

Best of Ruby Quiz
Volume One

James Edward Gray II

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-7-7

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, February 2006

Version: 2006-3-14

http://www.pragmaticprogrammer.com

Contents
1 Introduction 1

I The Quizzes 5

1. Mad Libs . 6

2. LCD Numbers . 8

3. GEDCOM Parser . 9

4. Animal Quiz . 11

5. Scrabble Stems . 13

6. Regexp.build() . 14

7. HighLine . 16

8. Roman Numerals . 18

9. Rock Paper Scissors . 20

10. Knight’s Travails . 25

11. Sokoban . 27

12. Crosswords . 29

13. 1-800-THE-QUIZ . 31

14. Texas Hold’em . 33

15. Solitaire Cipher . 36

16. English Numerals . 41

17. Code Cleaning . 42

18. Banned Words . 44

19. Secret Santas . 46

20. Barrel of Monkeys . 48

21. Amazing Mazes . 50

22. Learning Tic-Tac-Toe . 52

23. Countdown . 53

24. Solving Tactics . 55

25. Cryptograms . 57

CONTENTS v

II Answers and Discussion 60

1. Mad Libs . 61

Custom Templating . 62

Mini Libs . 66

Additional Exercises . 67

2. LCD Numbers . 68

Using Templates . 68

On and Off Bits . 70

Using a State Machine 72

Additional Exercises . 75

3. GEDCOM Parser . 76

Optimizing the Read and Write Cycles 77

Additional Exercises . 80

4. Animal Quiz . 81

Arrays Instead of Custom Objects 84

Leaving the Trees . 87

Additional Exercises . 88

5. Scrabble Stems . 89

Eating Less RAM . 90

Additional Exercises . 92

6. Regexp.build() . 93

Shrinking a Regexp . 94

Speeding Up the Build 97

Timing the Solutions . 99

Additional Exercises . 100

7. HighLine . 101

A Class-Based Solution 101

Testing I/O . 104

The Official HighLine . 106

Additional Exercises . 111

8. Roman Numerals . 112

Saving Some Memory . 113

Romanizing Ruby . 115

Additional Exercises . 120

9. Rock Paper Scissors . 121

Outthinking a Random Player 122

Cheat to Win . 124

Psychic Players . 125

Thinking Outside the Box 126

Additional Exercises . 126

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=v

CONTENTS vi

10. Knight’s Travails . 127

Or with Less Abstraction 131

Additional Exercises . 132

11. Sokoban . 134

Objectified Sokoban . 136

Saving Your Fingers . 142

Additional Exercises . 143

12. Crosswords . 145

Passive Building . 148

Additional Exercises . 152

13. 1-800-THE-QUIZ . 153

Word Signatures . 153

The Search . 155

Cleaning Up and Showing Results 157

Additional Exercises . 159

14. Texas Hold’em . 160

Ruby’s Sorting Tricks . 160

Sorting Cards . 161

Name the Hand . 162

Additional Exercises . 165

15. Solitaire Cipher . 166

Testing a Cipher . 166

A Deck of Letters . 170

A Test Suite and Solution 173

Additional Exercises . 175

16. English Numerals . 176

Grouping Numbers . 176

Coding an Idea . 177

Proper Grammar . 179

Additional Exercises . 182

17. Code Cleaning . 183

Instant Web Serving . 183

Finding the Hidden Wiki 184

The Other Program . 188

Additional Exercises . 190

18. Banned Words . 191

Doing Even Fewer Checks 193

Additional Exercises . 194

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=vi

CONTENTS vii

19. Secret Santas . 195

Using a Random Sort . 197

A Ring of Players . 197

Grouping . 198

Climbing a Hill . 200

Additional Exercises . 201

20. Barrel of Monkeys . 203

Fancy Searching . 207

Additional Exercises . 213

21. Amazing Mazes . 214

The Internal Bits . 214

Making a Maze . 219

Solving a Maze . 220

Interface . 222

Additional Exercises . 223

22. Learning Tic-Tac-Toe . 225

The History of MENACE 232

Filling a Matchbox Brain 232

Ruby’s MENACE . 236

Additional Exercises . 238

23. Countdown . 239

Pruning Code . 240

Coding Different Strategies 244

Additional Exercises . 247

24. Solving Tactics . 249

From Playing to Solving 252

Proof through Unit Testing 255

Additional Exercises . 258

25. Cryptograms . 259

Using Word Signatures 259

Building the Map . 261

Assembling a Solution 264

A Look at Limitations . 269

Additional Exercises . 269

A Resources 270

A.1 Bibliography . 270

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=vii

Chapter 1

Introduction
If you stop and think about it, programming knowledge is nearly use-

less by itself. What exactly are you going to create with all that expert

programming skill, if it’s all you have? The world needs only so many

text editors.

What makes the craft interesting is how we apply it. Combine program-

ming prowess with accounting practices or even just a need to reunite

hurricane victims with their scattered family members, and you have

the makings of a real, and potentially useful, application.

Practical programming experience can be surprisingly hard to come by.

There are classes and books to give us theory and syntax. If you’ve

been a programmer for any amount of time, you will have read plenty

of those books. Then what? I think most of us inherently know that the

next step is to write something, but many of us struggle to find a topic.

I love games. I’m always playing something, and struggling to put

together a winning strategy never quite feels like work to me. I use

that to make myself a better programmer. I play games with my code.

I assign myself a task I’ve never tried before, perhaps to get more famil-

iar with an algorithm or a library. Or sometimes I’ll give myself a com-

pletely routine task but add an unusual twist: implement this full-

featured trivial program in one hour or less.

This is my form of practice for the big game. I find what works and

even what doesn’t.1 I memorize idioms I like, just in case I run into a

1True story: I’m still struggling with one programming problem I’ve been playing with

for about ten years now. I’ve never found a solution I like, though I know others have

solved it. (I haven’t peeked!) I also haven’t made it a Ruby Quiz yet, because I’m not

ready to be embarrassed. I’ll get it eventually....

CHAPTER 1. INTRODUCTION 2

similar problem down the road. All the while, I’m getting more familiar

with languages, libraries, and frameworks I may need to work with

someday.

The set of weekly programming challenges for the Ruby programming

language called Ruby Quiz2 was born out of my desire to share this

with the rest of the world. This book holds some highlights from the

first year of its run.

What’s Inside

In these pages, you will find a collection of problems contributed by

myself and others to enhance your programming knowledge. The great

thing about working with these problems is that they come with dis-

cussions on some of their interesting points and sample solutions from

other programmers. You can solve the challenges and then compare

and contrast your code with the solutions provided.

There is not yet a way to download all of these programming idioms

directly into your brain. Let me forewarn you, solving these problems

is work.3 We try to have fun with the Ruby Quiz, but it doesn’t come

without the price of a little effort. The problems vary in difficulty, but I

believe there’s something to be learned from all of them.

How to Use This Book

This book isn’t meant for passive readers! Get those brain cells moving.

You will learn a lot more by giving a quiz your best shot, even if it

doesn’t blossom into a solution, and then reading the discussions. It’s

the context you gain from the attempt that allows you to internalize

what you learn, and that’s the whole point.

May this teach you half of what it has taught me.

Finding Your Way Around

The front of this book is a collection of twenty-five programming chal-

lenges. In the back of the book, you can find discussions and solutions

2http://rubyquiz.com
3Yes, I’m one of the guys who skips the “Additional Exercises” in almost all program-

ming books. However, I must admit that I’ve learned the most when I actually did them.

Report erratum

http://rubyquiz.com
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=2

CHAPTER 1. INTRODUCTION 3

for these problems. The separation is there to allow you to scan prob-

lems and find something you want to try without accidentally running

into a spoiler. At the beginning of each quiz, you will find a pointer to

the page the relevant discussion begins on.

Along the way you will find:

Live Code

Most of the code snippets shown within come from full-length,

running examples, which you can download.4 To help you find

your way, if code can be found in the download, there’ll be a

marker line like the one that follows at the top of the listing in

the book:

madlibs/parsed_madlib.rb

Ordinary prose.

class String

Anything is acceptable.

def self.parse?(token, replacements)

new(token)

end

end

If you’re reading the PDF version of this book and if your PDF

viewer supports hyperlinks, you can click the marker, and the

code should appear in a browser window. Some browsers (such

as Safari) might mistakenly try to interpret some of the code as

HTML. If this happens, view the source of the page to see the real

source code.

Joe Asks...

Joe, the mythical developer, sometimes pops up to ask questions

about stuff we talk about in the text. We try to answer these as we

go along.

Spring Cleaning

Solutions in this text are just as they were submitted originally, with

the following exceptions:

• Tabs have been replaced with the Ruby standard practice of two

spaces.

• Method and variable names were adjusted to Ruby’s snake_case

style convention.

4From http://pragmaticprogrammer.com/titles/fr_quiz/code.html

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/madlibs/parsed_madlib.rb
http://pragmaticprogrammer.com/titles/fr_quiz/code.html
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=3

CHAPTER 1. INTRODUCTION 4

• Obvious minor bugs have been fixed.

• Some class definitions were split up into smaller pieces just to

make them easier to present to the reader.

• The text has been edited for grammar and spelling.

Any other changes will be called out in the margin of the code listings

as they occur.

Who Really Made All of This

So many people contributed to this book, I can hardly take credit for

writing it. I will call out contributions of problems and code as they

come up, but that’s such a small part of the story. Ruby Quiz simply

wouldn’t exist if it wasn’t for all the wonderful contributors who have

shared problems, ideas, and discussions since I started the project.

Together, they have created a sensational community resource while

I mostly just watched it happen. I am eternally grateful to the entire

Ruby Quiz community.

The second side of my support base is the most fantastic bunch of

family and friends a guy could have. They truly make me believe I can

do anything. Without them I would be merely mortal.

Finally, but most important, I must thank Dana, my true inspiration.

You believed long before I did, and as always, you were right. Here is

the proof.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=4

Part I

The Quizzes

QUIZ 1. MAD LIBS 6

Quiz 1Answer on page 61

Mad Libs
This Ruby Quiz is to write a program that presents the user with that

favorite childhood game, Mad Libs. Don’t worry if you have never

played; it’s an easy game to learn. A Mad Libs is a story with several

placeholders. For example:

I had a ((an adjective)) sandwich for lunch today. It dripped all

over my ((a body part)) and ((a noun)).

The reader, the only person who sees the story, will ask another person

for each placeholder in turn and record the answers. In this example,

they would ask for an adjective, a body part, and a noun. The reader

then reads the story, with the answers in place. It might come out

something like this:

I had a smelly sandwich for lunch today. It dripped all

over my big toe and bathtub.

Laughter ensues.

The script should play the role of reader, asking the user for a series of

words, then replacing placeholders in the story with the user’s answers.

We’ll keep our story format very simple, using a ((...)) notation for place-

holders. Here’s an example:

Our favorite language is ((a gemstone)).

If your program is fed that template, it should ask you to enter “a gem-

stone” and then display your version of the story:

Our favorite language is Ruby.

That covers the simple cases, but in some instances we may want to

reuse an answer. For that, we’ll introduce a way to name them:

Our favorite language is ((gem:a gemstone)). We think ((gem)) is

better than ((a gemstone)).

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=6

QUIZ 1. MAD LIBS 7

With the previous story, your program should ask for two gemstones,

then substitute the one designated by ((gem:...)) at ((gem)). When there

is a colon in the ((...)), the part before the colon becomes the pointer to

the reusable value, and the part after the colon is the prompt for the

value. That would give results like this:

Our favorite language is Ruby. We think Ruby is better than

Emerald.

You can choose any interface you like, as long as a user can interact

with the end result. You can play around with a CGI-based solution at

the Ruby Quiz site.5 You can find the two Mad Libs files I’m using on

the Ruby Quiz site as well.6

5http://rubyquiz.com/cgi-bin/madlib.cgi
6http://rubyquiz.com/madlibs/Lunch_Hungers.madlib and

http://rubyquiz.com/madlibs/Gift_Giving.madlib

Report erratum

http://rubyquiz.com/cgi-bin/madlib.cgi
http://rubyquiz.com/madlibs/Lunch_Hungers.madlib
http://rubyquiz.com/madlibs/Gift_Giving.madlib
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=7

QUIZ 2. LCD NUMBERS 8

Quiz 2Answer on page 68

LCD Numbers
This quiz is to write a program that displays LCD-style numbers at

adjustable sizes.

The digits to be displayed will be passed as an argument to the program.

Size should be controlled with the command-line option -s followed by

a positive integer. The default value for -s is 2.

For example, if your program is called with this:

$ lcd.rb 012345

the correct display is this:
-- -- -- --
| | | | | | | |
| | | | | | | |

-- -- -- --
| | | | | | |
| | | | | | |
-- -- -- --

And for this:

> lcd.rb -s 1 6789

your program should print this:
- - - -
| | | | | |
- - -
| | | | | |
- - -

Note the single column of space between digits in both examples. For

other values of -s, simply lengthen the - and | bars.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=8

QUIZ 3. GEDCOM PARSER 9

Quiz 3Answer on page 76

GEDCOM Parser
Posed by Jamis Buck

GEDCOM is the “GEnealogical Data COMmunication” file format. It is

a plain-text electronic format used to transfer genealogical data.7 The

purpose of this quiz is to develop a simple parser that can convert a

GEDCOM file to XML.

GEDCOM Format

The GEDCOM file format is very straightforward.Each line represents a

node in a tree. It looks something like this:

0 @I1@ INDI

1 NAME Jamis Gordon /Buck/

2 SURN Buck

2 GIVN Jamis Gordon

1 SEX M

...

In general, each line is formatted like this:

LEVEL TAG-OR-ID [DATA]

The LEVEL is an integer, representing the current depth in the tree. If

subsequent lines have greater levels than the current node, they are

children of the current node.

TAG-OR-ID is a tag that identifies the type of data in that node, or it is a

unique identifier. Tags are three- or four-letter words in uppercase. The

unique identifiers are always text surrounded by @ characters (such as

@I54@). If an ID is given, the DATA is the type of the subtree that is

identified.

7We’re not concerned here with whether it is a particularly good file format. It is

certainly more compact than the corresponding XML would be, and bandwidth was par-

ticularly important back when the standard was developed.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=9

QUIZ 3. GEDCOM PARSER 10

So, to take apart the example given previously, you have this:

• 0 @I1@ INDI. This starts a new subtree of type INDI (“individual”).

The ID for this individual is @I1@.

• 1 NAME Jamis Gordon /Buck/. This starts a NAME subtree with a

value of Jamis Gordon /Buck/.

• 2 SURN Buck. This is a subelement of the NAME subtree, of type SURN

(“surname”).

• 2 GIVN Jamis Gordon. Same as SURN but specifies the given name of

the individual.

• 1 SEX M. Creates a new sub-element of the INDI element, of type SEX

(i.e., “gender”).

And so forth.

Variable whitespace is allowed between the level and the tag. Blank

lines are ignored.

The Challenge

The challenge is to create a parser that takes a GEDCOM file as input

and converts it to XML. The snippet of GEDCOM given previously would

become the following:

<gedcom>

<indi id="@I1@">

<name>

Jamis Gordon /Buck/

<surn>Buck</surn>

<givn>Jamis Gordon</givn>

</name>

<sex>M</sex>

...

