
There may be no better way to learn how to program
than by dissecting real, representative examples written
in your language of choice. In Ruby by Example, author
Kevin Baird analyzes 44 Ruby scripts, offering step-by-
step explanations of how the code works and how to
modify it to fit your needs.

Baird’s examples demonstrate key features of the
language (such as inheritance, encapsulation, higher-
order functions, and recursion), while simultaneously
solving difficult problems (such as validating XML,
creating a bilingual program, and creating command-
line interfaces). Each chapter builds upon the next,
and each key concept is highlighted in the margin to
make it easier for you to navigate the book.

You’ll learn how to:

• Use the interactive Ruby shell (irb) to learn key
features of the language

• Extend Ruby using RubyGems, the Ruby package
manager

• Create numerical utilities, as well as utilities that
process and analyze HTML/XML

• Implement purely functional and metaprogramming
techniques to save time and effort

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
PROGRAM

M
ING/RUBY

$34.95 ($43.95 CDN)

®

• Optimize, profile, and test your code to make sure
that it not only does its job, but does it well

• Create complex utilities that model natural selection,
discover mysterious patterns in the Bible (and in
Moby-Dick) that “predict” the future, and pick songs
to play for a radio station

• Create web applications using Rails

Ruby is the fastest growing programming language
today, and for good reason: Its elegant syntax
and readable code make for prolific and happy
programmers. But it can be difficult to understand
and implement without a little help. Ruby by Example
shows you how to take advantage of Ruby as you
explore Ruby’s fundamental concepts in action.

A B O U T T H E A U T H O R

Kevin C. Baird received his Ph.D. from the State
University of New York at Buffalo. He originally wrote
his dissertation in Python but rewrote the project after
discovering Ruby, and he hasn’t looked back since.
He has presented at RubyConf and written articles
for Linux Journal, Music & Computers magazine, and
the New Interfaces for Musical Expression conference
proceedings.

E X P L O R I N G
F U N C T I O N A L

C O D E

E X P L O R I N G
F U N C T I O N A L

C O D E

 “ I LAY F LAT .”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

 Printed on recycled paper

R U B Y
B Y E X A M P L E

R U B Y
B Y E X A M P L E

K E V I N C . B A I R D

®

C O N C E P T S A N D C O D E

R
U

B
Y

 B
Y

 E
X

A
M

P
L

E
R

U
B

Y
 B

Y
 E

X
A

M
P

L
E

B
A

IR
D

RUBY BY EXAMPLE

RUBY BY EXAMPLE
C o n c e p t s a n d C o d e

by Kevin C. Baird

San Francisco

®

RUBY BY EXAMPLE. Copyright © 2007 by Kevin C. Baird.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

11 10 09 08 07 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-148-4
ISBN-13: 978-1-59327-148-0

Publisher: William Pollock
Production Editor: Elizabeth Campbell
Cover and Interior Design: Octopod Studios
Developmental Editor: Tyler Ortman
Technical Reviewer: Pat Eyler
Copyeditor: Megan Dunchak
Compositors: Christina Samuell and Riley Hoffman
Proofreader: Publication Services, Inc.
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Baird, Kevin C.
 Ruby by example : concepts and code / Kevin C. Baird.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-148-0
 ISBN-10: 1-59327-148-4
 1. Object-oriented programming (Computer science) 2. Ruby (Computer program language) I. Title.
QA76.64.B27 2007
005.1'17--dc22
 2007018653

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Printed on recycled paper in the United States of America

This book is dedicated to my parents, who bought
the first computer I ever programmed.

B R I E F C O N T E N T S

Acknowledgments .. xvii

Introduction: What Is Ruby?..xix

Chapter 1: Interactive Ruby and the Ruby Environment ..1

Chapter 2: Amusements and Simple Utilities ...13

Chapter 3: Programmer Utilities ..33

Chapter 4: Text Manipulation ...51

Chapter 5: Number Utilities..71

Chapter 6: Functionalism with Blocks and Procs ..99

Chapter 7: Using, Optimizing, and Testing Functional Techniques.....................................121

Chapter 8: HTML and XML Tools...141

Chapter 9: More Complex Utilities and Tricks, Part I..161

Chapter 10: More Complex Utilities and Tricks, Part II ...185

Chapter 11: CGI and the Web...205

Chapter 12: RubyGems and Rails Preparation ..223

Chapter 13: A Simple Rails Project..237

Appendix: How Does Ruby Compare to Other Languages?..261

Index ...267

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xvii

INTRODUCTION: WHAT IS RUBY? xix
Acquiring and Configuring Ruby ... xx

On a Unix or Unix-like System ... xx
On a Windows System .. xxi

Motivations for the Book ... xxi
Conventions .. xxii
Summary of Chapters ... xxii

1

INTERACTIVE RUBY AND THE RUBY ENVIRONMENT 1
Starting irb .. 2
Using irb ... 2

Expressions .. 2
Everything Is an Object .. 2
Integers, Fixnums, and Bignums .. 3
Addition, Concatenation, and Exceptions ... 4
Casting .. 4
Arrays ... 5
Booleans .. 6
Flow Control ... 6
Methods ... 8
Variables ... 9
Constants ... 10

Using the Ruby Interpreter and Environment ... 10

2
AMUSEMENTS AND SIMPLE UTILITIES 13
#1 Is It Payday? (check_payday.rb) .. 14

The Code ... 14
How It Works ... 14
The Results ... 16

#2 Random Signature Generator (random_sig.rb and random_sig-windows.rb) 16
The Code ... 16
How It Works ... 16
Running the Script ... 19
The Results ... 19
Hacking the Script ... 19

#3 The 99 Bottles of Beer Song (99bottles.rb) .. 20
The Code ... 20
How It Works ... 21

x Conten ts in Detai l

Running the Script ... 25
The Results ... 25

#4 Sound File Player (shuffle_play.rb) ... 25
The Code ... 26
How It Works ... 27
Running the Script ... 29
The Results ... 29
Hacking the Script ... 30

Chapter Recap ... 31

3
PROGRAMMER UTILITIES 33
#5 What Is Truth? (boolean_golf.rb) ... 33

The Code ... 34
How It Works ... 34
Hacking the Script ... 36
Running the Script ... 36
The Results ... 36

#6 Making a List (array_join.rb) ... 36
The Code ... 37
How It Works ... 37
Running the Script ... 39
Hacking the Script ... 39

#7 Command-Line Interface (uses_cli.rb and simple_cli.rb) .. 39
The Code ... 40
How It Works ... 42
Running the Script ... 44
Hacking the Script ... 45

#8 Palindromes (palindrome.rb and palindrome2.rb) ... 45
The Code ... 45
How It Works ... 46
Hacking the Script ... 46
Running the Script ... 47
The Results ... 48

Chapter Recap ... 49

4

TEXT MANIPULATION 51
#9 End-of-Line Conversion (dos2unix.rb) ... 51

The Code ... 52
How It Works ... 52
Running the Script ... 55
The Results ... 56
Hacking the Script ... 56

#10 Showing Line Numbers (line_num.rb) ... 57
The Code ... 57
How It Works ... 57
Running the Script ... 58
The Results ... 58

Conten ts in Detai l xi

#11 Wrapping Lines of Text (softwrap.rb) ... 59
The Code ... 59
Running the Script ... 62
The Results ... 62
Hacking the Script ... 62

#12 Counting Words in a File (word_count.rb) .. 62
The Code ... 63
How It Works ... 64
Running the Script ... 64
The Results ... 64

#13 Word Histogram (most_common_words.rb) .. 65
The Code ... 65
How It Works ... 65
Running the Script ... 67
The Results ... 67
Hacking the Script ... 67

#14 Rotating Characters in a String (rotate.rb) .. 68
The Code ... 68
How It Works ... 68
Running the Script ... 69
The Results ... 69

Chapter Recap ... 70

5

NUMBER UTILITIES 71

#15 Computing Powers (power_of.rb) .. 72
The Code ... 72
How It Works ... 73
Running the Script ... 74
The Results ... 75

#16 Adding Commas to Numbers (commify.rb) ... 75
Inheritance ... 75
Modules ... 76
The Code ... 76
How It Works ... 78
Running the Script ... 81
The Results ... 81

#17 Roman Numerals (roman_numeral.rb) .. 81
The Code ... 82
How It Works ... 83
Running the Script ... 86
The Results ... 86
Hacking the Script ... 87

#18 Currency Conversion, Basic (currency_converter1.rb) .. 87
The Code ... 88
How It Works ... 89
Running the Script ... 90
The Results ... 90
Hacking the Script ... 90

xii Content s i n De ta i l

#19 Currency Conversion, Advanced (currency_converter2.rb) 90
The Code ... 91
How It Works ... 93
Running the Script ... 97
The Results ... 97
Hacking the Script ... 98

Chapter Recap ... 98

6

FUNCTIONALISM WITH BLOCKS AND PROCS 99
#20 Our First lambda (make_incrementer.rb) .. 100

The Code ... 100
How It Works ... 101
The Results ... 101

#21 Using Procs for Filtering (matching_members.rb) ... 102
The Code .. 102
How It Works ... 102
Running the Script ... 103
The Results ... 103

#22 Using Procs for Compounded Filtering (matching_compound_members.rb) 103
The Code ... 104
How It Works ... 105
The Results ... 107
Hacking the Script ... 108

#23 Returning Procs as Values (return_proc.rb) .. 108
The Code ... 108
The Results ... 109
How It Works ... 109

#24 Nesting lambdas ... 111
The Code ... 111
How It Works ... 112

#25 Procs for Text (willow_and_anya.rb) .. 112
The Code ... 112
How It Works ... 115
Running the Script ... 118
The Results ... 118
Hacking the Script ... 119

Chapter Recap ... 119

7

USING, OPTIMIZING, AND TESTING FUNCTIONAL
TECHNIQUES 121
#26 Basic Factorials and Fibonaccis (factorial1.rb through fibonacci5.rb) 122

The Code ... 122
How It Works ... 123
The Results ... 123
Hacking the Script ... 124

Conten t s in Detai l xiii

#27 Benchmarking and Profiling (tests/test_opts.rb) ... 128
Benchmarking ... 128
The Code ... 128
How It Works ... 129
Running the Script ... 130
The Results ... 130
Profiling ... 131
Hacking the Script ... 132

#28 Converting Temperatures (temperature_converter.rb) ... 132
The Code ... 132
How It Works ... 134
The Results ... 136
Hacking the Script ... 136

#29 Testing temperature_converter.rb (tests/test_temp_converter.rb) 137
The Code ... 137
The Results ... 138
How It Works ... 139
Hacking the Script ... 139

Chapter Recap ... 140

8

HTML AND XML TOOLS 141

#30 Cleaning Up HTML (html_tidy.rb) .. 141
The Code ... 142
How It Works ... 144
Running the Script ... 146
The Results ... 147
Hacking the Script ... 148

#31 Counting Tags (xml_tag_counter.rb) ... 148
The Code ... 149
How It Works ... 150
Running the Script ... 153
The Results ... 153
Hacking the Script ... 153

#32 Extracting Text from XML (xml_text_extractor.rb) .. 154
The Code ... 154
How It Works ... 155
Running the Script ... 155
The Results ... 155
Hacking the Script ... 156

#33 Validating XML (xml_well_formedness_checker.rb) .. 156
The Code ... 156
How It Works ... 157
Running the Script ... 158
The Results ... 158
Hacking the Script ... 158

Chapter Recap ... 159

xiv Content s i n De ta i l

9
MORE COMPLEX UTILITIES AND TRICKS, PART I 161

#34 Finding Codes in the Bible or Moby-Dick (els_parser.rb) 161
The Code ... 162
How It Works ... 164
Running the Script ... 167
The Results ... 167
Hacking the Script ... 168

#35 Mutating Strings into Weasels (methinks.rb) .. 168
The Code ... 168
How It Works ... 171
Running the Script ... 174
The Results ... 174
Hacking the Script ... 175

#36 Mutating the Mutation of Strings into Weasels (methinks_meta.rb) 176
The Code ... 177
How It Works ... 179
Running the Script ... 181
The Results ... 181
Hacking the Script ... 182

Chapter Recap ... 183

10

MORE COMPLEX UTILITIES AND TRICKS, PART I I 185
#37 Overnight DJ (radio_player1.rb) .. 186

The Code ... 186
How It Works ... 187
The Results ... 189
Hacking the Script ... 190

#38 Better Overnight DJ (radio_player2.rb) ... 190
The Code ... 190
How It Works ... 191
The Results ... 192
Hacking the Script ... 193

#39 Numbers by Name (to_lang.rb) .. 193
The Code ... 194
How It Works ... 198
The Results ... 201
Hacking the Script ... 202

#40 Elegant Maps and Injects (symbol.rb) ... 203
The Code ... 203
How It Works ... 203
The Results ... 204
Hacking the Script ... 204

Chapter Recap ... 204

Conten ts i n Detai l xv

11
CGI AND THE WEB 205
Common Gateway Interface .. 206
Preparation and Installation ... 206
#41 A Simple CGI Script (simple_cgi.rb) ... 207

The Code ... 207
How It Works ... 208
The Results ... 210
Hacking the Script ... 210

#42 Mod Ruby (mod_ruby_demo.rhtml and mod_ruby_demo.conf) 211
The Code ... 211
How It Works ... 213
The Results ... 214
Hacking the Script ... 214

#43 CSS Stylesheets, Part I (stylesheet.rcss) ... 215
The Code ... 215
How It Works ... 216
The Results ... 217
Hacking the Script ... 218

#44 CSS Stylesheets, Part II (stylesheet2.rcss) .. 218
The Code ... 218
How It Works ... 220
The Results ... 220
Hacking the Script ... 221

Chapter Recap ... 221

12
RUBYGEMS AND RAILS PREPARATION 223
RubyGems ... 223

Installing RubyGems .. 224
Using RubyGems ... 224

Rails Preparation .. 227
What Is Rails? ... 228
Other Options for Installing Rails ... 228
Databases .. 229
The Structure of a Rails Application ... 229

Chapter Recap ... 235

13
A SIMPLE RAILS PROJECT 237
Creating the Application ... 237

Initial Creation .. 238
Preparing the Database ... 238
Adding Data .. 238
Creating the Model and Controllers ... 240

xvi Content s i n De ta i l

Dissecting the Application ... 241
Dissecting the Photo Model ... 241
Dissecting the Controllers ... 242
Dissecting the Helpers .. 245
Dissecting the Album Controller’s Views ... 251
Dissecting the Feed Controller’s images View ... 254
Dissecting the Album Controller’s Layout .. 256
Using CSS .. 257

Using the Application ... 257
Learning More About Rails .. 260
Chapter Recap ... 260

APPENDIX
HOW DOES RUBY COMPARE TO OTHER LANGUAGES? 261
C ... 261
Haskell ... 262
Java ... 262
Lisp .. 263
Perl .. 264
PHP .. 264
Python .. 265
Smalltalk ... 265
Summary of Ruby vs. Other Languages ... 266

INDEX 267

A C K N O W L E D G M E N T S

The most fervent thanks are due to my wife, Jennifer
Cornish, who put up with my focusing too much on
this book while she was finishing up her doctoral
dissertation.

Thanks to Jon Phillips, Michael Ivancic, Aubrey Keus, and Scott Bliss for
helpful comments. Jon Phillips in particular gave very useful technical advice
in the early stages of writing, and I think of him as the unofficial early tech
reviewer. Thanks are obviously also due to the official tech reviewer Pat Eyler,
whose influence made this is a much better book than it would otherwise
have been.

Thanks as well to professors Richard Dawkins of Oxford University and
Brendan McKay of the Australian National University for their cooperation
in my referencing their work.

Finally, thanks to everyone at No Starch Press and to Matz for creating
Ruby in the first place.

I N T R O D U C T I O N :
W H A T I S R U B Y ?

Ruby is “a dynamic, open source programming language
with a focus on simplicity and productivity. It has an
elegant syntax that is natural to read and easy to write.”1
It was released in 1995 by Yukihiro “Matz” Matsumoto.
It is often described as either a very high-level language or a scripting language,
depending on whom you ask. As such, it doesn’t require a programmer to
specify the details of how the computer implements your decisions. Like
other high-level languages, Ruby is often used in text-processing applications,
including an increasing number of web applications. I hope that once you’ve
become more acquainted with the language, you’ll agree that it does a good
job of getting out of your way and simply letting you get some work done.

Ruby has a very interesting pedigree. Matz himself has said that the
two most influential languages on Ruby’s design were Common Lisp and
Smalltalk—they were so influential, in fact, that he has jokingly referred to
Ruby as MatzLisp. On the other hand, some Ruby aficionados stress Ruby’s

1 According to http://ruby-lang.org.

xx In t roduc ti on: What I s Ruby?

similarities with Smalltalk and Perl, as did David Heinemeier Hansson,
creator of Rails, in a June 2006 Linux Journal interview. Hansson also describes
Ruby as “a language for writing beautiful code that makes programmers
happy.” I couldn’t agree more.2

NOTE If you’re interested in learning more about Ruby’s heritage, see the appendix for
a comparison of Ruby to other languages.

Acquiring and Configuring Ruby

But enough with the history—let’s set these questions aside and actually get
Ruby installed. It’s flexible, expressive, and released under a free software/open
source license. (The license is available online at http://www.ruby-lang.org/en/
about/license.txt.)

On a Unix or Unix-like System

Users of Unix-like operating systems such as Mac OS X, the BSDs, and GNU/
Linux variants have it easy. Many of these systems either come with Ruby pre-
installed or make it available as a very convenient package.

If Ruby came pre-installed on your computer, it will probably include the
Interactive Ruby Shell (irb) that we’ll use in the next chapter. If you’ve installed
Ruby with a package manager, irb may come in a separate package, possibly
with a specific version number as a part of the package name.

If your package manager does not include Ruby or if you’d like to use a
more up-to-date version than what your package manager offers, you can simply
browse to http://www.ruby-lang.org and click the Download Ruby link. Down-
load the current stable release (1.8.4 at the time of this writing), which is a
.tar.gz file. Then type the following commands as the superuser, also called
root. (I’ll assume you’re using version 1.8.4, although it will probably be a
later version when you download Ruby.)

cp ruby-1.8.4.tar.gz /usr/local/src/
cd /usr/local/src
tar -xzf ruby-1.8.4.tar.gz
cd ruby-1.8.4

Then follow the instructions in the README file. The usual set of
commands for installation is as follows.

./configure
make
make install

2 For more on Ruby’s ancestry, refer to the Ruby-Talk archives (http://blade.nagaokaut.ac
.jp/cgi-bin/scat.rb/ruby/ruby-talk/179642) and O’Reilly’s interview with Matz (http://
www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html).

I n troduct ion: What I s Ruby? xxi

You should now have a working version of Ruby. You can test this by
executing this command:

ruby --version

If it reports ruby 1.8.4 (2005-12-24) [i486-linux] or whichever version you
downloaded and your system, everything worked.3

On a Windows System

If you use a Windows system, a One-Click Ruby Installer is available at
http://rubyinstaller.rubyforge.org/wiki/wiki.pl. Simply follow the instructions
there to download Ruby for your system. It’s a comprehensive package—check
the site for the most up-to-date list of its contents. At the time of this writing,
it included the base language with various popular extensions, including
SciTE (a syntax-highlighting text editor), FreeRIDE (a Ruby development
environment), a help file containing Dave Thomas’ book Programming Ruby
(also called The Pickaxe), and the RubyGems package installer. It also comes
with irb, which we’ll explore in Chapter 1.

Motivations for the Book

This book tries to be both useful in the immediate term and informative in the
long term. These goals have a profound impact on how the book is organized.

It's also meant to be accessible to neophytes, but it focuses on program-
ming paradigms and their impact on both language design and language
use—topics common to academic programming books. These days, you can
use any popular language for most tasks, but that doesn’t mean that solving a
given problem will be equally painless in every language. No language exists
in a vacuum, and a discussion of a language like Ruby should acknowledge the
decisions that went into its design. You’ll find that it’s a very flexible language
that lets you combine different approaches in powerful ways. Biologists
recognize hybrid vigor; so did Matz when he created Ruby.

NOTE When I mention programming paradigms, I’m referring to three main types: imperative,
object-oriented, and functional. Broadly speaking, imperative languages tell computers
Do this, then do that, then do this next thing. Object-oriented languages
define objects (types of things) that know how to perform methods (specific actions).
Functional languages treat programming problems like mathematical relationships.
Ruby is flexible, meaning that you can program in any of these styles; however, it is
primarily object oriented, with some strong functional influence. This book focuses
slightly more on the functional aspects of Ruby than some other books.

3 Ruby, like most open source languages, is under constant development. The code in this book
uses Ruby version 1.8.4, which was the stable release at the time I wrote the scripts in this book.
Ruby version 1.8.6 was released slightly before this book came out.

xxii I n troduct ion: What I s Ruby?

Conventions

This book uses several conventions to distinguish among different types of
information. When you encounter a new term for the first time, it will be shown
in italics. Since this is a programming book, you’ll often see small code samples in
code font, as well. Code listings will be indicated like this:

puts "Hi, I'm code!"

Summary of Chapters

Here’s a bit about what you’ll find inside the chapters:

Chapter 1: Interactive Ruby and the Ruby Environment
This chapter describes Interactive Ruby (irb), and also introduces some
key Ruby concepts.

Chapter 2: Amusements and Simple Utilities
This chapter has our first stand-alone programs (or scripts) that continue
introducing key Ruby concepts while accomplishing simple tasks.

Chapter 3: Programmer Utilities
This chapter contains tools that are useful for developers in the form
of library files intended to be used by other programs.

Chapter 4: Text Manipulation
This chapter focuses on processing text.

Chapter 5: Number Utilities
This chapter focuses on primarily numeric data, including pure math
and moving into recursion.

Chapter 6: Functionalism with Blocks and Procs
This chapter puts a heavy emphasis on functional programming, hinted
at in earlier chapters.

Chapter 7: Using, Optimizing, and Testing Functional Techniques
This chapter details testing, profiling, and optimizing your programs.

Chapter 8: HTML and XML Tools
This chapter has a subset of text processing specifically meant for
markup, like HTML and XML.

Chapters 9 and 10: More Complex Utilities and Tricks, Parts I and II
These chapters both expand the scale of our programs using techniques
introduced earlier in the book to tackle larger problems.

Chapter 11: CGI and the Web
This chapter talks about the Common Gateway Interface (CGI) and how
to embed Ruby code in web documents.

In t roduc ti on: What I s Ruby? xxiii

Chapter 12: RubyGems and Rails Preparation
This chapter shows you how to use RubyGems, Ruby's package man-
ager, and uses that system to install Rails, Ruby's main web develop-
ment framework.

Chapter 13: A Simple Rails Project
This chapter contains a sample Rails application, using it to discuss key
design issues useful for any Rails developer.

Now let’s dive in and start using Ruby for some interesting tasks. But
before we start creating separate program files, we’ll explore how Ruby works
with the Interactive Ruby environment.

1
I N T E R A C T I V E R U B Y A N D T H E

R U B Y E N V I R O N M E N T

In Ruby, as in most programming languages,
we’ll generally store programs in external

files and execute them at once, as a unit.
However, Ruby also gives you the option of

typing the lines of a program one at a time and seeing the results as you go
along, using Interactive Ruby (irb); irb is a shell, similar to bash in a Unix or
Unix-like system or the command prompt in Windows. Using irb will give you
a good idea of how Ruby processes information, and it should also help you
gain an understanding of Ruby’s basics before you ever even write a program.

Who should read this chapter? If you’ve already used Ruby and also already know
the meaning of the terms expression, irb, flow control, variable, function, method,
and constant, you can probably just skim this chapter. (If you encounter anything
unfamiliar later, you can always come back.) If you’ve never programmed before,
you should read this chapter carefully. If you’ve already used a language with an
interactive environment, like Lisp or Python, you can probably just look at the irb
sessions to see how Ruby differs from the language you already know—it’s likely
that it does in some key ways.

2 Chapter 1

The irb program is an example of a read-eval-print-loop (REPL) environ-
ment. This is an idea that comes from Ruby’s ancestor Lisp. It means just
what the name says: It reads a line, evaluates that line, prints the results of the
evaluation, and loops, waiting to read another line. The shell gives you
immediate feedback for every line you enter, which is an ideal way to learn
the syntax of a language.

Starting irb

Starting irb is very straightforward. On a Unix or Unix-like machine (such as
GNU/Linux or Mac OS X), you can just type irb at the shell prompt. This
should give you the following result:

$ irb
irb(main):001:0>

On a Windows machine, you’ll choose Start�Run, type irb, then click OK.
You can also run the command irb directly from the command line.

Using irb

Now that you’ve started it, irb is waiting for you to type your first line. Lines
consist of one or more expressions.

Expressions

As far as Ruby is concerned, an expression is just a bit of code that has a value.
In fine computer programming tradition, let’s see how irb reacts to the expres-
sion "Hello, world!"

irb(main):001:0> "Hello, world!"
=> "Hello, world!"

NOTE This listing shows the line you need to type as well as how irb responds. Note also that
irb shows you line numbers at the beginning of each line. I will occasionally refer to
these numbers, as well.

What has happened here? You typed "Hello, world!", and irb happily
spat it right back at you. The interesting part of this is what isn’t explicit. The
expression you entered has a value in Ruby, and therefore in irb. "Hello, world!"
is a String, which is a sequence of characters, usually enclosed with either single
or double quotation marks. Let’s prove it.

Everything Is an Object

In Ruby, like its ancestor Smalltalk, everything is an object, which is just an
instance of a class. "Hello, world!" happens to an instance of the class String.

In teract ive Ruby and the Ruby Env ironmen t 3

Let’s verify that in irb:

irb(main):002:0> "Hello, world!".class
=> String

Objects have methods (called on an object as some_object.some_method),
which are just actions an object can perform. The method called class simply
reports which class something belongs to; in other words, the type of thing
that it is. Since "Hello, world!" is a String, that’s exactly what the class method
reports when called on "Hello, world!". There are other types of objects
besides Strings, of course.

NOTE This book assumes that you are familiar with object orientation. If you’re not, here’s a
crash description. An object is a thing. It could be any type of thing. Every object is an
instance of a class; for example, the objects Glasgow, Cairo, and Buffalo would all be
instances of the class City. The objects are distinct from each other, but they are the same
type of thing. Monty Python and The Kids in the Hall would both be instances of
the class Comedy Troupe, and so on. In Ruby, you will traditionally name instances
with all lowercase letters and use underscores in the place of spaces; you will name
classes with CamelCase. In actual Ruby code, the class ComedyTroupe would have
instances (objects) called monty_python and kids_in_the_hall.

Integers, Fixnums, and Bignums
One other type of object (or class) is Integer, which is any number that is
divisible by one. These should be familiar to you: 0, 1, -5, 27, and so on. Let’s
enter an Integer in irb.

irb(main):003:0> 100
=> 100

NOTE If you call the method class on an Integer, it will report either Fixnum or Bignum, not
Integer. This stems from how Ruby stores numbers internally. Computers can operate
faster if they don’t waste space, so they have to worry about how much space numbers
take up. However, computers also need to be able to handle very large numbers. Therefore,
they compromise and store small numbers so that they take up little space, but they also
store very large numbers, which inevitably take up more space. Sophisticated high-level
languages like Ruby translate between these different types of numbers automatically,
so you can just deal with numbers without worrying about these specific details. Isn’t
that handy? For example, 100.class returns Fixnum, and (100 ** 100).class
returns Bignum. That’s because 100 is small enough to fit in a Fixnum, but the value
of (100 ** 100) will only fit in a Bignum—it’s too big for a Fixnum.

We see that the number 100 has the value of 100 in irb, as you might
expect. But we want to be able to do more than just see what we’ve typed,
so let’s do something with our number 100. Let’s add it to 100.

irb(main):004:0> 100 + 100
=> 200

4 Chapter 1

You can see that irb has added these numbers correctly, and it shows you
the result. In Ruby, 100 + 100 is an expression, just as "Hello, world!" and 100
by itself are expressions. The value of 100 + 100 is, naturally, 200. Numbers
have a method called +, which is how they add themselves to other numbers.
That’s precisely what we’ve done here.

Addition, Concatenation, and Exceptions

The + sign can do more than just add numbers. Let’s add two other expressions:

irb(main):005:0> "Hello, " + "world!"
=> "Hello, world!"

By adding the String "Hello, " to the String "world!", we’ve created the
new longer String "Hello, world!". Strings don’t perform addition, exactly.
They use the + sign to do an operation called concatenation, which is just
tacking one thing onto the end of another. In Ruby, the + sign means Do
whatever addition-like operations make the most sense for this class of object. This allows
you to just use the + sign and assume that Integers will add themselves in a
reasonable “numbery” way, Strings will add themselves in a reasonable “stringy”
way, and so on.

What happens when we try to add two different types of objects? Let’s
find out in irb.

irb(main):006:0> "Hello, world!" + 100
TypeError: failed to convert Fixnum into String
 from (irb):6:in '+'
 from (irb):6

That expression didn’t work out as well as the others. TypeError is an
example of what Ruby (and many other languages) call an exception, which is
a notice from a programming language that there has been an error. Our
TypeError means that Ruby wasn’t happy that we asked to add a String to a
number.1 Strings know how to add themselves to each other, as do numbers—
but they can’t cross types. When adding, we want both operands to be the
same type.

Casting

The solution to this problem is an operation called casting, which is the
conversion of something from one type to another. Let’s see an example of
casting in irb:

irb(main):007:0> "Hello, world!" + 100.to_s
=> "Hello, world!100"

1 Specifically a Fixnum, in our case.

In teract ive Ruby and the Ruby Env ironmen t 5

We call the method to_s on 100 before trying to add it to "Hello, world!".
This method stands for to String—as you may have guessed, it converts the
object it is called upon into a String. By the time we need to add these two
operands together, they are both Strings, and Ruby dutifully concatenates
them.2 Let’s verify that 100.to_s is a String:

irb(main):008:0> 100.to_s
=> "100"

So it is. But what happens when we want to convert something into an
Integer? Is there a to_i method that we could call on the String "100"? Let’s
find out.

NOTE Casting is common in strongly-typed languages, like Ruby. It’s less common in weakly-
typed languages, although it still can come up. Both approaches have their proponents.

irb(main):009:0> "100".to_i
=> 100

We can, indeed. So we now know how to convert both Strings and Integers
into each other, via either the to_s or to_i methods. It would be nice if we
could see a list of all the methods we could call on a given object. We can do
that too, with an aptly named method: methods. Let’s call it on the Integer 100:

irb(main):010:0> 100.methods
=> ["<=", "to_f", "abs", "-", "upto", "succ", "|", "/", "type", "times", "%",
"-@", "&", "~", "<", "**", "zero?", "^", "<=>", "to_s", "step", "[]", ">",
"==", "modulo", "next", "id2name", "size", "<<", "*", "downto", ">>", ">=",
"divmod", "+", "floor", "to_int", "to_i", "chr", "truncate", "round", "ceil",
"integer?", "prec_f", "prec_i", "prec", "coerce", "nonzero?", "+@", "remainder",
"eql?", "===", "clone", "between?", "is_a?", "equal?", "singleton_methods",
"freeze", "instance_of?", "send", "methods", "tainted?", "id",
"instance_variables", "extend", "dup", "protected_methods", "=~", "frozen?",
"kind_of?", "respond_to?", "class", "nil?", "instance_eval", "public_methods",
"__send__", "untaint", "__id__", "inspect", "display", "taint", "method",
"private_methods", "hash", "to_a"]

You can see that both + and to_s are in the list of method names.3

Arrays

Notice how the output of methods is enclosed with square brackets ([]). These
brackets indicate that the enclosed items are the members of an Array, which
is a list of objects. Arrays are just another class in Ruby, like String or Integer,
and (unlike some other languages) there is no requirement for all members
of a given Array to be instances of the same class.

2 Technically, instead of casting, we’ve created an entirely new object that happens to be the String
equivalent of 100.
3 By the way, you can chain methods together, such as 100.methods.sort. If you try that in irb,
you’ll get the same list of methods as you’d get with 100.methods, but in alphabetical order.

6 Chapter 1

An easy way to convert a single item into an Array is to wrap it in brackets,
like so:

irb(main):011:0> [100].class
=> Array

Arrays also know how to add themselves, as shown:

irb(main):012:0> [100] + ["Hello, world!"]
=> [100, "Hello, world!"]

The result is just an another Array, comprised of all the elements of the
added Arrays.

Booleans

Along with String, Integer, and Array, Ruby also has a class called Boolean.
Strings are sequences of characters, Integers are any numbers divisible by 1, and
Arrays are lists of members. Boolean values can only be true or false. Booleans
have many uses, but they are most commonly used in evaluations that deter-
mine whether to perform one action or an alternative. Such operations are
called flow control.

NOTE Booleans are named after the mathematician George Boole, who did much of the early
work of formalizing them.

Flow Control

One of the most commonly used flow control operations is if. It evaluates
the expression that follows it as either true or false. Let’s demonstrate some
flow control with if:

irb(main):013:0> 100 if true
=> 100

We just asked whether or not the expression 100 if true is true. Since the
expression true evaluates to a true value, we do get the value 100. What happens
when the expression evaluated by if isn’t true?

irb(main):014:0> 100 if false
=> nil

This is something new. The expression false is not true, so we don’t get
the expression 100. In fact, we get no expression at all—irb tells us it has no
value to report. Ruby has a specific value that stands for the absence of a value
(or an otherwise meaningless value), which is nil.

The value could be absent for several reasons. It could be an inexpressible
concept, or it could refer to missing data, which is what happened in our
example. We never told irb what to report when the evaluated expression
was false, so the value is missing. Any value that might need to be represented

In teract ive Ruby and the Ruby Env ironmen t 7

as n/a is a good candidate for a nil value. This situation comes up often when
you are interacting with a database. Not all languages have a nil; some have it,
but assume that it must be an error. Ruby is completely comfortable with nil
values being used where appropriate.

The nil value is distinct from all other values. However, when we force
Ruby to evaluate nil as a Boolean, it evaluates to false, as shown:

irb(main):015:0> "It's true!" if nil
=> nil

The only values that evaluate to false Booleans are nil and false. In many
other languages 0 or "" (a String with zero characters) will also evaluate to
false, but this is not so in Ruby. Everything other than nil or false evaluates
to true when forced into a Boolean.

NOTE We have to explicitly cast Strings and Integers into each other with the to_s and to_i
methods, but notice that we don’t need to do this for Boolean values. Boolean casting is
implicit when you use if. If you were to do explicit casting into a Boolean, you might
expect a method similar to to_s and to_i, called to_b. There is no such method in Ruby yet,
but we’ll write our own in Chapter 3.

Let’s say we want a certain value if an evaluated expression is true (as we’ve
done with if already), but that we also want some non-nil value when the
evaluated expression is false. How do we do that? Here’s an example in irb:

irb(main):016:0> if true
irb(main):017:1> 100
irb(main):018:1> else
irb(main):019:1* 50
irb(main):020:1> end
=> 100

That’s our first multi-line expression in irb. It should be fairly straight-
forward, returning 100, because true evaluates to true. Let’s try again, with a
few differences:

irb(main):021:0> if false
irb(main):022:1> 100
irb(main):023:1> else
irb(main):024:1* 50
irb(main):025:1> end
=> 50

This time, since false evaluates as not true, the value of the multi-line
expression is the value from the else, which is 50. This format is a bit wordier
than the previous tests that just used if. We also need the end keyword to tell
irb when we’re done with the expression we started with if. If we wanted to
do tests like these multi-line expressions often, retyping slight variations of
the same basic idea over and over could become tedious. That’s where methods
come into play.

8 Chapter 1

NOTE Notice that irb gives you some useful information in its prompt. The prompt often ends
with a > symbol, which is usually preceded by a number. That number is how many levels
deep you are, meaning the number of end statements you’ll need to get back to the top
level. You’ll also notice that sometimes instead of ending with a > symbol, the prompt
will end with an asterisk (*). This means that irb only has an incomplete statement
and is waiting for that statement to be completed. Very useful.

Methods
We touched on methods earlier, but we’ll discuss them in more detail now.
A method is just a bit of code that is attached to an object; it takes one or more
input values and returns something as a result.4 We call the inputs to a method
the arguments or parameters, and we call the resulting value the return value.
We define methods in Ruby with the keyword def:

irb(main):026:0> def first_if_true(first, second, to_be_tested)
irb(main):027:1> if to_be_tested
irb(main):028:2> first
irb(main):029:2> else
irb(main):030:2* second
irb(main):031:2> end
irb(main):032:1> end
=> nil

We just defined a method called first_if_true, which takes three argu-
ments (which it calls first, second, and to_be_tested, respectively) and returns
either the value of first or second, based on whether or not to_be_tested
evaluates to true. We’ve now defined our earlier multi-line tests as something
abstract that can be re-used with different values. Let’s try it out.

NOTE Notice that the name of first_if_true tells you what it will do. This is a good habit to
get into. Method names should tell you what they do. Clear, intuitive method names are
an important part of good documentation. The same advice holds for variables, described
later. By that criterion, result (as seen later) is not a very good name. It’s okay for a simple
example that merely introduces the concept of assigning into a variable, but it’s unsuitably
vague for real production code.

Remember that first_if_true tests the third value and then returns
either the first value or the second value.

irb(main):033:0> first_if_true(1, 2, true)
=> 1
irb(main):034:0> first_if_true(1, 2, false)
=> 2
irb(main):035:0> first_if_true(1, 2, nil)
=> 2
irb(main):036:0> first_if_true(nil, "Hello, world!", true)
=> nil

4 Ruby is object oriented, so it uses the term method. Languages with less of an object-oriented
focus will call methods functions. A method is simply a function that is attached to an object.

In teract ive Ruby and the Ruby Env ironmen t 9

irb(main):037:0> first_if_true(nil, "Hello, world!", false)
=> "Hello, world!"

Feel free to try out the first_if_true method in irb with different argu-
ments, either now or later. It should give you a good idea of how Ruby
processes expressions.

NOTE While methods return values when they are used, the simple act of defining a method
returns nil, as you can see.

Variables

What would happen if you wanted to use the output of one method as an
input to another method? One of the most convenient ways to do so is with
variables. Similar to algebra or physics, we just decide to refer to some value by
name, like m for some specific mass or v for some specific velocity. We assign
a value into a variable with a single = sign, as shown:

irb(main):038:0> result = first_if_true(nil, "Hello, world!", false)
=> "Hello, world!"
irb(main):039:0> result
=> "Hello, world!"

We assigned the value of first_if_true(nil, "Hello, world!", false)
(which happens to be "Hello, world!") into a variable called result. We now
have the value "Hello, world!" stored under the name result, which still
evaluates as you’d expect it to, as you can see at line 39. We can now use
result like we would any other value:

irb(main):040:0> first_if_true(result, 1, true)
=> "Hello, world!"
irb(main):041:0> first_if_true(result, 1, result)
=> "Hello, world!"

Notice how we can pass result through first_if_true and also evaluate it
(as to_be_tested) for Boolean value. We can use it as a part of a larger expres-
sion, too:

irb(main):042:0> first_if_true(result, 1, (not result))
=> 1

In the example on line 42, we’ve reversed the Boolean value of result
with the keyword not before we pass it into first_if_true. We don’t make any
changes to result on line 42. We just create a new expression with (not result)
that happens to evaluate to whatever the Boolean opposite of result is. The
result itself stays unchanged.

NOTE I’ve added some spaces just to make it easier to read which parentheses enclose the
arguments to the method and which enclose the (not result) expression. Ruby and irb
don’t care about whitespace very much.

10 Chapter 1

Constants

Sometimes we want to refer to a value by name, but we don’t need to change it.
In fact, sometimes we intend not to change it. Good examples from physics
are the speed of light or the acceleration due to Earth’s gravity—they don’t
change. In Ruby, we can define such values as constants, which must start with
a capital letter. (By tradition, they are often entirely uppercase.) Let’s define a
constant and then use it:

irb(main):043:0> HUNDRED = 100
=> 100
irb(main):044:0> first_if_true(HUNDRED.to_s + ' is true', false, HUNDRED)
=> "100 is true"

We see that we can assign into a constant just like we did into a variable.
We can then use that constant by name, as an expression or within a larger
expression, as desired.

Using the Ruby Interpreter and Environment

If you come from a Unix background, you’re probably already familiar with
the concept of command-line options and environment variables. If you’re
not familiar with these terms, they’re just ways for the computer to keep track
of external data, usually configuration options. Ruby uses command-line options
and environment variables to keep track of things like how paranoid or lax it
should be in relation to security or how verbose to be about warnings. We’ve
already seen an example of this in the instructions for installing Ruby from a
source download, when we executed this command:

ruby --version

As you’d expect, that just asks Ruby to report its version. You can find out
the various command-line options that Ruby understands by executing this
command:

ruby -h

I n te ract ive Ruby and the Ruby Envi ronmen t 11

Environment variables can store these command-line options as defaults;
they can also store other information not specific to Ruby that Ruby may still
find necessary to perform certain tasks. Users of Unix-like systems store their
files inside what’s called a HOME directory, which keeps their data out of the
way of other users. The My Documents folder in Windows is similar. Another
important environment variable is ARGV, which is an Array that keeps track of
all of the arguments passed to Ruby. When you execute an external Ruby
program, as you often will by using the syntax below, the program’s name
will be found in ARGV.

ruby some_external_program.rb

Let’s move on to some specific example programs. We’ll be dealing with
many of the topics we’ve only touched on in this chapter in greater detail
appropriate to each example.

2
A M U S E M E N T S A N D S I M P L E

U T I L I T I E S

From the previous chapter, you should
now be relatively comfortable with irb and

how Ruby deals with various expressions. Now
we’ll try some Ruby programs that are stored in sep-
arate files and executed outside of irb. You can download
all of these programs at http://www.nostarch.com/
ruby.htm.

We’ll run our programs with the ruby command, so when we want to run
a script called check_payday.rb, we’ll type ruby check_payday.rb either at the
shell in a Unix-like system or at the command prompt in Windows. We’ll also
generally use the -w option, which means turn warnings on, making our example
above become ruby -w check_payday.rb. It’s just a safer way to operate, and it
is especially useful when learning a new language. We’ll also occasionally
see Ruby Documentation (RDoc), which allows us to put relatively complex
comments directly into our source code. We’ll discuss that in relation to the
99bottles.rb example, where we first use it.

14 Chapter 2

#1 Is It Payday? (check_payday.rb)

This script is a simple utility that I use to remind myself when a payday is
approaching. It is very much in the quick-and-dirty style, and intentionally so.

The Code

� #!/usr/bin/env ruby
� # check_payday.rb

CONSTANTS � DAYS_IN_PAY_PERIOD = 14
SECONDS_IN_A_DAY = 60 * 60 * 24

Variables � matching_date = Time.local(0, 0, 0, 22, 9, 2006, 5, 265, true, "EDT")
� current_date = Time.new()

difference_in_seconds = (current_date - matching_date)
� difference_in_days = (difference_in_seconds / SECONDS_IN_A_DAY).to_i
� days_to_wait = (

 DAYS_IN_PAY_PERIOD – difference_in_days
) % DAYS_IN_A_PAY_PERIOD

if (days_to_wait.zero?)
� puts 'Payday today.'

else
 print 'Payday in ' + days_to_wait.to_s + ' day'
 puts days_to_wait == 1 ? '.' : 's.'
end

How It Works

Line � is a hint to the computer that this program is in Ruby. The line at � is
a comment meant for human readers that tells the name of the program. In
Ruby, comments start with the # character and last until the end of the line.

Defining Constants

We define two constants at �. While constants only need to start with a capital
letter, I like to use all caps to make them stand out. (This is a common con-
vention in many languages and a good habit to get into.)

The names of the constants DAYS_IN_PAY_PERIOD and SECONDS_IN_A_DAY
should give you a good sense of what they mean—specifically, the number of
days in a pay period and the number of seconds in a day. I get paid every two
weeks, which is the same as every 14 days.

The definition for SECONDS_IN_A_DAY uses multiplication (60 * 60 * 24),
which is acceptable Ruby syntax, as you know from your experiments in irb.
Representing these specific numbers as the result of multiplication instead of
as one big final result is also more human readable, because a person reading
this code will see and understand the relationship among 60 seconds in a
minute, 60 minutes in an hour, and 24 hours in a day.

Amusements and Simp le Ut i l i t i es 15

Why bother to define constants with more characters than the values
they hold? While it doesn’t make a huge difference in this program, it’s a
good habit to get into for larger programs.

NOTE Constants are a very good idea. They allow you to avoid one of the sins of programming
called magic numbers, which are examples of one of two programming sins: a literal
value used repeatedly, or a literal value whose use is not obvious, even if it’s only used
once. Defining such a value once with a meaningful name makes your code more readable
to both other programmers and yourself, after you’ve forgotten everything about your
program. Again, constants are a very good idea.

Defining Variables

Having defined our constants, we define a variable at � called matching_date
using Ruby’s built-in Time.local method. This method takes 10 items as argu-
ments, in order: seconds, minutes, hours, day of the month, month, year,
day of the week, day number within the year (1 through 366), whether the
date is within daylight saving time, and a three-letter code for the time zone.
The values used here are for September 22, 2006, which is a day that happened
to be a payday for me. The day number within a year has a maximum of 366
instead of 365, because leap years have 366 days.

At �, we get the current_date using Ruby’s built-in Time.new method,
and then subtract matching_date from it to get the difference, in seconds.
Because we are much more interested in the difference in days rather than
the difference in seconds, we divide the difference_in_seconds by the number
of SECONDS_IN_A_DAY to get the difference in days, and then we round down by
converting that result into an Integer with the to_i method. That gives us a
useful value for our difference_in_days variable.

The difference_in_days variable tells us the number of days since the last
payday. However, because we really want our cash, we are more interested in
how long we have to wait until the next payday. To find out, at � we subtract
the number of days since our last payday (the difference_in_days variable)
from the number of DAYS_IN_A_PAY_PERIOD to get a new variable at � called
days_to_wait.

If days_to_wait has a value of zero, today must be payday, so at � we output
that information using Ruby’s built-in method puts. The puts method, which
stands for put string, prints its String argument ('Payday today.', in our script)
followed by an automatic carriage return, also called a newline. If days_to_wait
is not zero, we use puts again to tell how many days we have to wait for payday,
and as a convenience, we add the letter s to the word day if the number of
days is plural.

NOTE We call both print and puts without parentheses enclosing the argument(s). This is
perfectly legal, unless there would be some ambiguity about either the boundaries of an
expression or the specific arguments to a method.

That’s the whole program. There are more elegant ways to accomplish
some of the tasks that this program does, but it introduces some new concepts,
such as Constants, the puts method, and Dates. You can run it yourself and

16 Chapter 2

compare what it outputs to what your own actual pay schedule is, altering the
matching_day variable accordingly.

NOTE Readers familiar with crontab may find it interesting that I run this on my machine with
the following crontab entry: ruby ~/scripts/check_payday.rb | mutt -s "payday" kbaird.

The Results

Your result should be a message along the lines of Payday in 10 days, depending
on the day you run the program.

#2 Random Signature Generator (random_sig.rb and
random_sig-windows.rb)

The next script generates dynamic content for email signatures, adding
standard information, like a name and email address, to a random quotation
drawn from a known file. The Unix and Windows versions need to be slightly
different, so they have been separated into two distinct files. I’ll talk about
the Unix version first, but will include the source code for both files. In this
example, we’ll also see how Ruby handles complex assignments. That’s a lot
of information to cover.

The Code

#!/usr/bin/env ruby
random_sig.rb

Environment � filename = ARGV[0] || (ENV['HOME'] + '/scripts/sig_quotes.txt')
Variables; � quotation_file = File.new(filename, 'r')
The File Object file_lines = quotation_file.readlines()

� quotation_file.close()
The split � quotations = file_lines.to_s.split("\n\n")
Method � random_index = rand(quotations.size)

� quotation = quotations[random_index]
sig_file_name = ENV['HOME'] + '/.signature'

� signature_file = File.new(sig_file_name, 'w')
� signature_file.puts 'Kevin Baird | kcbaird@world.oberlin.edu | http://

kevinbaird.net/'
signature_file.puts quotation
signature_file.close()

How It Works

At �, we assign a value to a variable called filename, but the value that goes
into it is somewhat more complex than a single straightforward number or
String. ARGV is an example of an environment variable. Environment variables
are described in Chapter 1. For historical reasons, ARGV stands for Argument Vector
and is an Array of the command-line arguments to any program when it is run.

Amusements and Simp le Ut i l i t i es 17

That’s not the whole line, though. Just as the equals sign is an operator that
puts a value into something, the double-bar (||) is an operator that means or.
Let’s use irb to see how it works.

|| operator irb(main):001:0> 0 || false
=> 0
irb(main):002:0> false || 0
=> 0
irb(main):003:0> nil || true
=> true
irb(main):004:0> nil || false
=> false
irb(main):005:0> false || nil
=> nil

An expression with the || operator evaluates whatever is to the left of it.
If it is true, the whole expression has that value, whatever possible true value
it happens to be. If the left side is false, the whole expression has the value on
the right of the ||, whatever that value is—true, false, nil, whatever. Missing
arguments are nil, and nil evaluates to false when tested by ||. The elements
of ARGV start counting with zero, just like all Arrays in Ruby (and many other
languages). Our filename variable is either the first argument to this program, or
if there is no argument, it’s set to all of that business within the parentheses:
(ENV['HOME'] + '/scripts/sig_quotes.txt').

NOTE Windows users will need to use (ENV['HOMEDRIVE'] + ENV['HOMEPATH']) instead of
ENV['HOME']. We’ll talk more about that in the Windows version of the script.

ENV is an environment variable, as the abbreviation suggests, and the
parentheses indicate expression boundaries, just as in a math expression, like
(5 + 2) * 2 = 14. ENV['HOME'] is simply a way for you to get to the directory that
belongs to a specific user. For my username, kbaird, this would be something
like /home/kbaird, or /Users/kbaird under Mac OS X. The home directory is
analogous to the My Documents folder in Windows.

ENV['HOME'] is a String, and in our expression, we add it to the String
'/scripts/sig_quotes.txt'. All this means is that our filename has a default
value of sig_quotes.txt, within the scripts directory, within the user’s home
directory. Now we know the name of the file to read quotations from, so let’s
use it.

Ruby creates new external File objects with File.new(), which takes two
arguments: the name of the file and the manner in which you want to use
that file. In this case, we want to read from the file, so at � we give it a second
argument of 'r', which naturally stands for read. We call this file quotations_file
and read its lines into a variable called file_lines. Since we’re now done with
the file, we can close it, which we do at �.

The new variable file_lines is an Array with each line of the quotations
file as a single element. What do we do when we want longer quotations? We’ve
taken care of that at � by combining those lines into a String with our old
friend the to_s method, and turning it back into an Array with a method called
split, which takes a breakpoint argument to break a String into chunks. Let’s
see it in action.

18 Chapter 2

irb(main):001:0> 'break at each space'.split(' ')
=> ["break", "at", "each", "space"]
irb(main):002:0> 'abacab'.split('a')
=> ["", "b", "c", "b"]

In our program, we’re breaking on a double line break, which is repre-
sented in Ruby, as in many other languages, with \n\n. We now have a variable
called quotations, which is an Array, each member of which is a quotation
from our external file.

We want to choose a random quotation, and elements of Arrays are con-
veniently stored with indices, so a very appropriate way to choose a random
element from an Array is to generate a random number within the range of
the Array’s indices, and then read the element out of the Array at that index.
That’s precisely what we do at � with the rand method, into which we pass
the size of the quotations Array. We place the specific quotation chosen into
a variable at � with the apt name quotation.

Now that we have a quotation, what can we do with it? We want to write it
out to our signature file. We usually print things with puts, which we used in
“#1 Is It Payday? (check_payday.rb)” on page 14. Let’s try it out in a new irb
session.

irb(main):001:0> puts 'Hello, World!'
Hello, World!
=> nil

You’ll notice that puts outputs whatever argument you give it, but the value
it returns is nil. It’s important to keep that distinction in mind. If you use puts
on a file, it will print its argument to that file instead of printing to the screen.
We already know that we can read from external files with a second argument
of 'r'. Similarly, we can write to an external file with a second argument of
'w', which is the way we open signature_file at �. Let’s take a look at the way
puts behaves in irb.

irb(main):002:0> t = File.new(ENV['HOME'] + '/test_file.txt', 'w')
=> #<File:0xaca10>

some_file.puts irb(main):003:0> t.puts 'Write some content'
=> nil
irb(main):004:0> t.close
=> nil

The puts method continues to return nil, but take a look at a new file
called test_file inside your home directory. It should now contain the text
Write some content, proving that puts can easily print to a file, as well. Note that
we use a filename that means The file called .signature within the user’s home
directory, which is the traditional location for email signature files. All that’s
left is to write a standard header at �, add the randomly-chosen quotation,
and then close the signature file.

Amusements and Simp le Ut i l i t i es 19

If you use a Unix-like operating system, you can put a call to this program
in a crontab,1 as I do on my Debian machine. Windows users can modify the
script to write a signature file with whatever name they choose, and then change
the settings of their email program to use that signature file.

Running the Script
This is run with ruby -w random_sig.rb (to assume the default sig_quotes.txt file),
or ruby -w random_sig.rb some_file, replacing some_file with the name of your
preferred version of sig_quotes.txt.

The Results
Here are my results. The $ denotes a bash prompt on my GNU/Linux sys-
tem. I add an additional cat ~/.signature (which just shows the contents of
~/.signature) to show the results, since the script writes to that file instead of
printing to the screen.

$ ruby -w random_sig.rb extras/sig_quotes.txt ; cat ~/.signature
Kevin Baird | kcbaird@world.oberlin.edu | http://kevinbaird.net/
Those who do not understand Unix are condemned to reinvent it, poorly.
$ ruby -w random_sig.rb extras/sig_quotes.txt ; cat ~/.signature
Kevin Baird | kcbaird@world.oberlin.edu | http://kevinbaird.net/
"You cannot fight against the future. Time is on our side."
- William Ewart Gladstone

Hacking the Script
Take a look at the Windows source code below, and try to figure out the
changes before continuing on to my explanation.

#!/usr/bin/env ruby
random_sig-windows.rb

� home = "#{ENV['HOMEDRIVE']}" + "#{ENV['HOMEPATH']}"
� filename = ARGV[0] || (home + '\\scripts\\sig_quotes.txt')

quotations_file = File.new(filename, 'r')
file_lines = quotations_file.readlines()
quotations_file.close()
quotations = file_lines.to_s.split("\n\n")
random_index = rand(quotations.size)
quotation = quotations[random_index]

� sig_file_name = home + '\.signature'
signature_file = File.new(sig_file_name, 'w')
signature_file.puts 'Kevin Baird | kcbaird@world.oberlin.edu | http://
kevinbaird.net/'
signature_file.puts quotation
signature_file.close()

1 A crontab is just a way for Unix machines to schedule operations. If you use a Unix-like operating
system, just execute man crontab at the shell. If you use Windows, you can use Windows Scheduler
with a batch file.

20 Chapter 2

The only significant differences relate to the filesystem, which is how
the operating system and programs access your machine’s hard drive, CD-ROM
drive, and so on. Windows uses a separate drive letter, which is represented by
ENV['HOMEDRIVE'], and a path within that drive letter, which is represented by
ENV['HOMEPATH']. Because of the greater complexity of the Windows definition
of home, we have put it into a variable in this version of the script at �. The
only other differences are the use of backslashes rather than forward slashes
at � and �.

#3 The 99 Bottles of Beer Song (99bottles.rb)

This script demonstrates basic Object Orientation by singing (okay, printing)
the “99 Bottles of Beer” song. The content of the example may be a bit con-
trived, but the program itself reveals a great deal about naming conventions
in Ruby. We’ll be defining a Wall, on which there are bottles, the number of
which repeatedly drops by one.

Here’s the code. Classes are the basic building blocks in Ruby, so it’s
worthwhile for anyone curious about the language to understand them in
some depth. We’ve already seen some built-in classes (String, Integer, and
Array), so they’re not a fundamentally new concept for you at this point.
What is new is the ability to define completely novel classes of your own,
as we do below.

The Code

#!/usr/bin/env ruby
99 bottles problem in Ruby

Classes � class Wall

Instance � def initialize(num_of_bottles)
Variables @bottles = num_of_bottles

� end

=begin rdoc
Predicate, ends in a question mark, returns Boolean.
=end

Predicate � def empty?()
Methods @bottles.zero?

 end

Destructive � def sing_one_verse!()
Methods puts sing(' on the wall, ') + sing("\n") + take_one_down! + sing(" on the

wall.\n\n")
 end

Amusements and Simp le Ut i l i t i es 21

Private � private
Methods

 def sing(extra='')
� "#{(@bottles > 0) ? @bottles : 'no more'} #{(@bottles == 1) ? 'bottle' :

'bottles'} of beer" + extra
 end

=begin rdoc
Destructive method named with a bang because it decrements @bottles.
Returns a String.
=end

� def take_one_down!()
 @bottles -= 1
 'take one down, pass it around, '
 end

end

How It Works

We define classes using the keyword class followed by whatever name we choose,
which we do at � for the class Wall. Classes must start with an uppercase
letter, and it is traditional to use mixed case, as in MultiWordClassName. Our
class is called Wall, which conjures up a real-world object in a reader’s mind.
This is the wall in the song on which the bottles sit.

It is also traditional to define a class in a file with the same name by using
all lowercase letters and underscores between the words, if the name consists
of multiple words (i.e., multi_word_class_name.rb). This is just a convention,
but it is a widely followed one, and if you decide to use Rails, using this
convention will make your life much easier.

If our wall just sat there and did nothing, there would be little point in
creating it. We want our wall to be able to take some sort of action. These
actions are methods, just like those we’ve already encountered. We’ve already
defined functions with the def keyword. Now we’ll do so within a class—this
attaches the function we’re defining to that class, making it a method of
that class.

Every class should have a method called initialize, which is what that
class uses when it creates itself. From the outside, we call the method new, but
the class itself uses the name initialize. (We’ll talk about why that distinction
exists shortly.) Our wall’s initialize method, defined at �, takes one argu-
ment called num_of_bottles. It then sets the value of a variable called @bottles
equal to whatever num_of_bottles is. Why does @bottles have the @ sign in
front of it? The @ sign is how Ruby indicates that something is what’s called
an instance variable.

22 Chapter 2

An instance variable is just a characteristic of some thing. If we have a class
called Person, each person could have characteristics like a name, an age, a
gender, and so on. These characteristics are all good examples of instance
variables, because they could (and do) differ from person to person. Just as a
Person has an age, a Wall has a certain number of bottles on it. Our wall
happens to have 99 bottles on it, because we’ve told it to have that many.
Let’s try a different number of bottles in irb. You can bring external content
into an irb session with the -r command-line flag, which stands for require.

$ irb -r 99bottles.rb
irb(main):001:0> other_wall = Wall.new(10)
=> #<Wall:0xb2708 @bottles=10>

We can see from the returned value that @bottles is set to 10 in the
case of our new variable, other_wall. Both wall and other_wall are examples
(or instances) of the class Wall. They differ in key ways, such as the number
of bottles they hold.

All we want to do when we create a new wall is set its number of bottles,
so at � we declare the end of the method after setting the value of @bottles.
After we’ve created our wall, we’ll ask the wall if it has any bottles left. We will
implement this with a method called empty?, which we define at �. Note the
question mark, which is a perfectly legitimate part of the method’s name.
Ruby has inherited a tradition from its ancestor Lisp of naming methods with
a question mark when they return either true or false. Such methods that only
return a Boolean are called predicates. It should be clear that a wall is either
empty or not empty, so the empty? method is a predicate, since it will return
either true or false.

We also include some RDoc at �, before the definition of the empty?
method. The way to indicate RDoc comments is to have the text =begin rdoc
flush left, with no whitespace before it. Ruby will consider everything after
=begin rdoc and before =end, also flush left with no preceding whitespace, to
be a comment meant to be read by a human, not something to be executed.
RDoc allows HTML-like tagging, as shown in the boldfaced Boolean in our
script. RDoc also allows a variety of other markup options, which we’ll discuss
in greater detail later.

The instance variable @bottles is a number, represented as an instance of
Integer in Ruby. Integers have a built-in method called zero?, which simply
tells us whether or not that Integer is zero. This is an example of a predicate
that was already there for us to use, and it follows the question mark naming
convention. Our definition of empty? for the class Wall also uses parentheses
to show that it doesn’t accept any arguments. It’s often a good idea to refer to
methods using parentheses, even in cases like this where there are no argu-
ments involved. The main reason for doing so is to make it clear that you’re
dealing with a method and not a variable. Since you can define both methods
and variables, and both are made of lowercase letters, the parentheses help
Ruby distinguish between the two.

A song is made to be sung, so we want to tell the Wall how to do so. We’ll
define a method at � called sing_one_verse!. Just as empty? uses a question
mark, sing_one_verse! ends with an exclamation point (also called a bang),

Amusements and Simp le Ut i l i t i es 23

which indicates that the method is destructive. Destructive methods change the
state of their object, which means that they perform some action on their
object that persists after the method has been called.

The verse that sing_one_verse! has the responsibility to output has some
internal repetition, so it only makes sense to break up that repetition and
abstract it. We do this with the sing method, which takes an optional String
argument called extra. This optional argument represents any additions to
some boilerplate about the number of bottles remaining. The one-line expres-
sion at �, inside the sing method, has some things we haven’t seen before.

Sometimes we want to have the value of an expression appear inside a String.
This process is called interpolation, and Ruby does it, as we’ll show here in irb:

Interpolation irb(main):001:0> my_var = 'I am the value of my_var'
=> "I am the value of my_var"
irb(main):002:0> "my_var = my_var"
=> "my_var = my_var"
irb(main):003:0> "my_var = #{my_var}"
=> "my_var = I am the value of my_var"
irb(main):004:0> 'my_var = #{my_var}'
=> "my_var = \#{my_var}"

When we use double quotation marks and wrap an expression within #{},
the expression is evaluated before it is inserted into the String. When we use
single quotation marks or omit the #{} wrapper, all the text simply appears
literally, even if that text happens to be a valid expression, such as the name
of a variable. The combination of double quotation marks and the #{} wrapper
is a way to tell Ruby that you want interpolation to occur.

NOTE If you want to have double quotation marks within a String that uses interpolation, you
can use %Q, like this: %Q[I am an interpolating String. Call me "#{ 'Ishmael' }".].
Note that the delimiter does not have to be a bracket and could be conceivably any character.
Common choices are [, {, and !.

The sing method also does some testing based on the number of bottles
left. This determines the specific output that it returns. Critical to this is the
fact that we can interpolate any expression, not just variables. The first expres-
sion within the interpolation at � is a test that checks if the value of @bottles
is greater than zero. If it is, that first expression evaluates to @bottles, other-
wise it evaluates to the String 'no more'. We do this with what we call the ternary
operator. Let’s look at the ternary operator a bit in irb as well.

Ternary
Operator

irb(main):001:0> true ? 'I am true' : 'I am false'
=> "I am true"
irb(main):002:0> false ? 'I am true' : 'I am false'
=> "I am false"

The ternary operator examines whatever is to the left of the question
mark; it evaluates to whatever immediately follows the question mark if the
examined expression is true, and evaluates to whatever follows the colon
otherwise. You can think of it as another way to implement flow control that

24 Chapter 2

is sometimes more convenient than an if test. The next expression at � that
uses a ternary evaluates to either the word bottle or the word bottles, as appro-
priate in English for the number of bottles the wall currently has. We then
concatenate information that says that these are bottles of beer, rather than
some other liquid, and add the extra argument. Since the argument defaults to
the empty string, and concatenating the empty string onto something has no
visible effect, we’re safe when there is no argument.

NOTE Actually, this is just a ternary operator. It just happens to be the most common one, and
therefore, it often gets special naming treatment. It is the only built-in ternary operator
in Ruby.

After singing a verse, we take a bottle of beer down with take_one_down!,
the method defined at �, again named with a bang. We’ve grouped together the
actions of taking a bottle away and reporting that fact, which seems to make
sense, conceptually. Since Ruby methods return the last expression evaluated,
this method returns the String 'take one down, pass it around, ', which gets
incorporated into the entire verse inside sing_one_verse!.

We finish all of these method definitions with the end keyword, and use
end again to finish the class definition. So we’re done—except for the word
private, which we define at �. To see how this works, let’s open up irb again
and instantiate a new Wall.

$ irb -r 99bottles.rb
irb(main):001:0> wall = Wall.new(99)
=> #<Wall:0xb7d2e628 @bottles=99>
irb(main):002:0> wall.sing
NoMethodError: private method 'sing' called for #<Wall:0xb7d2e628 @bottles=99>
 from (irb):2
 from :0
irb(main):003:0> wall.take_one_down!
NoMethodError: private method 'take_one_down!' called for #<Wall:0xb7d2e628 @bottles=99>
 from (irb):3
 from :0
irb(main):004:0> wall.empty?
=> false

The only class that can access methods that we’ve defined after the
appearance of the word private is the class itself. The other methods that can
be accessed from the outside are called public methods. Why the distinction?
It allows us to define an interface for an object that doesn’t change. We can
mess around under the hood and change everything about how the class
actually accomplishes its responsibilities, while no one outside the class has
any idea that anything has changed.

