used. Now let’s see what’s happening under the hood.

ActiveRecord::Base

At first sight, the classes and methods in ActiveRecord can be disori-

enting. If you look at the previous example, you will probably expect

to find a validates_length_of() class method in ActiveRecord::Base. How-

ever, the documentation for the class contains no trace of that method.

Search around, and you’ll find validates_length_of() in the ActiveRecord::

6. ActiveRecord validation happens in the business model, not the database. The

database can still contain ducks with very long names, for example, because they were

there before you added validation to the Duck class.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=195

THE DESIGN OF ACTIVERECORD 196

Validations module. This is a common problem for newcomers to Rails.

It’s often difficult to understand which methods are available and where

they’re defined.

However, there is a simple logic behind this seemingly complicated

structure. Let’s see what happens in the Rails source code by going

back to the first line in the example: require ’activerecord’. This line

loads the activerecord.rb file, a simple stub that, in turn, loads the sim-

ilarly named active_record.rb (this is just so that you can write either

require ’activerecord’ or require ’active_record’). This second file loads all

the ActiveRecord bits and pieces—some twenty modules defined in a

Namespace (41) named ActiveRecord:

Download gems/activerecord-2.3.2/lib/active_record.rb

module ActiveRecord

autoload :Base, 'active_record/base'

autoload :Batches, 'active_record/batches'

autoload :Calculations, 'active_record/calculations'

autoload :Callbacks, 'active_record/callbacks'

...

autoload :Timestamp, 'active_record/timestamp'

autoload :Transactions, 'active_record/transactions'

autoload :Validations, 'active_record/validations'

...

end

ActiveRecord loads each module through autoload(). This core Kernel

Method (51) is a convenient helper when you have a lot of files and

you don’t want to load more files than you really need. Kernel#autoload()

takes a module name and a filename and ensures that the file is loaded

automatically the first time you refer to the module. For example, as

soon as you reference the ActiveRecord::Base class, autoload() loads

activerecord/base.rb, which, in turn, defines the class:

Download gems/activerecord-2.3.2/lib/active_record/base.rb

module ActiveRecord

class Base

class << self # Class methods

def find(*args) # ...

def first(*args) # ...

def last(*args) # ...

...

end

public

def id # ...

def save # ...

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record.rb
http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/base.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=196

THE DESIGN OF ACTIVERECORD 197

def save! # ...

def delete # ...

...

end

end

ActiveRecord::Base defines a long list of class methods, like find() and

first().7 It also defines a list of instance methods, like save() and delete().

However, these are just a small part of ActiveRecord::Base’s class and

instance methods. Let’s see why.

ActiveRecord::Validations

In Section 7.2, A One-Page ActiveRecord Example, on page 193, you

looked at validation methods such as valid?() and validates_length_of().

To find out where those methods come from, go to the end of the base.rb

file. There, you’ll find code that reopens ActiveRecord::Base to include a

bunch of modules:

Download gems/activerecord-2.3.2/lib/active_record/base.rb

module ActiveRecord

Base.class_eval do

...

include Validations

include Locking::Optimistic, Locking::Pessimistic

include AttributeMethods

include Dirty

include Callbacks, Observing, Timestamp

...

end

end

Both valid?() and validates_length_of() are defined by the ActiveRecord::

Validations module:

Download gems/activerecord-2.3.2/lib/active_record/validations.rb

module ActiveRecord

module Validations

def self.included(base)

base.extend ClassMethods

base.class_eval do

alias_method_chain :save, :validation

alias_method_chain :save!, :validation

end

base.send :include, ActiveSupport::Callbacks

...

end

7. class << self means that the methods defined here are class methods. If you’re perplexed

by this syntax, go read Section 4.4, Eigenclasses, on page 137.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/base.rb
http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/validations.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=197

THE DESIGN OF ACTIVERECORD 198

module ClassMethods

def validates_each(*attrs) # ...

def validates_confirmation_of(*attr_names) # ...

def validates_length_of(*attrs) # ...

...

end

def save_with_validation(perform_validation = true) # ...

def save_with_validation! # ...

def valid? # ...

...

end

end

There is a lot going on in ActiveRecord::Validations, so let’s look at the

example one piece at a time. First, ActiveRecord::Validations defines in-

stance methods like valid?(). So, when ActiveRecord::Base includes

ActiveRecord::Validations, it earns a few new instance methods. ActiveRe-

cord::Validations also adds class methods to ActiveRecord::Base, because

it’s a Class Extension Mixin (185). This spell uses a Hook Method (181)

(the included() method) to extend its including class with the ClassMeth-

ods module, effectively turning the methods in ClassMethods to class

methods on ActiveRecord::Base.

Skip the class_eval() part for now—I’ll take you back there in a minute.

ActiveRecord::Validations.included() also causes its including class to in-

clude the ActiveSupport::Callbacks module. Note that this code can’t call

base.include() directly, because include() is a private method—so it cuts

through the encapsulation red tape with a Dynamic Dispatch (64).8

Now ActiveRecord::Base also includes ActiveSupport::Callbacks. If you look

at the source of ActiveSupport::Callbacks (in callbacks.rb), you’ll see that

this module is itself a Class Extension Mixin, and it also plays the same

trick with include() and Dynamic Dispatch as ActiveRecord::Validations,

thus forcing ActiveRecord::Base to pile up even more methods and in-

clude even more modules.

It’s time to leave this long trail of consecutive module inclusions to look

back at the lines I skipped in ActiveRecord::Validations, marked in the

following listing with small arrows.

8. In the Ruby world, private() is generally considered a suggestion rather than a pre-

scription. That’s a staple of Ruby’s philosophy. There are rules, but if you know what

you’re doing, you can break most of them. As Matz, the author of Ruby, would say, Ruby

treats you like a grown-up developer.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=198

THE DESIGN OF ACTIVERECORD 199

Download gems/activerecord-2.3.2/lib/active_record/validations.rb

module ActiveRecord

module Validations

def self.included(base)

base.extend ClassMethods

base.class_eval do

alias_method_chain :save, :validation

alias_method_chain :save!, :validation

end

base.send :include, ActiveSupport::Callbacks

...

end

def save_with_validation(perform_validation = true) # ...

def save_with_validation! # ...

...

To understand these lines, I need to take a short detour into the Active-

Support library and the alias_method_chain() method.

alias_method_chain()

To understand how alias_method_chain() is useful, look at this:

Download rails/amc_example.rb

class MyClass

def greet

puts "Hello!"

end

end

MyClass.new.greet

⇒ Hello!

Now suppose you want to wrap logging behavior around MyClass#greet().

You can do that with an Around Alias (155):

class MyClass

def greet_with_log

puts "Calling method..."

greet_without_log

puts "...Method called"

end

alias_method :greet_without_log, :greet

alias_method :greet, :greet_with_log

end

MyClass.new.greet

⇒ Calling method...

Hello!

...Method called

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/validations.rb
http://media.pragprog.com/titles/ppmetr/code/rails/amc_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=199

THE DESIGN OF ACTIVERECORD 200

I defined a new method called greet_with_log() and aliased it to greet().

The code that used to call greet() still works, but it gets the new logging

behavior as well. I also defined an alias to the original greet(), so you

can still greet without logging if you want:

MyClass.new.greet_without_log

⇒ Hello!

To sum it all up, the original method greet() is now called greet_without_

log(). If you want logging, you can call either greet_with_log() or greet(),

which are actually aliases of the same method.

This kind of Around Alias is very common in Rails. You provide the

original method (say, operation()) and the enhanced method (say, oper-

ation_with_feature()), and you end up with three methods: operation(),

operation_with_feature(), and operation_without_feature(). The first two do

include the feature; the third doesn’t.

Instead of duplicating these aliases all around, Rails provides a generic

metaprogramming method that does all the aliasing for you. It’s named

Module#alias_method_chain(), and it’s provided by the ActiveSupport

library:

Download gems/activesupport-2.3.2/lib/active_support/core_ext/module/aliasing.rb

module Module

def alias_method_chain(target, feature)

Strip out punctuation on predicates or bang methods since

e.g. target?_without_feature is not a valid method name.

aliased_target, punctuation = target.to_s.sub(/([?!=])$/, ''), $1

yield(aliased_target, punctuation) if block_given?

with_method, without_method =

"#{aliased_target}_with_#{feature}#{punctuation}",

"#{aliased_target}_without_#{feature}#{punctuation}"

alias_method without_method, target

alias_method target, with_method

case

when public_method_defined?(without_method)

public target

when protected_method_defined?(without_method)

protected target

when private_method_defined?(without_method)

private target

end

end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activesupport-2.3.2/lib/active_support/core_ext/module/aliasing.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=200

THE DESIGN OF ACTIVERECORD 201

Look at the way alias_method_chain() works. First, it strips out the final

exclamation mark or question mark from the name of the method to put

it at the end of the new aliases. Then (after maybe yielding to a block

so that the caller can override the default naming), it calculates names

for all the aliases. Next, it aliases the methods. And finally, it sets the

visibility on operation_without_feature() so that it’s the same visibility as

the original operation().

Now that you know how alias_method_chain() works, look again at the

ActiveRecord::Validations module:

Download gems/activerecord-2.3.2/lib/active_record/validations.rb

module ActiveRecord

module Validations

def self.included(base)

base.extend ClassMethods

base.class_eval do

alias_method_chain :save, :validation

alias_method_chain :save!, :validation

end

base.send :include, ActiveSupport::Callbacks

...

end

def save_with_validation(perform_validation = true) # ...

def save_with_validation! # ...

...

These lines reopen the ActiveRecord::Base class and hack its save() and

save!() methods to add validation. This aliasing ensures that you will

get automatic validation whenever you save an object to the database.

If you want to save without validating, you can call the aliased ver-

sions of the original methods: save_without_validation() and save_without_

validation!().

Enough of the Rails source code for now. Here’s a recap of what’s been

covered so far.

One Last Look at ActiveRecord::Base

ActiveRecord::Base is the main ActiveRecord class. Besides defining its

own instance methods and class methods, it includes additional mod-

ules like ActiveRecord::Validations. Each of these modules adds its own

instance methods and class methods to ActiveRecord::Base, and some

modules force ActiveRecord::Base to include additional modules, defin-

ing even more methods. The modules also take the liberty of tweak-

ing ActiveRecord::Base’s methods with tricks like alias_method_chain(),

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/validations.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=201

LESSONS LEARNED 202

which—you guessed it—define even more methods. What’s more, most

Rails plug-ins expand on this architecture and cause ActiveRecord::Base

to include more modules, yielding yet more methods.

With all these method definitions going on, you won’t be too surprised

that ActiveRecord::Base() is a very large class. In a plain-vanilla Rails

installation without plug-ins, this class has more than 200 instance

methods and a staggering 450 class methods. ActiveRecord::Base() is

the ultimate Open Class (31)!

This is an unusual design, to say the least. What can we take away by

learning about it?

7.3 Lessons Learned

When it comes to lessons learned, everybody is different. Personally, I

learned three important guidelines by looking at ActiveRecord’s design.

Here they are.

Leave Java Behind

When I looked at Ruby for the first time, I’d been a Java programmer

for years. The Ruby approach, and ActiveRecord in particular, left me

shocked. No Java coder in his or her right mind would ever write a

library that consists almost solely of a single huge class with many

hundreds of methods. Such a library would be madness—impossible to

understand and maintain!

And yet, that’s exactly what ActiveRecord’s design is like. But wait,

it gets worse. Many of the modules that comprise ActiveRecord don’t

think twice about modifying their including class with tricks like alias_

method_chain(). You might think that with all that patching and tweak-

ing, the main class in ActiveRecord would become a tangled mass of

spaghetti. And yet, somehow, it doesn’t.

Consider the evidence: not only does ActiveRecord manage to get away

with that design and still be extremely popular, but it also proves easy

to read and change. Many users modify and Monkeypatch (33) ActiveRe-

cord for their own purpose, and the original source code evolves so

quickly that Rails books and articles routinely run the risk of getting

obsolete before they’re even published.9 As it changes, ActiveRecord

9. Of course, that would never happen with this book.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=202

LESSONS LEARNED 203

also manages to remain extremely high quality—so much so that some

people trust it enough to use the nightly builds (the “edge version”) in

their daily work.

Apparently, design assumptions that are taken for granted in other

languages aren’t necessarily valid in Ruby. It’s not that the good design

rules of old suddenly grew obsolete. On the contrary, the basic tenets

of design (decoupling, simplicity, no duplication) hold true in Ruby as

much as they do in any other language. In Ruby, though, the tech-

niques you wield to achieve those design goals can be surprisingly

different.

Look at ActiveRecord::Base again. Granted, it’s a huge class. But it’s

actually designed as an assembly of loosely coupled, relatively simple,

easy-to-test, easy-to-reuse modules. In fact, thanks to their dynami-

cally typed nature, ActiveRecord’s modules are more decoupled than

Java classes and easier to use in isolation. If you only need the valida-

tion features, you can include ActiveRecord::Validation in your own class

and happily ignore ActiveRecord::Base and all the other modules.

Download rails/modules.rb

require 'activerecord'

ActiveRecord::Base # autoload all modules

class MyClass

def save; end

def save!; end

def new_record?; true; end

include ActiveRecord::Validations

attr_accessor :attr

validates_length_of :attr, :minimum => 4

end

obj = MyClass.new

obj.attr = 'test'

obj.valid? # => true

obj.attr = 'tst'

obj.valid? # => false

I had to go through some hoops to make this code work. For example,

I referenced ActiveRecord::Base to set up the autoloading of ActiveRe-

cord modules, and I stubbed a few methods that ActiveRecord::Validations

relies upon. However, that wasn’t too much work in exchange for a flex-

ible set of validation Class Macros (136). Also, this technique of using

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/rails/modules.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=203

LESSONS LEARNED 204

ActiveRecord modules in isolation makes it easier to poke at a module

from an irb shell and find out how it works.

By now, it’s clear that modules are a very powerful tool. This brings me

to the second important guideline that I learned.

Think in Modules

In most object-oriented languages, classes rule the land. Object orien-

tation means that you call methods on objects, and you decide on the

behavior of those methods by writing classes. In Ruby, you don’t need

a class to define a method. It’s enough that you have a module.

A Ruby module is basically a place where you define methods. (In fact,

a class is just a souped-up module.) Once you have the methods, you

can use them in many different ways. Here are some things that you

can do just by including a module:

• Include the module in a class, and the methods become instance

methods of the class.

• Include the module in the eigenclass of a class, and the methods

become class methods.

• Include the module in the eigenclass of any generic object, and the

methods become Singleton Methods (133) of the object.

But wait—there’s more. For example, you can let the module modify

the class (or module, or object) that includes it, like Rails does with

Class Extension Mixins (185) and alias_method_chain(). Modules are a

very versatile tool, and the more you become proficient in Ruby, the

more you’ll learn to use them in original ways. In the next two chapters,

you’ll see more examples of how modules can help you write clean,

beautiful code.

However, modules alone are not enough to justify the extreme flexibility

of Ruby. To explain that flexibility, I’ll move on to the last of the three

important guidelines and reintroduce the “M” word while I’m at it.

Do Things Your Own Way

In most languages, there aren’t that many ways to bind components

together. Maybe you inherit from a class or you delegate to an object. If

you want to get fancy, you can use a library that specializes in manag-

ing dependencies, like a dependency injection container.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=204

LESSONS LEARNED 205

Now, see how Rails manages its parts. Instead of sticking with the

standard ways of doing things, the Rails authors came up with their

own mechanism for binding the pieces of their libraries together and

implemented it with minimal, unobtrusive code and a bunch of magic

metaprogramming spells. The whole scheme looks complicated at first,

but once you understand the principles behind it, it looks natural and

effortless, as if it was built into the Ruby language itself.