</indi>

...

</gedcom>

Sample Input

There is a large GEDCOM file online8 containing the lineage of various

European royalty. This particular file makes generous use of white-

space to increase readability.

8http://www.rubyquiz.com/royal.ged

Report erratum

http://www.rubyquiz.com/royal.ged
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=10

QUIZ 4. ANIMAL QUIZ 11

Quiz 4Answer on page 81

Animal Quiz
Posed by Jim Weirich

Here’s an animal quiz program to try as a Ruby Quiz.

It works like this: The program starts by telling the user to think of an

animal. It then begins asking a series of yes/no questions about that

animal: Does it swim? Does it have hair? And so on.... Eventually, it

will narrow down the possibilities to a single animal and guess: is it a

mouse?

If the program has guessed correctly, the game is over and may be

restarted with a new animal. If the program has guessed incorrectly,

it asks the user for the kind of animal they were thinking of and then

asks for the user to provide a question that can distinguish between its

incorrect guess and the correct answer. It then adds the new question

and animal to its “database” and will guess that animal in the future

(if appropriate). Your program should remember what it has learned

between runs.

Here’s a sample run:

⇒ Think of an animal...

Is it an elephant? (y or n)

⇐ n

⇒ You win. Help me learn from my mistake before you go...

What animal were you thinking of?

⇐ a rabbit

⇒ Give me a question to distinguish a rabbit from an elephant.

⇐ Is it a small animal?

⇒ For a rabbit, what is the answer to your question? (y or n)

⇐ y

⇒ Thanks.

Play again? (y or n)

⇐ y

⇒ Think of an animal...

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=11

QUIZ 4. ANIMAL QUIZ 12

Is it a small animal? (y or n)

⇐ y

⇒ Is it a rabbit? (y or n)

⇐ n

⇒ You win. Help me learn from my mistake before you go...

What animal were you thinking of?

⇐ a Shih Tzu

⇒ Give me a question to distinguish a Shih Tzu from a rabbit.

⇐ Is it a kind of dog?

⇒ For a Shih Tzu, what is the answer to your question? (y or n)

⇐ y

⇒ Thanks.

Play again? (y or n)

⇐ y

⇒ Think of an animal...

Is it a small animal? (y or n)

⇐ y

⇒ Is it a kind of dog? (y or n)

⇐ y

⇒ Is it a Shih Tzu? (y or n)

⇐ y

⇒ I win. Pretty smart, aren' t I?

Play again? (y or n)

⇐ n

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=12

QUIZ 5. SCRABBLE STEMS 13

Quiz 5Answer on page 89

Scrabble Stems
Posed by Martin DeMello

In Scrabble9 parlance, a bingo is a play where one gets rid of all seven

letters. A bingo stem is a set of six letters that combine with another

letter of the alphabet to make a seven-letter word. Some six-letter stems

have more possible combinations than others. For instance, one of the

more prolific stems, SATIRE, combines with twenty letters: A, B, C, D,

E, F, G, H, I, K, L, M, N, O, P, R, S, T, V, and W to form words such as

ASTERIA, BAITERS, RACIEST, and so on.

Write a program that, given a word list and a cutoff n, finds all six-letter

stems that combine with n or more distinct letters, sorted by greatest

number of combinations to least.

If you need a word list to help in developing a solution, you can find

Spell Checking Oriented Word Lists (SCOWL) online.10

9A popular word game by Hasbro
10http://wordlist.sourceforge.net/

Report erratum

http://wordlist.sourceforge.net/
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=13

QUIZ 6. REGEXP.BUILD() 14

Quiz 6Answer on page 93

Regexp.build()
This quiz is to build a library that adds a class method called build() to

Regexp and that should accept a variable number of arguments, which

can include Integers and Ranges of Integers. Have build() return a Regexp

object that will match only Integers in the set of passed arguments.

Here are some examples of possible usage:

lucky = Regexp.build(3, 7)

"7" =~ lucky # => true

"13" =~ lucky # => false

"3" =~ lucky # => true

month = Regexp.build(1..12)

"0" =~ month # => false

"1" =~ month # => true

"12" =~ month # => true

day = Regexp.build(1..31)

"6" =~ day # => true

"16" =~ day # => true

"Tues" =~ day # => false

year = Regexp.build(98, 99, 2000..2005)

"04" =~ year # => false

"2004" =~ year # => true

"99" =~ year # => true

num = Regexp.build(0..1_000_000)

"-1" =~ num # => false

You can determine the specifics of the expressions produced by your

library. Here are issues you may want to consider:

• How should leading zeros be handled? For example, how would

you handle matching the hour from a clock formatted in military

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=14

QUIZ 6. REGEXP.BUILD() 15

time11 (0 to 23), if hours 0 through 9 may or may not have a single

leading zero?

• Should anything be captured by the returned Regexp?

• How should anchoring work?

"2004" =~ Regexp.build(4) # => ???

11Also known as 24-hour time

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=15

QUIZ 7. HIGHLINE 16

Quiz 7Answer on page 101

HighLine
When you stop to think about it, methods such as gets(), while handy,

are still pretty low level. In running Ruby Quiz I’m always seeing solu-

tions with helper methods similar to this one from Markus König:

highline/example.rb

def ask(prompt)

loop do

print prompt, ' '

$stdout.flush

s = gets

exit if s == nil

s.chomp!

if s == ' y' or s == ' yes'

return true

elsif s == ' n' or s == ' no'

return false

else

$stderr.puts "Please answer yes or no."

end

end

end

Surely we can make something like that better! We don’t always need a

web or GUI framework, and there’s no reason writing a command-line

application can’t be equally smooth.

This Ruby Quiz is to start a module called HighLine (for high-level, line-

oriented interface). Ideally this module would eventually cover many

aspects of terminal interaction, but for this quiz we’ll focus just on

getting input.

What I really think we need here is to take a page out of the OptionParser

book.12 Here are some general ideas:

12At http://www.ruby-doc.org/stdlib/libdoc/optparse/rdoc/index.html

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/highline/example.rb
http://www.ruby-doc.org/stdlib/libdoc/optparse/rdoc/index.html
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=16

QUIZ 7. HIGHLINE 17

age = ask("What is your age?", Integer, :within => 0..105)

num = eval "0b#{ ask(' Enter a binary number.' ,

String, :validate => /^[01_]+$/) }"

if ask_if("Would you like to continue?") # ...

None of these ideas is etched in stone. Feel free to call your input

method prompt() or use a set of classes. Rework the interface any way

you like.

The goal is to provide an easy-to-use yet robust method of requesting

input. It should free the programmer of common concerns like calls to

chomp() and ensuring valid input.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=17

QUIZ 8. ROMAN NUMERALS 18

Quiz 8Answer on page 112

Roman Numerals
This quiz asks you to write a converter to and from Roman numerals.

The script should be a standard Unix filter, reading from files specified

on the command line or STDIN and writing to STDOUT. Each line of input

will contain one integer (from 1 to 3,99913) expressed as an Arabic or

Roman numeral. There should be one line of output for each line of

input, containing the original number in the opposite format.

For example, given the following input:

III

29

38

CCXCI

1999

The correct output is as follows:

3

XXIX

XXXVIII

291

MCMXCIX

If you’re not familiar with or need a refresher on Roman numerals, the

rules are simple. First, seven letters are associated with seven values:

I = 1

V = 5

X = 10

L = 50

C = 100

D = 500

M = 1000

13Roman numerals for 4,000 and up do not use plain ASCII characters.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=18

QUIZ 8. ROMAN NUMERALS 19

Second, you can combine letters to add values by listing them largest

to smallest from left to right:

II is 2

VIII is 8

XXXI is 31

However, you may list only three consecutive identical letters. That

requires a special rule to express numbers like 40 and 900. That rule

is that a single lower value may precede a larger value to indicate sub-

traction. This rule is used only to build values not reachable by the

previous rules. Those numbers are as follows:

IV is 4

IX is 9

XL is 40

XC is 90

CD is 400

CM is 900

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=19

QUIZ 9. ROCK PAPER SCISSORS 20

Quiz 9Answer on page 121

Rock Paper Scissors
Generals, break out your copies of The Art of War[Tzu05], and let’s get

a little competition going!

Your task is to build some AI for playing the game Rock Paper Scissors

against all manner of opponents. The challenge is to adapt to an oppo-

nent’s strategy and seize the advantage...while he is doing the same to

you, of course.

If you’re not familiar with this childhood game, here’s an overview: Two

players choose one of three items at the same time: a rock, some paper,

or scissors. The winner is determined by the following rules:

• Paper covers a rock. (Paper beats a rock.)

• Scissors cut paper. (Scissors beat paper.)

• A rock smashes scissors. (A rock beats scissors.)

• Anything else is a draw.

Defining a player is straightforward. I provide a class you can inherit

from:

rock_paper_scissors/example_player.rb

class YourPlayer < Player

def initialize(opponent_name)

(optional) called at the start of a match verses opponent

opponent_name = String of opponent' s class name

#

Player' s constructor sets @opponent_name

end

def choose

(required) return your choice of :paper, :rock or :scissors

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/example_player.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=20

QUIZ 9. ROCK PAPER SCISSORS 21

def result(your_choice, opponents_choice, win_lose_or_draw)

(optional) called after each choice you make to give feedback

your_choice = your choice

oppenents_choice = opponent' s choice

win_lose_or_draw = :win, :lose or :draw, your result

end

end

We’ll need some rules for defining players to make it easy for all our

strategies to play against each other:

• Use one file for each strategy.

• A file should contain exactly one subclass of Player.

• Start the name of your subclass, the name of your files, and the

name of any data files you write to disk with your initials.

Those rules should help with testing how different algorithms perform

against each other.

Here are two dumb Players to practice with:

rock_paper_scissors/jeg_paper_player.rb

#!/usr/biin/env ruby

class JEGPaperPlayer < Player

def choose

:paper

end

end

rock_paper_scissors/jeg_queue_player.rb

#!/usr/bin/env ruby

class JEGQueuePlayer < Player

QUEUE = [:rock, :scissors, :scissors]

def initialize(opponent_name)

super

@index = 0

end

def choose

choice = QUEUE[@index]

@index += 1

@index = 0 if @index == QUEUE.size

choice

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/jeg_paper_player.rb
http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/jeg_queue_player.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=21

QUIZ 9. ROCK PAPER SCISSORS 22

Here’s how those two do against each other in a 1,000-game match (we

will just track wins, since draws affect both players the same):

JEGPaperPlayer vs. JEGQueuePlayer

JEGPaperPlayer: 334

JEGQueuePlayer: 666

JEGQueuePlayer Wins

Finally, here’s the game engine that supports the players:

rock_paper_scissors/rock_paper_scissors.rb

#!/usr/bin/env ruby

class Player

@@players = []

def self.inherited(player)

@@players << player

end

def self.each_pair

(0...(@@players.size - 1)).each do |i|

((i + 1)...@@players.size).each do |j|

yield @@players[i], @@players[j]

end

end

end

def initialize(opponent_name)

@opponent_name = opponent_name

end

def choose

raise NoMethodError, "Player subclasses must override choose()."

end

def result(your_choice, opponents_choice, win_lose_or_draw)

do nothing-subclasses can override as needed

end

end

class Game

def initialize(player1, player2)

@player1_name = player1.to_s

@player2_name = player2.to_s

@player1 = player1.new(@player2_name)

@player2 = player2.new(@player1_name)

@score1 = 0

@score2 = 0

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/rock_paper_scissors.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=22

QUIZ 9. ROCK PAPER SCISSORS 23

def play(num_matches)

num_matches.times do

hand1 = @player1.choose

hand2 = @player2.choose

[[@player1_name, hand1], [@player2_name, hand2]].each do |player, hand|

unless [:rock, :paper, :scissors].include? hand

raise "Invalid choice by #{player}."

end

end

hands = {hand1.to_s => @player1, hand2.to_s => @player2}

choices = hands.keys.sort

if choices.size == 1

draw hand1, hand2

elsif choices == %w{paper rock}

win hands["paper"], hand1, hand2

elsif choices == %w{rock scissors}

win hands["rock"], hand1, hand2

elsif choices == %w{paper scissors}

win hands["scissors"], hand1, hand2

end

end

end

def results

match = "#{@player1_name} vs. #{@player2_name}\n" +

"\t#{@player1_name}: #{@score1}\n" +

"\t#{@player2_name}: #{@score2}\n"

if @score1 == @score2

match + "\tDraw\n"

elsif @score1 > @score2

match + "\t#{@player1_name} Wins\n"

else

match + "\t#{@player2_name} Wins\n"

end

end

private

def draw(hand1, hand2)

@score1 += 0.5

@score2 += 0.5

@player1.result(hand1, hand2, :draw)

@player2.result(hand2, hand1, :draw)

end

def win(winner, hand1, hand2)

if winner == @player1

@score1 += 1

@player1.result(hand1, hand2, :win)

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=23

QUIZ 9. ROCK PAPER SCISSORS 24

@player2.result(hand2, hand1, :lose)

else

@score2 += 1

@player1.result(hand1, hand2, :lose)

@player2.result(hand2, hand1, :win)

end

end

end

match_game_count = 1000

if ARGV.size > 2 and ARGV[0] == "-m" and ARGV[1] =~ /^[1-9]\d*$/

ARGV.shift

match_game_count = ARGV.shift.to_i

end

ARGV.each do |p|

if test(?d, p)

Dir.foreach(p) do |file|

next if file =~ /^\./

next unless file =~ /\.rb$/

require File.join(p, file)

end

else

require p

end

end

Player.each_pair do |one, two|

game = Game.new one, two

game.play match_game_count

puts game.results

end

You can use the engine with a command like the following:

$ rock_paper_scissors.rb jeg_paper_player.rb jeg_queue_player.rb

Or you can point it at a directory, and it will treat all the .rb files in

there as Players:

$ rock_paper_scissors.rb players/

You can also change the match game count:

$ rock_paper_scissors.rb -m 10000 players/

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=24

QUIZ 10. KNIGHT’S TRAVAILS 25

Quiz 10Answer on page 127

Knight’s Travails
Posed by J E Bailey

Given a standard 8×8 chessboard where each position is indicated in

algebraic notation (with the lower-left corner being a1), design a script

that accepts two or more arguments.

The first argument indicates the starting position of a standard chess

knight. The second argument indicates the ending position of the

knight. Any additional arguments indicate positions that are forbid-

den.

Return an array indicating the shortest path that the knight must

travel to get to the end position without landing on one of the forbidden

squares. If there is no valid path to the destination, return nil.