Using classes in this way is especially useful when working on larger
projects with other programmers. You can define your class, complete with
public methods that your other team members know about, and write little
stub versions of those methods that return legal values with some temporary
hard-coded approach. This allows your colleagues to start work on their classes,

Amusements and Simp le Ut i l i t i es 25

which might depend on the output of your class’ methods, even before you
have written the real versions of those methods. This is very convenient.

By the way, the new versus initialize distinction we saw earlier is a public
versus private distinction. The initialize method is automatically private,
and the (public) new method of any object automatically calls the (private)
initialize method of that same object. That’s why we create an initialize
method when we write completely new classes.

Running the Script
Let’s try this one out in irb with irb -r 99bottles.rb. Note that this will output
all 99 verses of this song, so don’t be surprised when you see it happen.

The Results

$ irb -r 99bottles.rb
irb(main):001:0> wall = Wall.new(99)
=> #<Wall:0xb3040 @bottles=99>
irb(main):002:0> wall.sing_one_verse! until wall.empty?

Here’s a brief section of the output:

99 bottles of beer on the wall, 99 bottles of beer
take one down, pass it around, 98 bottles of beer on the wall.

98 bottles of beer on the wall, 98 bottles of beer
take one down, pass it around, 97 bottles of beer on the wall.

97 bottles of beer on the wall, 97 bottles of beer
take one down, pass it around, 96 bottles of beer on the wall.
...
2 bottles of beer on the wall, 2 bottles of beer
take one down, pass it around, 1 bottle of beer on the wall.

1 bottle of beer on the wall, 1 bottle of beer
take one down, pass it around, no more bottles of beer on the wall.

=> nil

#4 Sound File Player (shuffle_play.rb)

In this script, we’ll make a program that plays music files in a shuffled order.
We explored classes in the previous example, and we’ll learn more about them
here. What happens when we want to have a class that is very similar to an
existing class? We have several options.

NOTE This version is fairly Unix-centric. You can download a Windows version that uses the
Winamp player at http://www.nostarch.com/ruby.htm.

In Ruby, we know that everything is an object, which is just another way of
saying that it’s a member (or instance) of a class. We know about well-defined
classes like Arrays, Strings, Integers, and so on. All of these are what we call

26 Chapter 2

open classes, meaning that we can add code to existing classes. For example,
we could change all of the Arrays in our programs so that they have a new
method, and that change would affect any and all Arrays. We don’t have to
create a new special type of Array to add this hypothetical new method.

NOTE Old hands at Object Orientation will recognize the creation of a new type of class that is
otherwise similar to an existing class as using inheritance. We’ll address inheritance
in Ruby in a later chapter.

Our shuffle player will need to deal with a list of files. The built-in class
Array is very well-suited to acting as a list of items, so we’ll base our player
around an Array of files. In doing so, we’ll also add some behavior to all Arrays
that will make it easier to deal with the shuffled playback we want to implement.

The Code

#!/usr/bin/env ruby
shuffle_play

Open Classes class Array

=begin rdoc
Non-destructive; returns a copy of self, re-ordered randomly.
=end

� def shuffle()
Blocks; The
sort_by Method

sort_by { rand }
 end

=begin rdoc
Destructive; re-orders self randomly.
=end

� def shuffle!()
The replace
Method

 replace(shuffle)
 end

=begin rdoc
While we're here, we might as well offer a method
for pulling out a random member of the Array.
=end

� def random_element()
 shuffle[0]
 end

end # Array

###

class ShufflePlayer

� def initialize(files)
 @files = files
 end

Amusements and Simp le Ut i l i t i es 27

=begin rdoc
Plays a shuffled version of self with the play_file method.
=end

� def play()
The each
Method

 @files.shuffle.each do |file|
 play_file(file)
 end
 end

� private

=begin rdoc
Uses ogg123, assumes presence and appropriateness.
=end
 def play_file(file)

The system � system("ogg123 #{file}")
Method end

end # ShufflePlayer

###

� sp = ShufflePlayer.new(ARGV)
sp.play()

How It Works

We use two different class definitions in this example: one in which we open
the Array class to add behavior to it, and another in which we create a com-
pletely novel class called ShufflePlayer. One key method that we add to the
Array class at � is shuffle. Arrays already have two methods that are very
handy: sort_by and rand. You’ll notice that sort_by is followed by the opening
brace character ({), then the rand method, then the closing brace (}). This
content between the opening and closing braces is a block, which is central to
how Ruby transforms or iterates over collections of data, like Arrays (among
other things). The sort_by method is a sorting operation that takes a block
argument, which determines the manner in which the sorting should occur.
By calling the rand method within our block, we ask our Array to sort its ele-
ments randomly, which is how Arrays accomplish the shuffle method after
Ruby reads this method definition.

NOTE Perlers (or JAPHs) might be interested to know that sort_by uses a Schwartzian Transform
under the hood. Also, the numbers generated by random are technically pseudo-random,
not truly random. The difference isn’t critical for the purposes of this script.

All Arrays can now shuffle themselves in our code. This is all we need for
our Array, but since this book is about informing people about Ruby as much
as it is about accomplishing tasks like playing shuffled audio files, we’ll continue
the discussion. Our Arrays will also be able to shuffle themselves with a method
defined at � called shuffle!, similar to but distinct from the method called
shuffle (without the bang). You recently learned that methods with an ending

28 Chapter 2

bang are destructive, meaning that they change state in the calling object. We
accomplish this change of state by using the replace method, which trans-
forms the calling object into whatever argument it receives. The shuffle
method returns a shuffled version of the calling Array. Since we pass that
shuffled Array into the replace method, it is a very simple way to create a
destructive method called shuffle!, which is precisely what we’ve done.

It’s very easy to add the random_element method, as well, which we do at �.
Since a shuffled version of an Array is in a random order (by definition), return-
ing any member out of that shuffled Array will produce a random element.
Here we return the first element, but we could return the last element, or
any other element. Returning the first element is a good choice, though,
because an Array with any members at all will definitely have a first member.

With a few short methods, we’ve dramatically added to the capabilities of all
Arrays. We’ll make use of those capabilities within our new ShufflePlayer class.
Since ShufflePlayer is a completely new class, we need to define its initialize
method (�), which takes an argument called files and assigns it into an
instance variable called @files. If you look at �, near the end of the program,
you see that we instantiate a new ShufflePlayer with ARGV as the files argument.

Once a ShufflePlayer exists, we want it to play files in shuffled order. We
do so with the play method, defined at �. Within ShufflePlayer, @files is an
Array of filenames. We opened up the Array class, adding the shuffle method
to all Arrays. Therefore, @files can call the method shuffle on itself. Since it’s
a public method, other objects can call shuffle on Arrays, as well. That’s what
ShufflePlayer does in our example. Since the return value of the shuffle method
is also an Array, it can also call all of the methods of an Array, including shuffle
again. Instead of reshuffling, however, we’ll call a method called each, which
takes a block describing what to do to or with each element of the Array.

We delimit blocks with braces, right? Sometimes. We could have imple-
mented our play method like this:

def play()
 @files.shuffle.each { |file| play_file(file) }
end

However, I chose to do it as I did to demonstrate the different ways you
can use blocks in your code. Blocks can either start with { and end with }, or
start with do and end with end. Different Ruby coders have different ideas
about how best to notate blocks, but the convention seems to be that the
brace delimiters are more appropriate for one-line blocks, and the do and end
delimiters are more appropriate for multi-line blocks. This is the convention
I will use in this book, and the one I use in my personal code. Ruby itself,
however, doesn’t really care.

NOTE The different ways of delineating blocks have different precedences, for those who are
curious. This means that Ruby will evaluate blocks delineated with { and } before evaluat-
ing blocks delineated with do and end. This fits well with how they are commonly used.

Amusements and Simp le Ut i l i t i es 29

Note that when we call each, we have the word file within two pipe char-
acters. Ruby coders who like American football sometimes call this the goalpost.
The goalpost just tells the code within the each method what each element
should be called within the block. Conceptually, it resembles an argument to
a method, and later in the book, we’ll blur that distinction even more. In this
case, we’re asking the ShufflePlayer to loop through each element of @files,
call that element file, and call some method called play_file, taking file as
an argument.

Since we never need to call play_file from the outside, we can make it a
private method, as shown at �. All play_file does is take an argument called
file and use a method called system at � in order to play that file argument
using the ogg123 program. As you might guess, system goes outside of Ruby and
asks the operating system to do something—like play an audio file.

NOTE I have a large number of files in Ogg Vorbis audio format, so I use the ogg123 program
to play them. You can certainly replace ogg123 with mpg321 or any other command-line
audio player.

The play_file method makes several assumptions, of course. It assumes
that every file it’s asked to play will be playable with ogg123. It assumes that a
command like ogg123 some_file_name will be understandable by the operating
system. Most glaringly, it assumes that there is a program called ogg123 on the
computer that runs this program. I wrote this program to play audio files on
my computer at work, where it was safe for me to make these assumptions. This
allowed the program to be much shorter, because it didn’t have to worry about
checking for the existence of ogg123, and so on.

Running the Script

You run this script as either ruby -w shuffle_play.rb some_ogg_files or
./shuffle_play.rb some_ogg_files.

The Results

Now that I have explained our script, let’s try it out. These examples are
within a bash shell in Linux, and use the long-winded version of shuffle_play.rb.
The specific output you'll see will depend heavily on the files you choose to
play (represented by some_ogg_files in “Running the Script” above). Since the
shuffling is pseudo-random, successive runs will also probably be different,
even on the same set of files.

$./shuffle_play.rb ~/Documents/Audio/Music/Rock/King_Crimson/Discipline/*.ogg

Audio Device: OSS audio driver output

Playing: /home/kevinb/Documents/Audio/Music/Rock/King_Crimson/Discipline/03-Matte_Kudasai.ogg
Ogg Vorbis stream: 2 channel, 44100 Hz

30 Chapter 2

Title: Matte Kudasai
Artist: King Crimson
Album: Discipline
Date: 1981
Track number: 03
Tracktotal: 07
Genre: Prog Rock
Comment: Belew, Fripp, Levin, Bruford
Comment: Belew, Fripp, Levin, Bruford
Copyright 1981 EG Records, Ltd.
Musicbrainz_albumid:
Musicbrainz_albumartistid:
Musicbrainz_artistid:
Musicbrainz_trackid:
Time: 00:05.74 [03:43.52] of 03:49.25 (164.5 kbps) Output Buffer 96.9%

Or on another directory:

$./shuffle_play.rb ~/Documents/Audio/Music/Jazz/The_Respect_Sextet/
The_Full_Respect/*.ogg

Audio Device: OSS audio driver output

Playing: /home/kevinb/Documents/Audio/Music/Jazz/The_Respect_Sextet/
The_Full_Respect/08-Carrion_Luggage.ogg
Ogg Vorbis stream: 2 channel, 44100 Hz
Title: Carrion Luggage
Artist: The Respect Sextet
Album: The Full Respect
Date: 2003
Track number: 08
Tracktotal: 18
Genre: Jazz
Composer: Red Wierenga
Copyright 2003 Roister Records
License: http://respectsextet.com/
Time: 00:20.64 [05:15.00] of 05:35.64 (151.4 kbps) Output Buffer 96.9%

In these examples, the bash shell expands the filenames from *.ogg before
it ever gets to Ruby. All of those files are the arguments to our ShufflePlayer,
which then plays them all in shuffled order, meaning that once it’s done with
one file, it continues on to all the others without repeating any files. We’ll
look at another approach to shuffled playback of audio files in two programs
designed for radio station use later in the book.

Hacking the Script

Incidentally, if you’re interested in shorter programs, this entire program
could be replaced by these two lines:

#!/usr/bin/env ruby
ARGV.sort_by { rand }.each { |f| system("ogg123 #{f}") }

Amusements and Simp le Ut i l i t i es 31

You could just have the second line if you always called the program as an
argument to the Ruby interpreter, like

ruby short_shuffle.rb some_file.ogg

I don’t think that extreme brevity at the expense of clarity is a goal to strive
for, however, and I won’t be coding toward that end in this book. Brevity is
particularly inappropriate for a book that means to teach people about program-
ming, except to demonstrate alternative formats for the same functionality,
as done here.

Chapter Recap

What was new in this chapter?

� Dates

� Constants versus magic numbers

� Expressions with the || operator

� ENV['HOME']

� External file access, both reading and writing, using File.new

� Splitting Strings into Arrays

� Printing with puts

� Generating (pseudo-)random numbers

� Running Ruby programs at the command line

� Defining and instantiating new Classes

� Instance variables: @i_am_an_instance_variable

� Ruby method naming conventions: predicate?, destructive!

� Introduction to RDoc

� Expression interpolation within Strings: "#{interpolate_me}"

� Ternary operator: (expression ? if_true : if_false)

� Access control

� Open classes

� Using ARGV

� Using the each method with blocks

� The system method

That’s a great deal of non-trivial information. If you’re relatively new to pro-
gramming, have made it this far, and feel fairly comfortable with the content up
to this point, you’ve accomplished something significant and praiseworthy.
Congratulations. If you’re an old hand, hopefully this chapter has given
you a good idea of how Ruby does some things you’ve already done in other
languages.

3
P R O G R A M M E R U T I L I T I E S

This chapter is primarily geared toward
tools that reveal more about Ruby, making

the programmer’s job both easier and more
interesting. We’ll revisit a few topics we broached

in a cursory fashion earlier in the book, this time giving
them more attention.

#5 What Is Truth? (boolean_golf.rb)

Back in Chapter 1, we talked about how various languages convert data from
one type to another. You’ll remember that this process is called casting, and
Ruby generally requires programmers to do this explicitly, while some other
languages provide shortcuts that implicitly cast data.

The one major exception to this policy in Ruby is the Boolean type, which
is either true or false. However, we noted earlier that you can also use a to_b
method, making data conversion in Ruby completely consistent, in that it is
always explicit. We’ll be doing a variation on the notion of the to_b method
in the program below, which we call boolean_golf.rb. The name is inspired by
a practice in the Perl community in which programmers try to accomplish a

34 Chapter 3

given task with as few keystrokes as possible—they score it like golf. This script
accomplishes its task as succinctly as possible, without being illegibly terse.

The Code

#!/usr/bin/env ruby
boolean_golf.rb

=begin rdoc
This is intended merely to add handy true? and false? methods to every
object. The most succinct way seemed to be declaring these particular
methods in this order. Note that to_b (to Boolean) is an alias to the
true?() method.
=end

Superclasses class Object

� def false?()
 not self
 end

� def true?()
 not false?
 end

Meta-
programming; � alias :to_b :true?

Symbols
end

How It Works
This program takes advantage of Ruby’s support for open classes and adds new
behavior to the Object class. Object is what old hands at Object Orientation
call a superclass. Superclasses are ancestors of other classes. In Ruby, Object
happens to be the ultimate superclass, because it’s the ancestor of every
other class in Ruby. This status means that methods you add to Object will
be available to every single variable of any kind, at any time afterwards. This
is extremely powerful, as you might expect.

The methods we’re adding are the explicit casting to Boolean methods
already discussed. When we introduced the concept, we called our hypotheti-
cal method to_b. The program above has that method, but gets to it in a
roundabout way. The first method defined in the program (at �) is false?.
Remember that a method that returns a Boolean is a predicate, and Ruby
follows the Lisp tradition of naming predicates so that they end in question
marks. The false? method uses Ruby’s implicit Boolean casting inside itself—
it just forces its calling object into an implicit Boolean test with the not operator,
which also reverses the Boolean value. Therefore, false? is the opposite of to_b.

Programme r Ut i l i t ie s 35

Let’s show that in irb:

$ irb -r boolean_golf.rb
irb(main):001:0> true.to_b
=> true
irb(main):002:0> false.to_b
=> false
irb(main):003:0> nil.to_b
=> false
irb(main):004:0> true.false?
=> false
irb(main):005:0> false.false?
=> true
irb(main):006:0> nil.false?
=> true

You can see that to_b reports whether its calling object is considered true
by Ruby. The false? method does the opposite—it returns false when Ruby
considers the calling object true, and true when Ruby considers the calling
object false. You can also try calling these methods on other objects, as well
as calling the true? method (�) on these and any other values. You’ll find
that true? returns the same values as the to_b method. This program defines
true? in a similar manner to false?, except instead of reversing self, it reverses
the output of false?.

The methods true? and false? look familiar because they’ve been defined
in the usual way. At �, we define to_b in a different way. Ruby gives us a the
option of doing what’s called metaprogramming, which allows us to manipulate
our objects while we’re still in the process of defining them. In this case, we’re
defining to_b as an alias to the method true? that we just created. The code
is quite readable, isn’t it? You might be curious about why we precede the
names of the methods with a colon. In this use of alias, :true? and :to_b are
instances of the Symbol class, which are preceded with a colon. We’ll talk
about Symbol in later chapters. At the moment, just remember that we
define aliases with the keyword alias, the Symbol version of the new name
(with an initial colon), and the Symbol version of the old name (with an
initial colon), in that order. We’ll show that in our existing irb session.

NOTE Metaprogramming is a general term for writing programs that create or manipulate
other programs. In our case, we write a program that manipulates itself, which is perhaps
a little conceptually weird. It’s very powerful, however, and is used extensively in Rails.
Technically, a compiler or interpreter is an example of metaprogramming, because it
allows you to write a short program in a high-level language (like Ruby), which creates
a program in a lower-level language (usually C) under the hood, which is then executed.
Another example of a different sort of metaprogramming in this book is a script
called methinks_meta.rb, which we’ll see in “#35 Mutating Strings into Weasels
(methinks.rb)” on page 168.

36 Chapter 3

Hacking the Script

In this irb session, we just make a not-terribly-useful alias for to_i with
the cumbersome name make_me_into_an_integer. However, it does nicely
demonstrate how to define aliases. We have accomplished several tasks.
We added new methods to every single object in Ruby. These methods allow
us to be completely pedantic about Boolean casting—in other words, we now
have methods for explicit casting into Boolean values. While doing so, we
refreshed our knowledge of method naming conventions and also learned a
bit about both aliases and metaprogramming.

irb(main):007:0> class String
irb(main):008:1> alias :make_me_into_an_integer :to_i
irb(main):009:1> end
=> nil
irb(main):010:0> '5'.make_me_into_an_integer
=> 5

Running the Script

The easiest way to run this is with irb.

$ irb -r boolean_golf.rb
irb(main):001:0> true.true?
=> true
irb(main):002:0> true.false?
=> false
irb(main):003:0> nil.false?
=> true

The Results

This library file only returns either true or false, as demonstrated above.

#6 Making a List (array_join.rb)

In the previous script, we added new methods to allow explicit Boolean casting
to every Object in all of Ruby. In this example, we create a new method that
is a slight variation on a method that already exists. In this case, we’re altering
the way that Arrays can represent themselves as Strings.

When we talk about lists in natural speaking, we often separate the last
item from the item before it with the word and. This is not how Ruby handles
Arrays by default. Let’s verify that in irb:

irb(main):001:0> a = [0, 1, 2]
=> [0, 1, 2]

The join Method irb(main):002:0> a.join(' ')
=> "0 1 2"
irb(main):003:0> a.join(', ')

Programme r Ut i l i t ie s 37

=> "0, 1, 2"
irb(main):004:0> a.join('')
=> "012"

We’re creating a variant of the method join, which is available to all
Arrays and whose behavior we see above in the irb session. It takes the items
of the Array, concatenating them together into a String, with the argument
to the join method between each item, but not before the first item or after
the last item. That’s the behavior of join. How can we make our own join that
adds the String and before the last item? Here’s how.

The Code

#!/usr/bin/env ruby
array_join.rb

class Array

� def my_join(separator1=', ', separator2=' and ')
 modified_join(separator1, separator2)
 end

Protected � protected
Methods

� def modified_join!(separator1, separator2)
The pop
Method

 last_one = self.pop()
 join(separator1) + separator2 + last_one.to_s
 end

� def modified_join(separator1, separator2)
The dup
Method

 self.dup.modified_join!(separator1, separator2)
 end

end

How It Works

In our open class modification of Array, we define a new method at �
called my_join that takes two separator arguments. It calls another method,
modified_join, with whatever our two separator arguments are.

The modified_join method hasn’t been defined yet and doesn’t need
to be called except within the my_join method. You might think that it can
be a private method, and so would expect to see the word private before the
method definition. Instead, at � you see the word protected. Why couldn’t it
just have been private? We’ll find out very shortly.

The modified_join method is defined at � simply as calling the new
destructive method modified_join! on a duplicate of the calling object. We get
a duplicate of the calling object simply by using the dup method. We define
the destructive method modified_join! at �. It takes two separator arguments,
just like all of our new methods in this program. It defines a new local variable

38 Chapter 3

called last_one, which is the value of the object calling the method pop on
itself. Pop is a standard term in many languages for the operation of remov-
ing the last item from an Array. Here’s an example of popping in action,
continuing our existing irb session:

irb(main):005:0> a
=> [0, 1, 2]
irb(main):006:0> a.pop
=> 2
irb(main):007:0> a
=> [0, 1]
irb(main):008:0> a.pop
=> 1
irb(main):009:0> a
=> [0]
irb(main):010:0> a.pop
=> 0
irb(main):011:0> a
=> []

You can see that the Array called a is modified whenever it calls the
method pop on itself. Why, you might ask, isn’t this method called pop!, since
it’s destructive? That’s a good question. The answer is convention—pop is an
established term for this operation from languages that precede Ruby. If this
convention bothers you, just remember that Ruby has ancestors, just like a
real human spoken language does. Think about the spelling rules in English.
They make little sense after the fact, but make perfect sense when you realize
that English is the product of Norman soldiers trying to pick up Saxon bar-
maids a thousand years ago.

Ruby depends on its ancestors similarly to how a spoken language does,
and given the choice between breaking either the convention of naming
destructive methods with exclamation marks or of agreeing with precedent
from other languages, Matz has decided to make Ruby play nicely with others.

Now we have our last item in a separate variable called last_one, and
since pop is destructive, that item has been removed from the calling Array
after pop has occurred. We’re satisfied with the way the original version of join
works on all items before the last one, so we can just call the plain old join on
those items. We add our second separator, and then add our last item that we
popped off, making sure that it is a String (and therefore willing to be con-
catenated) by calling the to_s method on it.

So what was all that business about using protected instead of private?
The reason we used protected is that inside the (non-destructive) modified_join
method, our Array doesn’t call the (destructive) modified_join! method on
itself. Instead, it calls modified_join! on a duplicate of itself. It’s no longer the
same object, and the duplicate won’t allow another instance to call one of its
private methods. So what do we do? Should there be a way for an Array to
call a method on another Array that isn’t available to an Integer, a String, or
a Symbol? There is, and that’s exactly what the protected access control key-
word is for. Below is some irb action showing how the program works.

Programme r Ut i l i t ie s 39

Running the Script

$ irb -r array_join.rb
irb(main):001:0> a = [0, 1, 2]
=> [0, 1, 2]
irb(main):002:0> a.join(', ')
=> "0, 1, 2"
irb(main):003:0> a.my_join(', ')
=> "0, 1 and 2"
irb(main):004:0>

Hacking the Script

Once you’ve tried that and are comfortable with it, change protected to private
and try to run it again. It should fail on you, as shown here.

$ irb -r array_join.rb
irb(main):001:0> a = [0, 1, 2]
=> [0, 1, 2]
irb(main):002:0> a.join(', ')
=> "0, 1, 2"
irb(main):003:0> a.my_join(', ')
NoMethodError: private method 'modified_join!' called for [0, 1, 2]:Array
 from ./array_join.rb:14:in 'modified_join'
 from ./array_join.rb:7:in 'my_join'
 from (irb):3
 from :0
irb(main):004:0>

That private method error is the reason we want our non-public methods
in this program to be protected, rather than private. That should give you
basic understanding of Ruby’s access control: public, private, and protected.

#7 Command-Line Interface (uses_cli.rb and simple_cli.rb)
The program uses_cli.rb understands command-line options, which are
configuration options that you can use to make the script behave in different
ways, depending on the specific values chosen. It uses specific options that
have become somewhat standard, such as -h or --help. Options in the form
with a single hyphen and a single letter are short options, while those with a
double hyphen and a full word are (unsurprisingly) called long options. Let’s
look at the code for uses_cli.rb.

NOTE I think there is enough pedagogical value to rolling your own command-line parser
to make it worthwhile, especially in a book like this. However, I should note that
there are two fine built-in CLI parsers in Ruby: GetOptLong (Motoyuki Kasahara,
http://www.sra.co.jp/people/m-kasahr/ruby/getoptlong) and OptionParser (Nobu
Nakada, http://optionparser.rubyforge.org). I only include the URLs for informa-
tion purposes; they are built in to the Ruby Standard Library, so you don’t need to
download them.

40 Chapter 3

The Code

#!/usr/bin/env ruby
use_cli.rb

=begin rdoc
Please refer to the SimpleCLI Class for documentation.
=end

Require � require 'simple_cli'

� cli = SimpleCLI.new()
cli.parse_opts(ARGV)

There isn’t a whole lot here, and the script gives us almost no informa-
tion, except at �, where it suggests that we need to look inside the SimpleCLI
class for documentation. Why the redirection? For an example this straight-
forward, it’s a fair question. The Holy Grail of computer programming is the
notion of reusable code. There are many ways to accomplish that end, but one
of the most enduringly successful ways is to have external libraries of functions
that are reasonably abstract, which is the role played by the simple_cli.rb file
in our example. Some other specific file can then use that library file, as we
do at � in uses_cli.rb with the require keyword, which takes a String argument
that is the name of an external file without the .rb extension. This makes
the code in that external file available to the file doing the requiring—it’s
analogous to running irb with the -r flag. Therefore, at � we can easily
instantiate an instance of SimpleCLI that we call cli, to which we pass all of the
command-line options used by uses_cli.rb.

If we want to understand how SimpleCLI works, we’ll have to look at its
code. Note that some of the methods in SimpleCLI are stubs, meaning that they
don’t do anything worthy of real production code, but they demonstrate that
the options are being parsed appropriately. If you find this example useful as
a scaffold or guide for your own code that you want to take command-line
options, you simply replace both the types of options and their specific imple-
mentations as your needs dictate. These are only examples. Here, we instantiate
SimpleCLI and then call its parse_opts method with every command-line option
used in uses_cli.rb. Let’s see what that method does by looking at simple_cli.rb.

NOTE The help and version command-line options have become fairly standardized, and their
inclusion is generally appreciated.

#!/usr/bin/env ruby
simple_cli.rb

=begin rdoc
Parses command line options.
=end
class SimpleCLI

Programme r Ut i l i t ie s 41

� # CONSTANTS

Hashes OPTIONS = {
 :version => ['-v', '--version'],
 :help => ['-h', '--help'],
 :reset => ['-r', '--reset'],
 }

Here Docs � USAGE =<<END_OF_USAGE

This program understands the following options:
 -v, --version : displays the current version of the program
 -h, --help : displays a message with usage instructions
 -r, --reset : resets the program

With no command-line options, the program performs its default behavior.

END_OF_USAGE

 VERSION = "Some Project version 0.01 (Pre-Alpha)\n"

 # METHODS

� def parse_opts(args)
 return option_by_args(args[0]) if understand_args?(args)
 # options are not understandable, therefore display_usage
 display(USAGE)
 end

� private

� def display(content)
 puts content
 end

 def do_default()
 puts 'I am performing my default behavior'
 end

� def option_by_args(arg)
 return display(VERSION) if OPTIONS[:version].include?(arg)
 return display(USAGE) if OPTIONS[:help].include?(arg)
 return reset() if OPTIONS[:reset].include?(arg)
 do_default()
 end

 def reset()
 puts 'I am resetting myself.'
 end

� def understand_args?(args)
 # works in Ruby1.8

The any?
Method

 OPTIONS.keys.any? { |key| OPTIONS[key].include?(args[0]) }

42 Chapter 3

� =begin works in Ruby1.6
 return true unless args
 return true unless args[0]
 return true if args[0].size.zero?
 OPTIONS.keys.each do |key|

The include?
Method

 return true if OPTIONS[key].include?(args[0])
 end
 return false
=end
 end

end

How It Works

This file, simple_cli.rb, is a basic definition of a class called SimpleCLI, of course,
with RDoc before the class definition and some useful constants right away at �.
We’ve seen constants before, but we declare these constants inside of a class
definition. This is actually the preferred way to use constants in Ruby. You
often want to encapsulate methods inside an object, and the same is true for
constants. Your code for some physics calculation cares about the speed of
light, whereas your payday notification program cares about the number of
days in a pay period. In our case, the command-line parser cares about what
OPTIONS it can understand and the USAGE message it should report.

The OPTIONS constant is a new type of data structure called a Hash. Hashes
are lookup tables, and are very similar to functions, in a way. You pass some-
thing into a Hash, and you receive one thing from it. That one thing never
changes unless you either change what you pass into the Hash, or you change
the internals of the Hash. As you can see, you declare a Hash with braces.
The items to the left of the => are the keys of the Hash, while the items to the
right of the => are the values of the Hash. If you pass in one of the keys, the
Hash will return the matching value.

NOTE Note that the one thing you receive could be a composite data type. For example, in our
OPTIONS Hash, the values you receive are Arrays. The point is that you’ll always receive
the same Array for a given input value.

Let’s demonstrate in irb. The way to refer to a constant within a class is
with the syntax Class::CONSTANT, so let’s do that. Keep in mind that the Array
["-v", "--version"] is the value of SimpleCLI:: OPTIONS class associated with the
key :version. That means that if you pass in the Symbol :version, you receive
the Array ["-v", "--version"].

$ irb -r simple_cli.rb
irb(main):001:0> SimpleCLI::OPTIONS[:version]
=> ["-v", "--version"]
irb(main):002:0> SimpleCLI::OPTIONS[:help]
=> ["-h", "--help"]
irb(main):003:0> SimpleCLI::OPTIONS[:reset]
=> ["-r", "--reset"]

Programme r Ut i l i t ie s 43

It works. If you compare our results in irb with the declaration of the
Hash in the code, you shouldn’t be surprised by what we got. Hashes are
critically important data structures. I am particularly fond of defining them
as constants within a class, so you’ll see this practice repeated many times in
the course of the book.

NOTE There are several reasons why I often have Constants within a class that are Hashes.
They’re within a class because they need to be accessible within that class, but not
outside it. The reason they’re often Hashes is that I often find (for whatever reason)
that simple lookup tables are useful data structures to have. After you’ve read some of
the functional programming information, you may find it interesting to define both
lambdas and Procs as class constants as well. I find myself often doing so.

The declaration of the USAGE constant at � looks a bit odd, with the equals
sign followed by two left arrows. However, this is a very useful tool for multi-line
text called a here doc. With a here doc declaration, the programmer can say
that an expression should continue across multiple lines until a specific
marker is reached—END_OF_USAGE, in this case. This is very handy for large
amounts of verbatim text that you would otherwise have to build using
multiple print or puts statements.

Next is a more straightforward constant called VERSION, which is a regular
String. Its definition uses double-quote characters, because we want a newline
character (notated by \n) at the end. The following two statements would
print the same thing; the \n is just the way to include the newline within the
String.

puts 'Some Project version 0.01 (Pre-Alpha)'
print "Some Project version 0.01 (Pre-Alpha)\n"

We have our constants, so let’s move on to our methods. The main one
(and in fact, the only public one) is parse_opts, defined at �. It parses options,
and its implementation should be fairly readable at this point. It returns the
result of calling the option_by_args method if it understands the args, and
otherwise passes its own USAGE message into the display method. I like method
names that tell you what they’re supposed to do. If you care about the details,
you can look inside to learn more, but the name should give you the basic
information you need up front.

All of our methods, other than parse_opts, are private (�), because they
only need to be called by a SimpleCLI instance on itself. The display, do_default,
and reset methods starting at � should be pretty straightforward to you.
These are the methods that you would change to do something more useful
in real production code. The major logic of the class occurs in the remaining
methods option_by_arg (�) and understand_args? (�). We know understand_args?
is a predicate by the question mark at the end of its name, so it will be return-
ing either true or false.

The option_by_args method checks each key of the OPTIONS constant, and
if it finds a match, returns with the appropriate behavior. This means that it
will not continue checking keys after it finds a match, so the order of the keys

44 Chapter 3

is important. It checks for matches using an Array predicate method called
include?, which simply returns true if the argument is found in the Array and
false if it is not. This makes it very easy to have command-line aliases like -v
and --version which mean the same thing, because either one will cause
include? to return true. If option_by_args gets no matches, it performs its
default behavior.

Key to all of this is whether or not the instance of SimpleCLI understands
it arguments. In Ruby1.8, which this book assumes you’re using, it’s easy to
determine that question using another predicate method called any?. It takes
a block and returns true if the contents of that block evaluate to true for any
of the elements of the calling object, which is usually an Array. Let’s demon-
strate in irb:

$ irb
irb(main):001:0> a = [0, 1, 2]
=> [0, 1, 2]
irb(main):002:0> a.any? { |i| i > 1 }
=> true
irb(main):003:0> a.any? { |i| i > 2 }
=> false

In our case, we’re checking if it’s true that the Array value returned from
the OPTIONS Hash includes the first argument to the understand_args? method
for any of the keys of the OPTIONS Hash. As you can see, Hashes have a method
called keys that returns all of their keys as a single Array. If our any? test returns
true, that means that SimpleCLI knows how to react to the argument it received.
The nice thing about this setup is that to make SimpleCLI understand more
options, we just add more data to the OPTIONS Hash. The understand_args?
method never has to change, only its input does. Programmers call this
data-driven programming, and generally think highly of the practice.

That’s our command-line parsing example. Let’s run this using the
options shown. Just like in irb, I’ll show the output.

Running the Script

$./uses_cli.rb -r
I am resetting myself.
$./uses_cli.rb -v
Some Project version 0.01 (Pre-Alpha)
$./uses_cli.rb -h

This program understands the following options:
 -v, --version : displays the current version of the program
 -h, --help : displays a message with usage instructions
 -r, --reset : resets the program

With no command-line options, the program performs its default behavior.

Programme r Ut i l i t ie s 45

$./uses_cli.rb
I am performing my default behavior
$./uses_cli.rb --reset
I am resetting myself.
$./uses_cli.rb --version
Some Project version 0.01 (Pre-Alpha)
$./uses_cli.rb --help

This program understands the following options:
 -v, --version : displays the current version of the program
 -h, --help : displays a message with usage instructions
 -r, --reset : resets the program

With no command-line options, the program performs its default behavior.

Hacking the Script

I mentioned Ruby1.8, which provides the any? method. One of the machines I
used while writing this book only has Ruby1.6. I’ve included some alternative
code inside a modified RDoc section at � to show just how convenient it is to
have any? available to us. As you can see, RDoc can be useful for things other
than final comments.

#8 Palindromes (palindrome.rb and palindrome2.rb)

I’m rounding out this chapter with a few shorter examples pertaining to
palindromes, which are bits of text that are the same when reversed as they
are when read normally. Usually, we allow cheating to ignore spaces, cap-
italization differences, and punctuation, so A man, a plan, a canal, Panama
qualifies as a palindrome under those conditions. While working on this book,
I was reading another programming book that contained a discussion about
palindromes. “Great!” I thought. “I’ll add a palindrome? predicate method to
all Strings. It’ll be a nice simple bit to have in the chapter in which I talk about
text.” So I started thinking about breaking Strings into individual characters,
writing a method that would compare characters an equal distance from each
end of the String, and all the other things you’d need to do in some other
languages. Then I realized how easy it is to implement this method in Ruby.

The Code

class String

 def palindrome?()
The reverse
Method

 (self == self.reverse)
 end

end

46 Chapter 3

How It Works

That’s it. Such an easy solution was staring me in the face the whole time.
Strings can reverse themselves, and the definition of a palindromic String
is that it is the same as itself reversed. This is when I realized that this example
belongs in this chapter, because of the incredible relative ease of this task
and what it implies about programmers being able to roll their own
libraries.

Easy as it was to do, this version of a palindrome isn’t entirely satisfactory.
For one thing, it doesn’t work for our example sentence. We need a version
of the palindrome? predicate that is a bit more complex. Here it is. I’m placing
the “Hacking the Script” subsection earlier in this section because I use it to
demonstrate some ideas in the “Running the Script” and “Results” subsections,
as I hope will become clear.

Hacking the Script

The file palindrome2.rb is a bit more complex, as you’ll see. But given what it
does, it’s still pretty simple in Ruby, compared to some other languages.

#!/usr/bin/env ruby
palindrome2.rb

=begin rdoc
Gives every String the ability to identify whether it is a
a palindrome. This version ignores all non-alphabetic characters,
making it suitable for longer text items.
=end

class String

� DUAL_CASE_ALPHABET = ('a'..'z').to_a + ('A'..'Z').to_a

=begin rdoc
Contrast this with some other languages, involving iterating through each
string index and comparing with the same index from the opposite end.
Takes 1 optional Boolean, which indicates whether case matters.
Assumed to be true.
=end

� def palindrome?(case_matters=true)
 letters_only(case_matters) == letters_only(case_matters).reverse
 end

 private

=begin rdoc
Takes 1 optional Boolean, which indicates whether case matters.
Assumed to be false.

Programme r Ut i l i t ie s 47

=end
� def letters_only(case_matters=false)

The find_all
Method

 just_letters = split('').find_all do |char|
 DUAL_CASE_ALPHABET.include?(char)
 end.join('')
 return just_letters if (case_matters)
 return just_letters.downcase
 end

end

This file has the shebang telling us that it should be run in Ruby, even
though it is a library file, rather than a file that will be directly executed. Why
is that? The main reason is that it would otherwise start with RDoc, which we
wouldn’t want bash to try to interpret. With the shebang, this will automatically
be run by Ruby if it is accidentally executed at the command line. If you’re
extra paranoid, you could add the first line to palindrome.rb, as well.

NOTE Shebang is the standard Unix geek pronunciation of #!, which one often finds at the
beginning of scripts.

In this program, we want to be able to test palindromes such that we ignore
all non-letters and also have the ability to ignore case if we choose to. This is
easy enough to do. Our new String has a private method called letters_only
that does what you expect it to: It compiles a new String consisting only of those
characters that pass DUAL_CASE_ALPHABET.include?, where DUAL_CASE_ALPHABET (�)
is an Array of all letters, both upper- and lowercase. If it receives a case_matters
argument that is true, it returns those letters as they are, otherwise it returns
an all-lowercase version of those letters, which we accomplish with the downcase
method. The split method breaks a String into chunks (each character, in this
case), and the join method sews them back together with a delimiter, which
in this case is the empty String.

The letters_only method at � is handy enough that in our palindrome?
predicate (�), all we need to do is compare its output to the reverse of its out-
put, and we have our more flexible palindrome detector. Let’s see it in action.

Running the Script

I have written a test program called test_palidrome.rb that I keep in a separate
directory called tests/. Here is the file, followed by a bash session in which
I run it.

#!/usr/bin/env ruby
test_palindrome.rb
puts "Band\tPal?\tpal?"
bands = %w[abba Abba asia Asia]
bands.each do |band|
 puts "#{band}\t#{band.palindrome?}\t#{band.palindrome?(false)}"
end

48 Chapter 3

The Results

$ ruby -r palindrome2.rb tests/test_palindrome.rb
Band Pal? pal?
abba true true
Abba false true
asia false false
Asia false false

I started thinking about musical groups that both start and end with the
letter A. I didn’t get very far—but far enough to demonstrate the program,
anyway. Note that we require palindrome2.rb at the command line, rather than
with an explicit require keyword inside test_palindrome.rb. We can also do
testing in irb, of course.

$ irb -r palindrome2.rb
irb(main):001:0> 'Ika Yaki'.palindrome?
=> false
irb(main):002:0> 'Ika Yaki'.palindrome?(false)
=> true
irb(main):003:0> 'ika yaki'.palindrome?
=> true

We see that Japanese grilled squid (Ika Yaki) is either properly recognized
as a palindrome or not, depending on the parameters we tell the palindrome?
predicate to use. These String-related operations should get us properly
prepped for the next chapter, which deals with text manipulation in
greater detail. Before, that, however, we should review what was new in
this chapter.

NOTE If you try ruby -r palindrome.rb tests/test_palindrome.rb, the test script will fail.
Can you figure out why? The reason has to do with arguments.

Programme r Ut i l i t ie s 49

Chapter Recap

What was new in this chapter?

� Making new predicates for explicit Boolean casting
� Method aliases
� Superclasses
� Metaprogramming
� The Symbol class
� Arrays and the join method
� The protected level of access control
� The dup and pop methods
� Making command-line interface flags
� Library files for reusable code
� Class constants
� The Hash class
� Hash keys and values
� The here doc declaration
� Newline characters within Strings
� Using Array.include? to test for membership
� The any? predicate
� The Hash.keys method
� A bit on Ruby1.8 vs. Ruby1.6 and the any? predicate
� Palindromes and reversing Strings
� Extracting the letters from Strings
� Changing the case of Strings

That’s even more than the last chapter, which was hardly holding your
hand. Congratulations again. Let’s move on to some more complex treat-
ment of Strings in the next chapter.

4
T E X T M A N I P U L A T I O N

Text is the basic format for storing config-
uration data, web content, email, as well

as data written in XML (eXtensible Markup
Language) and YAML (YAML Ain’t Markup

Language) which we’ll be looking at in greater detail
later. It’s important for a programming language to deal with text easily
and efficiently. Luckily, Ruby meets this requirement. This chapter includes
several scripts that demonstrate Ruby’s approach to some common text-
oriented problems.

#9 End-of-Line Conversion (dos2unix.rb)

If you’ve never had to deal with end-of-line (EOL) differences among
operating systems, consider yourself fortunate. Microsoft, Apple, and the
various Unix-like operating systems (such as the BSDs and GNU/Linux
systems) all disagree about how a text file should show the end of a line. This is
further complicated by Apple’s transition to a Unix-like operating system
with Mac OS X, which is very similar to FreeBSD. Unix-like systems mark the

52 Chapter 4

end of a line with the line feed character (also called newline); in interfaces
that predate the cathode-ray tube (CRT), this character indicated that the
paper should move up a line so that there would be more blank paper on
which to print. On the other hand, older Macintosh systems (pre–Mac OS X)
indicated the end of a line with the carriage return character, which indicated
that the printer should move back to the left side to start printing again (this
assumes you are using a language that is written left to right, like English).
Windows (and DOS) systems, on the third hand, mark the end of a line with
a carriage return followed by a line feed.

NOTE Some Internet protocols also use the Windows EOL convention, despite often being
hosted on Unix-like machines. Go figure.

Why the difference? One could argue that the Windows approach makes
the most sense—if we’re modeling the physical action of something like a
typewriter, then both a carriage return and a line feed would be needed.
However, the Unix-like and Macintosh approaches have the benefit of only
using one character. This is an important savings, given how often newlines
appear in text documents, and it was even more important in the early days
of computers when both RAM and storage were much more limited and
expensive than they are now.1

Today, most text editors and similar programs can deal with these differ-
ences without too much difficulty, so the end-of-line compatibility problem is
generally no more than a nuisance. But why put up with a nuisance when you
don’t have to? We can write a Ruby program that converts DOS or old-style
Mac EOLs to Unix EOLs for us.

The Code

#!/usr/bin/env ruby
dos2unix.rb
converts line feeds from DOS (or old-style Mac) to Unix format

� ARGV.each do |filename|
 contents_file = File.open(filename, 'r')

� contents = contents_file.read()
 contents_file.close()

Regular � contents.gsub!(/\r\n?/, "\n")
Expressions replace_file = File.new(filename, 'w+')

� replace_file.puts(contents)
 replace_file.close()
end

How It Works

My pro-Unix biases are clear from both the name and purpose of this program.
Let’s see what it does. At �, we start looping through the arguments to the
script, calling each filename in turn. We open and close that argument

1 This is also the reason many Unix commands are so short: rm for remove, cp for copy, and so on.

Text Manipulat ion 53

(currently called filename) as we’ve done before, reading its contents into the
creatively named variable contents. We do some magic with gsub! at �, and
then write contents into a new file (�) called replace_file. What’s the magic
at �? Let’s look at it again.

contents.gsub!(/\r\n?/, "\n")

We’re calling a method called gsub! on our contents String. We know that
gsub! (which stands for global substitution) is a destructive method because of
its exclamation-mark ending, and it looks like it takes two arguments. The
first argument is enclosed in regular slashes, and the second argument is a
newline String. The first argument is a regular expression, which is a special kind
of variable that can describe the contents of a piece of text without knowing
everything about it. Regular expressions (regexes for short) allow you to test
for conditions like Does this text consist entirely of digits?, which you could imagine
might be useful before using the to_i method of a String. Regexes also allow
tests like Are there exactly seven words in the text? or Do all words in this text start
with a capital letter?, as well as many others.

Regexes accomplish tasks by defining descriptors for characters as well as
groupings and the number of occurrences of those characters. As you can
see in the code, regexes are delineated with slashes. This practice of using
slashes is not specific to Ruby; it is common in other languages as well. The
question mark in the regex does not mean a literal question mark appearing
in the text; instead, it means that whatever preceded it is optional, occurring
zero or more times. Let’s try out some regexes in irb. We’ll use a new oper-
ator called =~, which is similar to ==. Instead of testing for exact equality,
though, it tests whether or not the regular expression matches any part of the
String we call it on. It returns the first point at which a match occurs if the
question the regex represents (i.e., Does this text consist entirely of digits?) is true
for that String; it returns nil if there is no match.

irb(main):001:0> letters = 'abcde'
=> "abcde"
irb(main):002:0> letters =~ /a/
=> 0
irb(main):003:0> letters =~ /b/
=> 1
irb(main):004:0> letters =~ /e/
=> 4
irb(main):005:0> letters =~ /x/
=> nil

We have our String, letters, which is just the first five letters of the alpha-
bet. We then test whether the letter a appears anywhere in letters. It does,
right at the beginning, so our test returns zero. Why? Because that is the
index within the String where the first match occurs—remember that we
start counting with zero, not one. Since the next letter is b, when we test for the
presence of b within letters, we should get a result that is one higher than the
value when we tested for a. We do. Jumping ahead to the letter e, we have a
match at the last index, which is the fifth letter and has the index of four,

54 Chapter 4

again because we start counting with zero. When we test for a letter that does
not appear in letters, we get the return value nil.

That’s simple matching. Now let’s use that question mark.

irb(main):006:0> letters =~ /aa?/
=> 0
irb(main):007:0> letters =~ /ax?/
=> 0

At first, line six seems similar to line two. Line seven is more interesting,
in that the optional second letter is a new letter that does not appear in letters
at all. In both cases, the second letter precedes a question mark, which makes
it optional. On line six, we are asking if our String (consisting of the first five
letters) has an a followed by zero or more as. It does, starting at index zero,
so that is our return value. We then ask if our String has an a followed by zero
or more xs. It does, starting at index zero. Let’s continue.

irb(main):008:0> letters =~ /ab?/
=> 0
irb(main):009:0> letters =~ /bc?/
=> 1
irb(main):010:0> letters =~ /b?/
=> 0

Line eight asks if letters has an a followed by any optional bs, which it
does at index zero. Line nine asks if letters has a b followed by any optional
c s, which is does at index one. Line ten asks if letters has any optional bs,
which it does at index zero. The lesson is clear—matching optional charac-
ters is very enthusiastic, and the complete absence of a character matches
zero or more occurrences of any character. Be very careful with your use of the
question mark, especially as a regex argument used by a destructive method.
Here’s another demonstration of a match for zero occurrences of a character:

irb(main):011:0> letters =~ //
=> 0

There’s nothing at the beginning of letters. Matching on nothing is
conceptually odd, but it can be very useful when you want to break a String
into an Array of each of its characters. You may recall we used the split
method matching the empty string in our script palindrome2.rb (Chapter 3)
to deal with each letter in the String in turn.

Now we’ve done our matching. I said earlier that gsub stands for global
substitution, so let’s do some substituting, again in irb.

The gsub
Method

irb(main):012:0> letters.gsub(/a/, 'x')
=> "xbcde"
irb(main):013:0> letters.gsub(/ab?/, 'x')
=> "xcde"
irb(main):014:0> letters.gsub(/ac?/, 'x')
=> "xbcde"

Text Manipulat ion 55

You can see that gsub finds the portion of the String that matches the first
argument and returns a result in which the first argument is replaced by the
second argument. Now let’s review the differences between destructive and
non-destructive methods, as they relate to these substitutions.

irb(main):015:0> letters
=> "abcde"
irb(main):016:0> letters.gsub!(/ac?/, 'x')
=> "xbcde"
irb(main):017:0> letters
=> "xbcde"

The non-destructive version leaves the original letters alone, as you’d
expect, while the destructive version makes permanent changes to letters.
The gsub! method also returns nil if it is unable to comply, as shown in irb:

 irb(main):001:0> foo = 'abcd'
=> "abcd"
irb(main):002:0> foo.gsub(/a/, 'b')
=> "bbcd"
irb(main):003:0> foo.gsub!(/a/, 'b')
=> "bbcd"
irb(main):004:0> foo.gsub(/a/, 'b')
=> "bbcd"
irb(main):005:0> foo.gsub!(/a/, 'b')
=> nil

This interlude barely scratches the surface of regular expressions—
they’re tremendously useful. I’ll certainly explain the specific regexes used in
the scripts in this book, but there’s a lot more to learn about them. If you
want to explore regular expressions further, an excellent resource is Jeffrey
Friedl’s Mastering Regular Expressions (O’Reilly, 2006) and its companion web-
site, http://regex.info. This is the definitive text on the subject of regular
expressions. It has a slight Perl bias, although its respect for Ruby seems to
increase with every new edition. Since the implementation of regular expres-
sions in many languages (including Ruby) is inspired by Perl, the Perl-specific
content is easily transferable to Ruby, largely because the two languages’
treatment of regular expressions is so similar in the first place.

How does all this relate to our script, dos2unix.rb? The \r String stands
for the carriage return character—the one used on older Macintosh systems
to indicate a line break. The \n String is the newline character, which is used
on Unix-like systems and after a carriage return on Windows systems to indi-
cate a line break. This substitution finds all occurrences of a carriage return,
as well as any optional newlines that follow it, and replaces them with a single
newline.

Running the Script

Execute this as ruby -w dos2unix.rb file_to_modify.

56 Chapter 4

The Results

When I look at my sample file extras/DOS_file.txt in my text editor of choice
(vim), it looks like this:

I am a DOS file.^MI am a DOS file.

The ^M is how vim displays a \r character on my system. After running the
script with ruby -w dos2unix.rb extras/DOS_file.txt, the results are

I am a DOS file.
I am a DOS file.

Hacking the Script

What if you want to convert to one of the other line break formats? To convert
a file to Windows EOL format, you can replace the line at � in dos2unix.rb
with the following line, which essentially means Replace all occurrences of either
a carriage return or a newline with a carriage return followed by a new line.

contents.gsub!(/(\r|\n)/, "\r\n")

For a nostalgic Mac that wants to go back to its pre–OS X line breaks, you
can convert to the old Apple format by replacing the line at � with this line;
this will replace all optional carriage returns followed by a mandatory new-
line with just a carriage return.

contents.gsub!(/\r?\n/, "\r")

The parentheses in a regex are similar to the parentheses in Ruby—they
indicate a grouping that should be considered a single entity. The pipe char-
acter (also called the vertical bar) in a regex indicates a choice between what
is on either side of it.

NOTE Subexpressions that are grouped together by parentheses within a regular expression
are also captured into specific variables, depending on the programming language’s
implementation of regular expressions. You can read more in Friedl’s book if this topic
interests you.

You can also accomplish a DOS-to-Unix EOL conversion with a one-liner:

ruby -pi -e 'gsub(/\r\n?/, "\n")' some_file

Sometimes a quick-and-dirty solution is all you need. If you’re curious
about the implementation of this one-liner, you can consult the Ruby man
page (man ruby) for more about the -p flag (which provides a shortcut for
dealing with the lines of a file), the -i flag (which specifies in-place editing of
a file), and the -e flag (which specifies that a command should be executed).

Text Manipulat ion 57

#10 Showing Line Numbers (line_num.rb)

Another useful trick when dealing with text files is the ability to automatically
add line numbers to them. Here’s a script that does just that.

The Code

#!/usr/bin/env ruby
line_num.rb

� def get_lines(filename)
 return File.open(filename, 'r').readlines
end

� def get_format(lines)
sprintf
Formats

 return "%0#{lines.size.to_s.size}d"
end

� def get_output(lines)
 format = get_format(lines)

The � output = ''
each_with_index � lines.each_with_index do |line,i|
and sprintf � output += "#{sprintf(format, i+1)}: #{line}"
Methods end

 return output
end

print get_output(get_lines(ARGV[0]))

How It Works

The get_lines method (�) should look familiar at this point, since we’ve
covered some very similar methods earlier in the book. This method returns
an Array of lines based on the contents of an input filename. The get_format
method (�), on the other hand, behaves a bit differently. It returns a single
String with the form "%0xd", where x is the number of characters taken up by
the String representation of the number of members of the lines Array. Let’s
explore the methods a bit in irb:

irb(main):001:0> def get_format(lines)
irb(main):002:1> return "%0#{lines.size.to_s.size}d"
irb(main):003:1> end
=> nil
irb(main):004:0> has10items = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):005:0> get_format(has10items)
=> "%02d"

Multiplying
Arrays

irb(main):006:0> has100items = has10items * 10
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6,

58 Chapter 4

7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):007:0> get_format(has100items)
=> "%03d"

You can see that the numeral part of the format changes; it is always
equal to the digits taken up by the size of the Array. Incidentally, you can also
see how the Array class implements multiplication. One way would have been
to multiply each member of the Array by the operand outside of the Array,
but that would only work when each member of the Array knows how to be
multiplied by something. Instead, the Array just duplicates itself as many times
as the value of the operand. If you multiply an Array by one, you should get
an equivalent Array.

irb(main):008:0> has10items * 1
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):009:0> (has10items * 1) == has10items
=> true

We see that we do.
The get_output method (�) starts by establishing the necessary format

and setting a variable called output to the empty String. You can guess that
we’ll be concatenating other Strings onto it.

We do that at � with a new Array method called each_with_index. This
method is very similar to the each method that we’ve already seen, except that
it also gives us the appropriate index number. We’ll call the given element of
lines by the name line, and we’ll refer to the index number as the letter i.
We then use a new method called sprintf that formats data into Strings (�).
It takes two arguments: the first is the format to use, and the second is the
data to be formatted. We want to format the index number i using the out-
put of the get_format method.2 The purpose of this operation is to calculate
the number of digits needed for the maximum line number we’ll be display-
ing (the width), and format each line number according to that width. This
formatting ensures a prettier output.

Each line of our output consists of sprintf’s output, a colon, a space,
and the original line. All of this happens with the first argument on the
command line.

Running the Script

You can run with ruby -w line_num.rb some_file, replacing some_file with the
file to which you want to add line numbers.

The Results

$ ruby -w line_num.rb line_num.rb
01: #!/usr/bin/env ruby
02: # line_num.rb

2 Actually, we format the value of i + 1; we want to call the first line number one, but the index
value is zero, because computers start counting with zero.

Text Manipulat ion 59

03:
04: def get_lines(filename)
05: return File.open(filename, 'r').readlines
06: end
07:
08: def get_format(lines)
09: return "%0#{lines.size.to_s.size}d"
10: end
11:
12: def get_output(lines)
13: format = get_format(lines)
14: output = ''
15: lines.each_with_index do |line,i|
16: output += "#{sprintf(format, i+1)}: #{line}"
17: end
18: return output
19: end
20:
21: print get_output(get_lines(ARGV[0]))

If your text file has one 100 or more lines, the pre-colon portion of this
output will automatically add as many characters as needed to accommodate
its new requirements. That’s all there is to it.

#11 Wrapping Lines of Text (softwrap.rb)

Sometimes you may have a text file that you want to perform whitespace
compression on, such as converting all repeated spaces into a single space.
The script below assumes that all double line breaks should be preserved
and that all single line breaks should be converted into spaces. Each group
of repeated spaces should also be converted into a single space. Let’s dive
right in.

The Code

#!/usr/bin/env ruby
softwrap.rb

=begin rdoc
"Softwrap" a filename argument, preserving "\n\n"
between paragraphs but compressing "\n" and other
whitespace within each paragraph into a single space.
=end

� def softwrap(filename)
The inject � File.open(filename, 'r').readlines.inject('') do |output,line|
Method � output += softwrap_line(line)

� end.gsub(/\t+/, ' ').gsub(/ +/, ' ')
end # softwrap

60 Chapter 4

=begin rdoc
Return "\n\n" if the String argument has no length after being
chomped (signifying that it was a blank line separating paragraphs),
otherwise return the chomped line with a trailing space for padding.
=end

� def softwrap_line(line)
� return "\n\n" if line == "\n"
� return line.chomp + ' '

end # softwrap_line

� puts softwrap(ARGV[0])

 We define a softwrap method (�) that takes a filename argument and
then call softwrap on the first command-line argument to the script. The
script then calls the readlines method upon the opening of a file, as we’ve
done many times already. Usually, as in the previous script, we would assign
that result into an Array of lines. This time, we call a new method called
inject that you can see takes an argument (the empty String, in our example)
and a block; we define two variables within the block in the process (�).

In our example, we’re calling those two variables output and line. The
name line is familiar enough. The name output is apt, as the inject method
assumes that the first block-level variable should start with the value of the
argument to inject that preceded the block—the empty String, in this case.
The inject method is remarkable in that modifications of the output variable
persist from each iteration to the next. At � we append softwrap_line(line)
onto output each time through the iterations within inject, and the appends
are remembered each time. The inject method is very useful for any sort of
appending or successive operations. Let’s look at how it operates on some
numbers in irb.

irb(main):001:0> nums = [1, 2, 3, 4]
=> [1, 2, 3, 4]
irb(main):002:0> nums.inject(0) { |sum,number| sum += number }
=> 10
irb(main):003:0> nums.inject(0) { |product,number| product *= number }
=> 0
irb(main):004:0> nums.inject(1) { |product,number| product *= number }
=> 24

On line one we define a variable that holds the digits from one to four.
One operation that inject seems well suited for is adding a list of numbers;
we do that on line two. The inject method can handle any operation, though,
so let’s try multiplication on line three. When we do this, we get a result of
zero. The reason is that our initial value for product is zero, so any multipli-
cation after that will get us nowhere. On line four, we set the initial value to
one, which is more appropriate for multiplication, and we get a result that
makes sense.

The inject method is your first real taste of functional programming, a style
of programming in which operations are treated as mathematical functions
and side effects are minimized. We’ll see much more of inject and similar

Text Manipulat ion 61

methods in later chapters. For now, all we need to concern ourselves with is
the fact that it collects each line, passes line through the softwrap_line
function, and then appends the result onto output.

NOTE Remember that side effects are persistent changes made to something (anything) apart
from the value returned. In Ruby, methods that have side effects generally end with an
exclamation mark, as we’ve seen already. Methods with no side effects return some
value that you requested, but leave the object on which the method was called in the
same state it was in before you called the method.

What does softwrap_line do? The name suggests that it performs the soft-
wrapping operation (however we are about to define it) on one line at a time.

The method definition starts at �, where it takes in a line. At �, we
return right away if our new line variable is only a carriage return, since this
would indicate a real break that we want to preserve. In all other cases, we
return the chomped line plus a space character (�), which is how this script
implements the actual wrapping. We do this softwrap_line operation on every
line, appending it onto the inject’s output variable at � as described earlier.
Our block for inject is of the do/end variety, rather than one that uses the
brace characters.

We see something new at �—a method called on the keyword end.3
There’s no reason we shouldn’t see this, though. Everything in Ruby is a
object, and the the result of our inject method is whatever has accumulated
into its output variable. In our script, it’s a String, so the value of our inject
block can respond to any String methods, such as gsub.

The first gsub at � searches for any grouping of tab characters (repre-
sented within the regular expression as "\t") and replaces the set of them
with a space. The plus sign within the regular expression is similar to the
question mark we’ve seen before, except that instead of meaning Zero or more
of the preceding thing it means One or more of the preceding thing. This regular expres-
sion replaces one tab with one space, three tabs with one space, and so on.
Let’s try something similar in irb. I’ll use letters rather than tabs in the irb
example because they’ll be easy to read in a printed book. The question mark
was just for a review and to show the difference between it and the plus sign
within a regular expression.

The + sign
in Regular
Expressions

irb(main):001:0> s = 'abcde'
=> "abcde"
irb(main):002:0> s.gsub(/ab+/, 'ba')
=> "bacde"
irb(main):003:0> s.gsub(/abb+/, 'ba')
=> "abcde"
irb(main):004:0> s.gsub(/abb?/, 'ba')
=> "bacde"

So we replace tabs (if there are any) with a space. The output of the first
gsub is also a String, so it can respond to any String methods, such as another
gsub. This time we want to replace any occurrences of one or more spaces

3 More precisely, the method is being called on the result of the code concluded by end.

62 Chapter 4

with a single space—basically just compressing the whitespace. The last line
of the script at � shows that we do all of this on the first filename argument to
the script.

Running the Script

This script is run with ruby -w softwrap.rb some_file, where some_file is the file
whose whitespace will be compressed. Note that this script does not modify the
original file, but rather outputs the changed version, just like a non-destructive
method in Ruby.

The Results

Here’s the result of calling this script on itself:

$ ruby -w softwrap.rb softwrap.rb
#!/usr/bin/env ruby # softwrap.rb

=begin rdoc "Softwrap" a filename argument, preserving "\n\n" between
paragraphs but compressing "\n" and other whitespace within each paragraph
into a single space. =end def softwrap(filename) File.open(filename,
'r').readlines.inject('') do |output,line| output += softwrap_line(line)
end.gsub(/\t+/, ' ').gsub(/ +/, ' ') end # softwrap

=begin rdoc Return "\n\n" if the String argument has no length after
being chomped (signifying that it was a blank line separating paragraphs),
otherwise return the chomped line with a trailing space for padding. =end def
softwrap_line(line) return "\n\n" if line == "\n" return line.chomp + ' ' end
softwrap_line

puts softwrap(ARGV[0])

Hacking the Script
The successive gsub calls on line � could have been expressed with a more
complex regular expression instead: gsub(/(\t|)+/, ' ').

#12 Counting Words in a File (word_count.rb)

It’s often handy to know the number of words in a file. Word count is a
standard feature in word-processing programs, but if you’re not using a word
processor, obtaining a word count might not be so easy. I originally wrote
this script when I was working on a project using an XML-based document
production system called DocBook (http://www.docbook.org) and wanted to
have a word count that roughly corresponded to those you could get from a
word processor. The Unix command wc counts words, but the numbers it
reported didn’t necessarily match what a word processor might report; the
main reason probably had to do with issues like whether words with fewer
than a certain number of letters should count as a “word” in the word
processor’s counter. I knew the approximate ratio of the word processor’s

Text Manipulat ion 63

word count versus the output of wc (I call this the fudge factor), and I could
certainly do the math, but I wanted something that would do all of this for
me automatically. Let’s take a look.

The Code

#!/usr/bin/env ruby
word_count.rb

class String

� def num_matches(thing_to_match)
 return self.split(thing_to_match).size - 1
 end # num_matches

end # String

� BAR_LENGTH = 20

to match these calculations with the output of some word processors
� FUDGE_FACTOR = 0.82

� def word_count(files)
 output = ''
 total_word_count = 0

� files.each do |filename|
 file_word_count = word_count_for_file(filename)
 output += "#{filename} has #{file_word_count} words.\n"
 total_word_count += file_word_count
 end # each file

� return output +
Multiplying
Strings

 '-' * BAR_LENGTH + "\n" +
 "Total word count = #{total_word_count}" +
 " (#{(total_word_count * FUDGE_FACTOR)})"
end # word_count

� def word_count_for_file(filename)
 f = File.new(filename, 'r')
 contents = f.read()
 f.close()
 spaces = contents.num_matches(' ')
 breaks = contents.num_matches("\n")
 false_doubles = contents.num_matches(" \n")
 double_spaces = contents.num_matches(' ')
 hyphens = contents.num_matches('-')
 false_doubles += double_spaces + hyphens
 words = spaces + breaks - false_doubles + 1
 return words
end # word_count_for_file

puts word_count(ARGV)

64 Chapter 4

How It Works
We start out by adding a new method called num_matches to the String class
(�). It simply returns the number of times the argument appears within the
calling String. I also define top-level constants called BAR_LENGTH (�), which is
just for visual formatting, and FUDGE_FACTOR (�), which I already noted is the
ratio between the two different word-counting programs I was working with.