Look at another example of Rails solving a problem its own way. A

few versions ago, the Rails code contained many instances of the same

idiom: an Around Alias (155) was used to add a feature to a method,

and the old version of the method was renamed to something like

method_without_feature(). Apart from the method names, which changed

every time, the code that did this was always the same, duplicated all

over the place. In most languages, you cannot avoid that kind of dupli-

cation. In Ruby, you can sprinkle some metaprogramming magic over

your pattern and extract it into its own method. . . and thus was born

alias_method_chain().

Examples like these are what people are thinking about when they say

that Ruby is expressive: you don’t have to spend many words to say

what you want to say. If you want a class to include a bunch of mod-

ules that allow you to extend the definitions of its subclasses, you can

do it, instead of turning to some complicated framework to manage

dependencies. If you want to jump up a level of abstraction and define

a method that defines and renames methods based on your own nam-

ing convention, you can do just that, instead of duplicating code. There

is rarely a great distance between what you mean to do and the code

you write.

In this chapter, I’ve shown the basic structure of ActiveRecord, with

a short side trip into the alias_method_chain() utility method. The next

chapter continues the tour of ActiveRecord, with a closer look into the

ActiveRecord::Base class.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=205

Chapter 8

Inside ActiveRecord
In the previous chapters I showed you plenty of metaprogramming code

snippets, many of them coming from real libraries. However, you might

still be wondering how metaprogramming fits into a big, complex sys-

tem. How many metaprogramming spells can you pile on to your code

before it becomes a nightmare to read and maintain?

This chapter attempts to answer that question. I’ll go back to ActiveRe-

cord to give you a look at the source code behind two of its most impres-

sive features: dynamic attributes and dynamic finders. These features

are backed by some of the most extreme metaprogramming code in all

of Rails, so they serve as a good benchmark for deciding how much

metaprogramming is good for you. This is by and large a matter of per-

sonal opinion, so I’ll let the code speak for itself until the end of this

chapter. In the last section of the chapter, I’ll discuss the reasoning

behind some of the choices in the ActiveRecord source, and I’ll offer

you my own conclusions.

In this chapter I won’t attempt to track all the minute details of the

Rails source code. Instead, assuming that you have the Rails source

somewhere handy, I’ll just stop at the main signposts. Even so, you’ll

have plenty of code to look at!

8.1 Dynamic Attributes

I’ll show you an example of ActiveRecord’s dynamic attributes in action.

Assume that you’ve created a database table that contains tasks.

DYNAMIC ATTRIBUTES 207

Download rails/ar_attributes.rb

require 'activerecord'

ActiveRecord::Base.establish_connection :adapter => "sqlite3",

:database => "dbfile"

ActiveRecord::Base.connection.create_table :tasks do |t|

t.string :description

t.boolean :completed

end

Now you can define an empty Task class that inherits from ActiveRe-

cord::Base, and you can use objects of that class to interact with the

database:

Download rails/ar_attributes.rb

class Task < ActiveRecord::Base; end

task = Task.new

task.description = 'Clean up garage'

task.completed = true

task.save

task.description # => "Clean up garage"

task.completed? # => true

The previous code calls four Mimic Methods (241) to access the object’s

attributes: two “write” methods (description=() and completed=()), one

“read” method (description()), and one “question” method (completed?()).

None of these “attribute accessors” comes from the definition of Task.

So, where do they come from?

ActiveRecord::Base#method_missing()

You probably guessed that attribute accessors like description=() are

actually Ghost Methods (73). Things are actually a tad more compli-

cated than that, as you’ll find out if you look at ActiveRecord::Base’s

method_missing(). Let’s do that.

ActiveRecord::Base#method_missing() is initially defined in the Attribute-

Methods module, and it gets rolled into ActiveRecord::Base() with the

mechanism you saw earlier in Chapter 7, The Design of ActiveRecord,

on page 190. Here it is, together with a few related methods:

Download gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb

module ActiveRecord

module AttributeMethods

def method_missing(method_id, *args, &block)

method_name = method_id.to_s

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/rails/ar_attributes.rb
http://media.pragprog.com/titles/ppmetr/code/rails/ar_attributes.rb
http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=207

DYNAMIC ATTRIBUTES 208

if self.class.private_method_defined?(method_name)

raise NoMethodError.new("Attempt to call private method", method_name, args)

end

If we haven't generated any methods yet, generate them, then

see if we've created the method we're looking for.

if !self.class.generated_methods?

self.class.define_attribute_methods

if self.class.generated_methods.include?(method_name)

return self.send(method_id, *args, &block)

end

end

if self.class.primary_key.to_s == method_name

id

elsif md = self.class.match_attribute_method?(method_name)

attribute_name, method_type = md.pre_match, md.to_s

if @attributes.include?(attribute_name)

__send__("attribute#{method_type}", attribute_name, *args, &block)

else

super

end

elsif @attributes.include?(method_name)

read_attribute(method_name)

else

super

end

end

def read_attribute(attr_name)

...

def write_attribute(attr_name, value)

...

def query_attribute(attr_name)

...

private

Handle *? for method_missing.

def attribute?(attribute_name)

query_attribute(attribute_name)

end

Handle *= for method_missing.

def attribute=(attribute_name, value)

write_attribute(attribute_name, value)

end

...

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=208

DYNAMIC ATTRIBUTES 209

This is quite a lot of code, so I’ll go over it with you one piece at a time.

Ghost Attributes Incarnated

I’ll start by concentrating on the first half of method_missing():

def method_missing(method_id, *args, &block)

method_name = method_id.to_s

if self.class.private_method_defined?(method_name)

raise NoMethodError.new("Attempt to call private method", method_name, args)

end

If we haven't generated any methods yet, generate them, then

see if we've created the method we're looking for.

if !self.class.generated_methods?

self.class.define_attribute_methods

if self.class.generated_methods.include?(method_name)

return self.send(method_id, *args, &block)

end

end

...

When you call a method such as Task#description=() for the first time,

the call is delivered to method_missing(). Before it does its job, method_

missing() ensures that you’re not inadvertently using it to bypass encap-

sulation and call a private method. Then it calls a magic method named

define_attribute_methods().

You’ll get a look inside define_attribute_methods() in a minute, but for

now all you need to know is that it defines read, write, and question

Dynamic Methods (68) for all the columns in the database. The next time

you call description=(), or any other accessor that maps to a database

column, your call isn’t handled by method_missing(). Instead, you call a

real, nonghost method. (That’s a good thing when it comes to perfor-

mance, as I’ll argue at the end of this chapter.)

When you entered method_missing(), description=() was a Ghost Method

(73). Now description=() is a regular, flesh-and-blood method, and

method_missing() can call it with a Dynamic Dispatch (64) and return

the result. This process takes place only once for each class that inher-

its from ActiveRecord::Base. If you enter method_missing() a second time

for any reason (for example, because you mistype a method name in

irb), the class method generated_methods() returns true, and this code

is skipped.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=209

DYNAMIC ATTRIBUTES 210

Before I show you the second half of method_missing(), take a peek at

define_write_method().

Defining Accessors

Here’s the code that defines nonghostly accessors:

Download gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb

Generates all the attribute related methods for columns in the database

accessors, mutators and query methods.

def define_attribute_methods

return if generated_methods?

columns_hash.each do |name, column|

unless instance_method_already_implemented?(name)

if self.serialized_attributes[name]

define_read_method_for_serialized_attribute(name)

elsif create_time_zone_conversion_attribute?(name, column)

define_read_method_for_time_zone_conversion(name)

else

define_read_method(name.to_sym, name, column)

end

end

unless instance_method_already_implemented?("#{name}=")

if create_time_zone_conversion_attribute?(name, column)

define_write_method_for_time_zone_conversion(name)

else

define_write_method(name.to_sym)

end

end

unless instance_method_already_implemented?("#{name}?")

define_question_method(name)

end

end

end

The instance_method_already_implemented?() method is there to prevent

involuntary Monkeypatches (33), and I’ll return to it in Chapter 9, Meta-

programming Safely, on page 224. Apart from that, the previous code

does little but delegate to one of a few other methods that do the real

work, like define_read_method() or define_write_method(). As an example,

take a look at define_write_method(). I’ve marked the most important

lines with little arrows:

Download gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb

def define_write_method(attr_name)

evaluate_attribute_method attr_name,

"def #{attr_name}=(new_value);write_attribute('#{attr_name}', new_value);end",

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=210

DYNAMIC ATTRIBUTES 211

"#{attr_name}="

end

def evaluate_attribute_method(attr_name, method_definition, method_name=attr_name)

unless method_name.to_s == primary_key.to_s

generated_methods << method_name

end

begin

class_eval(method_definition, __FILE__, __LINE__)

rescue SyntaxError => err

generated_methods.delete(attr_name)

if logger

logger.warn "Exception occurred during reader method compilation."

logger.warn "Maybe #{attr_name} is not a valid Ruby identifier?"

logger.warn err.message

end

end

end

The define_write_method() method builds a String of Code (163) that is

evaluated by class_eval(). For example, if you call description=(), then

evaluate_attribute_method() evaluates this String of Code:

def description=(new_value);write_attribute('description', new_value);end

Thus is the description=() method born. A similar process happens for

description(), description?(), and the accessors for all the other database

columns.

Here’s a recap of what I’ve covered so far. When you access an attribute

for the first time, that attribute is a Ghost Method (73). ActiveRecord::

Base#method_missing() takes this chance to turn the Ghost Method into a

real method. While it’s there, method_missing() also dynamically defines

read, write, and question accessors for all the other database columns.

The next time you call that attribute, or another database-backed attri-

bute, you find a real accessor method waiting for you, and you don’t

have to enter method_missing() anymore.

However, this logic doesn’t apply to each and every attribute accessor,

as you’ll discover by looking at the second half of method_missing().

Attributes That Stay Dynamic

As it turns out, there are cases where ActiveRecord doesn’t want to

define accessors—for example, for attributes that are not backed by a

database column, like calculated fields.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=211

DYNAMIC ATTRIBUTES 212

Download rails/ar_attributes.rb

my_query = "tasks.*, (description like '%garage%') as heavy_job"

task = Task.find(:first, :select => my_query)

task.heavy_job? # => true

Attributes like heavy_job can be different for each object, so there’s no

point in generating Dynamic Methods (68) to access them. The second

half of method_missing() deals with these attributes:

def method_missing(method_id, *args, &block)

...

if self.class.primary_key.to_s == method_name

id

elsif md = self.class.match_attribute_method?(method_name)

attribute_name, method_type = md.pre_match, md.to_s

if @attributes.include?(attribute_name)

__send__("attribute#{method_type}", attribute_name, *args, &block)

else

super

end

elsif @attributes.include?(method_name)

read_attribute(method_name)

else

super

end

end

First, this code checks whether you’re accessing the object’s identi-

fier (which is called id by default, but you can change it). If you’re

not, then you’re calling either an attribute accessor or a method that

method_missing() doesn’t know how to deal with. In the second case,

method_missing() calls super, which raises a NoMethodError.

Now, assume that you’re calling an attribute accessor. Is that a read

accessor or some other kind of accessor? It’s easy for method_missing() to

recognize read accessors. When you created your ActiveRecord object,

ActiveRecord::Base#initialize looked at the columns in the query’s result

set and compiled a list of their names in the @attributes instance vari-

able. If you’re calling one of those names (for example, description()),

then method_missing() knows that you’re reading an attribute and calls

read_attribute() to retrieve the value of the attribute from the database.

The code that recognizes other types of accessors is slightly more com-

plex. match_attribute_method?() applies a regular expression to check

whether the name of the method you called ends with a known exten-

sion (such as ? or =) and returns a MatchData object. Then it uses the

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/rails/ar_attributes.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=212

DYNAMIC ATTRIBUTES 213

extension to build the name of a “handler method,” like attribute?() or

attribute=(), and it calls the handler with a Dynamic Dispatch (64).1 In

turn, the handlers call query_attribute() or write_attribute(), which finally

access the value of the attribute.

You might be asking yourself why the authors of ActiveRecord jumped

through all these hoops. Couldn’t they have just added a couple of

if branches to deal with question accessors and write accessors sep-

arately? The authors were seeking the advantage of a system that’s

extensible. For example, Rails also recognizes a fourth type of attribute

accessor that I haven’t mentioned yet. This accessor ends with a _before

_type_cast extension, like completed_before_type_cast() (that reads the

raw value of the completed column without first converting it to a Ruby

boolean). Thanks to the flexible method_missing(), the code that sup-

ports these accessors just consists of a _before_type_cast item in the list

of recognized extensions and an attribute_before_type_cast handler. This

mechanism keeps code duplication to a minimum.

Before I leave dynamic attributes behind, it’s a good idea to look at

one last piece of ActiveRecord code that closely complements our friend

method_missing().

ActiveRecord::Base#respond_to?

In Chapter 2, Tuesday: Methods, on page 60, you learned that it’s often

a good idea to redefine respond_to?() together with method_missing() to

keep the two methods consistent.

For example, if I can call my_task.description(), then I expect that my_task.

respond_to?(:description) returns true. Here is the redefined respond_to?()

of ActiveRecord::Base:

Download gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb

def respond_to?(method, include_private_methods = false)

method_name = method.to_s

if super

return true

elsif !include_private_methods && super(method, true)

If we're here than we haven't found among non-private methods

but found among all methods. Which means that given method is private.

return false

1. This Dynamic Dispatch uses the __send__() method. See the sidebar on page 87 for a

discussion of __send__() vs. send().

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=213

DYNAMIC FINDERS 214

elsif !self.class.generated_methods?

self.class.define_attribute_methods

if self.class.generated_methods.include?(method_name)

return true

end

end

if @attributes.nil?

return super

elsif @attributes.include?(method_name)

return true

elsif md = self.class.match_attribute_method?(method_name)

return true if @attributes.include?(md.pre_match)

end

super

end

respond_to?() contains similar code to method_missing(), including code

that defines accessors if they haven’t been defined yet. So, if you happen

to call respond_to?() before you call method_missing() for the first time,

you’ll still get a reliable answer.

Now you know how ActiveRecord’s dynamic attribute accessors are

implemented. Let’s move on to a second, even more metaprogramming-

happy feature: dynamic finders.

8.2 Dynamic Finders

To see an example of dynamic finders in action, look back at our Task

class. Here are the database table and the ActiveRecord class again:

Download rails/ar_attributes.rb

require 'activerecord'

ActiveRecord::Base.establish_connection :adapter => "sqlite3",

:database => "dbfile"

ActiveRecord::Base.connection.create_table :tasks do |t|

t.string :description

t.boolean :completed

end

class Task < ActiveRecord::Base; end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/rails/ar_attributes.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=214

DYNAMIC FINDERS 215

After you have saved a few objects to the database, you’ll probably want

to retrieve them. ActiveRecord has many features that help you find

objects, including a very flexible find() method:2

task = Task.find(:first, :conditions => {:completed => true})

task.description # => "Clean up garage"

As flexible as it is, find() can be somewhat verbose when you want to

specify a lot of options. ActiveRecord offers an elegant alternative to

find() with so-called dynamic finders, which let you specify attributes

right in the method name:

task = Task.find_by_description('Clean up garage')

task.id # => 1

Dynamic finders are also quite flexible themselves:

Find all completed tasks

Task.find_all_by_completed(true)

Find the first completed task where description == 'Clean up garage'

Task.find_by_description_and_completed('Clean up garage', true)

Find the first task where description == 'Water plants',

or create it if it doesn't exist

Task.find_or_create_by_description('Water plants')

Find the first task where description == 'Get some sleep',

and raise an exception if it doesn't exist

Task.find_by_description!('Get some sleep')

Aren’t dynamic finders beautiful? Next, let’s look at the code behind

them.

ActiveRecord::Base.method_missing()

You probably wouldn’t be surprised if I told you that dynamic finders

are Ghost Methods (73), so you have to look for a method_missing(). How-

ever, this is not the same method_missing() that I talked about in Sec-

tion 8.1, ActiveRecord::Base#method_missing(), on page 207. Dynamic

finders are class methods (you call them on model classes like Task),

so you have to look for the class’s method_missing(), not the instances’

method_missing().