Knights move in an L-shaped pattern. They may move two squares in

any of the four cardinal directions and then turn 90 degrees and move

an additional square. So a knight on e4 can jump to d2, f2, c3, g3, c5,

g5, d6, or f6:

$ knights_travails a8 b7 b6

["c7", "b5", "d6", "b7"]

$ knights_travails a8 g6 b6 c7

nil

If you’re not familiar with algebraic chess notation, Figure 1.1, on the

following page, shows the name of every square on the board.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=25

QUIZ 10. KNIGHT’S TRAVAILS 26B l a c k � s S t a r t i n g L o c a t i o n
W h it e � s S t a r t i n g L o c a t i o n

A 8 B 8 C 8 D 8 E 8 F 8 G 8 H 8A 7 B 7 C 7 D 7 E 7 F 7 G 7 H 7A 6 B 6 C 6 D 6 E 6 F 6 G 6 H 6A 5 B 5 5 E 5 F 5 G 5 H 5A 4 B 4 4 E 4 F 4 G 4 H 4A 3 B 3 3 E 3 F 3 G 3 H 3A 2 B 2 2 E 2 F 2 G 2 H 2A 1 B 1 1 E 1 F 1 G 1 H 1
Figure 1.1: Chess Squares by Name

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=26

QUIZ 11. SOKOBAN 27

Quiz 11Answer on page 134

Sokoban
Ruby isn’t the only good thing to come out of Japan. The computer

game Sokoban, invented by Hiroyuki Imabayashi, was introduced by

Thinking Rabbit in 1982. This game of logic puzzles was an instant

success. It won awards and spawned sequels. Over the years, Sokoban

has been ported to a huge number of platforms. Fan support remains

strong, and many of those fans still produce new levels for the game.

This quiz is to implement the game of Sokoban with the interface of

your choosing and any extra features you would like to have.

Sokoban (which translates to Warehouse Man) has simple rules, which

basically amount to this: push crates into their storage spots in the

warehouse.

The elements of the levels are simple: there’s a man, some crates and

walls, open floor, and storage. Different level designers use various

characters to represent these items in level data files. Here’s one pos-

sible set of symbols:

@ for the man o for crates

for walls a space for open floor

. for storage

Now because a man or a crate can also be on a storage space, we need

special conditions to represent those setups:

* for a crate on storage

+ for a man on storage

Using this, we can build an extremely simple level:

#####

#.o@#

#####

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=27

QUIZ 11. SOKOBAN 28

This level is completely surrounded by walls, as all Sokoban levels must

be. Walls are, of course, impassable. In the center we have from left

to right: a storage space, a crate (on open floor), and the man (also on

open floor).

The game is played by moving the man up, down, left and right. When

the man moves toward a crate, he may push it along in front of him as

long as there is no wall or second crate behind the one being pushed.

A level is solved when all crates are on storage spaces.

Given those rules, we can solve our level with a single move to the left,

yielding the following:

#####

#*@ #

#####

That simple system can lead to some surprisingly complicated mind

benders, but please don’t take my word for it. Build the game, and see

for yourself.14 Be warned, Sokoban is extremely addictive!

14You can find some premade levels to test your game engine and your logic skills at

http://www.rubyquiz.com/sokoban_levels.txt. These levels are copyrighted by Thinking Rabbit.

Report erratum

http://www.rubyquiz.com/sokoban_levels.txt
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=28

QUIZ 12. CROSSWORDS 29

Quiz 12Answer on page 145

Crosswords
For this quiz let’s tackle a classic problem. I’ve seen it just about every-

where in some form or another, but I believe Donald E. Knuth may have

first made it a popular challenge.

The quiz is to lay out crossword puzzles. A puzzle layout will be pro-

vided in a file, with the file name passed as a command-line argument.

The layout will be formatted as such:

X _ _ _ _ X X

_ _ X _ _ _ _

_ _ _ _ X _ _

_ X _ _ X X X

_ _ _ X _ _ _

X _ _ _ _ _ X

Xs denote filled-in squares, and underscores are where a puzzle worker

would enter letters. Each row of the puzzle is on a new line. The spaces

are a readability tool and should be ignored by your program. In the

final layout, squares should look like this:

Filled-in square

######

######

######

Letter square

#

#

######

Now, when we combine these squares, we don’t want to double up on

borders, so this:

_ _

X _

should become the following:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=29

QUIZ 12. CROSSWORDS 30

###########

#

#

###########

#

#

###########

As a style point, many crosswords drop filled squares on the outer

edges. We wouldn’t want our Ruby-generated crosswords to be unfash-

ionable, so we better do that too:

X _ X would render as: ######

_ _ _ # #

#

################

#

#

################

The final step of laying out a crossword puzzle is to number the squares

for word placement. A square is numbered if it is the first square in a

word going left to right or top to bottom. A word must be at least two

letters long, so don’t number individual squares. Numbers start at 1

and count up left to right, row by row going down.

Putting all that together, here is a sample layout. (This was generated

from the layout format at the beginning of this quiz.)

#####################

#1 # #2 #3 #

#

####################################

#4 # ######5 # #6 #7 #

#

####################################

#8 # #9 # # #10 # #

#

##################### ###########

######11 #

#

####################################

#12 #13 # ######14 #15 # #

#

####################################

#16 # # # # #

#

##########################

Solutions should output (only) the finished crossword to STDOUT.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=30

QUIZ 13. 1-800-THE-QUIZ 31

Quiz 13Answer on page 153

1-800-THE-QUIZ
Companies like to list their phone numbers using the letters printed on

telephones. This makes the number easier to remember for customers.

A famous example is 1-800-PICK-UPS.

This quiz is to write a program that shows the user possible matches

for a list of provided phone numbers. For example, if your program is

fed the following number:

873.7829

one possible line of output (according to my dictionary) is this:

USE-RUBY

Your script should behave as a standard Unix filter, reading from files

specified as command-line arguments or STDIN when no files are given.

Each line of these files will contain a single phone number, seven digits

in length.

For each phone number read, output all possible word replacements

from a dictionary. Your script should try to replace every digit of the

provided phone number with a letter from a dictionary word; however, if

no match can be made, a single digit can be left between two words. No

two consecutive digits can remain unchanged, and the program should

skip over a number (producing no output) if a match cannot be made.

Your solution should allow the user to select a dictionary with the -d

command-line option, but it’s fine to use a reasonable default for your

system. The dictionary is expected to have one word per line.

All punctuation and whitespace should be ignored in both phone num-

bers and the dictionary file. The program should not be case sensitive,

letting "a" == "A". Output should be capital letters, and digits should

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=31

QUIZ 13. 1-800-THE-QUIZ 32

be separated at word boundaries with a single hyphen (-), one possible

encoding per line.

The number encoding on my phone is as follows:

2 = A B C

3 = D E F

4 = G H I

5 = J K L

6 = M N O

7 = P Q R S

8 = T U V

9 = W X Y Z

Feel free to use that or the encoding on your own phone.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=32

QUIZ 14. TEXAS HOLD’EM 33

Quiz 14Answer on page 160

Texas Hold’em
Posed by Matthew D Moss

For this Ruby Quiz, let’s identify and rank poker hands. Say we have

the following sample game of the popular Texas hold’em, where you try

to make the best five-card hand from a total of seven cards (five shared

among all players):

Kc 9s Ks Kd 9d 3c 6d

9c Ah Ks Kd 9d 3c 6d

Ac Qc Ks Kd 9d 3c

9h 5s

4d 2d Ks Kd 9d 3c 6d

7s Ts Ks Kd 9d

Each line represents a player’s final hand. The cards of the hand are

separated by a space. The first character is the face value of the card,

and the second is the suit. Cards have one of four suits: clubs, dia-

monds, hearts, or spades. Cards also have a face value that is one of

(from highest to lowest) the following: ace, king, queen, jack, ten, nine,

eight, seven, six, five, four, three, or two. The ace is almost always high,

but watch for the exceptions in the hands.

Some players didn’t make it to seven cards, because they folded before

the end of the game, and we can ignore those hands. For the rest, we

want to declare the hand they ended up with and indicate a winner, or

winners in the event of a tie. We should also rearrange named hands

so the five used cards are at the front of the listing. That gives us the

following for our sample hand:

Kd Ks Kc 9d 9s 6d 3c Full House (Winner)

Ks Kd 9d 9c Ah 6d 3c Two Pair

Ac Qc Ks Kd 9d 3c

9h 5s

Kd 9d 6d 4d 2d Ks 3c Flush

7s Ts Ks Kd 9d

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=33

QUIZ 14. TEXAS HOLD’EM 34

Let’s cover the poker hands as a refresher for anyone who doesn’t have

them memorized or has never seen them. The following listing is from

best hand to worst:

Royal flush:

This coveted poker hand is easy to spot. A person must have the

ace, king, queen, jack, and ten of a single suit. It can be any of

the four suits, but all five cards must share it.

Straight flush:

A straight flush is similar to the royal flush, save that the face

value of the cards can be anything, as long as they go in order.

Again, the suits must match. In a straight flush, the ace is allowed

to be the highest card (above the king) or the lowest (below the

two).

Four of a kind:

Just as the name suggests, this hand is four of any face value.

Full house:

Three of any face value and two of another.

Flush:

Five cards of the same suit. Face value doesn’t matter.

Straight:

Just like the straight flush, except the suit doesn’t need to match.

Remember that the ace can be high or low here.

Three of a kind:

Three of any one face value.

Two pair:

Two cards of one face value and two of another.

Pair:

Two cards with the same face value.

High card:

When you have nothing better, your hand is valued by the highest

card in the hand. We might say you have “jack high,” for example.

You really don’t need to know any more details of Texas hold’em for this

quiz, save for how to break a tie. First, not all hands are created equal,

even if they have the same name. The higher set of cards always wins.

So a flush, king high, beats a flush, queen high, and a pair of threes is

better than a pair of twos.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=34

QUIZ 14. TEXAS HOLD’EM 35

If the hands are still a tie, kickers come into play. If the hand doesn’t

use all five cards, the remaining cards, or kickers as they are called, are

compared one at a time to see whether one player has a higher card.

Remember that you can use only your five best cards to make a hand,

though. Two are ignored completely.

Here’s a script by Matthew D Moss for generating test games:

texas_holdem/game_gen.rb

FACES = "AKQJT98765432"

SUITS = "cdhs"

deck = [] # build a deck

FACES.each_byte do |f|

SUITS.each_byte do |s|

deck.push(f.chr + s.chr)

end

end

3.times do # shuffle deck

shuf = []

deck.each do |c|

loc = rand(shuf.size + 1)

shuf.insert(loc, c)

end

deck = shuf.reverse

end

common = Array.new(5) { deck.pop } # deal common cards

deal player' s hole cards

hole = Array.new(8) { Array.new(2) { deck.pop } }

hands = [] # output hands

all_fold = true

while all_fold do

hands = []

hole.each do |h|

num_common = [0, 3, 4, 5][rand(4)]

if num_common == 5

all_fold = false

end

if num_common > 0

hand = h + common[0 ... num_common]

else

hand = h

end

hands.push(hand.join(' '))

end

end

hands.each { |h| puts h }

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/game_gen.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=35

QUIZ 15. SOLITAIRE CIPHER 36

Quiz 15Answer on page 166

Solitaire Cipher
Cryptologist Bruce Schneier designed the hand cipher Solitaire15 for

Neal Stephenson’s book Cryptonomicon[Ste00]. Created to be the first

truly secure hand cipher, Solitaire requires only a deck of cards for the

encryption and decryption of messages.

While it’s true that Solitaire is easily completed by hand, using a com-

puter is much quicker and easier. Because of that, Solitaire conversion

routines are available in many programming languages.

The quiz is to write a Ruby script that does the encryption and decryp-

tion of messages using the Solitaire cipher.

Encryption

Let’s look at the steps of encrypting a message with Solitaire:

1. Discard any non–A to Z characters, and uppercase all remaining

letters. Split the message into five character groups, using Xs to

pad the last group, if needed. If we begin with the message “Code

in Ruby, live longer!” for example, we would now have:

CODEI NRUBY LIVEL ONGER

2. Use Solitaire to generate a keystream letter for each letter in the

message. This step is detailed in Section 15, The Keystream, on

page 38, but for the sake of example, let’s just say we get this:

DWJXH YRFDG TMSHP UURXJ

3. Convert the message from step 1 into numbers, A = 1, B = 2, and

so on:

3 15 4 5 9 14 18 21 2 25 12 9 22 5 12 15 14 7 5 18

15The official site for Solitaire is at http://www.schneier.com/solitaire.html.

Report erratum

http://www.schneier.com/solitaire.html
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=36

QUIZ 15. SOLITAIRE CIPHER 37

4. Convert the keystream letters from step 2 using the same method:

4 23 10 24 8 25 18 6 4 7 20 13 19 8 16 21 21 18 24 10

5. Add the message numbers from step 3 to the keystream numbers

from step 4 and subtract 26 from the result if it is greater than

26. For example, 6 + 10 = 16 as expected, but 26 + 1 = 1 (27 - 26):

7 12 14 3 17 13 10 1 6 6 6 22 15 13 2 10 9 25 3 2

6. Convert the numbers from step 5 back to letters:

GLNCQ MJAFF FVOMB JIYCB

At this point, we have our hidden message. Now we just need to be able

to reverse the process.

Decryption

Decrypting with Solitaire is even easier, so let’s look at those steps now.

We’ll work backward with our example now, decrypting GLNCQ MJAFF

FVOMB JIYCB:

1. Use Solitaire to generate a keystream letter for each letter in the

message to be decoded. Again, I detail this process shortly, but

the sender and receiver use the same key and will get the same

letters:

DWJXH YRFDG TMSHP UURXJ

2. Convert the message to be decoded to numbers:

7 12 14 3 17 13 10 1 6 6 6 22 15 13 2 10 9 25 3 2

3. Convert the keystream letters from step 1 to numbers:

4 23 10 24 8 25 18 6 4 7 20 13 19 8 16 21 21 18 24 10

4. Subtract the keystream numbers from step 3 from the message

numbers from step 2. If the keystream number is less than or

equal to the message number, add 26 to the keystream number

before subtracting. For example, 22 - 1 = 21 as expected, but 1 -

22 = 5 (27 - 22):

3 15 4 5 9 14 18 21 2 25 12 9 22 5 12 15 14 7 5 18

5. Convert the numbers from step 4 back to letters:

CODEI NRUBY LIVEL ONGER

That’s all there is to transforming messages. Finally, let’s look at the

missing piece of the puzzle, generating the keystream letters.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=37

QUIZ 15. SOLITAIRE CIPHER 38

The Keystream

First, let’s talk a little about the deck of cards. Solitaire needs a full

deck of 52 cards and the two jokers. The jokers need to be visually

distinct. I’ll refer to them here as A and B.

Some steps involve assigning a value to the cards. In those cases, use

the cards face value as a base, ace is 1, two is 2, ... ten is 10, jack is

11, queen is 12, and king is 13. Then modify the base by the bridge

ordering of suits. Clubs is just the base value, diamonds is the base

value + 13, hearts is the base value + 26, and spades is base value +

39. Either joker has a value of 53.

When the cards must represent a letter, club and diamond values are

taken to be the number of the letter (1 to 26), as are heart and spade

values after subtracting 26 from their value (27 to 52 drops to 1 to 26).

Jokers are never used as letters. Now let’s make sense of all that by

putting it to use:

1. Key the deck. This is the critical step in the actual operation of

the cipher and the heart of its security. There are many methods

to go about this, such as shuffling a deck and then arranging the

receiving deck in the same order or tracking a bridge column in

the paper and using that to order the cards.