We then define the word_count method (�), which takes the files argu-
ment. You’ll notice on the last line of the script that this program takes an
arbitrary number of filenames as its argument, which is different from our
earlier scripts that would only deal with a single file at a time. The word_count
method defines local variables called output and total_word_count, setting
them to useful defaults for a String and an Integer, respectively. We then
loop through the files (�), assigning the proper values into file_word_count
and output and accumulating each file_word_count into the total_word_count.
The output variable now has a description of each file’s count. We return
that, followed by a line consisting of the hyphen character multiplied by the
BAR_LENGTH constant (�). Multiplication of Strings is very similar to multipli-
cation of Arrays, which we’ve already seen. We add a String consisting of
20 hyphen characters to the overall expression returned. The returned
expression closes with the total multiplied by the FUDGE_FACTOR constant in
parentheses.

Before finishing with this script, we need to understand how it calculates the
word count for each file. Let’s examine the word_count_for_file function (�).
It opens by getting the contents out of the file being worked on. It then uses
some quick-and-dirty calls to the num_matches method on the contents variable
to get counts for spaces, line breaks, and so on. It then calculates the number
of words in the contents String using those rough numbers.

There are more accurate ways to count words in a String, many of which
use techniques described in Jeffrey Friedl’s Mastering Regular Expressions. How-
ever, this script is intended for quick, approximate results, given that it uses a
fudge factor. This script shows that just adding one new method to an existing
class can be very handy even for a short, back-of-the-envelope task. We’ll see
more of that in later scripts, as well.

Running the Script
You can run this script with ruby -w word_count.rb some_file, where some_file is
the file whose word count you want to compute.

The Results
Here is the result of calling this file on itself:

$ ruby -w word_count.rb word_count.rb
word_count.rb has 132 words.

Total word count = 132 (108.24)

Notice how the script reports both the literal and fudged word counts.

Text Manipulat ion 65

#13 Word Histogram (most_common_words.rb)

And now for something that most word processors don’t do: finding the
most commonly used words in a document. Like the previous script, it adds
an additional “helper” method to an existing built-in class to simplify the job
for our new main method. Let’s take a look.

The Code

#!/usr/bin/env ruby
#most_common_words.rb

class Array

� def count_of(item)
The grep � grep(item).size
Method � #inject(0) { |count,each_item| item == each_item ? count+1 : count }

 end

end

� def most_common_words(input, limit=25)
 freq = Hash.new()
 sample = input.downcase.split(/\W/)
 sample.uniq.each do |word|

� freq[word] = sample.count_of(word) unless word == ''
 end

� words = freq.keys.sort_by do |word|
 freq[word]

The map end.reverse.map do |word|
Method � "#{word} #{freq[word]}"

 end
� return words[0, limit]

 end

� puts most_common_words(readlines.to_s).join("\n")

How It Works
The new method of Array is called count_of (�); it takes an argument called
item and returns the number of times that item is found within the Array in
question. The default implementation of this method (�) uses an Array
method called grep, which takes an argument and returns all elements that
match that element. Since we want the count of items matching the con-
dition (and not those items themselves), we call the size method on the
return value of grep.

The line at � shows a way to accomplish the same task using the inject
method, which we’ve already covered.

At � we define the most_common_words method; it takes a mandatory input
argument and an optional limit argument, which defaults to 25. We define a
new Hash variable called freq, which will store the frequency of each word.

66 Chapter 4

We define an Array called sample, which consists of a case-insensitive input,
broken at each whitespace portion (the \W in the regular expression means
any whitespace). We loop through each unique word in the sample, adding its
frequency to the freq Hash. I chose to skip the empty string, not counting it
as a word (�).

Once we’ve constructed the freq Hash, we want to use our limit argument.
We loop through the keys of freq (which are the actual words themselves)
and sort them by their frequency of appearance (�). We want to see the
most common words, rather than the least common words, so we reverse that
sorted list, and map an operation onto it.

The map operation is very common in the world of functional program-
ming. It’s often used as an alternative to looping, so in Ruby, we’ll often find
that we want to use either the each method or the map method for a given task,
depending on our needs. Generally, if you want to make destructive changes
to a list of items, use each; if you want to make a new list of transformed items,
use map. Let’s try map in irb. I’ve been showing you lots of irb examples with
digits, so now I’ll show you a quick way to create an Array of them. Ruby has a
class called Range, which indicates the items from a given starting point to a
given endpoint. We’ll use that class to construct an Array.

Ranges irb(main):001:0> digit_range = 0..9
=> 0..9
irb(main):002:0> digit_range.class
=> Range
irb(main):003:0> digits = digit_range.to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):004:0> digits.map { |num| num + 1 }
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
irb(main):005:0> digits.map { |num| num + 10 }
=> [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
irb(main):006:0> digits.map { |num| num * 2 }
=> [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
irb(main):007:0> digits.map { |num| num ** 2 }
=> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
irb(main):008:0> digits
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):009:0> digits.map! { |num| num ** 2 }
=> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
irb(main):010:0> digits
=> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

As you can see, map is very convenient for any sort of transformation of a
list of items that can be expressed with a simple description, such as double all
of these things on line six, or square all of these things on line seven. Remember
that map is non-destructive (as shown on line eight) unless you call it with the
exclamation mark (as shown on lines nine and ten). We’ll map an operation
onto the words, sorted in reverse order by frequency of appearance in our
sample text. The operation to be mapped (�) is the outputting of a String
consisting of the word itself followed by a space character, followed by the
frequency of that word.

Text Manipulat ion 67

All of this occurs within the assignment into the words variable on the
same line as �, so each member of the Array called words is a String that is
the result of the � operation. At �, we return a subsection of the words Array,
starting at the beginning, and limit it to a length equal to the limit argument.
Since the output of the most_common_words method is an Array and we want to
print it as a String, we do a join with a newline at �, making each Array item
a separate line.

Running the Script

We call this script with ruby most_common_words.rb filename_to_analyze, calling
readlines.to_s on the filename argument, which provides the input to analyze.
Let’s try it on itself.

The Results

$ ruby most_common_words.rb most_common_words.rb
word 9
end 6
freq 5
do 3
sample 3
most_common_words 3
count 3
item 3
0 2
count_of 2
words 2
input 2
def 2
limit 2
each_item 2
split 1
unless 1
1 1
downcase 1
map 1
rb 1
array 1
ruby 1
usr 1
each 1

Hacking the Script

Just as an aside, you could also implement count_of using this line:

dup.delete_if { |i| i != item }.size || 0

68 Chapter 4

#14 Rotating Characters in a String (rotate.rb)

We’ll close with a simple program that rotates the order of characters within a
String. We’ll accomplish this via a method that takes a character (meaning
a String of length one) argument. The String to be rotated will try to keep
rotating until the character argument appears at index 0. If the character is
not found at all, it will return nil.

The Code

#!/usr/bin/env ruby
rotate.rb

class String

� def rotate(char)
� return nil unless self.match(char)
� return self if (self[0] == char[0])
� chars = self.split(//)

Recursion return ([chars.pop] + chars).join('').rotate(char)
 end

� def rotate!(char)
 replace(rotate(char))
 end

end

How It Works

This program introduces a concept called recursion, which (like map) is used
frequently in functional programming, often as an alternative to looping. A
recursive operation is one that is partly defined in terms of itself. Let’s explore
the concept in our rotate.rb script.

The definition of the main rotate method that we add to the String object
is at �. I said earlier that if the character argument (called char) is not found
within the main String (here called self), the rotate method will return nil
(�). If char is the initial character within the String, we don’t need to do any
rotating, so it will return the main String under those conditions (�). The
numeral 0 within braces is not an anonymous Array—it’s a method of self
that returns the first character of a String. We call that method on both the
self String and the single-character String char. When those two Strings are
equal, we know that the self String starts with the requested rotation
character.

NOTE We use an index of zero within the braces to return the first character in the String on
line � because Ruby (like many languages) starts counting indexes at zero, not one.

We know that if we’ve gotten this far without returning, we have a String
that is eligible for rotation (because it contains char), and needs to be rotated

Text Manipulat ion 69

to match (because it doesn’t start with char). We perform the rotation by
defining a new variable called chars (�), which is an Array of each character
within the String. We use the pop method at � to remove the last character
from chars, remembering that pop is destructive (despite the lack of an
exclamation mark, for historical reasons). The chars Array now contains all
the characters except the one that was just popped off. If we add those Arrays
together, putting the Array containing the popped character first, we’ve just
created a new Array in which the last member has been moved from the end
to the front, shifting all other members back.

We wrap the popped character in brackets so that we can more easily
add the two Arrays (the popped off character and the remaining characters,
respectively). Since the rotate method will eventually return a String, we join
our Array elements with an empty String separator. This produces a String
that has been rotated once. Are we done? Not really.

Recursion

The rotation works well, but it might not be enough. What if we need to rotate
multiple characters before we find a match? There’s an easy way to do that;
it’s called the rotate method—you know, the method we’re still in the process
of defining. We can just call rotate on our newly created String.

We already know that our newly created String will pass the test at �.
We’re mainly interested in whether or not it needs further rotation. That’s
the test at �. If only one rotation was needed, this second call to the rotate
method will return the newly created String, and since the second call to
rotate was within a return call on the line at �, the main call to rotate will
return that value, as well.

If only one rotation was not enough to find a match, our second call to
the rotate method will do the same shifting of characters (starting at �) that
we just discussed, culminating in yet another call to rotate, this time on a String
that has been rotated two characters’ worth, and so on.

Each successive time rotate is called, the String to be operated on is one
step closer to our desired result. This is very common in recursion, which we
will be discussing in greater depth in later chapters. As you can see at �, we
also define a destructive version called rotate!.

Running the Script

Let’s look at some output using irb with irb -r rotate.rb.

The Results

$ irb -r rotate.rb
irb(main):001:0> 'I am a String.'.rotate('a')
=> "a String.I am "
irb(main):002:0> 'I am a String.'.rotate('S')
=> "String.I am a "

70 Chapter 4

In each case, the String on which rotate is called has its characters shifted
until the character asked for is the first character in the String. That’s it for
this chapter’s scripts.

Chapter Recap

What was new in this chapter?

� End-of-line differences among operating systems

� Regular expressions, including the ? counter

� The sprintf method

� Multiplication of Arrays

� The inject method

� Regular expressions with the + counter

� Objects as the results of blocks

� Calling successive methods on the output of methods (“chaining” methods)

� Using new methods of Open Classes in quick scripts

� Multiplication of Strings

� The grep method

� The map method

� The Range class

� Recursion

That’s quite a bit, including some important new functional concepts
like recursion and a few very handy functional methods. You’ll need these
concepts as we move on. Let’s proceed to some more complex treatment of
numbers in Chapter 5.

5
N U M B E R U T I L I T I E S

Numbers are fundamental for all com-
puters and programming languages, and

Ruby is no exception. In this chapter’s scripts,
we’ll deal with useful data that is primarily numeric

but is otherwise quite diverse. We’ll explore some pure
math, following up with recursion, which I introduced
in Chapter 4. We’ll also do some type conversion, whereby numbers will be
represented in different ways that are convenient for human users. We’ll also
do some unit conversion, specifically monetary units.1 While doing all of this,
we’ll also delve further into metaprogramming, Hashes, using external
libraries, and two distinct formats for data storage in external files: XML
(eXtensible Markup Language) and YAML (YAML Ain’t Markup Language).
That’s a lot of ground to cover, so let’s get started.

1 We’ll make a temperature converter in Chapter 7, since it depends on concepts we haven’t
covered yet.

72 Chapter 5

#15 Computing Powers (power_of.rb)

This is the most purely mathematical of this chapter’s scripts, and it deals
with exponentiation. Before we get too far into the script itself, let’s use irb
to explore how Ruby handles exponentiation:

Exponentiation irb(main):001:0> 2 ** 2
=> 4
irb(main):002:0> 2 ** 3
=> 8

As you can see, the way to express “to the power of” in Ruby is with the
double asterisk. Since both the number raised to some power and the power
itself are expressions, they can also be more complex, like this:

irb(main):003:0> 2 ** (1 + 2)
=> 8
irb(main):004:0> 8 ** (1.0/3.0)
=> 2.0

You can raise a number (called the base) to a given exponent easily with
the ** operator. As you can see in line four in the above code, when you want
to reverse a traditional exponentiation, you can use a reciprocal power.

NOTE We use floating-point numbers for the exponent in �, because we don’t want our
expression to be rounded down to zero.

If you have the base and the exponent, you can find the missing result.
If you have the result of the exponentiation and the exponent, you can undo
your operation to find the base by using the reciprocal of the exponent. What
if you know the base and the result, and want to find the exponent? That’s
what this script is for. Let’s take a look.

The Code

#!/usr/bin/env ruby
power_of.rb

class Integer

=begin rdoc
Add a simple Integer-only method that reports the
exponent to which the base must be raised to get self.
=end

Recursion � def power_of(base)
 # return nil for inapplicable situations

The is_a? return nil unless base.is_a?(Integer)
Method � return nil if (base.zero? and not [0,1].include?(self))

 # deal with odd but reasonable
 # numeric situations

Numbe r Ut i l i t ie s 73

� return 1 if base == self
� return 0 if self == 1
� return false if base == 1

The abs Method � return false if base.abs > self.abs

� exponent = (self/base).power_of(base)
� return exponent ? exponent + 1 : exponent

 end

end

How It Works

We want this operation to be a method that can be called on any Integer, so
we take advantage of Ruby’s open classes and simply add a new method. We
have the standard boilerplate and RDoc up to the method definition at �,
which shows that it takes an argument called base. The lines up to and includ-
ing � cause our power_of method to exit early under conditions that are not
appropriate for it to do its job. We return the nil value when asked to find a
power in relation to a base that isn’t even an Integer, because that question is
meaningless. We also return nil when the base is zero and the result is neither
zero nor one, because zero raised to any power will always be either zero or
one, making that question also meaningless.

There will certainly be other situations where our response is meaningful.
We return 1 at � if the base and the result of the exponentiation (self) are
the same value, because any number to the power of one will be itself. We
return 0 at � if self is one, because any number raised to the zero power will
equal one. This is confusing for many people. How can something multiplied
by itself zero times be anything?

The answer lies in what’s called the multiplicative identity, which is how
mathematicians describe the fact that any number times one equals one
times that number as well as that number itself. You can always assume with
any standard multiplication that there could be any number of “times one”
additions to your multiplication, and it won’t matter. We can also see this in irb:

irb(main):005:0> (42 * 1) == (1 * 42)
=> true
irb(main):006:0> (1 * 42) == (42 * 1)
=> true
irb(main):007:0> (42 * 1) == 42
=> true
irb(main):008:0> (1 * 42) == 42
=> true

Since you can always assume a “times one” for anything multiplied by
itself twice, or by itself once, you can similarly assume it for something
multiplied by itself zero times, which is all raising something to the zero
power means. Therefore, raising something to the zero power will result in
a value of one.

74 Chapter 5

At �, we return false if the base is one. This is because one can never be
raised to a power that will result in a value other than one. How do we know
that our result isn’t one? Because we would have already returned a zero at �
if self was one. At �, we also return false if the absolute value of the base
(acquired through calling base.abs) is greater than the absolute value of self.
We do this because you can’t raise a base to an Integer power and get a result
with a smaller absolute value than your original base.

Everything from � to � deals with the odd cases—either meaningless
situations or situations that let us know we’re finished, otherwise known as
exit conditions. What happens next? If a given number is a power of a given
base, it means that that number divided by the base is also a power of the base,
but the exponent will be one lower. Let’s demonstrate in irb.

irb(main):009:0> 3 ** 3
=> 27
irb(main):010:0> 3 ** 2
=> 9
irb(main):011:0> 27 == 9 * 3
=> true

Three to the third power is 27, three to the second power is nine, and 27
is equal to nine times three. If we’re trying to find an exponent and none of
our base cases apply, we can simply divide self by the base, try to get the power
of the new divided value relative to the same base, and remember to add one
to our new result if it turns out to be an Integer.

That’s exactly what we do at � and �. We define a new variable called
exponent, which is the result of calling the power_of method on self divided by
base. The exponent variable will either be nil, false, or an Integer. How do we
know this? Because we return either nil up to �, false at � or �, or an Integer.

All Integers have true Boolean values, so we can test with our standard
ternary operator, as we do at �. If exponent evaluates to true, it’s an Integer
(because both nil and false would evaluate to false in the Boolean ternary
operation). We therefore return it, remembering to add one, because we’ve
already divided by the base once. If exponent evaluates to false, we want to
simply return that value: either false or nil.

What happens in our new call to power_of on self divided by the base at �?
It goes through all the same tests from � to �, and if none of those apply, it
divides the new value of self by the base again, remembering to add yet
another one to the eventual result. All of this happens inside each iteration
of the power_of method—the first version of it up at the top level doesn’t need
to know or care about how many other iterations of power_of end up being
called. This is what recursion is all about.

Running the Script
You can try out this script in irb by requiring it at the command line with
irb -r power_of.rb or by entering require 'power_of.rb' once you’re in irb.
Remember that this script can only handle Integers, so 2.power_of(4) will
return false, rather than 0.5.

Numbe r Ut i l i t ie s 75

The Results

Here is a sample irb session with some output.

$ irb -r power_of.rb
irb(main):001:0> 1.power_of(1)
=> 1
irb(main):002:0> 1.power_of(2)
=> 0
irb(main):003:0> 4.power_of(2)
=> 2
irb(main):004:0> 2.power_of(4)
=> false

#16 Adding Commas to Numbers (commify.rb)

A standard way of formatting numbers is to present them with commas
(or some other delimiter) separating each group of thousands. Our next script
does that by adding a method called commify to all numbers. You might think
that we could do this by opening the Integer class and adding a new method
to it, as we did in power_of.rb. This is certainly a reasonable approach, except
that we may want to use commify on floating-point numbers as well. What’s the
solution?

Inheritance

The answer deals with an object-oriented concept called inheritance. We dis-
cussed this earlier in Chapter 3 when we added methods to the Object class.
Inheritance is what allows all other classes to use methods of the Object class,
because these other classes inherit from Object. Inheritance is a factor in our
commify script as well. Let’s examine the inheritance hierarchy of some number
classes in irb.

The ancestors
Method

irb(main):001:0> Integer.ancestors
=> [Integer, Precision, Numeric, Comparable, Object, Kernel]
irb(main):002:0> Float.ancestors
=> [Float, Precision, Numeric, Comparable, Object, Kernel]
irb(main):003:0>

We’ve used a method called ancestors that can be called not on an instance
of a class, but on the class itself. It returns an Array of all of the ancestors of
the class on which it is called (by ancestors I simply mean the classes from which
it inherits). You may find it useful to consider inheritance through a biological
metaphor, in which each class is a species and the ancestor classes are that
species’ ancestor species. We can see that both the Integer class and the Float
class inherit directly from something called Precision.

76 Chapter 5

Precision must be a class—some kind of number, right? Not exactly.
Let’s continue in irb.

irb(main):003:0> Integer.class
=> Class
irb(main):004:0> Float.class
=> Class
irb(main):005:0> Precision.class
=> Module

We see that Integer is a class, something that can be instantiated. So is
Float. That’s no surprise. 5 is an Integer, and 3.14 is a Float. But Precision is
something called a Module, not a Class at all. What are Modules for?

Modules
Let’s continue with our biological metaphor. Both humans and bats are
mammals, so if we called Human.ancestors and Bat.ancestors, we would have
significant overlap—humans and bats have shared ancestors, specifically
earlier mammals. If we called Bird.ancestors, there would be less overlap with
either of the others, because birds are not mammals. However, bats and most
birds can fly, which you could think of as a method, in object-oriented terms.
We could define Bat.fly and Bird.fly separately, but there is another option
available to us.

We can thus define the ability to fly (along with related characteristics and
behaviors) and add that ability to existing classes. That process is called mixing
in, and it’s how Ruby deals with the problem of assigning the same methods to
different classes with distinct ancestor classes, like our Bat and Bird example.

We do this by defining the ability to fly as a module, perhaps called Flyable.
Modules are similar to classes, except that they don’t get instantiated. We’ll
write our own modules later in Chapter 10. For now, keep in mind that the
Precision module adds behavior to both Integer and Float, just like our
hypothetical Flyable. Flyable grants the ability to fly to those organisms it’s
mixed into, and Precision grants the ability to do precise calculations to
those numbers it’s mixed into.

Modules are open, just like classes, so we can add new behavior to the
Precision module, just as we did earlier to the Object class. Let’s take a look
at the commify.rb script.

The Code

Modules module Precision

� # What character should be displayed at each breakpoint?
 COMMIFY_DELIMITER = ','

 # What should the decimal point character be?
 COMMIFY_DECIMAL = '.'

Numbe r Ut i l i t ie s 77

 # What power of 10 defines each breakpoint?
 COMMIFY_BREAKPOINT = 3

 # Should an explicit '0' be shown in the 100ths place,
 # such as for currency?
 COMMIFY_PAD_100THS = true

=begin rdoc
This method returns a String representing the numeric value of
self, with delimiters at every digit breakpoint. 4 Optional arguments:

1. delimiter (String): defaults to a comma
2. breakpoint (Integer): defaults to 3, showing every multiple of 1000
3. decimal_pt (String): defaults to '.'
4. show_hundredths (Boolean): whether an explicit '0' should be shown
in the hundredths place, defaulting to true.
=end

Optional � def commify(args = {})
Arguments

� args[:delimiter] ||= COMMIFY_DELIMITER
 args[:breakpoint] ||= COMMIFY_BREAKPOINT
 args[:decimal_pt] ||= COMMIFY_DECIMAL
 args[:show_hundredths] ||= COMMIFY_PAD_100THS

� int_as_string, float_as_string = to_s.split('.')

 int_out = format_int(
 int_as_string,
 args[:breakpoint],
 args[:delimiter]
)

 float_out = format_float(
 float_as_string,
 args[:decimal_pt],
 args[:show_hundredths]
)

� return int_out + float_out
 end

 private

=begin rdoc
Return a String representing the properly-formatted
Integer portion of self.
=end

� def format_int(int_as_string, breakpoint, delimiter)
 reversed_groups = int_as_string.reverse.split(/(\d{#{breakpoint}})/)
 reversed_digits = reversed_groups.grep(/\d+/)
 digit_groups = reversed_digits.reverse.map { |unit| unit.reverse }
 return digit_groups.join(delimiter)
 end

78 Chapter 5

=begin rdoc
Return a String representing the properly-formatted
floating-point portion of self.
=end

� def format_float(float_as_string, decimal_pt, show_hundredths)
 return '' unless float_as_string
 output = decimal_pt + float_as_string

� return output unless show_hundredths
� output += '0' if (float_as_string.size == 1)

 return output
 end

end

How It Works
Starting at �, we define some useful constants, just like we do for a class. Each
definition is preceded by some comments explaining what the constant is for.
I mentioned that the commify method will insert commas at every grouping of
a thousand. This is customary in the United States, but many other countries
use a period in place of a comma and use a comma to separate units from
floating-point portions (for which the United States uses a period). These con-
stants are preset for the US notation that is useful for me, since I live here,
but you can easily customize them to match what’s appropriate for your
home country.

After some RDoc that explains the input parameters in the form of a
single Hash, at � we get to the definition of the commify method, our only
public method. It accepts a Hash argument called args to override the default
configuration constants, as shown at �. Note that the ||= operation means
that if args asks for an override (meaning it has a value in itself for the appro-
priate Symbol, such as :delimiter for the delimiter), we use what’s in args.
Otherwise, we fall back to the Module’s appropriate constant. At �, we split
the Integer and Float portions of self, although keep in mind that they are both
instances of the String class, despite the fact that they represent numbers. Ruby
allows us to assign into two different variable names at a time, as we do here.

NOTE Symbols make great Hash keys, and that’s a convention you’ll see a great deal in both
my scripts and in the whole Ruby community. You’d have a terrible time trying to do
anything in Rails without respecting this convention. Symbols work particularly well
for this job because they can be used as names or labels for things, and they take up
an extremely small amount of memory.2

We then define a variable called int_out and give it the value of a method
called format_int. We do the same for float_out, and finally return the con-
catenation of those two Strings at �. You can see that the real work occurs
within the formatting methods (format_int and format_float), both of which
are private.

2 My technical reviewer, Pat Eyler, wisely asked me to stress that the reason Symbols take up so
little space is because each Symbol only takes up space once, and all subsequent instances merely
refer to that same memory space again, instead of duplicating it, as would happen with a String or
other type of object.

Numbe r Ut i l i t ie s 79

The format_int Method

The format_int method at � is the more conceptually complicated of the two
methods. Let’s open irb again and step through this method’s operations.
First, let’s define some variables representing the inputs to the method.

irb(main):001:0> int_as_string = '186282'
=> "186282"
irb(main):002:0> breakpoint = 3
=> 3
irb(main):003:0> delimiter = ','
=> ","

Next, let’s split our String at the appropriate breakpoints, using a regular
expression representing any group of digits that is the appropriate length.
The notation {x} within a regular expression means X instances of whatever is to
the left, so a{3} means Three instances of the letter a. We also use string interpolation
so that we can use our breakpoint argument for the number of digits to break
on. We want to go from right to left, so we’ll use the reverse method prior to
breaking up the String into an Array.

irb(main):004:0> reversed_groups = int_as_string.reverse.split(/(\d{#{breakpoint}})/)
=> ["", "282", "", "681"]

Then we want to extract only those Array members that are genuine num-
ber groups, which we can do easily enough with another regular expression
/\d+/ (meaning Consisting of one or more digits and nothing else) and the grep
method, which finds all members of an Array that match the regex argument
that grep takes.

irb(main):005:0> reversed_digits = reversed_groups.grep(/\d+/)
=> ["282", "681"]

What else is wrong with our content at this point? Not only are the
number groups in the wrong order, but the numbers within each group are
also reversed. This is because we reversed the entire String before doing our
split. Now we want to get everything in the right order. We can just reverse
our Array, right?

irb(main):006:0> reversed_digits.reverse
=> ["681", "282"]

This won’t work. It puts the groups in the right order, but the digits
within each group are still reversed. We can use the map method to reverse
each member of the Array instead.

irb(main):007:0> reversed_digits.map { |unit| unit.reverse }
=> ["282", "186"]

80 Chapter 5

Oops. Now the digits within each set of three numbers are in the right
order, but the groups are in the wrong order. We could define yet another
variable like reversed_digits in a two-step operation, but why not take advantage
of Ruby’s ability to chain methods?

irb(main):008:0> digit_groups = reversed_digits.reverse.map { |unit| unit.reverse }
=> ["186", "282"]

Now our digits groups are in the right order and have the correct internal
ordering, as well.

Note that the two different calls to the reverse method in the irb exam-
ple are completely different. One is a call to the Array method reverse on
reversed_digits and the other is a call to the String method reverse on each
digit group that we call unit within the map operation.

We still have an Array, and we want a String. This calls for a join, using
the delimiter.

irb(main):009:0> digit_groups.join(delimiter)
=> "186,282"

Our format_int method now returns a String that is an altered version
of our int_as_string argument. We break up int_as_string at the right point
(breakpoint), insert the delimiter between our groups of digits, and make sure
that everything stays in the right order. That’s it for the integer component.

The format_float Method

We also want to be able to format floating-point portions of numbers, which
we do with the format_float method at �. If there is no floating-point portion,
it returns an empty String right away. Otherwise, it creates a new variable
called output consisting of the decimal_pt argument concatenated with the
float_as_string argument—remember that they’re both Strings, so the plus
sign means concatenation. If the configuration options are such that the
hundredths place is not mandatory (you can tell from the show_hundredths
argument), we can simply return the output variable at �. If we need to show
the hundredths place and the floating-point portion is only a single character
wide, we need to concatenate the String '0' onto the end of the output at �.
Otherwise, we can simply return the output variable.

Type Testing

You’ll remember that in power.rb, we had an early exit condition based on
whether or not the base argument was an Integer at all. You’ll also notice that
in this script we don’t test any of the numbers to find out whether or not
they’re real numbers. Why is that? The reason is that our new methods will
be included in the Precision module, which is only mixed in to classes that
represent some sort of number, like Integer and Float. Therefore, checks for
numeric type are not necessary.

Numbe r Ut i l i t ie s 81

Running the Script

Let’s try this out with a test script. Here are the contents of tests/test_commify.rb,
which we’ll run in the same directory as commify.rb with the command ruby -w
tests/test_commify.rb 186282.437 at the shell.

#!/usr/bin/env ruby
test_commify.rb

require 'commify'

puts ARGV[0].to_f.commify()
alt_args = {

:breakpoint => 2,
:decimal_pt => 'dp',
:show_hundredths => false

}
puts ARGV[0].to_f.commify(alt_args)

We call the commify method on the first argument after the script name,
which in our case is the floating-point number 186282.437. First, we call it with
the default parameters with regard to the delimeter character, breakpoint
size, and so on. Then we call it with some modified configuration param-
eters, just to see how they work.

The Results

Here’s the output I got:

186,282.437
18,62,82dp437

Yours should look the same. That’s it for this script.

#17 Roman Numerals (roman_numeral.rb)

In the previous script, you learned how to change the representation of a
number as a String so that it had commas (or some other desired delimiting
character) in appropriate places for easier readability. One of the most
traditional ways to represent a number as a String is as a Roman numeral.
This script adds a new method to all Integers called to_roman. Let’s see it in
action in irb.

$ irb -r roman_numeral.rb
irb(main):001:0> 42.to_roman
=> "XLII"
irb(main):002:0> 1.to_roman
=> "I"

82 Chapter 5

irb(main):003:0> 5.to_roman
=> "V"
irb(main):004:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):005:0> digits.map { |d| d.to_roman }
=> ["", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"]

If you remember your Roman numerals, you will see that to_roman follows
your expectations. It returns the empty string for zero and uses the subtractive
approach of reporting four as IV, using a lower-value letter to the left of a
higher-value letter to indicate subtraction. Let’s look at the source code to
see how it works.

The Code

class Integer

 # Base conversion Hash
� ARABIC_TO_ROMAN = {

 1000 => 'M',
 500 => 'D',
 100 => 'C',
 50 => 'L',
 10 => 'X',
 5 => 'V',
 1 => 'I',
 0 => '',
 }

 # Represent 4 as 'IV', rather than 'IIII'?
 SUBTRACTIVE_TO_ROMAN = {
 900 => 'CM',
 400 => 'CD',
 90 => 'XC',
 40 => 'XL',
 9 => 'IX',
 4 => 'IV',
 }

 # Use SUBTRACTIVE_TO_ROMAN Hash?
 SUBTRACTIVE = true

� def to_roman()
Class Variables @@roman_of ||= create_roman_of()

� return '' unless (self > 0)
� return to_s if self > maximum_representable()

The detect � base = @@roman_of.keys.sort.reverse.detect { |k| k <= self }
Method � return '' unless (base and base > 0)

� return (@@roman_of[base] * round_to_base(base)) + (self % base).to_roman()
 end

 private

Numbe r Ut i l i t ie s 83

=begin rdoc
Use constants to create a Hash of appropriate roman numeral values.
=end

� def create_roman_of()
 return ARABIC_TO_ROMAN unless SUBTRACTIVE

The merge
Method

 ARABIC_TO_ROMAN.merge(SUBTRACTIVE_TO_ROMAN)
 end

=begin rdoc
What is the largest number that this method can reasonably represent?
=end

� def maximum_representable()
 (@@roman_of.keys.max * 5) - 1
 end

� def round_to_base(base)
 (self - (self % base)) / base
 end

end

How It Works
Since we only need to give Integers the ability to report their Roman numeral
representation, we’ll open up the Integer class and give it this new method.
After defining some constants at �, let’s skip down to �, where we define
the public method to_roman that we’ve seen used in irb. In it, we define some-
thing called @@roman_of, and use the ||= operator to set its value to that of the
output of a method called create_roman_of, unless @@roman_of already evaluates
to true. Why does it have two @ signs at the front? We’ve already seen instance
variables with a single @ sign and constants that must begin with an uppercase
letter (and traditionally are entirely uppercase), but this is something new
called a class variable.

Class Variables

Class variables are shared among every instance of a class but are able to
change value. Let’s verify in irb that several different instances of any given
class variable have the same value.

irb(main):001:0> class String
irb(main):002:1> @@class_var = "I'm a Class Variable."
irb(main):003:1> def cv
irb(main):004:2> @@class_var
irb(main):005:2> end
irb(main):006:1> end
=> nil
irb(main):007:0> ''.cv
=> "I'm a Class Variable."
irb(main):008:0> 'Some other String'.cv
=> "I'm a Class Variable."
irb(main):009:0> 'Yet another String.'.cv
=> "I'm a Class Variable."

84 Chapter 5

We define a new class variable called @@class_var for all Strings and also
give all strings a new method called cv that returns @@class_var. We find that it
has the same value for all Strings, including Strings that did not yet exist when
we defined @@class_var.

We have a class variable called @@roman_of. What is it? To answer that, we
need to look inside the private method create_roman_of at �. It returns a con-
stant called ARABIC_TO_ROMAN, unless some other constant called SUBTRACTIVE is
true. We can see from our constant definition section (�) that we have set
SUBTRACTIVE to true, so create_roman_of will not return ARABIC_TO_ROMAN with our
current configuration settings. Instead, it will return the result of calling the
method merge on ARABIC_TO_ROMAN, with SUBTRACTIVE_TO_ROMAN as its single
argument.

Hash.merge

At this point we need to learn what ARABIC_TO_ROMAN is so we know what hap-
pens when merge is called on it. We can see from � that both ARABIC_TO_ROMAN
and SUBTRACTIVE_TO_ROMAN are Hashes. Their keys are Arabic numerals, and
each key’s value is the representation of the key as a Roman numeral. This
script can only represent Roman numerals up to 4,999, so we could simply
define a single Hash of ALL_ARABICS_TO_ROMAN with a key for every value from
one to 4,999 and be done with it.

That would work, but it would be terribly inelegant. What we’ve done
instead is define base cases from which we will extrapolate all cases between
zero and 4,999. We also separate out cases of subtractive representation (such
as IV for four) into a separate Hash, allowing us to easily turn that feature on
or off, as we do with the SUBTRACTIVE constant and the create_roman_of method,
which uses the merge method of Hashes. This merge method allows a Hash to
incorporate the information from a second Hash into itself. Let’s explore
that in irb.

irb(main):001:0> hash1 = { 'key1' => 'value1', 'key2' => 'value2' }
=> {"key1"=>"value1", "key2"=>"value2"}
irb(main):002:0> hash2 = { 'key3' => 'value3', 'key4' => 'value4' }
=> {"key3"=>"value3", "key4"=>"value4"}
irb(main):003:0> hash1
=> {"key1"=>"value1", "key2"=>"value2"}
irb(main):004:0> hash2
=> {"key3"=>"value3", "key4"=>"value4"}
irb(main):005:0> hash1.merge(hash2)
=> {"key1"=>"value1", "key2"=>"value2", "key3"=>"value3", "key4"=>"value4"}
irb(main):006:0> hash3 = { 'key1' => nil }
=> {"key1"=>nil}
irb(main):007:0> hash1.merge(hash2).merge(hash3)
=> {"key1"=>nil, "key2"=>"value2", "key3"=>"value3", "key4"=>"value4"}

You can see not only that merge combines key/value pairs, but also that
the incoming information (meaning the Hash argument to the merge method)
overrides pre-existing pairs in the calling Hash. That’s why the "key1"=>nil
pair from hash3 overrides the "key1"=>"value1" pair from hash1. You’ll also note

Numbe r Ut i l i t ie s 85

that the returned value of the merge method is itself just another Hash, so we
can call any Hash method on it, including merge again.

So the first time we call the to_roman method (�), we create a class variable
called @@roman_of that contains base cases for transliteration into Roman
numerals. It either uses the subtractive approach or it doesn’t, depending on
our configuration options. It includes subtractive representation by default.
After all that, we return an empty String at � unless the Integer (self) is
greater than zero.

You may remember that I said this script can handle Roman numerals
for Integers up to 4,999. That’s where line � and the maximum_representable
method (defined at �) come in. The largest value that Roman numerals can
represent (without introducing vertical bars above letters that are not strictly
part of the standard Roman alphabet) is 4,999, so I decided to stop there. If
the Integer in question (self) is greater than the maximum value that can be
shown, we simply return the result of the to_s method (�). Let’s see this in
action in irb.

irb(main):001:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):002:0> digits.map { |d| (4995+d).to_roman }
=> ["MMMMCMXCV", "MMMMCMXCVI", "MMMMCMXCVII", "MMMMCMXCVIII", "MMMMCMXCIX",
"5000", "5001", "5002", "5003", "5004"]

Once we hit the upper limit, we still return a String representing a numeric
value (which is all a Roman numeral is), we just use the familiar Arabic numeral
symbols within our String.

More Recursion

If the lines from � through � remind you of the exit conditions in power_of.rb
that prepared for a recursive call to the same method, you’ve been paying
attention. That’s exactly what we’re about to do here. At � we create a vari-
able called base that is the value of a long chain of method calls starting on
the @@roman_of class variable. The purpose of these method calls is to find the
largest key of the @@roman_of Hash that is less than or equal to the self Integer.

We get the keys out with the keys method, which returns an Array of the
Hash’s keys. We then sort that Array in reverse order, meaning that we start
from highest to lowest. We then call a new Array method called detect with
the conditions of being less than or equal to self. I think a great alias for
detect would be find first. Let’s see it in irb.

irb(main):001:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):002:0> digits.detect { |d| d % 3 }
=> 0
irb(main):003:0> digits.reverse.detect { |d| d % 3 }
=> 9
irb(main):004:0> digits.detect { |d| d > 4 }
=> 5
irb(main):005:0> digits.reverse.detect { |d| d % 2 == 1 }
=> 9

86 Chapter 5

The detect method cycles through each member of the Array and returns
the first Array element that matches the conditions in the block. This is what
allows us to find the highest value representable in terms of the @@roman_of
Hash, which we put into the base variable at �. At � we return the empty
String, unless we both found a base and that base is greater than zero; without
a base greater than zero, we can’t return anything useful.

Multiples of Our Base

We now have a base that’s an Integer greater than zero. If we’re calling
something like 1066.to_roman, we have no problem, because our base value
(1,000) is the entire thousands place portion of our Integer. But what if we
want something like 2112.to_roman instead? We need to be able to keep track
of how many multiples of base can go into our Integer. That’s what we do at �.

We use the method round_to_base (defined at �) to determine the num-
ber of multiples of base we need to deal with. Our call to round_to_base tells us
how many multiples of base we need to handle. Calling @@roman_of[base] also
finds the single letter used to represent the base.

Multiplying Strings by Integers

Multiplying a String by an Integer results in that String concatenated with
itself as many times as the Integer. Let’s see that in irb:

irb(main):006:0> 'M' * 2
=> "MM"

This is taken directly from our 2112.to_roman example. The output of "MM"
takes care of representing the 2,000 portion of 2,112, and at line � we also
make a recursive call to to_roman; this time, however, we call it on a smaller
number, specifically 112. Because the number on which we call the to_roman
method keeps getting smaller as we pull off multiples of base, we will even-
tually reach a point where we’ll exit with the empty String at �, marking
the end of all of our recursive calls to to_roman. That’s when we get our
final output.

Running the Script

This is easily demonstrated within irb.

$ irb -r roman_numeral.rb
irb(main):001:0> (0..9).to_a.map { |n| n.to_roman }

The Results

Here is the output:

=> ["", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"]

Numbe r Ut i l i t ie s 87

Hacking the Script

There are other options you could take with this script. Instead of making
SUBTRACTIVE a class constant, we could have made the to_roman method take
an argument. If you do that, you would need to keep track of two separate
[SOMETHING]_TO_ROMAN Hashes, one using the subtractive display method, and
one not using it. I decided to assume that the subtractive approach would be
used because it does seem to be very common for Roman numerals. However,
I thought I would mention how you could customize this script to make it
slightly more complicated—but also more flexible.

We’ll revisit the idea of representing Integers as different sorts of Strings
later when we create the to_lang method. For now, let’s continue on to our
first currency converter.

#18 Currency Conversion, Basic (currency_converter1.rb)

I mentioned earlier that the commify method needs to vary based on how
each country treats the notation of numbers. The area where this issue
comes up most often is with currency, of course. The actual conversion
process consists of relatively straightforward math, but we’ll use this script
as a vehicle to set the stage for two important concepts introduced in our
next script—notably the representation of data with either XML (eXtensible
Markup Language, http://www.w3c.org/xml) or YAML (YAML Ain’t Markup
Language, http://www.yaml.org). We’ll explore both XML and YAML further
in the next script, but for now, let’s try out our current script in irb with
irb -r currency_converter.rb.

irb(main):001:0> cc = CurrencyConverter.new()
=> #<CurrencyConverter:0xb7c979f4 @name_of={"USD"=>"US Dollar"},
@base_currency="USD">

� irb(main):002:0> puts cc.output_rates(1)
1 US Dollar (USD) =
 46.540136 Indian Rupees(INR)
 0.781738 Euros(EUR)
 10.890852 Mexican Pesos(MXN)
 7.977233 Chinese Yuans(CNY)
 1.127004 Canadian Dollars(CAD)
=> nil

� irb(main):003:0> puts cc.output_rates(42)
42 US Dollars (USD) =
 1954.685712 Indian Rupees(INR)
 32.832996 Euros(EUR)
 457.415784 Mexican Pesos(MXN)
 335.043786 Chinese Yuans(CNY)
 47.334168 Canadian Dollars(CAD)
=> nil

We can see on our irb session’s first response that our cc instance seems
to have some fondness for the US dollar—but if you’re in some other country,
don’t worry, you’ll learn how to use different currencies in the improved

88 Chapter 5

version of the script. In � you can see that our cc instance’s output_rates
method takes an argument and seems to output the equivalent of that many
US dollars in a few other currencies. You can see in � that the values shift as
expected with a different number of US dollars. Let’s see how this works by
examining the source code.

The Code

#!/usr/bin/env ruby
currency_converter1.rb
Using fixed exchange rates

class CurrencyConverter

� BASE_ABBR_AND_NAME = { 'USD' => 'US Dollar' }

 FULLNAME_OF = {
 'EUR' => 'Euro',
 'CAD' => 'Canadian Dollar',
 'CNY' => 'Chinese Yuan',
 'INR' => 'Indian Rupee',
 'MXN' => 'Mexican Peso',
 }

 EXCHANGE_RATES = {
 'EUR' => 0.781738,
 'INR' => 46.540136,
 'CNY' => 7.977233,
 'MXN' => 10.890852,
 'CAD' => 1.127004,
 }

Initializing � def initialize()
Class Variables @base_currency = BASE_ABBR_AND_NAME.keys[0]

 @name = BASE_ABBR_AND_NAME[@base_currency]
 end

� def output_rates(mult=1)
 get_value(mult, get_rates) + "\n"
 end

 private

� def get_rates()
 return EXCHANGE_RATES
 end

� def get_value(mult, rates)
� return pluralize(mult, @name) +

" (#{@base_currency}) = \n" +
� rates.keys.map do |abbr|
� "\t" +

pluralize(mult * rates[abbr], FULLNAME_OF[abbr]) +

Numbe r Ut i l i t ie s 89

"(#{abbr})"
� end.join("\n")

 end

=begin rdoc
This assumes that all plurals will be formed by adding an 's'.
It could be made more flexible with a Hash of plural suffixes
(which could be the empty string) or explicit plural forms that
are simple replacements for the singular.

For convenience, this outputs a string with the number of items,
a space, and then the pluralized form of the currency unit.
That suited the needs of this particular script.
=end

� def pluralize(num, term)
 (num == 1) ? "#{num} #{term}" : "#{num} #{term}s"
 end

end

How It Works

At �, we define the “home” currency of the class, and immediately following,
we define some handy codes for various other currencies via the FULLNAME_OF
and EXCHANGE_RATES Hashes. The EXCHANGE_RATES Hash contains our preset
exchange rate values. These were current at the time I created this object,
but I’m sure they’ll be at least slightly different by the time you read this.

The initialize method at � gives us some handy instance variables
related to the home currency, and our only public method output_rates (�)
is simply a wrapper for the private get_value method (�) with a newline.3
The get_value method also uses another private method called get_rates, the
definition of which (�) should be fairly clear to you at this point.

The get_value method also uses another private method called pluralize
(�), which returns a String in which the term for the currency is plural when
appropriate. I’ve implemented this very simply, because English only requires
an s at the end of a term to pluralize it. With a few changes, this method could
handle other languages or terms with more complex pluralization needs, most
likely a Hash with currency terms as keys and plural endings as values. For now,
we just need to add an s to the end of currency amounts greater than one.

The get_value method returns (�) a pluralized form of the base currency
with an equals sign, followed by information about each of the currencies the
class knows about. Starting at �, it maps an operation onto each currency
type (represented by the keys of the rates Hash). The mapped operation (�)
is the outputting of a tab character, followed by properly pluralized output
for that currency based on its relative value, full name, and abbreviation. Each
currency’s String output is then joined together with newline characters at 	,
concluding the return statement begun back at �.

3 We defined initialize before the private keyword, but initialize is always a private method,
so output_rates is the only public method of CurrencyConverter.

90 Chapter 5

Running the Script

This is also easily demonstrated in irb with irb -r currency_converter1.rb.

The Results

$ irb -r currency_converter1.rb
irb(main):001:0> cc = CurrencyConverter.new()
=> #<CurrencyConverter:0xb7c94b4c @base_currency="USD", @name="US Dollar">
irb(main):002:0> cc.output_rates
=> "1 US Dollar (USD) = \n\t46.540136 Indian Rupees(INR)\n\t0.781738
Euros(EUR)\n\t10.890852 Mexican Pesos(MXN)\n\t7.977233 Chinese Yuans(CNY)\n\
t1.127004 Canadian Dollars(CAD)\n"
irb(main):003:0> puts cc.output_rates
1 US Dollar (USD) =
 46.540136 Indian Rupees(INR)
 0.781738 Euros(EUR)
 10.890852 Mexican Pesos(MXN)
 7.977233 Chinese Yuans(CNY)
 1.127004 Canadian Dollars(CAD)
=> nil

Notice how the prettier output comes from using puts and that the
returned value from output_rates is nil, largely because it’s intended to print
results instead.

Hacking the Script

This is all fine when exchange rates are constant and can be stored in a
constant Hash, as in this script. However, the main impetus of having a
currency converter stems from the fact that exchange rates constantly
change. We need a converter that can update itself with new information
when that information becomes available and yet continue to work when
such information is inaccessible, for whatever reason. That’s our next script.

#19 Currency Conversion, Advanced (currency_converter2.rb)

This script builds on what we already know from the previous one and uses a
similar approach for the actual conversion process. What we’ve added is the
ability to store and retrieve external data in both YAML and XML formats.
YAML is so readable that I will simply tell you what you need to know for this
script, and I’m sure that you’ll be inspired to learn more about how it works.
XML is a bit more complicated, and it’s beyond the scope of this book to teach
it to you if you’re not familiar with it, but you won’t need to be an expert to
follow along. I’ll describe the relevant bits of XML for this script’s operation,
just as I’ll do with YAML. If you find that the XML-related content of this
chapter is going a bit too fast, please refer to the excellent online XML
Tutorial at http://www.w3schools.com/xml.

This script differs from the previous in several ways. Let’s see how.

Numbe r Ut i l i t ie s 91

The Code

#!/usr/bin/env ruby
currency_converter2.rb

RSS feeds for rates at
http://www.currencysource.com/rss_currencyexchangerates.html

=begin rdoc
open-uri allows Kernel.open to read data using a URI, not just from
a local file.
=end

� require 'open-uri'
=begin rdoc
YAML[http://www.yaml.org] stands for "YAML Ain't Markup Language"
and is a simple human-readable data markup format.
=end

YAML require 'yaml'

=begin rdoc
I also want to add a method to all Hashes.
=end
class Hash

=begin rdoc
Allow Hashes to be subtracted from each other.
=end

A Subtraction � def -(hash_with_pairs_to_remove_from_self)
Method for
Hashes;

 output = self.dup
 hash_with_pairs_to_remove_from_self.each_key do |k|

The delete
Method

 output.delete(k)
 end
 output
 end

end

� class CurrencyConverter

 BASE_URL = 'http://currencysource.com/RSS'
 CURRENCY_CODES = {
 'EUR' => 'Euro',
 'CAD' => 'Canadian Dollar',
 'CNY' => 'Chinese Yuan',
 'INR' => 'Indian Rupee',
 'MXN' => 'Mexican Peso',
 'USD' => 'US Dollar',
 }
 RATES_DIRECTORY = 'extras/currency_exchange_rates'

 def initialize(code='USD')
The has_key? and
fail Methods

 unless CURRENCY_CODES.has_key?(code)
 fail "I know nothing about #{code}"
 end

92 Chapter 5

 @base_currency = code
 @name = CURRENCY_CODES[code]
 end

� def output_rates(mult=1, try_new_rates=true)
 rates = get_rates(try_new_rates)
 save_rates_in_local_file!(rates)
 return get_value(mult, rates) + "\n"
 end

 private

� def download_new_rates()
 puts 'Downloading new exchange rates...'

begin - rescue -
end

 begin
 raw_rate_lines = get_xml_lines()
 rescue
 puts 'Download failed. Falling back to local file.'
 return nil
 end
 rates = Hash.new('')
 comparison_codes = CURRENCY_CODES - { @base_currency => @name }
 comparison_codes.each_key do |abbr|
 rates[abbr] = get_rate_for_abbr_from_raw_rate_lines(
 abbr,
 raw_rate_lines
)
 end
 return rates
 end

� def get_rates(try_new_rates)
 return load_old_rates unless try_new_rates
 return download_new_rates || load_old_rates
 end

 def get_rate_for_abbr_from_raw_rate_lines(abbr, raw_rate_lines)
 regex = {
 :open =>
 /^\<title\>1 #{@base_currency} = #{abbr} \(/,
 :close =>
 /\)\<\/title\>\r\n$/
 }
 line = raw_rate_lines.detect { |line| line =~ /#{abbr}/ }
 line.gsub(regex[:open], '').gsub(regex[:close], '').to_f
 end

 def get_value(mult, rates)
 return "#{pluralize(mult, @name)} (#{@base_currency}) = \n" +
 rates.keys.map do |abbr|
 "\t#{pluralize(mult * rates[abbr], CURRENCY_CODES[abbr])} (#{abbr})"
 end.join("\n")
 end

Numbe r Ut i l i t ie s 93

=begin rdoc
get_xml_lines is able to read from a URI with the open-uri library.
This also could have been implemented with the RSS library
written by Kouhei Sutou <kou@cozmixng.org> and detailed at
http://www.cozmixng.org/~rwiki/?cmd=view;name=RSS+Parser%3A%3ATutorial.en
=end

XML � def get_xml_lines()
 open("#{BASE_URL}/#{@base_currency}.xml").readlines.find_all do |line|
 line =~ /1 #{@base_currency} =/
 end
 end

� def load_old_rates()
 puts "Reading stored exchange rates from local file #{rates_filename()}"

YAML.load rates = YAML.load(File.open(rates_filename))
 fail 'no old rates' unless rates
 return rates
 end

 def pluralize(num, term)
 (num == 1) ? "#{num} #{term}" : "#{num} #{term}s"
 end

� def rates_filename()
 "#{RATES_DIRECTORY}/#{@base_currency}.yaml"
 end

=begin rdoc
Store new rates in an external YAML file.
This is a side-effect akin to memoization, hence the bang.
=end

� def save_rates_in_local_file!(rates)
 return unless rates

YAML.dump File.open(rates_filename, 'w') { |rf| YAML.dump(rates, rf) }
 end

end

How It Works

How does this file differ from the previous one? The class definition of
CurrencyConverter is delayed until �, due to some more comments and
require statements at �. I also open the Hash class and give it a subtraction
method, identified by the minus sign at �. This new method takes another
Hash and returns the original Hash without any pairs found in the argument
Hash. Think of it this way: If merge is addition of Hashes, this method is the
subtraction of Hashes. I suppose a good alternative name would be either
demerge or unmerge.

Inside our CurrencyConverter class (�), we have two new constants:
BASE_URL, which is used for downloading completely new exchange rates, and
RATES_DIRECTORY, which is used to store exchange rates once they have been

94 Chapter 5

downloaded. The class’s initialize method accepts a currency code, so folks
from other countries can define their own native converters more easily.
(It assumes US dollars with no argument.) If it gets a currency code that it
doesn’t understand, it shouldn’t proceed, so we make it break out of the
entire program with the command fail, which causes the program to stop
running. The output_rates method (�) also tries to get new rates when told to,
saves rates in a local file, and performs the operations we already know about
from the last script.

How does it get new rates? The get_rates method (�) shows us that it
either loads old rates or downloads new rates. If it tries to download_new_rates
(�) but fails to do so, it will fall back to its old rates again. It defaults to down-
loading new rates, so let’s look at download_new_rates.

After some explanatory printing, we get a begin statement, which starts
a block of code that means Try something, and fall back to some other code if the
attempt fails. What we’re trying to do is call the get_xml_lines method. If that
fails, we’ll explain to the user via puts that the download failed and return
nil. The end statement tells us that the block of code pertaining to the begin
has ended. The return nil is what allows us to fall back to old exchanges rates
within get_rates if the get_xml_lines method failed.

So what does get_xml_lines do? It’s defined at �, and it finds all lines
from a given XML file in which one unit of the base currency appears with an
equals sign. These lines tell us our exchange rates. Let’s take a look at what
one of those XML files looks like. Here are a few lines from a file I downloaded
from http://www.currencysource.com/RSS/USD.xml.

<item>
<title>1 USD = ARS (3.017607)</title>
<link>http://www.currencysource.com/tables/USD/1X_USD.htm</link>
<description><![CDATA[As of Thursday, May 04, 2006...
1 U.S. Dollar (USD) =
3.017607 Argentine Peso (ARS)

Call 1-877-627-4817 for 'LIVE'
assistance.

Source: IMF

Aggregated and published by
CurrencySource.com
'Rated #1 in Currency Exchange']]></description>
<pubDate>Sun, 08 Oct 2006 06:00:04 CST</pubDate>
</item>
<item>
<title>1 USD = AUD (1.342818)</title>
<link>http://www.currencysource.com/tables/USD/1X_USD.htm</link>
<description><![CDATA[As of Sunday, October 08, 2006...
1 U.S. Dollar (USD)
= 1.342818 Australian Dollar (AUD)

Call 1-877-627-4817 for 'LIVE'
assistance.

Source: IMF

Aggregated and published by
CurrencySource.com
'Rated #1 in Currency Exchange']]></description>
<pubDate>Sun, 08 Oct 2006 06:00:04 CST</pubDate>
</item>

If you’re not already familiar with XML, you can see here that it consists
of text in which various content is enclosed by tags, which are those bits of
text within the < and > characters. Newlines are not meaningful. We have
two definitions of a type of thing called item, each of which has a title, a link,

Numbe r Ut i l i t ie s 95

a description, and a pubDate. This is the content we’re searching through.
You’ll notice that the <title> lines contain direct statements about exchange
rates between the base currency and some other currency—in my example,
the Argentinian peso and the Australian dollar.

The reason this operation might fail is that the file we’re trying to open
and call readlines on is not a local file, but a file retrieved from the Internet
via a URL. The open-uri library that we required at � modifies the open com-
mand to allow us to open URLs as well as local files. Without a functioning
Internet connection, the open will fail, meaning that there will be no file on
which to call the readlines method within get_xml_lines. However, if our down-
load operation worked, we’ll be able to assign content into the raw_rate_lines
variable within download_new_rates. The rest of the download_new_rates method
extracts the exchange rate content out of the raw lines.

Downloading Rates Information

The download_new_rates method extracts the exchange rate by first defining a
variable for the rates, which is a Hash. We give Hash.new an argument halfway
through download_new_rates so that when a given key is not found in the Hash,
the returned value is no longer nil, but instead the argument that was passed
to Hash.new (the empty String in our example). For our purposes, we want to
find comparison_codes, which are all the pairs pertaining to currencies and
their codes, without the @base_currency.4 We then cycle through each key,
which is the abbreviation or code associated with the matching currency, and
call the get_rate_for_abbr_from_raw_rate_lines method, which gets the exchange
rate for a given abbreviation from the raw_rate_lines variable.

The get_rate_for_abbr_from_raw_rate_lines method is defined immediately
after the definition of get_rates at �. The regex variable is a Hash that stores
some regular expressions that signify the opening and closing of the content
we care about (the actual exchange rate value). We detect the first line con-
taining the interpolated abbr value and then strip off the opening and closing
regex values by substituting each of them with the empty string. We then return
the floating-point version (via the to_f method) of what we have left. That’s
the exchange rate for the currency matching the abbr argument.

We’ve gotten our rates via downloading, which means that we’re
ready to save them into a local file within initialize. We immediately exit
save_rates_in_local_file! (�) and do nothing if we have no rates. The
reason for this is that if there is some problem with getting rates, we don’t
want to overwrite our good stored data from a previous use of this script.
Assuming that all is well, we open a new file for writing with the name
rates_filename, which looks like a variable. It’s actually a method, defined at �.
It returns something like "extras/currency_exchange_rates/USD.yaml" or
"extras/currency_exchange_rates/CAD.yaml", depending on what your base
currency is. It’s a method because it’s entirely dependent on the value of
@base_currency.

4 We remove the @base_currency since it’s not useful to give the exchange rate between a given
currency and itself—the rate would always be exactly one.

96 Chapter 5

NOTE Some schools of programming would have defined an instance variable @rates_filename
within the initialize method, just as we did with @base_currency and @name. Conversely,
we could have treated @name the same way we do rates_filename, defining a method
called name that simply returns the value of CURRENCY_CODES[@base_currency]. Either
approach is useful. Using an instance variable (the “eager” approach) is faster, but the
different variables with a close relationship to each other could get out of sync, especially
in a more complex program. Using a method (the “lazy” approach) is slower, because it
has to recalculate its return value every time—but it also means that your variables
won’t get out of agreement with each other, at least in this case.

Whether it’s an instance variable or a method, our main concern
regarding rates_filename is that it is a name of a file that can be written into.
We do the writing using YAML.dump, which takes two arguments; the first is a data
structure that will be converted into YAML and written into the second argu-
ment, which is a File object. Let’s open extras/currency_exchange_rates/USD.yaml
and see what we’ve written.

EUR: 0.789639
INR: 45.609987
CNY: 7.890017
MXN: 11.062366
CAD: 1.126398

That’s the entire content of USD.yaml. It represents a single Hash whose
keys are currency codes and whose values are floating-point numbers. You’ll
notice that newlines are significant, and while this example doesn’t show it,
so is indentation. There’s a lot about YAML that you can learn at http://
www.yaml.org, but I find that YAML.dump is a great way to learn how things are
represented in YAML. If you pass a data structure that you understand into
YAML.dump, you can read the resulting .yaml file to see what the proper repre-
sentation is. You can then change the data structure in some specific way,
rewrite using YAML.dump, and compare the results. It’s very useful.

In any case, we have now stored our exchange rate data as YAML in an
external file, using save_rates_in_local_file!. We still have the rates variable
available, so we use it, calling the get_value method, which uses the same
approach as in the previous script.

What If You Can’t Download New Rates?

In a later call to the script, we might not be able to download new rates, as
previously noted. Therefore, let’s look at the get_rates method again and
assume that we either told the script not to download new rates (using a false
value for the try_new_rates argument) or that the download attempt failed.
Either way, we’ll need to get our rates from the stored YAML file.

Numbe r Ut i l i t ie s 97

The load_old_rates method is at �. It informs the user that there will
be an attempt to read from the local file. Getting the real data out of a
YAML file could hardly be easier: You just call YAML.load, and give it a File
argument, which, in our case is the result of calling File.open on rates_filename.
The result of YAML.load is whichever data structure was stored in the exter-
nal file, so we simply assign it into a variable called rates. We then ensure
that we were able to read data into rates before proceeding, and finally
return rates.

Running the Script

After all this explanation, it’s finally time to see the script in action in irb with
irb -r currency_converter2.rb.

The Results

irb(main):001:0> usd = CurrencyConverter.new
=> #<CurrencyConverter:0xb7bfb498 @name="US Dollar", @base_currency="USD">
irb(main):002:0> inr = CurrencyConverter.new('INR')
=> #<CurrencyConverter:0xb7bef990 @name="Indian Rupee", @base_currency="INR">
irb(main):003:0> usd.output_rates(1)
Downloading new exchange rates...
=> "1 US Dollar (USD) = \n\t45.609987 Indian Rupees (INR)\n\t0.789639 Euros
(EUR)\n\t11.062366 Mexican Pesos (MXN)\n\t7.890017 Chinese Yuans (CNY)\n\
t1.126398 Canadian Dollars (CAD)\n"
irb(main):004:0> inr.output_rates(1)
Downloading new exchange rates...
=> "1 Indian Rupee (INR) = \n\t0.017313 Euros (EUR)\n\t0.242543 Mexican Pesos
(MXN)\n\t0.172989 Chinese Yuans (CNY)\n\t0.021925 US Dollars (USD)\n\t0.024696
Canadian Dollars (CAD)\n"
irb(main):005:0> usd.output_rates(1, false)
Reading stored exchange rates from local file extras/currency_exchange_rates/
USD.yaml
=> "1 US Dollar (USD) = \n\t0.789639 Euros (EUR)\n\t45.609987 Indian Rupees
(INR)\n\t7.890017 Chinese Yuans (CNY)\n\t11.062366 Mexican Pesos (MXN)\n\
t1.126398 Canadian Dollars (CAD)\n"
irb(main):006:0> inr.output_rates(100, false)
Reading stored exchange rates from local file extras/currency_exchange_rates/
INR.yaml
=> "100 Indian Rupees (INR) = \n\t1.7313 Euros (EUR)\n\t17.2989 Chinese Yuans
(CNY)\n\t24.2543 Mexican Pesos (MXN)\n\t2.4696 Canadian Dollars (CAD)\n\
t2.1925 US Dollars (USD)\n"

� irb(main):007:0> inr.output_rates(100, (not true))
Reading stored exchange rates from local file extras/currency_exchange_rates/
INR.yaml
=> "100 Indian Rupees (INR) = \n\t1.7313 Euros (EUR)\n\t24.2543 Mexican Pesos
(MXN)\n\t17.2989 Chinese Yuans (CNY)\n\t2.1925 US Dollars (USD)\n\t2.4696
Canadian Dollars (CAD)\n"

98 Chapter 5

You can see that we can easily define converters for specific currencies;
then we can tell the output_rates method to try to download new rates or not
to download them, depending on whether or not the optional second argu-
ment evaluates to false. In line �, you see that I’ve passed in (not true) just to
make that point. You’ll also notice that the return values with special char-
acters like newlines and tabs represent those characters the same way we do
when we insert them, while printing those return values causes them to be
interpreted, making the printing output prettier, or at least more easily
readable.

Hacking the Script

This script depends on the directory hierarchy at BASE_URL staying the same.
If it ever changes, you will need to update get_xml_lines() at � accordingly.
We’re also about to get deeper into some functional programming topics.
Once you’re comfortable with lambda (introduced in the next chapter),
you could replace the rates_filename method with a lambda that accepts
RATES_DIRECTORY and @base_currency as arguments.

Chapter Recap

What was new in this chapter?

� Exponentiation in Ruby

� Returning nil when a method’s operation is not possible

� More recursion and exit conditions

� Modules and Inheritance

� Hash.merge

� Class Variables

� Array.detect (“find first”)

� Subtracting Hashes

� Exiting the entire script with fail

� begin—rescue—end

� Downloading with open-uri

� Parsing XML files with regular expressions

� Writing to YAML files with YAML.dump

� Reading from YAML files with YAML.load

It’s almost as if this chapter weren’t really about numbers—we covered
a large amount of generically useful information, especially Modules, Class
Variables, and external data storage and retrieval using either XML or YAML
(or both). We’ve done a bit of functional programming already in the last
two chapters, but we’ll get into the deep lambda magic in Chapter 6.

6
F U N C T I O N A L I S M W I T H B L O C K S

A N D P R O C S

Ruby has two main ancestors: Smalltalk
and Lisp.1 From Smalltalk, Ruby gets its heavy

object orientation, which we’ve explored in
some depth up to this point. From Lisp it derives

several ideas from functional programming, which is a very mathematically
inclined approach to programming with a few notable characteristics. First,
variables tend to be defined once, without having their values changed later
on. Additionally, functions tend to be simple, abstract, and used as building
blocks for other functions; the line between functions, which perform opera-
tions, and data, on which functions operate, is often blurry, compared with
non-functional approaches. Functions also tend to do their work by returning
values, rather than having side effects—in Ruby terms, methods that end
with an exclamation point are less common.

Ruby’s support for functional programming is extensive and exciting.
Let’s dive in.

1 This is a potentially contentious statement. At a RubyConf, I once asked Matz which other
languages he thought were most influential on Ruby. His response was “Smalltalk and Common
Lisp”. Other folks in the Ruby community (many of them ex-Perl users) stress Ruby’s clear
similarity to Perl. Probably the safest statement is that Ruby descends from Smalltalk and Lisp,
and while it’s a lot like Perl, Perl is more like an aunt or uncle.