2. You can read more about find() and its arguments in Section A.3, Tricks with Method

Arguments, on page 244.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=215

DYNAMIC FINDERS 216

ActiveRecord::Base.method_missing() is a very long and complex method,

so take a deep breath before you look at it. Here it is (I removed the

comments, and I split a few lines to make them fit on the page):

Download gems/activerecord-2.3.2/lib/active_record/base.rb

module ActiveRecord

class Base

class << self # Class methods

def method_missing(method_id, *arguments, &block)

if match = DynamicFinderMatch.match(method_id)

attribute_names = match.attribute_names

super unless all_attributes_exists?(attribute_names)

if match.finder?

finder = match.finder

bang = match.bang?

self.class_eval %{

def self.#{method_id}(*args)

options = args.extract_options!

attributes = construct_attributes_from_arguments(

[:#{attribute_names.join(',:')}],

args

)

finder_options = { :conditions => attributes }

validate_find_options(options)

set_readonly_option!(options)

#{'result = ' if bang}if options[:conditions]

with_scope(:find => finder_options) do

find(:#{finder}, options)

end

else

find(:#{finder}, options.merge(finder_options))

end

#{'result || raise(RecordNotFound, "Couldn\'t find #{name} with

#{attributes.to_a.collect {|pair|

"#{pair.first} = #{pair.second}"}.join(\', \')}")' if bang}

end

}, __FILE__, __LINE__

send(method_id, *arguments)

elsif match.instantiator?

instantiator = match.instantiator

self.class_eval %{

def self.#{method_id}(*args)

guard_protected_attributes = false

if args[0].is_a?(Hash)

guard_protected_attributes = true

attributes = args[0].with_indifferent_access

find_attributes = attributes.slice(

*[:#{attribute_names.join(',:')}])

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/base.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=216

DYNAMIC FINDERS 217

else

find_attributes = attributes =

construct_attributes_from_arguments(

[:#{attribute_names.join(',:')}], args)

end

options = { :conditions => find_attributes }

set_readonly_option!(options)

record = find(:first, options)

if record.nil?

record = self.new { |r|

r.send(:attributes=, attributes, guard_protected_attributes)

}

#{'yield(record) if block_given?'}

#{'record.save' if instantiator == :create}

record

else

record

end

end

}, __FILE__, __LINE__

send(method_id, *arguments, &block)

end

elsif match = DynamicScopeMatch.match(method_id)

attribute_names = match.attribute_names

super unless all_attributes_exists?(attribute_names)

if match.scope?

self.class_eval %{

def self.#{method_id}(*args)

options = args.extract_options!

attributes = construct_attributes_from_arguments(

[:#{attribute_names.join(',:')}], args

)

scoped(:conditions => attributes)

end

}, __FILE__, __LINE__

send(method_id, *arguments)

end

else

super

end

end

...

This is as scary a piece of code as you’re likely to find in all of Rails. Let’s

try to make some sense of it. The first branch of the large if deals with

the simpler dynamic finders, and the second branch deals with more

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=217

DYNAMIC FINDERS 218

complex variations such as find_or_create_by_description(). The third

branch takes care of dynamic scopes, yet another ActiveRecord feature

that requires Ghost Methods, unrelated to dynamic finders. I’ll focus

on the first branch and leave the rest for another book.

This code is somewhat similar in concept to the code that you saw in

Section 8.1, Dynamic Attributes, on page 206. First, method_missing()

ensures that your call is legitimate. The method name starts with find,

all the attributes you mentioned actually exist, and so on. Then, it

defines a real, non-ghost version of the method and calls it with a

Dynamic Dispatch (64). The added difficulty here is that the dynamic

finder code chooses to define the new method by evaluating a huge

String of Code (163).

If you call find_all_by_description_and_completed(), the generated String

of Code looks like this:

def self.find_all_by_description_and_completed(*args)

options = args.extract_options!

attributes = construct_attributes_from_arguments(

[:description,:completed],

args

)

finder_options = { :conditions => attributes }

validate_find_options(options)

set_readonly_option!(options)

if options[:conditions]

with_scope(:find => finder_options) do

find(:all, options)

end

else

find(:all, options.merge(finder_options))

end

end

If you call a different dynamic finder, then you’ll get a different String

of Code. Here’s the String of Code for find_by_description!(), with the dif-

ferences from the previous String of Code marked by small arrows:

def self.find_by_description!(*args)

options = args.extract_options!

attributes = construct_attributes_from_arguments(

[:description],

args

)

finder_options = { :conditions => attributes }

validate_find_options(options)

set_readonly_option!(options)

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=218

LESSONS LEARNED 219

result = if options[:conditions]

with_scope(:find => finder_options) do

find(:first, options)

end

else

find(:first, options.merge(finder_options))

end

result || raise(RecordNotFound, "Couldn't find #{name} with

#{attributes.to_a.collect {|pair|

"#{pair.first} = #{pair.second}"}.join(', ')}")

end

Yes, this String of Code contains a string that contains yet more code.

ActiveRecord::Base.method_missing() is code that writes code that writes

code! Before I discreetly sneak away from the complexities of this

method_missing(), I’ll show you its companion method, respond_to?().

ActiveRecord::Base.respond_to?()

ActiveRecord::Base.respond_to? is consistent with ActiveRecord::Base.

method_missing(), in the sense that it knows about dynamic finders and

other Ghost Methods (73):

Download gems/activerecord-2.3.2/lib/active_record/base.rb

module ActiveRecord

class Base

class << self # Class methods

def respond_to?(method_id, include_private = false)

if match = DynamicFinderMatch.match(method_id)

return true if all_attributes_exists?(match.attribute_names)

elsif match = DynamicScopeMatch.match(method_id)

return true if all_attributes_exists?(match.attribute_names)

end

super

end

...

Compared with the headache-inducing method_missing(), respond_to?()

is a pretty tame method. It also provides a nice wrap-up of our look at

ActiveRecord’s source.

8.3 Lessons Learned

As usual, studying the Rails source taught me a couple of lessons.

They’re admittedly colored by my own personal biases, but they proba-

bly deserve to be shared anyway.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/base.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=219

LESSONS LEARNED 220

Don’t Obsess Over Performance

Perhaps you’re wondering how metaprogramming affects performance.

After all, Ruby is generally considered a slow language, and you don’t

want to make it even slower by pulling too many tricks. When and how

should you optimize your metaprogramming code?

Look at the performance optimizations behind ActiveRecord’s dynamic

attributes. Most attribute accessors, in particular those that are backed

by database tables, start their lives as Ghost Methods (73). When you

access an attribute for the first time, ActiveRecord takes the opportu-

nity to define these accessors as real methods, by evaluating a String

of Code (163). However, ActiveRecord doesn’t do that for all accessors.

Some accessors, such as _before_type_cast accessors and accessors to

calculated fields, never become real methods, and they remain ghosts

forever.

This is just one of a number of different possible designs. The authors

of ActiveRecord had no shortage of alternatives, including the following:

• Never define accessors dynamically, relying on Ghost Methods

exclusively.

• Define accessors when you create the object, in the initialize()

method.

• Define accessors only for the attribute that is being accessed, not

for the other attributes.

• Always define all accessors for each object, including _before_type_

cast accessors and accessors to calculated fields.

• Define accessors with define_method() instead of a String of Code.

I don’t know about you, but I wouldn’t have been able to pick among

all of these options just by guessing which ones are faster. How did the

authors of ActiveRecord settle on the current design? They probably

tried a few alternative designs, and they profiled their code in a real-life

system to discover where the performance bottlenecks were. . . and then

they optimized.

If you look at the current optimized source code, you can try to guess

some of the motivations behind it. Calling a real method is faster than

calling a Ghost Method, so Rails chooses to define real methods to

access attributes. On the other hand, defining a method also takes

time, so Rails doesn’t do that until it’s sure that you really want to

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=220

LESSONS LEARNED 221

access at least one attribute on your ActiveRecord objects. Also, define_

method() is known to be slower than def on some Ruby implemen-

tations (but not on others!), and that might be one reason why the

authors of Rails opted to use Strings of Code to define accessors. None

of these considerations is obvious, however. As a rule, you should never

optimize your code prematurely—whether it’s metaprogramming code

or not.

The source code behind dynamic attributes proves that metaprogram-

ming can either impair your system’s performance or help you optimize

it. For example, if you find out that you’re slowing down your system

by calling too many Ghost Methods, you can get some performance

back by defining Dynamic Methods (68). So, when it comes to meta-

programming, performance generally is no more of an issue than it is

with any other code.

However, metaprogramming comes with another trade-off that probably

deserves more attention than performance, and that is complexity. Let’s

talk about that.

Draw Your Own Line

Metaprogramming is like magic, but what kind of magic is it? Is it the

gentle, tree-fairy type of magic or the dark, necromancer-in-a-dungeon

variation? In other words, how much metaprogramming can you wield

before you make a mess of your code and your coding job turns from a

pleasure to a chore?

Look back at the ActiveRecord code in this chapter, and you’ll probably

agree that’s there is no hard-and-fast answer to these questions. You

have to decide for yourself where the line between “just enough meta-

programming” and “too much metaprogramming” is. All I can give you

here is my own personal opinion. For me, the mechanism for dynamic

attributes in Rails is relatively simple and clean, considering how com-

plex the feature itself is. On the other hand, I think that the code behind

dynamic finders relies too much on evaluating complicated strings, and

I wouldn’t exactly jump at the chance to maintain that code. All things

being equal, I think that I’d draw my own line somewhere between the

dynamic attributes code and the dynamic finders code.

Of course, things are not always equal. There are a number of context-

related considerations that you should consider when deciding how

much metaprogramming is appropriate. The following are a few.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=221

LESSONS LEARNED 222

Complexity for Beginners vs. Complexity for Experts

Show the dynamic attributes code in ActiveRecord::Base#method_mis-

sing() to a Ruby rookie, and his brain will likely explode. In fact, new-

comers to Ruby are often intimidated by the freedom that the language

(and especially metaprogramming) gives them, compared to the cozy,

railroaded feeling of developing a Java or C# application.

After reading through this book, you’re probably not as scared any-

more. Sure, there’s a bunch of Ghost Methods (73) turned into Dynamic

Methods (68) by evaluating a few Strings of Code (163) and then called

with a Dynamic Dispatch (64)—not such a big deal. For an experienced

Ruby coder, metaprogramming code can actually look simple and per-

fectly readable. Remember, though, that not everybody is as familiar

with metaprogramming as you are. Resist the temptation to go wild

with magic.

Internal Complexity vs. External Complexity

Sure, the code behind ActiveRecord’s dynamic attributes could scare a

beginner away. But it allows even a first-time Rails developer to write

very terse, elegant code in her application. If you stripped all meta-

programming out of ActiveRecord, you’d end up with a tamer code

base, but the library itself wouldn’t be nearly as simple to use. For

example, you’d miss all the magic methods like task.completed=() or

Task.find_by_description().

That’s another common trade-off of metaprogramming: by making the

insides of your code more complex, you make your library simpler for

clients.

Complexity by Terseness vs. Complexity by Duplication

Granted, the Strings of Code in ActiveRecord’s dynamic finders look

scary.3 Each String of Code can generate different snippets of code,

and it’s difficult to track which code is generated in which case.

However, if you removed these Strings of Code, then you’d end up with

separate but similar method definitions. That would be a lot of dupli-

cated code, which might be easier to read than a single large String of

Code but arguably even harder to maintain. One of the basic princi-

ples of the Rails philosophy is “don’t repeat yourself,” and the dynamic

finders code makes a choice that’s consistent with that principle.

3. Unless you’re used to scarier stuff like C macros or C++ templates, that is.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=222

LESSONS LEARNED 223

Complexity for Humans vs. Complexity for Tools

If you use it sparingly, metaprogramming can make your code more

readable for humans—but it will probably make it less readable for

programs such as refactoring engines or code analysis tools. Ruby’s

extremely dynamic nature makes life very hard for such tools, and

that’s why some IDE features that work great for static languages (such

as finding all the calls to a method, renaming a variable, or jumping

from a method usage to its definition) are difficult to implement well

in Ruby. Add metaprogramming to the mix, and your poor IDE will be

even more confused.4

That’s one of the fundamental trade-offs of metaprogramming (and, to a

point, of dynamic languages). You have the freedom to write expressive,

terse code, but to read that code, you need a human brain.

I listed a few trade-offs that you should be aware of when you decide

how complex your metaprogramming code can be. There are also tech-

niques and tools that you can leverage to deal with that complexity and

to avoid some common metaprogramming pitfalls. Some of these tools,

such as unit tests and Monkeypatch (33) guards, are the focus of the

next chapter.

4. Still, code analysis tools are far from useless when working with Ruby. Most mod-

ern Ruby IDEs include a refactoring engine, even if it’s not as reliable as Eclipse’s.

Also, code analysis tools such as Flog (by Ryan Davis and Eric Hodel, available on

http://ruby.sadi.st/Flog.html) can effectively spot trouble areas in your program.

Report erratum

this copy is (P1.0 printing, January 2010)

http://ruby.sadi.st/Flog.html
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=223

Chapter 9

Metaprogramming Safely
Metaprogramming gives you the power to write beautiful, concise code.

Metaprogramming also gives you the power to shoot yourself in the

foot. Throughout this book, you’ve seen a fair number of hidden traps,

confusing features, and perplexing bugs within the Ruby object model—

enough to make even grown-up developers quiver as they write their

first lines of metaprogramming code.

With experience, however, comes confidence. Once you learn where the

major pitfalls of metaprogramming are, you can easily sidestep them.

Even better, you can use metaprogramming to make your code safer

and more reliable. This chapter looks at a few techniques that can help

you get there.

Your first line of defense against metaprogramming bugs is a trusty

suite of unit tests. Here’s an example of well-tested metaprogramming

code in Rails’ ActionPack library.

9.1 Testing Metaprogramming

In the previous two chapters I focused on Rails’ ActiveRecord, the libra-

ry that implements the model part of Model-View-Controller. In this

chapter I’ll look at ActionPack, the library that takes care of the views

and the controllers.

Rails controllers are the components that process the client’s HTTP

requests. They also call model objects to execute business logics, and

they return the HTTP response, usually by rendering an HTML template

(the view). All controllers are subclasses of ActionController::Base.

TESTING METAPROGRAMMING 225

Here’s a controller:

class GreetController < ActionController::Base

def hello

render :text => "Hello, world"

end

def goodbye

render :text => "Goodbye, world"

end

end

The methods in a controller are also called actions. In a Rails applica-

tion, a user executes the hello() action by pointing the browser at a URL

like http://my_server/my_rails_app/hello and gets back a page containing

the string Hello, world. Similarly, a user pointing at http://my_server/my_

rails_app/goodbye gets back the string Goodbye, world.1 Sometimes you

have code that’s common to all the actions in a controller, such as log-

ging code or security code. You can extract that code in a filter and ask

the controller to execute it before each action (a before filter) or after

each action (an after filter). It’s time to watch the filter in action.

Controller Filters

You can create a before filter with a Class Macro (136):

class GreetController < ActionController::Base

before_filter :check_password

def hello

render :text => "Hello, world"

end

def goodbye

render :text => "Goodbye, world"

end

private

def check_password

raise 'No password' unless 'my_password' == params[:pwd]

end

end

The check_password() method raises an error unless the client added

a password to the URL (like http://my_server/my_rails_app/hello?pwd=my_

1. In a real Rails application, most actions would be more complicated than this. I’ve

kept the example simple because I want to focus on the controllers themselves, not on

the role they take in a Rails application. Also, in a real application, controllers usually

inherit from ApplicationController, which, in turn, inherits from ActionController::Base.