Because we want to be able to test our answers, though, we’ll use

an unkeyed deck, cards in order of value. That is, from top to

bottom, we’ll always start with the following deck:

Ace of clubs

...to...

King of clubs

Ace of diamonds

...to...

King of diamonds

Ace of hearts

...to...

King of hearts

Ace of spades

...to...

King of spades

"A" joker

"B" joker

2. Move the A joker down one card. If the joker is at the bottom of

the deck, move it to just below the first card. (Consider the deck

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=38

QUIZ 15. SOLITAIRE CIPHER 39

to be circular.) The first time we do this with an unkeyed deck, it

will go from this:

1 2 3 ... 52 A B

to this:

1 2 3 ... 52 B A

3. Move the B joker down two cards. If the joker is the bottom card,

move it just below the second card. If the joker is the just above

the bottom card, move it below the top card. (Again, consider

the deck to be circular.) This changes our example deck to the

following:

1 B 2 3 4 ... 52 A

4. Perform a triple cut around the two jokers—that is, split the deck

into three chunks around the two cards, and then swap the top

and bottom chunk. All cards above the top joker move to below

the bottom joker, and vice versa. The jokers and the cards between

them do not move. This gives us the following:

B 2 3 4 ... 52 A 1

5. Perform a count cut using the value of the bottom card. Count

the bottom card’s value in cards off the top of the deck, and move

them just above the bottom card. This changes our deck to the

following:

2 3 4 ... 52 A B 1 (the 1 tells us to move just the B)

6. Find the output letter. Convert the top card to its value, and count

down that many cards from the top of the deck, with the top card

itself being card 1. Look at the card immediately after your count,

and convert it to a letter. This is the next letter in the keystream.

If the output card is a joker, no letter is generated this sequence.

This step does not alter the deck. For our example, the output

letter is as follows:

D (the 2 tells us to count down to the 4, which is a D)

7. Return to step 2, if more letters are needed.

For the sake of testing, the first ten output letters for an unkeyed deck

are as follows:

D (4)

W (49)

J (10)

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=39

QUIZ 15. SOLITAIRE CIPHER 40

Skip Joker (53)

X (24)

H (8)

Y (51)

R (44)

F (6)

D (4)

G (33)

That’s all there is to Solitaire. It’s really longer to explain than it is to

code.

Your Script

Solutions to this quiz should accept a message as a command-line

argument and encrypt or decrypt it as needed. It should be easy to

tell which is needed by the pattern of the message, but you can use a

switch if you prefer.

All the examples for this quiz assume an unkeyed deck, but your script

can provide a way to key the deck, if desired. (A real script would

require this, of course.)

Here are a couple of messages to test your work with. You’ll know when

you have them right:

CLEPK HHNIY CFPWH FDFEH

ABVAW LWZSY OORYK DUPVH

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=40

QUIZ 16. ENGLISH NUMERALS 41

Quiz 16Answer on page 176

English Numerals
Posed by Timothy Byrd

While we normally write numbers using Arabic numerals, numbers can

also be written out as English phrases.

For example:

7 == seven

42 == forty-two

2001 == two thousand and one

1999 == one thousand nine hundred and ninety-nine

Given that, this quiz is a problem from a Pi Mu Epsilon newsletter:16

When the integers 1 to 10,000,000,000 are written in the English

language and then sorted as strings, which odd number appears first

in the list?

Your task is to do the following:

• Create Ruby code to translate a number to its English-language

form. (My sample version works with integers less than 10
72.)

• Write a program to determine which odd number in between 1

and 10,000,000,000 would sort first if written in English. (Brute

force is the obvious solution, but the computer may have to think

about the answer....)

16The U.S. national math club, http://www.pme-math.org/

Report erratum

http://www.pme-math.org/
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=41

QUIZ 17. CODE CLEANING 42

Quiz 17Answer on page 183

Code Cleaning
I’m always very vocal about how Ruby Quiz isn’t interested in golf17 and

obfuscation.18 It’s my own private fight for clean code.

To be fair, though, you can really learn a lot from practices such as golf

and obfuscation. It will teach you a surprising number of details about

the inner workings of your language of choice.

Here’s my compromise.

This challenge is to utterly clean some famous examples of compressed

Ruby code. Refactor the code until it’s as readable as possible, whatever

that means to you.

For those who faint at the sight of dense code, I offer an “easier” chal-

lenge. Try this code by Mauricio Fernández:

code_cleaning/wiki.cgi

#!/usr/bin/ruby -rcgi

H,B=%w' HomePage w7.cgi?n=%s' ;c=CGI.new' html4' ;n,d=c[' n']!=' ' ?c[' n']:H,c[' d'];t=‘

cat #{n}‘;d!=' ' &&‘echo #{t=CGI.escapeHTML(d)} >#{n}‘;c.instance_eval{out{h1{n}+

a(B%H){H}+pre{t.gsub(/([A-Z]\w+){2}/){a(B%$&){$&}}}+form("get"){textarea('d'){t

}+hidden(' n' ,n)+submit}}}

If you prefer a “trickier” challenge, I offer this famous code from Florian

Groß. Just take a deep breath before turning the page....

17Writing code with as few keystrokes as possible
18An intentional effort to make code difficult to read

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/wiki.cgi
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=42

QUIZ 17. CODE CLEANING 43

code_cleaning/p2p.rb

#!/usr/bin/ruby

Server: ruby p2p.rb password server public-uri private-uri merge-servers

Sample: ruby p2p.rb foobar server druby://123.123.123.123:1337

druby://:1337 druby://foo.bar:1337

Client: ruby p2p.rb password client server-uri download-pattern [list-only]

Sample: ruby p2p.rb foobar client druby://localhost:1337 *.rb

##

You are not allowed to use this application for anything illegal

unless you live in a sane place. Insane places currently include

California (see link) and might soon include the complete

USA. People using this software are responsible for themselves. I

can' t prevent them from doing illegal stuff for obvious reasons. So

have fun and do whatever you can get away with for now.

#

http://info.sen.ca.gov/pub/bill/sen/sb_0051-0100/

sb_96_bill_20050114_introduced.html

##

require' drb' ;F=File;def c(u)DRbObject.new((),u)end;def x(u)[P,u].hash;end;def s(

p)F.basename p[/[^|]+/]end;P,M,U,V,*O=$*;M["s"]?(DRb.start_service V,Class.new{

def p(z=O)O.push(*z).uniq;end;new.methods.map{|m|m[/_[_t]/]||private(m)};def y;(

p(U)+p).map{|u|u!=U&&c(u).f(x(u),p(U))};self;end;def f(c,a=O,t=2)x(U)==c&&t<1?

Dir[s(a)]:t<2?[*open(s(a),"rb")]:p(a)end}.new.y;sleep):c(U).f(x(U)).map{|n|c(n).

f(x(n),V,0).map{|f|s f}.map{|f|O[0]?p(f):open(f,"wb")<<c(n).f(x(n),f,1)}}

This is a little different from a traditional Ruby Quiz, but I encourage

all to play and learn. I promise to return to normal challenges in the

next chapter.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/p2p.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=43

QUIZ 18. BANNED WORDS 44

Quiz 18Answer on page 191

Banned Words
Posed by Fredrik Jagenheim

At work, we discovered that they installed a spam filter that throws

away email that it considers to be spam. Rather than using a Bayesian

filter where words contribute to a probability that the message is spam,

it simply checks for certain words that it considers banned. One word

we discovered was sex, which is a Swedish word for the number six. So

the Swedish translation of the phrase “I’ll be home at six o’clock” will

be classified as spam, thrown away and never seen.

The Ruby Quiz I propose is to figure out which words are banned. Since

the filter is a black box, we can find out which words are banned only

by sending email through it. The real problem is to find out how to do

it with as few emails as possible.

Of course, I don’t want the Ruby community to do a denial-of-service

attack on my employer’s mail server, so do it as a local filter. Perhaps

try something like this:

banned_words/filter.rb

A filter class for managing a given _banned_words_ list.

class LanguageFilter

Create a new LanguageFilter object that will

disallow _banned_words_.

#

Accepts a list of words, arrays of words,

or a combination of the two.

def initialize(*banned_words)

@banned_words = banned_words.flatten.sort

@clean_calls = 0

end

A count of the calls to <i>clean?</i>.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/banned_words/filter.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=44

QUIZ 18. BANNED WORDS 45

attr_reader :clean_calls

Test if provided _text_ is allowable by this filter.

#

Returns *false* if _text_ contains _banned_words_,

true if it does not.

def clean?(text)

@clean_calls += 1

@banned_words.each do |word|

return false if text =~ /\b#{word}\b/

end

true

end

Verify a _suspect_words_ list against the actual

_banned_words_ list.

#

Returns *false* if the two lists are not identical or

true if the lists do match.

#

Accepts a list of words, arrays of words,

or a combination of the two.

def verify(*suspect_words)

suspect_words.flatten.sort == @banned_words

end

end

filter = LanguageFilter.new "six"

filter.clean?("I' ll be home at six.") # => false

filter.clean?("Do not taunt the happy fun ball!") # => true

filter.verify("ball") # => false

filter.verify("six") # => true

filter.clean_calls # => 2

Figure out how to find the hidden words using as few calls to Language-

Filter.clean?() as possible.

Which algorithms are effective when many words are blocked (say 10%),

and which are effective when very few are blocked (1 in 20,000)?

All solutions should do better than this:

dict = ["foo", "bar", "six", "baz"]

filter = LanguageFilter.new "six"

puts dict.reject { |word| filter.clean?(word) }

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=45

QUIZ 19. SECRET SANTAS 46

Quiz 19Answer on page 195

Secret Santas
Honoring a long-standing (and fun) tradition started by my wife’s father,

my friends play a Secret Santa game each year around Christmas time.

If you’re not familiar with how a Secret Santa game is played, you really

are missing out on some fun. All players write their names on small

pieces of paper that are folded up, placed in a hat, and mixed well.

Each player then secretly draws a name in turn. Often the draw will

have to be repeated a couple of times, until no players draw their own

names. Santas then spend days surprising the person they drew with

gifts and clues to Santa’s identity. This is a fun way to spread holiday

cheer.

Unfortunately, the hat draw can be tedious. The system is prone to

“Wait, I got myself...” problems, which can require several draws.

This year, my friends added a rule that further complicated the draw.

Since we’re no good at hiding suspicious behavior from our spouses,

we now prevent family members from drawing each other. This makes

it harder to guess who has who. Unfortunately, we knew the hat would

not stand up to the challenge.

The quiz is to replace our hat with a Secret Santa–choosing script.

Your script should accept a list of names on STDIN. Each line will contain

a first name and a family name, separated by a space:

secret_santa/testdata

Mr. Gray

Mrs. Gray

Mr. Thomas

Mrs. Thomas

Mr. Matsumoto

Mrs. Matsumoto

Mr. Fulton

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/secret_santa/testdata
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=46

QUIZ 19. SECRET SANTAS 47

We’ll keep things simple and say that people have only two names, so

you don’t have to worry about tricky names like Gray II.

Your script must choose a Secret Santa for every name in the list. Play-

ers cannot be assigned their own names or anyone else with the same

family name.

Your script should output a list of player names. Alongside each name it

will show another name—the person receiving that player’s gifts. Thus

the following:

Mr. Thomas -> Mr. Gray

would indicate that Mr. Thomas is giving gifts to Mr. Gray.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=47

QUIZ 20. BARREL OF MONKEYS 48

Quiz 20Answer on page 203

Barrel of Monkeys
Posed by Gavin Kistner

Last week one of the local radio stations was having a “Barrel of Mon-

keys” afternoon. While a song was playing, listeners would call in and

suggest the next song, which had to begin with the same letter as the

playing song ended in.

So, for example, a sample (eclectic) Barrel of Monkeys playlist might be

as follows:

1. “Peace Train”

2. “No More ‘I Love You’s”’

3. “Super Trooper”

4. “Rock Me, Amadeus”

5. “Song of the South”

6. “Hooked on a Feeling”

7. “Go Tell It on the Mountain”

See how each song name begins with the last letter of the name of the

song before it?

Just creating any playlist would be too easy, however. We need a worthy

problem to solve:

1. Given any starting and ending song, create a playlist that connects

the two songs.

2. For extra credit, try to create a playlist of a specific duration (to fill

a particular time slot on the radio).

3. For more extra credit, try to find the shortest playlist that links

the songs (either in terms of number of songs or total play time).

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=48

QUIZ 20. BARREL OF MONKEYS 49

You can find an XML file with more than 5,000 song names and play

times at http://rubyquiz.com/SongLibrary.xml.gz (100KB compressed). The

song durations are in milliseconds.

Finally, because this problem may be enough fun without having to

discover trouble yourself, I offer a few things to think about here:

• What do you do with songs with names like “’74-’75” or “Seventy

Times 7” or “=:0 :(”?

• How about a song named “Candy Everybody Wants (unplugged)”

or “Voulez-Vous [Extended Remix, 1979 US Promo]” or “Speed

Racer - Hardcore Mix” or “Breathe Remix Feat Sean Paul”?

• What do you do if there is no way to connect two songs? (And how

do you know for sure?)

Report erratum

http://rubyquiz.com/SongLibrary.xml.gz
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=49

QUIZ 21. AMAZING MAZES 50

Quiz 21Answer on page 214

Amazing Mazes
Posed by Matthew Linnell

Why don’t we try our hand at mazes? We can define the two basic

components of this problem as follows:

• Generating the maze

• Solving the maze

Generating the Maze

The maze is to be rectangular in shape, with the height and width deter-

mined at run time. Each node of the maze is a square area surrounded

by walls on up to three sides.

All nodes of the maze must be reachable from any point. In other words,

if one were to randomly pick a starting point and destination, the maze

is always solvable. Furthermore, let us enforce that only one viable

solution for the maze exists for any given starting point and destination

(you cannot reach the same destination using two different routes).

Your first task is to generate ASCII output representing the maze. Fig-

ure 1.2, on the following page, shows a sample 10×10 maze.

Solving the Maze

Given a maze produced from your previous code, find the solution. Pro-

duce ASCII output to demonstrate the solution.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=50

QUIZ 21. AMAZING MAZES 51

+---+---+---+---+---+---+---+---+---+---+

| | | | |

+ +---+ +---+ + +---+---+ + +

| | | | | | |

+ + +---+ +---+---+---+ + + +

| | | | | |

+---+---+ + + +---+---+---+---+---+

| | |

+ +---+---+---+ +---+---+---+---+ +

| | | |

+ +---+ +---+---+---+ +---+---+ +

| | | | | | |

+---+ +---+ + + +---+ +---+ +

| | | | |

+ +---+ +---+---+---+ +---+---+---+

| | | | |

+---+ + + +---+ +---+---+ + +

| | | | | | | | |

+ + +---+---+ + + + + + +

| | | | |

+---+---+---+---+---+---+---+---+---+---+

Figure 1.2: Sample 10×10 maze

Bonus Points

Here are some bonus tasks:

1. Calculate which starting point and destination in the maze give

you the longest possible path.

2. Calculate which starting point and destination give the most com-

plicated path (involve the most turns).