100 Chap te r 6

#20 Our First lambda (make_incrementer.rb)

This script explores how Ruby creates functions that should be treated as
objects. Every “thing” in Ruby is an object, so the notion of treating functions
as objects is not conceptually odd. In Ruby, we do this with the command
lambda, which takes a block. Let’s look at that in irb.

irb(main):001:0> double_me = lambda { |x| x * 2 }
=> #<Proc:0xb7d1f890@(irb):1>
irb(main):002:0> double_me.call(5)
=> 10

You can see by the return value of line one that the result of calling
lambda is an instance of class Proc. Proc is short for procedure, and while most
objects are defined by what they are, Procs can be thought of primarily as
defined by what they do. Procs have a method called call, which tells that Proc
instance to do whatever it does. In our irb example, we have a Proc instance
called double_me that takes an argument and returns that argument, times two.
On line two, we see that feeding the number 5 into double_me.call results in a
return value of 10, just as you would expect. It is easy to create other Procs
that do other operations.

irb(main):003:0> triple_me = lambda { |x| x * 3 }
=> #<Proc:0xb7d105bc@(irb):3>
irb(main):004:0> triple_me.call(5)
=> 15

Since Procs are objects, just like everything else in Ruby, we can treat
them like any other object. They can be the returned value of a method,
either the key or value of a Hash, arguments to other methods, and whatever
else any object can be. Let’s look at the script that demonstrates this.

The Code

#!/usr/bin/env ruby
make_incrementer.rb

� def make_incrementer(delta)
Procs return lambda { |x| x + delta }

end

� incrementer_proc_of = Hash.new()
[10, 20].each do |delta|
 incrementer_proc_of[delta] = make_incrementer(delta)
end

� incrementer_proc_of.each_pair do |delta,incrementer_proc|
Calling Procs puts "#{delta} + 5 = #{incrementer_proc.call(5)}\n"

end

Func ti onal ism with B locks and Procs 101

� puts

The each_pair � incrementer_proc_of.each_pair do |delta,incrementer_proc|
Method � (0..5).to_a.each do |other_addend|

 puts "#{delta} + #{other_addend} = " +
 incrementer_proc.call(other_addend) + "\n"
 end
end

How It Works

At � we define a method called make_incrementer. It takes a single argument
called delta and returns a Proc (created via lambda) that adds delta to some-
thing else, represented by x. What is that something else? We don’t know yet.
That is precisely the point of this method—it allows us to define an operation
that can be performed multiple times using different parameters, just like
any other function.

We can see how this is useful in the rest of this script. At � we define a new
Hash called incrementer_proc_of. For each of the values 10 and 20, we make an
incrementer (using either 10 or 20 for the value of delta in the make_incrementer
method) and assign the resulting Proc into the incrementer_proc_of Hash. Start-
ing at �, we read each delta and Proc pair out of the Hash using the each_pair
method and then use puts to print a line describing that delta value and the
result of calling its Proc with the argument of 5.

We � print a spacer with puts (just for ease of reading the output),
and finally � output another set of data. This time we add another loop
for a value called other_addend; this is a variable that serves a role analogous
to our static value of 5 in the loop (�). Let’s run this program with
ruby -w make_incrementer.rb and look at the output.

The Results

20 + 5 = 25
10 + 5 = 15

20 + 0 = 20
20 + 1 = 21
20 + 2 = 22
20 + 3 = 23
20 + 4 = 24
20 + 5 = 25
10 + 0 = 10
10 + 1 = 11
10 + 2 = 12
10 + 3 = 13
10 + 4 = 14
10 + 5 = 15

102 Chap te r 6

The first two lines before the empty line show the output of the first loop
(with the static value of 5 for the addend), while the rest of the output shows
the result of the second loop, which uses the other_addend variable. Notice
also that each_pair does not order by key, which is why my output has the
delta value of 20 appearing first. Depending on your implementation of
Ruby, you might see a delta of 10 first.

Now you know how to create Procs. Let’s learn how to use them for
something more useful than just demonstrating themselves.

#21 Using Procs for Filtering (matching_members.rb)
So far, we’ve seen that to create a Proc, we call lambda with a block describing
what that Proc should do. This would lead you to believe that there is a special
relationship between Procs and blocks, which there is. Our next script demon-
strates how to use Procs in place of blocks.

The Code

#!/usr/bin/env ruby
matching_members.rb

=begin rdoc
Extend the built-in Array class.
=end
class Array

=begin rdoc
Takes a Proc as an argument, and returns all members
matching the criteria defined by that Proc.
=end

Procs as � def matching_members(some_proc)
Arguments find_all { |i| some_proc.call(i) }

 end

end

� digits = (0..9).to_a
lambdas = Hash.new()
lambdas['five+'] = lambda { |i| i >= 5 }
lambdas['is_even'] = lambda { |i| (i % 2).zero? }

� lambdas.keys.sort.each do |lambda_name|
� lambda_proc = lambdas[lambda_name]
� lambda_value = digits.matching_members(lambda_proc).join(',')
� puts "#{lambda_name}\t[#{lambda_value}]\n"

end

How It Works
In this script, we open the Array class in order to add a new method called
matching_members (�). It takes a Proc (creatively called some_proc—see the note
below) as an argument and returns the result of calling find_all, which (as its

Func ti onal ism with B locks and Procs 103

name suggests) finds all members for which the block is true. In this case, the
condition in the block is the result of calling the Proc argument on the Array
with the Array member in question as the argument to call. After we finish
defining our new method, we set up our digits Array and our Procs with
appropriate names in the lambdas Hash at �.

NOTE Some of my co-workers make fun of the variable and method names I use—like some_proc,
for example. I think names should either be very specific, like save_rates_to_local_file!,
or explicitly generic, like some_proc. For truly generic operations, I often use variable
names like any_proc or any_hash, which tell you explicitly that the operations being per-
formed on them are meant to be useful for any Proc or Hash.

At �, we loop through each sorted lambda_name, and at � we extract each
Proc out as a variable called lambda_proc. We then find_all members of the
digits Array that match the condition described by that Proc at � and puts
an appropriate message at �.

Running the Script

Let’s see it in action with ruby -w matching_members.rb.

The Results

five+ [5,6,7,8,9]
is_even [0,2,4,6,8]

In each case, we filter the members of the digits Array based on some
specific conditions. Hopefully, you’ll find that the names I chose for each
Proc match what that Proc does. The five+ Proc returns true for any argu-
ment that is five or greater.2 We see that the results of calling five+ on each
digit in turn returns the correct digits. Similarly, the is_even Proc filters its input,
only returning true for arguments that are even, where evenness is defined as
having a modulus two equal to zero. Again, we get the correct numbers.

What happens when we want to filter based on multiple criteria? We could
filter once with one Proc, assign that result into an Array, and then filter that
result by the second criterion. That’s perfectly valid, but what if we have an
unknown number of filtering conditions? We want a version of matching_members
that can take an arbitrary number of Procs. That’s our next script.

#22 Using Procs for Compounded Filtering
(matching_compound_members.rb)

In this script, we’ll filter Arrays using an arbitrary number of Procs. As before,
we’ll open up the Array class, this time adding two methods. Again, we’ll
filter digits based on simple mathematical tests. Let’s take a look at the
source code and see what’s different.

2 It does this by implicit Boolean evaluation of the expression i >= 5.

104 Chap te r 6

The Code

#!/usr/bin/env ruby
matching_compound_members.rb

=begin rdoc
Extend the built-in Array class.
=end
class Array

=begin rdoc
Takes a block as an argument and returns a list of
members matching the criteria defined by that block.
=end

Block � def matching_members(&some_block)
Arguments find_all(&some_block)

 end

=begin rdoc
Takes an Array of Procs as an argument
and returns all members matching the criteria defined
by each Proc via Array.matching_members.
Note that it uses the ampersand to convert from
Proc to block.
=end

� def matching_compound_members(procs_array)
 procs_array.map do |some_proc|
 # collect each proc operation

� matching_members(&some_proc)
� end.inject(self) do |memo,matches|

 # find all the intersections, starting with self
 # and whittling down until we only have members
 # that have matched every proc

Array � memo & matches
Intersections end

� end

end

Now use these methods in some operations.
� digits = (0..9).to_a

lambdas = Hash.new()
lambdas['five+'] = lambda { |i| i if i >= 5 }
lambdas['is_even'] = lambda { |i| i if (i % 2).zero? }
lambdas['div_by3'] = lambda { |i| i if (i % 3).zero? }

lambdas.keys.sort.each do |lambda_name|
 lambda_proc = lambdas[lambda_name]
 lambda_values = digits.matching_members(&lambda_proc).join(',')

� puts "#{lambda_name}\t[#{lambda_values}]\n"
end

� puts "ALL\t[#{digits.matching_compound_members(lambdas.values).join(',')}]"

Func ti onal ism with B locks and Procs 105

How It Works

We start by defining a method called matching_members (�), just as before.
However, this time our argument is called some_block instead of some_proc, and
it is preceded by an ampersand. Why?

Blocks, Procs, and the Ampersand

The ampersand (&) is Ruby’s way of expressing blocks and Procs in terms
of each other. It’s very useful for arguments to methods, as you might
imagine. Blocks, you may remember, are simply bits of code between
delimiters such as braces ({ "I'm a block!" }) or the do and end keywords
(do "I'm also a block!" end). Procs are objects made from blocks via the
lambda method. Either of them can be passed into methods, and the amper-
sand is the way to use one as the other. Let’s test this in irb.

irb(main):001:0> class Array
& Notation for
Blocks and Procs

irb(main):002:1> def matches_block(&some_block)
irb(main):003:2> find_all(&some_block)
irb(main):004:2> end
irb(main):005:1> def matches_proc(some_proc)
irb(main):006:2> find_all(&some_proc)
irb(main):007:2> end
irb(main):008:1> end
=> nil

We open the Array class and add a method called matches_block; this
method takes a block (with an ampersand prefix), effectively duplicating the
behavior of the existing find_all method, which it calls. We also add another
method called matches_proc that calls find_all again, but takes a Proc this time.
Then we try them out.

irb(main):009:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):010:0> digits.matches_block { |x| x > 5 }
=> [6, 7, 8, 9]
irb(main):011:0> digits.matches_proc(lambda { |x| x > 5 })
=> [6, 7, 8, 9]

The matches_block method dutifully takes a block and passes it along to
the find_all method, transforming it along the way with the ampersand—
once on input and again when passed to find_all. The matches_proc method
takes a Proc and passes that on to find_all, but it only needs to transform
with the ampersand once.

You might think that we could omit the ampersand and just treat a block
argument as a standard variable, like in irb below.

irb(main):001:0> class Array
irb(main):002:1> def matches_block(some_block)
irb(main):003:2> find_all(some_block)
irb(main):004:2> end

106 Chap te r 6

irb(main):005:1> end
=> nil
irb(main):006:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):007:0> digits.matches_block { |x| x > 5 }
ArgumentError: wrong number of arguments (0 for 1)
 from (irb):7:in `matches_block'
 from (irb):7
 from :0

That doesn’t work, as you see. Ruby keeps track of the number of
arguments that a given method, block, or Proc expects (a concept called
arity) and complains when there is a mismatch. Our irb example expected a
“real” argument, not just a block, and complained when it didn’t get one.

NOTE The gist of the ArgumentError is that blocks are akin to “partial” or “unborn” blocks
and need the lambda method to be made into full-fledged Procs, which can be used as
real arguments to methods. Some methods, like find_all, can handle block arguments,
but these block arguments are treated differently than regular arguments and don’t
count toward the number of “real” arguments. We’ll cover this later when we discuss
the willow_and_anya.rb script. For now, note that our new version of matching_members
takes a block instead of a Proc.

Filtering with Each Proc via map

We also define a new method called matching_compound_members at �. The
matching_compound_members method takes an Array argument called procs_array
and maps a call to matching_members onto each of procs_array’s Proc elements;
this transforms the elements into blocks with the ampersand at � while doing
the mapping. This results in an Array, each of whose members is an Array
containing all members of the original Array that match the conditions defined
by the Proc. Confused? Take a look in irb.

irb(main):001:1> class Array
irb(main):002:1> def matching_compound_members(procs_array)
irb(main):003:2> procs_array.map do |some_proc|
irb(main):004:3* find_all(&some_proc)
irb(main):005:3> end
irb(main):006:2> end
irb(main):007:1> end
=> nil
irb(main):008:0> digits.matching_compound_members([lambda { |x| x > 5 },
lambda { |x| (x % 2).zero? }])
=> [[6, 7, 8, 9], [0, 2, 4, 6, 8]]

On lines one through seven, we add a shortened version of matching_members
to all Arrays. We call it on line eight, and find that the result is an Array of
Arrays. The first sub-array is all digits greater than five—the result of the first
Proc. The second sub-array is all even digits—the result of the second Proc.
That’s what we have at the end of the map (�) inside matching_compound_members.

Func ti onal ism with B locks and Procs 107

Finding the Intersections with inject

We don’t stop there. Next we call our old friend the inject method on that
Array of Arrays. You may remember that inject performs an operation suc-
cessively and has a memory for intermediate results. That will be very useful
for us. The inject method takes an optional non-block element for the
initial state of its memory. In our script we use self (�), meaning that the
memory state will be the self Array as it exists prior to any filtering. We also
say that each member of the Array resulting from the map operation will be
called matches. This makes sense because the matches variable represents
members of the initial Array that were found to match the Proc used for
that particular stage of the map operation.

Array Intersections

At �, we call a method we haven’t seen before on memo. This method happens
to be expressed with the ampersand character, but it has nothing to do with
converting blocks and Procs into each other; it has more to do with set math.

irb(main):001:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):002:0> evens = digits.find_all { |x| (x % 2).zero? }
=> [0, 2, 4, 6, 8]
irb(main):003:0> digits & evens
=> [0, 2, 4, 6, 8]
irb(main):004:0> half_digits = digits.find_all { |x| x < 5 }
=> [0, 1, 2, 3, 4]
irb(main):005:0> evens & half_digits
=> [0, 2, 4]

Can you guess what this ampersand means? It represents the intersection
of two composite data sets. It basically means Find all members of myself that
also belong to this other thing. When we call it within our inject, we ensure that
once a given Array element fails one test, it no longer appears as a can-
didate for the next test. This happens because the memory of the inject
method (represented by the variable called memo) is automatically set to the
return value of each iteration of the inject method. At �, when we’re done
with all of our mapping and injecting, we’re left with only those members
of the original Array that pass the tests defined by every single Proc in the
procs_array argument. Since Ruby returns the last expression evaluated in a
method, matching_compound_members returns an Array of all members of self
that pass every test represented by the members of procs_array.

After some setup at � similar to that for the previous script, we output
results using puts at both � and �. Let’s see it in action.

The Results

div_by3 [0,3,6,9]
five+ [5,6,7,8,9]
is_even [0,2,4,6,8]
ALL [6]

108 Chap te r 6

We call each of these filtering Procs on the digits from zero to nine,
getting the correct members each time. We finally output the prefix ALL
followed by the members that pass all the tests. The number six is the only
digit from zero to nine that is divisible by three, is greater than or equal to
five, and is even. Therefore, it is the only member of the final output.

Hacking the Script

Try defining your own Procs using lambda. You can add them to the section
at � or replace some of the existing Procs. Feel free to alter the range used
to create the digits Array as well. A larger range of values in digits could help
demonstrate more complex relationships among a greater number of filter-
ing Procs.

#23 Returning Procs as Values (return_proc.rb)

Let’s look at a further demonstration of how to use Procs as data generated
by another function. It’s very similar to the make_incrementer.rb script.

The Code

#!/usr/bin/env ruby
return_proc.rb

� def return_proc(criterion, further_criterion=1)

Procs as Hash
Values

 proc_of_criterion = {
 'div_by?' => lambda { |i| i if (i % further_criterion).zero? },
 'is?' => lambda { |i| i == further_criterion }
 }

 # allow 'is_even' as an alias for divisible by 2
� return return_proc('div_by?', 2) if criterion == ('is_even')

� proc_to_return = proc_of_criterion[criterion]

 fail "I don't understand the criterion #{criterion}" unless proc_to_return
 return proc_to_return

end

� require 'boolean_golf.rb'

Demonstrate calling the proc directly
� even_proc = return_proc('is_even') # could have been ('div_by', 2)

div3_proc = return_proc('div_by?', 3)
is10_proc = return_proc('is?', 10)

� [4, 5, 6].each do |num|
Making Strings
with %Q

 puts %Q[Is #{num} even?: #{even_proc[num].true?}]
 puts %Q[Is #{num} divisible by 3?: #{div3_proc[num].true?}]

Func ti onal ism with B locks and Procs 109

 puts %Q[Is #{num} 10?: #{is10_proc[num].true?}]
� printf("%d is %s.\n\n", num, even_proc[num].true? ? 'even' : 'not even')

end

Demonstrate using the proc as a block for a method
� digits = (0..9).to_a

even_results = digits.find_all(&(return_proc('is_even')))
div3_results = digits.find_all(&(return_proc('div_by?', 3)))

The inspect � puts %Q[The even digits are #{even_results.inspect}.]
Method puts %Q[The digits divisible by 3 are #{div3_results.inspect}.]

puts

The Results

If we call this with the command ruby -w return_proc.rb, we get the following
output, all of which is true.

Is 4 even?: true
Is 4 divisible by 3?: false
Is 4 10?: false
4 is even.

Is 5 even?: false
Is 5 divisible by 3?: false
Is 5 10?: false
5 is not even.

Is 6 even?: true
Is 6 divisible by 3?: true
Is 6 10?: false
6 is even.

The even digits are [0, 2, 4, 6, 8].
The digits divisible by 3 are [0, 3, 6, 9].

How It Works

We define a method called return_proc starting at � that takes a mandatory
criterion and an optional further_criterion, assumed to be one. It then defines
a Hash called proc_of_criterion with keys that match a specific criterion and
values that are Procs corresponding to each criterion. It then allows a caller
to use an alias is_even to mean Divisible by two at �. It does this by recursively
calling itself with the arguments div_by? and 2 when the alias is used.

Assuming that the is_even alias is not used, the method tries to read the
appropriate Proc to use at �; it fails if it gets a criterion it doesn’t understand.3
If it gets past this point, we know that the method understands its criteria,
because it found a Proc to use. It then returns that Proc, appropriately called
proc_to_return.

3 Were you to modify or extend this method, you could simply add more options to the
proc_of_criterion Hash.

110 Chap te r 6

We now know that return_proc lives up to its name and returns a Proc.
Let’s use it. At �, we require one of our first scripts, boolean_golf.rb. You may
recall that that script adds the methods true? and false? to every object. This
will come in handy for our next few lines. At �, we define three Procs that
can test numbers for certain conditions. We then use those Procs within the
each block starting at �. For each of the Integers 4, 5, and 6, we test for even-
ness, being divisible by three, and being equal to ten. We also use both the
printf command that we saw in the line_num.rb script and the main ternary
operator, both of which happen at �.

Proc.call(args) vs. Proc[args]

Notice that we call our Procs with a different syntax here—we don’t use the
call method at all. We can simply put whatever arguments we would use
inside square brackets, and it’s just like using the call method. Let’s verify
this in irb.

irb(main):001:0> is_ten = lambda { |x| x == 10 }
=> #<Proc:0xb7d0c8a4@(irb):1>
irb(main):002:0> is_ten.call(10)
=> true
irb(main):003:0> is_ten[10]
=> true
irb(main):004:0> is_ten.call(9)
=> false
irb(main):005:0> is_ten[9]
=> false

I chose to use the bracket syntax in these examples for the sake of brevity.
So far, I’ve shown how to use Procs that have been returned directly from the
return_proc method. But we can also do other things, such as converting
between blocks and Procs.

Using Procs as Blocks

From � to the end of the script, we see how we can cast the output of
return_proc (which we know to be a Proc) into a block with the ampersand
without ever storing the Proc in a variable. After defining our usual digits
Array, we call find_all twice, assigning the results into even_results and
div3_results, respectively. Remember that find_all takes a block. The
ampersand can convert any expression that evaluates to a Proc into a block,
and (return_proc('is_even') is an expression that returns (evaluates to) a Proc.
Therefore, we can coerce (or cast) the expression (return_proc('is_even')
into a perfectly valid block for find_all. We do this, outputting the results via
puts at �.

The inspect Method

Notice that we call a new method called inspect on each set of results to retain
the brackets and commas that we normally associate with members of Arrays.
The inspect method returns a String representation of whatever object it’s

Func ti onal ism with B locks and Procs 111

called on. It is slightly different from the to_s method we’ve already seen.
Let’s check that out in irb.

irb(main):001:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):002:0> digits.to_s
=> "0123456789"
irb(main):003:0> digits.inspect
=> "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"

You can see that the output of inspect is a bit prettier than the output of
to_s. It also retains more information about what type of object it was called on.

You should now be pretty comfortable with calling Procs, passing them
around, reading them out of Hashes, and converting them to and from blocks,
whether with a lambda or when passing around to methods. Now let’s look at
nesting lambdas within other lambdas.

#24 Nesting lambdas

Let’s review Procs for a bit. Procs are just functions that can be treated as
data, what functional programming languages call first-class functions. Functions
can create Procs; we saw that both make_incrementer and return_proc return
Procs of different sorts. Given all that, what prevents us from making a Proc
that returns another Proc when called? Nothing at all.

In the make_exp example below, we create specific versions of Procs that
raise an argument to some specified power. That power is the exp argument
taken by the outer lambda, which is described as a free variable because it is not
an explicit argument to the inner lambda.

The inner lambda, which is returned, has a bound variable called x. It is
bound because it is an explicit argument to that inner lambda. That variable x
is the number that will be raised to the specified power. This example is short,
and the returned value at each stage is very important, so we’ll do this entirely
in irb.

The Code

irb(main):001:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Nested
Lambdas

irb(main):002:0> make_exp_proc = lambda { |exp| lambda { |x| x ** exp } }
=> #<Proc:0xb7c97adc@(irb):2>
irb(main):003:0> square_proc = make_exp_proc.call(2)
=> #<Proc:0xb7c97b18@(irb):2>
irb(main):004:0> square_proc.call(5)
=> 25
irb(main):005:0> squares = digits.map { |x| square_proc[x] }
=> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

112 Chap te r 6

How It Works

We see up to this point that make_exp_proc is a Proc, which returns a Proc
when called. That resulting Proc raises its argument to the exponent used in
the initial call of make_exp_proc. Since in our example, we called make_exp_proc
with 2, we created a Proc that squares its argument, appropriately calling it
square_proc. We also see that the squaring Proc can be used in a mapping oper-
ation onto the digits Array, and that it returns the correct squared values.

irb(main):006:0> cube_proc = make_exp_proc.call(3)
=> #<Proc:0xb7c97b18@(irb):2>
irb(main):007:0> cube_proc.call(3)
=> 27
irb(main):008:0> cubes = digits.map { |x| cube_proc[x] }
=> [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

We also see in the rest of the example that make_exp_proc is flexible and
can take arguments other than 2. It works perfectly well with an argument of
3, producing a cubing Proc, which we can use in the same ways as the squar-
ing Proc.

Up to this point, our Procs have tended to implement simple mathe-
matical operations, like addition, multiplication, or exponentiation. But
Procs are functions like any other, and they can output any type of value.
Let’s move on to the next script, which uses Procs that manipulate Strings.

#25 Procs for Text (willow_and_anya.rb)

As I was planning the functional programming chapter of this book, I was
watching DVDs of Joss Whedon’s Buffy the Vampire Slayer. I mention this because
I had Procs and blocks on my brain, and I happened to encounter two very
good candidates for text-based examples of lambda operations. In an episode
called “Him,” there is discussion of a “love spell”, an “anti-(love spell) spell”,
and an “anti-(anti-(love spell) spell) spell”. That’s a great example of succes-
sive modifications via a simple function. In another episode called “Same
Time, Same Place,” there is a conversation that demonstrates simple variable
substitution. Both are great examples of simple functions and are good venues
to explore how Procs in Ruby differ based on how we choose to create them.
Here’s the source code.

NOTE You obviously don’t need to like Buffy to benefit from reading about these examples.
The specific content that the scripts modify is essentially arbitrary.

The Code

This code consists of three distinct files: one each for the two necessary classes,
and one separate script meant to be directly executed.

Func ti onal ism with B locks and Procs 113

The Him Class

#!/usr/bin/env ruby -w
him.rb

� class Him

 EPISODE_NAME = 'Him'
 BASE = 'love spell'

Constant Procs ANTIDOTE_FOR = lambda { |input| "anti-(#{input}) spell" }

Class Methods � def Him.describe()
 return <<DONE_WITH_HEREDOC

In #{EPISODE_NAME},
 Willow refers to an "#{ANTIDOTE_FOR[BASE]}".
 Anya mentions an "#{ANTIDOTE_FOR[ANTIDOTE_FOR[BASE]]}".
 Xander mentioning an "#{ANTIDOTE_FOR[ANTIDOTE_FOR[ANTIDOTE_FOR[BASE]]]}"
might have been too much.

DONE_WITH_HEREDOC
 end

end

The SameTimeSamePlace Class

#!/usr/bin/env ruby -w
same_time_same_place.rb

� class SameTimeSamePlace

 EPISODE_NAME = 'Same Time, Same Place'

=begin rdoc
This Hash holds various procedure objects. One is formed by the generally
preferred Kernel.lambda method. Others are created with the older Proc.new
method, which has the benefit of allowing more flexibility in its argument
stack.
=end

� QUESTIONS = {

 :ternary => Proc.new do |args|
 state = args ? args[0] : 'what'
 location = args ? args[1] : 'what'
 "Spike's #{state} in the #{location}ment?"
 end,

 :unless0th => Proc.new do |*args|
 args = %w/what what/ unless args[0]

114 Chap te r 6

 "Spike's #{args[0]} in the #{args[1]}ment?"
 end,

Flexible Arity
with Proc.new

 :nitems => Proc.new do |*args|
 args.nitems >= 2 || args.replace(['what', 'what'])
 "Spike's #{args[0]} in the #{args[1]}ment?"
 end,

 :second_or => Proc.new do |*args|
 args[0] || args.replace(['what', 'what'])
 "Spike's #{args[0]} in the #{args[1]}ment?"
 end,

 :needs_data => lambda do |args|
 "Spike's #{args[0]} in the #{args[1]}ment?"
 end

 }

� DATA_FROM_ANYA = ['insane', 'base']

� def SameTimeSamePlace.describe()

 same_as_procs = [
 SameTimeSamePlace.yield_block(&QUESTIONS[:nitems]),
 QUESTIONS[:second_or].call(),
 QUESTIONS[:unless0th].call(),
 SameTimeSamePlace.willow_ask,
]

return <<DONE
In #{EPISODE_NAME},
 Willow asks "#{QUESTIONS[:ternary].call(nil)}",
 #{same_as_procs.map do |proc_output|
 'which is the same as "' + proc_output + '"'

end.join("\n ")
 }
 Anya provides "#{DATA_FROM_ANYA.join(', ')}", which forms the full question
 "#{SameTimeSamePlace.yield_block(DATA_FROM_ANYA, &QUESTIONS[:needs_data])}".

DONE
 end

=begin rdoc
Wrapping a lambda call within a function can provide
default values for arguments.
=end

� def SameTimeSamePlace.willow_ask(args = ['what', 'what'])
 QUESTIONS[:needs_data][args]
 end

Func ti onal ism with B locks and Procs 115

=begin rdoc
Passing a block as an argument to a method
=end

� def SameTimeSamePlace.yield_block(*args, &block)
 # yield with any necessary args is the same as calling block.call(*args)

The yield
Method

 yield(*args)
 end

end

The willow_and_anya.rb Script

#!/usr/bin/env ruby -w
willow_and_anya.rb

Arrays with %w %w[him same_time_same_place].each do |lib_file|
 require "#{lib_file}"
end

[Him, SameTimeSamePlace].each do |episode|
� puts episode.describe()

end

How It Works

This script performs some complex operations. Let’s consider each class
individually and then look at the separate script that uses them.

The Him Class: Creating Procs with lambda

We define a class called Him at �. It has three constants: its own EPISODE_NAME,
a BASE item, and a lambda operation to create an ANTIDOTE_FOR something.4
It has one class method called Him.describe (�) that returns a long String
constructed via a here doc. Remember that you can call a Proc with either
some_proc.call(args) or some_proc[args]. In this case, we’ll use the shorter
bracket version again. We’ll report that the character named Willow refers to
the antidote for the base spell. Her associate Anya then mentions the antidote
for that antidote. Whedon avoided yet another call to the antidote-creating
Proc in his show, but our method will continue, outputting the antidote for
the antidote for the antidote.

The SameTimeSamePlace Class: Alternatives to lambda for Creating Procs

Our next class explores more options. SameTimeSamePlace starts at � and it defines
a Hash constant called QUESTIONS right away at �. Its keys are Symbols, and its
values are Procs. Up until now, we’ve always created Procs with the lambda method,
but we know that Procs are instances of the class Proc. Traditionally, you can
create an instance by calling the new method on a class. Let’s try that in irb.

4 I mentioned earlier in the book that lambdas can make excellent Class Constants. Now you can
see that in action.

116 Chap te r 6

irb(main):001:0> is_even_proc1 = lambda { |x| (x % 2).zero? }
=> #<Proc:0xb7cb687c@(irb):1>
irb(main):002:0> is_even_proc2 = Proc.new { |x| (x % 2).zero? }
=> #<Proc:0xb7cacb4c@(irb):2>
irb(main):003:0> is_even_proc1.call(7)
=> false
irb(main):004:0> is_even_proc2.call(7)
=> false
irb(main):005:0> is_even_proc1.call(8)
=> true
irb(main):006:0> is_even_proc2.call(8)
=> true

That seems to work fine, and each Proc behaves as expected. In actual
practice, there is little difference between Procs created via lambda and Procs
created via Proc.new. Proc.new is a bit more flexible about how it handles argu-
ments, which we’ll soon see. For now, note that the value for the key :ternary
in our QUESTIONS Hash at � is a Proc that asks if someone named Spike has a
certain state (which is neither already known nor static) in a certain location
(which is also neither already known nor static).

NOTE Don’t be fooled by this script’s surface-level silliness. It actually clarifies some very inter-
esting behavior in Ruby’s Procs with regard to arguments and arity. Later scripts that
use these techniques for tasks that are more useful in the real world include scripts that
convert temperatures and play audio files for a radio station.

Flexible Arity for Proc.new

Next, we’ll start exploring Proc.new more for the :unless0th Symbol key. You’ll
notice that the *args argument to this Proc has a preceding asterisk. This
option is available to Procs created with Proc.new, but not to Procs created
with lambda. It indicates that the argument with the asterisk is optional.
Immediately inside the :unless0th Proc, we set the value of args if it has no
value at the zeroth index; then we output the same question as the :ternary
version. The only difference is that the args Array is optional for this version.
Note also that we create our double "what" default Array with a %w with slash
delimiters. This is a very handy way to create single-word Arrays.

For the :nitems Symbol key, we use an optional *args with Proc.new again.
The only difference between this version and the :unless0th version is the way
this tests args. In this version, we call the nitems method on the args Array,
which returns the number of non-nil items. That number needs to be two or
greater; if it isn’t, that means we don’t have enough elements, and so we will
replace args with our default set of two "what"s, just as in the previous Procs.

For the :second_or Symbol key, we see yet another Proc within optional
args created with Proc.new. This version simply tests whether or not the second
item in the args Array can be read. If it cannot be read, we replace args just as
in the :nitems version.

Finally, we create a Proc the way we always have, using lambda. Since argu-
ments to lambda Procs are not optional, we identify this one with the Symbol
:needs_data. Note that this makes the internals of the Proc simpler. It returns

Func ti onal ism with B locks and Procs 117

its output value, and we assume that it gets what it needs. After defining our
Procs, the last of which needs data, we should probably have some data. Our
source is Anya again, and we define her DATA_FROM_ANYA Array at �.

On to the method SameTimeSamePlace.describe at �. It takes no arguments
and defines a local Array variable called same_as_procs. Its first element is the
return value of calling SameTimeSamePlace.yield_block (defined at �) with an
argument that is the Proc associated with the :nitems key in the QUESTIONS
Hash. All of this is cast into a block with the ampersand. We haven’t seen the
yield_block method yet, but it takes two arguments: *args and &block. The first
of these indicates All of your regular arguments, and the second means Whatever
block you got.

Blocks, Arguments, and yield

Remember how I mentioned that blocks are not considered “real” arguments?
Using an ampersand is the way to explicitly refer to the block used to call a
method. Since we have the group of arguments, whatever they may be, and
we have the block, we could call it via block.call(*args). That approach would
work, but we have yet another alternative. Ruby has a method called yield
that means Call whichever block you received with whichever arguments are passed to
yield. When you get comfortable with this script, try replacing the yield line
in yield_block with block.call(*args). It will not change the script’s behavior
at all. Let’s verify some of this in irb.

irb(main):001:0> def yield_block(*args, &block)
irb(main):002:1> yield(*args)
irb(main):003:1> end
=> nil
irb(main):004:0> yield_block(0) { |x| x + 1 }
=> 1
irb(main):005:0> yield_block("I am a String") { |x| x.class }
=> String
irb(main):006:0> yield_block("How many words?") { |x| x.split(' ').nitems }
=> 3
irb(main):007:0> yield_block(0, 1) { |x,y| x == y }
=> false
irb(main):008:0> yield_block(0, 1) { |x,y| x < y }
=> true

Handy, isn’t it? The yield_block method is completely generic, taking any
number of regular arguments and any block and executing (or yielding) that
block with those arguments. It’s a very powerful technique.

Now we understand how our script is using the yield_block method within
SameTimeSamePlace.describe (�). The next two elements of same_as_procs are the
return values of Procs pulled out of the QUESTIONS Hash with the call method.
Our last element is the return value of SameTimeSamePlace.willow_ask (�). This
method provides a workaround for Procs created with lambda that need a
specific number of arguments. willow_ask wraps a call to such a Proc within a
traditional method that takes an optional argument. That argument is forcibly
set to whatever the Proc expects before it ever gets to the Proc. This is another
alternative for dealing with the arguments to a Proc.

118 Chap te r 6

That’s it for the elements of our same_as_procs Array. Now let’s use it. We
return a long here doc String inside SameTimeSamePlace.describe (�). This here
doc String consists of several lines. The first calls the QUESTIONS[:ternary] Proc
with one explicitly nil argument. This will cause our state and location vari-
ables to be set to their default values within the Proc. The next four lines of
output are the result of mapping a String outputter onto the elements of
same_as_procs. Remember that those elements are the return values of their
respective Procs, not the Procs themselves. They have already been evaluated
before being put into the Array.

The last few lines of the here doc report the data provided by Anya, which
is defined as the constant Array DATA_FROM_ANYA (�). We call the yield_block
method, passing in DATA_FROM_ANYA as the “real” arguments and the value
returned from QUESTIONS[:needs_data], cast from a Proc into a block. Then we
close our here doc and end the SameTimeSamePlace.describe method.

Using Both Him and SameTimeSamePlace in willow_and_anya.rb

The first thing we do in the main running script, willow_and_anya.rb, is require
each lib_file needed. Then we cycle through each class, referred to by the
name episode, and describe that episode (�), implemented in each specific
case, as already discussed.

Running the Script

Let’s look at the output returned by executing ruby -w willow_and_anya.rb.

The Results

In Him,
 Willow refers to an "anti-(love spell) spell".
 Anya mentions an "anti-(anti-(love spell) spell) spell".
 Xander mentioning an "anti-(anti-(anti-(love spell) spell) spell) spell"

might have been too much.

In Same Time, Same Place,
 Willow asks "Spike's what in the whatment?",
 which is the same as "Spike's what in the whatment?"
 which is the same as "Spike's what in the whatment?"
 which is the same as "Spike's what in the whatment?"
 which is the same as "Spike's what in the whatment?"
 Anya provides "insane, base", which forms the full question
 "Spike's insane in the basement?".

That’s a lot of data about some pretty esoteric programming topics.
Congratulations for sticking with me this far. If you’re genuinely curious
about how this all works, I have some questions for you to ponder.

Func ti onal ism with B locks and Procs 119

Hacking the Script

How would you duplicate just the successive lambda outputs of Him.describe
using inject? Here’s what I came up with. Maybe you can find a better
alternative.

 def Him.describe2(iterations=3)
 (1..iterations).to_a.inject(BASE) do |memo,output|
 ANTIDOTE_FOR[memo]
 end
 end

Another question you may find interesting is why the describe methods
are attached to classes, rather than instances. The reason is that the episode
variable at � represents a class, not an instance. If we wanted to use instance
methods, we would need to create an instance of either Him or SameTimeSamePlace,
rather than just calling the describe method on each class directly.

Chapter Recap

What was new in this chapter?

� Creating Procs with lambda

� Using Procs as arguments to methods

� Using blocks as arguments to methods, including your own new methods

� Using Procs as first-class functions

� The inspect method

� Nesting lambdas within other lambdas

� Proc.new

� The yield method

I have a confession to make. I love object orientation for many program-
ming tasks, but this chapter about Ruby’s functional heritage was the most fun
to write so far. Functional programming has been respected in academia for
decades, and it is starting to get some well-deserved attention from folks in
the computer programming industry and others who are just curious about
what it can do. Now that we know some functional programming techniques,
let’s put them to use and even try to optimize them, which is the subject of
our next chapter.

7
U S I N G , O P T I M I Z I N G , A N D

T E S T I N G F U N C T I O N A L
T E C H N I Q U E S

This chapter shows some recursive and other
functional solutions to simple problems, as

well as some ways we can test and improve
these solutions. Two very common programming topics that demon-

strate functional programming are the factorial and Fibonacci mathematical
series—largely because they’re so easily described using recursive means.1

The factorial of a given positive number is the product of all the integers
from 1 to that number, so factorial(3) = 3 × 2 × 1, factorial(5) = 5 × 4 × 3 × 2 × 1,
and so on. This can be expressed generally as:

factorial(x) = x × (x − 1) × (x − 2) . . . 1

The Fibonacci series is infinite, but you can look at a slice of it. The
Fibonacci value for 0 is 0, and the value for 1 is 1. Subsequent values are
calculated, rather than preset. The number in the Fibonacci series at a given
index is the sum of the previous two numbers. Therefore, the Fibonacci series

1 This is as good a place as any to mention tail recursion. A function or method is tail recursive if it can
be easily converted from recursion (which is friendly to human readers at a high level of abstraction)
to iteration (which is friendlier to computer hardware). The Ruby interpreter does not currently do
such conversion. I mention this because we'll be doing a lot of recursing in this chapter.

122 Chap te r 7

starts like this: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and so on. The formula for
Fibonacci values for numbers greater than one can be expressed generally
as Fibonacci(x) = Fibonacci(x-1) + Fibonacci(x-2).

If you think that the general definitions of both factorials and Fibonaccis
look recursive, you’re right. We’ll look at Ruby code that generates both types
of numbers using recursion.

#26 Basic Factorials and Fibonaccis (factorial1.rb through
fibonacci5.rb)

The most common criticism of recursion and other functional techniques
is that they are resource intensive. Each new version of these factorial or
Fibonacci scripts adds some feature intended to optimize the code, or produce a
speed improvement. In some cases, these features result in a very dramatic
improvement, but in other cases, they either fail to improve the code or some-
times even make it worse. The places where these attempts fail to improve
speed are often as interesting as where they succeed. There’s an old adage
among programmers: Premature optimization is the root of all evil.2 Keep that in
mind while reading these examples.

The Code

For this chapter, we’ll be looking at some short scripts in pairs. Here’s
factorial1.rb:

#!/usr/bin/env ruby
factorial1.rb

class Integer

 def fact()
� return 1 if (self.zero?) or (self == 1)
� return self * (self-1).fact

 end

end

And here’s fibonacci1.rb:

#!/usr/bin/env ruby
fibonacci1.rb

class Integer

 def fib()
� return 0 if (self.zero?)

2 Commonly attributed to Donald Knuth, a computer programming genius if there ever was one.

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 123

 return 1 if self == 1
� return (self-1).fib + (self-2).fib

 end

end

How It Works

For factorial1.rb and fibonacci1.rb, we add a new method to all Integers:
either fact or fib, respectively. In both cases, we have our exit conditions that
return either zero or one. For factorials, we return 1 when self is either 0 or 1,
testing for 0 with the predicate zero? (�). For the Fibonacci series, we return
either zero or one at �. At either � or �, we return the appropriate calculated
value: self times the factorial of one lower than self (�), or the sum of the
previous two Fibonaccis (�), matching the definitions I gave for factorials
and Fibonaccis, respectively. Both of these scripts are simple, accurate ways
to produce the mathematical procedures we want. Let’s look at the results
using irb. Note that we can require more than one library file with multiple
-r flags.3

The Results

$ irb -r factorial1.rb -r fibonacci1.rb
irb(main):001:0> 3.fact
=> 6
irb(main):002:0> 4.fact
=> 24
irb(main):003:0> 5.fact
=> 120

The factorial of 3 is 3 × 2 × 1, which is 6, so that's fine. 6 × 4 is 24, and 24 × 5
is 120. So our fact method seems to work well. On to the fibonacci series.

irb(main):004:0> 3.fib
=> 2
irb(main):005:0> 4.fib
=> 3
irb(main):006:0> 5.fib
=> 5

The first seven values in the Fibonacci series are 0, 1, 1, 2, 3, 5, and 8.
The zeroth number (the number at the 0 index) is 0, the first is 1, the second
is also 1, the third is 2, the fourth is 3, and the fifth is 5. Our fib method also
seems to work well.

3 The integers resulting from factorial and Fibonacci operations can become rather large. Luckily,
Ruby allows you to just treat them all as Integers, transparently doing whatever operations are
needed with Bignums and Fixnums without making you worry about such things.

124 Chap te r 7

Hacking the Script

How could we improve the speed of this script? We have several options. I’ll
outline each of them in turn and discuss the possible motivations for each
change, but we’ll wait to test them (and therefore, to see the results of our
assumptions) until the end.

NOTE Modifying a computer program to improve it without changing its external behavior is
called refactoring. That’s what we’re doing with these scripts, because we’re not changing
the factorial or Fibonacci values for a given input—we’re just changing how (and
possibly how quickly) we return the same value. Refactoring is a fascinating topic; you
can read more about it at http://refactoring.com or in Martin Fowler’s Refactoring:
Improving the Design of Existing Code (Addison-Wesley Professional, 1999).
Unit testing, which we’ll describe later in this chapter, is a critical tool to use when
refactoring, as I’ll explain in that section.

Using include? (factorial2.rb and fibonacci2.rb)

Here’s a variant that decides what to return via the include? method, which
eliminates the need to run two separate tests to find out whether self is either
zero or one. The motivation is that it could be faster to do a single test instead
of two separate tests. Again, I’ll show the alterations for both the factorial
and Fibonacci scripts. Notice how both � lines differ from either � or � in
the initial scripts.

#!/usr/bin/env ruby
factorial2.rb

class Integer

 def fact()
� return 1 if [0, 1].include?(self)

 return self * (self-1).fact
 end

end

Here’s the Fibonacci script:

#!/usr/bin/env ruby
fibonacci2.rb

class Integer

 def fib()
� return self if [0, 1].include?(self)

return (self-1).fib + (self-2).fib
 end

end

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 125

Passing the returns1 or returns_self Array as an Argument (factorial3.rb
and fibonacci3.rb)

In these variants we have an Array called either returns1 or returns_self that
defines the return values for either a factorial or Fibonacci test. The Array is
[0, 1] in both cases, because zero and one are the values we use in our rules
to calculate other values in both tests. The motivation for this variant is the
thought that it might be faster to create a data structure (such as returns1)
once and pass it around, rather than re-creating our [0, 1] Array every time
we make a new recursive call to either fact() or fib(). Notice how we define
returns1 or returns_self as an argument to each of our methods at � in each
script and then use it subsequently for both our exit conditions testing and as
an explicit argument to the recursive calls (�).

#!/usr/bin/env ruby
factorial3.rb

class Integer

� def fact(returns1 = [0, 1])
 return 1 if returns1.include?(self)

� return self * (self-1).fact(returns1)
 end

end

Here is the Fibonacci version:

#!/usr/bin/env ruby
fibonacci3.rb

class Integer

� def fib(returns_self = [0, 1])
 return self if returns_self.include?(self)

� return (self-1).fib(returns_self) + (self-2).fib(returns_self)
 end

end

Making RETURNS1 or RETURNS_SELF a Class Constant (factorial4.rb
and fibonacci4.rb)

Making returns1 or returns_self an argument seems silly for one reason: It’s
always the same value, [0, 1]. Things that don’t change are ideal constants,
so let’s try that for both scripts. We’ll define a constant with an appropriate
name at � in each script and then use it in our method’s tests. Note that there
is no longer any need to pass the constant as an argument to the recursive
method calls, as we did in the previous variant at �.

126 Chap te r 7

#!/usr/bin/env ruby
factorial4.rb

class Integer

� RETURNS_1_FOR_FACTORIAL = [0, 1]

 def fact()
 return 1 if RETURNS_1_FOR_FACTORIAL.include?(self)
 return self * (self-1).fact
 end

end

Here is the Fibonacci version:

#!/usr/bin/env ruby
fibonacci4.rb

class Integer

� RETURNS_SELF = [0, 1]

 def fib()
 return self if RETURNS_SELF.include?(self)
 return (self-1).fib() + (self-2).fib()
 end

end

Memoization of Results (factorial5.rb and fibonacci5.rb)

One unexamined flaw in our scripts so far is that they’re stupid. It sounds
harsh, but it’s fair.4 They keep repeating the same calculations over and over
again. For the sake of example, let’s assume that we’ve called the fib() method
on the Integer 5, and fib() is as defined in fibonacci4.rb, our most recent
Fibonacci script variant. What happens?

The first thing of interest is that whenever our 5 is instantiated, it has a
class constant called RETURNS_SELF, defined as an Array: [0, 1]. Next we call
fib() on our 5. RETURNS_SELF does not include? 5, so we then call fib() on the
expression (5-1), which is of course the Integer 4, and add its returned value
to the result of calling fib() on the value (5-2), also known as the Integer 3.
We then find that RETURNS_SELF does not include? 4, either, so we then call
fib() on the expressions (4-1), which is the Integer 3, and add its returned
value to the result of calling fib() on the value (4-2), also known as the
Integer 2. We keep doing this recursively until we get a value of self that is
found within the RETURNS_SELF Array.

4 Maybe the criticism is more fair when directed at the author than the scripts. After all, the scripts
only do what I tell them to. In fairness to me, I wrote them to demonstrate failed optimization
attempts.

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 127

The main problem with doing this is that we keep re-calculating methods
like 3.fib(). We had to calculate it in the guise of (self-2).fib() in our initial call
to 5.fib(), and we had to calculate it in the guise of (self-1).fib() when our
value for self was 4. The reason all this recalculation is a problem is that 3.fib()
gives the same result, whether it is called as (5-2).fib() or as (4-1).fib()—
it’s the same thing under the hood. Wouldn’t it be great if there were a
way to call something like 3.fib() once and then remember its value for
subsequent calls?

There is such a technique. It’s called memoization, and it’s a critical way to
make recursive programs use processor time more efficiently. Take a look at
our new script variants, which take advantage of memoization. In both vari-
ants, we define an appropriately named Array at � that holds the memoized
results so far. We already have starting results for both 0 and 1, which we
defined in the returns1 Array in our earlier examples. We then use that
memoized results Array (either @@factorial_results or @@fibonacci_results)
at �, using the ||= operator to set a value for the self index within the Array,
if there isn’t a value already. Since Ruby methods always return the last
evaluated expression, we don’t need separate setting and returning opera-
tions. Now, whenever we need the fact or fib value for a lower self, we can
just read it out. The ||= operator at � evaluates the element from the Array
as true and simply returns it without making a new assignment.5

A complement to memoization is lazy evaluation. Few languages imple-
ment this by default, Haskell being the most widely known exception. Most
languages use eager evaluation, in which expressions are evaluated as early as
possible, certainly on entry into a method or function. Lazy evaluation lets
expressions be passed around unevaluated until their value is needed. The
benefit for factorial and Fibonacci operations is that the operations on higher
numbers can wait until the operations on lower numbers are already done,
which speeds up the whole process. There’s a library for lazy evaluation in
Ruby at http://moonbase.rydia.net/software/lazy.rb.

#!/usr/bin/env ruby
factorial5.rb

class Integer

� @@factorial_results = [1, 1] # Both 0 and 1 have a value of 1

 def fact()

Memoization � @@factorial_results[self] ||= self * (self-1).fact
 end

 def show_mems()
 @@factorial_results.inspect
 end

end

5 Our Perl friends do something similar to our use of ||= here that they call the Orcish Maneuver. Look
it up at http://perl.plover.com/TPC/1998/Hardware-notes.html if you’re curious. The name
comes from both a pun and the prevalence of The Lord of the Rings fandom in the Perl community.

128 Chap te r 7

The Fibonacci version is:

#!/usr/bin/env ruby
fibonacci5.rb

class Integer

� @@fibonacci_results = [1, 1] # Both 0 and 1 have a value of 1

 def fib()

� @@fibonacci_results[self] ||= (self-1).fib + (self-2).fib
 end

end

That should be enough variants to test. Note that this last factorial script
also includes a method called show_mems that you can use to inspect the state
of the memoization. If you’d like, you can add your own equivalent to
fibonacci5.rb. On to the testing.

#27 Benchmarking and Profiling (tests/test_opts.rb)

Here we’ll talk about two distinct ways to test the execution speed of code.
Benchmarking measures the overall speed of the code, while profiling gives
more detailed information about how long different parts of the code take to
execute, relative to each other.

Benchmarking
The previous variants all showed ways to modify the base code in the hopes
of making it faster. Here’s where we test our assumptions and find out what
really makes a difference. I store it in a directory called tests, meaning that
I run it with ruby -w tests/test_opts.rb.

The Code

#!/usr/bin/env ruby
test_opts.rb

=begin comment
Run this without warnings to avoid messages about method redefinition,
which we are doing intentionally for this testing script.
=end

Benchmark � require 'benchmark'
Module include Benchmark

� FUNC_OF_FILE = {
 'factorial' => 'fact',
 'fibonacci' => 'fib',
 }

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 129

 UPPER_OF_FILE = {
 'factorial' => 200,
 'fibonacci' => 30,
 }

� ['factorial', 'fibonacci'].each do |file|

� (1..5).to_a.each do |num|
� require "#{file}#{num}"

 upper = UPPER_OF_FILE[file]

� bm do |test|

� test.report("#{file}#{num}") do
� upper.send(FUNC_OF_FILE[file])

 end

 end

 end

end

How It Works

First, I require a file called 'benchmark' (�); the include command that imme-
diately follows it mixes in a Module called Benchmark. This is the workhorse
of our script. It provides a facility for testing how long specific operations take
within a program. In order to do those tests, we need to set up a few Constants,
which we do at �. The FUNC_OF_FILE constant contains the name of the method
(or function) we want to call in each file, and UPPER_OF_FILE determines
the largest Integer on which to call that function (the upper limit, in
other words).

At �, we loop through each file, and at �, we loop through each num,
which is the filename suffix. Then we require a specific, dynamically gener-
ated filename at �. Note that this will override any previous definitions of
methods with the same name. (This is why we will run this script without
warnings, as the RDoc at the beginning of the file indicates.) We then set the
value of the upper local variable. At �, we call the method bm, provided by the
Benchmark module. It takes a block whose local variable is the test to be
run. That test has a method called report, which (as the name suggests)
generates a report of the test’s findings. The report method also takes a
block that contains the code comprising the test. That block consists of
only one line at �. We haven’t seen the send method yet, but calling
some_object.send(some_func_name, some_arg) is the same as calling
some_object.some_func_name(some_arg). I’ll describe send in greater detail
in the to_lang.rb script in Chapter 10. For now, just understand that
it calls the desired method (either fact or fib) for each file.

130 Chap te r 7

Running the Script

You’ll want to run this with the command ruby tests/test_opts.rb. Notice that
we eschew the -w flag in this particular case. The reason is that we are redefin-
ing methods, which triggers a warning. Since we are doing this intentionally
and are aware of the situation, the warning is merely an annoyance in this
particular case.

The Results

Here are my results. Your results may vary considerably, depending on how
fast your machine is.

 user system total real
factorial1 0.016667 0.000000 0.016667 (0.002705)
 user system total real
factorial2 0.000000 0.000000 0.000000 (0.001517)
 user system total real
factorial3 0.000000 0.000000 0.000000 (0.001532)
 user system total real
factorial4 0.000000 0.000000 0.000000 (0.001491)
 user system total real
factorial5 0.000000 0.000000 0.000000 (0.001508)
 user system total real
fibonacci1 8.416667 1.900000 10.316667 (6.207565)
 user system total real
fibonacci2 11.316667 1.866667 13.183333 (8.567413)
 user system total real
fibonacci3 9.066667 1.816667 10.883333 (6.809812)
 user system total real
fibonacci4 9.233333 1.533333 10.766667 (6.520220)
 user system total real
fibonacci5 0.000000 0.000000 0.000000 (0.000166)

The benchmarking output shows seconds used from the perspective of
the user, system, total, and real labels. You can read more about the specific
meanings of these labels via the command man time on a Unix-like system.
For now, keep in mind that they are useful for measuring the time one process
takes, relative to another process. I’ll be referring to the real time in my discus-
sion. You can see that there is very little variation among the factorial scripts.
The main reason for this is that the factorial operation is comparatively
simple, since it is a single, recursive multiplication. We see more striking data
for the Fibonacci scripts because each recursive Fibonacci operation spawns
two additional Fibonacci operations, unless it uses memoization. This double
spawning is why I set the upper limit of Fibonacci operations at the much
lower value of 30, compared with the factorial’s upper limit of 200.

Our tests showed that the simple fibonacci1.rb took about 6.20 seconds
to run 30 consecutive operations of calling fib on the numbers from one to
five. Things actually get worse when we try the include? optimization in
fibonacci2.rb (it takes about 8.56 seconds), and improve only slightly for the
argument optimization in fibonacci3.rb (which takes about 6.81 seconds).

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 131

The run time doesn’t significantly change until we introduce memoization
in fibonacci5.rb, where the time spent drops so much that it’s no longer
significant.

 The moral of the story is twofold. First, we’ve learned that it’s better to
base code optimization for speed on tests, rather than intuitions. By trying to
squeeze some faster performance out of a piece of code, you can waste time
in an area that isn’t even your speed bottleneck, and it will only make your code
harder to read. The second moral is that memoization (as used in factorial5.rb
and fibonacci5.rb) is a crucial addition to any recursive operations that are
likely to be repeated.

Profiling

Of course, benchmarking is only part of the story. If you’re worried about the
speed of your code, knowing only the total time it takes to run is not especially
useful. What’s more useful is the information provided by profiling, which
breaks down the parts of your code and gives speed reports at a finer level of
detail.

Ruby has a profiling library called profile. It can be required, just like
benchmark, but it doesn’t demand specific testing code like the bm method
and its block. The library can be automatically applied to an execution of
code simply by including profile via the -r flag. Let’s do so with a command-
line execution of the first script we wrote:

ruby -r profile -r 99bottles.rb -e 'wall = Wall.new(99); wall.sing_one_verse!

until wall.empty?'.

Notice how all we have to do is require profile with the -r flag; our -e flag
contains code to be executed that works just like the irb session we used with
99bottles.rb when we wrote it in Chapter 2. Here is an extremely truncated
version of its results:

2 bottles of beer on the wall, 2 bottles of beer
take one down, pass it around, 1 bottle of beer on the wall.

1 bottle of beer on the wall, 1 bottle of beer
take one down, pass it around, no more bottles of beer on the wall.

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 31.25 0.08 0.08 297 0.28 0.45 Wall#sing
 18.75 0.13 0.05 99 0.51 2.53 Wall#sing_one_verse!
 18.75 0.18 0.05 99 0.51 0.51 Wall#take_one_down!
 12.50 0.22 0.03 297 0.11 0.11 Fixnum#==
 6.25 0.23 0.02 100 0.17 0.17 Wall#empty?
 6.25 0.25 0.02 297 0.06 0.06 Fixnum#>
 6.25 0.27 0.02 99 0.17 0.17 Kernel.puts
 0.00 0.27 0.00 1 0.00 0.00 Wall#initialize
 0.00 0.27 0.00 5 0.00 0.00 Module#method_added

132 Chap te r 7

 0.00 0.27 0.00 1 0.00 0.00 Class#inherited
 0.00 0.27 0.00 99 0.00 0.00 IO#write
 0.00 0.27 0.00 594 0.00 0.00 String#+
 0.00 0.27 0.00 99 0.00 0.00 Fixnum#-
 0.00 0.27 0.00 100 0.00 0.00 Fixnum#zero?
 0.00 0.27 0.00 1 0.00 0.00 Class#new
 0.00 0.27 0.00 296 0.00 0.00 Fixnum#to_s
 0.00 0.27 0.00 1 0.00 0.00 Module#private
 0.00 0.27 0.00 1 0.00 266.67 #toplevel

This report provides a great deal of interesting information, including
the percentage of total time that a given method takes, the raw seconds used
by that method call, the number of calls to each method, and the number of
milliseconds taken per call. This data gives you something to use when you’re
trying to improve execution speed. If the number of calls to a given method
is high, perhaps the method is being called multiple times in a loop. You can
increase speed by pre-running that method only once and passing its value
into the loop for use. You can also try different ways of implementing the same
operation to see which way runs faster, and so on.

Hacking the Script

There are several variations you could try with these scripts. The simplest
code modifications involve changing the upper limit values in upper_of_file
for each file. You can also try operations other than factorial or Fibonacci
ones. You can also run any of the scripts in this book with -r profile. When
writing them, I focused on pedagogy rather than speed, so you can probably
make some speed improvements to these stock scripts. Now let’s move on to
a practical application of functional programming that should remind you of
some earlier scripts.

#28 Converting Temperatures (temperature_converter.rb)

For this example, we’ll write a converter script. This time, instead of convert-
ing currencies, we’ll convert units for other real-world factors like length, mass,
temperature, and so on. The version that I show here only handles temper-
atures, but you can download units_converter.rb at this book’s companion
website; it is a more comprehensive script that also handles length, volume,
and mass. We’ll concentrate on converting to and from English and metric
units, but we’ll also support kelvins. Let’s take a look.

The Code

#!/usr/bin/env ruby
temperature_converter.rb
See also GNU units at http://www.gnu.org/software/units/units.html

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 133

Converts Metric/SI <-> English units.

=begin rdoc
Converts to and from various units of temperature.
=end
class Temperature_Converter

 # every factor has some base unit for multi-stage conversion
 # I allow either full or shortened name as the key

� BASE_UNIT_OF = {
 'temperature' => 'K',
 'temp' => 'K',
 }

� C_TO_F_ADD = 32.0
 F_TO_C_RATIO = 5.0/9.0
 C_TO_K_ADD = 273.15

� C2K = lambda { |c| c + C_TO_K_ADD }
 F2C = lambda { |f| (f - C_TO_F_ADD) * F_TO_C_RATIO }
 K2C = lambda { |k| k - C_TO_K_ADD }
 C2F = lambda { |c| (c / F_TO_C_RATIO) + C_TO_F_ADD }

Composition of
Functions

 F2K = lambda { |f| C2K.call(F2C.call(f)) }
 K2F = lambda { |k| C2F.call(K2C.call(k)) }

� CONVERSIONS = {
 # most units just need to get to the base unit
 # have => {want => how_many_wants_per_have},
 'C' => { 'K' => C2K },
 'F' => { 'K' => F2K },

� # The base unit requires more conversion targets
 'K' => {
 'F' => K2F,
 'C' => K2C,
 },

 }

 OUTPUT_FORMAT = "%.2f"

� def convert(params)
 conversion_proc =
 CONVERSIONS[params[:have_unit]][params[:want_unit]] ||
 get_proc_via_base_unit(params)

 return "#{params[:have_num]} #{params[:have_unit]} = " +
 "#{sprintf(OUTPUT_FORMAT, conversion_proc[params[:have_num]])} " +
 "#{params[:want_unit]}"
 end

 private

134 Chap te r 7

=begin rdoc
If there is no direct link between the known unit and the desired unit,
we must do a two-stage conversion, using the base unit for that factor
as a "Rosetta Stone."
=end
 def get_proc_via_base_unit(params)

� base_unit = BASE_UNIT_OF['temperature']
� have_to_base_proc = CONVERSIONS[params[:have_unit]][base_unit]
� base_to_want_proc = CONVERSIONS[base_unit][params[:want_unit]]
	 return lambda do |have|

 base_to_want_proc.call(have_to_base_proc.call(have))
 end
 end

end

How It Works

This script uses a few functional techniques that we haven’t covered yet. Let’s
step through the code. At �, we define a BASE_UNIT_OF Hash that holds the base
unit. Note that temperature and temp are both acceptable, and that the script
uses kelvins, the scientific unit of absolute temperature, as its internal temper-
ature unit. Next, we define some helpful conversion constants. I’ve broken
these up into paragraphs: The first paragraph of definitions (�) holds simple
addition and multiplication constants, while the second paragraph (�) uses
lambda to define Procs that will use the values from the first paragraph. Tem-
perature conversion is a bit more complicated than conversion of length
or mass.

Most unit conversions consist of a simple multiplication operation. If you
have 100 pounds and you want to know how many kilograms that is, you simply
multiply 100 by 0.45. But to convert temperature between Fahrenheit and
Celsius, you must multiply and add. The general formula is F = (C × 9/5) + 32.
Conversely, C = (F – 32) × 5/9. Note also that one degree Celsius and one
kelvin are the same size (meaning there is no multiplication needed to convert
between them), but they are offset by 273.15, so 0 degrees Celsius = 273.15
kelvins, and 0 kelvins (absolute zero) = -273.15 degrees Celsius. That’s cold.

At �, we define constants with three-character names that suggest the type
of temperature conversion they do; for example, the K2C conversion Proc
accepts kelvins and returns the Celsius equivalent. Most of these are pretty
straightforward and implement the temperature relationships I described in
the paragraph of declarations (�).

However, the F2K and K2F Procs are more interesting. They use previously
defined Procs inside themselves and then use the call method successively to
perform two-stage conversions. F2K accepts some Fahrenheit value f, converts
that to Celsius via F2C.call(f), and then uses that Celsius value as the argu-
ment to C2F.call(). This general operation of performing successive function
calls is called composition. F2K composes C2K and F2C, and K2F composes C2F and
K2C. This has the same benefits as breaking operations up into functions or

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 135

methods: You only need to have a single, definitive place where any given
operation is defined, and you can just call that operation as you build more
complicated operations that depend on earlier definitions.

We have some useful constants, including temperature-related Procs. Next
is our CONVERSIONS Hash at �. This is a doubly nested Hash, and the outermost
keys are the units we have. Each of those keys points to yet another Hash,
with a key representing the units we want to convert to and a value that is the
necessary conversion Proc. If we have degrees Celsius and we want kelvins,
our conversion operation is CONVERSIONS['C']['K'], which is the C2K Proc
constant.

NOTE The purpose of the CONVERSIONS Hash is to pass in some identifier(s) and get something
useful out, specifically the Proc needed to do the requested unit conversion. This is very
similar to a Factory in object orientation, which is an object that creates other objects
based on the parameters it receives. Our CONVERSIONS Hash is an example of the same
concept applied to Procs.

The first paragraph of data in CONVERSIONS converts to our base unit for
each factor—kelvins, in our case. But what if someone asks for a final output
that isn’t our base unit? We need to be able to convert from the base unit to
all the other units, which is what the next paragraph of code at � is for.
It’s still part of the CONVERSIONS Hash, and it still follows the same structure of
{ have => { want => some_conversion_proc } }, but it has two conversion targets
instead of one. We close the constants with OUTPUT_FORMAT, which restricts our
reported values to two decimal places.

At � we define our main method, called convert. It takes a mandatory
argument called params and defines a local variable called conversion_proc that
has the value of either CONVERSIONS[params[:have_unit]][params[:want_unit]] or,
failing that, the output of get_proc_via_base_unit(params). We already know
that the value of CONVERSIONS['C']['K'] is the Celsius-to-kelvins Proc. Let’s
verify that in irb:

$ irb -r temperature_converter.rb
irb(main):001:0> tc = Temperature_Converter.new
=> #<Temperature_Converter:0xb7ccdb04>
irb(main):002:0> tc.convert({:have_unit => 'C', :want_unit => 'K', :have_num
=> 15})
=> "15 C = 288.15 K"

There is another key to params here other than :have_units and
:want_units, but it should be fairly clear. We also need to tell the con-
verter how many units we have, which is what :have_num does. These
results look good; they are examples in which there is a value available for
CONVERSIONS[params[:have_unit]][params[:want_unit]] inside the convert
method, meaning that it doesn’t need to use get_proc_via_base_unit(params).
After it’s got the conversion_proc, it returns the output you already saw in
irb, which shows the number and unit already known, and what it con-
verts into.