Report erratum

this copy is (P1.0 printing, January 2010)

http://my_server/my_rails_app/hello
http://my_server/my_rails_app/goodbye
http://my_server/my_rails_app/goodbye
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=225
http://my_server/my_rails_app/hello?pwd=my_password

TESTING METAPROGRAMMING 226

password). Being a private method, it’s not an action—you can’t access

it directly at http://my_server/my_rails_app/check_password. Instead, the

controller itself executes this method before executing either hello() or

goodbye(). So, that’s how you can use controller filters. You just call

before_filter() (or after_filter()) with the name of a method. In the next sec-

tion, I’ll show you the source code for before filters.

The Source Behind Controller Filters

The before_filter() method is defined in the ActionController::Filters module.

This module is rolled into ActionController::Base with a Class Extension

Mixin (185), just like the ActiveRecord methods that you saw in Chap-

ter 7, The Design of ActiveRecord, on page 190:

Download gems/actionpack-2.3.2/lib/action_controller/filters.rb

module ActionController

module Filters

def self.included(base)

base.class_eval do

extend ClassMethods

include ActionController::Filters::InstanceMethods

end

end

module ClassMethods

def append_before_filter(*filters, &block)

filter_chain.append_filter_to_chain(filters, :before, &block)

end

alias :before_filter :append_before_filter

...

end

module InstanceMethods

private

def run_before_filters(chain, index, nesting)

while chain[index]

filter = chain[index]

break unless filter # end of call chain reached

filter.call(self)

...

end

end

...

end

end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://my_server/my_rails_app/hello?pwd=my_password
http://my_server/my_rails_app/check_password
http://media.pragprog.com/titles/ppmetr/code/gems/actionpack-2.3.2/lib/action_controller/filters.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=226

TESTING METAPROGRAMMING 227

If you go to the original source and look at the append_filter_to_chain()

method, you’ll see that it creates filters (objects of class ActionCon-

troller::Filters::Filter) and inserts them in a “filter chain.” Before each action,

the controller executes all the before filters in the chain by calling their

call() methods and passing itself.2

If you look around the source code, you’ll see that all filters inherit from

ActiveSupport::Callbacks::Callback, a utility class in Rails’ ActiveSupport

utility library. Here are a few handpicked lines of code from this class:

Download gems/activesupport-2.3.2/lib/active_support/callbacks.rb

module ActiveSupport

module Callbacks

class Callback

attr_reader :kind, :method, :identifier, :options

def initialize(kind, method, options = {})

@method = method

...

end

def call(*args, &block)

evaluate_method(method, *args, &block) if should_run_callback?(*args)

...

end

...

private

def evaluate_method(method, *args, &block)

case method

when Symbol

object = args.shift

object.send(method, *args, &block)

when String

eval(method, args.first.instance_eval { binding })

when Proc, Method

method.call(*args, &block)

else

if method.respond_to?(kind)

method.send(kind, *args, &block)

else

raise ArgumentError,

"Callbacks must be a symbol denoting the method to call, "+

2. I scrapped most of the code in run_before_filters(), and I slightly edited what was left to

make it clearer. The original method also deals with after filters—and with around filters,

another kind of controller filter that I carefully tiptoed around in these pages.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activesupport-2.3.2/lib/active_support/callbacks.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=227

TESTING METAPROGRAMMING 228

"a string to be evaluated, a block to be invoked, " +

"or an object responding to the callback method."

end

end

end

end

end

end

An ActiveSupport::Callbacks::Callback can wrap a method name, a callable

object, or a string. The wrapped object is then evaluated with a Dynamic

Dispatch (64) (for method names), a Deferred Evaluation (108) (for callable

objects), or an eval() (for Strings of Code (163)).

Note that although procs and methods carry their own context, symbols

and Strings of Code don’t, so you need a context to evaluate them. In the

case of symbols and strings, Rails’ callbacks use call()’s first argument

as a context. For example, look at the line that evaluates Strings of

Code. It uses a Context Probe (105) to extract the bindings from the

first argument, and then it uses those bindings as a context to evaluate

the string.

I tried to distill this code down to its most essential lines, but the source

for filters is actually way more complex than that. You won’t be sur-

prised, then, to learn that it’s extensively tested. Let’s look at a couple

of these tests.

Testing Controller Filters

Here’s part of ActionController’s test suite for filters:

Download gems/actionpack-2.3.2/test/controller/filters_test.rb

class FilterTest < Test::Unit::TestCase

class TestController < ActionController::Base

before_filter :ensure_login

def show

render :inline => "ran action"

end

private

def ensure_login

@ran_filter ||= []

@ran_filter << "ensure_login"

end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/actionpack-2.3.2/test/controller/filters_test.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=228

TESTING METAPROGRAMMING 229

class PrependingController < TestController

prepend_before_filter :wonderful_life

private

def wonderful_life

@ran_filter ||= []

@ran_filter << "wonderful_life"

end

end

def test_prepending_filter

assert_equal [:wonderful_life, :ensure_login],

PrependingController.before_filters

end

def test_running_filters

assert_equal %w(wonderful_life ensure_login),

test_process(PrependingController).template.assigns["ran_filter"]

end

end

The TestController contains a single before filter. Simply by defining this

class, the test guarantees that before_filter() is correctly defined as a

Class Macro (136) in ActionController::Base.

The test also defines a subclass of TestController called PrependingCon-

troller, using the prepend_before_filter() Class Macro, which is similar to

before_filter(), but it inserts the filter at the beginning of the filter chain,

rather than at the end. So, even though :wonderful_life is defined after the

:ensure_login filter, it’s supposed to be executed first. Both filters append

their own names to a @ran_filter array, initialized with a Nil Guard (244)

by the first filter that’s executed.

Now I’ll move past the helper classes and on to the tests themselves.

Among the many unit tests in FilterTest, I picked two that test the features

in PrependingController. The first test, test_prepending_filter(), verifies that

the Class Macros add the filters to the chain in the right order. The

second test, test_running_filters(), simulates a client call to a controller

action. It does that by calling a helper method named test_process(),

which I’ll show you in a few moments. This method then copies the

instance variables of the controller into the response, so the test can

just look at the response to find out which filters were executed.

Even if the code in controller filters uses metaprogramming, its unit

tests look exactly like the tests you’d write for any regular piece of

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=229

TESTING METAPROGRAMMING 230

code. Before you start wondering what these tests have to do with meta-

programming at all, I’ll show you the test_process() helper method:

Download gems/actionpack-2.3.2/test/controller/filters_test.rb

def test_process(controller, action = "show")

ActionController::Base.class_eval {

include ActionController::ProcessWithTest

} unless ActionController::Base < ActionController::ProcessWithTest

request = ActionController::TestRequest.new

request.action = action

controller = controller.new if controller.is_a?(Class)

controller.process_with_test(request, ActionController::TestResponse.new)

end

FilterTest#test_process() reopens ActionController::Base to include a helper

module called ActionController::ProcessWithTest. Then it creates a mock

HTTP request, binds it to an action (by default show(), which all con-

trollers inherit from ActionController::Base), creates a new controller, and

asks the controller to process that request. If you look at ActionCon-

troller::ProcessWithTest, you’ll see more juicy metaprogramming action:

Download gems/actionpack-2.3.2/lib/action_controller/test_process.rb

module ActionController

module ProcessWithTest

def self.included(base)

base.class_eval { attr_reader :assigns }

end

def process_with_test(*args)

process(*args).tap { set_test_assigns }

end

private

def set_test_assigns

@assigns = {}

(instance_variable_names - self.class.protected_instance_variables).

each do |var|

name, value = var[1..-1], instance_variable_get(var)

@assigns[name] = value

response.template.assigns[name] = value if response

end

end

end

end

ActionController::ProcessWithTest is a pretty wild metaprogramming party.

It uses a Class Extension Mixin (185) and an Open Class (31) to define

an assigns attribute on its inclusor. It also defines a process_with_test()

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/actionpack-2.3.2/test/controller/filters_test.rb
http://media.pragprog.com/titles/ppmetr/code/gems/actionpack-2.3.2/lib/action_controller/test_process.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=230

TESTING METAPROGRAMMING 231

method that delegates to ActionController::Base#process(), which, in turn,

catches the request and forwards it to the appropriate action.

However, process_with_test() also taps set_test_assigns() in the result before

returning it.3 If you’re using Ruby 1.9 or greater, tap() is one of the

standard methods in Object. If you’re using an earlier version of Ruby,

then Rails defines tap() for you:

Download gems/activesupport-2.3.2/lib/active_support/core_ext/object/misc.rb

def tap

yield self

self

end unless Object.respond_to?(:tap)

Now look at set_test_assigns(). The second line uses two reflection meth-

ods: instance_variable_names(), which returns all the instance variables

in the controller, and protected_instance_variables(), which returns only

those variables that are defined by ActionController::Base.4 By subtract-

ing the two arrays, this code gets only those instance variables that are

defined right in the controller class, excluding the ones that are defined

in the controller’s superclass.

Then set_test_assigns() iterates through all these instance variables. It

gets the value of each variable with instance_variable_get() and stores

both the name of the variable (minus the @ at the beginning) and its

value in the HTTP response. It also stores the name and value in an

@assigns variable to cater to cases where the HTTP response is nil. In the

end, this code allows a test class like FilterTest to call a controller action

and then make assertions on the controller’s instance variables, all in

a single line—just like FilterTest#test_running_filters() does.

As you can see, you can use metaprogramming in your unit tests to

reach hard-to-test areas of your code (either metaprogramming code or

regular code) and ensure that it works as expected. However, there is

one particular spell in this book that you should handle with care, even

in the presence of good tests.

3. The tap() method is a Self Yield (248). You can read more about tap() in Section A.4,

The tap() Example, on page 249.
4. Both instance_variable_names() and protected_instance_variables() are defined by Rails.

You might be wondering why Rails defines a method like Object#instance_variable_names()

when Ruby already has Object#instance_variables(). There is some trickery going on here.

Object#instance_variables() returns either strings or symbols depending on the version of

Ruby that you’re using. But Rails’ instance_variable_names() always returns strings, mak-

ing this code compatible with all versions of Ruby.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activesupport-2.3.2/lib/active_support/core_ext/object/misc.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=231

DEFUSING MONKEYPATCHES 232

9.2 Defusing Monkeypatches

In Chapter 1, Monday: The Object Model, on page 27, you learned that

all classes and modules, including classes and modules in Ruby’s core

library, can be reopened as Open Class (31):

Download rails/monkeypatch.rb

"abc".capitalize # => "Abc"

class String

def capitalize

upcase

end

end

"abc".capitalize # => "ABC"

Open Classes are useful but are also dangerous. By reopening a class,

you can change its existing features, like the String#capitalize() method

shown earlier. This technique (also called a Monkeypatch (33)) presents

a few problems that you should be aware of.

First, a Monkeypatch is global. If you change a method on String, all

the strings in your system will see that method. Second, a Monkey-

patch is invisible. Once you’ve redefined String#capitalize(), it’s difficult

to notice that the method was changed. If your code, or a library that

you’re using, relies on the original behavior of capitalize(), that code will

break—and because Monkeypatches are global, you might have trou-

ble spotting where the problem is and finding out which code modified

which class.

For all these reasons, you might be tempted to steer clear of Monkey-

patches altogether. Doing that, however, takes away most of Ruby’s

dynamic steam. Instead, as I mentioned in Section 1.2, Monkey See,

Monkey Patch, on page 33, you can apply a few techniques to make

Monkeypatches a bit safer. I’ll show you some techniques next, taking

examples from the Rails source.

Making Monkeypatches Explicit

One reason why Monkeypatches (33) are dangerous is that they’re diffi-

cult to spot. If you make them a tad more visible, you’ll have an easier

time tracking them. For example, instead of defining methods straight

in the Open Class (31), you can define methods in a module and then

include the module in the Open Class. At least this way you’ll be able

to see the module among the Open Class’ ancestors.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/rails/monkeypatch.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=232

DEFUSING MONKEYPATCHES 233

Rails’ ActiveSupport library uses modules to extend core library classes

like String. First it defines additional methods in modules like ActiveSup-

port::CoreExtensions::String:

Download gems/activesupport-2.3.2/lib/active_support/core_ext/string/filters.rb

module ActiveSupport

module CoreExtensions

module String

module Filters

def squish # ...

def squish! # ...

end

end

end

end

Then ActiveSupport includes all the extension modules in String:

Download gems/activesupport-2.3.2/lib/active_support/core_ext/string.rb

class String

include ActiveSupport::CoreExtensions::String::Access

include ActiveSupport::CoreExtensions::String::Conversions

include ActiveSupport::CoreExtensions::String::Filters

include ActiveSupport::CoreExtensions::String::Inflections

include ActiveSupport::CoreExtensions::String::StartsEndsWith

include ActiveSupport::CoreExtensions::String::Iterators

include ActiveSupport::CoreExtensions::String::Behavior

include ActiveSupport::CoreExtensions::String::Multibyte

end

Now imagine that you’re writing code in your Rails application, and you

want to track all the modules that define new methods on String. You

can get the complete list of those modules by calling String.ancestors():

[String, ActiveSupport::CoreExtensions::String::Multibyte,

ActiveSupport::CoreExtensions::String::Behavior,

ActiveSupport::CoreExtensions::String::Filters,

ActiveSupport::CoreExtensions::String::Conversions,

ActiveSupport::CoreExtensions::String::Access,

ActiveSupport::CoreExtensions::String::Inflections,

Enumerable, Comparable, Object, ActiveSupport::Dependencies::Loadable,

Base64::Deprecated, Base64, Kernel, BasicObject]

Although modules don’t really solve the problems with Monkeypatches,

they do a good job making the patching more visible so that you can

at least track Monkeypatches more easily. As I argued in Section 7.3,

Think in Modules, on page 204, modules are your friends.5

5. Modules are also useful when you define Singleton Methods (133). Look back at

the module-based mechanism in Chapter 7, The Design of ActiveRecord, on page 190.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activesupport-2.3.2/lib/active_support/core_ext/string/filters.rb
http://media.pragprog.com/titles/ppmetr/code/gems/activesupport-2.3.2/lib/active_support/core_ext/string.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=233

DEFUSING MONKEYPATCHES 234

However, modules alone won’t protect you from the most dangerous

types of Monkeypatches—those that happen by mistake. You saw an

example of this in Section 1.2, Monkey See, Monkey Patch, on page 33,

where you and Bill meant to define a new method and ended up redefin-

ing an existing one. Take a look at how Rails attempts to prevent this

kind of accident.

Preventing Monkeypatches

In ActiveRecord, there’s one place in particular where involuntary Mon-

keypatches (33) are likely to occur: the source code of dynamic attributes

that I exposed in Chapter 8, Inside ActiveRecord, on page 206.

Imagine having a table with a column called save. ActiveRecord is sup-

posed to generate Dynamic Methods (68) like save() and save=() on your

model class. But ActiveRecord::Base already has a save() method, so

you’d end up overriding the original save() method with an attribute

getter!

ActiveRecord avoids this problem by staying on the safe side. Before

defining a Dynamic Method, it checks that no method by the same

name already exists. This check happens in the instance_method_al-

ready_implemented?() method (that’s a mouthful, so let’s call it imai?()

for short). ActiveRecord calls this method before generating each dy-

namic accessor:

Download gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb

module ActiveRecord

module AttributeMethods

def instance_method_already_implemented?(method_name)

method_name = method_name.to_s

return true if method_name =~ /^id(=$|\?$|$)/

@_defined_class_methods ||=

ancestors.first(ancestors.index(ActiveRecord::Base)).sum([]) { |m|

m.public_instance_methods(false) |

m.private_instance_methods(false) |

m.protected_instance_methods(false)

}.map(&:to_s).to_set

@@_defined_activerecord_methods ||=

(ActiveRecord::Base.public_instance_methods(false) |

ActiveRecord::Base.private_instance_methods(false) |

ActiveRecord::Base.protected_instance_methods(false)

).map(&:to_s).to_set

ActiveRecord defines most of its methods in modules and then uses Class Extension Mix-

ins (185) to turn those methods into class methods on ActiveRecord::Base. As an alterna-

tive, ActiveRecord could have added the methods straight into ActiveRecord::Base’s eigen-

class, but modules make the code easier to understand and change.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/activerecord-2.3.2/lib/active_record/attribute_methods.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=234

DEFUSING MONKEYPATCHES 235

raise DangerousAttributeError,

"#{method_name} is defined by ActiveRecord" if

@@_defined_activerecord_methods.include?(method_name)

@_defined_class_methods.include?(method_name)

end

...