Here is an example command-line execution:

$ ruby maze.rb {height} {width} [{start} {stop}]

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=51

QUIZ 22. LEARNING TIC-TAC-TOE 52

Quiz 22Answer on page 225

Learning Tic-Tac-Toe
This Ruby Quiz is to implement some AI for playing tic-tac-toe, with

a catch: you’re not allowed to embed any knowledge of the game into

your creation beyond making legal moves and recognizing that it has

won or lost.

Your program is expected to “learn” from the games it plays, until it

masters the game and can play flawlessly.

Tic-tac-toe is a very easy game played on a 3×3 board like this:

| |

---+---+---

| |

---+---+---

| |

Two players take turns filling a single open square with their symbol.

The first person to play uses Xs, and the other player uses Os. The first

player to get a run of three symbols across, down, or diagonally wins.

If the board fills without a run, the game is a draw. Here’s what a game

won by the X player might end up looking like:

| | X

---+---+---

| X |

---+---+---

X | O | O

Submissions can have any interface but should be able to play against

humans interactively. However, I also suggest making it easy to play

against another AI player so you can “teach” the program faster.

Being able to monitor the learning progression and know when a pro-

gram has mastered the game would be very interesting, if you can find

a way to incorporate it into your solution.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=52

QUIZ 23. COUNTDOWN 53

Quiz 23Answer on page 239

Countdown
Posed by Brian Candler

One of the longest-running quiz shows on British television is called

Countdown. That show has a “numbers round.” Some cards are laid

face down in front of the host. The top row contains large numbers

(from the set 25, 50, 75, and 100), and the rest are small (1 to 10).

Numbers are duplicated in the cards. Six cards are picked and dis-

played: the choice is made by one of the contestants, who typically will

ask for one large number and five small ones.

Next, a machine called Cecil picks a target number from 100 to 999

at random. The contestants then have 30 seconds to find a way of

combining the source numbers using the normal arithmetic operators

(+, -, *, and /) to make the target number or to get as close as possible.

Each source card can be used just once. The same applies to any

intermediate results (although of course you don’t have to explicitly

show the intermediate results).

For example, if the target number is 522 and the source cards are 100,

5, 5, 2, 6, and 8, a possible solution is as follows:

100 * 5 = 500

5 + 6 = 11

11 * 2 = 22

500 + 22 = 522

or more succinctly, (5 * 100) + ((5 + 6) * 2) = 522. Another solution is

(100 + 6) * 5 - 8 = 522.

Normal arithmetic rules apply. Each step of the calculation must result

in an integer value.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=53

QUIZ 23. COUNTDOWN 54

The quiz is to write a program that will accept one target number and

a list of source numbers and generate a solution that calculates the

target or a number as close to the target as possible.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=54

QUIZ 24. SOLVING TACTICS 55

Quiz 24Answer on page 249

Solving Tactics
Posed by Bob Sidebotham

There is a pencil and paper game, Tactics, played on a 4×4 grid. The

play starts with an empty grid. On each turn, a player can fill in

from one to four adjacent squares, either horizontally or vertically. The

player who fills in the last square loses.

Here’s a sample game to help clarify the previous rules. The board

position at the end of each play is shown:

First player Second player

X X X X X X X X (Turn 1)

_ _ _ _ _ _ _ _

_ _ _ _ _ _ X _

_ _ _ _ _ _ X _

X X X X X X X X (Turn 2)

X X _ _ X X _ X

_ _ X _ _ _ X X

_ _ X _ _ _ X _

X X X X X X X X (Turn 3)

X X _ X X X X X

_ _ X X _ _ X X

_ _ X X _ _ X X

X X X X X X X X (Turn 4)

X X X X X X X X

X X X X X X X X

_ _ X X X _ X X

X X X X (Turn 5

X X X X Second

X X X X player

X X X X wins!)

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=55

QUIZ 24. SOLVING TACTICS 56

Your task is to write a Ruby program that, given only these rules, deter-

mines whether the first or second player is bound to be the winner,

assuming perfect play. It should do this in a “reasonable” amount of

time and memory—it should definitely take less than a minute on any

processor less than five years old. You get bonus points if you can make

the case that your program actually gets the right answer for the right

reason!

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=56

QUIZ 25. CRYPTOGRAMS 57

Quiz 25Answer on page 259

Cryptograms
Posed by Glenn P. Parker

Given a cryptogram and a dictionary of known words, find the best

possible solution(s) to the cryptogram. You get extra points for speed.

Coding a brute-force solution is relatively easy, but there are many

opportunities for the clever optimizer.

A cryptogram is piece of text that has been passed through a simple

cipher that maps all instances of one letter to a different letter. The

familiar rot1319 encoding is a trivial example.

A solution to a cryptogram is a one-to-one mapping between two sets of

(up to) 26 letters, such that applying the map to the cryptogram yields

the greatest possible number of words in the dictionary.

Both the dictionary and the cryptogram are presented as a set of words,

one per line. The script should output one or more solutions and the

full or partial mapping for each solution. A cryptogram might be as

follows:

gebo

tev

e

cwaack

cegn

gsatkb

ussyk

Its solution could be as follows:

mary

had

19An encoding where the first 13 letters of the alphabet are swapped with the last 13,

and vice versa. In Ruby that’s just some_string.tr("A-Za-z", "N-ZA-Mn-za-m").

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=57

QUIZ 25. CRYPTOGRAMS 58

a

little

lamb

mother

goose

This is solved using the following mapping:

in: abcdefghijklmnopqrstuvwxyz

out: trl.a.m...e..by...ohgdi.s.

(The dots in the “out” side of the mapping indicate unused input letters.)

Three unsolved cryptograms are given. Each cryptogram uses a differ-

ent mapping. The cryptograms may contain a few words that are not in

the dictionary (for example, an author’s name is commonly appended

to quoted text in cryptograms). Many published cryptograms also con-

tain punctuation in plain text as a clue to the solver. The following

cryptograms contain no punctuation, since it just confuses dictionary-

based searches:

cryptograms/crypto1.txt

zfsbhd

bd

lsf

xfe

ofsr

bsdxbejrbls

sbsfra

sbsf

xfe

ofsr

xfedxbejrbls

rqlujd

jvwj

fpbdls

cryptograms/crypto2.txt

mkr

ideerqruhr

nrmsrru

mkr

ozgcym

qdakm

scqi

oui

mkr

qdakm

scqi

dy

mkr

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto1.txt
http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto2.txt
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=58

QUIZ 25. CRYPTOGRAMS 59

ideerqruhr

nrmsrru

mkr

zdakmudua

nja

oui

mkr

zdakmudua

goqb

msodu

cryptograms/crypto3.txt

ftyw

uwmb

yw

ilwwv

qvb

bjtvi

fupxiu

t

dqvi

tv

yj

huqtvd

mtrw

fuw

dwq

bjmqv

fupyqd

The dictionary I used was2of4brif.txt, available as part of the 12Dicts

package at http://prdownloads.sourceforge.net/wordlist/12dicts-4.0.zip.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto3.txt
http://prdownloads.sourceforge.net/wordlist/12dicts-4.0.zip
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=59

Part II

Answers and Discussion

ANSWER 1. MAD LIBS 61

Answer 1From page 6

Mad Libs
These are a fun little distraction, eh? Actually, I was surprised to

discover (when writing the quiz) how practical this challenge is. Mad

Libs are really just a templating problem, and that comes up in many

aspects of programming. Have a look at the “views” in Ruby on Rails20

for a strong real-world example.

Looking at the problem that way got me to thinking, doesn’t Ruby ship

with a templating engine? Yes, it does.

Ruby includes a standard library called ERB.21 ERB allows you to embed

Ruby code into any text document. When that text is run through the

library, the embedded code is run. This can be used to dynamically

build up document content.

For this example, we need only one feature of ERB. When we run ERB on

a file, any Ruby code inside of the funny-looking <%= ... %> tags will be

executed, and the value returned by that execution code will be inserted

into the document. Think of this as delayed interpolation (like Ruby’s

#{ ... }, but it happens when triggered instead of when a String is built).22

Let’s put ERB to work:

madlibs/erb_madlib.rb

#!/usr/local/bin/ruby -w

use Ruby' s standard template engine

require "erb"

20Ruby on Rails, or just Rails to those who know it well, is a popular web application

framework written in Ruby. You can learn more at http://www.rubyonrails.org/.
21ERB is eRuby’s pure-Ruby cousin. eRuby is written in C and stands for “embedded

Ruby.”
22You can learn about ERB’s other features from the online documentation at

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/index.html.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/madlibs/erb_madlib.rb
http://www.rubyonrails.org/
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/index.html
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=61

ANSWER 1. MAD LIBS 62

storage for keyed question reuse

$answers = Hash.new

asks a madlib question and returns an answer

def q_to_a(question)

question.gsub!(/\s+/, " ") # normalize spacing

if $answers.include? question # keyed question

$answers[question]

else # new question

key = if question.sub!(/^\s*(.+?)\s*:\s*/, "") then $1 else nil end

print "Give me #{question}: "

answer = $stdin.gets.chomp

$answers[key] = answer unless key.nil?

answer

end

end

usage

unless ARGV.size == 1 and test(?e, ARGV[0])

puts "Usage: #{File.basename($PROGRAM_NAME)} MADLIB_FILE"

exit

end

load Madlib, with title

madlib = "\n#{File.basename(ARGV.first, ' .madlib').tr(' _' , ' ')}\n\n" +

File.read(ARGV.first)

convert ((...)) to <%= q_to_a(' ...') %>

madlib.gsub!(/\(\(\s*(.+?)\s*\)\)/, "<%= q_to_a(' \\1') %>")

run template

ERB.new(madlib).run

The main principle here is to convert ((...)) to <%= ... %>, so we can use

ERB. Of course, <%= a noun %> isn’t going to be valid Ruby code, so a

helper method is needed. That’s where q_to_a() comes in. It takes the

Mad Libs replacements as an argument and returns the user’s answer.

To use that, we actually need to convert ((...)) to <%= q_to_a(’...’) %>.

From there, ERB does the rest of the work for us.

Custom Templating

Now for simple Mad Libs, you don’t really need something as robust as

ERB. It’s easy to roll your own solution, and most people did just that.

Let’s examine a custom parsing program.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=62

ANSWER 1. MAD LIBS 63

There are really only three kinds of story elements in our Mad Libs

exercise. There’s ordinary prose, questions to ask the user, and reused

replacement values.

The last of those is the easiest to identify, so let’s start there. If a value

between the ((...)) placeholders has already been set by a question, it is

a replacement. That’s easy enough to translate to code:

madlibs/parsed_madlib.rb

A placeholder in the story for a reused value.

class Replacement

Only if we have a replacement for a given token is this class a match.

def self.parse?(token, replacements)

if token[0..1] == "((" and replacements.include? token[2..-1]

new(token[2..-1], replacements)

else

false

end

end

def initialize(name, replacements)

@name = name

@replacements = replacements

end

def to_s

@replacements[@name]

end

end

Using parse?(), you can turn a replacement value from the story into a

code element that can later be used to build the final story. The return

value of parse?() is either false, if the token was not a replacement value,

or the constructed Replacement object.

Inside parse?(), a token is selected if it begins with a ((and the name

is in the Hash of replacements. When that is the case, the name and

Hash are stored so the lookup can be made when the time comes. That

lookup is the to_s() method.

On to Question objects:

madlibs/parsed_madlib.rb

A question for the user, to be replaced with their answer.

class Question

If we see a ((, it' s a prompt. Save their answer if a name is given.

def self.parse?(prompt, replacements)

if prompt.sub!(/^\(\(/, "")

prompt, name = prompt.split(":").reverse

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/madlibs/parsed_madlib.rb
http://media.pragprog.com/titles/fr_quiz/code/madlibs/parsed_madlib.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=63

ANSWER 1. MAD LIBS 64

replacements[name] = nil unless name.nil?

new(prompt, name, replacements)

else

false

end

end

def initialize(prompt, name, replacements)

@prompt = prompt

@name = name

@replacements = replacements

end

def to_s

print "Enter #{@prompt}: "

answer = $stdin.gets.to_s.strip

@replacements[@name] = answer unless @name.nil?

answer

end

end

A Question is identified as any token left in the story that starts with ((

and wasn’t a Replacement. The prompt and name, if there was one, are

stored alone with the replacements for later use. A nil value is added

under a requested name in the Hash, so future Replacement objects will

match.

When the to_s() method is called, Question will query the user and return

the answer. It will also set the value in the @replacements, if the question

was named.

Stories have only one more element: the prose. Ruby already has an

object for that, a String. Let’s just adapt String’s interface so we can use

it:

madlibs/parsed_madlib.rb

Ordinary prose.

class String

Anything is acceptable.

def self.parse?(token, replacements)

new(token)

end

end

No surprises there. All elements left in the story are prose, so parse?()

accepts anything, returning a simple string.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/madlibs/parsed_madlib.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=64

ANSWER 1. MAD LIBS 65

Here’s the application code that completes the solution:

madlibs/parsed_madlib.rb

argument parsing

unless ARGV.size == 1 and test(?e, ARGV[0])

puts "Usage: #{File.basename($PROGRAM_NAME)} MADLIB_FILE"

exit

end

madlib = <<MADLIB

#{File.basename(ARGV.first, ".madlib").tr("_", " ")}

#{File.read(ARGV.first)}

MADLIB

tokenize input

tokens = madlib.split(/(\(\([^)]+)\)\)/).map do |token|

token[0..1] == "((" ? token.gsub(/\s+/, " ") : token

end

identify each part of the story

answers = Hash.new

story = tokens.map do |token|

[Replacement, Question, String].inject(false) do |element, kind|

element = kind.parse?(token, answers) and break element

end

end

share the results

puts story.join

After some familiar argument-parsing code, we find a three-stage pro-

cess for going from input to finished story. First, the input file is broken

down into tokens. Tokenization is really just a single call to split(). It’s

important to note that anything captured by parentheses in the Reg-

exp used by split() is part of the returned set. This is used to return

((...)) tokens, even though they are the delimiter for split(). However, the

capturing parentheses are placed to drop the trailing)). The leading ((

is kept for later token identification. Finally, whitespace is normalized

inside ((...)) tokens, in case they run over multiple lines.

In the second stage, each token is converted into a Replacement, Ques-

tion, or String object by the rules we defined earlier. Don’t let that funny-

looking inject() call throw you. I could have just used a body of element

or kind.parse?(token, answers), but that keeps checking all the classes

even after it has found a match. The break was added to short-circuit

the process as soon as we find a parser that accepts the token.

The final stage of processing actually creates and displays a story. In

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/madlibs/parsed_madlib.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=65

ANSWER 1. MAD LIBS 66

order to understand that single line of code, you need to know that join()

will ensure all the elements are String objects, by calling to_s() on them,

before adding them together.

It’s probably worth noting that while this parsing process is some-

what more involved than the other solutions we have and will examine,

only the final step needs to be repeated if we wanted to run the same

story again, say for a different user. The parsed format is completely

reusable.