136 Chap te r 7

This is straightforward enough. But what happens when there isn’t a value
for CONVERSIONS[params[:have_unit]][params[:want_unit]] available? This would be
true in cases such as converting degrees Celsius to degrees Fahrenheit. There
is no Proc at CONVERIONS['C']['F']. Does this mean that our base unit needs to
be either the known or desired value? Yes and no. Yes in only the most pedan-
tic sense. No in any practical sense, because we can use the get_proc_via_base_unit
method to create our own conversion_proc by composing two other known
conversion_procs, just like the ones we hard-coded into the temperature
converters.

If the unit our params asks for doesn’t have a built-in conversion Proc, we
can use get_proc_via_base_unit, as noted. Inside get_proc_via_base_unit, we first
get the base_unit (�). We then create the have_to_base_proc by getting the
Proc out of CONVERIONS that would be used to convert from the known unit to
the base_unit (�). Then we get the base_to_want_proc by getting the Proc out
of CONVERIONS that would be used to convert from the base_unit to the unit we
want (�). Then at �, we compose base_to_want_proc and have_to_base_proc,
just as we did in the � section for F2K and K2F. We could have called our new
Proc have_to_want_proc, but we just return it, and it becomes conversion_proc
inside the convert method at �.

The Results

Let’s try it out in irb. It was 65 degrees Fahrenheit in Buffalo, New York in
November today (yes, really), and I was talking with a Canadian coworker
about this temperature conversion script. Let’s start with that.

$ irb -r temperature_converter.rb
irb(main):001:0> tc = Temperature_Converter.new
=> #<Temperature_Converter:0xb7c75b5c>
irb(main):002:0> tc.convert({ :have_num => 65.0, :have_unit => 'F', :want_unit => 'C' })
=> "65.0 F = 18.33 C"
irb(main):003:0> tc.convert({ :have_num => 0, :have_unit => 'K', :want_unit => 'F' })
=> "0 K = -459.67 F"

These examples should give you an idea of this program’s interface. You
can also call it with other conversions that are of interest to you.

Hacking the Script

As I already noted, there is a more complex version of this script available for
download at the book’s website. If you find that you want to convert to or from
units that I don’t have built in, just create a key/value pair in CONVERSIONS that
converts from your new unit to the appropriate base unit and another that con-
verts from the base unit to your new unit. That should give you the ability to
convert to and from any unit relative to your new unit.

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 137

We also use implicit composition in temperature_converter.rb—at � for
definition and at � for use. You could modify the script to have an explicit
compose method that takes two Procs and returns a new Proc that performs
each operation in order. Here’s an example in irb:

irb(main):001:0> def compose(inner_proc, outer_proc, *args)
irb(main):002:1> return lambda { |*args| outer_proc.call(inner_proc[*args]) }
irb(main):003:1> end
=> nil
irb(main):004:0> square = lambda { |x| x ** 2 }
=> #<Proc:0xb7cda048@(irb):4>
irb(main):005:0> inc = lambda { |x| x + 1 }
=> #<Proc:0xb7ccb8f4@(irb):5>
irb(main):006:0> square_then_inc = compose(square, inc)
=> #<Proc:0xb7ce5204@(irb):2>
irb(main):007:0> inc_then_square = compose(inc, square)
=> #<Proc:0xb7ce5204@(irb):2>
irb(main):008:0> square_then_inc.call(1)
=> 2
irb(main):009:0> square_then_inc.call(2)
=> 5
irb(main):010:0> inc_then_square.call(2)
=> 9

Line 8 gives us 2, because (1 ** 1) + 1 = 2. Line 9 gives us 5, because
(2 ** 2) + 1 = 5. Line 10 gives us 9, because (2 + 1) ** 2 = 9. Once you have
this compose method, you can even use it on Procs that are the returned value
from a previous call to compose, allowing you to stack successive operations as
much as you like.

#29 Testing temperature_converter.rb (tests/
test_temp_converter.rb)

Up until this point, our testing scripts have been relatively primitive, and to a
very large degree, we have rolled our own testing solutions. It’s silly to do that
repeatedly, especially in computer programs, because good programming
languages allow you to express abstract concepts abstractly, as well as to adapt
general-purpose tools in code libraries to your specific needs.

Ruby has a general-purpose testing library called Test::Unit. Here is code
that allows you to use its power to test the script temperature_converter.rb.

The Code

#!/usr/bin/env ruby
test_temp_converter.rb

� require 'temperature_converter'
require 'test/unit'

138 Chap te r 7

Unit Testing � class Tester < Test::Unit::TestCase

 def setup
 @converter = Temperature_Converter.new()
 end

 def test_temps()

� tests = {
 '100.0 C = 212.00 F' => {
 :have_num => 100.0,
 :have_unit => 'C',
 :want_unit => 'F',
 },
 '212.0 F = 100.00 C' => {
 :have_num => 212.0,
 :have_unit => 'F',
 :want_unit => 'C',
 },
 '70.0 F = 294.26 K' => {
 :have_num => 70.0,
 :have_unit => 'F',
 :want_unit => 'K',
 },
 '25.0 C = 298.15 K' => {
 :have_num => 25.0,
 :have_unit => 'C',
 :want_unit => 'K',
 },
 }
 general_tester(tests)

 end

 private

� def general_tester(tests)
� tests.each_pair do |result,test_args|
� assert_equal(result, @converter.convert(test_args))

 end
 end

end

The Results

Let’s run it and see what happens.

$ ruby -w tests/test_temp_converter.rb
Loaded suite tests/test_temp_converter
Started
.

Using, Op t im izi ng, and Te st i ng Funct iona l Technique s 139

Finished in 0.001094 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

All four of our assertions passed with no failures or errors. That’s
wonderful news. Now let’s look at what it means.

NOTE One term you may hear in reference to testing is code coverage, which is the degree to
which the tests adequately examine the pertinent code. This can be defined in terms of
the percentage of total code lines that are tested, the percentage of Boolean evaluations
that are tested, and other similar metrics.

Earlier in this chapter, I mentioned refactoring, the practice of cleaning
up code implementation while leaving its behavior unchanged. Unit testing
is very useful when refactoring, especially if you use tests that have high entry/
exit coverage, meaning they try to ensure that all outputs from functions stay
the same as long as those functions get the same inputs. This type of testing
keeps your refactoring honest.

How It Works

First, we need access to the code that we’ll be testing. Luckily, we’ve
followed good design practice and defined our code in a library called
temperature_converter.rb, so we require both it and the test/unit library at �.
Then we define a new class called Tester; as you can see at �, this class is a
child of Test::Unit::TestCase, meaning that it inherits all of the methods and
characteristics of Test::Unit::TestCase.

We then define a testing method called test_temps. It’s just a wrapper for a
multi-level Hash called tests, defined at � inside test_temps. You’ll notice that
each key of tests is a String that looks like the output of Units_Converter.convert;
that key’s value is a Hash that you use as the argument into Units_Converter.convert
in order to get output that matches that key. Inside test_temps, we then pass
tests as an argument into a private method called general_tester, which we
define at �.

The general_tester method loops through each_pair in the tests Hash
at �, calling the expected result result and the argument Hash needed to
produce that result, test_args. For each of those pairs, we assert that result
and @converter.convert(test_args) are equal, using the appropriately named
assert_equal method (�). That’s all there is to it.

Hacking the Script

Try making a change in one of the tests Hashes. If you either change only
the key (which becomes result in general_tester) or only the value (which
becomes test_args in general_tester), the call to assert_equal will fail, because
the two items passed as arguments to be compared will no longer be equal.
You can also add entirely new elements to the tests Hash, with new values
you want to verify.

140 Chap te r 7

This script only scratches the surface of how to use Test::Unit. Type
ri Test::Unit at the command line for more information. You can also browse
to http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc within the Ruby
Standard Library Documentation site. Note that the HTML generated for
that documentation came from RDoc.

I already mentioned that testing can be useful during refactoring. A good
place to start with testing is what I’ve done here, pre-figuring expected values
from a method based on a set of known input parameters. The assert_equal
method is very useful for such testing. There are other methods available, which
you can read about by typing ri Test::Unit::Assertions at the command line.
Notables include assert_instance_of, which checks whether its argument
belongs to a specified class; assert_nil, which checks whether its argument
is nil; assert_raise, which you can use to intentionally raise an Exception
(i.e., break something); and assert_respond_to, which checks whether a given
argument knows how to respond to a given specified method.

Chapter Recap

What was new in this chapter?

� Recursive factorials and Fibonaccis as good profiling candidates

� Refactoring

� Memoization

� Testing with Benchmark

� Profiling

� Converting temperatures

� Hashes with Proc values as Proc Factories

� Composition of Procs

� Testing with Test::Unit

Again, that’s a lot to take in. This list is deceptively short, because some
of these concepts require more contemplation than those we’ve considered
in previous chapters. Let’s move on to the next chapter, in which we’ll write
some tools for processing HTML and XML.

8
H T M L A N D X M L T O O L S

Text runs the Web. This is especially true
of text that is encoded within some sort of

markup, such as HyperText Markup Language
(HTML) or eXtensible Markup Language (XML).

Even non-programmers know that HTML is the markup generally used by
websites, even if they’ve never heard the term markup before. XML is becom-
ing increasingly important for both data transfer and data storage. As I work on
the chapters of this book, I save them as a filetype that consists of a compressed
collection of XML files. I also used a type of XML called DocBook (http://
docbook.org) for my Doctoral dissertation. The bottom line is, XML-based
markup is everywhere. Luckily, Ruby can understand, output, and manipulate
XML (and HTML).

#30 Cleaning Up HTML (html_tidy.rb)

Let’s start with HTML. This markup language has had several numbered
releases, similar to different versions of software, and it’s come a long way
since Tim Berners-Lee made the first web page at CERN in the mid ’90s.

142 Chap te r 8

Recent versions of HTML are subsets of XML and are called XHTML as a
result. However, the earlier versions of HTML were not as disciplined; they
allowed very liberal interpretations of HTML. Especially when people were
first learning how to use HTML, they would often throw together pages that
were not very well designed, either aesthetically or technically. But browser
manufacturers didn’t want to take the blame for rendering content badly,
so they made their browsers very forgiving.

In the short term, the practice of allowing non-compliant HTML was
great, because it meant that more people could view more content. In the
long term, however, that liberality had some negative consequences because
it allowed web designers to continue using some uncorrected bad techniques.
There’s a lot of sloppy HTML out there, and there’s little reason to add to the
mess. We want a tool that helps us make sure that our own HTML is up to spec.

NOTE I’m assuming that you have a basic familiarity with HTML. If not, there’s a good guide
at http://w3schools.com/html/default.asp. If you’re curious about the various versions
of HTML and its relationship to XML, browse to the World Wide Web Consortium (W3C)
MarkUp page at http://www.w3.org/MarkUp. This page also has a link to the
HTML Tidy program that the html_tidy.rb script depends on.

There’s an excellent program that does most of this clean-up work already.
It’s called HTML Tidy, and it was written by Dave Raggett. It’s available at
http://tidy.sourceforge.net, but it also comes prepackaged within many
GNU/Linux distributions. Seeing no need to reinvent the wheel, I wrote
html_tidy.rb to use Raggett’s program and add some specific features that
I wanted. Let’s take a look at the code.

The Code

#!/usr/bin/env ruby
html_tidy.rb
cleans up html files

� EMPTY_STRING = ''

SIMPLE_TAG_REPLACEMENTS = {

 #closers

=> Operator /\<\/b\>/i => '',
 /\<\/i\>/i => '',
 /\<\/strong\><\/td\>/i => '</th>',
 /\<\/u\>/i => '</div>',

 #openers
 /\<b\>/i => '',
 /\<i\>/i => '',
 /\<td\>\<strong\>/i => '<th>',
 /\<u\>/i => '<div style="text-decoration: underline;">',
 # again, more as appropriate

}

HTML and XML Tools 143

TIDY_EXTENSION = '.tidy'

TIDY_OPTIONS = '-asxml -bc' # possible add -access 3

� UNWANTED_REGEXES = [
 /^<meta name=\"GENERATOR\" content=\"Microsoft FrontPage 5.0\">$/,
 /^ *$/,
 /^\n$/,
 # more as appropriate
]

� def declare_regexes_and_replacements()
 replacement_of = Hash.new()
 UNWANTED_REGEXES.each do |discard|
 replacement_of[discard] = EMPTY_STRING
 end
 return replacement_of.merge(SIMPLE_TAG_REPLACEMENTS)
end

=begin rdoc
This lacks a ! suffix because it duplicates the argument and
returns the changes made to that duplicate, rather than overwriting.
=end

� def perform_replacements_on_contents(contents)
 output = contents.dup
 replacement_of = declare_regexes_and_replacements()

� replacement_of.keys.sort_by { |r| r.to_s }.each do |regex|
 replace = replacement_of[regex]

� output.each { |line| line.gsub!(regex, replace) }
 end
 return output
end

=begin rdoc
This has the ! suffix because it destructively writes
into the filename argument provided.
=end

� def perform_replacements_on_filename!(filename)
� if (system('which tidy > /dev/null'))

 new_filename = filename + TIDY_EXTENSION
Standard Error system("tidy #{TIDY_OPTIONS} #{filename} > #{new_filename} 2> /dev/null")

� contents = File.open(new_filename, 'r').readlines()
 new_contents = perform_replacements_on_contents(contents)
 File.open(new_filename, 'w') { |f| f.puts(new_contents) }
 else
 puts "Please install tidy.\n"
 end
end

	 ARGV.each do |filename|
 perform_replacements_on_filename!(filename)
end

144 Chap te r 8

How It Works

We start by defining some constants at �. EMPTY_STRING should be obvious, and
SIMPLE_TAG_REPLACEMENTS is a Hash whose keys are regular expressions and whose
values are whatever the corresponding key should be replaced with. You’ll notice
that you need to mark certain characters within a regular expression with a
backslash (\)—that’s because some characters have special meanings within
regular expressions. You’ve already seen examples of that, where ? means Zero or
one of whatever preceded me and * means Zero or more of whatever preceded me. Similarly,
\ means Treat whatever follows me as a literal character, not a special regex character.

Why do I make these particular replacements? The and <i> tags are
still commonly used, but they are not compliant with the Web Accessibility
Initiative (WAI). I’ve set up this script to replace them with appropriate tags
that accomplish the same goal but don’t discriminate against the visually
impaired. I also replace /\<td\>\<\strong\>/ with <th> because I find that people
often make “almost” table headers by putting formatting within a table cell,
rather than making the cell a real header. Finally, I’ve taken out the <u> tag
because it doesn’t mean anything, even if it creates an underline. It’s just a
visual formatting tag with no semantic meaning, which is a no-no. Formatting is
what stylesheets are for—the markup itself should just have content. Therefore,
I replace <u> with a <div> that has an underline style attached to it. I make all
these replacements both for the opening tags and the closing tags.

NOTE Web accessibility is important: These fixes help people who are visually impaired surf
the Web. The html_tidy.rb script fixes my mistakes, at least for these particular cases.
If you’re curious, read more about accessibility and its importance at the W3C’s Web
Accessibility Commission page (http://www.w3c.org/WAI).

We continue with more constants, including some TIDY_OPTIONS. Execute
man tidy at the command line to see what these do. These options reflect my
preferences, but you can certainly make some changes to the constant once
you’re comfortable with operating the script. At �, we have an Array constant
called UNWANTED_REGEXES. It sounds harsh, but there are some things I just don’t
want in my HTML. One of these is a <meta> tag, which Microsoft’s FrontPage
sometimes adds to files. I also don’t want either lines with only whitespace
(which /^ *$/ matches) or completely empty lines (which /^\n$/ matches).
As the comment suggests, you can add to this Hash.

The first method, declare_regexes_and_replacements, is at �. It combines
SIMPLE_TAG_REPLACEMENTS with UNWANTED_REGEXES by looping through UNWANTED_REGEXES
and making a Hash called replacement_of, whose keys are the elements of
UNWANTED_REGEXES and whose values are all the EMPTY_STRING. This makes sense—
if a regex is unwanted, we want to replace it with the empty string. The
declare_regexes_and_replacements method then returns the merged Hash,
which is made up of both SIMPLE_TAG_REPLACEMENTS, which was already a Hash
in the first place, and our new replacement_of Hash.1

1 I generally find Perl rather sloppy, but one benefit of its policy of storing Hashes as even-length
Arrays is that you can make Hashes out of Arrays very easily. The Perl equivalent of our
UNWANTED_REGEXES.each loop would be something like this: my %replacement_of = map { $_ =>
EMPTY_STRING } @unwanted_regexes;. Of course, it’s more trouble to merge Hashes in Perl,
so I still like Ruby better. Don’t worry about any of this if you don’t know Perl.

HTML and XML Tools 145

On to � and the perform_replacements_on_contents method. It takes an
argument, unsurprisingly called contents, immediately duplicates it with the dup
method, and calls the result output. It then calls declare_regexes_and_replacements
(defined at �), getting the return value which we already know is a Hash
that is called replacement_of. For simplicity, we’ll keep the same name for that
Hash inside perform_replacements_on_contents. At �, we sort the keys of
replacement_of with the sort_by method, which takes a block. Strings know
how to compare themselves to other Strings for sorting purposes, whereas
regular expressions don’t. Therefore, we convert each of our regular expres-
sion keys into a String for sorting purposes.

NOTE Strings know how to compare themselves to other Strings because String has a <=>
method, and one of String’s ancestors is the Comparable module.2 Comparable uses
the <=> method to implement the other comparison operators, such as ==, <=, >=, and
so on. If you create a new class and want it to be sortable, give it a method called <=>,
figure out how to implement it in a way that makes sense, and then mix in Compa-
rable. You’ll get lots of sorting value for a minimal amount of effort, and you’ll make
your objects more useful.

In an earlier version of html_tidy.rb, I didn’t include the sorting at �, and
I would occasionally miss replacements described in SIMPLE_TAG_REPLACEMENTS.
The reason was that Hash keys do not have a deterministic order, so some-
times my program would replace with before getting to replacing
</td> with </th>, but sometimes it wouldn’t. To make my program
more robust, I’d either need to add a Hash pair that replaced </td> with
</th> or enforce a specific order on how I used replacement_of at �. I chose to
enforce order, not just because it makes the program more dependable, and
not just because I’m a petty tyrant at heart, but also because it makes the
program simpler.

We sort the keys of replacement_of and loop through each of them at �,
calling them regex in turn. We also want the replacement value, so we read
that out of the Hash as replace. Then at �, we loop through each line of the
eventual output, destructively gsub!ing regex with replace. The output variable
is now ready to be returned. That’s how we perform_replacements_on_contents.
Where do we get the contents?

The perform_replacements_on_filename! method is at �. At �, we call it
on each element of the ARGV Array, which we call filename as we pass it into
perform_replacements_on_filename! as the single argument. We first attempt a
system call of 'which tidy > /dev/null' (�). Without getting too deep into
Unix black magic, I’ll tell you that when executed, this command determines
whether there is a version of tidy installed on the machine.

If the test succeeds, we know we can use tidy. First, we define a new_filename,
which is just the old filename with the TIDY_EXTENSION appended to it. We then
make a call to tidy itself, passing it its own TIDY_OPTIONS (as an interpolated
String) and calling it on filename. We pass its output into the new_filename,
discarding any error messages. The new_filename file now contains all of the
tidying done by tidy itself but none of our add-on changes.

2 Since Comparable is a module, rather than a class, it is an ancestor of String via mixing in, rather
than straightforward inheritance. However, String.ancestors includes Comparable, so I’ve
referred to it as an ancestor here.

146 Chap te r 8

NOTE The > character in the Unix shell just means Send my output into the following file-
name, so some_command > some_file takes the output of some_command and writes it into a
file called some_file. Putting a 2 in front of > makes it apply to error messages, instead
of regular output. Unix calls the output of error messages Standard Error. The file
called /dev/null just means nowhere, so some_command > some_file 2> /dev/null
means Send some_command’s output into some_file, and I don’t care about any
error messages.

We then read new_filename’s contents using File.open and the readlines
method at �. That contents variable is ready for perform_replacements_on_contents,
which we call on it, assigning the results into new_contents. We then open the
new_filename file again, this time for writing, and replace its contents with
new_contents.

If the which tidy test fails, we know that our beloved tidy is not present,
so there’s little point in proceeding. We simply ask the user to install tidy.

Running the Script

I have a sample file at extras/eh.html, so we can call this script with the
command ruby -w html_tidy.rb extras/eh.html. Here’s the original version,
extras/eh.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html

lang="en"
xml:lang="en"
xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="refresh" content="10" />
<title>English Horn for No Clergy</title>
<style>
@import url('../css/noclergy.css');
h1, h2 { display: none; }
</style>
</head>

<body>

<div id="notation">
<h1>No Clergy:</h1>
<p style="text-align:center;">

</p>
</div>

<table>
<tr>
<td>I'm a header, but I don't know it.</td>

HTML and XML Tools 147

<td><u>I'm some underlined content.</u></td>
<td><i>I'm some italicized content.</i></td>
</tr>
</table>

<p>I'm an unclosed paragraph. The horrors.

</body>
</html>

The Results

And here’s the new version, extras/eh.html.tidy:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content=
"HTML Tidy for Linux/x86 (vers 1 September 2005), see www.w3.org" />
<meta http-equiv="refresh" content="10" />
<title>English Horn for No Clergy</title>

<style type="text/css">
/*<![CDATA[*/
@import url('../css/noclergy.css');
h1, h2 { display: none; }
/*]]>*/
</style>

<style type="text/css">
/*<![CDATA[*/
 p.c1 {text-align:center;}
/*]]>*/
</style>
</head>
<body>
<div id="notation">
<h1>No Clergy:</h1>
<p class="c1"></p>
</div>
<table>
<tr>
<th>I'm a header, but I don't know it.</th>
<td><div style="text-decoration: underline;">I'm some underlined content.
</div></td>
<td>I'm some italicized content.</td>
</tr>
</table>
<p>I'm an unclosed paragraph. The horrors.</p>
</body>
</html>

148 Chap te r 8

Notice how tidy added a <meta> tag for itself and wrapped the style
information inside CDATA markers. It also defined a paragraph class called c1
for our text-align:center; style that is attached to the free-floating <p> tag.
In addition to everything that tidy does, our script does what I’ve described
above. It replaced the tags for our “almost” header with a <th>, converted the
underlining from a bad <u> tag to a style declaration, and changed the <i> tag
to an tag, making this content a little friendlier to an audio browser, such
as a blind person might use.

Hacking the Script

Could we use inject, rather than each, to modify declare_regexes_and_replacements
at � and make it more functional? Here’s one way:

Hashes from
Arrays with
inject

def declare_regexes_and_replacements()
 return UNWANTED_REGEXES.inject({}) do |h,discard|
 h.merge({ discard => EMPTY_STRING })
 end.merge(SIMPLE_TAG_REPLACEMENTS)
end

In this variant, h takes the place of replacement_of, and it is the memoized
Hash that persists from one iteration of inject to the next. Each time, we merge
it with the new pair (consisting of discard as a key pointing to the EMPTY_STRING),
so we end up with a Hash of things to replace, all of whose replacements are
the EMPTY_STRING—just like in the original version. This time, however, our
temporary variables are confined entirely within the inject loop.

Could we have simply altered contents in place with a method called
perform_replacements_on_contents!? Of course. I just wanted to show both a
destructive method (perform_replacements_on_filename!) and a regular method
(perform_replacements_on_contents) whose output we would then use for
demonstration purposes. Both could have been either destructive or non-
destructive. Change the script as you like if you’d prefer these to use the
same approach.

#31 Counting Tags (xml_tag_counter.rb)

XML is strict about its internal structure. It can only have a single top-level
element (called the root element), but that root element can have any number
of elements within itself, and each of those elements can have any number of
other elements within itself, continuing on recursively. We want a script that we
can run on an XML file that will output how many times each tag (or element)
occurs within that document, no matter how many layers deep it appears—
for example, we want to find all <p> tags regardless of whether or not those
tags are immediately within the top-level <html> element, or within some other
element, such as a <blockquote> or <div>. Let’s take a look.

HTML and XML Tools 149

The Code

#!/usr/bin/env ruby
xml_tag_counter.rb

=begin rdoc
This script uses the Rexml parser, which is written in Ruby itself.
Find out more at http://www.germane-software.com/software/rexml.
=end

REXML � require 'rexml/document'

class Hash

� =begin rdoc
Given that self is a Hash with keys of
XML tags and values of their respective counts in an
XML source file, sort by the tag count, descending.
Fall back to an ascending sort of the tag itself,
weighted half as strongly.
=end
 def sort_by_tag_count()
 self.sort do |a, b|

� ((b[1] <=> a[1]) * 2) + (a[0] <=> b[0])
 end
 end

� =begin rdoc
Merge with another Hash, but add values rather
than simply overwriting duplicate keys.
=end

Hashes as
Histograms

 def merge_totals(other_hash)
 other_hash.keys.each do |key|
 self[key] += other_hash[key]
 end
 end

� =begin rdoc
Your basic pretty formatter, returns a String.
=end
 def pretty_report()
 output = ''
 sort_by_tag_count.each do |pair|
 tag, count = pair
 output += "#{tag}: #{count}\n"
 end
 return output
 end

end # Hash

150 Chap te r 8

� =begin rdoc
Returns DOM elements of a given filename.
=end
def get_elements_from_filename(filename)
 REXML::Document.new(File.open(filename)).elements()
end

� =begin rdoc
Returns a Hash with keys of XML tags and values
of those tags' counts within a given XML document.
Calls itself recursively on each tag's elements.
=end
def tag_count(elements)

� count_of = Hash.new(0) # note the default value of 0
 elements.to_a.each do |tag|
 count_of[tag.name()] += 1

� count_of.merge_totals(tag_count(tag.elements))
 end
 return count_of
end

	 puts tag_count(get_elements_from_file(ARGV[0])).pretty_report()

How It Works

Most of the work in this script comes from adding new methods to the Hash
class. First, at �, we require the rexml/document library, an XML processing
library. Then at �, we start the RDoc explaining the sort_by_tag_count method.
The RDoc explains the method’s goals, but let’s look at each step. First,
self.sort converts a Hash into an Array of Arrays. Each element of the main
Array is another Array with the structure [key, value]. Let’s show this in irb:

irb(main):001:0> h = { 0 => 1, 1 => 2 }
=> {0=>1, 1=>2}
irb(main):002:0> h.sort
=> [[0, 1], [1, 2]]

Since this in the context of a method called sort, the Array of Arrays is
sorted. The sort method takes a block, which allows us to specify how we’d like
it to be sorted. We do this at � with the expression ((b[1] <=> a[1]) * 2) +
(a[0] <=> b[0]). What does this expression mean?

First, we need to talk a bit about sorting. You see in the line before �
that we identify the variables within the sort loop as a and b. Those names are
traditional for sorts, although Ruby allows you to pick other names if you like.
Our expression calls the <=> method on whatever b[1] is, with a[1] as the argu-
ment. It then multiplies this by two and adds the result of calling <=> on a[0],
with b[0] as an argument. That should clear everything up, right?

HTML and XML Tools 151

The <=> method returns 1 when self is greater then the argument, how-
ever it is defined; -1 when self is less than the argument, hopefully according
to the same criteria; and 0 when they are equal. Keep this in mind when you
create your own classes that implement the <=> method. Our project specifica-
tions from “#31 Counting Tags (xml_tag_counter.rb)” on page 148 says that
the pairs of our Array of Arrays from sort_by_tag_count will have keys that
are the names of XML tags and values that are the number of times that the
tag appears in the document being analyzed. The first part of our expression
(the part that is doubled) is just a sort on the tag count, as the name suggests.
We put b[1] before a[1] because we want to sort in descending order, so the
most common tags come first.

What happens when two different tags occur the same number of times
in the document? That’s what the second part of the expression is for. When
the tag count is tied, we want to then sort on the name of the tag, which is
either a[0] or b[0]. We put these in regular order, where a comes before b,
because we want to sort in ascending order. Our output is sorted by descend-
ing tag count first, and ascending tag name within a given tag count. Why do
we double the value of <=> for the tag counts?

Since <=> always returns -1, 0, or 1, and this is true for either sorting by tag
count or tag name, we need to give tag count sorting greater weight somehow.
Doubling does this very well, because it increases the magnitude of either 1
or -1 for the tag count sort relative to the tag name sort, but does nothing for
tag count ties, because zero doubled is still zero. Our tag name sort still counts
for something, just less than the sort_by_tag_count.3

We now know how to sort_by_tag_count, but we also want to be able to
merge Hashes together, take another Hash as an argument, add their tag
counts together, and have that new pair be the pair in the result. Hashes
already have a method called merge, which takes a Hash argument. That
should take care of everything, right? Sadly, no. The preexisting merge
method replaces any existing key => value pair with whatever is in the hash
taken as an argument. We don’t want that—we want to keep the key that they
share, but add the values together. How do we do that?

As is often true in Ruby, the answer is, Write your own method and add it to an
existing class. The RDoc for merge_totals starts at � and explains what we want
to happen. All we do is loop through each key of the other_hash (the one taken
as an argument) and add its value for that key to self[key]. Simple. There’s a
problem, though. What’s the value of some_hash[some_key] when some_key isn’t
one of some_hash’s keys? The value is nil, and nil doesn’t like to be added.
Let’s see what happens in irb:

irb(main):001:0> h = { 0 => 1 }
=> {0=>1}
irb(main):002:0> h[1]
=> nil
irb(main):003:0> h[1] + 0

3 To paraphrase George Orwell’s Animal Farm, “All sorts are equal, but some are more equal
than others.”

152 Chap te r 8

NoMethodError: undefined method '+' for nil:NilClass
 from (irb):3
 from :0

That’s not good. We’ll need to find a way around that problem—but
we’ll do that later in the script. For now, know that merge_totals will properly
add the counts for tags in Hashes that follow the format { tag => tag_count }
when that tag is present.

We have one more method called pretty_report to add to all Hashes (�).
This method outputs a String showing each tag and its count within the
document. It accomplishes that by sorting through each pair in the Array of
Arrays returned by sort_by_tag_count from �, and creating an output String
to which it adds a line with the tag, a colon, a space, the tag count, and a new-
line character. Then it returns that String. That’s it for the new methods
in Hash.

This script also has two functions not attached as methods to the Hash:
get_elements_from_filename (�) and tag_count (�). The get_elements_from_filename
method takes one argument called filename and instantiates a new REXML::
Document, which takes an instance of File as its argument. We provide that File
via File.open(filename). Instances of REXML::Document have a method called
elements, which does much of our script’s work for us, returning all the XML
elements from the File.

The tag_count method takes those elements as an argument, it instantiates
a new Hash called count_of at (�), and passes 0 into the new method. This 0
argument sets the default value for this Hash, which is the value returned by
count_of when it lacks the key it is asked for. This default of 0 is how we deal
with the problem of adding tag counts that don’t yet exist in the merge_totals
method. The self Hash has a default of zero, so when a new tag comes in to
merge_totals (which we call at �), it is assumed to have a count_of 0 for that
tag. Unlike nil, a 0 is happy to have another Integer added to it, so our addi-
tion problem is solved. We continue recursively, calling tag_counts on the
elements found within each tag, which then calls tag_counts as needed on its
own elements, if there are any. It all continues, aggregating tag counts with
merge_totals.

NOTE Hashes similar to count_of often benefit from having default values of either 0 or the
empty string. Hashes serving as histograms, like count_of, count occurrences of some-
thing, and should have a default of 0. Other hashes, which accumulate Strings for
whatever reason, could have a default of the empty string. Since Strings know to
concatenate with other objects, the script could accumulate Strings with +=, just as in
our example, which uses Integers as Hash values.

At �, we get the output of tag_count, which expects elements. We get
those elements by calling get_elements_from_filename on the first command-line
argument. Since tag_count returns a Hash, that return value has the method
pretty_report, which provides the argument to the puts method and provides
information to the user.

HTML and XML Tools 153

Running the Script
Let’s use the file extras/eh.html.tidy, the corrected output provided by the
html_tidy.rb script. Let’s try ruby -w xml_tag_counter.rb extras/eh.html.tidy:

The Results
Here’s the output:

div: 2
meta: 2
p: 2
style: 2
td: 2
body: 1
em: 1
h1: 1
head: 1
html: 1
img: 1
table: 1
th: 1
title: 1
tr: 1

Hacking the Script
What if we wanted sort_by_tag_count to return a Hash, rather than an Array?
We could theoretically make a method like this:

 def sorted_by_tag_count()
 # sort_by_tag_count returns an Array of Arrays...
 sort_by_tag_count.inject({}) do |memo,pair|
 tag, count = pair
 memo.merge({ tag => count })
 end
 # so we can re-Hash it with inject
 end

The problem is all Hash pairs are unordered. Our new sorted_by_tag_count
goes to all the trouble of calling sort_by_tag_count but then rehashes it, losing
the ordering.

What if we wanted to implement pretty_report with inject? Here’s one
way to do it. Notice how the method becomes a bit shorter, and the output
variable becomes internal to inject.

 def pretty_report()
 sort_by_tag_count.inject('') do |output,pair|
 tag, count = pair
 output += "#{tag}: #{count}\n"
 end
 end

154 Chap te r 8

Finally, instead of calling get_elements_from_filename only on the first
command-line argument, we could have used ARGV.each to allow the script to
analyze multiple files in succession.

#32 Extracting Text from XML (xml_text_extractor.rb)

Counting occurrences of tags is fine, but XML is designed to hold text wrapped
in tags, providing some organization beyond what’s available simply from the
content. That said, though, sometimes having just the text content is handy.
When I was preparing a document using DocBook, I found myself wanting to
use a spell checker on it. There are spell checkers that are XML-aware, but
another approach would be to run a text extractor on XML and pass that
output into a spell checker that expects plain text. This xml_text_extractor.rb
is just such a script.

The Code

#!/usr/bin/env ruby
xml_text_extractor.rb

� CHOMP_TAG = lambda { |tag| tag.to_s.chomp }

=begin rdoc
This script uses the Rexml parser, which is written in Ruby itself.
Find out more at http://www.germane-software.com/software/rexml
=end

� require 'rexml/document'

=begin rdoc
Returns DOM elements of a given filename.
=end

� def get_elements_from_filename(filename)
 REXML::Document.new(File.open(filename)).elements()
end

=begin rdoc
Returns a String consisting of the text of a given XML document
with the tags stripped.
=end

� def strip_tags(elements)
� return '' unless (elements.size > 0)
� return elements.to_a.map do |tag|

Mapping Procs � tag.texts.map(&CHOMP_TAG).join('') + strip_tags(tag.elements)
onto Arrays � end.join(' ')

end

� puts strip_tags(get_elements_from_filename(ARGV[0]))

HTML and XML Tools 155

How It Works

This xml_text_extractor.rb script is similar to xml_tag_counter.rb, although it is
simpler—ironic, since its output is arguably more complex. It starts out at �
by defining a Proc Constant called CHOMP_TAG, which accepts a single argument
and returns the chomped version of that argument’s rendition as a String.
Following that, it requires the REXML library at �, just as in xml_tag_counter.rb.
At �, it defines its own version of get_elements_by_filename, identical to the
one in xml_tag_counter.rb.

NOTE These scripts are designed to demonstrate techniques, rather than to function as production
code. For production code, the definition of a method that will be used in multiple
places should reside in a single library file that is required by any other file that needs
access to that method. Please forgive the duplication in this case for the sake of simplicity.

Next, we have strip_tags at �. Contrast the design of this function with
pretty_report in xml_tag_counter.rb. Rather than a more iterative approach of
(for example) defining an output variable looping through an Array with the
each method and appending results onto the output variable), this uses a
more functional approach. It maps an action onto each member of elements
(which it calls tag) at �. That action is itself a mapping of the CHOMP_TAG Proc
onto each member of tag.texts (�). Then it joins the resulting Array with an
empty String separator between each element, and appends the results of a
recursive call to strip_tags onto the elements of tag. The result of a map is an
Array, so it joins the elements of that Array with a space character before
returning (�). It also has an exit condition, which returns the empty String if
there are no elements (�).

Running the Script

Since strip_tags returns either the elements of a map joined on a space (which is
a String) or the empty String, that String can easily be printed with puts at �.
Let’s look at the output returned by ruby -w xml_text_extracter.rb extras/
eh.html.tidy.

The Results

 English Horn for No Clergy
/**/
@import url('../css/noclergy.css');
h1, h2 { display: none; }
/**/
/**/
 p.c1 {text-align:center;}
/**/ No Clergy: I'm a header, but I don't know it. I'm some underlined
content I'm some italicized content I'm an unclosed paragraph. The horrors.

156 Chap te r 8

Hacking the Script

As I mentioned, one change that could be done on both xml_text_extractor.rb
and xml_tag_counter.rb would be to take the common get_elements_by_filename
method and place it in a single library file that both xml_text_extractor.rb and
xml_tag_counter.rb access via require. This operation has a name in the refactor-
ing community: Pull Up Method. The xml_text_extractor.rb script could also
massage the output of strip_tags, stripping out empty lines and/or lines con-
sisting entirely of whitespace, as html_tidy.rb does with UNWANTED_REGEXES.

#33 Validating XML (xml_well_formedness_checker.rb)

All the XML processing in the world won’t do any good if your XML file is
not well-formed. Since an XML document either is or is not well-formed,
a well-formedness checker that will return either true or false seems like an
ideal predicate method. Since XML documents are Files with Strings as their
contents, we’ll add a well_formed_xml? method to both the File class and the
String class.

The Code

#!/usr/bin/env ruby
xml_well_formedness_checker.rb

=begin rdoc
This script uses the xml/dom/builder, written by YoshidaM.
=end

The DOM � require 'xml/dom/builder'

class File

� def well_formed_xml?()
 read.well_formed_xml?
 end

end

class String

� def well_formed_xml?()
 builder = XML::DOM::Builder.new(0)

Root Element builder.setBase("./")

� begin
 builder.parse(self, true)

� rescue XMLParserError
 return false
 end

HTML and XML Tools 157

� return true
 end

end

� def well_formed?(filename)
� return unless filename
� return File.open(filename, 'r').well_formed_xml?

end

� puts well_formed?(ARGV[0])

How It Works

At �, we require the XML::DOM::Builder library file, which is available as part of
Ruby’s standard library. DOM stands for Document Object Model, and it’s a way
to express an XML document as a object with methods like elements, which
returns the elements found within whatever self is at the time—it could be
the entire document, or it could be a sub-element within the document. We’ve
used elements already in our previous scripts with the REXML library.

NOTE Programmers that do a lot of Ajax or other JavaScript are intimately familiar with the
DOM. Because JavaScript’s most common use is as a client-side scripting language
within web browsers, JavaScript programs often find themselves dealing with XML
(especially XHTML) data. JavaScript is an excellent language with a terribly misleading
name and some poor implementations. It shares a similar fused OO/functional heritage
with Ruby.

We said that we’d be adding a well_formed_xml? predicate to File, which is
what we do at �. The read method of a File returns the contents of that File as
a String. We know that we want to add well_formed_xml? to all Strings as well as
all Files, so we just call read.well_formed_xml? within File’s well_formed_xml?
method and assume that String will do its job and provide its own version of
well_formed_xml? for us.

We don’t want to make Strings out to be liars, so we provide String with
its own well_formed_xml? predicate at �. This delegates some of its work to the
XML::DOM::Builder library, instantiating a Builder and setting its base to './',
which stands for the root element of an XML document.

NOTE The 0 argument to XML::DOM::Builder.new tells it to ignore default events, which has no
impact our script. You can read more about XML::DOM::Builder at http://raa.ruby-lang.org/
gonzui/markup/xmlparser/lib/xml/dom/builder.rb?q=moduledef:XML.

We then start a block at � with the begin keyword, which indicates a
block that may fail so disastrously to do what's asked of it that it could exit the
program entirely. The begin keyword allows you to trap that error and deal
with it in some intelligent way, without causing the program to crash. We ask
our builder instance to parse the XML content represented by self, which is
of course a String within a String instance.

158 Chap te r 8

This parse operation is the one that might fail. The potentially disastrous
error has a type called XMLParserError, so at � we use the rescue keyword to
trap that particular error type and prevent it from killing the entire program.
Since our predicate tests for XML well-formedness, an XMLParserError indicates
that the document is not well-formed. Therefore, we should return false in
the event of an XMLParserError. If we get out of the begin block without enter-
ing the rescue section, that means there was no error, so we can safely return
true at �.

We’ll finish the xml_wellformedness_checker.rb script with a well_formed?
function that accepts a filename argument, created at �. It returns an implicit
nil for a nil filename at �. We then return a call to well_formed_xml? on the File
instance created by opening filename at �. Finally, � prints the result of calling
well_formed? to the user via puts.

Running the Script

We know that we have a well-formed XML file in extras/eh.html.tidy because
we ran html_tidy.rb on it to fix it. We also know that extras/eh.html had an
unclosed paragraph tag, which would make it not well-formed. Let’s see how
xml_wellformedness_checker.rb performs.

The Results

ruby -w xml_well_formedness_checker.rb extras/eh.html.tidy
true
$ ruby -w xml_well_formedness_checker.rb extras/eh.html
false
$ ruby -w xml_well_formedness_checker.rb xml_well_formedness_checker.rb
false
$ ruby -w xml_well_formedness_checker.rb
nil

The extras/eh.html.tidy file is well-formed XML, so it properly reports
true. The extras/eh.html and xml_wellformedness_checker.rb files are either not
well-formed XML or not XML at all, so they properly report false. If we call
xml_wellformedness_checker.rb with no filename, it returns nil, as we expect
from �.

Hacking the Script

Calling a separate function called well_formed? on a filename argument is really
just for demonstration purposes. In production code, a more likely use for this
script would be to add another method to String called well_formed_xml_filename?,
implemented as well_formed?, except that it would use self in place of filename.
Or, in whatever code opens a given XML file, that file could be checked using
File’s well_formed_xml? method before performing any operations that depend
on the file's contents being well-formed XML.

HTML and XML Tools 159

Chapter Recap

What was new in this chapter?

� Tidying HTML/XML markup

� Piping output to standard error with 2>

� The Web Accessibility Initiative

� The <=> method and the Comparable module

� Processing XML with REXML and XML::DOM::Builder

� Manipulating XML documents with regular expressions

� Making Hashes out of Arrays with inject

� Hashes serving as histograms

� Mapping Procs onto Arrays

� The Document Object Model

� The begin and rescue keywords

That’s it for our XML-processing scripts. I hope these example scripts
are not only useful in and of themselves but that they also might give you
ideas about how you could modify or extend them to suit new tasks other
than those presented here. For now, we’ll proceed to our next chapter,
“More Complex Utilities and Tricks, Part I.” As the name suggests, its scripts
are more detailed, and they will continue to introduce some new functional
techniques, as well.

9
M O R E C O M P L E X U T I L I T I E S

A N D T R I C K S , P A R T I

This chapter is the first of two that explore
more complex operations in Ruby. This

one deals extensively with text manipula-
tions and larger-scale searches, while the next

details an important functional technique that expands
your options for abstraction in a very powerful way.
For now, let’s dive right in to learn some text proces-
sing techniques.

#34 Finding Codes in the Bible or Moby-Dick (els_parser.rb)

This script analyzes a phenomenon in large texts called equidistant letter
sequences (ELSes). These sequences are popularly known as Bible Codes or
Torah Codes, largely due to their description in Michael Drosnin’s book
The Bible Code (Simon & Schuster, 1997), in which he examined the Hebrew
Bible. An ELS is a collection of letters (what Ruby would call a String) with a
known starting point within the source text, a known length, and a known

162 Chap te r 9

skip value, which is the distance between the letters comprising that ELS. You
could construct an ELS by saying, “Start with the 23rd letter in this newspaper
article and add every 8th letter until you have 11 letters.” That String of 11 letters
would be an ELS. Drosnin’s work suggests that ELSes of particular significance
(generally due to relevance to the text they’re drawn from or due to accurate
prediction of future events, such as assassinations) appear at a rate greater
than chance within certain religious texts.

My els_parser.rb script also uses the work of Professor Brendan McKay of
The Australian National University. McKay has done his own research (available
at http://cs.anu.edu.au/~bdm/dilugim/torah.html) to find ELSes in texts
like War and Peace and Moby-Dick, thus concluding that the ELSes that Drosnin
refers to as the Bible Codes do not occur more often in the Hebrew Bible
than can be expected due to chance. I can’t read Hebrew, so for this script
I’ve chosen to analyze Herman Melville’s Moby-Dick in English instead of
the Hebrew Bible. I downloaded the text from Project Gutenberg (http://
www.gutenberg.org) into extras/moby_dick.txt. The els_parser.rb script allows
you to choose a text and a set of input parameters that describe a potential
set of ELSes; then els_parser.rb will report whether any ELSes that match the
description exist within the source text.

The Code

ELS #!/usr/bin/env ruby
els_parser.rb

require 'palindrome2.rb'
I want all Strings to have the private letters_only
method from this file.

class String

=begin rdoc
This provides a public method to access the private letters_only
method we required from palindrome2.rb.
=end
 def just_letters(case_matters)

� letters_only(case_matters)
 end

end

=begin rdoc
A text-processing parser that does ASCII-only
Equidistant Letter Sequence analyses similar to that described
at http://en.wikipedia.org/wiki/Equidistant_letter_sequencing

For my example, I use Moby Dick taken from
Project Gutenberg, http://www.gutenberg.org.
=end
class ELS_Parser

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 163

� DEFAULT_SEARCH_PARAMS = {
 :start_pt => 4500,
 :end_pt => nil, # assumes the end of the String to search when nil
 :min_skip => 126995,
 :max_skip => 127005,
 :term => 'ssirhan',
 }

 def initialize(filename, search_params=nil)
 @contents = prepare(filename)
 @filename = filename
 reset_params(search_params || DEFAULT_SEARCH_PARAMS)
 end

 def reset_params(search_params)
 @search_params = search_params
 @search_params[:end_pt] ||= (@contents.size-1)
 # ||= for :end_pt allows nil for 'end of file'
 return self # return self so we can chain methods
 end

=begin rdoc
Performs an ELS analysis on the <i>filename</i> argument, searching for
the term argument, falling back to the default.
=end

� def search(term=@search_params[:term])
 @search_params[:term] = term
 reversed_term = term.reverse

$DEBUG warn "Starting search within #{@filename} " +
 "using #{@search_params.inspect}" if ($DEBUG)

� final_start_pt = @search_params[:end_pt] - @search_params[:term].size
 @search_params[:start_pt].upto(final_start_pt) do |index|
 @search_params[:min_skip].upto(@search_params[:max_skip]) do |skip|

� candidate = construct_candidate(index, skip)

� if (candidate == @search_params[:term])
 return report_match(skip, index)
 end

 if (candidate == reversed_term)
 return report_match(skip, index, 'reversed ')
 end

 end
 end

� return report_match(false, false)
 end

 private

� def construct_candidate(index, skip)
 output = ''
 0.upto(@search_params[:term].size-1) do |char_index|
 new_index = (index + (char_index * (skip + 1)))

164 Chap te r 9

 return '' if (new_index >= @contents.size)
The chr Method output += @contents[new_index].chr

 end
 return output
 end

=begin rdoc
Creates a 'letters only' version of the contents of a <i>filename</i>
argument in preparation for ELS analysis. Assumes case-insensitivity.
=end

� def prepare(filename, case_matters=false)
 File.open(filename, 'r').readlines.to_s.just_letters(case_matters)
 end

=begin
Either report the variables at which a match was found, or report
failure for this set of search params.
=end

� def report_match(skip, index, reversed='')
 return "No match within #{@filename} using " +
 @search_params.inspect unless index
 return "Match for #{@search_params[:term]} " +
 "#{reversed}within #{@filename} " +
 "at index #{index}, using skip #{skip}"
 end

end # ELS_Parser

How It Works

The els_parser.rb script only processes letters, ignoring whitespace and
punctuation. We know that Strings can also have non-letter characters, such a
whitespace, numbers, punctuation, and so on; therefore, we need a method
that strips all non-letters out of a String. Fortunately, we already have such a
method—letters_only, defined in palindrome2.rb. It is easy to take advantage
of letters_only with a require at the top of els_parser.rb. However, palindrome2.rb
defined letters_only as a private method, and (as will become clear), we want
it available as a public method. What can we do? One approach, which is what
els_parser.rb does at �, is to define a new public method, just_letters, that
exists merely to call the pre-existing private method letters_only.

The just_letters method is for Strings, but we want a new class called
ELS_Parser to do the overall management of the searching. ELS_Parser has a
Hash Constant called DEFAULT_SEARCH_PARAMS at �. The values for the :start_pt
and :end_pt Symbol keys represent the earliest and latest character index for
the search, respectively. The value for :term is the text to be searched for.
Finally, the values for :min_skip and :max_skip are the minimum and maxi-
mum number of letters to jump past (i.e., skip) during the search. Why these
particular default values? They could have been any values, but I took a short-
cut and started with values from McKay’s web page (http://cs.anu.edu.au/
~bdm/dilugim/moby.html) that are known to correspond to a particular
match within the text of Moby-Dick.

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 165

Note some subtle differences—my values are 0-based (where a skip of 0
means Go to the next letter), whereas McKay defines moving to the next letter
as a skip of 1. There is a similar difference with regard to starting points. He
also accomplishes searches for backward terms using a negative skip value,
while els_parser.rb uses a positive skip search on a reversed term.

For example, in the String 'abcdefgh', which we’ll call contents, searching
for an ELS with a :start_pt of 0, a :term of 'abc', and a :min_skip of 0 would find
a match, because the String 'abc' exists within contents starting at 0 (right at
the beginning) with a skip value of 0. Similarly, 'ceg' would be found within
contents starting at 2 with a skip value of 1, and 'heb' would be found starting
at 1 with a skip value of 2, but as a reversed String. If you expand these concepts
greatly, use longer search terms, much larger contents (such as the Bible or
Moby-Dick), and much larger starting, ending, and skip values, you will begin
to understand the basics of ELS analysis.

After defining DEFAULT_SEARCH_PARAMS, our ELS_Parser needs an initialize
method, in which it will define the instance variables @contents, to hold the
text being searched, and @filename, to store the name of the file it read
@contents from.

The @contents variable is the result of calling the prepare method (defined
at �) on the filename. The prepare method takes in a mandatory filename
argument and an optional case_matters argument. All it does is open a new
file, extract its contents into a String with readlines.to_s, and call just_letters
on that String. This ensures that we strip out inappropriate characters from our
String before storing it in @contents. Note that just_letters takes an optional
argument for case sensitivity. If you’re curious about how this works, remember
that just_letters just calls the letters_only method defined in palindrome2.rb,
so you can refer to that script for further study.

The initialize method also calls the reset_params method, defined right
below initialize, which simply sets the instance variable @search_params to
the search_params argument passed into initialize, falling back to the
DEFAULT_SEARCH_PARAMS. It also sets the :end_pt value to fall back to the last
index of @contents if the :end_pt value would otherwise be nil. This gives
ELS_Parser a handy shortcut: leaving out the :end_pt automatically means
Search to the end of @contents.

Next is search at �. It allows an optional term argument, which auto-
matically updates @search_params[:term] as needed. Since search is set up to
find reversed terms as well as normal-order terms, we define reversed_term right
away. We also report that the search is starting if $DEBUG is true using the method
warn, which writes out to standard error, instead of standard out. $DEBUG is gen-
erally set as a command-line option to ruby, such that $DEBUG is true when you
execute ruby with either the -d or --debug flag. You may remember standard
error from html_tidy.rb. In that script, we sent standard error to /dev/null,
meaning we didn’t care about it. Here, we have a special message designed
specifically to go to standard error.

After the standard error warning, we define final_start_pt at �. To under-
stand what final_start_pt is for, let’s go back to our contents = 'abcdefgh' search
example. What if we search for 'hiccup' with a :start_pt of 100? There
aren’t even 100 letters in our contents, so a search with that :start_pt value

166 Chap te r 9

would automatically fail. Instead of letting that happen, we want to figure
out the maximum starting index that could conceivably work, and make sure
:start_pt is not larger than that value.

It’s even more complicated than that. Our search terms will always have
letters, and those letters take up space. If we start too close to the end of
@contents, we could run out of room even with relatively low skip values. We
need to keep enough room for the term being searched for, which we store
in @search_params[:term], so we set final_start_pt accordingly.

After setting final_start_pt, we enter two nested loops—one on index
from the lowest to highest starting points and one using skip to refer to each
number from the lowest to highest skip values. The first thing we do within
those loops is use index and skip at � to assign the expression returned from
construct_candidate, defined at �, into candidate. The construct_candidate
method takes the existing index and skip values and makes a String of the
same length as the term being searched for. For a @contents of 'abcdefgh',
construct_candidate(2, 1) produces 'ceg' where @search_params[:term] has
three characters in it. The construct_candidate method returns the empty
String if the new_index being asked for ever goes beyond the @contents String.
Our final_start_pt limits should prevent this from ever being needed, but it’s
an additional safety check.

NOTE The construct_candidate method also uses the chr method, because extracting a single
character out of a String gives you that character’s ASCII value.

You can test this in irb:

irb(main):001:0> s = 'abcde'
=> "abcde"
irb(main):002:0> s[0]
=> 97
irb(main):003:0> s[0].chr
=> "a"

After establishing our candidate, we want to see if it is a successful
match, which we start to do at �. If it does match, we return the result of
calling report_match with skip and index as arguments. However, we also want
to know whether our candidate matches the reversed_term instead of the term
in regular order, so we call report_match, again with skip and index as arguments,
but we also add the String 'reversed '. Finally, at � we return the result of
calling report_match with two explicit false arguments if we’ve looped through
all of the appropriate skip and index loops without already returning something.
This just means that we never found a match, either forward or reversed.

We need to know how report_match works. It’s defined at �, and it takes
arguments for skip, index, and an optional reversed String, as already shown.
If index is false, report_match returns a String informing the user that there
was no match found. Otherwise, It returns the details of the successful match.
Note that reversed adds the String 'reversed ' (including the trailing space)
as needed.

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 167

Running the Script

We can test this with another script called demo_els_parser.rb. Here is its code:

#!/usr/bin/env ruby
demo_els_parser.rb

require 'els_parser.rb'

moby_dick = ELS_Parser.new('extras/moby_dick.txt')
puts moby_dick.search() # assumes 'ssirhan'
puts moby_dick.reset_params({
 :start_pt => 93060,
 :end_pt => nil, # assumes 'to the end'
 :min_skip => 13790,
 :max_skip => 13800,
 :term => 'kennedy'
}).search()
puts moby_dick.reset_params({
 :start_pt => 327400,
 :end_pt => nil, # 'to the end' again
 :min_skip => 0,
 :max_skip => 5,
 :term => 'rabin'
}).search()
puts moby_dick.reset_params({
 :start_pt => 104620,
 :end_pt => 200000, # not to the end
 :min_skip => 26020,
 :max_skip => 26030,
 :term => 'mlking'
}).search()

The Results

Here is the result of calling this script:

ruby -w --debug demo_els_parser.rb
Starting search within extras/moby_dick.txt using {:end_pt=>924955,
:min_skip=>126995, :max_skip=>127005, :term=>"ssirhan", :start_pt=>4500}
Match for ssirhan within extras/moby_dick.txt at index 4546, using skip 126999
Starting search within extras/moby_dick.txt using {:end_pt=>924955,
:min_skip=>13790, :max_skip=>13800, :term=>"kennedy", :start_pt=>93060}
Match for kennedy within extras/moby_dick.txt at index 93062, using skip 13797
Starting search within extras/moby_dick.txt using {:end_pt=>924955,
:min_skip=>0, :max_skip=>5, :term=>"rabin", :start_pt=>327400}
Match for rabin reversed within extras/moby_dick.txt at index 327500, using
skip 3
Starting search within extras/moby_dick.txt using {:end_pt=>200000,
:min_skip=>26020, :max_skip=>26030, :term=>"mlking", :start_pt=>104620}
Match for mlking reversed within extras/moby_dick.txt at index 104629, using
skip 26025

168 Chap te r 9

Hacking the Script
We could significantly increase the speed of construct_candidate by checking
against the search terms as we go and returning the empty string whenever it
fails to match—an application of the return guard notion within the construc-
tion of the candidate. Where we define final_start_pt, we could also either
limit :max_skip in a similar way or report an error if impossible search param-
eters were asked for.

NOTE There’s also a better way to include the letters_only method than the way I’ve done it
here, using a concept called a mixin. Jump ahead to the to_lang.rb script in Chapter 10
to see mixins in action.

#35 Mutating Strings into Weasels (methinks.rb)

This script is based on a program from Richard Dawkins’ The Blind Watchmaker
(W.W. Norton, 1996).The program demonstrates a simplified model of asexual
natural selection, starting with a String consisting of random characters and
successively mutating it to produce “children” that differ from the parent.
The program then selects the “best” child String (meaning the one that
most closely matches the target String methinksitislikeaweasel, a reference
from Hamlet) to be the next generation’s parent. This process continues
until the parent String matches the target String.

Let’s implement Dawkins’ process in Ruby.

NOTE Dawkins wrote his program to demonstrate a version of cumulative selection over time
that was intentionally simpler than real-world neo-Darwinian natural selection. Critics
contend that the program is a suboptimal model, with the most prominent criticisms
being that it is overly simplified, it is unable to fail, and it has a preset target, making
it a better model of artificial selection than natural selection. See “Hacking the Script”
on page 175 for general suggestions for modifying this version of the program to be a
better model of real-world Darwinian selection.

The Code

#!/usr/bin/env ruby
methinks.rb

=begin rdoc
Recreate Richard Dawkins' Blind Watchmaker program, in which a purely
random string is mutated and filtered until it matches the target string.
=end

Inheritance � class Children < Array

 def select_fittest(target)
 inject(self[0]) do |fittest,child|
 child.fitter_than?(fittest, target) ? child : fittest
 end
 end

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 169

end

� class String

 ALPHABET = ('a'..'z').to_a

 LETTER_OFFSET = 'a'[0]

 PARAMS = {
 :generation_size => 20,
 :mutation_rate => 10,
 :display_filter => 5,
 :mutation_amp => 6
 }

 TARGET = 'methinksitislikeaweasel'

 @mutation_attempts ||= 0

Differences � def deviance_from(target)
between Strings deviance = 0

 split('').each_index do |index|
 deviance += (self[index] - target[index]).abs
 end
 return deviance
 end

 def fitter_than?(other, target)
 deviance_from(target) < other.deviance_from(target)
 end

� def mutate(params)
 split('').map do |char|
 mutate_char(char, params)
 end.join('')
 end

� def mutate_until_matches!(target=TARGET, params=PARAMS)
 return report_success if (self == target)
 report_progress(params)
 @mutation_attempts += 1
 children = propagate(params)
 fittest = children.select_fittest(target)
 replace(fittest)
 mutate_until_matches!(target, params)
 end

� def propagate(params)
 children = Children.new()
 children << self
 params[:generation_size].times do |generation|
 children << self.mutate(params)
 end
 return children
 end

170 Chap te r 9

� def report_progress(params)
 return unless (@mutation_attempts % params[:display_filter] == 0)
 puts "string ##{@mutation_attempts} = #{self}"
 end

 def report_success()
 puts <<END_OF_HERE_DOC
I match after #{@mutation_attempts} mutations
END_OF_HERE_DOC
 return @mutation_attempts
 end

=begin rdoc
Replace self with a String the same length as the
<i>target</i> argument, consisting entirely of lowercase
letters.
=end

� def scramble!(target=TARGET)
 @mutation_attempts = 0
 replace(scramble(target))
 end

 def scramble(target=TARGET)
 target.split('').map do |char|
 ALPHABET[rand(ALPHABET.size)]
 end.join('')
 end

 private

=begin rdoc
Limit 'out of bounds' indices at end points of the ALPHABET.
=end

� def limit_index(alphabet_index)
 alphabet_index = [ALPHABET.size-1, alphabet_index].min
 alphabet_index = [alphabet_index, 0].max
 return alphabet_index
 end

	 def mutate_char(original_char, params)
 return original_char if rand(100) > params[:mutation_rate]
 variance = rand(params[:mutation_amp]) - (params[:mutation_amp] / 2)
 # variance with amp of 6 now ranges from -3 to 2,
 variance += 1 if variance.zero? # therefore move (0..2) up to (1..3)
 alphabet_index = (original_char[0] + variance - LETTER_OFFSET)
 alphabet_index = limit_index(alphabet_index)
 mutated_char = ALPHABET[alphabet_index]
 return mutated_char
 end

end

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 171

How It Works

We start by defining a new class called Children at �. You’ll notice the
peculiar Children < Array within the class definition, which suggests a
relationship between Children and Arrays. That relationship is inheritance.
Children inherits from Array, meaning that it behaves as an Array in every
way, while also adding whatever new characteristics we give it. In our case,
the only new characteristic is a new method called select_fittest, which uses
inject to find the fittest child within Children, defined by the fitter_than?
method.

After defining Children, we open the String class at �. We add several
Constants, including an Array of letters that we’ll call the ALPHABET, and
LETTER_OFFSET. The LETTER_OFFSET Constant requires some explanation.
It represents characters as ASCII values to determine how closely certain
Strings match each other. Converting letters to numerical value is conven-
ient, as it allows us to use basic mathematical operations to find the “most fit”
child string. Ruby converts characters to numerical values by treating a String
as an Array and reading values out with indices. Let’s demonstrate in irb
(the chr method converts from ASCII values back to a String):

irb(main):001:0> s = 'abcde'
=> "abcde"
irb(main):002:0> s[0]
=> 97
irb(main):003:0> s[0].chr
=> "a"
irb(main):004:0> 'a'[0]
=> 97
irb(main):005:0> s[1]
=> 98

C H I L DR EN DO N ’ T L I E

There’s one other way in which a child class (or subclass) differs from its parent, and
that’s the expression returned by the class method. It returns the name of the subclass
when called on an instance of the subclass:

$ irb -r methinks.rb
irb(main):001:0> a = Array.new
=> []
irb(main):002:0> c = Children.new
=> []
irb(main):003:0> a.class
=> Array
irb(main):004:0> c.class
=> Children

Some people may think that’s obvious, but it’s worth noting.

172 Chap te r 9

You can see that the ASCII value for the String 'a' (the character at
index 0 in String s) is 97, that the chr method converts that ASCII value back
to 'a', and that the ASCII value for 'b' is 98. The number 97 is our LETTER_OFFSET.
Astute readers will notice that LETTER_OFFSET is the index at which 'a' appears
in our ALPHABET, as well. Observe the following in irb:

irb(main):001:0> letters = ('a'..'z').to_a
=> ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o",
"p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
irb(main):002:0> 's'[0]
=> 115
irb(main):003:0> 's'[0] - 'a'[0]
=> 18
irb(main):004:0> letters[18]
=> "s"

Calling [0] on a character and subtracting LETTER_OFFSET ('a'[0], or 97)
gives us the index of that character within our ALPHABET Array. This will be very
handy in the mutate_char method at �, which we’ll discuss when we get there.

Our next two Constants are PARAMS and TARGET. Both of these establish
defaults for items that might be overridden by optional arguments. PARAMS is
a now-familiar Hash with Symbol keys, each value of which determines the
specific behavior of our mutations. The value for :generation_size is the num-
ber of children, :mutation_rate's is the percentage chance that a mutation will
occur at all, :display_filter just sets how often our program will give updates
while it’s running, and :mutation_amp determines how strong or divergent a
given mutation can be—basically a numeric measure of how different children
can be from their parents.

TARGET is our default final goal: methinksitislikeaweasel. Finally, after the
Constants, we have a single class variable called @mutation_attempts, which is
just a counter that increments every time we mutate. We’re ready to start
defining some methods.

Our first new method to add to String is deviance_from (�). It takes a
mandatory target argument (the default fallback to the TARGET Constant occurs in
mutate_until_matches! at �, which is later in the code but is called earlier). The
deviance_from method returns an Integer (deviance) which is a numeric measure
of how different two Strings are. Each character of difference at each point
within the String increments deviance by one. Here are some irb examples:

irb -r methinks.rb
irb(main):001:0> 'aaa'.deviance_from('aaa')
=> 0
irb(main):002:0> 'aaa'.deviance_from('aab')
=> 1
irb(main):003:0> 'aaa'.deviance_from('aac')
=> 2
irb(main):004:0> 'aaa'.deviance_from('bac')
=> 3
irb(main):005:0> 'aaa'.deviance_from('baq')
=> 17

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 173

This method is useful for our script, because if we are trying to model the
survival of the fittest, we need to be able to measure fitness. A low deviance_from
the target represents fitness. Just below deviance_from is fitter_than?, a simple
predicate that compares the deviance_from value for self and the deviance_from
value for the other String, both relative to the same target. It only returns true
when self’s deviance_from value is lower, making self fitter. Take a look at
“Hacking the Script” on page 175 for a way to eliminate this method entirely.

Next up is mutate (�). It takes a mandatory params argument, which falls
back to the default PARAMS Constant in mutate_until_matches! (�) earlier
within the script’s operation, if necessary. The mutate method is remarkably
lazy, in that it splits its calling object into individual characters, and calls
mutate_char (�) on each of those characters via map.