This is a busy little method. Let’s try to understand it. First, this code

checks that the attribute accessor that is about to be defined isn’t

named id(), id=(), or id?(). If it does have one of these names, then

imai?() returns true, which means “Don’t bother defining this method. It

already exists.”

Then, imai?() initializes two variables with a couple of Nil Guards (244).

Both variables contain a set of method names that have been converted

to strings with a Symbol To Proc (251). To understand the two variables,

remember that this code is going to be called on a subclass of ActiveRe-

cord::Base.

The first variable, @_defined_class_methods, contains the methods de-

fined by the current model class and all its ancestors, up to and exclud-

ing ActiveRecord::Base. The second variable is a class variable called

@@_defined_activerecord_methods, which contains the instance methods

defined by ActiveRecord::Base itself. Being a class variable, it’s shared

by all subclasses of ActiveRecord::Base. (Note that all calls to *_instance_

methods() methods have a false argument, which means “Ignore inher-

ited methods.”)

Now imai?() knows all the instance methods of this particular subclass

of ActiveRecord::Base. If the name of the method being generated clashes

with one of the existing methods in ActiveRecord::Base, then you have

a dangerous column name in your database (like save). In this case,

instance_method_already_implemented?() raises a DangerousAttributeError.

If the name of the method clashes with one of the methods in an

ActiveRecord::Base’s subclass, then imai?() assumes that you overrode

the attribute accessor with your own custom code, and it returns true.

Otherwise, imai?() returns false, and ActiveRecord generates the acces-

sor for this attribute.

I’ve gone through one example of code that guards against Monkey-

patches while generating dynamic attributes. However, code like this

cannot protect you from your own Monkeypatches—those that happen

as you define your own methods. Here’s one possible strategy to defend

against that kind of Monkeypatch.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=235

DEFUSING MONKEYPATCHES 236

How Rake Prevents Monkeypatches

Rake, the popular build system, avoids involuntary Monkeypatches (33)

with a Class Macro (136) called Module#rake_extension():6

Download gems/rake-0.8.7/lib/rake.rb

class Module

def rake_extension(method)

if method_defined?(method)

$stderr.puts "WARNING: Possible conflict with Rake extension:\

#{self}##{method} already exists"

else

yield

end

end

end

Rake uses rake_extension() when it wants to add methods to an Open

Class (31). For example, here’s how Rake defines methods such as

String#ext() and String#pathmap():

class String

rake_extension("ext") do

def ext(newext='')

...

end

end

rake_extension("pathmap") do

def pathmap(spec=nil, &block)

...

end

end

...

end

The idea is that rake_extension() checks first to see whether a method

exists before going ahead and defining it. If you’re about to mistakenly

redefine a method that already exists, rake_extension() raises a warning:

Download rails/rake_patch.rb

require 'rake'

class String

rake_extension("reverse") do

6. Rake is not really a part of Rails, so I’m cheating a little by talking about it here.

However, Rails depends on Rake, so if you installed Rails, you already have the Rake

source code in your gems folder.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/gems/rake-0.8.7/lib/rake.rb
http://media.pragprog.com/titles/ppmetr/code/rails/rake_patch.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=236

LESSONS LEARNED 237

def reverse

'my_reverse'

end

end

end

⇒ WARNING: Possible conflict with Rake extension: String#reverse already exists

The rake_extension() method also protects Rake from accidentally modi-

fying Ruby’s core libraries in the future. If a future version of Ruby ever

defines a String#pathmap method, rake_extension() will warn you before

you get an involuntary Monkeypatch.

Although Rake’s approach certainly works, it requires discipline on the

programmer’s part. If you don’t use rake_extension() each and every time

you want to define a new method on an Open Class (31), you’ll bypass

the safety check entirely. In the end, your own careful approach and

unit tests are the best defense against involuntary Monkeypatches.

Having navigated large amounts of code here, it’s time to wrap up what

I’ve covered in this chapter.

9.3 Lessons Learned

By looking at Rails’ source code, its unit tests, and the way it attempts

to avoid involuntary Monkeypatches, you learned two very important

lessons. Here they are.

Test Your Metaprogramming Code

Metaprogramming code can get complex, but you can manage this com-

plexity with a tool that you already know and love: unit testing. No mat-

ter how “meta,” code is still code, and unit tests can go a long way in

helping you write code that’s clean and error-free.

Compared to testing regular code, testing metaprogramming code intro-

duces an additional dimension. Remember, metaprogramming is “code

that writes code,” so you might have to test it at two different lev-

els: you need to test the code you write, and you should also test the

code that your code writes. For example, take a Class Macro (136) like

before_filter(). If you wrote this Class Macro yourself, then you’d have

two features to test for:

• You need to ensure that before_filter() is available in controllers.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=237

LESSONS LEARNED 238

• You should check that filters defined with before_filter() are exe-

cuted before every action.

The good news in the case of before_filter() (and in many other cases)

is that by testing the second feature you also indirectly test the first

feature. To write a test for before_filter(), you need to define a con-

troller class that uses it—and by defining that class, you also test that

before_filter() is available in controllers.

The lesson here is this: test your metaprogramming code even more

carefully than you test any other code, but use the same techniques.

This lesson, however, is just part of a deeper lesson, which has to do

with the meaning of metaprogramming.

Metaprogramming Is Just Programming

When I started learning metaprogramming, it looked like magic. I felt

like leaving my usual programming behind to enter a new world—a

world that was surprising, exciting, and sometimes a bit scary.

As I finish writing this book, the feeling of magic is still there. However,

I realize now that in practice there is no hard line separating meta-

programming from plain old vanilla programming. Metaprogramming

is just another powerful set of coding tools that you can wield to write

code that’s clean, safe, and well tested.

I’ll go out on a limb to make a bolder assertion: with Ruby, the distinc-

tion between metaprogramming and regular code is fuzzy—and, ulti-

mately, pointless. Once you have an in-depth understanding of the lan-

guage, you’d have a hard time deciding which techniques and idioms

are “meta” and which ones are plain old programming.

In fact, metaprogramming is so deeply engrained in Ruby that you can

barely write an idiomatic Ruby program without using a few meta-

programming spells. The language actually expects that you’ll manip-

ulate the language constructs, tweak the object model, reopen classes,

define methods dynamically, and manage scopes with blocks.

As Bill would say in his Zen moments, “There is no such thing as meta-

programming. It’s just programming all the way through!”

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=238

Part III

Appendixes

Appendix A

Common Idioms
This appendix is a mixed bag of popular Ruby idioms. They aren’t

really “meta,” so they don’t fit into the main story of this book. How-

ever, they’re so common and they’re the foundation of so many meta-

programming spells that you’ll probably want to get familiar with them.

A.1 Mimic Methods

Much of Ruby’s appeal comes from its flexible syntax. You can find an

example of this flexiblity even in the most basic program:

puts 'Hello, world!'

Newcomers to Ruby often mistake puts for a language keyword, when it’s

actually a method. If you usually leave out the parentheses when calling

puts() so that it doesn’t look like a method, reinsert the parentheses, and

puts()’s nature becomes obvious:

puts('Hello, world!')

Thanks to disguised method calls such as this one, Ruby manages to

provide many useful function-like methods while keeping the core of

the language relatively small and uncluttered.

This simple idea of dropping parentheses from method calls is used

quite often by expert coders. Sometimes you’ll want to keep the paren-

theses because they make a method’s nature obvious or maybe because

the parser is requiring the parentheses to make sense of a complex line

of code. Other times, you’ll want to drop the parentheses to make the

code cleaner or to make a method look like a keyword, as is the case

with puts().

MIMIC METHODS 241

For another example of flexible syntax, think of object attributes, which

are actually methods in disguise:

Download common_idioms/mimic_methods.rb

class C

def my_attribute=(value)

@p = value

end

def my_attribute

@p

end

end

obj = C.new

obj.my_attribute = 'some value'

obj.my_attribute # => "some value"

Writing obj.my_attribute = ’some value’ is the same as writing obj.my_attri-

bute=(’some value’), but it looks cleaner.

What should we call disguised methods such as my_attribute() and my_

attribute=()? Let’s take a cue from zoology: an animal that disguises itself

as another species is said to employ “mimicry.” Therefore, a method call

that disguises itself as something else, such as puts or obj.my_attribute=,

can be called a Mimic Method. Spell: Mimic Method

Mimic Methods are a very simple concept, but the more you look into

Ruby, the more you find creative uses for this concept. For example,

access modifiers such as private() and protected() are Mimic Methods,

as are Class Macros (136) such as attr_reader(). Popular libraries provide

further examples. Here is one such example.

The Camping Example

The following snippet of code comes from an application written with

the Camping web framework.1 It binds the /help URL to a specific con-

troller action:

class Help < R '/help'

def get

rendering for HTTP GET...

Class Help seems to inherit from a class named R. But what’s that

quirky little string right after R? You might assume that Ruby would

1. Camping is a library written by “_why the lucky stiff.” You can install it with gem install

camping.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/mimic_methods.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=241

MIMIC METHODS 242

Attribute Trouble

Object attributes (which I describe in Section A.1, Mimic Meth-
ods, on page 240) contain a hidden trap for the unsuspecting
programmer:

Download common_idioms/attribute_trouble.rb

class MyClass
attr_accessor :my_attr

def initialize_attributes
my_attr = 10

end
end

obj = MyClass.new
obj.initialize_attributes
obj.my_attr # => nil

This result is probably not what you expected. The problem is
that the code in initialize_attributes() is ambiguous. Ruby has no
way of knowing whether this code is an assignment to a local
variable called my_attr or a call to a Mimic Method (241) called
my_attr=(). When in doubt, Ruby defaults to the first option. It
defines a variable called my_attr, which immediately falls out
of scope.

To steer clear of this problem, use self explicitly whenever you
assign an attribute to the current object:

class MyClass
def initialize_attributes
self.my_attr = 10

end
end

obj.initialize_attributes
obj.my_attr # => 10

By using self, you remove the ambiguity and make it clear to
Ruby that you’re calling a Mimic Method, not assigning a value
to a local variable.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/attribute_trouble.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=242

NIL GUARDS 243

simply refuse this syntax, until you realize that R() is actually a Mimic

Method that takes a string and returns an instance of Class. That is the

class that Help actually inherits from.2 Thanks to creative tricks such

as this one, Camping feels less like a Ruby web framework and more

like a domain-specific language for web development. In general, this is

a good thing, as I argue in Appendix B, on page 252.

A.2 Nil Guards

Most Ruby beginners looking through someone else’s code are per-

plexed by this exotic idiom:

Download common_idioms/nil_guards.rb

a ||= []

In this example, the value to the right happens to be an empty array,

but it could be any assignable value. The ||= is actually a syntax short-

cut for the following:

a = a || []

To understand this code, you need to understand the details of the “or”

operator (||). Superficially, the || operator simply returns true if either of

the two operands is true—but there is some subtlety to this. Here’s the

way that || actually works.

Remember that any value is considered true with the exception of nil

and false. If the first operand is true, the || operator simply returns it; if

it’s false, the || operator returns the second operand instead. This means

the result will be true unless both operands are false, which is consistent

with the intuitive notion of an “or” operator.

Now you can see that the previous code has the same effect as this:

if a != nil

a = a

else

a = []

end

You can translate this code as this: “If a is nil, then make it an empty

array; if it’s not, just leave it alone.” In such cases, experienced Ruby

2. If the notion of a method returning a class sounds strange to you, consider that

Ruby classes are just objects. You can find more information about classes as objects in

Chapter 1, Monday: The Object Model, on page 27.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/nil_guards.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=243

TRICKS WITH METHOD ARGUMENTS 244

coders generally consider the || operator more elegant and readable

than an if. Of course, you’re not limited to arrays. You can use the

same idiom to initialize just about anything. This idiom is sometimes

called a Nil Guard, because it’s used to make sure that a variable is Spell: Nil Guard

not nil.

Nil Guards are also used quite often to initialize instance variables.

Look at this class:

class C

def initialize

@a = []

end

def elements

@a

end

end

By using a Nil Guard, you can rewrite the same code more succinctly:

class C

def elements

@a ||= []

end

end

The previous code initializes the instance variable at the latest possi-

ble moment, when it’s actually accessed. This idiom is called a Lazy

Instance Variable. Sometimes, as in the earlier example, you manage Spell: Lazy Instance

Variable
to replace the whole initialize() method with one or more Lazy Instance

Variables.

A.3 Tricks with Method Arguments

When it comes to method arguments, Ruby has a few interesting tricks

up its sleeve. Here’s a summary of the most popular tricks.

Named Arguments

When you call a method in Ruby, you have to pass the arguments in a

specific order. If the order is wrong, then you introduce a bug:

def login(name, password, message)

...

end

login('bill', 'just doing some administration', 'pwd2341') # Bug!

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=244

TRICKS WITH METHOD ARGUMENTS 245

This kind of mistake is quite common when you have a long list of

arguments. Some languages provide a feature called Named Arguments,

which allows you to set arguments by their names rather than their

position. Named Arguments can make your code more explicit and less

likely to be wrong.

Ruby doesn’t come with this feature, but it sports a different feature

with a similar effect. If you call a method with a sequence of key-value

pairs (using the “arrow” syntax), all the pairs will be collected into a

single hash argument:

Download common_idioms/named_arguments.rb

def my_method(args)

args

end

my_method(:a => 'X', :b => 3, :c => 'Y') # => {:c=>"Y", :a=>"X", :b=>3}

This is Ruby’s way of implementing Named Arguments. It’s actually the Spell: Named

Arguments
same as passing a hash to the method, but the syntax is more con-

cise, because you don’t have the confusing curly braces. The receiving

method must still take responsibility for extracting the arguments from

the hash.

Named arguments can easily be used together with a “block” argument

(we described the block argument in Section 3.5, The & Operator, on

page 109). You can also mix Named Arguments and regular arguments,

but regular arguments must come first in a method’s signature. Also,

remember that Named Arguments are less explicit than regular argu-

ments, because with Named Arguments you cannot see the list of argu-

ments just by looking at the method declaration.

Argument Arrays and Default Values

The * operator collects multiple arguments in a single array:

Download common_idioms/argument_array.rb

def my_method(*args)

args

end

my_method(1, '2', 'three') # => [1, "2", "three"]

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/named_arguments.rb
http://media.pragprog.com/titles/ppmetr/code/common_idioms/argument_array.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=245

TRICKS WITH METHOD ARGUMENTS 246

Symbols As Argument Names

A set of Named Arguments is a simple hash, where the keys are
the arguments’ names. You can use any object you like as a
key, but just as ActiveRecord does, most libraries use symbols
for that purpose. This is a good idea for two reasons. First, as we
mention in the sidebar on page 65, symbols are conventionally
used as the names of programming entities in general, which
makes them a good choice for the names of arguments. Sec-
ond, symbols are immutable, which makes them ideal as hash
keys.

This convention is common enough that version 1.9 of Ruby
includes a more concise syntax specifically for Named Argu-
ments that use symbols as argument names. On older versions
of Ruby, you’d write something like the following:

login(:name => 'bill', :code => 45, :password => 'pwd2341')

Starting with Ruby 1.9, you can now write the same method call
as follows:

login(name: 'bill', code: 45, password: 'pwd2341')

This idiom is called an Argument Array. Note that you can have only Spell: Argument Array

one Argument Array per method.3

Ruby also supports default values for arguments:

Download common_idioms/default_arguments.rb

def my_method(x, y = "a default value")

"#{x} and #{y}"

end

my_method("a value") # => "a value and a default value"

You’ve learned a set of useful techniques. Now, you can learn how to

mix them together.