Mini Libs

Let’s examine one more super small solution by Dominik Bathon. Obvi-

ously, this code is a round of golf23 and not what most of us would

consider pretty, but it still contains some interesting ideas:

madlibs/golfed_madlib.rb

keys=Hash.new { |h, k|

puts "Give me #{k.sub(/\A([^:]+):/, "")}:"

h[$1]=$stdin.gets.chomp

}

puts "", $*[0].split(".")[0].gsub("_", " "),

IO.read($*[0]).gsub(/\(\(([^)]+)\)\)/) { keys[$1] }

In order to understand this code, start at the final puts() call. You don’t

see it used too often, but Ruby’s puts() will accept a list of lines to print.

This code is using that. The first of the three lines is just an empty

String that yields a blank line before we print the story.

The second line puts() is asked to print is the Mad Lib’s name itself,

which is pulled from the file name. The key to understanding this snip-

pet is to know that the Perlish variable $* is a synonym for ARGV. Given

that, you can see the first command-line argument is read, stripped of

an extension with split(), and cleaned up (“_” to “ ” translation). The end

result is a human readable title.

The last line is actually the entire Mad Libs story. Again, you see it

accessed through the first member of $*. The gsub() call handles the

question asking and replacement in one clever step using a simple Hash.

Let’s take a closer look at that Hash. Jump back to the beginning of the

program now. The Hash uses a default value block to conjure key-value

23Golf is a sport programmers sometimes engage in to code a solution in a minimal

amount of keystrokes. They will often use surprising code constructs, as long as it shaves

off a few characters. Because of this, the resulting program can be difficult to read.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/madlibs/golfed_madlib.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=66

ANSWER 1. MAD LIBS 67

pairs as they are needed. It prints a question, sub()ing a key name out if

needed. You can see that the answer is read from the user and shoved

right into the Hash under the $1 key. Exactly what’s in that $1 variable

is the trick. Notice that the original gsub() from the lower puts() call sets

$1 to the entire Mad Libs question. However, the Hash block sometimes

performs another substitution, which overwrites $1. If the substitution

was named, $1 would be set to that name. Otherwise, the sub() call

will fail, and $1 will be unaltered. Then, because we’re talking about a

Hash here, future access to the same key will just return the set value,

bypassing the tricky block.

Again, the above previous has a few bad habits, but it also uses some

rare and interesting Ruby idioms to do a lot of work in very little code.

Additional Exercises

1. Extend the Mad Libs syntax to support case changes.

2. Enhance your solution to support the new syntax.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=67

ANSWER 2. LCD NUMBERS 68

Answer 2From page 8

LCD Numbers
Clearly this problem isn’t too difficult. Hao (David) Tran sent in a golfed

solution (not shown) in less than 300 bytes. Easy or not, this classic

challenge does address topics such as scaling and joining multiline

data that are applicable to many areas of computer programming.

Using Templates

I’ve seen three main strategies used for solving the problem. Some use

a template approach, where you have some kind of text representation

of your number at a scale of one. Two might look like this, for example:

[" - ",

" |",

" - ",

"| ",

" - "]

Scaling that to any size is a twofold process. First, you need to stretch

it horizontally. The easy way to do that is to grab the second character

of each string (a “-” or a “ ”) and repeat it -s times:

digit.each { |row| row[1, 1] *= scale }

After that, the digit needs to be scaled vertically. That’s pretty easy to

do while printing it out, if you want. Just print any line containing a |

-s times:

digit.each do |row|

if row.include? "|"

scale.times { puts row }

else

puts row

end

end

Here’s a complete solution, drawing those ideas together:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=68

ANSWER 2. LCD NUMBERS 69

lcd_numbers/template.rb

templates

DIGITS = <<END_DIGITS.split("\n").map { |row| row.split(" # ") }.transpose

- # # - # - # # - # - # - # - # -

| | # | # | # | # | | # | # | # | # | | # | |

- # - # - # - # - # # - # -

| | # | # | # | # | # | # | | # | # | | # |

- # # - # - # # - # - # # - # -

END_DIGITS

number scaling (horizontally and vertically)

def scale(num, size)

bigger = []

num.each do |line|

row = line.dup

row[1, 1] *= size

if row.include? "|"

size.times { bigger << row }

else

bigger << row

end

end

bigger

end

option parsing

s = 2

if ARGV.size >= 2 and ARGV[0] == ' -s' and ARGV[1] =~ /^[1-9]\d*$/

ARGV.shift

s = ARGV.shift.to_i

end

digit parsing/usage

unless ARGV.size == 1 and ARGV[0] =~ /^\d+$/

puts "Usage: #$0 [-s SIZE] DIGITS"

exit

end

n = ARGV.shift

scaling

num = []

n.each_byte do |c|

num << [" "] * (s * 2 + 3) if num.size > 0

num << scale(DIGITS[c.chr.to_i], s)

end

output

num = ([""] * (s * 2 + 3)).zip(*num)

num.each { |l| puts l.join }

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/lcd_numbers/template.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=69

ANSWER 2. LCD NUMBERS 70

On and Off Bits

A second strategy used is to treat each digit as a series of segments that

can be on or off. The numbers easily break down into seven positions:

6

5 4

3

2 1

0

Using that map, we can convert the representation of 2 to binary:

0b1011101

Expansion of these representations is handled much as it was in the

previous approach. Here’s a complete solution using bits by Florian

Groß:

lcd_numbers/bits.rb

module LCD

extend self

Digits are represented by simple bit masks. Each bit identifies

whether a line should be displayed. The following ASCII

graphic shows the mapping from bit position to the belonging line.

#

=6

5 4

=3

2 1

=0

Digits = [0b1110111, 0b0100100, 0b1011101, 0b1101101, 0b0101110,

0b1101011, 0b1111011, 0b0100101, 0b1111111, 0b1101111,

0b0001000, 0b1111000] # Minus, Dot

Top, TopLeft, TopRight, Middle, BottomLeft, BottomRight, Bottom = *0 .. 6

SpecialDigits = { "-" => 10, "." => 11 }

private

def line(digit, bit, char = "|")

(digit & 1 << bit).zero? ? " " : char

end

def horizontal(digit, size, bit)

[" " + line(digit, bit, "-") * size + " "]

end

def vertical(digit, size, left_bit, right_bit)

[line(digit, left_bit) + " " * size + line(digit, right_bit)] * size

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/lcd_numbers/bits.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=70

ANSWER 2. LCD NUMBERS 71

def digit(digit, size)

digit = Digits[digit.to_i]

horizontal(digit, size, Top) +

vertical(digit, size, TopLeft, TopRight) +

horizontal(digit, size, Middle) +

vertical(digit, size, BottomLeft, BottomRight) +

horizontal(digit, size, Bottom)

end

public

def render(number, size = 1)

number = number.to_s

raise(ArgumentError, "size has to be > 0") unless size > 0

raise(ArgumentError, "Invalid number") unless number[/\A[\d.-]+\Z/]

number.scan(/./).map do |digit|

digit(SpecialDigits[digit] || digit, size)

end.transpose.map do |line|

line.join(" ")

end.join("\n")

end

end

if __FILE__ == $0

require ' optparse'

options = { :size => 2 }

number = ARGV.pop

ARGV.options do |opts|

script_name = File.basename($0)

opts.banner = "Usage: ruby #{script_name} [options] number"

opts.separator ""

opts.on("-s", "-size size", Numeric,

"Specify the size of line segments.",

"Default: 2"

) { |options[:size]| }

opts.separator ""

opts.on("-h", "-help", "Show this help message.") { puts opts; exit }

opts.parse!

end

puts LCD.render(number, options[:size])

end

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=71

ANSWER 2. LCD NUMBERS 72

With either method, you will need to join the scaled digits together for

output. This is basically a two-dimensional join() problem. Building a

routine like that is simple using either Array.zip() or Array.transpose().

Using a State Machine

Finally, a unique third strategy involves a state machine. Let’s look at

the primary class of Dale Martenson’s solution: Spring Cleaning

I altered the LCD class to

use constants instead of

class variables. This

seemed closer to their

intended purpose.

lcd_numbers/states.rb

class LCD

This hash defines the segment display for the given digit. Each

entry in the array is associated with the following states:

#

HORIZONTAL

VERTICAL

HORIZONTAL

VERTICAL

HORIZONTAL

DONE

#

The HORIZONTAL state produces a single horizontal line. There

are two types:

#

0 - skip, no line necessary, just space fill

1 - line required of given size

#

The VERTICAL state produces either a single right side line,

a single left side line or both lines.

#

0 - skip, no line necessary, just space fill

1 - single right side line

2 - single left side line

3 - both lines

#

The DONE state terminates the state machine. This is not needed

as part of the data array.

LCD_DISPLAY_DATA = {

"0" => [1, 3, 0, 3, 1],

"1" => [0, 1, 0, 1, 0],

"2" => [1, 1, 1, 2, 1],

"3" => [1, 1, 1, 1, 1],

"4" => [0, 3, 1, 1, 0],

"5" => [1, 2, 1, 1, 1],

"6" => [1, 2, 1, 3, 1],

"7" => [1, 1, 0, 1, 0],

"8" => [1, 3, 1, 3, 1],

"9" => [1, 3, 1, 1, 1]

}

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/lcd_numbers/states.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=72

ANSWER 2. LCD NUMBERS 73

LCD_STATES = [

"HORIZONTAL",

"VERTICAL",

"HORIZONTAL",

"VERTICAL",

"HORIZONTAL",

"DONE"

]

attr_accessor :size, :spacing

def initialize(size=1, spacing=1)

@size = size

@spacing = spacing

end

def display(digits)

states = LCD_STATES.reverse

0.upto(LCD_STATES.length) do |i|

case states.pop

when "HORIZONTAL"

line = ""

digits.each_byte do |b|

line += horizontal_segment(LCD_DISPLAY_DATA[b.chr][i])

end

print line + "\n"

when "VERTICAL"

1.upto(@size) do |j|

line = ""

digits.each_byte do |b|

line += vertical_segment(LCD_DISPLAY_DATA[b.chr][i])

end

print line + "\n"

end

when "DONE"

break

end

end

end

def horizontal_segment(type)

case type

when 1

return " " + ("-" * @size) + " " + (" " * @spacing)

else

return " " + (" " * @size) + " " + (" " * @spacing)

end

end

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=73

ANSWER 2. LCD NUMBERS 74

def vertical_segment(type)

case type

when 1

return " " + (" " * @size) + "|" + (" " * @spacing)

when 2

return "|" + (" " * @size) + " " + (" " * @spacing)

when 3

return "|" + (" " * @size) + "|" + (" " * @spacing)

else

return " " + (" " * @size) + " " + (" " * @spacing)

end

end

end

The comment at the beginning of the LCD class gives you a nice clue to

what is going on here. The class represents a state machine. For the

needed size (set in initialize()), the class walks a series of states (defined

in LCD_STATES). At each state, horizontal and vertical segments are built

as needed (with horizontal_segment() and vertical_segment()).

The process I’ve just described is run through display(), the primary

interface method. You pass it a string of digits, and it walks each state

and generates segments as needed.

One nice aspect of this approach is that it’s easy to handle output one

line at a time, as shown in display(). The top line of all digits, generated

by the first "HORIZONTAL" state, is printed as soon as it’s built, as is each

state that follows. This resource-friendly system could scale well to

much larger inputs.

The rest of Dale’s code is option parsing and the call to display():

lcd_numbers/states.rb

require ' getoptlong'

opts = GetoptLong.new(

["-size", "-s", GetoptLong::REQUIRED_ARGUMENT],

["-spacing", "-sp", "-p", GetoptLong::REQUIRED_ARGUMENT]

)

lcd = LCD.new

opts.each do |opt, arg|

case opt

when "-size" then lcd.size = arg.to_i

when "-spacing" then lcd.spacing = arg.to_i

end

end

lcd.display(ARGV.shift)

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/lcd_numbers/states.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=74

ANSWER 2. LCD NUMBERS 75

Additional Exercises

1. Modify your solution to print each line as it is built instead of

building up the whole number, if it doesn’t already.

2. Extend Florian Groß’s solution to add the hexadecimal digits A

through F.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=75

ANSWER 3. GEDCOM PARSER 76

Answer 3From page 9

GEDCOM Parser
Let’s jump right into a solution submitted by Hans Fugal:

gedcom_parser/simple.rb

#! /usr/bin/ruby

require ' rexml/document'

doc = REXML::Document.new "<gedcom/>"

stack = [doc.root]

ARGF.each_line do |line|

next if line =~ /^\s*$/

parse line

line =~ /^\s*([0-9]+)\s+(@\S+@|\S+)(\s(.*))?$/ or raise "Invalid GEDCOM"

level = $1.to_i

tag = $2

data = $4

pop off the stack until we get the parent

while (level+1) < stack.size

stack.pop

end

parent = stack.last

create XML tag

if tag =~ /@.+@/

el = parent.add_element data

el.attributes[' id'] = tag

else

el = parent.add_element tag

el.text = data

end

stack.push el

end

doc.write($stdout,0)

puts

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/gedcom_parser/simple.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=76

ANSWER 3. GEDCOM PARSER 77

This code uses the standard REXML library.24 This is a tool for parsing

(or in this case, generating) XML documents. The usage here is very

basic. First a document is created, and then elements are added to

it as they are built. At the end, the completed document is written to

$stdout.

The previous starts by creating a REXML document and a stack for man-

aging parent/child relationships. The stack is just an Array, which is

quite versatile in Ruby. With setup out of the way, the code reads from

$stdin or files specified as command-line arguments, line by line. That’s

exactly what the ARGF object is for.

Each line is processed in three stages. The first step is to parse the

line. Hans uses a Regexp to break down the line and then assigns the

capture variables to level, tag, and data.

The second step is to rewind the stack until we find the parent element

for this line. That makes sure the following code will add the current

element to the correct place in the XML document.

The third and final step does that addition. Here the line data is

checked for the two possible formats defined in the quiz. REXML is used

to create an element for the proper format25 and add that element to

the parent element. The stack is then updated with the new element.

When it has all been read, the complete XML is dumped to $stdout.

Optimizing the Read and Write Cycles

One problem with using REXML is that the entire document must be

constructed before it can be output. With large GEDCOM files and

REXML needing to store the information it does, this can exhaust avail-

able memory for some systems. If you want to get around that, you’ll

need to build up your own XML strings. The advantage of this is that

you can output nodes as soon as you have seen all their children (when

the LEVEL drops). This is pretty efficient. Let’s take a look at a solution

from Jamis Buck that used that technique:

gedcom_parser/efficient.rb

#!/usr/bin/env ruby

24You can read the online documentation for REXML at

http://www.germane-software.com/software/rexml/docs/tutorial.html.
25If you aren’t going to use a great library like REXML to generate XML output, remember

to handle your own escaping! This was a common mistake in submitted solutions. You

can even use REXML for escaping only: REXML::Text.normalize("Some & text < foo > \" bar").