The mutate_char method is a bit more complicated. It takes mandatory
arguments for the original_char and params, and it exits immediately if params
says that it should not mutate, which is determined by a random percentage
being higher than params[:mutation_rate]. Assuming it passed params’ test,
mutate_char will mutate the character. First, it declares a variance, which is just
the amount and direction of change based on the :mutation_amp. The values for
variance range from +(:mutation_amp / 2) to -(:mutation_amp / 2), excluding zero.
They initially vary from -(:mutation_amp / 2) to one less than +(:mutation_amp / 2),
including zero, but the line that executes variance +=1 if variance.zero?
ensures that values of zero or higher are bumped up by one.

It then creates an alphabet_index variable, which uses LETTER_OFFSET as
previously discussed to find that index within ALPHABET for our original_char, plus
any appropriate variance. It then limits alphabet_index with the limit_index
method (�), which clips or truncates alphabet_index to a maximum of the last
index within ALPHABET and minimum of 0, which is the first index within ALPHABET.
Since it then has a dependable index to read from ALPHABET, it does so, plac-
ing that value within a variable called mutated_char, which it then returns.

Following mutate is mutate_until_matches! (�), which is the public-facing
workhorse of the script. It takes optional arguments for target and params,
falling back to String’s TARGET and PARAMS Constants, as mentioned in earlier
discussions of other methods. If self matches the target exactly, we want to
report_success. Failing that, we want to report_progress. We can look at both
of those methods, which start at �. The report_success method uses puts to
show that it matches exactly after a certain number of attempts, and it returns
@mutation_attempts without incrementing it. (There’s no need to increment it,
since no new mutation occurred.) The report_progress method returns with
no value unless @mutation_attempts is a multiple of (i.e., has a modulus of 0
relative to) params[:display_filter]. If we set a lower display filter, we have a
chattier mutation process. Assuming that it should output, it uses puts to show
what self is after however many @mutation_attempts.

After reporting its progress, mutate_until_matches! should then actually
do some mutating. It increments @mutation_attempts and then creates a new
variable called children, which is the output of propagate (�). The propagate
method takes some params and instantiates a new instance of Children (�),
meaning that it has access to select_fittest, which is not available to Arrays.
It appends itself onto children, the effect of which is that if the parent (self)

174 Chap te r 9

is fitter than all of the children, the parent will again be the source of the
generation of children after this one. The propagate method then appends a
child (a mutated version of itself) onto children, doing so a number of times
equal to params[:generation_size]. Finally, it returns the children, who will
then try to make their way in the cruel world.

The effect of the cruel world is accomplished via Children’s select_fittest
method. The world is cruel indeed, because only one child survives, as dis-
cussed already. We call the fittest child fittest, appropriately, and replace the
parent with this fittest child. Then mutate_until_matches! recursively calls itself,
mutating until it finally matches the target.

Two methods remain undescribed: scramble and scramble! (). Both of
these methods take an optional target argument that defaults to TARGET. Since
scramble! is destructive, it sets self’s @mutation_attempts to 0 and replaces itself
with the value returned by the non-destructive scramble. The scramble method
splits the target at each char and creates a new Array via map; each member of
the new Array is a random element from ALPHABET. Note that we don’t even
make any use of char—we just use map to make sure that the scrambled String
is the same size as the target. The scramble method then joins that Array of
random characters with the empty String and returns the resulting String:
a String of the same length as the target, consisting entirely of random letters.

Running the Script

Let’s try it out in irb.

irb -r methinks.rb
irb(main):001:0> candidate = String.new.scramble!()
=> "rnvrtdldcgaxlsleyrmzych"
irb(main):002:0> candidate.mutate_until_matches!()

The Results

string #0 = rnvrtdldcgaxlsleyrmzych
string #5 = okvpqekfcicsnsleysmzsci
string #10 = pkvnnekhdkdslrjeztmvseh
string #15 = pkvjnekjfmgslrjeytjrsei
string #20 = plvflekjhmislljettjosel
string #25 = oisfmejkimisllkeqtjlsel
string #30 = mfsgmgjnimislkkeotgjsel
string #35 = mfsglgjqimislkkeivfhsel
string #40 = mesgigkqiriskhleivffsel
string #45 = mesgikkqirislhleivfasel
string #50 = mesgikkqirislhkegvfasel
string #55 = metiilksitislhkegvfasem
string #60 = metiilksitislhkefvfasem
string #65 = meshinlsitislhkeaweasel
string #70 = methinlsitislhkeaweasel
string #75 = methinlsitislhkeaweasel
string #80 = methinlsitislikeaweasel
string #85 = methinlsitislikeaweasel

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 175

string #90 = methinlsitislikeaweasel
string #95 = methinlsitislikeaweasel
string #100 = methinlsitislikeaweasel
string #105 = methinlsitislikeaweasel
string #110 = methinlsitislikeaweasel
string #115 = methinlsitislikeaweasel
string #120 = methinlsitislikeaweasel
string #125 = methinlsitislikeaweasel
string #130 = methinlsitislikeaweasel
string #135 = methinlsitislikeaweasel
string #140 = methinlsitislikeaweasel
string #145 = methinlsitislikeaweasel
string #150 = methinlsitislikeaweasel
I match after 152 mutations
=> 152

Try it on your own machine, and notice that the results are random—
sometimes the script takes more generations, sometimes fewer. If you pass in
different values, you can get dramatically different results:

irb(main):005:0> candidate = String.new.scramble!('hello')
=> "wnwdi"
irb(main):006:0> candidate.mutate_until_matches!('hello')
string #0 = wnwdi
string #5 = onsdj
string #10 = lnpgj
string #15 = ijlkj
string #20 = hemlj
string #25 = hemll
string #30 = hemlo
I match after 34 mutations
=> 34

We’ll explore this program further in our next script, methinks_meta.rb.

Hacking the Script

The select_fittest method could be expressed as follows in terms of sort_by,
rather than inject. The returned value is exactly the same, whether it’s the
memoization within inject or the member of the sorted Children at the zeroth
index. Using sort_by would also allow us to eliminate the fitter_than? method
entirely.

 return sort_by do |child|
 child.deviance_from(target)
 end[0]

The replace in mutate_until_matches! is what makes it destructive, making it
appropriate for its name to end with a bang. The mutate_until_matches! method
could easily have been purely functional by replacing the last two lines of the
method with return fittest.mutate_until_matches(target, params), although
the name would then have been misleading, even without the bang—

176 Chap te r 9

perhaps simply get_match would be a better name in this case. In addition,
the @mutation_attempts variable would not be retained from mutation to
mutation. We would have to alter mutate_until_matches! (or get_match, or
whatever other new name it would have) to accept mutation_attempts as an
optional argument, defaulting to zero for the first call. Its treatment would
be very similar to how els_parser.rb updates @search_params[:term] with the
optional term argument.

What would stop us from implementing the propagate method (�) with
something like the following code?

 return [self] +
 (1..params[:generation_size]).to_a.map do |gen|
 self.mutate(params)
 end

The main problem is that the returned value from propagate would be an
Array, not a Children, meaning that it would not have access to the select_fittest
method that we added to Children, our subclass of Array. We could use our new
definition of propagate by eliminating the subclassing of Children < Array (�)
and simply adding the select_fittest method to all Arrays.

You could also modify this program to be a more accurate model of a more
complex type of cumulative selection, such as real-world Darwinian selection.
Such a program would have multiple competing “species” of Strings, some-
thing to represent food supplies (which would be in finite supply and be
consumed by the reproduction process), multiple potentially-successful
targets not preset by the programmer, and so on. The changes would allow
some Strings’ descendants to be unable to produce competitive children
(and thus become extinct), while other Strings’ descendants would flourish,
just like organisms in the real world.

#36 Mutating the Mutation of Strings into Weasels
(methinks_meta.rb)

This script uses the previous one, methinks.rb, so make sure you understand
how that one works before trying this one, methinks_meta.rb. This script uses
techniques similar to those used in methinks.rb to find the “best” input param-
eters for methinks.rb.

The previous script’s performance (the number of generations it takes
to match the target) can vary greatly from one run to the next. Two major
factors affect that variation in our results: The first factor is the set of arbitrary
starting parameters. We saw that a target of hello was much easier to reach
quickly than a target of methinksitislikeaweasel. Using other values for
:mutation_rate or the other parameters also has an impact. The second factor
is the unpredictable nature of the random variations while the program runs.
Over time, after many runs, the laws of probability will cause this second

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 177

factor to be less and less important—and in any case, randomness is part of
the given problem. Our arbitrary starting parameters are crucial. How do we
decide what they should be?

NOTE Varying the :display_filter has no impact on how many generations it takes to
reach the target, only how often the program reports on its own progress. Also, genuine
random number generation is possible with computers—often by measuring the decay of
radioactive elements or listening to noise from a microphone—but our “random” number
generation is actually only pseudo-random. Pseudo-random numbers come from a process
that has a pattern, making them unsuitable for use in heavy-duty applications like
stress testing or cryptography. They’re random enough for our script’s purposes, though.
This pseudo-random caveat applies to all random numbers in this book.

The arbitrary set of input parameters is the major problem facing the
efficiency of our string’s mutations. Luckily, we’d recognize an ideal set of
parameters if we saw them, and we can easily rate parameter sets as better or
worse in relation to each other, because we have an easy way to measure success:
A low number of generations needed to reach the target String. We already
have a way to process candidates repeatedly to reach a given target—it’s called
methinks.rb.

Just as we can create a Proc that returns another Proc (as shown in “#24
Nesting lambdas” on page 111), we can create a mutator that operates at a
higher level of mutation—mutating not just Strings, but the mutation of those
Strings. We can define fitter as requiring a lower number of generations to reach the
target, plug in some parameters, and go. Our new script, methinks_meta.rb,
will (pseudo-)randomly vary arbitrary input parameters and filter them by this
fitness criterion to find ever-better input parameters for us. Let’s see the code.

The Code

#!/usr/bin/env ruby
methinks_meta.rb

� require 'methinks'

class Hash

� def get_child()
 new_hash = {}
 each_pair do |k,v|
 new_hash[k] = (rand(v) + (v/2))
 end
 new_hash[:display_filter] = 5
 return new_hash
 end

end # Hash

178 Chap te r 9

###

� class Meta_Mutator

 NEW_TARGET = 'ruby'
 MAX_ATTEMPTS = 2
 TARGET = NEW_TARGET || String::TARGET

 def initialize()
 @params_by_number_of_mutations = {}
 end

� def mutate_mutations!(params, did_no_better_count=0)
 return if did_no_better_count > MAX_ATTEMPTS

 num = update_params_by_number_of_mutations!(params)

 return mutate_mutations!(
 @params_by_number_of_mutations[best_num],
 get_no_better_count(num, did_no_better_count)
)

 end

� def report()
 @params_by_number_of_mutations.sort.each do |pair|
 num, params = pair
 puts sprintf("%0#{digits_needed}d", num) +
 " generations with #{params.inspect}"
 end
 end

 private

� def best_num()
 @params_by_number_of_mutations.keys.sort[0] || nil
 end

� def digits_needed()
 @params_by_number_of_mutations.keys.max.to_s.size
 end

� def get_children(params, number_of_children = 10)
 (0..number_of_children).to_a.map do |i|
 params.get_child()
 end
 end

� def get_no_better_count(num, did_no_better_count)
 return did_no_better_count if (num == best_num)
 did_no_better_count + 1
 end

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 179

	 def update_params_by_number_of_mutations!(params)
 children = get_children(params)
 number_of_mutations = nil
 children.each do |params|
 candidate = String.new.scramble!(TARGET)
 number_of_mutations = candidate.mutate_until_matches!(TARGET, params)
 @params_by_number_of_mutations[number_of_mutations] = params.dup
 end
 return number_of_mutations
 end

end # Meta_Mutator

###

params = {
 :generation_size => 200,
 :mutation_rate => 30,
 :display_filter => 5,
 :mutation_amp => 7
}

mm = Meta_Mutator.new()
mm.mutate_mutations!(params)
mm.report()

How It Works

Since we’re performing operations that use methinks.rb, we require that file at �.
We then immediately open the Hash class, adding a new method called
get_child at �. The get_child method, which could also have been named
mutate or reproduce, performs random variations on all of the values for the given
Hash. It assumes that those values are Integers, and can thereby be varied
with the rand method—in this case, from half the given value to 1.5 times the
given value. Since the :display_filter value has no impact on fitness, we just
forcibly set that to 5. We accomplish the mutation through the construction
of a new_hash by iterating over self with the each_pair method and making the
necessary changes before writing to new_hash, which we then return.

NOTE We already noted how get_child makes the assumption that all of its Hash’s values are
Integers. It also assumes that the Hash has a key called :display_filter. This assumption
works fine for our script, but if the get_child method were to become part of a commonly-
used library, we would have to make it play nicely with other programs. A programmer
can avoid this method for inappropriate Hashes, but a better solution would be for the
programmer to take responsibility for making new methods more robust when he or she
opens an existing class and adds a new method. A production-ready version of get_child
would check that the Hash’s values can implement numeric addition and also check for the
presence of a :display_filter key before performing the operations laid out in our example.

180 Chap te r 9

Next, we create our Meta_Mutator class at �. It has several Constants. The
NEW_TARGET Constant defines a different target String. This was mainly for the
convenience of having a shorter target, so that runs of the program would
take a shorter time. The MAX_ATTEMPTS Constant defines the maximum number
of attempts we should make to beat our previously fittest mutation attempt
before giving up and trying a new set of parameters. TARGET is either our
NEW_TARGET or the familiar String::TARGET from methinks.rb. This definition
allows us to override the TARGET easily while still having a default value,
and not having to constantly change code later when we want different
targets—we just always use TARGET. The Meta_Mutator class also has the expected
initialize method, which takes no arguments and defines an empty Hash for
@params_by_number_of_mutations. We’ll see this instance variable in action later.

Next comes the public method mutate_mutations! at �. Note that it is
destructive, and it takes two arguments: a required params Hash, and an
optional Integer for the did_no_better_count, assumed to be zero, which
makes sense for an initial run. It has a return guard, which allows it to exit
early if the did_no_better_count is greater than the MAX_ATTEMPTS allowed.
Assuming it should continue, it calls update_params_by_number_of_mutations!
(defined at �), passes in the params argument, and places its returned value
into the local num variable.

Let’s jump down to � to see what update_params_by_number_of_mutations!
does. It creates some children, using get_children, defined at �. Then
get_children creates an Array to be returned by mapping the operation
of calling get_child on the params Hash onto an Array with as many
members as the requested number_of_children (assumed to be 10). The
update_params_by_number_of_mutations! method then loops through each of
those children, calling each one params. It constructs a new candidate and
determines the number_of_mutations needed to reach the TARGET by calling
mutate_until_matches! (from methinks.rb) on that candidate. We now have our
measure of fitness and the params used to achieve that level of fitness. We update
@params_by_number_of_mutations, setting the value at the number_of_mutations key
to be params, as the name @params_by_number_of_mutations suggests.
It then returns the number_of_mutations required by this pass through
mutate_until_matches!.

Back in mutate_mutations! (�), we recursively call mutate_mutations!
again, this time with the “fittest” result in @params_by_number_of_mutations
as the first argument and the result of calling get_no_better_count(num,
did_no_better_count) as the second argument.

The best_num method is defined at �, and it is straightforward. The keys
of @params_by_number_of_mutations are the number of mutations needed to
reach the target. Since they’re Integers, the lowest (and therefore “fittest”)
value will be the first element of the resulting Array when we sort them. We
can get that easily with [0]. The get_no_better_count method is defined at �;
it takes the existing num and did_no_better_count as its only arguments. It returns 0
if this pass’ num is the best_num, resetting the did_no_better_count. Otherwise,
it returns did_no_better_count + 1.

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 181

That’s it for mutate_mutations!. There’s one other public method, report,
defined at �. It sorts through each pair within @params_by_number_of_mutations,
outputting results via puts, inspect, String interpolation, and the digits_needed
method, defined at �. It simply takes all the keys of @params_by_number_of
_mutations, finds the max, and converts that highest Integer to a String with
to_s. That String’s size method returns the number of characters, which is our
desired number of digits_needed for display purposes.

We can compute values as well as report them. We establish default params
near the bottom of methinks_meta.rb, instantiate a Meta_Mutator, and call its
mutate_mutations! and report methods. Let’s see the results.

NOTE This script is not meant to demonstrate proper statistical analysis. Your results could be
highly variable based on initial conditions. To accurately measure the improvement
(or lack thereof) between variations, you should perform multiple runs of each version
and verify that the differences you're seeing are statistically significant. That's beyond
the scope of this book though. If this program inspires you to write programs that manipu-
late other programs, it’s done its job.

Running the Script

$ ruby -w methinks_meta.rb

The Results

string #0 = onfi
string #5 = ppbm
string #10 = rtbq
string #15 = rubv
I match after 18 mutations
string #0 = tfjc
string #5 = uuar
I match after 9 mutations
string #0 = qmsi
string #5 = rqln
string #10 = rugv
I match after 13 mutations
string #0 = yuqa
string #5 = uupf
... (several lines removed)...
string #0 = umsv
string #5 = rupy
I match after 10 mutations
string #0 = vclv
string #5 = rlay
I match after 8 mutations
04 generations with {:generation_size=>243, :mutation_rate=>25,
:mutation_amp=>11, :display_filter=>5}

182 Chap te r 9

08 generations with {:generation_size=>251, :mutation_rate=>28,
:mutation_amp=>7, :display_filter=>5}
09 generations with {:generation_size=>234, :mutation_rate=>31,
:mutation_amp=>10, :display_filter=>5}
10 generations with {:generation_size=>112, :mutation_rate=>15,
:mutation_amp=>7, :display_filter=>5}
11 generations with {:generation_size=>162, :mutation_rate=>26,
:mutation_amp=>7, :display_filter=>5}
12 generations with {:generation_size=>118, :mutation_rate=>30,
:mutation_amp=>5, :display_filter=>5}
13 generations with {:generation_size=>100, :mutation_rate=>24,
:mutation_amp=>3, :display_filter=>5}
14 generations with {:generation_size=>191, :mutation_rate=>29,
:mutation_amp=>5, :display_filter=>5}
15 generations with {:generation_size=>146, :mutation_rate=>22,
:mutation_amp=>8, :display_filter=>5}
17 generations with {:generation_size=>161, :mutation_rate=>14,
:mutation_amp=>7, :display_filter=>5}
18 generations with {:generation_size=>112, :mutation_rate=>18,
:mutation_amp=>3, :display_filter=>5}
22 generations with {:generation_size=>277, :mutation_rate=>40,
:mutation_amp=>4, :display_filter=>5}
24 generations with {:generation_size=>112, :mutation_rate=>41,
:mutation_amp=>4, :display_filter=>5}
27 generations with {:generation_size=>120, :mutation_rate=>24,
:mutation_amp=>3, :display_filter=>5}
36 generations with {:generation_size=>140, :mutation_rate=>17,
:mutation_amp=>4, :display_filter=>5}

Our winner is {:generation_size=>243, :mutation_rate=>25, :mutation_amp=>11,
:display_filter=>5}, with a match after only four generations. Again, the
:display_filter doesn’t matter, it’s the other three parameters that really
make a difference. You can rerun methinks_meta.rb as many times as you like,
seeing if your winning values seem to hover around a given range of values
for each important parameter. You can then reset the default params at the
bottom of methinks_meta.rb and keep going as long as you want.

Hacking the Script

If we want the results to always show the params keys in alphabetical order,
we could override the built-in inspect method of all Hashes with the follow-
ing code:

 def inspect()
 '{' + keys.sort_by do |k|
 k.inspect
 end.map do |k|
 "#{k.inspect} => #{self[k].inspect}"
 end.join(', ') + '}'
 end

More Complex Ut i l i t ie s and Tr ic ks, Pa rt I 183

Chapter Recap

This chapter’s mandate was to use techniques you’ve already learned at some
broader levels. However, there were still a few new concepts or approaches.

� Equidistant Letter Sequences and larger-scale text searches

� Extracting single characters from Strings

� The chr method

� Modeling natural selection with methinks.rb

� Subclassing (Children < Array) and inheritance

� Calculating differences between Strings

� select_fittest : inject versus sort_by

� Genuine random versus pseudo-random

� Meta-mutation with methinks_meta.rb

� Alphabetizing inspect through overriding

Our next chapter is the second of two chapters that consider more
complex programs. While this chapter mainly expanded upon concepts
we’ve already learned, the next one uses an exciting new type of abstraction,
known as a callback. Let’s get to it.

10
M O R E C O M P L E X U T I L I T I E S A N D

T R I C K S , P A R T I I

In this chapter, I’ll describe an important
functional technique called the callback, in

which a general-purpose method uses a Proc
to determine its specific result. We’ve actually

seen this plenty of times before, because it’s built right
into many Ruby methods. Let’s say we want to double every number in a list.
That’s easy. We just use [0, 1, 2].map { |x| x * 2 } and get [0, 2, 4] as the
result. If we want to find all numbers greater than 1, we use [0, 1, 2].find_all
{ |x| x > 1 } and get [2] instead.

All we’re doing in either case is using a general purpose method like map
or find_all that takes a block, like { |x| x * 2 } or { |x| x > 1 }, and bases its
output on the results of that block. The map method performs the block’s oper-
ation on every member of its calling object, while find_all returns a collection
that only contains members that passed the test that the block describes. In
both cases, the specifics are completely determined by the block. Conceptually,
that’s all a callback is. Let’s see a specific useful example that uses Procs
instead of blocks to describe callbacks.

186 Chap te r 10

#37 Overnight DJ (radio_player1.rb)

One of my friends has had a very colorful employment history. He’s been a
DJ and general manager of a radio station, a union organizer, a journalist
and translator in Japan, and a professional nightclub musician.1 Back when
he was running a jazz radio station, he had a problem: His station relied
heavily on volunteers and automation, as many jazz stations do, and the station
operators would set up an automated computer system to play sound files
overnight. The drawback was that the system had no logging, so if a listener
heard something he or she liked at 2:47 AM, the operators couldn’t find out
what the specific tune was. No one was at the station to take a phone call, and
the next morning, there was no log of what sound file was played when, so no
one could track down what was playing at a specific time that morning before
anyone came in.

Enter radio_player1.rb and radio_player2.rb. These programs demon-
strate a solution to this type of problem. The radio_player1.rb script gets us
started with the basics, including an explanation of how Ruby uses callbacks,
and radio_player2.rb does the real heavy lifting, including logging. Note
that radio_player1.rb doesn’t really do any playback, it just demonstrates the
techniques.

The Code

#a/usr/bin/env ruby
radio_player1.rb

Callbacks � PLAY_FILE_PROC = lambda do |filename|
 puts "I'm playing #{filename}."
end

� DONT_PLAY_FILE_PROC = lambda do |filename|
 puts "I'm not playing #{filename}. So there."
end

� class RadioPlayer

CVS � DIRS_TO_IGNORE = ['.', '..', 'CVS']

� PICK_FROM_DIR_PROC = lambda do |dir, callback_proc, dir_filter|

 puts "I'm inside #{dir}" if $DEBUG
� (Dir.open(dir).entries - DIRS_TO_IGNORE).sort.each do |filename|

� if ((filename =~ dir_filter) or not dir_filter)

item = "#{dir}/#{filename}"
puts "#{item} passes the filter" if $DEBUG

� if File.directory?(item)
puts "#{item} is a directory" if $DEBUG

1 Now he blogs and podcasts at http://thejasoncraneshow.com.

More Complex Uti l i t i es and T ric ks, Par t I I 187

 PICK_FROM_DIR_PROC.call(
 item, callback_proc, dir_filter
)
 else
 puts "#{item} is a file" if $DEBUG
 callback_proc.call(item)
 end

 end

 end

 end

� def self.walk(dir, callback_proc, dir_filter=nil)
 puts
 puts "I'm walking #{dir} using filter #{dir_filter.inspect}" if $DEBUG
 PICK_FROM_DIR_PROC.call(dir, callback_proc, dir_filter)
 end

end

� dir = 'extras/soundfiles'
callback = (ARGV[0] == 'play') ? PLAY_FILE_PROC : DONT_PLAY_FILE_PROC
dir_filter = ARGV[1] ? Regexp.new(ARGV[1]) : nil
RadioPlayer.walk(dir, callback, dir_filter)
puts

How It Works

First, we define our callbacks as Proc Constants. At �, we have the PLAY_FILE_PROC,
and at �, we have the DONT_PLAY_FILE_PROC. Since radio_player1.rb is just a
demonstration script, both of these Procs merely report what they would do
instead of actually doing anything. Think of them as “dry run” testing exam-
ples. At � we define a new class called RadioPlayer. We’ll detail that class
soon, but for now, it’ll be easier to understand how this script works if we skip
down to �, where we see how the class is used.

We define a variable called dir, with the value 'extras/soundfiles'. That’s
where I stored the audio files used by this example; it’s analogous to the dir-
ectory that contains the radio station’s songs, sound bites, station identifica-
tion, and so forth. We then set the value of a variable called callback. It stores
the appropriate Proc, either PLAY_FILE_PROC or DONT_PLAY_FILE_PROC. If the first
argument to the script (ARGV[0]) is 'play', it uses PLAY_FILE_PROC. Otherwise, it
uses DONT_PLAY_FILE_PROC. Next, we define a variable called dir_filter, which
is either a defined RegExp instance or nil. As the name suggests, this filters
directories within the main dir soundfile directory. If dir_filter is nil, it does
no filtering, and it assumes the entire contents of dir are available for playing.
We then call the walk (�) class method of RadioPlayer with the arguments dir,
callback, and dir_filter.

188 Chap te r 10

The self.walk method takes three arguments: dir, callback_proc, and
dir_filter. The first two are mandatory, while dir_filter is optional, default-
ing to nil. It prints an empty line with puts, and if the script is called with
the -d flag (which sets $DEBUG to true), self.walk also prints some boilerplate
indicating what it’s doing. It then executes a call to a Proc Constant called
PICK_FROM_DIR_PROC, using the same three arguments—dir, callback_proc,
and dir_filter.

Now, to understand what that means, we’ll describe the RadioPlayer class at
�. It has two Constants: DIRS_TO_IGNORE and PICK_FROM_DIR_PROC. DIRS_TO_IGNORE (�)
lists the directories that the script should not care about. It includes the current
directory ('.'), the directory up a level ('..'), and the directory used by CVS.

NOTE Concurrent Versions System (CVS) is a program that keeps track of different versions of
files. It’s most often used for software development. You can read more about it at
http://www.nongnu.org/cvs.

The second Constant within RadioPlayer is PICK_FROM_DIR_PROC (�), which
is a Proc that picks from directories. We create it in the usual way with lambda
and define it to take three arguments: dir, callback_proc, and dir_filter.
These correspond to the three arguments to walk (�) that we described at
the bottom of this script at �.

Now we get to see what these arguments end up being used for. The
PICK_FROM_DIR_PROC Constant has several debugging lines that puts a given
message if $DEBUG is set to true. I won’t detail each of them, as they should be
fairly self explanatory. We start by looping through each sorted filename, based
on the entries within dir, minus the DIRS_TO_IGNORE (�). Next, we verify that
either the filename matches the dir_filter with a regular expression test, or
there is no dir_filter in place (�). Assuming we should proceed, we assign
the interpolated String "#{dir}/#{filename}" into a local variable called item.
We’ll be using item frequently enough that it’s worthwhile to set it once and
reuse it, rather than recalculate it every time.

Next, we use the File.directory? predicate (�) to determine whether or
not item is a directory. If it is a directory, we need to pick from that directory
as well, so we recursively call PICK_FROM_DIR_PROC, with the arguments item,
callback_proc, and dir_filter. The current value of item now becomes the
value of dir in the new recursive call, so when we get to the assignment into
item within the recursive call, that item consists of a String like the following:
"#{top_dir}/{next_dir}/#{filename}", and so on. This keeps happening until we
reach a non-directory filename. What happens then?

In this case we consult the else clause within the if block at �. Here, we
finally call the callback_proc, with item as the argument. Let’s assume that
we are using PLAY_FILE_PROC as the callback_proc. We’ll therefore puts a mes-
sage saying that we’re playing filename. This happens for every terminal (non-
directory) filename within the execution of self.walk (�). Let’s see it in action.
First let’s see the contents of extras/soundfiles:

$ ls -R extras/soundfiles/
extras/soundfiles/:
01-Neal_And_Jack_And_Me.ogg CVS legal promo

More Complex Uti l i t i es and T ric ks, Par t I I 189

extras/soundfiles/CVS:
Entries Repository Root

extras/soundfiles/legal:
CVS legal1 legal2

extras/soundfiles/legal/CVS:
CVS Entries Repository Root

extras/soundfiles/legal/CVS/CVS:
Entries Repository Root

extras/soundfiles/promo:
CVS promo1 promo2

extras/soundfiles/promo/CVS:
CVS Entries Repository Root

extras/soundfiles/promo/CVS/CVS:
Entries Repository Root

Other than those CVS directories I mentioned, we have a file called
01-Neal_And_Jack_And_Me.ogg at the top level, a directory called legal with the
files legal1 and legal2, and a directory called promo with the files promo1 and
promo2. Now, let’s run radio_player1.rb with various arguments.

The Results

$ ruby -w radio_player1.rb

I'm not playing extras/soundfiles/01-Neal_And_Jack_And_Me.ogg. So there.
I'm not playing extras/soundfiles/legal/legal1. So there.
I'm not playing extras/soundfiles/legal/legal2. So there.
I'm not playing extras/soundfiles/promo/promo1. So there.
I'm not playing extras/soundfiles/promo/promo2. So there.

We provided no ARGV[0], so it assumed DONT_PLAY_FILE_PROC for the callback.
It also had no dir_filter, so it “not played” every file within extras/soundfiles,
except within the directories we told it to ignore—maybe it’s silly to explicitly
“not play” sound files, but I just wanted a callback that could show in an obvious
fashion that it was being called. Let’s see some more.

$ ruby -w radio_player1.rb play legal

I'm playing extras/soundfiles/legal/legal1.
I'm playing extras/soundfiles/legal/legal2.

Here, ARGV[0] is 'play', and ARGV[1] limits available files to those matching
/legal/. It worked.

190 Chap te r 10

$ ruby -w radio_player1.rb play

I'm playing extras/soundfiles/01-Neal_And_Jack_And_Me.ogg.
I'm playing extras/soundfiles/legal/legal1.
I'm playing extras/soundfiles/legal/legal2.
I'm playing extras/soundfiles/promo/promo1.
I'm playing extras/soundfiles/promo/promo2.

It worked again.

Hacking the Script

The most basic hack of this script is to call it with the -d command-line option.
That tells you where the script is at any given point, and it may reveal some
useful information as you try different arguments, create your own files and
directories with extras/soundfiles, or do whatever other customization you
think is appropriate.

The beauty of callbacks is that you can hack your program by simply
using a different one. The overall structure of the manner in which you do
some particular operation stays the same, while the specific operation being
done can change, often quite drastically. We’ll see an example of that in the
next script.

#38 Better Overnight DJ (radio_player2.rb)

This script, radio_player2.rb, is an improvement on radio_player1.rb. Instead
of placeholder Procs, it will actually play sound files, as well as log playback with
specific times.

The Code

#a/usr/bin/env ruby
radio_player2.rb

� LOG_FILE = '/tmp/radio_player2.log'

� PLAYERS = {
 '.mp3' => 'mpg321',
 '.ogg' => 'ogg123',
 '' => 'ls'
}

� # these are variables, local to Kernel.
They work just as well as constants.

Callbacks play_file_proc = lambda do |filename|
� ext = File.extname(filename)
� system("#{PLAYERS[ext]} #{filename}") if PLAYERS[ext]
� File.open(LOG_FILE, 'a') do |log|

 log.puts([Time.now, filename].join("\t") + "\n")
 end

More Complex Uti l i t i es and T ric ks, Par t I I 191

end

dont_play_file_proc = lambda do |filename|
 puts "I'm not playing #{filename}. So there."
end

class RadioPlayer

 DIRS_TO_IGNORE = ['.', '..', 'CVS']

 PICK_FROM_DIR_PROC = lambda do |dir, callback_proc, dir_filter|

 (Dir.open(dir).entries - DIRS_TO_IGNORE).sort.each do |filename|

 if ((filename =~ dir_filter) or not dir_filter)
 item = "#{dir}/#{filename}"

 if File.directory?(item)
 PICK_FROM_DIR_PROC.call(
 item, callback_proc, dir_filter
)
 else
 callback_proc.call(item)
 end

 end

 end

 end

 def self.walk(dir, callback_proc, dir_filter=nil)
 puts
 PICK_FROM_DIR_PROC.call(dir, callback_proc, dir_filter)
 end

end

dir = 'extras/soundfiles'
callback = (ARGV[0] == 'play') ? play_file_proc : dont_play_file_proc
dir_filter = ARGV[1] ? Regexp.new(ARGV[1]) : nil
RadioPlayer.walk(dir, callback, dir_filter)
puts

How It Works

For this section, I’ll merely detail the changes between radio_player1.rb and
radio_player2.rb. The first change is the definition of the LOG_FILE Constant
at �. As you might expect, this is the filename into which radio_player2.rb
writes logging messages. Next, we declare a Hash Constant called PLAYERS at �,
with keys of file extensions for particular types of soundfiles and values of the
names of programs that one might use to play those types of files on a Unix
system.

192 Chap te r 10

Next, we define our Procs at �, this time as variables rather than Constants.
There’s no particular reason to use variables instead of Constants, as the com-
ment notes. I just wanted to show that either approach works well for our
purposes. Aside from being variables rather than Constants, the playing Proc
is substantively different.

The play_file_proc acts as a closure, binding the PLAYERS Hash inside itself. It
establishes the extension (and therefore, type) of its filename argument as ext
at �. It then tries to play that filename using system at �, but only if the PLAYERS
Hash has an appropriate player for that file extension. I made sure that PLAYERS
had an entry for no file extension at all, so radio_player2.rb could still demon-
strate that it was either playing or not playing the dummy files like legal1 and
promo2 that have no file extension. Since I just wanted to show the dummy files,
I decided that the Unix command ls, which just lists files, was the appropriate
value to use in PLAYERS.

The radio_player2.rb script also logs playback within the play_file_proc.
At �, it opens a new file for appending, using 'a' as the second argument to
File.open. It then refers to that log file as log, and uses log’s puts method to
append the current Time and the filename being played, separated by tabs, all
followed by a carriage return. Whenever we use radio_player2.rb, we can check
the contents of LOG_FILE to see what’s been played.

The only other differences are the removal of the debugging messages
and referring to the Procs by the lowercase variable names rather than the
all-caps Constant names. Let’s see this version in action.

The Results

Let’s try a basic playback of everything.

$ ruby -w radio_player2.rb play

Audio Device: OSS audio driver output

Playing: extras/soundfiles/01-Neal_And_Jack_And_Me.ogg
Ogg Vorbis stream: 2 channel, 44100 Hz
Title: Neal and Jack and Me
Artist: King Crimson
Album: Beat
Date: 1982
Track number: 01
Tracktotal: 08
Genre: Prog Rock
Composer: Belew, Bruford, Fripp, Levin
Musicbrainz_albumid: 5ddbe867-ebce-445d-a175-d90516e426da
Musicbrainz_albumartistid: b38225b8-8e5f-42aa-bcdc-7bae5b5bdab3
Musicbrainz_artistid: b38225b8-8e5f-42aa-bcdc-7bae5b5bdab3
Musicbrainz_trackid: 30a23275-11ef-4f07-bdc8-0192ae34e67d

More Complex Uti l i t i es and T ric ks, Par t I I 193

Done.
extras/soundfiles/legal/legal1
extras/soundfiles/legal/legal2
extras/soundfiles/promo/promo1
extras/soundfiles/promo/promo2

That command-line call played the Ogg file (again, from my favorite
band King Crimson) using a system call with ogg123, the appropriate value
within PLAYERS for the .ogg extension, and then it “played” the other files with
ls, the appropriate PLAYERS value for files with no extension at all.

Now let’s filter, with fake playback.

$ ruby -w radio_player2.rb play legal

extras/soundfiles/legal/legal1
extras/soundfiles/legal/legal2

And again, without fake playback.

$ ruby -w radio_player2.rb dont legal

I'm not playing extras/soundfiles/legal/legal1. So there.
I'm not playing extras/soundfiles/legal/legal2. So there.

Notice that playback merely lists the dummy files, while non-playback exe-
cutes the full dont_play_file_proc, including the immature So there. suffix.

Hacking the Script

The value of LOG_FILE is Unix-specific. Windows users (or anyone else) can
certainly change that filename to something more appropriate for their oper-
ating system. Also, if you prefer a more robust system for the dummy files,
you could give them their own extension, like dummy, and change PLAYERS so
that the key for 'ls' is that new extension.

#39 Numbers by Name (to_lang.rb)

In previous scripts, notably “#16 Adding Commas to Numbers (commify.rb)”
on page 75 and “#17 Roman Numerals (roman_numeral.rb)” on page 81, we
talked about how numbers can be represented in a variety of ways. Both of
those scripts showed meaningful ways of representing Integers as Strings,
other than the handy but trivially different to_s method. This script, to_lang.rb,
extends that discussion by representing Integers as Strings consisting of
how those numbers are spoken in two real-world languages: English and
Spanish.

194 Chap te r 10

The Code

This code is broken into three separate files, for reasons that I will make
clear in “How It Works” on page 198.

representable_in_english.rb

=begin rdoc
This is intended for use with to_lang.rb
=end

� module Representable_In_English

=begin rdoc
Return a Hash whose keys are Integers and whose values
are the words representing the same values.
=end

� def create_english()
 need_ones_in_english.merge(dont_need_ones_in_english)

 end

� def special_replacements_in_english(num_as_string)
 add_hyphens_to_tens(num_as_string).strip
 end

Syntactic Sugar � def to_english()
 to_lang('english')
 end

� alias :to_en :to_english

� private

� def add_hyphens_to_tens(num_as_string)
 num_as_string.sub(/ty/, 'ty-').sub(/-?- ?/, '-')
 end

� def need_ones_in_english()
 return {

10 ** 9 => 'billion',
10 ** 6 => 'million',
10 ** 3 => 'thousand',
100 => 'hundred',

 }
 end

� def dont_need_ones_in_english()
 return {
 90 => 'ninety',
 80 => 'eighty',
 70 => 'seventy',
 60 => 'sixty',
 50 => 'fifty',

More Complex Uti l i t i es and T ric ks, Par t I I 195

 40 => 'forty',
 30 => 'thirty',
 20 => 'twenty',
 19 => 'nineteen',
 18 => 'eighteen',
 17 => 'seventeen',
 16 => 'sixteen',
 15 => 'fifteen',
 14 => 'fourteen',
 13 => 'thirteen',
 12 => 'twelve',
 11 => 'eleven',
 10 => 'ten',
 9 => 'nine',
 8 => 'eight',
 7 => 'seven',
 6 => 'six',
 5 => 'five',
 4 => 'four',
 3 => 'three',
 2 => 'two',
 1 => 'one',
 0 => '',
 }
 end

end

Next will be a very similar file, also storing a module/mixin definition.
The only meaningful differences pertain to the choice of language: this one
details Spanish, rather than English.

representable_in_spanish.rb

=begin rdoc
This is intended for use with to_lang.rb
=end

� module Representable_In_Spanish

=begin rdoc
Return a Hash whose keys are Integers and whose values
are the words representing the same values.
=end

� def create_spanish()
 need_ones_in_spanish.merge(dont_need_ones_in_spanish)
 end

� def special_replacements_in_spanish(num_as_string)
 add_hyphens_to_tens(num_as_string).strip
 end

Syntactic Sugar � def to_spanish()

196 Chap te r 10

 to_lang('spanish')
 end

� alias :to_es :to_spanish

� private

� def add_hyphens_to_tens(num_as_string)
 num_as_string.sub(/ta/, 'ta-').sub(/-?- ?/, '-')
 end

� def need_ones_in_spanish()
 return {

10 ** 12 => 'billon',
10 ** 9 => 'mil millones',
10 ** 6 => 'millon',
10 ** 3 => 'mil',
100 => 'ciento',

 }
 end

� def dont_need_ones_in_spanish()
 return {
 90 => 'noventa',
 80 => 'ochenta',
 70 => 'setenta',
 60 => 'sesenta',
 50 => 'cincuenta',
 40 => 'cuarenta',
 30 => 'treinta',
 20 => 'veinte',
 19 => 'diecinueve',
 18 => 'dieciocho',
 17 => 'diecisiete',
 16 => 'dieciseis',
 15 => 'quince',
 14 => 'catorce',
 13 => 'trece',
 12 => 'doce',
 11 => 'once',
 10 => 'deiz',
 9 => 'nueve',
 8 => 'ocho',
 7 => 'siete',
 6 => 'seis',
 5 => 'cinco',
 4 => 'cuatro',
 3 => 'tres',
 2 => 'dos',
 1 => 'uno',
 0 => '', # 'cero'
 }
 end

end

More Complex Uti l i t i es and T ric ks, Par t I I 197

Finally, we have the code that directly gives Integers the ability to represent
themselves in spoken languages. It does so through the use of the modules
above, as you'll see.

to_lang.rb

#!/usr/bin/env ruby -w
to_lang.rb

=begin rdoc
Implement representation of numbers in human languages:
1 => 'one',
2 => 'two',
etc.

This is an generalized extension of ideas shown for the
specific case of roman numerals in roman_numeral.rb

Note that similar work has already been done at
http://www.deveiate.org/projects/Linguistics/wiki/English
This version focuses only on converting numbers to multiple
language targets, and pedantically considers "and" to be
the pronunciation of the decimal point.
=end

class Integer

Requiring Our � require 'representable_in_english'
Own Mixins require 'representable_in_spanish'

� include Representable_In_English

 include Representable_In_Spanish

� EMPTY_STRING = ''
 SPACE = ' '

� @@lang_of ||= Hash.new()

� def need_ones?(lang)
The send
Method

 send("need_ones_in_#{lang}").keys.include?(self)
 end

� def to_lang(lang)
 return EMPTY_STRING if self.zero?

 @@lang_of[lang] ||= send("create_#{lang}")

 base = get_base(lang)
 mult = (self / base).to_i
 remaining = (self - (mult * base))

 raw_output = [
 mult_prefix(base, mult, lang),
 @@lang_of[lang][base],

198 Chap te r 10

 remaining.to_lang(lang)
].join(SPACE)

 return send(
"special_replacements_in_#{lang}",
raw_output)

 end

� private

� def get_base(lang)
 return self if @@lang_of[lang][self]
 @@lang_of[lang].keys.sort.reverse.detect do |k|
 k <= self
 end
 end

� def mult_prefix(base, mult, lang)
 return mult.to_lang(lang) if mult > 1
 return 1.to_lang(lang) if base.need_ones?(lang)
 return EMPTY_STRING
 end

end

How It Works

Let’s examine each file in turn. Since representable_in_english.rb and
representable_in_spanish.rb are so similar, we can deal with them
simultaneously.

The Two Mixins

Both representable_in_english.rb and representable_in_spanish.rb are mixins,
the mechanism Ruby uses to give shared behavior to classes with different
ancestry, like giving both bats and birds the ability to fly. In our case, instead
of giving organisms the ability to fly, we’re giving the object we mix our mixins
into the ability to represent itself in some human languages: English and
Spanish, in this case.

We define the appropriate Module, in both representable_in_english.rb
and representable_in_spanish.rb, at �. I’ll keep the numbered callouts in the
code in parallel across these two files throughout this example. At �, we
define our create_english or create_spanish methods. The purpose of either
method is to return a Hash whose keys are Integers and whose values are the
representation of those Integers in the module’s language. The resulting
Hash’s pairs will form our base cases, and we’ll use them very similarly to
the ones we used in the roman_numeral.rb script in Chapter 5. Then at �,
we define a special replacements method, customized and named for the
language. Every language is likely to have some special treatment, even
beyond what we can do with the differences in the Hash returned by
create_english or create_spanish. So far, all we need to do is add hyphens

More Complex Uti l i t i es and T ric ks, Par t I I 199

to numbers with tens components. To accomplish that task, we call the
add_hyphens_to_tens method, which we define at �.

At � and �, we add some of what programmers call syntactic sugar, or a
simplification of a language’s syntax. The term syntactic sugar can have a neg-
ative connotation, but it doesn’t have to. It generally refers to a shortcut that
a programmer uses to more easily accomplish a commonly needed technique,
such as adding method aliases with alias. It’s relatively easy to add syntactic
sugar to Ruby, as our examples show. We can add methods like to_english or
to_spanish by calling to_lang (soon to be defined in to_lang.rb) with the
appropriate lang argument.2 We can also use alias to make to_en refer to
to_english, and to_es refer to to_spanish.

Some of our methods can be private, so we declare that at �. We’ve already
discussed add_hyphens_to_tens �, so we can move on to need_ones_in_english
and need_ones_in_spanish �. This method returns a Hash whose keys are
Integers and whose values are the representation of those Integers in the
module’s language. This should sound familiar. What makes the pairs in this
Hash notable is a characteristic they all share: They all need the prefix one
(in the appropriate language) when there is in fact only one of those numbers.
The number 100 is pronounced one hundred in English, for example.

“Of course!” you might think. However, contrast the Hashes returned by
need_ones_in_english � and dont_need_ones_in_english �. The Integer keys of
the Hash created at � do not need the one prefix. You don’t say one twenty for
20, for example, so we need a way to differentiate between numbers that need
the prefix and those that don’t. The different methods at � and � are our
way to do so. When we want all of them together and when we don’t care about
the prefix issue we can simply merge the two Hashes together. This is exactly
what we will do in the to_lang.rb file, which we’re about to examine.

The Main Code

The first thing we do in to_lang.rb is open the Integer class, since we want to
add new behavior to Integers. At �, we require the mixin files just discussed,
and at �, we include them within the Integer class, giving all Integers the
methods defined in the mixin files, including both aliases. We also want some
Constants, mainly for convenient text manipulation, so we define those at �.
We close off the pre-methods section by defining a class variable called
@@lang_of at �. It’s a Hash that will eventually store the merged result of the
two Hashes from the mixins’ markers at � and �. Since we define it with ||=,
it is only defined in the first Integer instantiated, and then it is shared among
all of them.

At �, we define a predicate called need_ones?, which takes a lang
argument and simply makes a call to either need_ones_in_english (defined
in representable_in_english.rb) or need_ones_in_spanish (defined in
representable_in_spanish.rb), as appropriate to the lang argument. It doesn’t
matter which of the files the called method is defined in, because they are
both included at � in to_lang.rb.

2 Note that our definitions of to_english and to_spanish essentially curry to_lang, making new
curried methods that are simpler to call (i.e., that take fewer arguments) by making assumptions,
namely which language to convert into.

200 Chap te r 10

Our main workhorse method to_lang, appears at �; this method takes a
single, mandatory lang argument. It returns early with the EMPTY_STRING if
self is zero. This means that if we call 0.to_lang('english'), we get the empty
string as the result, instead of the String 'zero'. (See “Hacking the Script”
on page 202 for a way to change that.) Assuming the case should proceed
beyond that, to_lang then sets the value of @@lang_of[lang]. The @@lang_of
class variable had already been declared as a Hash when the first Integer
was instantiated, but only as a Hash with no keys or values. The value put into
@@lang_of[lang] is the result of calling a method called send with the argument
"create_#{lang}", which you should recognize as an interpolating String.

The send method takes any number of arguments, the first of which must
be an expression that evaluates to the name of a method. It then calls that
method with the rest of the arguments. This allows you to do exactly what
we’re doing here, which is dynamically calling a method whose name you
don’t yet know. You could work around this by having a test on the lang argu-
ment, and there are many ways to do so. Instead of a traditional method like
create_english or create_spanish, you could use Procs as Hash values, as we’ve
done many times since Chapter 6. You could also do something like this:

@@lang_of = if (lang == 'english')
 create_english()
else
 create_spanish()
end

Note that we take advantage of the fact that all statements in Ruby return
the last expression evaluated, including the if statement. You have many
different options for calling a method whose name you don’t know, but the
point is that it doesn’t need to be that difficult. Ruby provides us with the
send method, which is incredibly useful and appropriate.

At this point, @@lang_of[lang] will contain the Hash that is the merged
result of both need_ones_in_english and dont_need_ones_in_english (for
English) or need_ones_in_spanish and dont_need_ones_in_spanish (for Spanish.)
Let’s take a cue from send and express those as "need_ones_in#{lang}" and
"dont_need_ones_in#{lang}". We then want to create some local variables called
base, mult, and remaining.

The base variable is the highest Integer key within @@lang_of[lang] that is
equal to or less than self. We get it from the get_base method, defined at �,
which finds the first key in a reverse-sorted version of @@lang_of[lang] that is
equal to or less than self. It does this via the detect method (which I like to
think of as “find first”). It also has a return guard, where it returns self if self
is actually one of the keys of @@lang_of[lang].

The mult variable is simply how many times base can go into self,
rounded down to the nearest Integer. The remaining variable is whatever’s
left. We then want to create raw_output, a String that holds the eventual
output, before we make any of the special replacements already mentioned
in “The Two Mixins” on page 198. The raw_output String will consist of some-
thing representing (base * mult), a space, and then the result of making a
recursive call to to_lang on whatever is left (remaining.to_lang(lang)).

More Complex Uti l i t i es and T ric ks, Par t I I 201

We accomplish that by constructing an Array. The first element is the
output of a method called mult_prefix, defined at �; it takes the arguments
base, mult, and lang. If mult is greater than one, we know we need to have a
prefix: the number 200 is pronounced two hundred, so we need the two. If base
needs a one (as described already, pertaining to the need_ones? predicate), we
know that we need to have one as a prefix, such as for one hundred or one thousand.
Finally, in all other cases, we return a prefix that is the EMPTY_STRING, so the
number 20 is pronounced twenty rather than one twenty, and 5 is five rather than
one five. That’s the multiple prefix and the first part of our eventual output.3

Next, we need whatever base is, as pronounced in lang. We get that via
@@lang_of[lang][base]. Finally, we need the rest of the number, which we get
via remaining.to_lang(lang). This keeps happening recursively, with a smaller
Integer calling to_lang and appending its results, until base is 0. Then to_lang
returns the EMPTY_STRING due to its return guard, and the entire output is
concatenated together within the first calling to remaining.to_lang.

That’s the Array. You’ll notice that to_lang joins that Array on a SPACE, so
that the words in raw_output are separated by spaces, which is normal. Before
we’re done, we want to call our special replacements method (whichever one
is appropriate for lang) on raw_output, and return the result of doing that.
Since we again have a method name that depends on lang, we’ll use send.

The Results
Let’s take it out for a spin. I’ve written a simple test script called test_lang.rb
that I stored inside the tests directory. It uses Test::Unit::TestCase again, in a
manner similar to the way we tested the temperature converter in Chapter 7.
Here’s its code:

#!/usr/bin/env ruby
test_lang.rb

require 'to_lang'
require 'test/unit'

class Tester < Test::Unit::TestCase

 def test_langs()

 tests = {
 'en' => {
 1 => 'one',
 5 => 'five',
 9 => 'nine',
 11 => 'eleven',
 51 => 'fifty one',
 100 => 'one hundred',
 101 => 'one hundred one',
 257 => 'two hundred fifty seven',
 1000 => 'one thousand',

3 All of these specific examples assume English, of course. Substitute the Spanish terms when
lang is 'spanish'.

202 Chap te r 10

 1001 => 'one thousand one',
 90125 => 'ninety thousand one hundred twenty five',
 },
 'es' => {
 1 => 'uno',
 5 => 'cinco',
 9 => 'nueve',
 11 => 'once',
 51 => 'cincuenta-uno',
 100 => 'uno ciento',
 101 => 'uno ciento uno',
 257 => 'dos ciento cincuenta-siete',
 1000 => 'uno mil',
 1001 => 'uno mil uno',
 90125 => 'noventa-mil uno ciento veinte cinco',
 }
 }
 %w[en es].each do |lang|
 general_tester(tests, lang)
 end
 end

 private

 def general_tester(tests, lang)
 tests[lang].each_key do |num|
 assert_equal(num.send("to_#{lang}"), tests[lang][num])
 end
 end

end

And here’s its output:

Loaded suite tests/test_lang
Started
.
Finished in 0.004543 seconds.

1 tests, 22 assertions, 0 failures, 0 errors

Hacking the Script

We could modify to_lang to allow the pronunciation of zero, instead of returning
the EMPTY_STRING Constant. In order to do that and still work with the recursion,
we’ll need to send another optional argument into to_lang that keeps track of
the recursion depth (how many levels of recursion we have performed). We only
care about distinguishing between the first call to to_lang and the rest of the calls.
We could then return the EMPTY_STRING if self is zero and it’s the first call to
to_lang; we can skip the return guard in all other cases. We’d also need to change
the value for 0 in both dont_need_ones_in_english and dont_need_ones_in_spanish.

More Complex Uti l i t i es and T ric ks, Par t I I 203

#40 Elegant Maps and Injects (symbol.rb)

I’ll close this chapter with a tiny script that I didn’t even write. I certainly wish
I had, because it’s remarkably useful, especially for making your use of map,
inject, and similar methods much more elegant. It’s an example of the best
kind of syntactic sugar, and it comes directly from the Ruby Extensions Project
at http://extensions.rubyforge.org. This script and all other scripts at that
site are licensed under the same terms as Ruby itself, which is what allows me
to use it in this chapter.4 The code is extremely simple.

The Code

Symbol.to_proc #!/usr/bin/env ruby
class Symbol
 def to_proc()
 Proc.new { |obj, *args| obj.send(self, *args) }
 end
end

What’s the point of this? It lets you use uc_words = lc_words.map(&:upcase)
to accomplish the same thing as uc_words = lc_words.map { |word| word.upcase }.
In both cases, the uc_words variable now contains uppercase versions of all the
words in lc_words. As I said, it’s basically just syntactic sugar, but it’s very, very
nice and clever.

How It Works

First of all, this script creates a Proc using Proc.new that takes an object
called obj and a variable number of args. Remember from to_lang.rb that
obj.send(methodname) is the same as obj.methodname, so these are equivalent,
with an Array a:

a.send(push, some_item)
a.push(some_item)

The remaining arguments (represented by *args) are also passed along to
obj, which is using each or map or some other iterating method.

Secondly, you may remember previous discussion about how to convert
between Procs and blocks using the ampersand (&), but we can also use the
ampersand to cast more than blocks into Procs. Doing so calls a method called
to_proc, which you can see we’ve overridden. We end up using a double char-
acter prefix of &:, because a colon is already the prefix for a Symbol. When we
use the expression &:some_name, what we mean is the expression returned by the
to_proc method of the Symbol named some_name.

4 Those terms are made explicit at http://www.ruby-lang.org/en/about/license.txt

204 Chap te r 10

The Results

Let’s see it in action in irb.

irb -r symbol.rb
irb(main):001:0> digits = (0..9).to_a
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
irb(main):002:0> digits.inject(&:+)
=> 45
irb(main):003:0> digits.map(&:inspect)
=> ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
irb(main):004:0> require 'to_lang'
=> true
irb(main):005:0> digits.map(&:to_en)
=> ["", "one", "two", "three", "four", "five", "six", "seven", "eight",
"nine"]

Hacking the Script

This script is already a very elegant hack. Note that you need to use Proc.new
rather than lambda, because you want it to be able to handle a variable num-
ber of args.

Chapter Recap

What was new in this chapter?

� Callbacks

� CVS

� Mixins in action

� Calling methods with variable names via send

� Syntactic sugar

� Symbol.to_proc

That’s it for this chapter. It tended to focus less on completely new con-
cepts and more on new applications for familiar things, but it still managed
to introduce more than a few novel ideas. The next chapter focuses on web
programming, a venue in which Ruby has become quite popular.

11
C G I A N D T H E W E B

Ruby has gotten a lot of attention as a
language particularly well suited for web

programming, especially in the context of
the Rails development framework. Some people

even go so far as to categorize Ruby as a web language, suggesting that it is
not a full-fledged general-purpose programming language. I hope that the
previous chapters have played at least a modest role in convincing readers
that this assertion is false.

That said, Ruby is very useful for web work, and it does have some char-
acteristics that make it better suited for web programming than (for example)
video game programming. Ruby operates at a very high level of abstraction,
giving programmers a large toolset to work with, and it executes code at a
slower speed than some other languages. These characteristics make Ruby well
suited for web work, since development speed is often critical, but program
execution speed is often less critical than in other types of programs, such
as real-time action video games.

The Rails development framework has been instrumental in bringing
Ruby to the attention of an ever-larger audience. Some say it’s Ruby’s “killer
app,” analogous to Perl’s CPAN or the GNU project’s gcc. This is a general

206 Chap te r 11

Ruby book, not a Rails book, but Rails is important enough that it gets its
own chapter. (Since we’ll be using RubyGems, Ruby’s package-management
system, to install Rails, this book also has a chapter devoted to RubyGems.)

You’ll have to wait two chapters for Rails. Aside from knowing how to
install it with RubyGems, by then you should also know something about web
programs in general—that’s what this chapter is for. If you’re a web app veteran,
feel free to skip this chapter, although you may find some of the specific
scripts novel and interesting, even if you already know how they work.

Common Gateway Interface

The most common approach to web programming is the Common Gateway
Interface (CGI). CGI is not a programming language; it’s a set of rules for
programs to follow when they run on the Web, regardless of the particular
language in which each program might be written. CGI enables friendly
cooperation among multiple files that could even be written in distinct pro-
gramming languages but all exist together within a larger web application.

Using more than one language for a single web application is fairly
common. I mentioned that Ruby’s high level of abstraction makes it suitable
for web programming. However, sometimes you might really want to use a
library someone has already written in another language—like Python, for
instance—in a web program. If you use CGI, you could write part of your web
application in Python in order to use that library. You might also have a
section of your web application that is highly speed critical, so you could
write that part in C for execution speed, and the rest in Ruby for develop-
ment speed. This is exactly the reason that Paul Graham and his colleagues
chose to use a combination of Lisp and C for their company Viaweb, which
eventually became Yahoo! Stores. They were able to do so because the CGI
specification holds across multiple languages.

Preparation and Installation

Before we get going with Ruby and CGI, we’ve got to do a little work to get our
webserver ready. For the purposes of this chapter, I’ll be focusing on getting
CGI working for the Apache webserver running on a Unix-like environment.
Apache is the most popular webserver, and Unix-like operating systems are
the most common (and most stable) server operating systems.

You can get a copy of the Apache webserver at http://httpd.apache.org,
or you can use a package manager to install it. (Mac OS X comes with Apache
pre-installed.) I used apt-get on my Ubuntu system, as follows:

apt-get install apache2 apache2-doc
Reading package lists... Done
Building dependency tree... Done
The following extra packages will be installed:
 apache2-common apache2-mpm-worker apache2-utils libapr0 libpcre3 ssl-cert

CGI and the Web 207

Suggested packages:
 lynx www-browser
The following NEW packages will be installed:
 apache2 apache2-common apache2-doc apache2-mpm-worker apache2-utils libapr0
 libpcre3 ssl-cert
0 upgraded, 8 newly installed, 0 to remove and 5 not upgraded.
Need to get 3555kB of archives.
After unpacking 16.4MB of additional disk space will be used.
Do you want to continue [Y/n]? Y

I answered Y. You can see that I chose the apache2 version of the Apache web-
server. After installing Apache, you’ll also want to install packages for mod_ruby,
which allows Ruby programs to be run within the webserver. I’ll explain the
benefits of this when we get to the script that shows mod_ruby being used. You
can install mod_ruby by typing apt-get install libapache2-mod-ruby liberuby on a
Debian-based system. Now that the installation is done, let’s start with our first
simple CGI script.

#41 A Simple CGI Script (simple_cgi.rb)

This script is fairly quick and dirty, but it shows the basics of how to use Ruby
for CGI and introduces Ruby’s aptly named cgi library. You’ll need to put this
script in your system’s cgi-bin directory. It’s /usr/lib/cgi-bin/ on my system,
although your system’s location may be different. You can then browse to
http://localhost/cgi-bin/simple_cgi.rb, because your webserver will provide
access to the contents of your cgi-bin directory via http://localhost/cgi-bin/.

NOTE You’ll also need to give simple_cgi.rb 755 permissions, meaning that its owner can do
anything with it and everyone else can read and execute it, but not write (change) it.
For more information, see man chmod.

Before we even get started with the script, you should also browse to
http://localhost/. If you see either a page telling you that Apache is installed
correctly or a listing of files in a directory, your webserver is probably working.
If you don’t see either of these things, consult the Apache documentation
(available at http://httpd.apache.org/docs) to diagnose the problem. If your
webserver is working, you can proceed to the script.

The Code

#!/usr/bin/env ruby
simple_cgi.rb

Requiring � require 'cgi'
CGI.rb

� class Simple_CGI

� EMPTY_STRING = ''
 TITLE = 'A simple CGI script'

208 Chap te r 11

 def display()
� cgi = CGI.new('html4')
� output = cgi.html do

 cgi.head do
 cgi.title { TITLE }
 end +
 cgi.body do
 cgi.h1 { TITLE } +

� show_def_list(cgi)
 end
 end

� cgi.out { output.gsub('><', ">\n<") }
 end

 private

� def get_items_hash()
 {
 'script' => ENV['SCRIPT_NAME'],

� 'server' => ENV['SERVER_NAME'] || %x{hostname} || EMPTY_STRING,
 'software' => ENV['SERVER_SOFTWARE'],
 'time' => Time.now,
 }
 end

� def show_def_list(cgi)
 cgi.dl do
 items = get_items_hash.merge(cgi.params)
 items.keys.sort.map do |term|
 definition = items[term]
 "<dt>#{term}</dt><dd>#{definition}</dd>\n"
 end.join(EMPTY_STRING)
 end
 end

end

Simple_CGI.new.display()

How It Works

The first thing we do in the script is require the cgi library at �. Then we
define a class called Simple_CGI at � and the Constants EMPTY_STRING and TITLE
at �. Next, within the display method (at �), we create an instance of CGI called
cgi, defining it in terms of html4, which is one of the versions of HTML that
CGI is aware of. We’ll use cgi to create an HTML document that simple_cgi.rb
will output.

Instances of CGI have several methods that take blocks, whose names are
the same as the tags they will create. Every HTML document needs an <html>
tag, so we include that at �. For reasons I’ll explain shortly, I want to store
the contents of the <html> tag in a temporary local variable called output.

CGI and the Web 209

We can go through the HTML document we want to create, opening new tags
with the appropriate method of cgi (like head, title, h1, etc.). Hierarchical
nesting is accomplished using blocks, as you can see, and tags that are at the
same level (siblings) are concatenated with the + method.

You’ll notice that within cgi.body, which creates the <body> tag within our
resulting output, I have used a method at � called show_def_list (defined at �).
This is mainly to avoid multiple levels of block nesting for the methods of cgi,
but it also performs other tasks. Let’s examine it at �. It outputs a definition
list as you’d expect using cgi.dl with a block. To do so, it pulls both terms and
their definitions from a Hash called items, wrapping them in <dt> and <dd> tags,
respectively.

The items Hash is defined by the output of get_items_hash (�) merged with
cgi.params. The cgi.params Hash represents the query string, so if you browse to
http://localhost/cgi-bin/simple_cgi.rb?key1=value1&key2=value2, cgi.params
would be { 'key1' => 'value1', 'key2', 'value2' }. The get_items_hash method
returns a Hash representing some values that I thought might be worth dem-
onstrating, such as the script name, the server, and so on. In general, the
script simply reads from the machine’s environment, using values of the ENV
Hash. At �, the value for 'server' in the Hash is slightly more complex than
the others. It tries to read from ENV like the others, falling back to a system exe-
cution of the hostname command, and finally falling back to the EMPTY_STRING,
if necessary. This resulting Hash is then returned implicitly, because it’s the
last evaluated expression in the method.

Back at �, we call cgi.out, giving it a block with a slight massaging of the
output variable using gsub. I’ll be the first to admit that this is a little unusual.
Normally, you call cgi.out with a block that includes cgi.html and all the
other methods I used to fill the output variable. Why did I do it this way?
There are two related reasons.

The first reason is that cgi.out is not purely functional: It doesn’t return
a value to be printed using puts. Instead, it does the outputting by itself. The
second reason is that cgi’s methods don’t introduce line breaks between tags.
This is good for speed optimization, in that each new character, even just a
line break, is slightly more content to transfer. However, it doesn’t make the
resulting HTML source very readable. I like readable HTML source, so I use
gsub at � to introduce line breaks between adjacent tags. If you don’t mind
your HTML all strung together in a single line, by all means, put your cgi.html
and similar calls within the block for cgi.out.

Everything we have discussed so far has been within the display method.
We call it on the last line of the script, directly on an anonymous new instance
of Simple_CGI. There’s no real need to instantiate it into a variable, like so:

scgi = Simple_CGI.new
scgi.display()

However, if you’re more comfortable doing that, there’s also no reason
not to. Let’s see how it works.

210 Chap te r 11

header). Values that should not differ are the script and server, unless you’ve
intentionally changed the filename from simple_cgi.rb to something else or
browsed to a hostname other than localhost. Astute readers will also see that
I had another tab open to the Apache website.