Mixing Argument Idioms

It can be somewhat difficult to mix default values, Argument Arrays,

and Named Arguments in the same method, because they all want to

3. In Ruby 1.8 and earlier, the Argument Array also had to be the last argument in the

method, not considering the final “block” argument.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/default_arguments.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=246

TRICKS WITH METHOD ARGUMENTS 247

come last in the arguments list. However, Named Arguments and Argu-

ment Arrays get along quite well. Programmers often use them together

to write flexible methods that can take many different combinations

of arguments. Here’s an example of an Argument Array where the last

element in the array is also a hash of Named Arguments:

Download common_idioms/mixed_arguments.rb

def my_method(*args)

args

end

my_method(:x, :y => 1, :z => 'A') # => [:x, {:y=>1, :z=>"A"}]

Let’s look at another example of this mixed approach.

The Rails find() Example

ActiveRecord, the popular database access library that’s also part of

Rails, includes a very powerful find() method.4 You can call find() with

many different combinations of arguments:

Person.find(:first)

Person.find(:first, :order => "created_on DESC", :offset => 5)

Person.find(:last, :conditions => ["user_name = ?", user_name])

Person.find(:all, :offset => 10, :limit => 10)

Person.find(:all, :conditions => ["name IN (?)", names], :limit => 5)

All this flexibility comes at a price: it makes the receiving code more

complex. With regular arguments, the receiving method can rest as-

sured that the arguments are actually there (although they might have

invalid values). With Argument Arrays and Named Arguments, the

method itself has to parse the arguments list and possibly even vali-

date the arguments. ActiveRecord’s find() does exactly that and finally

delegates to one of a number of more specialized methods:

def find(*args)

options = args.extract_options!

validate_find_options(options)

set_readonly_option!(options)

case args.first

when :first then find_initial(options)

when :last then find_last(options)

when :all then find_every(options)

else find_from_ids(args, options)

end

end

4. ActiveRecord was originally written by David Heinemeier Hansson. You can install it

with gem install activerecord.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/mixed_arguments.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=247

SELF YIELD 248

The find() method accepts both Argument Arrays and Named Argu-

ments. That’s how it manages to support both flag-like arguments (such

as :first and :all) and Named Arguments with values (such as :order and

:offset).

A.4 Self Yield

When you pass a block to a method, you expect the method to call back

to the block through yield. A useful twist on callbacks is that an object

can also pass itself to the block. This next example (that comes from

the RubyGems package manager) helps explain how this can be useful.

The RubyGems Example

When you create a RubyGems Specification, typically you initialize its

attributes like this:

spec = Gem::Specification.new

spec.name = "My Gem name"

spec.version = "0.0.1"

...

Alternately, you can pass a block containing your initialization code to

Specification.new():

spec = Gem::Specification.new do |s|

s.name = "My Gem name"

s.version = "0.0.1"

...

end

I prefer this second style, because it makes it clear that all the state-

ments in the block are focusing on the same object. If you track the

RubyGems source code, you’ll see that Specification.new() passes the

block on to initialize(), where the newborn Specification can yield itself to

the block:

module Gem

class Specification

def initialize

yield self if block_given?

...

This simple idiom is known as a Self Yield. For another, more creative Spell: Self Yield

example of this, you can check out the tap() method.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=248

SYMBOL#TO_PROC() 249

The tap() Example

In Ruby, it’s common to find long chains of method calls such as this:

Download common_idioms/tap.rb

['a', 'b', 'c'].push('d').shift.upcase.next # => "B"

Chains of calls are frowned upon in most languages (and sometimes

referred to as “train wrecks”). Ruby’s terse syntax makes call chains

generally more readable, but they still present a problem: if you have

an error somewhere along the chain, it can be difficult to track down

the error.

For example, assume that you find a bug in the previous code, and

you suspect that the call to shift() is not returning what you expect. To

confirm your suspicions, you have to break the chain and print out the

result of shift() (or set a breakpoint in your debugger):

temp = ['a', 'b', 'c'].push('d').shift

puts temp

x = temp.upcase.next

⇒ a

This is a clumsy way to debug your code. If you don’t want to split the

call chain, you can use the tap() method to slip intermediate operations

into the middle of a call chain:

['a', 'b', 'c'].push('d').shift.tap {|x| puts x }.upcase.next

⇒ a

The tap() method was introduced by Ruby 1.9. If you haven’t upgraded

to Ruby 1.9 yet, you can easily implement tap() yourself:

class Object

def tap

yield self

self

end

end

A.5 Symbol#to_proc()

This exotic spell is popular among black-belt Ruby programmers. When

I stumbled upon this spell for the first time, I had trouble understand-

ing the reasoning behind it. It’s easier to get there by taking one small

step at a time.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/tap.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=249

SYMBOL#TO_PROC() 250

Look at this code:

Download common_idioms/symbol_to_proc.rb

names = ['bob', 'bill', 'heather']

names.map {|name| name.capitalize } # => ["Bob", "Bill", "Heather"]

Focus on the block—a simple “one-call block” that takes a single argu-

ment and calls a single method on that argument. One-call blocks are

very common in Ruby, especially (but not exclusively) when you’re deal-

ing with arrays.

In a language such as Ruby, which prides itself on being succint and to

the point, even a one-call block looks verbose. Why do you have to go

through the trouble of creating a block, with curly braces and all, just

to ask Ruby to call a method? The idea of Symbol#to_proc() is that you

can replace a one-call block with a shorter construct. Let’s start with

the smallest piece of information you need, which is the name of the

method that you want to call, as a symbol:

:capitalize

You want to convert the symbol to a one-call block like this:

{|x| x.capitalize }

As a first step, you can add a method to the Symbol class, which converts

the symbol to a Proc object:

class Symbol

def to_proc

Proc.new {|x| x.send(self) }

end

end

See how this method works? If you call it on, say, the :capitalize symbol,

it returns a proc that takes an argument and calls capitalize() on the

argument. Now you can use to_proc() and the & operator to convert a

symbol to a Proc and then to a block:

names = ['bob', 'bill', 'heather']

names.map(&:capitalize.to_proc) # => ["Bob", "Bill", "Heather"]

You can make this code even shorter. As it turns out, you can apply the

& operator to any object, and it will take care of converting that object

to a Proc by calling to_proc(). (You didn’t think we picked the name of

the to_proc() method randomly, did you?) So, you can simply write the

following:

names = ['bob', 'bill', 'heather']

names.map(&:capitalize) # => ["Bob", "Bill", "Heather"]

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/common_idioms/symbol_to_proc.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=250

SYMBOL#TO_PROC() 251

That’s the trick known as Symbol To Proc. Neat, huh? Spell: Symbol To Proc

If you’re running Ruby 1.9, you don’t even need to define the to_proc()

method on Symbol, because it’s already there. In fact, Ruby 1.9’s imple-

mentation of Symbol#to_proc also supports blocks with more than one

argument, which are required by methods such as inject():

without Symbol#to_proc:

[1, 2, 5].inject(0) {|memo, obj| memo + obj } # => 8

with Symbol#to_proc:

[1, 2, 5].inject(0, &:+) # => 8

cool!

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=251

Appendix B

Domain-Specific Languages
Domain-specific languages are a popular topic these days. They overlap

somewhat with metaprogramming, so you’ll probably want to know a

thing or two about them.

B.1 The Case for Domain-Specific Languages

Are you old enough to remember Zork? It was one of the first “text

adventures”: text-based computer games that were popular in the early

80s. Here are the first few lines from a game of Zork:

⇒ West of house

You are standing in an open field west of a

white house, with a boarded front door.

You see a small mailbox here.
⇐ open mailbox
⇒ Opening the small mailbox reveals a leaflet.
⇐ take leaflet
⇒ Taken.

Suppose you have to write a text adventure as your next job. What

language would you write it in?

You’d probably pick a language that’s good at manipulating strings

and supports object-oriented programming. But whatever language you

chose, you’d still have a gap between that language and the problem

you’re trying to solve. This probably happens in your daily program-

ming job as well. For example, many large Java applications deal with

money, but Money is not a standard Java type. That means each appli-

cation has to reinvent money, usually as a class.

THE CASE FOR DOMAIN-SPECIFIC LANGUAGES 253

In the case of our adventure game, you have to deal with entities such

as rooms and items. No general-purpose language supports these enti-

ties directly. How would you like a language that’s specifically tar-

geted to text adventures? Given such a language, you could write code

like this:

me: Actor

location = westOfHouse

;

westOfHouse : Room 'West of house'

"You are standing in an open field west of

a white house, with a boarded front door."

;

+ mailbox : OpenableContainer 'mailbox' 'small mailbox';

++ leaflet : Thing 'leaflet' 'leaflet';

This is not a mocked-up example—it’s real code. It’s written in a lan-

guage called TADS, specifically designed for creating “interactive fic-

tion” (today’s fancier name for text adventures). TADS is an example of

a domain-specific language (DSL), a language that focuses on a specific

problem domain.

The opposite of a DSL is a general-purpose language (GPL) such as C++

or Ruby. You can use a GPL to tackle a wide variety of problems, even

if it might be more suited to some problems than others. Whenever you

write a program, it’s up to you to choose between a flexible GPL or a

focused DSL.

Let’s assume that you decide to go down the DSL route. How would you

proceed then?

Using DSLs

If you want a DSL for your own specific problem, you might get lucky.

There are hundreds of DSLs around, focusing on a wide range of do-

mains. The UNIX shell is a DSL for gluing command-line utilities

together. Microsoft’s VBA was designed to extend Excel and other

Microsoft Office applications. The make language is a DSL focused on

building C programs, and Ant is an XML-based equivalent of make for

Java programs. Some of these languages are very limited in scope, while

others are flexible enough to cross the line into GPL-dom.

What if you can’t find a ready-made DSL that fits the domain you’re

working in? In that case, you can write your own DSL and then use that

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=253

INTERNAL AND EXTERNAL DSLS 254

DSL to write your program. You could say that this process—writing a

DSL and then using it—is another take on metaprogramming. It can be

a slippery path, though. You’ll probably need to define a grammar for

your language with a system such as ANTLR or Yacc, which are them-

selves DSLs for writing language parsers. As the scope of your problem

expands, your humble little language can grow into a GPL before you

even realize it. At that point, your leisurely foray into language writing

will have escalated into an exhausting marathon.

To avoid these difficulties, you can pick a different route. Rather than

writing a full-fledged DSL, you can bend a GPL into something resem-

bling a DSL for your specific problem. The next section shows you how.

B.2 Internal and External DSLs

Let’s see an example of a DSL that’s actually a GPL in disguise. Here’s a

snippet of Ruby code that uses the Markaby library to generate HTML:1

Download dsl/markaby_example.rb

require 'rubygems'

require 'markaby'

html = Markaby::Builder.new do

head { title "My wonderful home page" }

body do

h1 "Welcome to my home page!"

b "My hobbies:"

ul do

li "Juggling"

li "Knitting"

li "Metaprogramming"

end

end

end

This code is plain old Ruby, but it looks like a specific language for

HTML generation. You can call Markaby an internal DSL, because it

lives within a larger, general-purpose language. By contrast, languages

that have their own parser, such as make, are often called external

DSLs. One example of an external DSL is the Ant build language. Even

though the Ant interpreter is written in Java, the Ant language is com-

pletely different from Java.

1. Markaby was written by “_why the lucky stiff.” Install it with gem install markaby.

Report erratum

this copy is (P1.0 printing, January 2010)

http://media.pragprog.com/titles/ppmetr/code/dsl/markaby_example.rb
http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=254

DSLS AND METAPROGRAMMING 255

Let’s leave the GPL vs. DSL match behind us and assume that you

want to use a DSL. Which DSL should you prefer? An internal DSL or

an external DSL?

One advantage of an internal DSL is that you can easily fall back to

the underlying GPL whenever you need to do so. However, the syntax of

your internal DSL will be constrained by the syntax of the GPL behind

it. This is a big problem with some languages. For example, you can

write an internal DSL in Java, but the result is probably still going to

look pretty much like Java. But with Ruby, you can write an internal

DSL that looks more like an ad hoc language tailored to the problem

at hand. Thanks to Ruby’s flexible, uncluttered syntax, the Markaby

example shown earlier barely looks like Ruby at all.

That’s why Ruby programmers tend to use Ruby where Java program-

mers would use an external language or an XML file. It’s easier to adapt

Ruby to your own needs than it is to adapt Java. As an example, con-

sider build languages. The standard build languages for Java and C

(Ant and make, respectively) are external DSLs, while the standard

build language for Ruby (Rake) is just a Ruby library—an internal DSL.

B.3 DSLs and Metaprogramming

In the introduction to this book, we defined metaprogramming as “writ-

ing code that writes code” (or, if you want to be more precise, “writing

code that manipulates the language constructs at runtime”). Now that

you know about DSLs, you have another definition of metaprogram-

ming: “designing a domain-specific language and then using that DSL

to write your program.”

This is a book about the first definition, not a book about DSLs. To

write a DSL, you have to deal with a number of challenges that are

outside the scope of this book. You have to understand your domain,

care about your language’s user-friendliness, and carefully evaluate the

constraints and trade-offs of your grammar. While writing this book, I

opted to keep this particular can of worms shut.

Still, metaprogramming and DSLs have a close relationship in the Ruby

world. To build an internal DSL, you must bend the language itself,

and doing so requires many of the techniques described in this book.

Put another way, metaprogramming provides the bricks that you need

to build DSLs. If you’re interested in internal Ruby DSLs, this book

contains information that’s important for you.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=255

Whenever someone says they have “a cool trick,” take them

outside and slap them up.

Jim Weirich

Appendix C

Spell Book
This appendix is a “spell book”—a quick reference to all the “spells” in

the book, in alphabetical order. Most of these spells are metaprogram-

ming related (but the ones from Appendix A, on page 240, are arguably

not that “meta”).

Each spell comes with a short example and a reference to the page

where it’s introduced. Go to the associated pages for extended examples

and the reasoning behind each spell.

C.1 The Spells

Argument Array

Collapse a list of arguments into an array.

def my_method(*args)

args.map {|arg| arg.reverse }

end

my_method('abc', 'xyz', '123') # => ["cba", "zyx", "321"]

For more information, see page 246.

Around Alias

Call the previous, aliased version of a method from a redefined method.

class String

alias :old_reverse :reverse

def reverse

"x#{old_reverse}x"

end

end

THE SPELLS 257

"abc".reverse # => "xcbax"

For more information, see page 155.

Blank Slate

Remove methods from an object to turn them into Ghost Methods (73).

class C

def method_missing(name, *args)

"a Ghost Method"

end

end

obj = C.new

obj.to_s # => "#<C:0x357258>"

class C

instance_methods.each do |m|

undef_method m unless m.to_s =~ /method_missing|respond_to?|^__/

end

end

obj.to_s # => "a Ghost Method"

For more information, see page 84.

Class Extension

Define class methods by mixing a module into a class’s eigenclass (a

special case of Object Extension (151)).

class C; end

module M

def my_method

'a class method'

end

end

class << C

include M

end

C.my_method # => "a class method"

For more information, see page 151.

Class Extension Mixin

Enable a module to extend its includer through a Hook Method (181).

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=257

THE SPELLS 258

module M

def self.included(base)

base.extend(ClassMethods)

end

module ClassMethods

def my_method

'a class method'

end

end

end

class C

include M

end

C.my_method # => "a class method"

For more information, see page 185.

Class Instance Variable

Store class-level state in an instance variable of the Class object.

class C

@my_class_instance_variable = "some value"

def self.class_attribute

@my_class_instance_variable

end

end

C.class_attribute # => "some value"

For more information, see page 127.