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/gedcom_parser/efficient.rb
http://www.germane-software.com/software/rexml/docs/tutorial.html
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=77

ANSWER 3. GEDCOM PARSER 78

GEDCOM Specifics

Obviously, Hans’s solution doesn’t do any special handling of
the GEDCOM format. It’s a simple parse and print solution.
Some solutions may want to interpret more from the GEDCOM
file as opposed to simple translation. For example, a solution
could build a single entity out of GEDCOM’s CONC and CONT

fields. Those fields represent a continuation of long data ele-
ments. Of course, techniques like this require some knowledge
of the GEDCOM format beyond what is given in the quiz.

class GED2XML

IS_ID = /^@.*@$/

class Node < Struct.new(:level, :tag, :data, :refid)

def initialize(line=nil)

level, tag, data = line.chomp.split(/\s+/, 3)

level = level.to_i

tag, refid, data = data, tag, nil if tag =~ IS_ID

super level, tag.downcase, data, refid

end

end

def indent(level)

print " " * (level + 1)

end

def safe(text)

text.

gsub(/&/, "&").

gsub(/</, "<").

gsub(/>/, ">").

gsub(/"/, """)

end

def process(io)

node_stack = []

puts "<gedcom>"

wrote_newline = true

io.each_line do |line|

next if line =~ /^\s*$/o

node = Node.new(line)

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=78

ANSWER 3. GEDCOM PARSER 79

while !node_stack.empty? && node_stack.last.level >= node.level

prev = node_stack.pop

indent prev.level if wrote_newline

print "</#{prev.tag}>\n"

wrote_newline = true

end

indent node.level if wrote_newline

print "<#{node.tag}"

print " id=\"#{node.refid}\"" if node.refid

if node.data

if node.data =~ IS_ID

print " ref=\"#{node.data}\">"

else

print ">#{safe(node.data)}"

end

wrote_newline = false

else

puts ">"

wrote_newline = true

end

node_stack << node

end

until node_stack.empty?

prev = node_stack.pop

indent prev.level if wrote_newline

print "</#{prev.tag}>\n"

wrote_newline = true

end

puts "</gedcom>"

end

end

GED2XML.new.process ARGF

The first thing that jumps out of this code is the inner class Node. Jamis

wants to use a Struct here, but he wants it to be capable of finding the

data it needs in a given line. To set that up, Node inherits directly

from a constructor call.Struct.new returns the Class object it created,

which is immediately used as a parent class for the inheritance of Node.

Think of this as anonymous inheritance. In Node’s initialize() method,

the data is broken down as needed and then handed off to the standard

constructor for a Struct.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=79

ANSWER 3. GEDCOM PARSER 80

Next, GED2XML defines a couple of helper methods. The indent() method

is just a tool for keeping the XML output pretty by printing an indent for

the current level of the hierarchy. The safe() method is needed because

we won’t be able to count on REXML to handle escaping this time around.

It returns a copy of the passed-in String that is properly escaped XML

(as long as you store the attributes in double quotes).

We then come to the process() method, where most of the work is done.

This is similar to the solution we examined from Hans earlier. There

are only a few differences:

• Output is printed directly, instead of using REXML to build ele-

ments.

• When popping elements off the stack, we need to print a closing

tag for that element.

• That means we have to clear the stack one final time after the

parsing is done to ensure that all elements are closed.

That’s all there is to that solution. As you can see, the last line simply

hands ARGF to process() to trigger the transform.

Again, the second solution is more efficient and can handle bigger data

on smaller hardware. However, the first one is a little easier to build

and may be all you need in many cases. “Use the simplest thing that

could possibly work,” as the eXtreme Programming crowd is fond of

saying.

Additional Exercises

1. Compare the run-time and memory usage of the two solutions

discussed previously and your own. Note the differences.

2. Reverse the process of this quiz. Read in the XML you generated,

and output a GEDCOM file, formatted like the examples in the

quiz.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=80

ANSWER 4. ANIMAL QUIZ 81

Answer 4From page 11

Animal Quiz
Everybody solved this one using pretty much the same technique. Jim

Weirich explains the strategy:

There is an easy solution that represents the database as a binary

tree with questions as interior nodes and possible animals as leaf

nodes. Each interior question node has two children corresponding

to a “yes” or “no” answer. The children are either further questions

(which will be asked) or an animal (which will be guessed).

Couldn’t have said it better myself. Let’s see Jim’s own implementation

of said tree: Spring Cleaning

I removed the letter y

from the vowels in

Animal.an(), because all

but the most obscure

words starting with y

should still use a as an

article (for example, a

yew).

animal_quiz/animals.rb

#!/usr/bin/env ruby

require ' yaml'

require ' ui'

def ui

$ui ||= ConsoleUi.new

end

class Question

def initialize(question, yes, no)

@question = question

@yes = yes

@no = no

@question << "?" unless @question =~ /\?$/

@question.sub!(/^([a-z])/) { $1.upcase }

end

def walk

if ui.ask_if @question

@yes = @yes.walk

else

@no = @no.walk

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/animal_quiz/animals.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=81

ANSWER 4. ANIMAL QUIZ 82

self

end

end

class Animal

attr_reader :name

def initialize(name)

@name = name

end

def walk

if ui.ask_if "Is it #{an name}?"

ui.say "Yea! I win!\n\n"

self

else

ui.say "Rats, I lose"

ui.say "Help me play better next time."

new_animal = ui.ask "What animal were you thinking of?"

question = ui.ask "Give me a question " +

"to distinguish a #{an name} from #{an new_animal}."

response = ui.ask_if "For #{an new_animal}, " +

"the answer to your question would be?"

ui.say "Thank you\n\n"

if response

Question.new(question, Animal.new(new_animal), self)

else

Question.new(question, self, Animal.new(new_animal))

end

end

end

def an(animal)

((animal =~ /^[aeiou]/) ? "an " : "a ") + animal

end

end

if File.exist? "animals.yaml"

current = open("animals.yaml") { |f| YAML.load(f.read) }

else

current = Animal.new("mouse")

end

loop do

current = current.walk

break unless ui.ask_if "Play again?"

ui.say "\n\n"

end

open("animals.yaml", "w") do |f| f.puts current.to_yaml end

This is a very straightforward solution. At the top, it brings in YAML for

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=82

ANSWER 4. ANIMAL QUIZ 83

storage (many people did this) and a ui library to handle the interface.

It also defines a helper method for the ui library, making it trivial to

change the entire interface just by setting a global variable.

Skip over the class definitions now, and have a look at the “main” sec-

tion. The first third loads an existing animal tree, if one is available.

Otherwise, it creates a new tree.

The middle third walks the tree, saving the result in case a new node

is added. It then asks whether the user would like to play again, using

the ui() helper method.

The last third uses YAML to save out the tree at the end of this run.

To make sense of all this talk about a “tree,” you need to go back up and

examine the two classes. As described in the strategy quote, Question

objects hold the question itself, as well as links to the answer nodes

for “yes” and “no”. The real method of interest here is Question.walk()

(not to be confused with Animal.walk(), which we will examine shortly).

walk() asks its question through ui() and then recurses into @yes.walk()

or @no.walk(), depending on the answer provided. The trick to note here

is that the result of the call is saved back to the node. That allows

nodes to update themselves when the game learns a new animal.

That just leaves Animal, which is even easier to grasp. Again, the

method of interest is Animal.walk(). walk() guesses the animal over ui()

and declares victory if it’s right. When it’s wrong, it asks the clarifying

questions to learn and returns itself and the new animal wrapped in

a new Question object. This return ensures that the tree is updated,

thanks to the saving behavior of Question.walk().

That leaves only the mystical ui library. Here’s a look at it:

animal_quiz/ui.rb

#!/usr/bin/env ruby

class ConsoleUi

def ask(prompt)

print prompt + " "

answer = gets

answer ? answer.chomp : nil

end

def ask_if(prompt)

answer = ask(prompt)

answer =~ /^\s*[Yy]/

end

def say(*msg)

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/animal_quiz/ui.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=83

ANSWER 4. ANIMAL QUIZ 84

puts msg

end

end

This is just a console interface, of course. ask() handles input, say()

handles output, and ask_if() is a helper method that returns true if it

looks like the user answered with a “yes” or false otherwise (handy for if

conditions, thus the name). These methods could be replaced with CGI

equivalents, GUI routines, or whatever. Nice abstraction here.

Arrays Instead of Custom Objects

That’s a nice object-oriented abstraction for the tree, but you could also

use simple data structures to solve the quiz. Let’s look at a version by

Markus König that uses nested Arrays:

animal_quiz/array.rb

#! /usr/bin/env ruby

def ask(prompt)

loop do

print prompt, ' '

$stdout.flush

s = gets

exit if s == nil

s.chomp!

if s == ' y' or s == ' yes'

return true

elsif s == ' n' or s == ' no'

return false

else

$stderr.puts "Please answer yes or no."

end

end

end

def my_readline

s = gets

exit if s == nil

s.chomp!

return s

end

class AnimalQuiz

DEFAULT_ANSWERS = [' an elephant']

def initialize(filename)

if not filename

@answers = DEFAULT_ANSWERS

else

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/animal_quiz/array.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=84

ANSWER 4. ANIMAL QUIZ 85

begin

File.open(filename) do |f|

@answers = eval(f.read)

end

rescue Errno::ENOENT

@answers = DEFAULT_ANSWERS

end

end

@current = nil

end

def save(filename)

File.open(filename, ' w') do |f|

f.puts @answers.inspect

end

end

def run_once

unless @current

@current = @answers

puts ' Think of an animal...'

end

if @current.length == 1

if ask("Is it #{@current[0]}?")

puts ' I win! Pretty smart, aren\' t I?'

else

print ' You win! Help me learn from my '

puts ' mistake before you go...'

puts ' What animal were you thinking of?'

correct = my_readline

incorrect = @current[0]

print ' Give me a question to distinguish '

puts "#{correct} from #{incorrect}."

question = my_readline

if ask("For #{correct}, what is the" \

+ ' answer to your question?')

@current.push [correct]

@current.push [incorrect]

else

@current.push [incorrect]

@current.push [correct]

end

@current[0] = question

end

if ask(' Play again?')

@current = nil

puts

else

exit

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=85

ANSWER 4. ANIMAL QUIZ 86

end

elsif @current.length == 3

if ask(@current[0])

@current = @current[1]

else

@current = @current[2]

end

end

end

def run

loop {run_once}

end

end

filename = ENV[' HOME'] + ' /.animal-quiz'

quiz = AnimalQuiz.new(filename)

begin

quiz.run

ensure

quiz.save filename

end

This code starts with a couple of utility methods. The first, ask(), gets

a valid "yes" or "no" answer from the user through the terminal. Notice

how it loops until given a valid answer and then uses return to break out

of the loop.

The other method, my_readline(), is an auto-chomp()ing version of gets().

This makes asking the user questions easier later.

The AnimalQuiz class contains the majority of the solution. It starts by

setting a default answer tree, which is just a simple Array. You can see

that initialize() tries to load a previously saved tree but uses the default

if this cannot be done (possibly because no file exists in the first run).

Take a good look at that file load in initialize() before we move on. Aside

from the pretty exception handling, what is it really loading? Ruby

code. Smooth. If you jump down to save(), you’ll see how the Array is

saved out to the file as actual code. Then initialize() can just eval() it to

re-create it.26

26It’s always good to remember that eval(), while helpful, can be dangerous, and

using it should always be considered carefully. There’s probably not a lot of risk in

this instance, but it’s important to note that should malicious Ruby code be added the

program’s saved file, it will be blindly executed the next time the program is launched.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=86

ANSWER 4. ANIMAL QUIZ 87

The run_once() method is the heart of this solution. On the first call,

it sets @current to the answer tree Array, and then it forks depending

on whether the tree has one or three members. A one-member Array

is an animal, so it’s guessed, and the user is asked whether the pro-

gram was correct. If it was, the current game ends with a final printed

message. If not, the user is asked to give the correct animal. Note how

these answers are saved. The “yes” and “no” branch answers are added

to @current, and the animal is replaced with the new question. This

converts the current Array in the tree from one to three members. Now

the added branches are wrapped in Arrays when added, to keep the tree

growing.

When the current Array of the tree has three members, we know it’s a

question. The program asks and branches to the next Array of the tree

based on the answer.

The run() method turns run_once() into a cycle of games with repeated

execution. The rest of the code just loads the previous file and kicks

off the run() method. Look at the nice use of ensure here to perform the

final save when quitting. This is essential, since exit() can be called any

time the user is asked for input.

Leaving the Trees

Now, I did say the tree method was easy, but it’s not without its faults.

Once more, I give you the voice of Jim:

The tree solution has some drawbacks. It is very sensitive to the order

in which animals are added to the tree and the type of questions

used. The tree solution works best when the early questions divide

the set of possible animals into more or less equal groups. This keeps

the tree nicely balanced, and the series of questions leading up to any

guess are all equally short. Unfortunately, in real life the tree tends to

become very unbalanced with individual questions targeting a rather

specific animal in the “yes” branch and the “no” branch becoming a

long list of more specific questions.

Another small problem with the tree solution is that some questions

are ambiguous, or the user doesn’t have the knowledge to answer

the question properly. For example, a question might be “Does it live

in the water?” Some people might select a beaver as their animal

and think “Oh yes, it loves to swim.” Others might say “No, it lives

on land, it just enjoys swimming.” In actual practice, these ambigui-

ties average out and you would get the beaver answer on both "yes"

and "no" nodes of a question, each branch using different questions

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=87

ANSWER 4. ANIMAL QUIZ 88

to narrow down the choice. Although not a fatal flaw, it does put

redundant answers in the tree and essentially waste a question that

could be put to better use.

I actually did a fair amount of thinking about other approaches to this

problem. Unfortunately, every time I broke from the tree structure, it

became a lot trickier to add new animals. I basically had to badger

the user for answers to half of all the questions known about their ani-

mal, and in doing so it seemed I ran into even more irrelevancy issues.

Because of that, I eventually abandoned the approach. If anybody has

or creates another strategy for this, be sure to share!27

Additional Exercises

1. Get as many different people as you can to play with your solu-

tion. Take it to your son’s school show-and-tell, wrap it in a web

interface28 and get the whole world using it, or just drag all the vis-

itors to your home back to the keyboard for a few quick guesses.

Examine the tree after so many people have altered it.

2. Add a history feature to the program so that it can tell you how

many times it has correctly guessed an animal.

3. Modify your program so you can ask it to tell you about an animal

it knows of and have it respond with as many details as possible.

For example:

⇐ describe mouse

⇒ A mouse is small.

A mouse does not fly.

A mouse has fur.

You may need to rethink animal entry details to support this.

27I’m told that http://20q.net/ uses a nonhierarchical approach for its game.
28See http://www.animalgame.com/play/ for an example.

Report erratum

http://20q.net/
http://www.animalgame.com/play/
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=88

ANSWER 5. SCRABBLE STEMS 89

Answer 5From page 13

Scrabble Stems
We can solve the Scrabble stem problem without much effort using the

typical algorithm trade-off. We can sacrifice memory (in some cases it’s

speed, or even both) for an easy-to-code solution. There are a lot of

stems, but we can generate them all and store them with around 50

MB of RAM, which is not too rare these days.