Now let’s try changing the query string a bit, with http://localhost/cgi-bin/
simple_cgi.rb?lang=Ruby. I won’t bother showing a new screenshot, but you
should now see five entries in the definition list instead of four. The new one
is the key lang, which has a value of Ruby. This appears because cgi.params is a
part of the items Hash within show_def_list at �, and when we use the query
string lang=Ruby, cgi.params is { 'lang' => 'Ruby' }, which is then one of the
pairs in items.

Now let’s try giving an explicit value within the query string to one of the
keys that already appears in items, with the URL http://localhost/cgi-bin/
simple_cgi.rb?lang=Ruby&server=some_other_server_name. You should still
see the key lang with a value Ruby, but in addition, the value for server is no
longer localhost, but is instead some_other_server_name. The reason this happens
is that cgi.params is the argument to merge, and it overrides any conflicting pair
already in the Hash on which merge is called. Therefore, anything in cgi.params
takes precedence.

Hacking the Script

This is just a simple script showing the basics of CGI. You could modify and
extend it in countless ways. One suggestion would be to incorporate part of
currency_converter2.rb. For example, you could display the time, just as this
script already does, and take arguments for the currencies to convert from
and to as well as the amount of money to convert. Many people also use CGI
to execute system calls on a machine and display the results, showing the
processes running on the machine, how much disk space is used, and other
information of interest to system administrators.

The Results

On your system, browse to http://
localhost/cgi-bin/simple_cgi.rb and
see what you get. It should be some-
thing more or less like Figure 11-1.

Note that the software value will
probably differ, unless you’re also
using a fairly stock Ubuntu system,
and the time will obviously differ a
great deal. You can see that the tab
shows the page title, which is A simple
CGI script (the same as the large bold

Figure 11-1: The output of simple_cgi.rb

CGI and the Web 211

#42 Mod Ruby (mod_ruby_demo.rhtml and
mod_ruby_demo.conf)

CGI is great for many applications. However, sometimes you may want to
have files that are mainly HTML, with only subsections that need to be exe-
cuted by your programming language, Ruby or otherwise. Wouldn’t it be
great if you had an HTML tag that meant Start Ruby code now, after which you
could add some Ruby code, and then use another tag that meant Done with
Ruby code, go back to plain old HTML?

There is such a system, for many languages. It’s the default behavior for
the PHP language, and similar systems are available for Perl and Python, among
others. One of the systems that does this for Ruby is eRuby, which will be
embedded directly within the webserver via the mod_ruby software.

One of the problems with CGI is speed. When someone makes a web
request that needs dynamic CGI execution, that request spawns a new Ruby
interpreter;1 that interpreter then evaluates the CGI program, returns its
value to the webserver process, and closes down. For the next CGI request,
the whole process start all over again. All of this takes time. What mod_ruby
and similar systems do is have a Ruby interpreter always running in the back-
ground, ready to evaluate scripts and return their results to the webserver,
but without the overhead of spawning and shutting down a distinct ruby
process for each script. This makes the webserver start up a bit slower,
because it needs to do more, but it saves a lot of machine overhead after
just a few requests.

In the code, you’ll see <% and %>, the opening and closing tags that mean
Interpret my contents in Ruby, not as HTML. But first we need to set up Apache
so that it knows how to handle mod_ruby. We’ve already installed the mod_ruby
packages, but we need a configuration file. That’s mod_ruby_demo.conf below.

The Code

mod_ruby_demo.conf

An Apache
Config File

<IfModule mod_ruby.c>
 # for Apache::RubyRun
 RubyRequire apache/ruby-run

 # for Apache::ERubyRun
 RubyRequire apache/eruby-run

 # handle *.rcss as eruby files.

� <Files *.rcss>
 AddType text/css .rcss
 AddType application/x-httpd-ruby *.rb
 SetHandler ruby-object
 RubyHandler Apache::ERubyRun.instance
 </Files>

1 Or an interpreter for whichever language the CGI program uses.

212 Chap te r 11

 # handle *.rhtml as eruby files.
� <Files *.rhtml>

 AddType text/html .rhtml
 AddType application/x-httpd-ruby *.rb
 SetHandler ruby-object
 RubyHandler Apache::ERubyRun.instance
 </Files>

 RubyRequire auto-reload

</IfModule>

This file isn’t Ruby code—it uses Apache’s configuration file format. Put this
file in /etc/apache2/mods-available/, with a symlink in /etc/apache2/mod-enabled/.2
If you’re using Apache version 1.X (such as 1.3, which is still popular), you’ll
add the contents of this file within your /etc/apache/httpd.conf file. As
I noted for the cgi-bin directory, these specific file and directory locations
are accurate for my system, but yours might be different.

mod_ruby_demo.rhtml

This file should be more recognizable as a weird hybrid of HTML and
Ruby code.

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>Mod Ruby</title>
<style>
code {
 background-color: #ddf;
 color: #f00;
 padding: 0.3em;
}
</style>
</head>

<body>
<h1>Mod Ruby</h1>

<p>
The eRuby command below should print <q>Hello, world!</q>
</p>

<p>
% tags � <q><% print "Hello, world!" %></q>

</p>

2 You can create a symlink with the command ln -s in a Unix shell.

CGI and the Web 213

<p>
� Welcome to <%= ENV['SERVER_NAME'] %>. If you see a server name,
� <%= 'e' + 'Ruby' %> is probably working.

</p>

<p>
� The current time is <%= Time.now %>.

</p>

<p>
<%

� def function_within_mod_ruby(input)
 "#{input} was passed through a function.\n"
end

print function_within_mod_ruby("Some sample input")
print '
'
print function_within_mod_ruby("Some other sample input")
%>
</p>

</body>
</html>

Put this file somewhere browsable via the Web. I’ll assume it’s in http://
localhost/mod_ruby/, making it accessible as http://localhost/mod_ruby/
mod_ruby_demo.rhtml.

How It Works

Hopefully, mod_ruby_demo.conf will be completely opaque. I’m kidding, of
course, but it’s not critical at this point if you don’t understand everything
about this file. It’s great to know about Apache configuration files, and you can
certainly learn a great deal from the Apache website (http://www.apache.org)
or the various Apache-related books out there, but what’s important for our
purposes are points � and �. At �, we declare that files having the .rcss
extension are to be interpreted as Ruby files. At �, we make the same
declaration about files having the .rhtml extension.

NOTE Why these extensions? It’s a fairly common practice to define filename extensions for
dynamically interpreted files with the normal extension and an additional preceding
letter representing the programming language used. For example, .rhtml is used for
Ruby files that generate HTML output, .rcss is used for Ruby files that generate CSS
stylesheets, and so on. You may also sometimes see .phtml files that integrate Perl or
PHP, or even .mhtml files that use the software Mason, written in Perl.

That’s it for mod_ruby_demo.conf. In mod_ruby_demo.rhtml, we have some
additional points of interest. It should look like standard HTML until �. At
that point, we see this line: <q><% print "Hello, world!" %></q>. The <% and %>
are the Interpret my contents as Ruby tags I mentioned earlier, so anything within

214 Chap te r 11

those tags will be interpreted as Ruby code. In this case, we’re asking Ruby to
print 'Hello, world!', which it does, incorporating the printed output within
the eventual HTML.

You’ll probably expect that we often want to print output that will be
incorporated into the HTML. It would be tedious to keep using print state-
ments, so there’s a shortcut, which you can see at �. If you use an initial code
tag of <%=, Ruby assumes that you want the evaluated expression to be printed.
At �, we incorporate the value of ENV['SERVER_NAME'] within an tag. Just
to show that what falls between <%= and %> can be any expression, at �, we con-
catenate two Strings, only caring about the result.

The printed output doesn’t have to be a simple literal expression, either.
At �, I show the value of a method call, which in this case results in the current
local time. Finally, at �, we define a completely new method within our
.rhtml file called function_within_mod_ruby, which is then available anytime
afterward for use, as you can see in the code.

The Results

When I call this script via my own webserver, I get the results shown in
Figure 11-2.

Figure 11-2: The output from mod_ruby

The time will obviously be different in your result, but that should be the
only difference, unless you specifically browse to your machine by a name
other than localhost, or you placed mod_ruby_demo.rhtml under a different
directory or gave it a different name.

Hacking the Script

This script is a modification playground. You can put any Ruby expressions
you want within those <% or <%= tags. Try using require, either with files that you
know are part of the standard library (like cgi) or your own files. This tech-
nique lets you define all your real “things” as classes in .rb library files,
reserving your .rhtml files for display.

CGI and the Web 215

#43 CSS Stylesheets, Part I (stylesheet.rcss)

Having .rhtml files is great—they allow you to dynamically generate whatever
visible HTML you want. But you can use mod_ruby for more than that. A major
portion of any well-designed modern website will be its stylesheets. One of the
frustrations that web designers have to deal with is incomplete or incompatible
CSS support among the various browsers. There are lots of potential solutions for
those frustrations, which you can find at sites like http://www.richinstyle.com
or http://alistapart.com. One obvious solution for programmers is to deter-
mine exactly which browser someone is using (via ENV['USER_AGENT']) and
serve that user a stylesheet customized for his or her specific browser.

That’s a great solution, put into practice countless times all over the
Web. There is another solution, however. Why not make the stylesheet itself
a dynamic .rcss file? With this approach, the stylesheet becomes polymorphic,
to use a term from object-oriented programming. Every browser would refer to
the same stylesheet by name and would then receive specific content that
works just right for that browser. Here’s an example.

The Code

/*
This file outputs CSS data customized by user_agent via eruby.
There is a blog entry about some similar ideas at
http://blog.airbladesoftware.com/2006/12/11/cssdryer-dry-up-your-css
*/
<%
define functions

� def alpha_width(user_agent)
 width =
 if (user_agent =~ /Windows/)
 11.8 if (user_agent =~ /Opera/)
 11.8 if (user_agent =~ /MSIE 6/)
 14 if (user_agent =~ /MSIE/)
 11.8
 elsif (user_agent =~ /Palm/)
 5
 else
 11.8
 end

� return %Q[\twidth:#{width}em;]
end

� def beta_width(user_agent)
 width =
 if (user_agent =~ /Windows/)
 15.8 if (user_agent =~ /Opera/)
 15.8 if (user_agent =~ /MSIE 6/)
 18 if (user_agent =~ /MSIE/)
 15.8
 elsif (user_agent =~ /Palm/)
 7

216 Chap te r 11

 else
 15.8
 end

� return %Q[\twidth:#{width}em;]
end

� def margin_left(user_agent)
 margin =
 if (user_agent =~ /Mac/)
 3 if (user_agent =~ /Opera/)
 1 if (user_agent =~ /MSIE/)
 2.5 if (user_agent =~ /Safari/)
 2 if (user_agent =~ /Gecko/)
 2.7
 elsif (user_agent =~ /Windows/)
 1.5
 else
 2 if (user_agent =~ /Opera/)
 2 if (user_agent =~ /onqueror/)
 1.8 if (user_agent =~ /Galeon/)
 2.5
 end

� return %Q[margin-left:-#{margin}em;]
end
%>

� li { <%= margin_left(ENV['HTTP_USER_AGENT']) %> }

#navAlpha {
 position:absolute;

� <%= alpha_width(ENV['HTTP_USER_AGENT']) %>
 top:2em;
 left:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:2;
}

#navBeta {
 position:absolute;

� <%= beta_width(ENV['HTTP_USER_AGENT']) %>
 top:2em;
 right:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:1;
}

How It Works
Much like mod_ruby_demo.rhtml, this is mainly a file with some other format
(in this case a CSS stylesheet) that happens to have a little Ruby interspersed

CGI and the Web 217

within it. We define a new function called alpha_width at � that determines
the value of a local variable called width, finally returning it within a bit of
text that follows CSS formatting at �. Note that this function takes advantage
of the fact that even if statements in Ruby return a value, in this case, assign-
ing that value into width. We do something similar with beta_width at �, which
returns its own CSS-formatted output at �. Finally, we define margin_left at �,
which returns CSS at �.

NOTE Why those particular functions? I found that the CSS support variations that frustrated
me the most were the differences involving margins and padding and left margins for
list items, so those are the functions I made. People who know more about CSS than I do
have probably found more elegant solutions, but sometimes a pretty good solution now
is better than a perfect solution when it’s too late. The point of this script is also to dem-
onstrate that the polymorphic stylesheet technique can be done, but this isn’t precisely
how it should be done. If you care a great deal about CSS, you can use this technique to
accomplish much bigger things.

Then we use the output of margin_left within a CSS declaration for a list
element at �. The stylesheet also defines two IDs called #navAlpha and #navBeta,
which are just identifiers for column divs. Within #navAlpha at �, we use the
output of alpha_width for the width of #navAlpha, and at �, we do something
analogous for #navBeta.

The Results

Here’s the output of stylesheet.rcss when I browse to it using Mozilla Firefox
on an Ubuntu system:

/*
This file outputs CSS data customized by user_agent via eruby.
There is a blog entry about some similar ideas at
http://blog.airbladesoftware.com/2006/12/11/cssdryer-dry-up-your-css
*/

li { margin-left:-2.5em; }

#navAlpha {
 position:absolute;
 width:11.8em;
 top:2em;
 left:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:2;
}

#navBeta {
 position:absolute;
 width:15.8em;

218 Chap te r 11

 top:2em;
 right:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:1;
}

You’ll notice that the appropriate values are interpolated within the li
and width CSS declarations. Your results may differ, since the whole point of
this file is to provide different output for different browsers.

Hacking the Script

There are many hacking options for this script. One is our next script,
stylesheet2.rcss.

#44 CSS Stylesheets, Part II (stylesheet2.rcss)

In many ways, this script is just a glorified hack of stylesheet.rcss. I separated
it mainly to allow for comparison. The major difference between the two files
is that stylesheet2.rcss generalizes the width values into a single function.

The Code

/*
This file outputs CSS data customized by user_agent using eruby.
*/
<%
define functions

� def width(type, user_agent)
� small = {

 'alpha' => 11.8,
 'beta' => 15.8,
 }

� large = {
 'alpha' => 14,
 'beta' => 18,
 }

� palm = {
 'alpha' => 5,
 'beta' => 7,
 }

� width =
 if (user_agent =~ /Windows/)
 small[type] if (user_agent =~ /Opera/)
 small[type] if (user_agent =~ /MSIE 6/)
 large[type] if (user_agent =~ /MSIE/)
 small[type]

CGI and the Web 219

 elsif (user_agent =~ /Palm/)
 palm[type]
 else
 small[type]
 end
 return %Q[\twidth:#{width}em;]
end

def margin_left(user_agent)
 margin =
 if (user_agent =~ /Mac/)
 3 if (user_agent =~ /Opera/)
 1 if (user_agent =~ /MSIE/)
 2.5 if (user_agent =~ /Safari/)
 2 if (user_agent =~ /Gecko/)
 2.7
 elsif (user_agent =~ /Windows/)
 1.5
 else
 2 if (user_agent =~ /Opera/)
 2 if (user_agent =~ /onqueror/)
 1.8 if (user_agent =~ /Galeon/)
 2.5
 end
 return %Q[margin-left:-#{margin}em;]
end
%>

li { <%= margin_left(ENV['HTTP_USER_AGENT']) %> }

#navAlpha {
 position:absolute;
 <%= width('alpha', ENV['HTTP_USER_AGENT']) %>
 top:2em;
 left:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:2;
}

#navBeta {
 position:absolute;
 <%= width('beta', ENV['HTTP_USER_AGENT']) %>
 top:2em;
 right:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:1;
}

220 Chap te r 11

How It Works

At �, we define the general width function, which you’ll see now takes two
arguments: the user agent as before, but also the type of column we’re gen-
erating width for. We then have separate Hashes for small (�), large (�),
and palm (�). Palm devices always use their own Hash, while other browsers
use either the small or large Hash, depending on the specific user agent. Then
at �, we determine the width.3 The type is simply the key for whichever Hash
has already been decided on. Everything else is identical to stylesheet.rcss,
except that calls to either alpha_width or beta_width are now calls to width, as
described already.

The Results

As before, here’s the output with my setup.

/*
This file outputs CSS data customized by user_agent using eruby.
*/

li { margin-left:-2.5em; }

#navAlpha {
 position:absolute;
 width:11.8em;
 top:2em;
 left:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:2;
}

#navBeta {
 position:absolute;
 width:15.8em;
 top:2em;
 right:2em;
 border:0.5em double #333;
 background-color:#ada;
 padding:1em;
 z-index:1;
}

This output is basically the same as that for stylesheet.rcss, except for
the preliminary comments.

3 Don’t be confused by the fact that there is both a function called width and a local variable
inside it also called width. Anything outside the function can’t get at the variable, and the
function knows to check whether or not there’s a variable by that name before automatically
making a recursive call to itself.

CGI and the Web 221

Hacking the Script

As I already noted, someone with a better grasp of CSS could really customize
this script to do some marvelous things. There are undoubtedly better ways
to accomplish what this script does, but its point was to show the technique in
broad strokes. I hope you found it useful.

Chapter Recap

What was new in this chapter?

� Using Ruby for CGI scripts

� The cgi library

� cgi.params

� mod_ruby

� .rhtml and .rcss files

� Apache configuration files

This chapter scratches the surface of CGI programming, with Ruby or
other languages. Its purpose was to get you comfortable with using Ruby to
interact with a webserver and browser. Most web-based coding in Ruby makes
use of the Rails framework, which we’ll get to soon. But first, we’ll be installing
Rails with the RubyGems system, so that is the subject of our next chapter.

12
R U B Y G E M S A N D R A I L S

P R E P A R A T I O N

In this chapter, we’ll discuss Ruby’s package-
management system, RubyGems, as well as

Ruby’s most prominent web development
framework, Rails. These somewhat disparate

subjects are lumped together because the “canonical”
way to install Rails is with the RubyGems software. By
the end of this chapter, you will be able to install Rails
via RubyGems and understand the basic structure and
purpose of the files that make up a Rails application.

RubyGems

Good operating systems have good package-management systems—software
that can keep track of the other software needed or provided by that operat-
ing system and make sure everything stays up to date. Mac OS X has Software
Update, Windows has Windows Update, and the various flavors of GNU/Linux
have programs like RPM, YUM, and my favorite, APT. Good programming

224 Chap te r 12

languages have similar programs that give programmers and other users
access to vast libraries of software written in that language. Perl has the
Comprehensive Perl Archive Network (http://cpan.org), Python has the
Cheese Shop (http://cheeseshop.python.org/pypi), and Ruby has RubyGems
(http://rubygems.org).

NOTE The most up-to-date RubyGems information is available at http://docs.rubygems.org.
This chapter is intended to give you a basic introduction and help you get Rails up
and running. If you find your curiosity piqued about RubyGems (as I hope you will),
I highly recommend making http://docs.rubygems.org one of your regular stops on the Web.

RubyGems has already become the de facto method of creating stand-alone
Ruby software (especially libraries and programmer utilities) for use by others
in the Ruby community. With this system, you can easily use other program-
mers’ software to make your job easier, and you can also share your own work,
likely making some other programmer’s job easier. Each bundle of software
that is packaged together as a single unit via RubyGems is called a gem, and
users are able to manipulate such gems with the appropriately named gem
command.

Installing RubyGems

You will want to browse to http://rubyforge.org/frs/?group_id=126 to down-
load the most recent version of RubyGems. Files are provided in both TGZ
and Zip formats, as well as gem files (for updating after you already have
RubyGems installed) and patch files. For this example, I’ve downloaded
rubygems-0.9.2.tgz. Uncompress the downloaded file, and use the command
ruby setup.rb to run the setup.rb program found inside the newly created
directory. You’ll probably have to do this as the root user (if applicable to
your operating system). You can type gem -v to see which version of RubyGems
you now have installed on your system.

Using RubyGems

If you run gem with no arguments, it should return something similar to this:

RubyGems is a sophisticated package manager for Ruby. This is
a basic help message containing pointers to more information.

 Usage:
 gem -h/--help
 gem -v/--version
 gem command [arguments...] [options...]

 Examples:
 gem install rake
 gem list --local
 gem build package.gemspec
 gem help install

RubyGems and Rai ls Preparat ion 225

 Further help:
 gem help commands list all 'gem' commands
 gem help examples show some examples of usage
 gem help <COMMAND> show help on COMMAND
 (e.g. 'gem help install')
 Further information:
 http://rubygems.rubyforge.org

Listing Installed and Installable Gems

By executing gem list --local, you can see which gems are already installed
on your system. Here is the result of running gem list --local immediately
after installing RubyGems on my machine:

*** LOCAL GEMS ***

sources (0.0.1)
 This package provides download sources for remote gem installation

The sources gem makes it possible for you to install other gems by main-
taining retrieval information about them. We can query that information via
gem query --remote, which outputs a very long list of available gems, shown
here in highly truncated form:

*** REMOTE GEMS ***

abstract (1.0.0)
 a library which enable you to define abstract method in Ruby

ackbar (0.1.1, 0.1.0)
 ActiveRecord KirbyBase Adapter

action_profiler (1.0.0)
 A profiler for Rails controllers

Installing Gems

Each individual gem is installable via the command gem install --remote
some_gem_name. As an example, let’s install the rails gem with gem install
--remote rails.

Install required dependency rake? [Yn]
Install required dependency activesupport? [Yn]
Install required dependency activerecord? [Yn]
Install required dependency actionpack? [Yn]
Install required dependency actionmailer? [Yn]
Install required dependency actionwebservice? [Yn]
Successfully installed rails-1.2.2
Successfully installed rake-0.7.1
Successfully installed activesupport-1.4.1
Successfully installed activerecord-1.15.2
Successfully installed actionpack-1.13.2

226 Chap te r 12

Successfully installed actionmailer-1.3.2
Successfully installed actionwebservice-1.2.2
Installing ri documentation for rake-0.7.1...
Installing ri documentation for activesupport-1.4.1...
Installing ri documentation for activerecord-1.15.2...
Installing ri documentation for actionpack-1.13.2...
Installing ri documentation for actionmailer-1.3.2...
Installing ri documentation for actionwebservice-1.2.2...
Installing RDoc documentation for rake-0.7.1...
Installing RDoc documentation for activesupport-1.4.1...
Installing RDoc documentation for activerecord-1.15.2...
Installing RDoc documentation for actionpack-1.13.2...
Installing RDoc documentation for actionmailer-1.3.2...
Installing RDoc documentation for actionwebservice-1.2.2...

I answered Y to all requests for confirmation. You can see that the
RubyGems system is intelligent enough to know which gems are required by
other gems, and it will install your requested gem’s dependencies auto-
matically. We now have a functioning Rails system, which we’ll explore in
the next chapter.

NOTE At the time of my installation, there were some minor warnings related to actionpack’s
ri and RDoc documentation. They had no impact on the functioning of the code and
may be out of date by the time you read this book, so I have omitted them from the output
examples in this chapter.

Updating Gems

You can update gems already present on your system with the gem update
command. A good precursor is to query whether any gems need updating
with gem outdated. I ran this command on one of my systems that had some
out-of-date gems and I got the following results:

Bulk updating Gem source index for: http://gems.rubyforge.org
activerecord (1.15.1 < 1.15.2)
rails (1.2.1 < 1.2.2)
actionwebservice (1.2.1 < 1.2.2)
rubygems-update (0.9.1 < 0.9.2)
actionpack (1.13.1 < 1.13.2)
actionmailer (1.3.1 < 1.3.2)
activesupport (1.4.0 < 1.4.1)

Updating the gems with gem update rails (as root) produced this output:

Updating installed gems...
Bulk updating Gem source index for: http://gems.rubyforge.org
Attempting remote update of rails
Install required dependency activesupport? [Yn]
Install required dependency activerecord? [Yn]
Install required dependency actionpack? [Yn]
Install required dependency actionmailer? [Yn]
Install required dependency actionwebservice? [Yn]

RubyGems and Rai ls Preparat ion 227

Successfully installed rails-1.2.2
Successfully installed activesupport-1.4.1
Successfully installed activerecord-1.15.2
Successfully installed actionpack-1.13.2
Successfully installed actionmailer-1.3.2
Successfully installed actionwebservice-1.2.2
Installing ri documentation for activesupport-1.4.1...
Installing ri documentation for activerecord-1.15.2...
Installing ri documentation for actionpack-1.13.2...
Installing ri documentation for actionmailer-1.3.2...
Installing ri documentation for actionwebservice-1.2.2...
Installing RDoc documentation for activesupport-1.4.1...
Installing RDoc documentation for activerecord-1.15.2...
Installing RDoc documentation for actionpack-1.13.2...
Installing RDoc documentation for actionmailer-1.3.2...
Installing RDoc documentation for actionwebservice-1.2.2...
Gems: [rails] updated

I specifically chose rails as the gem to be updated because it is a gem
with many dependencies, as we learned when installing it for the first time.
Therefore, updating it shows how dependencies are automatically updated
along with the requested gem. Rails depends on Active Record (a software
package that provides sophisticated database access tools), so updating the
rails gem also automatically updates the activerecord gem, as you can see in
the update session results above. All other rails dependencies are updated
in a similar manner.

NOTE After updating your gems, you probably want to execute rake rails:update within each
of your Rails application directories. This ensures that any application files you have
already generated will be updated to account for the change in gems, as well.

Learning More About RubyGems

You can always learn more about the gem command as it exists on your own
machine with gem help and gem help some_specific_command. This information
will always be up to date and specific to your system.

Rails Preparation

You should now know enough about RubyGems to have used it to install Rails.
The rest of this chapter will familiarize you enough with Rails that you can
start creating a Rails application in the next chapter. This book introduces
Rails (with a focus on general design philosophy, rather than an exhaustive
list of the API), but it would be silly to think that a few chapters could give Rails
the attention it deserves. The definitive text on Rails is Agile Web Development
with Rails, now in its second edition, by Dave Thomas, David Heinemeier
Hansson (creator of Rails), and others (Pragmatic Bookshelf, 2006). Other
members of the Rails community also give high praise to Ruby for Rails by
David Alan Black (Manning Publications, 2006).

228 Chap te r 12

What Is Rails?
According to its website (http://rubyonrails.org), Rails is “an open-source
web framework that’s optimized for programmer happiness and sustainable
productivity. It lets you write beautiful code by favoring convention over config-
uration.” The site describes it as “Web development that doesn’t hurt.” What
does that mean?

Since it optimizes for programmer happiness and focuses on the ability
to write beautiful code, Rails is well within the design philosophy of Ruby
itself. Rails picks sensible defaults for its behavior, and as long as you are
willing to follow those conventions, your job as the programmer becomes
relatively easy. Rails provides shortcuts and tools for you to generate a skeleton
of a web application very quickly; it allows you to place each piece of code in a
reasonable location within the directory structure that is appropriate to the job
that code is expected to perform. This provides clean, well-ordered, reusable
code that helps you develop an application quickly, efficiently, and painlessly.

Other Options for Installing Rails
Using RubyGems isn’t the only way to install Rails. There are several other
options that you may want to use, for example, if you haven’t been following
along with the text, or if you simply wish to install Rails via some other method.
It should be noted, however, that installation as a gem is the recommended
way to install Rails.

Via Operating System Package Manager

Some operating systems’ package managers, such as APT, provide Rails as
an installable package. For example, on my Ubuntu system, the command
apt-cache search rails shows (among other packages) this result:

rails - MVC ruby based framework geared for web application development

If you want to use Rails, but you don’t need the most recent bleeding-edge
version, and you want to avoid installing RubyGems (for whatever reason),
this option may work well for you.

From Source

As with any free or open source software, there is always the option to install
from source. You can browse to http://rubyonrails.org/down for the most
recent recommended source tarball.

Pre-Packaged

There are also some pre-packaged versions of Rails available. For Windows,
there is Instant Rails (http://instantrails.rubyforge.org), and for Mac OS X,
there’s Locomotive (http://locomotive.sourceforge.net). Either of these
pieces of software can get you up and running with Rails. Note that there
may be subtle differences in configuration between these packages and the

RubyGems and Rai ls Preparat ion 229

default Rails setup. Consulting the website for your chosen pre-packaged
application is probably your best bet when encountering such a situation.

Databases

Rails needs to have access to a database program to function properly. Gen-
erally, that database is MySQL (http://mysql.com), although other options
are possible. If you’re installing via gems or through your operating system’s
package manager, you should install MySQL. This is probably easiest to do
through your operating system’s package manager. The pre-packaged Rails
installers like Instant Rails and Locomotive generally come with their own
pre-configured databases; however, for all subsequent examples, I’ll assume
you installed Rails as a gem and you’re using MySQL.

The Structure of a Rails Application

Rails operates under a design philosophy (or pattern) for software called
Model-View-Controller (MVC), developed by Norwegian computer scientist
Trygve Reenskaug1 while he was working at Xerox PARC in the late 1970s.
It was originally developed in relation to traditional graphical user interfaces
(GUIs), but MVC has recently become very popular in web development.
The basics of this pattern are as follows. The Model represents the data and is
an object of some sort. The View is a way of presenting data, whether directly to
a user or to some other computer, or as any other type of output. The Controller
is the traffic cop or manager that keeps track of any requested actions, queries
or manipulates the Model to get or update data, and gives the View whatever
information it needs to format the data as necessary.

Let’s consider an example to help explain this pattern. Back in our
second currency conversion script (“#19 Currency Conversion, Advanced
(currency_converter2.rb)” on page 90), we used data retrieved from an
RSS feed. In MVC terms, that data is the Model. That same data could
have been presented (or Viewed) on a traditional HTML web page, as
a plaintext file for download, or as a YAML file. In all of these different
examples, the Model would stay the same and would be something like
ExchangeRate or CurrencyUnit, depending on how the application was
designed. The Controller would also be the same, and it would be responsible
for retrieving the data from a server. We’d probably call it the Download
Controller, since it would be used to download data from a server.

For the sake of argument, let’s say that we also wanted to present our
Model in some completely different way, perhaps written down on paper.
The written piece of paper would use a different Controller, one that deals
with paper instead of servers. Perhaps we’d call it the Pencil Controller. The
View would also be different in each of these examples: RSS, HTML, ASCII,
WrittenOnAPieceOfPaper, and so on. These are all simply different ways of
presenting the same data, which is the Model. For example, our Rails appli-
cation in the next chapter has Views for both HTML and RSS display of
photographs and related information.

1 Dr. Reenskaug is online at http://heim.ifi.uio.no/~trygver.

230 Chap te r 12

Generating a Rails Application

You create a Rails application with the command rails application_name. If you
execute rails rails_sample_app in a suitable workspace directory, you should
see a very long output similar to the following truncated version:

$ rails rails_sample_app
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 (several lines deleted)
 create public/javascripts/application.js
 create doc/README_FOR_APP
 create log/server.log
 create log/production.log
 create log/development.log
 create log/test.log

A large number of directories and files are automatically created for you.
We’ll briefly touch on the app, doc, lib, log, public, script, and test directories.
The app directory contains the code you’ll write for your application: Models,
Views, Controllers, and so on. The doc directory contains documentation.
Nothing is initially created in the lib directory, but you’ll put generic library
files (such as extensions that add new methods to existing classes) here. The
log directory contains the application log files, which are split up for produc-
tion, development, and testing. The public directory contains non-Ruby files
that are viewed or used in a web browser, such as static HTML files, images,
JavaScript files, CSS stylesheets, and the like. The script directory contains
useful small programs meant to be run by the developer or administrator of
the application. The test directory contains files that allow you to easily
automate testing of the application.

We’ll discuss what each of these files and directories does shortly, but
first, let’s test our application to make sure it’s running properly.

Viewing Your Rails Application

Execute cd rails_sample_app to navigate to the newly created directory
rails_sample_app, and execute the command ruby script/server. This starts
Rails’ built-in webserver that it uses for development purposes. You should
see output similar to the following:

Starting
WEBrick

$ ruby script/server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
[2007-02-10 12:43:54] INFO WEBrick 1.3.1

RubyGems and Rai ls Preparat ion 231

[2007-02-10 12:43:54] INFO ruby 1.8.4 (2005-12-24) [i486-linux]
[2007-02-10 12:43:54] INFO WEBrick::HTTPServer#start: pid=27162 port=3000

Your specifics may be different. The pid value will almost certainly be
different, and your Ruby version may be a later one. Your webserver may also
be something else, such as Mongrel, which is a newer webserver for Rails.
(WEBrick is the older webserver that serves as a default fallback.) What is
unlikely to be different is the port: 3000. You can test your application by
browsing to that port on your local machine (just point your favorite web
browser to http://localhost:3000). Figure 12-1 shows what that URL looked
like when I viewed it on my Ubuntu machine with the Epiphany web browser.

Figure 12-1: Viewing your application in a web browser with the URL http://localhost:3000

As you can see, this page provides useful information about how to set up
your application as well as links to Rails-related information on the Web. Two
points of particular interest are that the database connection is described in
the YAML file config/database.yml and that script/generate is available to help
you generate Models and Controllers.

232 Chap te r 12

Basics for Generating Applications

Within the directory rails_sample_app, execute the command ruby script/
generate model ExchangeRate, following our MVC example earlier. We’re
telling Rails that we want to generate something, the thing we want to make is
a Model, and the name of the Model is ExchangeRate. Here are the results:

Making a
Model

ruby script/generate model ExchangeRate
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/exchange_rate.rb
 create test/unit/exchange_rate_test.rb
 create test/fixtures/exchange_rates.yml
 create db/migrate
 create db/migrate/001_create_exchange_rates.rb

As well as some useful testing- and database-related files, this command
created a Ruby file called app/models/exchange_rate.rb, the contents of which
are the following:

class ExchangeRate < ActiveRecord::Base
end

There doesn’t seem to be a lot there, but appearances can be deceiving.
The Model follows the Rails naming convention of using CamelCase for class
names and multi_word_separated_lowercase for filenames. You’ll also notice
that ExchangeRate is a child of something called ActiveRecord::Base. Active Record
is the software that gives Rails its intuitive database interaction. It defines
Models (which are classes) such that each instance represents a record in a
database table. Not only that, but the name of the table is always the plural of
the class. Therefore, the file exchange_rate.rb defines a class called ExchangeRate,
each instance of which is stored in a database table called exchanges_rates.
This all takes place under the hood—Rails does it for you automatically, and
it is even smart enough to know that the plural of person is people, the plural
of baby is babies, and so on.

NOTE Active Record provides what’s called object-relational mapping (ORM). ORM enables
a specific instance of a class to represent a record in a database table. For those who are
curious, each field in the table also represents an instance variable in the appropriate
class. We’ll talk about this topic more in the next chapter.

Our Model doesn’t do anything yet. We won’t start adding to Models until
the next chapter, so let’s make a Controller with the command ruby script/
generate controller server_access rss html ascii yaml, telling Rails that this
time we want to generate a Controller and that it should have the Views rss,
html, ascii, and yaml. Here are the results:

Making a
Controller

ruby script/generate controller server_access rss html ascii yaml
 exists app/controllers/
 exists app/helpers/

RubyGems and Rai ls Preparat ion 233

 create app/views/server_access
 exists test/functional/
 create app/controllers/server_access_controller.rb
 create test/functional/server_access_controller_test.rb
 create app/helpers/server_access_helper.rb
 create app/views/server_access/rss.rhtml
 create app/views/server_access/html.rhtml
 create app/views/server_access/ascii.rhtml
 create app/views/server_access/yaml.rhtml

This output is slightly more complicated. We see that we now have a Con-
troller called server_access_controller.rb in app/controllers/, and we now have
the files rss.rhtml, html.rhtml, ascii.rhtml, and yaml.rhtml inside app/views/
server_access/. Let’s take a look at app/controllers/server_access_controller.rb.

class ServerAccessController < ApplicationController

 def rss
 end

 def html
 end

 def ascii
 end

 def yaml
 end
end

We now see another class definition, this time descended from
ApplicationController, and several empty methods whose names match
the names of our requested Views. Now point your browser at http://
localhost:3000/server_access and see what’s there (Figure 12-2).

Figure 12-2: Unknown action

234 Chap te r 12

What happened? We browsed to the same top-level URL for our Rails
application, this time adding the name of our new server_access Controller,
and our application complained. Let’s try the URL http://localhost:3000/
server_access/rss instead. My result is shown in Figure 12-3.

Then try using http://localhost:3000/server_access/ascii as the URL
(Figure 12-4).

In the latter two cases, Rails told us which file provides content for the
URL requested. We browse to the top-level Rails application and provide the
Controller name as the first directory and the View name as the next element
in the URL. This means that in our first example (http://localhost:3000/
server_access), we provided no View. How will Rails interpret that?

Similar to how the default HTML file in a directory is index.html, the
default View used when none is explicitly provided is index. However,
ServerAccessController does not have a method called index, so it complained.
Don’t worry—we’ll create an index View in our sample application in the next
chapter.

However, the URL http://localhost:3000/server_access/ascii used
a View that we know we have, ascii, and its results told us to look inside
app/views/server_access/ascii.rhtml. Let’s do so.

<h1>ServerAccess#ascii</h1>
<p>Find me in app/views/server_access/ascii.rhtml</p>

There’s just enough HTML content there to provide the visible informa-
tion. The file informs us that the Controller name is the class, and the View
name is the method, using the # sign to indicate that it’s an instance method
(the # sign is often used in the Ruby community to distinguish an instance
method from a class method). To write a real Rails application, we’ll start
filling these empty classes, methods, and HTML stub files with real content,
and we’ll also connect to a database to retrieve our information.

Figure 12-3: The RSS View’s default result Figure 12-4: The ASCII View’s default result

RubyGems and Rai ls Preparat ion 235

Since our View files are .rhtml files, not just static .html files, we can use
techniques similar to those we’ve already seen in the context of mod_ruby to
put Ruby code directly into our .rhtml files.2 This will be crucial in the next
chapter.

Chapter Recap

What was new in this chapter?

� Package management

� Installing RubyGems

� Installing, updating, and querying specific gem package files

� Rails basics

� Installing Rails

� The MVC pattern

� ORM basics

� Viewing your first Rails application

� Generating Models and Controllers

� The index View used as the default View

� Distinguishing instance methods from class methods with #

� HTML stub files for Views

With just that information, you could create some interesting applica-
tions that do a variety of dynamic tasks. However, the real power of Rails
stems from its ability to access a database and manipulate content. That will
be the focus of our next and final chapter.

2 Technically, mod_ruby uses eRuby, while Rails uses erb; these are two different ways to embed
Ruby code within markup, but they are very similar in practice.

13
A S I M P L E R A I L S P R O J E C T

In the previous chapter, you installed Rails
and became acquainted with the basics of

the internal structure of a Rails application.
In this chapter, we’ll be creating a Rails app that

is a bit more complex—it retrieves multiple instances
of a given data type from a database and iterates over
those instances for presentation. We’ll also look into
some more sophisticated ways of organizing code
within Rails.

Creating the Application

For our purposes, any simple application will suffice. I’ve chosen to create a
photo album that will display a few photos from my wedding. It will be able
to display all of the photos in a list as thumbnail images with accompanying
descriptive text, as well as display each individual image in greater detail. It
will also provide navigation tools to allow the user to jump around within the

238 Chap te r 13

list. All of this will be accomplished via HTML, the default presentation
format for the Web. In addition, the application will provide an RSS feed
(the XML format we used as a data source in currency_converter2.rb) that will
describe all the images.

Initial Creation

We’ll create our application (called photo_album) within an appropriate
directory with the command rails photo_album. Then type cd photo_album
and ruby script/server to start the app. We can verify that Rails is running
by browsing to http://localhost:3000, as we did in “Viewing Your Rails
Application” on page 230.

Preparing the Database

For this application, I’ll be using the MySQL database. I’ll assume that you
can get MySQL running on your machine and are able to do simple queries.
If that’s not the case, you may want to brush up on MySQL with a book spec-
ifically on that topic, such as Managing and Using MySQL, by George Reese,
Randy Jay Yarger, and Tim King (O’Reilly, 2002). If you are using a database
other than MySQL, I’ll assume you are able to work out the subtle differences
in the resulting Rails app on your own, with the help of the documentation
available from your database vendor and at http://rubyonrails.org.

One thing you may need to do is alter the config/database.yml file,
especially if you’re using a database program other than MySQL. I had to
edit the value for socket: to be /var/run/mysqld/mysqld.sock. If you get the
error No such file or directory - /tmp/mysql.sock, a mismatch in the socket
description is the most likely cause. Rails is looking for the MySQL socket file
at /tmp/mysql.sock, and you need to set it to the right file location. You can
find the location of the socket file with this command (preferably as root) on
a Unix-like operating system: find / mysqld.sock | grep mysqld.sock.

Adding Data

The photo album app differs from the simple structural example in Chapter 12
in that it has real data in a database, which we will now assume is handling that
data. One of the most convenient ways to manage data for Rails (especially
for simple test data like ours), is by using a migration. A migration in Rails is a
description of data in Ruby that is created and deleted as needed. Let’s take a
look at our migration file at db/migrate/001_create_photos.rb:

Migrations class CreatePhotos < ActiveRecord::Migration

� COLUMN_NAMES = [:description, :image_path, :title, :photographer]

� SAMPLE_PHOTOS = [

A Simple Ra i ls P roject 239

 {
 :title => 'Tonawanda Creek',
 :description => 'A waterway in Tonawanda, NY.',
 :image_path => '001_creek.jpg',
 :photographer => 'Vince',
 },
 {
 :title => 'Travis',
 :description => %q[My friend Travis. His wife Laura's head is partly in
view as well.],
 :image_path => '002_travis.jpg',
 :photographer => 'Vince',
 },
 {
 :title => 'Liam & Ducks',
 :description => 'My nephew Liam with some ducks.',
 :image_path => '003_liam.jpg',
 :photographer => 'Vince',
 },
]

� def self.up

� create_table :photos do |t|
 COLUMN_NAMES.each { |c| t.column c, :text }
 end

� SAMPLE_PHOTOS.each do |sp|
 p = Photo.create(sp)
 p.save!
 end

 end

� def self.down
 drop_table :photos
 end
end

At � and �, we define Constants for both the COLUMN_NAMES and
SAMPLE_PHOTOS, which we use for data insertion. COLUMN_NAMES should be obvious,
and each element of SAMPLE_PHOTOS is a Hash representing a database record, in
which each key is the Symbol representation of a column name and the value is
whatever data will be in that database field. At �, we define the self.up method,
which contains all the code that will run when we perform our migration.

One of the most important tasks within self.up is the creation of the
table, which is done at �. The create_table method takes a Symbol argument
for the table name and a block describing what should be done to that table.
In our case, create_table loops through the COLUMN_NAMES, creating a column
for table t, named with the current value of c, of type text.

240 Chap te r 13

NOTE All our database table fields are of type text. If we had more complex data with different
types, we would probably replace the Array COLUMN_NAMES with a Hash called COLUMNS,
in which each key would be the column’s name and each key’s value would be the column’s
data type.

At �, we create a new Photo instance called p; it is based on each member
of SAMPLE_PHOTOS, which we call sp in turn. We then save! each version of p,
which stores its data into the database table. At �, we show that when we’re
done with this migration, the :photos table will be dropped. We execute the
migration with the command rake db:migrate. Let’s examine the results.

NOTE Note that save! is named with a bang, because it is destructive (since it saves to the
database). Also, running rake db:migrate runs whichever of your defined migrations
is needed to make your migrations current. We only have one, so that’s the only one
that runs.

== CreatePhotos: migrating
==
-- create_table(:photos)
 -> 0.1226s
== CreatePhotos: migrated (0.3359s)
===

The migration was successful. We can double check that by querying
MySQL (or whichever database you’re using).

NOTE At the prompt, I entered the password I have already set up for my specific MySQL instal-
lation. Yours is whatever you have already chosen, or it may be unset. This will depend
on the specific way you installed MySQL on your machine.

echo 'select * from photo_album_development.photos' | mysql -uroot -p
Enter password:
id description image_path title photographer
1 A waterway in Tonawanda, NY. 001_creek.jpg Tonawanda Creek Vince
2 My friend Travis. His wife Laura's head is partly in view as well.
002_travis.jpg Travis Vince
3 My nephew Liam with some ducks. 003_liam.jpg Liam & Ducks Vince

We can now see that we have data in the database for use in our Rails app.
Let’s move on to creating the other portions of the app.

Creating the Model and Controllers

As you’ve already seen in the previous chapter, Rails makes it very easy to
create Models, Controllers, and Views. For the photo album application,
we’ll be creating a Model called Photo and Controllers called Album and Feed.

Creating the Photo Model

Within the photo_album directory, execute ruby script/generate model photo,
which creates the Model file app/models/photo.rb.

A Simple Ra i ls P roject 241

Creating the Album and Feed Controllers

Next, within photo_album, execute ruby script/generate controller album index
show and ruby script/generate controller feed images. These create the Album
Controller with the index and show Views and the Feed Controller with the
images View, implemented by multiple files within the app/controllers and
app/views subdirectories.

Dissecting the Application

Now that we have created the basic skeleton of our application, let’s examine
how it works. Think of this section as similar to the sections “The Code” or
“How It Works” in previous chapters.

Dissecting the Photo Model

Our photo album app has one basic piece of data, represented in a Model
called Photo. Let’s add some code to what’s already there and explore what it
does. Edit app/models/photo.rb to match the following:

class Photo < ActiveRecord::Base

=begin explain
Closely follows Object-Relational Model, each instance is
also a record in the table called 'photos'.
=end

� def next_id()
 return Photo.minimum(:id) if last_id?
 next_id = @attributes['id'].to_i.succ
 next_id.succ! until Photo.find(next_id)
 next_id.to_s
 end

� def prev_id()
 return Photo.maximum(:id) if first_id?
 prev_id = (@attributes['id'].to_i - 1)
 prev_id = (prev_id - 1) until Photo.find(prev_id)
 prev_id.to_s
 end

 private

� def last_id?()
 @attributes['id'] == Photo.maximum(:id).to_s
 end

� def first_id?()
 @attributes['id'] == Photo.minimum(:id).to_s
 end

end

242 Chap te r 13

At � and �, we have the next_id and prev_id methods, respectively. Within
them, we make free use of built-in Rails methods. One of these is minimum, which
is available to all Models; it takes a Symbol argument that establishes which
attribute of that Model the minimum status will be based on. Another method
is the find method, which is a wrapper for SELECT statements in SQL that
takes specific arguments for filtering. Also available in Rails is the @attributes
instance variable, which is a Hash whose keys are the field names from the
database table and whose values are that column’s content for that particular
instance of the Model. The Photo instance representing the database record
with the ID 2 would have an @attributes['id'] equal to 2, for example.

At � and �, we also have two private predicates that inform us if our
Photo instance is the one with the last_id? and first_id?, respectively. We
accomplish this by performing some simple equality testing with the known
maximum and minimum id values. Note that the returned id values from
maximum and minimum are Integers, while the values stored in @attributes are
Strings. The photo.rb Model therefore makes liberal use of the to_i and to_s
methods as needed.

Dissecting the Controllers

Now that we understand our Photo Model, we need to interact with it in
some way. That’s the job of one or more Controllers. Our photo album app
has two Controllers, Album and Feed, each of which have their own Views.

Dissecting the Album Controller

Similar to what we did with the Photo Model, let’s add code to the Album
Controller and explore what it does. Edit app/controllers/album_controller.rb
to match the following:

class AlbumController < ApplicationController

=begin explain
This metaprogramming directive allows us to define a specific
helper called FooterHelper in app/helpers/footer_helper.rb
that can be shared among multiple Controllers.
=end

� helper :footer

=begin explain
As with HTML files, this is the default implicit behavior.
all_photos is found in app/controllers/application.rb
=end

� def index()
 @photos = all_photos()
 end

=begin explain
Set up any instance variables to be used in the View
or Helper, such as @photo here.
=end

A Simple Ra i ls P roject 243

� def show()
 @photo = Photo.find(params[:id])
 end

end

As is customary in an MVC application, album_controller.rb will be
responsible for manipulating and processing data in ways that pertain to our
photo album. In this particular case, album_controller.rb’s methods generally
redirect to something defined in another file or simply provide a useful
shortcut.

For this demonstration Rails app, I wanted to have an HTML footer that
would remain consistent across multiple pages within the Album Controller.
The question is then how to implement that feature and where to place its
code. One answer would be to duplicate the necessary code in every View
that has the footer, but that would be bad design. A better option would be
to place the footer creation code in the appropriate Controller and simply
call that code in every View where it’s needed.

However, there are situations in which you’d want the code outside of
the base Controller. What if you want to implement a common feature across
multiple Controllers? Each Controller in a Rails app is a child of the next file
we’ll look at (app/controllers/application.rb), so putting the code in that
file is an option. Another option is to use what Rails calls Helpers. Helpers are
add-ons to the MVC framework and are similar to the mixin concept we used
in to_lang.rb in Chapter 10. At � in album_controller.rb, we see from the
RDoc that our footer-related code is in a distinct file called app/helpers/
footer_helper.rb, and we can make use of that code within album_controller.rb by
simply including the line helper :footer. If we had a Helper at app/helpers/
credit_card_authorization_helper.rb, we could make use of its code in a Con-
troller with the line helper :credit_card_authorization, and so on. In true
object-oriented fashion, this allows us to organize code according to problem
domain or topic in separate files, make use of them where needed, and not
have to worry about the specific implementations. Of course, we’ll discuss the
implementation of the footer code when we get to app/helpers/footer_helper.rb,
but it’s very convenient that album_controller.rb needn’t concern itself with
that level of detail.

NOTE Helpers are even defined as Modules, just as traditional mixins are. This application has
a lot of code in Helper files, which I’ll describe shortly, after I talk about the Controllers.

Along with the Helper inclusion at �, we also have definitions of methods
corresponding to the index and show Views at � and �. The show method at �
is merely a shortcut for the built-in Rails method find. In this case, it takes an
argument of the id parameter passed into the web application, which is available
to us as params[:id]. This is how we show the specific requested photo. The
index method at � is (as we know from Chapter 12) the default method
called when none is explicitly provided. It merely establishes an instance
variable within the Controller called @photos. To do so, it calls a method named
all_photos, which is defined in our next file, app/controllers/application.rb.

244 Chap te r 13

NOTE The params Hash in a Rails app is equivalent to cgi.params, which we saw in the
simple_cgi.rb script in Chapter 11.

Dissecting the Application Controller

The application.rb file in any Rails application describes the superclass of all
Controllers. If there is any behavior or characteristic that you want to be truly
universal across all Controllers, this is the place to put it.

NOTE Note that you can modularize your code (i.e., break it down by topic into Helpers) and
still make it universal. Just organize your code into Helpers, and then include all of
those Helpers with helper lines in app/controllers/application.rb. Easy.

Edit app/controllers/application.rb to match the following:

Filters added to this Controller apply to all Controllers in the
application.
Likewise, all the methods added will be available for all Controllers.

class ApplicationController < ActionController::Base
 # Pick a unique cookie name to distinguish our session data from others'
 session :session_key => '_photo_album_session_id'

=begin explain
Now all_photos() can be used in any other Controller.
=end

� def all_photos()
 Photo.find(:all)
 end

end

All we’ve done in this file is define the all_photos method at �.
This is arguably silly, in that it only provides a slightly shorter way to call
Photo.find(:all). However, this is primarily a demonstration app, and it does
show that all_photos is now available to any Controller, anywhere in the
application.

NOTE The session information is automatic, and it helps Rails disambiguate among multiple
users that are using the app at the same time. For example, I can browse the entire list of
photos with the Album’s index View, while you simultaneously look in greater detail at
the second photo with Album’s show View.

Dissecting the Feed Controller

The Album Controller is not our only Controller. I also want to provide an RSS
feed of information about these images, and the Feed Controller is our way
of doing so. Just like album_controller.rb, it descends from app/controllers/
application.rb, so it has the all_photos method available to it.

A Simple Ra i ls P roject 245

Edit app/controllers/feed_controller.rb to match the following:

class FeedController < ApplicationController

� CONTENT_TYPE = 'application/rss+xml'

=begin explain
all_photos() found in app/controllers/application.rb
=end

� def images()
 @photos = all_photos()
 @headers['Content-Type'] = CONTENT_TYPE
 end

end

At �, we define a constant for the CONTENT_TYPE, declaring something
appropriate for an RSS feed. Then at �, we declare our only method, images.
It establishes the @photos instance variable just as album_controller.rb does,
and also sets @headers['Content-Type']. The @headers variable is, as you might
expect, the variable used to define the HTTP headers of the application’s
output. Before moving on to the Views, let’s see what’s going on in our
Helper files.

Dissecting the Helpers

Models, Controllers, and Views are not the only types of files in a Rails app.
I touched on the concept of Helpers in our discussion of the Photo Model,
but now we’ll explore them in depth.

Dissecting the Album Helper

Edit app/helpers/album_helper.rb to match the following:

module AlbumHelper

� CONFIRM_MESSAGE = %q[Are you sure you want to see the full list?]

 NUMBER_OF_ROW_TYPES_FOR_DISPLAY = 3

 LISTING_HEADER_COLUMNS =<<END_OF_HERE_DOC
 <tr>
 <th>Image</th>
 <th>Description</th>
 </tr>
END_OF_HERE_DOC

� IMAGE_STYLE = {
 :base => 'margin-bottom: 0.5em; padding: 0.5em;',
 :thumb => 'height:48px; width:64px;'
 }

246 Chap te r 13

=begin explain
Outputs a CSS classname used for prettification.
=end

� def row_class_from_index(i)
 'row' + ((i % NUMBER_OF_ROW_TYPES_FOR_DISPLAY) + 1).to_s
 end

� def show_listing_header_columns()
 LISTING_HEADER_COLUMNS
 end

� def show_photo(photo)
 image_tag(
 photo.image_path,
 :alt => "Photo of #{photo.title}"
)
 end

� def show_thumbnail_for_list(photo)
 image_tag(
 photo.image_path,
 :alt => "Photo of #{photo.title}",
 :style => IMAGE_STYLE[:thumb]
)
 end

� def page_title()
 @photo ? @photo.title : controller.action_name
 end

� def title_with_thumbnail(photo)
 [h(photo.title), show_thumbnail_for_list(photo)].join(

 ApplicationHelper::HTML_BREAK
)

 end

end

At �, we start defining some useful Constants, including one of our
old friends, a Hash with Symbol keys, at �. At �, we define a method called
row_class_from_index, whose RDoc explains that it merely outputs text
representing the appropriate CSS class. This allows us to change the CSS
style of a row easily, and the modulus makes it repeat. At �, we have a method
called show_listing_header_columns that simply returns the corresponding
Constant. The show_photo method at � uses the built-in Rails method image_tag,
which takes the location of the image (the src attribute of the img tag, in other
words) as the first argument. The second argument is a Hash whose keys will
be any additional img attributes and whose values will be used as the values
for the corresponding img attributes. The location (i.e., img src) is the photo’s
image_path, and since all img tags should have an alt attribute, we provide that,
with an appropriate identifying String based on the photo’s title. At �, we

A Simple Ra i ls P roject 247

define show_thumbnail_for_list, which is a Helper method for presentation
that is very similar to show_photo. It only differs by including a style attribute
for the resulting img tag, whose value is IMAGE_STYLE[:thumb].

NOTE One easy way to refactor this code (meaning to change its internal structure without chang-
ing its overall behavior) would be to combine show_photo and show_thumbnail_for_list
into a single show_photo method that takes an optional third argument, which declares
whether or not the photo is a thumbnail. You can read more about the process of refactoring
in Martin Fowler’s book Refactoring (Addison-Wesley Professional, 1999).

Next, at �, we define page_title. If there is a @photo present, page_title
will return that @photo’s title. If there is no @photo, it will fall back to the
action_name of the controller. What does that mean? The @photo.title should
be straightforward. The action_name is essentially the name of the View. This
means that when we browse using the index View (or action_name) and have
not yet selected a specific photo to view in greater detail with the show View,
the page_title will simply be index.

Finally, at �, we define title_with_thumbnail. It uses several other methods
and Constants. Rails has a built-in method called h, which formats its input for
HTML presentation. For example, h(&) returns &. This is useful in our app
because we have a photo whose title is Liam & Ducks, but we don’t want that
ampersand to break the HTML validity of the output. The title_with_thumbnail
method uses our home-brewed show_thumbnail_for_list and joins it with
page_title, using whatever we’ve defined HTML_BREAK to be within the
ApplicationHelper.

W H E R E T O P U T C O DE :
CO N T R O L L E R O R H E LP E R (O R E L S E WH E R E) ?

As you can see, the Album Helper is noticeably bigger than the Controller it aids.
When should you put code in the Controller, and when should you put it in a Helper?
That’s a good question. When there isn’t a clear division by topic, such as for the
footer_helper.rb below, it becomes more difficult to answer. When something is
truly fundamental to the data, such as the Photo methods that directly pertain to ids,
it probably belongs in the Model. When something is completely presentation-
specific, it can probably go in the appropriate View. However, it’s considered bad
style to have too much dynamic content in a View file. Anything more complicated than
looping over a set of items should probably be abstracted into a method, rather
than being in the View itself.

That leaves either the Controller or a Helper. As you can see, I like to have a fairly
sparse, minimalist Controller—critics might say that makes my Helpers too busy.
Other coders might put many methods directly in the Controller, making little use of
Helpers at all. Still others might have broken anything related to thumbnail images
into yet another Helper called thumbnail_helper.rb.

There are many options. As long as you don’t put presentation-related methods
in your Model, and you keep your Views relatively free of code that actually does
stuff (instead including mostly code that presents stuff), you’re probably doing fine.

248 Chap te r 13

Dissecting the ApplicationHelper

We’ve already seen that album_helper.rb expects a definition for HTML_BREAK
within ApplicationHelper. Let’s see how it does it.

Edit app/helpers/application.rb to match the following:

Methods added to this helper will be available to all templates in the
application.
module ApplicationHelper

 HTML_BREAK = '
'

end

There isn’t much there—it’s basically just the Constant definition we
expected. Why is it defined here, and not in AlbumHelper? Because we’ll also
need it in FooterHelper. Note that while Controllers automatically descend
from ApplicationController, Helpers don’t automatically descend from
ApplicationHelper.

Dissecting the FeedHelper

Edit app/helpers/feed_helper.rb to match the following:

module FeedHelper

� AUTHOR = 'Kevin C. Baird'

 DESCRIPTION = %q{Photos from Jenn and Kevin's Wedding}

 ICON = {
 :url => 'rails.png',
 :width => 77,
 :height => 69,
 }

 LANGUAGE = 'en-us'

� LINK_OPTIONS_DEFAULTS = {
 :only_path => false,
 :controller => 'album',
 }

� LINK_OPTIONS = {
 :index => LINK_OPTIONS_DEFAULTS.merge({ :action => 'index' }),
 :show => LINK_OPTIONS_DEFAULTS.merge({ :action => 'show' }),
 }

 RSS_OPTIONS = {
 'version' => '2.0',
 'xmlns:dc' => 'http://purl.org/dc/elements/1.1/'
 }

A Simple Ra i ls P roject 249

 TITLE = 'Baird/Cornish Wedding Photos'

� def feed_description()
 h(DESCRIPTION)
 end

� def rss_url_for_image(image)
 return url_for(FeedHelper::LINK_OPTIONS[:index]) unless image
 url_for(FeedHelper::LINK_OPTIONS[:show].merge({ :id => image }))
 end

end

At �, we start with our usual Constant declarations. These include a
declaration at � for LINK_OPTIONS_DEFAULTS, which stores information common
across multiple types of links, and one for LINK_OPTIONS at �, which uses these
defaults and also adds a pair whose key is :action and whose value is either
:index or :show, depending on how it’s called. These :index and :show values
represent Views within the Album Controller, of course, as the value for
:controller in LINK_OPTIONS_DEFAULTS indicates. FeedHelper also defines
several other Constants with values useful for an RSS feed.

At � we have a method called feed_description, which simply passes
the value of the DESCRIPTION Constant through the Rails built-in method h,
which we’ve already seen and which formats for HTML presentation. Finally,
rss_url_for_image at � is a wrapper we’ve built around the Rails method url_for,
which behaves as its name suggests. (It is described in greater detail at http://
api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html#M000484.)
If an image is not passed in, rss_url_for_image returns the url_for the LINK_OPTIONS
appropriate for an :index View. If there is an image, rss_url_for_image returns
the url_for the LINK_OPTIONS appropriate for a :show View and includes the :id
of the image to be shown.

NOTE The behavior of rss_url_for_image, which differs depending on whether or not there
is an image, is similar to the potential melding of AlbumHelper.show_photo and
AlbumHelper.show_thumbnail_for_list proposed earlier.

Dissecting the FooterHelper

Edit app/helpers/footer_helper.rb to match the following:

module FooterHelper
� BAR_SEPARATOR = %q[|]

 RSS = {

 :icons => %w[feed-icon16x16.png xmlicon.png],

 :link_options => {
 :action => %q[images],

250 Chap te r 13

 :controller => %q[feed],
 }

}

� def show_footer()
 '<p id="rails_img_wrapper">' +
 [rails_link_to_top, rss_icon_links].join(
 ApplicationHelper::HTML_BREAK
) + '</p>'
 end

 private

� def rails_link_to_top()
The link_to link_to(
and image_tag
Methods

 image_tag(
 'rails.png',
 :alt => 'Home',
 :border => 0,
 :id => 'rails_img',
 :style => AlbumHelper::IMAGE_STYLE[:base]
), :controller => 'album'
)
 end

� def rss_icon_links()
 RSS[:icons].map do |icon|
 link_to(

image_tag(
 icon,
 :alt => 'RSS Feed',
 :class => 'xmlicon'
), RSS[:link_options]
)
 end.join(BAR_SEPARATOR)
 end

end

At �, we define two Constants, BAR_SEPARATOR and RSS. The BAR_SEPARATOR
Constant is a simple delimiter for presentation, while RSS is another Hash
with Symbol keys that details information pertinent to :icons and :link_options,
respectively. In these definitions, I’ve used %q[] instead of single quotes to
define BAR_SEPARATOR, just as a reminder that the option is available.1

At �, our main public method, show_footer, just returns the outputs of the
private methods rails_link_to_top and rss_icon_links, joined on the HTML_BREAK
Constant that we’ve already seen, and all wrapped in an HTML paragraph tag
with the id rails_img_wrapper. We create our paragraph tag the old-fashioned
way—by outputting plaintext. You can still do that in Rails, although the avail-
ability of methods like url_for and image_tag make the practice uncommon.

1 For example, you might want to use %q[] instead of quotation marks if the String to be defined
included quotation marks; some programmers might simply prefer using %q[].

A Simple Ra i ls P roject 251

So what do the private methods do? The rails_link_to_top method
at � just creates a link with the Rails built-in link_to, which takes the link
argument and a Hash describing the :controller to be used: 'album', in this
case. The Hash can also describe the :action, if needed. The rss_icon_links
method at � maps an operation onto each member of RSS[:icons]. That oper-
ation is also a call to link_to, where the linked image is the current element
within RSS[:icons] (called icon) and the Hash describing the :controller and
:action is always RSS[:link_options]. The Array resulting from the map is then
joined on the BAR_SEPARATOR.

Dissecting the Album Controller’s Views
Now, let’s move on to the Views. Since we’ve already defined so much of the
application in methods within either the Model, Controller, or various Helpers,
our Views should be fairly sparse. View files differ from the files we’ve seen so
far in that they are .rhtml files (similar to mod_ruby_demo.rhtml), not pure
Ruby .rb files. That’s one of the reasons (apart from good application design
principles) that having too much dynamic Ruby content in your View files is
discouraged. It’s relatively easy to debug Ruby within Ruby, but it isn’t so easy
when you have to keep shifting back and forth between Ruby and HTML.

Dissecting the index View

Edit app/views/album/index.rhtml to match the following:

� <!--
row_class_from_index()
show_listing_header_columns()
show_thumbnail_for_list()
all in app/helpers/album_helper.rb

@photos derived from AlbumController's index method

-->

<h1>Listing photos</h1>

<table>

� <%= show_listing_header_columns() %>

� <% @photos.each_with_index do |photo,i| -%>
 <tr>

� <td class="<%= row_class_from_index(i) %>">
� <%=

link_to(
title_with_thumbnail(photo),
:action => 'show',
:id => photo.id

)
 %>
 </td>

252 Chap te r 13

� <td class="<%= row_class_from_index(i) %>">
� <%= photo.description %>

 </td>

</tr>
� <% end %>

</table>

<hr />

� <%= show_footer %>

At �, we have HTML comments explaining where to find the methods
that we put to use within this file. The file then continues with ordinary,
unsurprising HTML. You may wonder why there are no <html>, <head>, or <body>
tags. For that answer, you’ll have to wait until we introduce the concept of lay-
outs and describe the file app/views/layouts/album.rhtml later in this chapter.

The first appearance of Ruby at � is a call to show_listing_header_columns,
which we know (and which our HTML comments remind us) was defined in
app/helpers/album_helper.rb. This allows the View to call a method whose
name says what it does, without worrying about the implementation. Next, at �,
we will loop through each photo within @photos, along with its index, which
we’ll call i. You’ll notice that the each_with_index line ends its Ruby escape
with -%>, not just %>. This tells Rails that there should not be an automatic
carriage return in the interpreted output. It’s not critical here, but you can
imagine this could be very useful within a <pre> tag, for example.