Class Macro

Use a class method in a class definition.

class C; end

class << C

def my_macro(arg)

"my_macro(#{arg}) called"

end

end

class C

my_macro :x # => "my_macro(x) called"

end

For more information, see page 136.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=258

THE SPELLS 259

Clean Room

Use an object as an environment in which to evaluate a block.

class CleanRoom

def a_useful_method(x); x * 2; end

end

CleanRoom.new.instance_eval { a_useful_method(3) } # => 6

For more information, see page 107.

Code Processor

Process Strings of Code (163) from an external source.

File.readlines("a_file_containing_lines_of_ruby.txt").each do |line|

puts "#{line.chomp} ==> #{eval(line)}"

end

>> 1 + 1 ==> 2

>> 3 * 2 ==> 6

>> Math.log10(100) ==> 2.0

For more information, see page 164.

Context Probe

Execute a block to access information in an object’s context.

class C

def initialize

@x = "a private instance variable"

end

end

obj = C.new

obj.instance_eval { @x } # => "a private instance variable"

For more information, see page 105.

Deferred Evaluation

Store a piece of code and its context in a proc or lambda for evaluation

later.

class C

def store(&block)

@my_code_capsule = block

end

def execute

@my_code_capsule.call

end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=259

THE SPELLS 260

obj = C.new

obj.store { $X = 1 }

$X = 0

obj.execute

$X # => 1

For more information, see page 108.

Dynamic Dispatch

Decide which method to call at runtime.

method_to_call = :reverse

obj = "abc"

obj.send(method_to_call) # => "cba"

For more information, see page 64.

Dynamic Method

Decide how to define a method at runtime.

class C

end

C.class_eval do

define_method :my_method do

"a dynamic method"

end

end

obj = C.new

obj.my_method # => "a dynamic method"

For more information, see page 68.

Dynamic Proxy

Forward to another object any messages that don’t match a method.

class MyDynamicProxy

def initialize(target)

@target = target

end

def method_missing(name, *args, &block)

"result: #{@target.send(name, *args, &block)}"

end

end

obj = MyDynamicProxy.new("a string")

obj.reverse # => "result: gnirts a"

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=260

THE SPELLS 261

For more information, see page 78.

Flat Scope

Use a closure to share variables between two scopes.

class C

def an_attribute

@attr

end

end

obj = C.new

a_variable = 100

flat scope:

obj.instance_eval do

@attr = a_variable

end

obj.an_attribute # => 100

For more information, see page 103.

Ghost Method

Respond to a message that doesn’t have an associated method.

class C

def method_missing(name, *args)

name.to_s.reverse

end

end

obj = C.new

obj.my_ghost_method # => "dohtem_tsohg_ym"

For more information, see page 73.

Hook Method

Override a method to intercept object model events.

$INHERITORS = []

class C

def self.inherited(subclass)

$INHERITORS << subclass

end

end

class D < C

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=261

THE SPELLS 262

class E < C

end

class F < E

end

$INHERITORS # => [D, E, F]

For more information, see page 181.

Kernel Method

Define a method in module Kernel to make the method available to all

objects.

module Kernel

def a_method

"a kernel method"

end

end

a_method # => "a kernel method"

For more information, see page 51.

Lazy Instance Variable

Wait until the first access to initialize an instance variable.

class C

def attribute

@attribute = @attribute || "some value"

end

end

obj = C.new

obj.attribute # => "some value"

For more information, see page 244.

Mimic Method

Disguise a method as another language construct.

def BaseClass(name)

name == "string" ? String : Object

end

class C < BaseClass "string" # a method that looks like a class

attr_accessor :an_attribute # a method that looks like a keyword

end

obj = C.new

obj.an_attribute = 1 # a method that looks like an attribute

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=262

THE SPELLS 263

For more information, see page 241.

Monkeypatch

Change the features of an existing class.

"abc".reverse # => "cba"

class String

def reverse

"override"

end

end

"abc".reverse # => "override"

For more information, see page 33.

Named Arguments

Collect method arguments into a hash to identify them by name.

def my_method(args)

args[:arg2]

end

my_method(:arg1 => "A", :arg2 => "B", :arg3 => "C") # => "B"

For more information, see page 245.

Namespace

Define constants within a module to avoid name clashes.

module MyNamespace

class Array

def to_s

"my class"

end

end

end

Array.new # => []

MyNamespace::Array.new # => my class

For more information, see page 41.

Nil Guard

Override a reference to nil with an “or.”

x = nil

y = x || "a value" # => "a value"

For more information, see page 244.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=263

THE SPELLS 264

Object Extension

Define Singleton Methods by mixing a module into an object’s eigen-

class.

obj = Object.new

module M

def my_method

'a singleton method'

end

end

class << obj

include M

end

obj.my_method # => "a singleton method"

For more information, see page 151.

Open Class

Modify an existing class.

class String

def my_string_method

"my method"

end

end

"abc".my_string_method # => "my method"

For more information, see page 31.

Pattern Dispatch

Select which methods to call based on their names.

$x = 0

class C

def my_first_method

$x += 1

end

def my_second_method

$x += 2

end

end

obj = C.new

obj.methods.each do |m|

obj.send(m) if m.to_s =~ /^my_/

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=264

THE SPELLS 265

$x # => 3

For more information, see page 67.

Sandbox

Execute untrusted code in a safe environment.

def sandbox(&code)

proc {

$SAFE = 2

yield

}.call

end

begin

sandbox { File.delete 'a_file' }

rescue Exception => ex

ex # => #<SecurityError: Insecure operation `delete' at level 2>

end

For more information, see page 172.

Scope Gate

Isolate a scope with the class, module, or def keyword.

a = 1

defined? a # => "local-variable"

module MyModule

b = 1

defined? a # => nil

defined? b # => "local-variable"

end

defined? a # => "local-variable"

defined? b # => nil

For more information, see page 100.

Self Yield

Pass self to the current block.

class Person

attr_accessor :name, :surname

def initialize

yield self

end

end

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=265

THE SPELLS 266

joe = Person.new do |p|

p.name = 'Joe'

p.surname = 'Smith'

end

For more information, see page 248.

Shared Scope

Share variables among multiple contexts in the same Flat Scope (103).

lambda {

shared = 10

self.class.class_eval do

define_method :counter do

shared

end

define_method :down do

shared -= 1

end

end

}.call

counter # => 10

3.times { down }

counter # => 7

For more information, see page 104.

Singleton Method

Define a method on a single object.

obj = "abc"

class << obj

def my_singleton_method

"x"

end

end

obj.my_singleton_method # => "x"

For more information, see page 133.

String of Code

Evaluate a string of Ruby code.

my_string_of_code = "1 + 1"

eval(my_string_of_code) # => 2

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=266

THE SPELLS 267

For more information, see page 163.

Symbol To Proc

Convert a symbol to a block that calls a single method.

[1, 2, 3, 4].map(&:even?) # => [false, true, false, true]

For more information, see page 251.

Report erratum

this copy is (P1.0 printing, January 2010)

http://books.pragprog.com/titles/ppmetr/errata/add?pdf_page=267

Appendix D

Bibliography

[Arm07] Joe Armstrong. Programming Erlang: Software for a Concur-

rent World. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2007.

[Gra96] Paul Graham. ANSI Common Lisp. Prentice Hall, Englewood

Cliffs, NJ, 1996.

[Hal09] Stuart Halloway. Programming Clojure. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2009.

[OSV08] Martin Odersky, Lex Spoon, and Bill Venners. Programming

in Scala. 2008.

[TFH08] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-

matic Programmers, LLC, Raleigh, NC, and Dallas, TX, third

edition, 2008.

[TH05] David Thomas and David Heinemeier Hansson. Agile Web

Development with Rails. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2005.

[Tho99] Simon Thompson. Haskell: The Craft of Functional Program-

ming. Addison-Wesley, Reading, MA, second edition, 1999.

Index
Symbols
& operator, 109

<< for here documents, 168

* (asterisk) operator, 245

@@ for class variables, 129

|| (or) operator, 243

{ } (curly braces) for blocks, 93

-> (stubby lambda) operator, 114

() (parentheses), dropping from method

calls, 240

A
accessors, 135, 207, 209

ActionController library

Filters module, 226

ProcessWithTest module, 230

ActionPack library, 191

actions (controller methods), 225

ActiveRecord library, 206–223

dynamic attributes, 206–214

dynamic finders, 214–219

lessons learned, 219–223

ActiveRecord library, 18, 191, 193–202

Base class, 195–197, 201–202

lessons learned, 202–205

one-page example, 193–195

Validations class, 197–199

ActiveSupport library

Callbacks class, 227

ActiveSupport library

alias_method_chain() method, 199–201

Callbacks class, 198

ActiveSupport library, 192

after_filter() method, 225

alias keyword, 153

alias_method_chain() method (Module),

199–201

alias_method() method (Module), 153

aliases, 152–157

Around Aliases, 154–156, 199

JCode example, 155

RubyGems example, 154

allocate() method, 37

& operator, 109

ancestors chain, 48

<< for here documents, 168

anonymous classes around modules,

50

Aptana’s RadRails IDE, 194

Argument Arrays, 245

with Named Arguments, 247

arguments tricks with methods,

244–248

arity, 112

Around Aliases, 154–156, 199

arrays of method arguments, 245

with Named Arguments, 247

* (asterisk) operator, 245

@@ for class variables, 129

attr_accessor() method (Module), 135, 175

attributes, class, 148

autoload() method (Kernel), 196

B
Base class (ActiveRecord), 195–197,

201–202

BasicObject class, 37, 148

before_filter() method, 225

_before_type_cast accessors, 213

beginners vs. experts,

metaprogramming for, 222

Binding objects, 165

bindings, 96

attaching to blocks, 109

changed scope and, 99

block_given() method, 93

block-local variables, 98

blocks, 91–121

BOILERPLATE METHODS CONSTANTS() METHOD (MODULE)

attaching bindings to (naming), 109

basics of, 92–93

as callable objects, 108

closures, 96–105

converting to Proc objects, 108

domain-specific languages (DSLs),

116–118

evaluating in Clean Rooms, 107

instance_eval() method, 105–107, 125

class_eval() vs., 126

instance_eval() method (Object), 141

blocks vs. Strings of Code, 167

instance_exec() method, 106

Strings of Code vs., 167–168

boilerplate methods, 60

{ } (curly braces) for blocks, 93

Builder library, 85

C
C# classes, as objects, 39

call() method (Method), 114

callable objects, 108–115

methods as, 114

Proc objects, 108–111

Callbacks class (ActiveSupport), 198, 227

calling methods, 46–54

method execution, 52–54

Camping framework, 64, 241

Capistrano framework, 163–164

class attributes, 148

Class class, 37

class definitions, 122–159

aliases, 152–157

Around Aliases, 154–156, 199

JCode example, 155

RubyGems example, 154

how they work, 123–130

Class Instance Variables, 127–128

class variables, 129

current class, 124–126

as Scope Gates, 100

singleton classes (eigenclasses),

137–150

of eigenclasses, 145

inheritance and, 145–147

instance_eval() method and, 141

Singleton Methods, 132–137

Class Macros, 135–137, 225

eigenclasses and, 142–145

where they live, 138

class_eval() method (Module), 125

blocks vs. Strings of Code, 167

instance_eval() vs., 126

Class Extension Mixins, 184

class hierarchies, 129

Class Instance Variables, 127–128

class keyword, 30, 100

current class, defining, 124

replacing with Class.new(), 103, 131

Class Macros, 135–137

for controller filters, 225

class() method (Object), 139

class methods, 134

eigenclasses and, 145–147

include() and, 151

syntaxes for, 143

where they live, 139

class variables, 129

classes, 148

anonymous, around modules, 50

current, 124–126

defining, 29–31

self keyword and, 54

eigenclasses and object model,

145–147

include classes (proxy classes), 50

instance methods, 36, 43

names of, 44

as objects, 37–38, 43

Open Classes, 232

openness of, 28–33

problem with, 31–33

proxy classes, 148n

theory of, 33–45

using modules instead of, 39

classic-namespace command, 41

Clean Rooms, 107

closures, 96–105

code generators, 15

code injection, 169–170

defending against, 170–171

tainted objects and safe levels,

171–172

eRB library example, 172–173

compile time, 20

compilers, 15

complexity trade-offs with

metaprogramming, 221–223

const_missing() method (Module), 81

constants, 38–41

paths of, 42

constants() method (Module), 42

270

CONTROLLER FILTERS EVAL() METHOD (KERNEL)

controller filters, 225–228

testing, 228–231

controllers, 224

conventions in this book, 23

{ } (curly braces) for blocks, 93

current class (or module), 124–126

current object, 53

D
def keyword, 100, 126

replacing with define_method(), 103

default values for method arguments,

245

with Named Arguments, 247

Deferred Evaluation, 108

define_attribute_methods() method, 210

define_method() method (Module), 67, 69

flattening scope with, 103

define_method() method (Object), 68n

defining classes, 29–31, 122–159

aliases, 152–157

Around Aliases, 154–156, 199

JCode example, 155

RubyGems example, 154

how they work, 123–130

Class Instance Variables, 127–128

class variables, 129

current class, 124–126

self keyword and, 54

singleton classes (eigenclasses),

137–150

of eigenclasses, 145

inheritance and, 145–147

instance_eval() method and, 141

Singleton Methods, 132–137

Class Macros, 135–137, 225

eigenclasses and, 142–145

where they live, 138

defining modules, 122

DelegateClass() method, 78

delegates, 78

deprecate() method, 137

deprecating method names with Class

Macros, 136

developer versions of Ruby, 24

do...end keywords for blocks, 93

domain-specific languages (DSLs),

116–118, 252–255

dot notation, 64

DSLs (domain-specific languages),

116–118, 252–255

Duck class (ActiveRecord), 195

duck typing, 134

duplicated code within methods, 61–81

solving with method_missing(), 71–81

implementation example, 79–81

solving with Dynamic Methods,

63–71

calling methods, 64–67

defining methods, 67–68

implementation example, 68

privacy considerations, 67

duplication, complexity by, 222

dynamic attributes, ActiveRecord,

206–214

Dynamic Dispatch, 64

Camping framework example, 64

implementing, 68–71

Test::Unit library example, 66

dynamic finders, ActiveRecord,

214–219

dynamic lanuages, 60

Dynamic Methods, 63–71

calling, 64–67

defining at runtime, 67–68

implementation example, 68

privacy considerations, 67

dynamic programming languages, 134

dynamic proxies, 76–78

performance penalty with, 86

when methods clash, 84–90

dynamic scopes, 218

E
editors with Ruby, 194

eigenclass() method, 142–145

eigenclasses, 122, 137–150

of eigenclasses, 145

including modules in, 152

inheritance and, 145–147

instance_eval() method and, 141

encapsulation

breaking, 106

send() method and, 67

eRB library, 172–173

eval() method (Kernel), 163–173

blocks vs. Strings of Code, 167–168

Capistrano example, 163–164

dangers with, 168–173

code injection, about, 169–170

code injection, defending against,

170–171

271

EVENTS INTROSPECTION

eRB library example, 172–173

tainted objects, 171–172

irb interpreter example, 164–167

Kernel#load() method and, 172

events, sharing data among, 117

executing Strings of Code, 163–173

Capistrano example, 163–164

dangers with, 168–173

code injection, about, 169–170

code injection, defending against,

170–171

eRB library example, 172–173

tainted objects, 171–172

irb interpreter example, 164–167

experts vs. beginners,

metaprogramming for, 222

explicit Monkeypatches, 232–234

expressive, Ruby as, 205

extend() method (Object), 152

extend_object() method (Module),

overriding, 181

external DSLs, 254

external vs. internal complexity, 222

F
Facets library, 162n

filters for controllers, 225–228

testing, 228–231

Filters module (ActionController), 226

find() method (ActiveRecord), 215n, 247

flattening scope, 102–104

sharing data among events, 117

Flickr service, 76–78

functional programming languages, 91

G
gem() method, 52

GEM PATHS paths, 192

gems directory, 192

gem environment command, 192

general-purpose languages (GPLs), 253

generators, 15

Ghost Methods, 73–75

accepting calls that are wrong, 83

dynamic attributes (ActiveRecord),

207–213

dynamic finders (ActiveRecord),

215–219

dynamic proxies, 76–78

implementation example, 79–81

performance penalty with, 86,

220–221

when methods clash, 84–90

global variables, 101

replacing with Shared Scopes, 120

GPLs (general-purpose languages), 253

Great Unified Theory of Ruby, 147

grep() method (String), 71

H
here documents, 168

hierarchies, class, 129

HighLine gem, 110

Hook Methods, 180–186

Class Extension Mixins, 184

Merb example, 182–184

with standard methods, 183

I
IDEs (Integrated Development

Environments), 194

imal() method, 234

immutability of symbols, 65

include classes, 50

include() method (Module)