What do we do with each photo? We’ll present it within a table, applying
the CSS class of row_class_from_index(i) to each <td> element at �. The
content within that <td> element will be the result of a multi-line Ruby call that
begins at �. Its value is the result of a link_to call on the title_with_thumbnail
that points to the 'show' :action and displays the photo identified by photo.id.

In addition to the thumbnail <td> cell, we also want another <td> cell
that contains the photo’s description. That begins at �, with another call to
row_class_from_index. Its <td> cell contains simply photo.description at �. We
then close the each_with_index call from � with end at �. Finally, at � we call
show_footer, which we’ve already discussed in footer_helper.rb.

Dissecting the show View

Now let’s look at the show View, which displays a particular photo in greater
detail. Edit app/views/album/show.rhtml to match the following:

<!--
image_tag is built in to Rails
prev_id and next_id are in app/models/photo.rb
show_photo is in app/helpers/album_helper.rb
-->

A Simple Ra i ls P roject 253

<table id="dark_bg">
 <tr>
 <td>
 <div class="photo">

� <%= show_photo(@photo) %>
 </div>
 </td>

 <td class="desc_wrapper">
 <div class="description">

� <h1><%= h(@photo.title) %></h1>
� <p class="description"><%= @photo.description %></p>

 </div>
 </td>
 </tr>
</table>

<hr style="clear:both;" />

<ul class="navlinks">
� <%=

link_to 'First',
:action => 'show',
:id => Photo.minimum(:id)

%>

� <%=
link_to 'Previous',

:action => 'show',
:id => @photo.prev_id %>

� <%=
link_to 'Next',

:action => 'show',
:id => @photo.next_id %>

� <%=
link_to 'Last',

:action => 'show',
:id => Photo.maximum(:id) %>

<!-- You have the option of some GUI helpers in the optional parameters

hash -->

<!-- like :confirm for a JS confirm box -->
� <%= link_to(

'Full List',
{ :action => 'index' },
{ :confirm => AlbumHelper::CONFIRM_MESSAGE }

) %>

254 Chap te r 13

<!--
See RSS[:link_options] in app/helpers/footer_helper.rb
for how to link across multiple Controllers

-->

� <%= show_footer %>

We start off again with some HTML reminder comments. The first real
Ruby appears at �—it is a call to show_photo from AlbumHelper, passing in
@photo, which is the particular photo instance that matches the id parameter
used to call the show View. Then at �, we pass @photo’s title through the h
formatter method, and at �, we wrap the @photo’s description within an
appropriately classed paragraph tag.

Under a horizontal rule, we have an unordered list, each item of which is
a call to the link_to method. At �, we provide a link called 'First' that shows the
photo with the minimum :id. At �, the link destination shows the photo with the
previous id via the text 'Previous', and at �, the destination shows the Photo
with the next_id via the text 'Next'. At �, it shows the 'Last' photo, defined as
the one with the maximum :id.

The links so far have all been formatted in the simple <a href> style, but
there are other options available. For instance, Rails provides many built-in
methods to perform some common JavaScript operations. One of these is the
confirm box, which interrupts your browsing with a box asking you to confirm
some question. I’m sure you’ve seen them while browsing, but Figure 13-1
shows one in the Epiphany browser on Ubuntu.

Constant. Notice that this link provides the otherwise-optional curly brace
delimiters for the Hashes, to show which pairs go with which Hash. The text
for the confirm box link is 'Full List', since it brings us back to the index
View. After some more HTML comments, we see a call to show_footer at �.

Dissecting the Feed Controller’s images View

In general, everything I’ve said about the Album Controller’s Views will also
apply to the Feed Controller’s View. The same basic design principles apply.
However, there are a few slight differences. The Feed Controller is more
lightweight and has fewer responsibilities. It also only has one View, which
we’re about to explore.

The code at � creates this box
for us. Choosing Cancel makes it do
nothing, while choosing OK causes it
to proceed as if it were a standard
link, this time to the 'index' :action.
The code to describe this also adds a
second Hash to link_to, with the key
:confirm and with a value taken from
the AlbumHelper::CONFIRM_MESSAGE

Figure 13-1: A confirm box automatically
generated by Rails

A Simple Ra i ls P roject 255

As already noted, Album is not our only Controller. We also want to use
Feed to display our images within an RSS Feed. Let’s see how that’s done.
Edit app/views/feed/images.rxml to match the following. Note that the file
extension is .rxml instead of .rhtml, since we’re creating XML for an RSS Feed
instead of regular HTML.

=begin explain
The various FeedHelper:: Constants are in app/helpers/feed_helper.rb,
as are the feed_description() and rss_url_for_image() methods.
=end

Outputting XML � xml.instruct!

� xml.rss(FeedHelper::RSS_OPTIONS) do

� xml.channel do
 xml.title FeedHelper::TITLE
 xml.language FeedHelper::LANGUAGE
 xml.link rss_url_for_image(nil)
 xml.pubDate Time.now
 xml.description feed_description()

� xml.image do
 xml.title FeedHelper::TITLE
 xml.link rss_url_for_image(nil)
 xml.url FeedHelper::ICON[:url]
 xml.width FeedHelper::ICON[:width]
 xml.height FeedHelper::ICON[:height]
 xml.description feed_description()
 end

� @photos.each do |image|
 xml.item do
 xml.title image.title
 xml.link rss_url_for_image(image)
 xml.description h(image.description)
 xml.pubDate Time.now
 xml.guid rss_url_for_image(image)
 xml.author FeedHelper::AUTHOR
 # image.photographer could also be the author
 end
 end

 end

end

This file uses a project called XML::Builder (http://rubyforge.org/
projects/builder), an XML generation library that comes built in to Rails.
At �, we call xml.instruct!, which starts the XML document. (XML::Builder’s
relationship to Rails ensures that the xml variable is available, and we don’t
have to do anything ahead of time.) Then at �, we set up our RSS Feed by
calling xml.rss with FeedHelper::RSS_OPTIONS. Each RSS Feed has a channel,
which we establish at �, and an associated image, which we define at �.

256 Chap te r 13

The content (or articles) within our RSS Feed are each a single photo
with associated descriptive text. At �, we use @photos from the FeedController’s
images method, looping through each of them, calling them image in turn. Then
we create an xml.item, passing in a block defining each of the appropriate
characteristics. Notice how many of them are either expressible as a Con-
stant (such as FeedHelper::TITLE) or as the result of a method call (such as
rss_url_for_image, with or without an image argument).

Dissecting the Album Controller’s Layout

Remember when I first talked about app/views/album/index.rhtml and men-
tioned that that file lacked certain expected HTML content, such as the
<html> tag? Think about that for a minute. You might expect such content to
appear in every View’s .rhtml file, but that would produce a great deal of
duplicated content. Duplication is precisely what programmers try to avoid,
so we should find some other solution to that problem. One approach would
be to define methods in the Controller or a Helper like doctype_tag, html_tag,
head_tag, and so on, similar to the image_tag method that Rails already provides
for us.

That would be a reasonable approach, except that invariably what is
being created is content in a format that is tightly bound to a particular type
of View, most commonly HTML. We already have .rhtml files for that express
purpose. Shouldn’t we find a way to have some sort of .rhtml template?

That’s exactly what layouts are. They wrap View output within a template.
Edit app/views/layouts/album.rhtml to match the following:

<!--
This (app/views/layouts/album.html)
is a "wrapper" that encloses all Views for the
Album Controller.
-->

<html lang="en-us">

<head>

<title>
� Album: <%= page_title %>

</title>

CSS Link Tag � <%= stylesheet_link_tag('master') %>
� <%= stylesheet_link_tag(controller.action_name) if controller %>

</head>

<body>

<!--
"yield :layout" outputs the View's results, whichever it is.
-->

A Simple Ra i ls P roject 257

� <%= yield :layout %>

</body>

</html>

At �, we use page_title from app/helpers/album_helper.rb for the <title>.
At � and �, we use Rails’ built-in stylesheet_link_tag method to include
stylesheets. We always want the master.css stylesheet, and if the Controller has
an action_name, we want that associated stylesheet as well. Finally, at �, we see
yield :layout. What does this do?

We already know that yield within a method that takes a block_argument
functions the same way as block_argument.call does. This is similar, except
that the output from the requested View takes the place of the block. It’s the
equivalent of saying Always wrap whatever is requested inside me, and place whatever
was requested at this point.

NOTE If you already know Rails, you know that there are other options for solving this problem,
such as using partials, which approach the problem from the bottom up, rather than
from the top down. Read more at http://wiki.rubyonrails.org/rails/pages/Partials
if you’re interested.

Using CSS

The master.css stylesheet is used throughout the application, and each action
automatically includes a stylesheet with the same name (see � and � in app/
views/layouts/album.rhtml in “Dissecting the Album Controller’s Layout” on
page 256). When we browse with the show View, we will make use of the
show.css stylesheet, for example. If you’re curious about CSS, you can learn
more at websites like http://csszengarden.com. The stylesheets master.css,
public.css, and index.css are available for download at this book’s website.

Using the Application

At this point, we have a photo album application, as well as a decent under-
standing of how its component parts are organized and how they work, both
individually and as part of the whole. Now let’s take a look at this app in
action, starting by opening it in a web browser.

Figure 13-2 shows how the default action of the Album Controller looks
when I view it with the Epiphany web browser. Its appearance should differ
only trivially in other graphical browsers, like Firefox or Internet Explorer.
Figure 13-3 shows the appearance of the first image, as displayed by the show
View of the Album Controller.

Figures 13-4 and 13-5 show the appearance of the images View of the
Feed Controller. Figure 13-4 shows it (again) in Epiphany, while Figure 13-5
shows it in Akregator, which is a program designed specifically for viewing
RSS feeds.

258 Chap te r 13

Figure 13-2: Browsing the Album Controller

Figure 13-3: Showing the first image in the Album Controller

A Simple Ra i ls P roject 259

Figure 13-4: Browsing the RSS images in the Feed Controller with Epiphany

Figure 13-5: Browsing with the Akregator RSS reader

260 Chap te r 13

Learning More About Rails

This chapter has only scratched the surface of Rails. I’ve barely described
some of the Helper methods (like image_tag and link_to), and I haven’t even
touched on topics like ActiveRecord’s ability to create relationships between
multiple Models, Unit Testing within Rails, forms within Rails, user creation
and authentication, session handling, and much more. Even so, this is already
the longest chapter in a Ruby book that tried very hard to be about Ruby, as
distinct from Rails—and I even had to describe the basic anatomy of a Rails
application in the chapter before this one. There’s a lot to learn in Rails, and
you can always read more at http://rubyonrails.org. Just don’t forget that
Ruby has a lot to offer apart from Rails, too, as I hope the other chapters in
this book have shown.

Chapter Recap

What was new in this chapter?

� Using Rails with MySQL

� Adding data with migration files

� Creating a Model

� Creating multi-View Controllers

� Adding methods to Models and Controllers

� The ApplicationController superclass

� Using Helpers

� The ApplicationHelper module

� MVC as it relates to Controllers and Helpers

� Creating Views as .rhtml files

� Doing common JavaScript with Rails’ built-in Helper methods

� Using layouts and incorporating the results of [view].rhtml within them

� Using stylesheets modularized by View type

I hope this book has given you some useful information about coding
in Ruby. I’ve tried to play to what I see as the language’s greatest strengths:
readability, a high level of abstraction (and great ease in extending that
abstraction even higher), internal consistency, and conceptual elegance.
All of these characteristics of Ruby remain, whether or not you’re working
within Rails. If you do find yourself using Rails, don’t forget that along with
each, you can still use map and inject.

Thanks for reading.

H O W D O E S R U B Y C O M P A R E T O
O T H E R L A N G U A G E S ?

One of the best ways to describe something is to talk
about what it isn’t. This appendix describes similarities
and differences between Ruby and some other popular
languages.

C
Even though it isn’t the oldest language around, C is the granddaddy of
languages in many programmers’ minds. For the purposes of this discussion,
we’ll be focusing more on the differences between Ruby and C than the sim-
ilarities. C is procedural, meaning that its programs are intended to be thought of
as sets of instructions that proceed stepwise through time: Do this, then do this, then
do that. C is neither object oriented nor functional, although the closely related
languages C++ and Objective C are object oriented. C undeniably has functions,
bits of reusable code that accept various inputs and return various outputs, but
they are generally not purely functional functions. C functions often depend on
information other than the strict inputs to the function, and they have side
effects that mean the second call to a given function will not necessarily produce
the same result as the first call. C functions often return values indicating
their success, relying on side effects to accomplish their main purpose.

262 Appendix

C’s advantages over Ruby include execution speed, greater familiarity
to more people, more widespread deployment, and the additional benefits
that come from its code being compiled, rather than interpreted. (Note that
compiled versus interpreted is its own holy war.) When a C program compiles,
you know it has passed at least one specific benchmark of reliability.

Ruby’s advantages over C include a faster development cycle, flexibility,
conceptual elegance, and configurability. If you are interested in combining
the strengths of both Ruby and C, you can start by exploring the RubyInline
project, available as the rubyinline gem or at http://www.zenspider.com/
ZSS/Products/RubyInline.1

C also has what is called strong, static typing. This means that variables in
C are defined to be a certain type of data (the integer 42, for example), and
they will always remain that type of data. That’s the static part. If you wanted
to express the integer 42 as a floating-point number, such as 42.0, you would
need to pass it through a casting conversion function. Ruby is also strongly
typed (requiring programmers to convert integers to floating-point numbers
before using them that way), although it is dynamic, meaning that variables can
change type. C also lacks anything similar to Ruby’s irb.

Haskell

The fact that Haskell is included in this listing of languages indicates how
important the functional paradigm is to this book. Haskell is a purely func-
tional language designed by committee and released in 1998. It has several
fascinating features, most notably lazy evaluation, whereby the value of a given
piece of data does not need to be known (or even meaningful) until it needs
to be used. This allows a programmer to define things in terms of infinite
series, such as the set of all integers.

Haskell is the language used for Pugs, an implementation of the new Perl 6
language, which some people think is drawing more attention to Haskell
than to Perl itself. Haskell has an interactive environment similar to Ruby’s
irb, but it doesn’t allow function definitions except in external files that are
imported, whereas irb allows full definitions for classes, methods, and func-
tions. Like C, Haskell has both strong and static typing. Haskell is an excellent
language that’s very suitable for teaching purely functional techniques,
as well as general-purpose programming. You can read more about it at
http://haskell.org.

Java

For the purposes of this discussion, Sun Microsystems’ Java is a moderately
complex, object-oriented language similar to C. Java has both strong and
static typing. In one way, Java is more object oriented than Ruby is: A pro-
grammer coding in Java must use an object-oriented paradigm for his own

1 I was lucky enough to see a demonstration of RubyInline by its author, Ryan Davis, at the 2005
RubyConf. It’s a very impressive piece of code, and I highly recommend it to anyone interested
in combining Ruby and C.

How Does Ruby Compare to Other Languages? 263

programs. On the other hand, Java is less object oriented than Ruby is in the
way that it implements its own built-in features. For example, to get the
absolute value of the integer 100 in Java, you would do this:

Math.abs(100)

This means that the programmer wants to use a method called abs, which
is associated with Math, to perform that method’s action on the integer 100.
The equivalent operation in Ruby would be performed as follows:

100.abs

Using Ruby’s methodology, the programmer simply asks the number 100
to report its own absolute value. This approach is common in Ruby, and it
assumes that every piece of data knows the best way to deal with operations
on itself. An advantage of this is that the same symbol can be used for differ-
ent (but conceptually related) operations. The + sign signifies simple addition
for numbers, for example, while signifying concatenation for strings, as dis-
cussed in Chapter 1.

Java is also compiled, rather than interpreted, generally using a special
type of compilation called bytecode, which is the same method that projects
like Parrot, Python, and Ruby 2.0 use.2 There is also an interesting project
called JRuby (http://jruby.codehaus.org), which is an implementation of
Ruby written in Java. Java is described in greater detail at http://java.sun.com.
The Java specification was written by Guy Steele, although he didn’t create
the language itself (fellow Lisper James Gosling did). When he wrote the Java
specification, Steele already had the distinction of being the co-creator of
Scheme, arguably the most conceptually pure version of Lisp.

Lisp

As one of Ruby’s most prominent ancestors, Lisp deserves some space in this
section. Lisp has been called “the most intelligent way to misuse a computer.”3
It is properly understood as a family of languages or a language specification,
rather than a single language. It is also diverse enough to resist many clas-
sification attempts, but for our purposes, the Lisps can be thought of mainly
as functional languages with weak, dynamic typing. Renowned Lisper Paul
Graham describes “What Made Lisp Different” at http://paulgraham.com/
diff.html, and it’s interesting to note that Ruby shares all of these features
except for Lisp’s peculiar syntax.

Lisp’s syntax (or lack thereof) is probably its most noteworthy feature, at
first glance. Lisp code consists of bits of data bound by opening and closing
parentheses. These bits are called lists, and they give Lisp its name (which

2 You can read more about Parrot at http://www.parrotcode.org; I’ll cover Python later in this
appendix.
3 Dutch computer science Edsger Dijkstra said this; you can find this and other interesting
quotes compiled by Paul Graham at http://www.paulgraham.com/quo.html.

264 Appendix

comes from LISt Processing).4 Having a syntax that is representable as a data
structure within the language itself is Lisp’s most defining characteristic.
Arguably, another language that implemented this same feature would not
be a distinct language per se, but rather another dialect of Lisp.5 A good argu-
ment can be made that Ruby tries to take concepts from Lisp and present
them within a more user-friendly framework that also takes advantage of
good ideas from object orientation, as well as good text manipulation. Matz
has said, “Some may say Ruby is a bad rip-off of Lisp or Smalltalk, and I admit
that. But it is nicer to ordinary people.”6 Ruby owes much to Lisp, and along
with many other languages, it owes much of its powerful text manipulation to
this next language, Perl.

Perl

Perl is known by its mantra TMTOWTDI, and it is an extremely flexible and
utilitarian language—one that has certainly had an impact on both Ruby and
programming, in general. TMTOWTDI stands for There’s More Than One Way
To Do It, which is a design philosophy that Perl certainly exemplifies. Its role
in stressing the importance of regular expressions is enough to earn it a
place in history. Perl was invented in 1987 by Larry Wall, and it was primarily
intended to perform a role similar to that of Unix-centric languages like
shell, awk, and sed. Perl focuses on ease of use for tasks like Unix system
administration, and it is heavily used for web applications, as well. Perl’s
initial design was procedural, but in recent years it has moved in an increas-
ingly functional direction. It can also be used for object-oriented program-
ming, a task for which it was never intended and for which it is not ideally
suited—but the fact that this is even possible in Perl is a testament to its
flexibility.

A new version of Perl is in the works (see the discussion of Pugs under
Haskell), and it reminds me a great deal of Ruby. Coming from me, that is a
compliment. Perl has weak dynamic typing, and like Ruby, it is interpreted.
It has been called the swiss army chainsaw and the Jeep of programming
languages, and it can be found at http://perl.com.

PHP

PHP is another interpreted language using weak dynamic typing that is very
popular for web applications. In fact, some people erroneously believe that
PHP is only usable for web applications. It is technically a complete, general-
purpose programming language, although it has several features that make it

4 Critics contend that this feature makes Lisp a more appropriate acronym for Lots of Irritating
Superfluous Parentheses. Larry Wall, the creator of Perl, suggested that Lisp code has all the
aesthetic appeal of “oatmeal with toenail clippings.” Clearly, Lisp has some public relations
problems.
5 Relatedly, Philip Greenspun’s tenth Rule of Programming at http://philip.greenspun.com/
research is “Any sufficiently complicated C or Fortran program contains an ad-hoc, informally-
specified bug-ridden slow implementation of half of Common Lisp.”
6 This quote also comes from Paul Graham’s website, http://www.paulgraham.com/quotes.html.

How Does Ruby Compare to Other Languages? 265

more popular for web work. Many of the languages discussed here can be used
in embedded code within web pages, provided that the code is marked off
from the rest of the page with the appropriate tags. PHP is unusual in
that it must always be demarcated with such tags, even when it is used for
command-line tasks that will never come near a webserver. It has weak,
dynamic typing and is interpreted.

PHP and Ruby share the characteristic of having a relatively large num-
ber of built-in functions. Despite PHP’s general applicability, its primary focus is
undoubtedly on making it easy for relatively inexperienced programmers to
generate dynamic web content quickly. PHP’s web integration is such an
important part of its most frequent use (if not its design) that it is often best
compared to other programming languages when combined with their own
web integration systems, such Perl and Mason, or Ruby and eRuby or Rails.
PHP’s creator Rasmus Lerdorf began work on the project that would eventually
become PHP in 1995. You can find out more about it at http://php.net.

Python

Python is a language very similar to Ruby. Its creator, the “Benevolent
Dictator For Life” Guido van Rossum, named it after the British comedy
troupe Monty Python when he invented it in the early 1990s. It has strong,
dynamic typing very similar to Ruby’s and a similarly clean syntax, which is
aided by its use of semantically significant whitespace. In Python, neither
functions, blocks of code, nor statements need to have an explicit end-of-line
mark (often a semicolon). Ruby’s use of ending markers is also quite minimal,
although not to the same degree as Python’s is.

One area where Python and Ruby differ significantly is in flexibility.
Python explicitly embraces the idea of There should be one—and preferably only
one—obvious way to do it, reporting this along with other ideas at Python’s
interactive prompt when given the command import this.

Python and Ruby have an interesting relationship. Python has added
several new features recently that borrow heavily from Ruby and Lisp, and at
the time of this writing book sales for Ruby-related books also generally surpass
those of Python-related books. Obviously, I hope those trends continue in
relation to this book. Python and Ruby seem like contentious siblings who
will hopefully continue to challenge and inspire each other to excel. The
Pythonistas live at http://python.org.

Smalltalk

Smalltalk is a fully object-oriented programming language invented at Xerox
PARC by a team led by Alan Kay. While Simula is generally recognized as the
first object-oriented language, Smalltalk was instrumental in popularizing
object orientation. Ruby borrows very extensively from Smalltalk in two major
areas: the notion that everything is an object, and the concept of methods as
messages that are passed to objects.

266 Appendix

What does it mean to say that everything is an object? We’ve touched on
this briefly in the Java discussion. In many languages, real “object” status
is reserved for larger or more complicated things, while basic parts of the
language are not considered objects. That’s why coders must invoke the abs
method from within the Math namespace to get the absolute value of the
integer 100 in Java. The Everything is an object idea that Ruby inherited from
Smalltalk is what allows the more consistent approach of asking the integer
100 to report its own absolute value. We explored the benefits of methods
being implemented as messages also in the to_lang.rb script in Chapter 10.

Check out Smalltalk at http://smalltalk.org and http://squeak.org.

Summary of Ruby vs. Other Languages

To sum up, Ruby is interpreted, not compiled, making it fast to develop in
and slow to run. It is object oriented and functional, not procedural. It has
strong, dynamic typing, instead of either weak or static typing, and it only
automatically casts type for Boolean tests. It has built-in regular expression
support and a clean, readable syntax. It is a general-purpose programming
language both in theory and in practice. It has a very large collection of built-
in methods, and it allows you to add to, alter, and extend those methods easily.
Like its ancestor Lisp, Ruby has a real, usable nil value, and it treats all values
except for nil and false as true. Ruby is also very fun to program in, and it
stays out of your way.

I N D E X

Symbols & Numbers
%Q for instantiating Strings, 23,

108–109, 215–216, 219, 239,
245, 248–250

%w for instantiating Arrays, 47,
113, 115

& (ampersand), for expressing blocks
and Procs, 105–106

! (exclamation point), for destructive
methods, 20, 22–23

|| (or) operator, 17
character

for comments, 14
for instance method, 234

#{} for wrapping expression to be
interpolated, 23

#! (shebang), 47
$ (dollar sign), for bash prompt, 19
* (asterisk), in irb prompt, 8
** (asterisk doubled), for “to the

power of,” 72
/\d+/ in regular expression, for digits

only, 79
:needs_data Symbol key, 116
:nitems Symbol key, 116
:unless0th Symbol key, 116
? (question mark)

in predicate method names, 22
in regular expression, for optional

expressions, 144
@ sign, for instance variable, 21–22
@@ sign, for class variable, 82–84
[] (square brackets), for Array

instantiation, 5–6
[] method (Array), 68

\ (backslash), in regular expression,
for literal characters, 144

\W, in regular expression, for
whitespace, 66

{ } (braces)
for blocks, 28
for declaring Hash, 42

{x}, in regular expression, 79
- method (Hash), 93
||= operator, 77–78, 127
| (pipe) character, in regular

expression, 56
+ method of Integers and Strings, 3–4
+ (plus sign), in regular

expression, 62
= (equal sign), for assigning value to

variable, 9
== operator, for equality testing, 14
=begin rdoc, 22
=end, 22
<=> method (Comparable), 145,

150–151
<% and %> tags, 211
<%= tag, for printing expression, 214
99bottles.rb script, 20–25

A
actionpack, warnings related to, 226
Active Record, Rails dependence

on, 227
Agile Web Development with Rails

(Thomas and Hansson), 227
Akregator, 257, 259
alias method, 34–35, 199
all_photos method

(ApplicationController), 243

268 INDEX

alpha_width method, 217
ampersand (&), for transforming

blocks and Procs, 105–106
ancestors method (Module), 75
any? method (Enumerable), 44, 45
Apache webserver

CGI for, 206
set up to handle mod_ruby, 211–212
web resources, 213

app directory for Rails, 230
Apple operating systems, end-of-line

marker, 51
ARABIC_TO_ROMAN Hash, 84
ArgumentError exception, 106
arguments, 8
ARGV environment variable, 11, 16
arity, 106

flexible with Proc.new, 116–117
Array class, 27. See also Enumerable

module
Children class inheritance

from, 171
count_of method, 65
detect method, 85–86
each_with_index method, 58
join method, 37
matches_block method, 105
matching_compound_members method, 106
matching_members method, 105
nitems method, 116
rand method, 18, 27
shuffle method, 27–28
shuffle! method, 27–28
for shuffled file playback, 26
sort_by method, 27, 145, 175
as Strings, 36

array_join.rb script, 36–39
Arrays, 5–6

of Arrays, converting Hash into, 150
converting item into, 6
creating single-word, 116
filtering, 103–108
for return values, for factorial or

Fibonacci test, 125
instantiating with %w, 47, 113, 115

ASCII values for characters, 171–172
assert_instance_of method

(Test::Unit::Assertions), 140

assert_nil method
(Test::Unit::Assertions), 140

assert_raise method
(Test::Unit::Assertions), 140

assert_respond_to method
(Test::Unit::Assertions), 140

asterisk (*)
doubled, for “to the power of,” 72
in irb prompt, 8

Australian National University, 162

B
backslash (\), for literal characters

within regular expression, 144
bang (!), for destructive methods,

22–23
base, for exponentiation, 72
bash prompt, $ (dollar sign) for, 19
begin keyword, 157
=begin rdoc, 22
Benchmark module and bm

method, 129
benchmarking, 128–131
Berners-Lee, Tim, 141
best_num method (Meta_Mutator), 180
The Bible Code (Drosnin), 161
Bignum, 3
Black, David Alan, Ruby for Rails, 227
The Blind Watchmaker (Dawkins), 168
blocks, 27

ampersand (&) and, 105
do and end for, 28
Procs and, 102
using Procs as, 110

bm (Benchmark) method, 129
Boole, George, 6
Boolean type, 6

items evaluating to true, 7
Boolean values, methods returning, 22
boolean_golf.rb script, 33–36
bound variable, of inner lambda, 111
braces ({ })

for blocks, 28
for declaring Hash, 42

browsers, dynamic stylesheet for,
215–218

Buffalo, NY, clement weather in
November, 136

bytecode, 263

INDEX 269

C
C (programming language), 261–262
call method (Proc), 100
callback, 185
CamelCase capitalization, 3
capital letters, for constants, 10
carriage return, 15, 52
Cascading Style Sheets (CSS),

215–221, 246, 257
case, of names, 3
casting, 4–5, 33

Boolean, 7
CD-ROM drive, Windows filesystem

access to, 20
Celsius, vs. kelvins, 134
CGI (Common Gateway

Interface), 206
scripts, 207–210

cgi library, 207
cgi.out method, 209
cgi.params Hash, 209
chaining methods, 5n, 80
characters

ASCII values for, 171–172
rotating in String, 68–70

check_payday.rb script, 14–16
Cheese Shop (Python), 224
Children class, 171

select_fittest method, 171, 174, 175
class

keyword, 21
method (Object), 3

class variables, 83–84
classes

adding “helper” method to, 65
defining, 20–21
instances of, 2–3

CLI parsers in Ruby, 39
closing files, 17
code

placement in controller vs.
helper, 247

reusable, 40
testing execution speed of,

128–132
code coverage by testing, 139
command-line interface, 39–45

Ruby options, 10

comma (,), adding to numbers,
75–81

comments, # character for, 14
commify.rb script, 75–81
Common Gateway Interface

(CGI), 206
scripts, 207–210

Comparable module, 145n
comparing Strings, 145
compiled language, 262
compose method

(Temperature_Converter),
137

composition of functions, 134
implicit, 137

compounded filtering, Proc class for,
103–108

Comprehensive Perl Archive
Network, 224

concatenation, 4, 80
Concurrent Versions System

(CVS), 188
constants, 10, 125

declaring inside class, 42
defining, 14–15

construct_candidate method
(ELS_Parser), 166

CONVERSIONS Hash, 135
convert method

(Temperature_Converter),
135

converting
item into Array, 6
temperatures, 132–137

counting
tags, 148–154
words in file, 62–64

count_of method (Array), 65
create_english method

(Representable_In_English),
198

create_spanish method
(Representable_In_Spanish),
198

create_table method
(CreatePhotos), 239

crontab, 19

270 INDEX

CSS (Cascading Style Sheets),
215–221, 246, 257

currency conversion
advanced, 90–98
basic, 87–90

CurrencyConverter class
download_new_rates method, 94, 95
get_rates method, 94
get_value method, 89
get_xml_lines method, 94
initialize method, 89
output_rates method, 94
pluralize method, 89
save_rates_in_local_file! method,

95–96
currency_converter1.rb script, 87–90
currency_converter2.rb script, 90–98
cv method (String), 84

D
Darwinian selection model, 168, 176
data-driven programming, 44
databases for Rails application, 229

preparing, 238
Dawkins, Richard, The Blind

Watchmaker, 168
declare_regexes_and_replacements

method, 144
with inject, 148

def keyword, 8, 21
definition list, output in HTML, 209
demo_els_parser.rb script, 167
describe method (Him), 119
describe2 method (Him), 119
destructive methods, 23
detect method (Array), 85–86
Dijkstra, Edsger, 263n
display method (Simple_CGI), 209
do keyword, for block, 28, 105
doc directory, for Rails, 230
DocBook, 62, 141

and spell checker, 154
dollar sign ($), for bash prompt, 19
DOM (Document Object Model), 157
dont_play_file_proc Proc, 191
DOS-to-Unix EOL conversion, 56
dos2unix.rb script, 51–56

double quotation marks in String,
%Q for, 23

downcase method (String), 47
download_new_rates method

(CurrencyConverter), 94, 95
Drosnin, Michael, The Bible Code, 161
dup method (Array), 37

E
-e flag, for Ruby, 56
each method vs. map method, 66
each_with_index method (Array), 58
eager evaluation, 127
ELSes (equidistant letter

sequences), 161
ELS_Parser class, 164

initialize method, 165
prepare method, 165
reset_params method, 165
search method, 165

els_parser.rb script, 161–168
email signatures, dynamic content

for, 16–20
empty? method (Wall), 22
=end, 22
end keyword

for block, 28, 105
for if expression, 7
and method call, 61
for method definitions, 24

end-of-line marker, converting, 51–56
END_OF_USAGE marker, 43
English units, converting, 132–137
Enumerable module

any? method, 44, 45
grep method, 65, 79
inject method, 60–61, 65, 107

declare_regexes_and_replacements
method with, 148

ENV environment variable, 17
environment variables

ARGV, 16
ENV, 17
for Ruby, 10

Epiphany web browser, 257
equidistant letter sequences

(ELSes), 161

INDEX 271

eRuby, 211
exceptions

ArgumentError, 106
NoMethodError, 24, 39, 152
TypeError, 4
XMLParserError, 158

exchange rates, XML file for, 94–95
exclamation point (!), for destructive

methods, 22–23
execution speed of code, testing,

128–132
exit conditions, 74
exponentiation, 72
expressions, 2, 4

value appearing inside String, 23
eXtensible HyperText Markup

Language (XHTML), 142
eXtensible Markup Language (XML),

87, 141
file for exchange rates, 94–95
online tutorial, 90
validating, 156–158

external content, -r command-line
flag for, 22

F
factorial1.rb script, 122–124
factorial2.rb script, 124
factorial3.rb script, 125
factorial4.rb script, 125–126
factorial5.rb script, 126–127
factorials, recursion for, 121–128
fail method (Kernel), 94
false, 6

non-nil value for expressions
evaluated as, 7

false? method (Object), 35
feedback, in irb, 2
feed_description method

(FeedHelper), 249
Fibonacci series, recursion for,

121–128
fibonacci1.rb script, 122–124
fibonacci2.rb script, 124
fibonacci3.rb script, 125
fibonacci4.rb script, 125–126
fibonacci5.rb script, 126–128

File class
new method, 17
well_formed_xml? method, 156–158

File objects, creating, 17
filename extensions, 213
files

counting words in, 62–64
name for class definition, 21

filtering
Proc class for, 102–103
Proc class for compounded,

103–108
find method (Rails Models), 242
find_all method, 185
first-class functions, 111
first_if_true method, 8
fitness, measuring for survival of

fittest, 173
Fixnum module, 3
flow control, 6–8
format_float method (Precision), 80
format_int method (Precision), 79–80
Fowler, Martin, Refactoring: Improving

the Design of Existing Code,
124, 247

free variables, 111
Friedl, Jeffrey, Mastering Regular

Expressions, 55, 64
functional programming, 60–61, 99
functions

external libraries of, 40
first-class, 111
vs. methods, 8n
treating as objects, 100

function_within_mod_ruby method, 214

G
gem command, 224–225

gem install --remote, 225
gem list --local, 225
gem outdated, 226
gem query --remote, 225
gem update rails, 226–227
help, 227

gems, 224
installing, 225–226
listing installed and installable, 225
updating, 226–227

272 INDEX

general_tester method (Tester), 139
get_base method (Integer), 200
get_child method (Hash), 179
get_children method (Meta_Mutator), 180
get_elements_from_filename method, 152
get_format method, 57
get_items_hash method

(Simple_CGI), 209
get_lines method, 57
get_no_better_count method

(Meta_Mutator), 180
GetOptLong, 39
get_output method, 58
get_proc_via_base_unit method

(Temperature_Converter),
136

get_rate_for_abbr_from_raw_rate_lines
method
(CurrencyConverter), 95

get_rates method
(CurrencyConverter), 94

get_value method
(CurrencyConverter), 89

get_xml_lines method
(CurrencyConverter), 94

global substitution, 53
Graham, Paul, 206, 263
Greenspun, Philip, 264n
grep method (Enumerable), 65, 79
gsub method (String), 54–55
gsub! method (String), 53

H
h method (Rails), 247
Hansson, David Heinemeier, Agile Web

Development with Rails, 227
hard drives, Windows filesystem

access to, 20
Hash class, 150

get_child method, 179
keys method, 44
merge method, 151
pretty_report method, 152
subtraction method, 93

hash (#), for comments, 14
Hash keys, Symbols as, 78

Hashes, 42–43
ARABIC_TO_ROMAN, 84
default values, 152
for HTML tag replacement, 144
nesting, 135
Procs as values, 200
SUBTRACTIVE_TO_ROMAN, 84

Haskell, 262
have_to_base_proc method

(Temperature_Converter),
136

Helpers in Rails, 243, 245–251
and modularizing code, 244

here doc, 43
Him class, 113

creating Procs with lambda, 115
HOME directory, 11
HTML (HyperText Markup

Language), 141
cleaning up, 141–148
counting tags, 148–154
footer for page, 243
nesting tags, 209
non-compliant, 142
printing output within, 214

<html> tag, variable for, 208
HTML Tidy, 142
html_tidy.rb script, 141–148
HyperText Markup Language. See

HTML (HyperText Markup
Language)

I
-i flag, for Ruby, 56
if statement, 6–8, 200
images method (FeedController), 245
implicit composition of functions, 137
include? method (Enumerable),

44, 124
index method (AlbumController), 243
index of zero, 68
index View in Rails, 234, 251–252
inheritance, 26, 75–76, 171
initialize method

CurrencyConverter, 89
ELS_Parser, 165

INDEX 273

Meta_Mutator, 180
Wall, 21

inject method, 171, 203–204
Enumerable, 60–61, 65, 107

declare_regexes_and_replacements
method with, 148

input parameters, arbitrary set of, 177
inspect method, 110–111

overriding to display params keys in
alphabetical order, 182

installing, Rails, 228
instance method, # character for, 234
instance variables

@ sign for, 21–22
vs. methods, 96

instances of classes, 2–3
creating, 115–116

Instant Rails, 228
instruct! method

(Builder::XmlMarkup), 255
Integer class, 3–4

get_base method, 200
round_to_base method, 86
to_roman method, 81–87

Integers, multiplying Strings by, 86
Interactive Ruby (irb), 1–2

information in prompt, 8
starting, 2

Internet connection, for opening
URLs, 95

Internet protocols, end-of-line
marker, 52

interpolation, 23
irb. See Interactive Ruby (irb)

J
Java, 262–263
JavaScript, 157
join method (Array), 37, 47
JRuby, 263

K
Kasahara, Motoyuki, 39
Kay, Alan, 265
kelvins, vs. Celsius, 134
keys method (Hash), 44

keys of Hash, 42
King Crimson, 29–30, 192–193
Knuth, Donald, 122n

L
lambda command, 43, 100–102

creating Procs with, 105, 115, 116
nesting, 111–112

lazy evaluation, 127, 262
Lerdorf, Rasmus, 265
letters_only method (String), 47
lib directory for Rails, 230
library file, 155, 156
line break, 18

in HTML source, 209
line feed character (newline), 15, 52
line numbers, 2

displaying, 57–59
line_num.rb script, 57–59
lines, definition, 2
Linux, starting irb on, 2
Lisp, 22, 263–264

as Ruby ancestor, 99
lists, making, 36–39
load_old_rates method

(CurrencyConverter), 97
local method (Time), 15
Locomotive, 228
log directory for Rails, 230
logs

messages by radio_player2.rb, 191
radio station need for, 186

long options, 39
lookup tables, Hashes for, 42–43
ls command (Unix), 192

M
Mac OS X

and Apache, 206
starting irb on, 2

magic numbers, 15
make_exp example, 111
make_exp_proc Proc, 112
make_incrementer method, 101
make_incrementer.rb script, 100–102
map method, 66, 185, 203–204

filtering Proc via, 106

274 INDEX

Mastering Regular Expressions (Friedl),
55, 64

matches_block method (Array), 105
matching_compound_members method

(Array), 106
matching_compound_members.rb script,

103–108
matching_members method (Array), 105
matching_members.rb script, 102–103
McKay, Brendan, 162
memoization of results, 126–127, 131
merge method (Hash), 151
merge_totals method (Hash), 151
<meta> tag (HTML), 144
Meta_Mutator class

best_num method, 180
creating, 180
get_children method, 180
get_no_better_count method, 180
initialize method, 180
mutate_mutations! method, 180
report method, 181
update_params_by_number_of_mutations!

method, 180
metaprogramming, 35
methinks_meta.rb script, 176–182
methinks.rb script, 168–176
methods, 8–9

alias of, 35
chaining, 5n, 80
creating, 21
dynamically calling, 200
vs. instance variables, 96
listing for object, 5
for Object class, 34
of objects, 3
parentheses for, 22
production-ready version, 179
with side effects, 61

methods method (Object), 5
metric units, converting, 132–137
Microsoft operating systems, end-of-

line marker, 51
migrations in Rails, 238–239
minimum method (Rails Models), 242
mixins, 168, 198
Model-View-Controller (MVC) design

philosophy, 229

modified_join method (Array), 37
mod_ruby software, 211
mod_ruby_demo.conf, 211–214
mod_ruby_demo.rhtml, 211–214
Module class, ancestors method, 75
modules, 76
Mongrel webserver, 231
most_common_words.rb script, 65–67
multiplicative identity, 73
mult_prefix method (Integer), 201
multi-line Strings, 43
music files, playing in shuffled order,

25–31
mutate method (String), 173
mutate_char method (String), 173
mutate_mutations! method

(Meta_Mutator), 180
mutate_until_matches! method (String),

173, 175
mutating Strings, 168–182
MySQL database, for Rails

application, 229, 238

N
Nakada, Nobu, 39
names

of classes, 21
of constants, 10, 14
of instances, 3
of methods, 8, 43, 103

question mark (?) in, 22, 34
of predicates, 22, 34

natural selection, 168
need_ones? method (Integer), 199
need_ones_in_english method

(Representable_In_English),
199

need_ones_in_spanish method
(Representable_In_Spanish),
199

:needs_data Symbol key, 116
nesting

Hashes, 135
HTML tags, 209
lambdas, 111–112

INDEX 275

new method
Class, 21
File, 17
Object, vs. initialize method, 24–25
Proc, 203
Time, 15

newline, 15, 52
nil, 6–7

and or (||) operator, 17
from defining method, 9

nitems method (Array), 116
:nitems Symbol key, 116
NoMethodError exception, 24, 39, 152
non-compliant HTML, 142
not keyword, 9
numbers

adding commas, 75–81
calculating powers, 72–75
currency conversion

advanced, 90–98
basic, 87–90

in irb prompt, 8
by name, 193–202
roman numerals, 81–87
Ruby storage of, 3

num_matches method (String), 64

O
Object class, 34

methods method, 5
new method, vs. initialize method,

24–25
send method, 203

object orientation, 3
objects, 2–3

methods of, 3
listing, 5

treating functions as, 100
Ogg Vorbis files, 29
open classes, 26
open-uri library, 95
operating system package manager,

for installing Rails, 228
=~ operator, 53
optimizing code, 122, 131
OptionParser, 39
or (||) operator, 17

Orcish Maneuver, 127n
output_rates method

(CurrencyConverter), 94

P
-p flag, for Ruby, 56
package-management system. See

RubyGems
packaged versions of Rails, 228
palindrome.rb script, 45–48
palindrome2.rb script, 45–48
Palm devices, styles for, 220
parameters, 8
parentheses, for methods, 22
parse_opts method (SimpleCLI), 40, 43
partials, 257
perform_replacements_on_contents

method, 145
Perl, 99n, 127n, 144n, 211, 264

Comprehensive Perl Archive
Network, 224

permissions, for simple_cgi.rb
script, 207

photo album with Rails, 237–241
using, 257–259

PHP, 211, 264–265
pipe (|) character, in regular

expression, 56
play method (ShufflePlayer), 28
play_file_proc Proc, 190
pluralize method

(CurrencyConverter), 89
plus sign (+), within regular

expression, 62
pop method (Array), 38, 69
power_of.rb script, 72–75
powers, calculating, 72–75
Precision module, 75–76

format_float method, 80
format_int method, 79–80

predicates, 22, 34
prepare method (ELS_Parser), 165
pretty_report method (Hash), 152
print method, 15
printing

output in HTML, 214
with puts, 18

276 INDEX

private keyword, 24
vs. protected keyword, 38–39

private methods, changing to
public, 164

Proc class, 100
call method, 100
new method, 203

arity for, 116–117
procedural language, C as, 261
Procs, 43

ampersand (&) and, 105
for compounded filtering, 103–108
creating with lambda, 115, 116
for filtering, 102–103
filtering via map, 106
as Hash values, 200
returning as values, 108–111
square brackets ([]) for calling, 110
for text, 112–119
using as blocks, 110

production-ready version of
method, 179

profile library, 131
profiling, 131–132
Project Gutenberg, 162
prompt, information in, 8
propagate method (String), 173–174
protected, 37

vs. private, 38–39
pseudo-random numbers, 27, 177
public directory for Rails, 230
public methods, 24–25

changing private methods to, 164
Pugs, 262
Pull Up Method refactoring

operation, 156
puts method, 15, 18

for log, 192
Python, 211, 265

Cheese Shop, 224

Q
%Q for instantiating Strings, 23,

108–109, 215–216, 219, 239,
245, 248–250

question mark (?), in method
names, 22

quotations, reading from file, 17

R
-r command-line flag, for external

content, 22
RadioPlayer class, 187

walk method, 187–188
radio_player1.rb script, 186–190
radio_player2.rb script, 190–193
Raggett, Dave, 142
Rails, 227–235

application generation, 230, 232
application structure, 229
databases for, 229
defined, 228
development framework, 205
Helpers, 243
methods for JavaScript

operations, 254
migrations in, 238–239
options for installing, 228
viewing application, 230–231
web resources, 260

Rails projects
Album Controller, 258

creating, 241
dissecting, 242–243
layout, 256–257
views, 251–254

Application Controller, 244
creating application, 237–241
Feed Controller, 244–245

creating, 241
images View, 254–256

Helpers, 243, 245–251
Album Helper, 245–247
Application Helper, 248
Feed Helper, 248–249
Footer Helper, 249–251

Photo Model
creating, 240
dissecting, 241–242
using, 257–259

rails_link_to_top method
(FooterHelper), 250–251

rake db:migrate command, 240
rake rails: update, 227
rand method (Array), 18, 27
random character String, mutating

into target String, 168–182

INDEX 277

random number
for Array element, 18
generating, 177

random signature generator, 16–20
random variations, impact of, 176
random_element method (Array), 28
Range class, 66
.rcss file extension, 213
RDoc (Ruby Documentation), 13, 226

comments, 22
read-eval-print-loop (REPL)

environment, 2
readlines method (IO), 60
reciprocal power, 72
recursion, 68, 69, 74

for factorials and Fibonacci series,
121–128

for roman numeral conversion,
85–86

tracking depth, 202
Reenskaug, Trygve, 229
refactoring, 124, 139, 247

testing during, 140
Refactoring: Improving the Design of Exist-

ing Code (Fowler), 124, 247
regular expressions (regexes), 53

? (question mark) for optional
expressions, 144

| (pipe) in, 56
/\d+/ for digits only, 79
\W for whitespace, 66
{x} in, 79
+ (plus sign) within, 62
backslash (\) for literal

characters, 144
Perl and, 264
testing Strings against, 53–54

repeated spaces, converting to single
space, 59

REPL (read-eval-print-loop)
environment, 2

replace method (Array), 28
report method

Benchmark, 129
Meta_Mutator, 181

report_progress method (String), 173
report_success method (String), 173
representable_in_english.rb file, 194–195
representable_in_spanish.rb file, 195–196

require keyword, 40
rescue keyword, 158
reset_params method (ELS_Parser), 165
Respect Sextet, The, 30
return values, 8

Arrays for, for factorial or
Fibonacci test, 125

of puts method, 18
return_proc.rb script, 108–111
reusable code, 40
rexml/document library, 150
.rhtml file extension, 213
Roman numerals, 81–87
roman_numeral.rb script, 81–87
root element, 148
rotate method (String), 69
rotate! method (String), 69
rotate.rb script, 68–70
rotating characters in String, 68–70
round_to_base method (Integer), 86
row_class_from_index method

(AlbumHelper), 246
RSS feed, 238, 244–245

Feed Controller for, 255
viewing, 257, 259

rss_icon_links method (FooterHelper),
250–251

rss_url_for_image method
(FeedHelper), 249

Ruby
displaying version, 10
flags, 56
vs. other languages, 261–266

summary, 266
running interpreter in

webserver, 211
for web programming, 205
web resources, 13

ruby command, 13
Ruby Documentation (RDoc), 13, 226

comments, 22
Ruby Extensions Project, 203
Ruby for Rails (Black), 227
Ruby Standard Library

Documentation site, 140
RubyGems, 223–227

installing, 224
RubyInline project, 262
.rxml file extension, 255

278 INDEX

S
SameTimeSamePlace class, 113–115
save_rates_in_local_file! method

(CurrencyConverter), 95–96
Schwartzian Transform, 27
scramble method (String), 174
scramble! method (String), 174
script directory for Rails, 230
scripts

99bottles.rb, 20–25
array_join.rb, 36–39
boolean_golf.rb, 33–36
check_payday.rb, 14–16
commify.rb, 75–81
currency_converter1.rb, 87–90
currency_converter2.rb, 90–98
demo_els_parser.rb, 167
dos2unix.rb, 51–56
els_parser.rb, 161–168
factorial1.rb, 122–124
factorial2.rb, 124
factorial3.rb, 125
factorial4.rb, 125–126
factorial5.rb, 126–127
fibonacci1.rb, 122–124
fibonacci2.rb, 124
fibonacci3.rb, 125
fibonacci4.rb, 125–126
fibonacci5.rb, 126–128
html_tidy.rb, 141–148
line_num.rb, 57–59
make_incrementer.rb, 100–102
matching_compound_members.rb, 103–108
matching_members.rb, 102–103
most_common_words.rb, 65–67
palindrome.rb, 45–48
power_of.rb, 72–75
radio_player1.rb, 186–190
radio_player2.rb, 190–193
random_sig.rb, 16–20
random_sig-windows.rb, 16–20
return_proc.rb, 108–111
roman_numeral.rb, 81–87
rotate.rb, 68–70
shuffle_play.rb, 25–31
simple_cgi.rb, 207–210
softwrap.rb, 59–62

symbol.rb, 203–204
temperature_converter.rb, 132–137

testing, 137–140
test_lang.rb, 201
to_lang.rb, 193–202
word_count.rb, 62–64
xml_tag_counter.rb, 148–154
xml_text_extractor.rb, 154–156

search method (ELS_Parser), 165
select_fittest method (Children),

171, 174, 175
self, 68, 107
send method (Object), 129, 200, 203
ServerAccessController class, 233
setup.rb program, 224
shebang (#!), 47
short options, 39
show method (AlbumController), 243
show View in Rails project, 252
show_def_list method

(Simple_CGI), 209
show_footer method

(FooterHelper), 250
show_listing_header_columns method

(AlbumHelper), 246, 252
show_mems method (Integer), 128
show_photo method (AlbumHelper),

246, 254
show_thumbnail_for_list method

(AlbumHelper), 247
shuffle method (Array), 27–28
shuffle! method (Array), 27–28
ShufflePlayer class, 27, 28
shuffle_play.rb script, 25–31
sibling HTML tags, 209
side effects, methods with, 61
simple_cgi.rb script, 207–210
SimpleCLI class, 40

parse_opts method, 40, 43
simple_cli.rb script, 39–45
Simula, 265
sing method (Wall), 23
single-word Arrays, creating, 116
skip value, for equidistant letter

sequences (ELSes), 162
Smalltalk, 2–3, 265–266

as Ruby ancestor, 99

INDEX 279

softwrap method, 60
softwrap.rb script, 59–62
sort method (Array), 5n, 85, 103
sort method (Hash), 150
sort_by method (Array), 27, 145, 175
sort_by_tag_count method (Hash), 150
sorting, <=> method of Comparable

and, 145
sound file player, 25–31
source, installing Rails from, 228
spaces, converting repeated to

single, 59
spell checker, and DocBook, 154
split method (String), 17–18, 47
square brackets ([])

as alternative to Proc.call, 110
for Array, 5–6

standard error, special message
for, 165

static typing in C, 262
Steele, Guy, 263
String class

cv method, 84
downcase method, 47
gsub method, 54–55
gsub! method, 53
mutate method, 173
mutate_char method, 173
mutate_until_matches! method,

173, 175
num_matches method, 64
propagate method, 173–174
report_progress method, 173
report_success method, 173
scramble method, 174
scramble! method, 174
well_formed_xml? method, 156–158

Strings, 2
comparing, 145
expression value appearing

inside, 23
instantiating with %Q, 23, 108–109,

215–216, 219, 239, 245,
248–250

multiplying by Integers, 86
mutating, 168–182
rotating characters in, 68–70
testing regular expressions against,

53–54

strip_tags method, 155
strong typing in C, 262
stubs, 40
stylesheet2.rcss, 218–221
stylesheet_link_tag method (Rails), 257
stylesheet.rcss, 215–218
subexpressions, in regular

expression, 56
subtraction method (Hash), 93
subtractive approach for Roman

numerals, 82
SUBTRACTIVE_TO_ROMAN Hash, 84
superclasses, 34
Symbol class, 35
symbol.rb script, 203–204
Symbols, as Hash keys, 78
syntactic sugar, 199

T
tag_count method, 152
tags in HTML, counting, 148–154
tail recursion, 121n
temperature_converter.rb script, 132–137

testing, 137–140
ternary operator, 23–24
test directory for Rails, 230
Tester class, defining, 139–140
testing

code coverage, 139
code execution speed, 128–132
temperature_converter.rb script,

137–140
test_lang.rb script, 201
test_temps method (Tester), 139
Test::Unit library, 137
Test::Unit::Assertions

assert_instance_of method, 140
assert_nil method, 140
assert_raise method, 140
assert_respond_to method, 140

Test::Unit::TestCase, 139–140
text manipulation

counting words in file, 62–64
displaying line numbers, 57–59
end-of-line conversion, 51–56
extracting from XML, 154–156
rotating characters in String, 68–70
word histogram, 65–67
wrapping lines of text, 59–62

280 INDEX

text, Procs for, 112–119
Thomas, Dave, Agile Web Development

with Rails, 227
Time class

local method, 15
new method, 15

title_with_thumbnail method
(AlbumHelper), 247

to_b method (Object), 33, 35
to_i method (String), 5, 15
to_lang.rb script, 193–202

representable_in_english.rb file,
194–195

representable_in_spanish.rb file,
195–196

Torah Codes, 161
to_roman method (Integer), 81–87
to_s method (Integer), 5
true, 6

items evaluating to, 7
true? method (Object), 35
TypeError exception, 4

U
underscore (_), in names, 3
United States, notation for

numbers, 78
units_converter.rb script,

downloading, 132
Unix-like operating systems, end-of-

line marker, 51
Unix, starting irb on, 2
:unless0th Symbol key, 116
update_params_by_number_of_mutuations!

method (Meta_Mutator), 180
url_for method (Rails), 249
URLs, opening, 95
uses_cli.rb script, 39–45

V
validating XML, 156–158
values

absence of, 6
of Hash, 42
returning Procs as, 108–111

van Rossum, Guido, 265

variables, 9–10
defining, 15–16
free, 111

version of Ruby, displaying, 10
View file, content in, 247
-w option, for ruby command, 13

W
%w for instantiating Arrays, 47, 113, 115
W3C (World Wide Web

Consortium), 142
WAI (Web Accessibility Initiative), 144
walk method (RadioPlayer), 187–188
Wall, Larry, 264
warn method, 165
warnings, turning on, 13
wc command (Unix), 62
Web Accessibility Initiative (WAI), 144
web programming

CGI for, 206
preparation and installation,

206–207
Ruby for, 205

web resources, 13
for Apache webserver, 206, 213
Concurrent Versions System

(CVS), 188
on ELSes, 162
HTML, 142
on lazy evaluation, 127
libraries of software, 224
online XML tutorial, 90
Rails, 260

packaged versions, 228
on regular expressions, 55
Ruby Extensions Project, 203
Ruby Standard Library

Documentation site, 140
RubyGems, 224
XML (eXtensible Markup

Language), 87
XML::DOM::Builder library, 157
YAML (YAML Ain’t Markup

Language), 87
WEBrick, 231
webserver, 206

INDEX 281

websites, stylesheets for, 215–221
well_formed_xml? method (File; String),

156–158
whitespace, 9

\W in regular expression for, 66
willow_and_anya.rb script, 112–119
Winamp player, 25
Windows, starting irb on, 2
word histogram, 65–67
word_count method, 64
word_count_for_file method, 64
word_count.rb script, 62–64
words in file, counting, 62–64
World Wide Web Consortium

(W3C), 142
wrapping lines of text, 59–62

X
XHTML (eXtensible HyperText

Markup Language), 142
XML. See eXtensible Markup

Language (XML)

XML::Builder project, 255
XML::DOM::Builder library file, 157
xml.instruct! method, 255
XMLParserError exception, 158
xml_tag_counter.rb script, 148–154
xml_text_extractor.rb script, 154–156

Y
YAML (YAML Ain’t Markup

Language), 87, 90
getting rates from stored file, 96

YAML.dump, 96
YAML.load, 97
yield_block method, 117

Z
zero, index of, 68
zero? method (Numeric), 22

U P D A T E S

Visit http://www.nostarch.com/ruby.htm for updates, errata, and other
information.

There may be no better way to learn how to program
than by dissecting real, representative examples written
in your language of choice. Ruby by Example analyzes
a series of Ruby scripts, examining how the code works,
explaining the concepts it illustrates, and showing how
to modify it to suit your needs.

Baird’s examples demonstrate key features of the
language (such as inheritance, encapsulation, higher-
order functions, and recursion), while simultaneously
solving difficult problems (such as validating XML,
creating a bilingual program, and creating command-
line interfaces). Each chapter builds upon the previous,
and each key concept is highlighted in the margin to
make it easier for you to navigate the book.

You’ll learn how to:

• Use the interactive Ruby shell (irb) to learn key
features of the language

• Extend Ruby using RubyGems, the Ruby package
manager

• Create numerical utilities, as well as utilities that
process and analyze HTML/XML

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
PROGRAM

M
ING/RUBY

$34.95 ($43.95 CDN)

®

• Implement purely functional and metaprogramming
techniques to save time and effort

• Optimize, profile, and test your code to make sure
that it not only does its job, but does it well

• Create web applications using Rails

Ruby is the fastest growing programming language
today, and for good reason: Its elegant syntax
and readable code make for prolific and happy
programmers. But it can be difficult to understand
and implement without a little help. Ruby by Example
shows you how to take advantage of Ruby as you
explore Ruby’s fundamental concepts in action.

A B O U T T H E A U T H O R

Kevin C. Baird received his Ph.D. from the State
University of New York at Buffalo. He originally wrote
his dissertation in Python but rewrote the project after
discovering Ruby, and he hasn’t looked back since.
He has presented at RubyConf and written articles
for Linux Journal, Music & Computers magazine, and
the New Interfaces for Musical Expression conference
proceedings.

A H A N D S - O N
E X P L O R A T I O N O F

P R O G R A M M I N G
I N R U B Y

A H A N D S - O N
E X P L O R A T I O N O F

P R O G R A M M I N G
I N R U B Y

 “ I LAY F LAT .”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

 Printed on recycled paper

R U B Y
B Y E X A M P L E

R U B Y
B Y E X A M P L E

K E V I N C . B A I R D

®

C O N C E P T S A N D C O D E

R
U

B
Y

 B
Y

 E
X

A
M

P
L

E
R

U
B

Y
 B

Y
 E

X
A

M
P

L
E

B
A

IR
D

	RUBY BY EXAMPLE
	Contents in Detail
	Acknowledgments
	Introduction: What Is Ruby?
	Acquiring and Configuring Ruby
	On a Unix or Unix-like System
	On a Windows System

	Motivations for the Book
	Conventions
	Summary of Chapters

	1: Interactive Ruby and the Ruby Environment
	Starting irb
	Using irb
	Expressions
	Everything Is an Object
	Integers, Fixnums, and Bignums
	Addition, Concatenation, and Exceptions
	Casting
	Arrays
	Booleans
	Flow Control
	Methods
	Variables
	Constants

	Using the Ruby Interpreter and Environment

	2: Amusements and Simple Utilities
	#1 Is It Payday? (check_payday.rb)
	The Code
	How It Works
	The Results

	#2 Random Signature Generator (random_sig.rb and random_sig-windows.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#3 The 99 Bottles of Beer Song (99bottles.rb)
	The Code
	How It Works
	Running the Script
	The Results

	#4 Sound File Player (shuffle_play.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	Chapter Recap

	3:Programmer Utilities
	#5 What Is Truth? (boolean_golf.rb)
	The Code
	How It Works
	Hacking the Script
	Running the Script
	The Results

	#6 Making a List (array_join.rb)
	The Code
	How It Works
	Running the Script
	Hacking the Script

	#7 Command-Line Interface (uses_cli.rb and simple_cli.rb)
	The Code
	How It Works
	Running the Script
	Hacking the Script

	#8 Palindromes (palindrome.rb and palindrome2.rb)
	The Code
	How It Works
	Hacking the Script
	Running the Script
	The Results

	Chapter Recap

	4: Text Manipulation
	#9 End-of-Line Conversion (dos2unix.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#10 Showing Line Numbers (line_num.rb)
	The Code
	How It Works
	Running the Script
	The Results

	#11 Wrapping Lines of Text (softwrap.rb)
	The Code
	Running the Script
	The Results
	Hacking the Script

	#12 Counting Words in a File (word_count.rb)
	The Code
	How It Works
	Running the Script
	The Results

	#13 Word Histogram (most_common_words.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#14 Rotating Characters in a String (rotate.rb)
	The Code
	How It Works
	Running the Script
	The Results

	Chapter Recap

	5: Number Utilities
	#15 Computing Powers (power_of.rb)
	The Code
	How It Works
	Running the Script
	The Results

	#16 Adding Commas to Numbers (commify.rb)
	Inheritance
	Modules
	The Code
	How It Works
	Running the Script
	The Results

	#17 Roman Numerals (roman_numeral.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#18 Currency Conversion, Basic (currency_converter1.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#19 Currency Conversion, Advanced (currency_converter2.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	Chapter Recap

	6: Functionalism with Blocks and Procs
	#20 Our First lambda (make_incrementer.rb)
	The Code
	How It Works
	The Results

	#21 Using Procs for Filtering (matching_members.rb)
	The Code
	How It Works
	Running the Script
	The Results

	#22 Using Procs for Compounded Filtering (matching_compound_members.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	#23 Returning Procs as Values (return_proc.rb)
	The Code
	The Results
	How It Works

	#24 Nesting lambdas
	The Code
	How It Works

	#25 Procs for Text (willow_and_anya.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	Chapter Recap

	7: Using, Optimizing, and Testing Functional Techniques
	#26 Basic Factorials and Fibonaccis (factorial1.rb through fibonacci5.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	#27 Benchmarking and Profiling (tests/test_opts.rb)
	Benchmarking
	The Code
	How It Works
	Running the Script
	The Results
	Profiling
	Hacking the Script

	#28 Converting Temperatures (temperature_converter.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	#29 Testing temperature_converter.rb (tests/ test_temp_converter.rb)
	The Code
	The Results
	How It Works
	Hacking the Script

	Chapter Recap

	8: HTML and XML Tools
	#30 Cleaning Up HTML (html_tidy.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#31 Counting Tags (xml_tag_counter.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#32 Extracting Text from XML (xml_text_extractor.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#33 Validating XML (xml_well_formedness_checker.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	Chapter Recap

	9: More Complex Utilities and Tricks, Part I
	#34 Finding Codes in the Bible or Moby-Dick (els_parser.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#35 Mutating Strings into Weasels (methinks.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	#36 Mutating the Mutation of Strings into Weasels (methinks_meta.rb)
	The Code
	How It Works
	Running the Script
	The Results
	Hacking the Script

	Chapter Recap

	10: More Complex Utilities and Tricks, Part II
	#37 Overnight DJ (radio_player1.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	#38 Better Overnight DJ (radio_player2.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	#39 Numbers by Name (to_lang.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	#40 Elegant Maps and Injects (symbol.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	Chapter Recap

	11: CGI and the Web
	Common Gateway Interface
	Preparation and Installation
	#41 A Simple CGI Script (simple_cgi.rb)
	The Code
	How It Works
	The Results
	Hacking the Script

	#42 Mod Ruby (mod_ruby_demo.rhtml and mod_ruby_demo.conf)
	The Code
	How It Works
	The Results
	Hacking the Script

	#43 CSS Stylesheets, Part I (stylesheet.rcss)
	The Code
	How It Works
	The Results
	Hacking the Script

	#44 CSS Stylesheets, Part II (stylesheet2.rcss)
	The Code
	How It Works
	The Results
	Hacking the Script

	Chapter Recap

	12: RubyGems and Rails Preparation
	RubyGems
	Installing RubyGems
	Using RubyGems

	Rails Preparation
	What Is Rails?
	Other Options for Installing Rails
	Databases
	The Structure of a Rails Application

	Chapter Recap

	13: A Simple Rails Project
	Creating the Application
	Initial Creation
	Preparing the Database
	Adding Data
	Creating the Model and Controllers

	Dissecting the Application
	Dissecting the Photo Model
	Dissecting the Controllers
	Dissecting the Helpers
	Dissecting the Album Controller’s Views
	Dissecting the Feed Controller’s images View
	Dissecting the Album Controller’s Layout
	Using CSS

	Using the Application
	Learning More About Rails
	Chapter Recap

	How Does Ruby Compare to Other Languages?
	C
	Haskell
	Java
	Lisp
	Perl
	PHP
	Python
	Smalltalk
	Summary of Ruby vs. Other Languages

	Index