class methods and, 151

overriding, 183

included() method

(ActiveRecord::Validations), 198

included() method (Module), overriding,

181, 183

inheritance, eigenclasses and, 145–147

inherited() method (Class), 181

inner scope, 99

installing Rails, 191

instance_eval() method (Object),

105–107, 125, 141

blocks vs. Strings of Code, 167

class_eval() vs., 126

instance_exec() method, 106

instance_method_already_implemented()

method, 234

instance methods, 36, 43

instance_variable_names() method, 231

instance variables, 35, 43

Class Instance Variables, 127–128

top-level, 101

internal DSLs, 254

internal vs. external complexity, 222

interpreter, building, 164–167

introspection, 14, 15

272

IRB INTERPRETER METHODS

irb interpreter, 33, 164–167

nested sessions, 166, 167

J
Java classes, as objects, 39

JCode library, 155

JetBrains’s RubyMine IDE, 194

K
Kernel Methods, 95

Kernel module, 50

Komodo Edit editor, 194

L
lambda() method (Kernel), 108

differences from procs, 111–113

language constructs, 14

<< for here documents, 168

lessons learned from Rails source code,

202–205, 219–223, 237–238

doing things your own way, 204–205

leaving Java behind, 202–204

metaprogramming “just enough”,

221–223

metaprogramming is just

programming, 238

not obessing over performance,

220–221

testing code, 237–238

thinking in modules, 204

load() method (Kernel), 43, 172

local bindings, 97

local variables in blocks, 98

local_variables() method (Kernel), 99

M
main object, 54

instance variables of, 101

match_attribute_method() method, 212

Merb framework, 182–184

metaclasses, 140

metaprogramming

complexity trade-offs, 221–223

defined, 14, 19

DSLs and, 255

safely (how to), 224–238

defusing Monkeypatches, 232–237

lessons learned, 237–238

testing, 224–231, 237–238

method() method (Object), 114

Method objects, 114

method_added() method (Module),

overriding, 181

method lookup, 47–52

modules and, 49–50

method_missing() method, 71–81

accepting calls that are wrong, 83

dynamic attributes (ActiveRecord),

207–213

dynamic finders (ActiveRecord),

215–219

implementation example, 79–81

performance penalty with, 86,

220–221

when methods clash, 84–90

method_removed() method (Module),

overriding, 181

method_undefined() method (Module),

overriding, 181

methods, 35–36, 60–90, 148

accessors, 135, 207, 209

actions (controller methods), 225

aliases for, 152–157

Around Aliases, 154–156, 199

JCode example, 155

RubyGems example, 154

as callable objects, 114

calling, 46–54

dynamically, 64–67

method execution, 52–54

class methods, 134

eigenclasses and, 145–147

include() and, 151

syntaxes for, 143

where they live, 139

defining at runtime, 67–68

duplicated code within, 61–81

Dynamic Methods, 63–71

implementation example, 68

Ghost Methods, 73–75

accepting calls that are wrong, 83

dynamic attributes (ActiveRecord),

207–213

dynamic finders (ActiveRecord),

215–219

dynamic proxies, 76–78

implementation example, 79–81

performance penalty with, 86,

220–221

when methods class, 84–90

Hook Methods, 180–186

273

METHODS() METHOD (OBJECT) OBJECTS

Class Extension Mixins, 184

Merb example, 182–184

with standard methods, 183

instance methods, 36, 43

Mimic Methods, 240–243

in place of Scope Gates, 102

privacy considerations, 67

Singleton Methods, 132–137

Class Macros, 135–137, 225

eigenclasses and, 142–145

where they live, 138

tricks with arguments, 244–248

using method_missing(), 71–81

dynamic attributes (ActiveRecord

component, 207–213

dynamic finders (ActiveRecord),

215–219

implementation example, 79–81

where to put, 30

methods() method (Object), 81

Mimic Methods, 240–243

module keyword, 100

current class, defining, 124

replacing with Module.new(), 104

Module clsas, 42

module definitions, as Scope Gates,

100

module_eval() method (Module), 125

instance_eval() vs., 126

modules, 43, 148, 158

current, 124, 126

defining, 122

including in eigenclasses, 152

making Monkeypatching visible,

232–234

method lookup and, 49–50

thinking in terms of, 204

value of, 39

Money gem, 31

Monkeypatching, 33, 44, 232–237

with Around Aliases, 156

to avoid one-time methods, 132

making explicit, 232–234

preventing, 234–237

as useful, 34

multiline Strings of Code, 168

N
Named Arguments, with methods, 244

with Argument Arrays, 247

Namespaces, 41

naming blocks, 109

naming classes, 44

naming constants, 38

naming methods with aliases, 152–157

Around Aliases, 154–156, 199

JCode example, 155

RubyGems example, 154

nested irb sessions, 166, 167

nested lexical scopes, 103

nested visibility, 99

nesting() method (Module), 42

NetBeans IDE, 194

new() method (Class), 37, 103, 131

new() method (Module), 104

new() method (Proc), 108

differences from lambda(), 111–113

Nil Guards, 243–244

notation conventions in this book, 23

O
Object class, 37

class() method, 139

define_method() method, 68n

extend() method, 152

instance_eval() method, 105–107, 125,

141

blocks vs. Strings of Code, 167

class_eval() vs., 126

method() method, 114

methods() method, 81

reserved methods of, 87

send() method, 64, 67

tap() method, 231n

tap() method (Object), 249

untaint() method, 171

object model, 27–59, 147

classes

openness of, 28–33

theory of, 33–45

constants, 38–41

methods

calling, 46–54

instance methods, 36, 43

method execution, 52–54

where to put, 30

modules, 49–50

value of, 39

objects, 34–36, 43, 147

adding method to single object,

132–137

Class Macros, 135–137, 225

274

OPEN CLASSES SCOPE

eigenclasses and, 142–145

where it lives, 138

attribute-like methods, 135, 207,

209

Binding objects, 165

callable, 108–115

Proc objects, 108–111

classes as, 37–38, 43

Clean Rooms, 107

current object, 53

instance variables, 35, 43

methods, 35–36

self keyword, 47, 53–54

class definitions and, 54

tainted, 171–172

eRB library example, 172–173

Open Classes, 28–33, 232

problem with, 31–33

OpenStruct class, 75

or operator, 243

outer scope, 99

overriding

method_missing() method, 72

methods() method (Object), 81

respond_to() method, 80, 213, 219

P
Paragraph class, 132

parentheses, dropping from method

calls, 240

patching, making visible, 232–234

paths of constants, 42

Pattern Dispatch, 67

performance of Ghost Methods, 86,

220–221

prepend_before_filter() Class Macro, 229

PrependingController class, 229

preventing Monkeypatches, 234–237

print() method, 50

privacy, Dynamic Methods, 67

private keyword, 55

proc() method (Kernel), 108, 113

differences from lambda(), 111–113

Proc objects, 108–111

ProcessWithTest module (ActionController),

230

production versions of Ruby, 24

protected_instance_variables() method,

231

proxy classes, 50, 148n

public_send() method, 67

puts method, 240

Q
quizzes in this book, 22

R
RadRails IDE, 194

Rails, about, 191

installing Rails, 191

source code, 192

rails gem, 191

Rake, preventing Monkeypatches in,

236

rake_extension() method (Module), 236

readers, generating, 135, 207

receivers, 48

references, 38

require() method, 43

reserved methods, 87

respond_to() method, 80

dynamic attributes (ActiveRecord),

213

dynamic finders (ActiveRecord), 219

return keyword, 112

RSpec gem, 106

Ruby editors, 194

Ruby object model, 147

Ruby versions, 23

RubyGems package manager, 52, 154,

248

RubyMine IDE, 194

runtime, 20

defining methods at, 67

Ruport library, 73

S
$SAFE global variable, 171

safe levels, 171–172

eRB library example, 172–173

safe metaprogramming, 224–238

defusing Monkeypatches, 232–237

lessons learned, 237–238

testing, 224–231, 237–238

save() method (ActiveRecord::Base), 201

save_without_validation() method

(ActiveRecord::Base), 201

save_without_validation!() method

(ActiveRecord::Base), 201

save!() method (ActiveRecord::Base), 201

scope, 97–102

275

SCOPE GATES VALIDATES_LENGTH_OF() METHOD (ACTIVERECORD::VALIDATIONS)

changing, 99

flattening, 102–104

sharing data among events, 117

Scope Gates, 100–102

security

code injection, about, 169–170

code injection, defending against,

170–171

tainted objects and safe levels,

171–172

eRB library example, 172–173

self keyword, 47, 53–54

in class and module definitions, 123

class definitions and, 54

Self Yield, 248–249

using explicitly with assigning

attributes, 242

when main is self, 101

send() method (Object)

to call methods, 64

privacy considerations, 67

set_test_assigns() method, 231

seven rules of the Ruby object model,

147

Shared Scopes, 120

sharing data among events, 117

singleton classes (eigenclasses), 122,

137–150

of eigenclasses, 145

including modules in, 152

inheritance and, 145–147

instance_eval() method and, 141

Singleton Methods, 132–137

Class Macros, 135–137

for controller filters, 225

eigenclasses and, 142–145

where they live, 138

spells, 22, 256

static fields (Java), 127

static languages, 60

static programming languages, 134

static type checking, 60

strings

converting symbols to, 65

symbols vs., 65

Strings of Code

blocks vs., 167–168

executing, 163–173

Capistrano example, 163–164

dangers with, 168–173

irb interpreter example, 164–167

multiline (here documents), 168

stubby lambda operator, 114

superclass() method, 37

modules and, 50

superclasses, 148

eigenclasses and, 145–147

Symbol#to_proc() method, 249–251

symbols, 65

as argument names, 246

converting to strings, 65

T
TADS language, 253

tainted objects, 171–172

eRB library example, 172–173

tap() method (Object), 231n, 249

terseness, complexity by, 222

test_prepending_filter() method

(PrependingController), 229

test_process() method (FilterTest), 230

test_running_filters() method

(PrependingController), 229

Test::Unit library, 66

TestController class, 229

testing

breaking encapsulation for, 106

controller filters, 228–231

of metaprogramming, 224–231

unit tests, 23, 193

testing metaprogramming, 237–238

TextMate editor, 194

to_proc() method (Symbol), 249–251

top-level context, 54

top-level instance variables, 101

TOPLEVEL_BINDING constant, 165

U
unbind() method (Method), 114

UnboundMethod objects, 114

unit testing, 23, 193

untaint() method (Object), 171

using keyword (C#), 94

reproducing in Ruby, 94–96

using() method (Kernel), 95

V
valid() method (ActiveRecord::Validations),

197

validates_length_of() method

(ActiveRecord::Validations), 195, 197

276

VALIDATIONS CLASS (ACTIVERECORD) YIELD KEYWORD

Validations class (ActiveRecord), 197–199

variables

block-local variables, 98

Class Instance Variables, 127–128

class variables, 129

global variables, 101

replacing with Shared Scopes, 120

instance variables, 35, 43

top-level instance variables, 101

versions, Ruby, 23

visibility of aliases, 156

visibility of Dynamic Methods, 67

W
writers, generating, 135, 207

Y
YAML serialization format, 64

yield keyword, 93

Self Yield, 248–249

277

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of

your game. The following are in print as of January 2010; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 250

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Domain-Driven Design Using Naked Objects 2009 9781934356449 375

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Continued on next page

pragprog.com

Title Year ISBN Pages

Grails: A Quick-Start Guide 2009 9781934356463 200

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2009 9781934356494 272

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Language Implementation Patterns: Create Your

Own Domain-Specific and General Programming

Languages

2009 9781934356456 350

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Continued on next page

Title Year ISBN Pages

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Web Design for Developers: A Programmer’s

Guide to Design Tools and Techniques

2009 9781934356135 300

iPhone SDK Development 2009 9781934356258 576

The Home of Ruby and Rails

The RSpec Book
RSpec, Ruby’s leading Behaviour Driven

Development tool, helps you do TDD right by

embracing the design and documentation aspects

of TDD. It encourages readable, maintainable

suites of code examples that not only test your

code, they document it as well. The RSpec Book will

teach you how to use RSpec, Cucumber, and other

Ruby tools to develop truly agile software that gets

you to market quickly and maintains its value as

evolving market trends drive new requirements.

The RSpec Book: Behaviour Driven

Development with RSpec, Cucumber, and

Friends

David Chelimsky, Dave Astels, Zach Dennis, Aslak

Hellesøy, Bryan Helmkamp, Dan North

(450 pages) ISBN: 978-1-9343563-7-1. $42.95

http://pragprog.com/titles/achbd

Security on Rails
Security on Rails provides you with the tools and

techniques to defend your Rails applications

against attackers. With this book, you can conquer

the bad guys who are trying to exploit your

application. You’ll see the very techniques that

hackers use, and then journey through this

full-fledged guide for writing secure Rails

applications.

Security on Rails

Ben Poweski and David Raphael

(304 pages) ISBN: 978-19343564-8-7. $34.95

http://pragprog.com/titles/fr_secure

http://pragprog.com/titles/achbd
http://pragprog.com/titles/fr_secure

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Metaprogramming Ruby’s Home Page

http://pragprog.com/titles/ppmetr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/ppmetr.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/ppmetr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ppmetr
www.pragprog.com/catalog

	Contents
	Foreword
	Acknowledgments
	Introduction
	The ``M'' Word
	About This Book
	About You

	Metaprogramming Ruby
	Monday: The Object Model
	Monday with Bill
	Open Classes
	The Truth About Classes
	Quiz: Missing Lines
	What Happens When You Call a Method?
	Quiz: Tangle of Modules
	Object Model Wrap-Up

	Tuesday: Methods
	A Duplication Problem
	Dynamic Methods
	method_missing()
	Quiz: Bug Hunt
	More method_missing()

	Wednesday: Blocks
	How to Handle Hump Day
	Quiz: Ruby#
	Closures
	instance_eval()
	Callable Objects
	Writing a Domain-Specific Language
	Quiz: A Better DSL

	Thursday: Class Definitions
	Class Definitions Demystified
	Quiz: Class Taboo
	Singleton Methods
	Eigenclasses
	Quiz: Module Trouble
	Aliases
	Quiz: Broken Math

	Friday: Code That Writes Code
	Leading the Way
	Kernel#eval
	Quiz: Checked Attributes (Step 1)
	Quiz: Checked Attributes (Step 2)
	Quiz: Checked Attributes (Step 3)
	Quiz: Checked Attributes (Step 4)
	Hook Methods
	Quiz: Checked Attributes (Step 5)

	Epilogue

	Metaprogramming in Rails
	The Design of ActiveRecord
	Preparing for the Tour
	The Design of ActiveRecord
	Lessons Learned

	Inside ActiveRecord
	Dynamic Attributes
	Dynamic Finders
	Lessons Learned

	Metaprogramming Safely
	Testing Metaprogramming
	Defusing Monkeypatches
	Lessons Learned

	Appendixes
	Common Idioms
	Mimic Methods
	Nil Guards
	Tricks with Method Arguments
	Self Yield
	Symbol#to_proc()

	Domain-Specific Languages
	The Case for Domain-Specific Languages
	Internal and External DSLs
	DSLs and Metaprogramming

	Spell Book
	The Spells

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