Let’s see how that turns out:

scrabble_stems/in_memory.rb

#!/usr/local/bin/ruby -w

argument parsing

DICTIONARY = if ARGV.first == "-w"

ARGV.shift

ARGV.shift

else

"/usr/share/dict/words"

end

if ARGV.first =~ /\A\d+\Z/

LIMIT = ARGV.first.to_i

else

puts "Usage: #{File.basename($PROGRAM_NAME)} [-d DICTIONARY_FILE] LIMIT"

exit

end

storage for all the stems we find and the letters they combine with

stems = Hash.new

read the dictionary

File.foreach(DICTIONARY) do |word|

clean up the words

word.downcase!

word.delete!("^a-z")

skip anything but a seven letter word

next unless word.length == 7

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/scrabble_stems/in_memory.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=89

ANSWER 5. SCRABBLE STEMS 90

translate word to an alphabetized arrangement of letters

signature = word.split(//).sort

remove each letter from the word to create stems

signature.uniq.each do |letter|

stem = signature.join.sub(letter, "")

(stems[stem] ||= Hash.new)[letter] = true

end

end

drop anything below the limit and reorder

result = stems.reject { |stem, combines| combines.size < LIMIT }.

sort_by { |stem, combines| -combines.size }

display the results

result.each do |stem, combines|

puts "#{stem} (#{combines.size}) #{combines.keys.sort.join}"

end

The code starts by setting up DICTIONARY and LIMIT constants for the

program arguments. It also creates a Hash to hold the stems it will find.

After that, we read the dictionary, line by line. This is where most of the

work is done. The code inside foreach() normalizes case, tosses out any

punctuation and whitespace, and checks to make sure we keep only

seven-letter words. The next step is to split() the words into letters and

sort() them, creating a signature that will match other words using the

same letters (anagrams). Then we remove the unique letters from the

word one at a time to find all the stems, adding each of those to stems.

At this point we’ve found all the stems in the dictionary for all seven-

letter words. The next chunk of code removes results below the limit

we wanted and sorts the results for display.

The final chunk of the program writes out the results, line by line.

Of course, we can’t always afford to sacrifice the RAM. And this prob-

lem could be solved without as much memory. The trick for that is to

generate and verify stems one at a time. This might be needed if the

search space was larger.

Eating Less RAM

Let’s examine a less obvious solution that’s a little friendlier on memory

and a touch faster. Here’s some code by Dennis Ranke: Spring Cleaning

I replaced a couple of

magic number 97s

with ?as, because I

suspect it makes their

purpose more obvious to

readers.

scrabble_stems/bit_work.rb

hash = Hash.new {|h, k| h[k] = 0}

File.foreach(ARGV[0] || ' WORD.LST') do |line|

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/scrabble_stems/bit_work.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=90

ANSWER 5. SCRABBLE STEMS 91

line.strip!

if line.size == 7

letters = line.downcase.scan(/./).sort.join

7.times do |i|

hash[letters[0, i] + letters[(i+1)..-1]] |= 1 << (letters[i] - ?a)

end

end

end

cutoff = (ARGV[1] || ' 15').to_i

count = {}

hash.each do |k, v|

v = (v & 0x5555555) + ((v>>1) & 0x5555555)

v = (v & 0x3333333) + ((v>>2) & 0x3333333)

v = (v & 0xf0f0f0f) + ((v>>4) & 0xf0f0f0f)

v = (v & 0x0ff00ff) + ((v>>8) & 0x0ff00ff)

v = (v & 0x000ffff) + ((v>>16) & 0x000ffff)

count[k] = v if v >= cutoff

end

count.keys.sort_by {|k| count[k]}.each do |letters|

printf "%s: (%d) ", letters, count[letters]

combi = hash[letters]

26.times do |i|

print((i+?a).chr) if combi[i] == 1

end

puts

end

It’s pretty clear at first glance that first foreach() is loading hash, but

what are the keys and values? The first couple of lines in that iterator

throw away whitespace and ensure that we deal only with seven-letter

words. You can then see that this code breaks words down into letters,

just as the other version did, but uses scan() for the job instead of split().

Then we come to the hash loading.

Since hash loading happens in a 7.times do ... end block, we can probably

assume it’s working letter by letter. In fact, i seems to be the index of

each letter. That should help us break down the key for the hash. The

first half of the key is a substring indexed with index and length. That

should fetch all the letters before the current letter. (Note that the first

iteration will fetch letters[0, 0] which will give "".) The second half of the

key is everything after the current letter, of course. So the key is our

six-letter stem. Now we need the value.

First we need to notice that values aren’t simply assigned. They use

|= for a bitwise OR and then assignment. (The first line of the script

has hash elements default to 0 to support this.) The old value is ORed

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=91

ANSWER 5. SCRABBLE STEMS 92

with a 1, shifted by the letter’s ASCII value minus the ASCII value of a.

That creates a bitmap of all the letters in the alphabet. Using a single

integer, bits are flipped on for each letter that matches up with this

stem.

That middle section of the code looks scarier than it is. It’s loading

the count Hash with some transformation of hash. That transformation

is hidden in a lot of arcane constants, bitwise ANDs, and bit shifting

by magic number offsets. However, the end result is that it turns the

bitmap values into a count of matches. Put another way, you could

replace all five v = ... lines with v = sprintf("%b", v).count("1") and get identi-

cal answers. Stems are moved over to the count Hash only if their count

is above the cutoff.

The final third of the script prints the results. First we get a stem and a

count, and then the bit map is walked to produce a list of all characters

this stem combines with.

That gives us a little more information than the previous script. It also

works faster since computers do bit math so fast and uses a little less

memory, thanks to the bitmap. Of course, it’s not as easy to digest, so

there are always trade-offs.

Additional Exercises

1. Suggested by Tait Stevens: in Scrabble, there are limited num-

bers of each letter, making some words impossible to play. For

example, there is only one K, so KINKIER can never be played.

(We are leaving the blank tiles out of this for simplicity.) Modify

your solution so that such “impossible” words are excluded from

your word list. You can find the letter distribution of the game at

http://en.wikipedia.org/wiki/Scrabble_letter_values.

2. Create a memory-friendly solution that works with one stem at a

time. Running time can be lengthy.

3. Draw out the bit transformations in the middle of Dennis’s solu-

tion. (Hint: It’s easier to see if you convert the hex constants to

bitwise constants.)

Report erratum

http:// en.wikipedia.org/wiki/Scrabble_letter_values
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=92

ANSWER 6. REGEXP.BUILD() 93

Answer 6From page 14

Regexp.build()
The first thing to consider in this quiz is what does a Regexp to match

a number look like? Here’s the most basic answer to match 1..12:

1|2|3|4|5|6|7|8|9|10|11|12

Note that you might want to reverse the order of that, unless you can

count on your anchoring to match the right thing.

Obviously, the previous works and is dirt simple to implement. Here’s

a submitted solution by Tanaka Akira that does pretty much that:

regex_build/limited.rb

def Regexp.build(*args)

args = args.map {|arg| Array(arg) }.flatten.uniq.sort

neg, pos = args.partition {|arg| arg < 0 }

/ \A (?: -0*#{Regexp.union(*neg.map {|arg| (-arg).to_s })} |

0*#{Regexp.union(*pos.map {|arg| arg.to_s })}) \z /x

end

The first line of that method is pretty clever, calling Array() on all the

passed arguments. That turns Range objects into the Array equivalent

and wraps simple Integers in an Array of their own. Following that up

with flatten() yields a single Array of all the elements we’re trying to

match.

The second line just separates the arguments into positive and negative

groups. Finally, the third line builds a Regexp object from the created

groups using the nifty Regexp.union().

This solution handles negative numbers and allows for arbitrary leading

zeros.

Is this quiz really this easy to solve? Obviously it can be, for some data

sets. However, Tanaka’s solution has limits. On my box, it takes only

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/regex_build/limited.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=93

ANSWER 6. REGEXP.BUILD() 94

Regexp.build(1..10_000)29 to get a “...regular expression too big...” error.

Clearly, if your data set is big, you’ll need to dig a little deeper.

Shrinking a Regexp

That gets us back to our original question, but now with a qualification:

What’s a short way to match a number with a Regexp? The most obvi-

ous optimization to apply to our patterns is to use character classes.

Returning to our 1..12 example, that might give us something like this:

\d|1[0-2]

That’s getting a lot more reasonable. Going to a serious example, even

1..1_000_000 is only the following:

[1-9]|[1-9]\d|[1-9]\d\d|[1-9]\d\d\d|[1-9]\d\d\d\d|[1-9]\d\d\d\d\d|1000000

Technically, we could keep going and get to something like this:

[1-9]\d{0,5}|1000000

However, none of these solutions goes quite that far.

The main trick to building character classes is to break down the Range

objects passed in. You could also lump in the individual Integer argu-

ments, but these are pretty insignificant. One way to handle this is to

add a method to the Range class to convert them into Regexp objects.

Adding a Regexp.build() over that is trivial. Here’s a nice example from

Mark Hubbart:

regex_build/grouped.rb

def Regexp.build(*args)

ranges, numbers = args.partition{|item| Range === item}

re = ranges.map{|r| r.to_re } + numbers.map{|n| /0*#{n}/ }

/^#{Regexp.union(*re)}$/

end

class Range

def to_re

normalize the range format; we want end inclusive, integer ranges

this part passes the load off to a newly built range if needed.

if exclude_end?

return((first.to_i..last.to_i - 1).to_re)

elsif ! (first + last).kind_of?(Integer)

return((first.to_i .. last.to_i).to_re)

end

29Note that Ruby allows the use of _ characters in numeric literals, so you can make

them more readable. The extra characters have no effect on the resulting value.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/regex_build/grouped.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=94

ANSWER 6. REGEXP.BUILD() 95

Deal with ranges that are wholly or partially negative. If range is

only partially negative, split in half and get two regexen. join them

together for the finish. If the range is wholly negative, make it

positive, and then add a negative sign to the regexp

if first < 0 and last < 0

return a negatized version of the Regexp

return /-#{(-last..-first).to_re}/

elsif first < 0

neg = (first..-1).to_re

pos = (0..last).to_re

return /(?:#{neg}|#{pos})/

end

First, create an array of new ranges that are more

suited to regex conversion.

a and z will be the remainders of the endpoints of the range

as we slice it

a, z = first, last

build the first part of the list of new ranges.

list1 = []

num = first

until num > z

a = num # recycle the value

get the first power of ten that leaves a remainder

v = 10

v *= 10 while num % v == 0 and num != 0

compute the next value up

num += v - num % v

store the value unless it' s too high

list1 << (a..num-1) unless num > z

end

build the second part of the list; counting down.

list2 = []

num = last + 1

until num < a

z = num - 1 # recycle the value

slice to the nearest power of ten

v = 10

v *= 10 while num % v == 0 and num != 0

compute the next value down

num -= num % v

store the value if it fits

list2 << (num..z) unless num < a

end

get the chewy center part, if needed

center = a < z ? [a..z] : []

our new list

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=95

ANSWER 6. REGEXP.BUILD() 96

list = list1 + center + list2.reverse

Next, convert each range to a Regexp.

list.map! do |rng|

a, z = rng.first.to_s, rng.last.to_s

a.split(//).zip(z.split(//)).map do |(f,l)|

case

when f == l then f

when f.to_i + 1 == l.to_i then "[%s%s]" % [f,l]

when f+l == "09" then "\\d"

else

"[%s-%s]" % [f,l]

end

end.join # returns the Regexp for *that* range

end

Last, return the final Regexp

/0*#{ list.join("|") }/

end

end

The first third of the to_re() method just deals with normalizing Range

objects and is very well commented.

The middle third divides the Range into Regexp-friendly chunks, which

are groups that share the same number of digits. For example, here is

what to_re() builds into the local list variable for 1..1_000:

1..9

10..99

100..999

1000..1000

Of course, the expression may not always break on such clean powers

of ten. To give another example, 1_234..56_789 populates list with this:

1234..1239

1240..1299

1300..1999

2000..9999

10000..49999

50000..55999

56000..56699

56700..56789

The final third of to_re() builds character classes from these grouped

Range objects. The code inside list.map! do ... end is pretty clever, and I

recommend working through it until you can follow how it works.

This solution does not handle arbitrary leading zeros, and it is anchored

at the beginning and end of a line. Negative numbers are supported.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=96

ANSWER 6. REGEXP.BUILD() 97

Speeding Up the Build

Let’s look at one final solution. This is similar to Mark Hubbart’s

approach, but as we’ll see later, it’s mighty quick. Here’s Thomas Leit-

ner’s code:

regex_build/fast.rb

class Integer

def to_rstr

"#{self}"

end

end

class Regexp

def self.build(*args)

Regexp.new("^(?:" + args.collect {|a| a.to_rstr}.flatten.uniq.join('|') + ")$")

end

end

class Range

def get_regexps(a, b, negative = false)

arr = [a]

af = (a == 0 ? 1.0 : a.to_f)

bf = (b == 0 ? 1.0 : b.to_f)

1.upto(b.to_s.length-1) do |i|

pot = 10**i

num = (af/pot).ceil*(pot) # next higher number with i zeros

arr.insert(i, num) if num < b

num = (bf/pot).floor*(pot) # next lower number with i zeros

arr.insert(-i, num)

end

arr.uniq!

arr.push(b+1) # +1 -> to handle it in the same way as the other elements

result = []

0.upto(arr.length - 2) do |i|

first = arr[i].to_s

second = (arr[i+1] - 1).to_s

str = ' '

0.upto(first.length-1) do |j|

if first[j] == second[j]

str << first[j]

else

str << "[#{first[j].chr}-#{second[j].chr}]"

end

end

result << str

end

result = result.join(' |')

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/regex_build/fast.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=97

ANSWER 6. REGEXP.BUILD() 98

Lifting the Anchor

Another possibility, not explored by these solutions, is to not
anchor returned expressions. This permits callers of Reg-

exp.build() to add captures, anchoring, and even join expres-
sions with Regexp.union() as needed. The downside of this
approach would be that improperly anchored expressions
might not match as intended. It gives callers more flexibility,
in exchange for a little more maintenance.

result = "-(?:#{result})" if negative

result

end

def to_rstr

if first < 0 && last < 0

get_regexps(-last, -first, true)

elsif first < 0

get_regexps(1, -first, true) + "|" + get_regexps(0, last)

else

get_regexps(first, last)

end

end

end

Again, this is similar to Mark Hubbart’s approach. The main work

happens in get_regexps(). The first upto() in that method divides the

numbers by multiples of ten, included in the Range. For example, the

Range1..1_000_000 will fill the variable arr with the following:

[0, 10, 100, 1000, 10000, 100000, 1000000, 1000001]

The second upto() assembles the Regexp character classes for the digit

sets in arr. The end result of the code is nearly identical to the last solu-

tion, but since it tracks less information as it works and makes some

clever use of math to find the boundaries, it works a touch quicker.

The previous solution does not allow leading zeros, and it captures

nothing. Negative numbers are supported. The returned Regexp is also

anchored at the beginning and end of a line, so it must match the entire

number.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=98

ANSWER 6. REGEXP.BUILD() 99

Timing the Solutions

A big part of using these solutions is a question of how long you’ll have

to wait for a Regexp object to be built and how quickly the result can

find a match. Here are some benchmarks for build times:

user system total real

Tanaka Akira 26.370000 0.150000 26.520000 (26.624490)

Mark Hubbart 9.890000 0.040000 9.930000 (9.944374)

Thomas Leitner 5.270000 0.030000 5.300000 (5.323440)

These were computed with the following code:

regex_build/build_times.rb

#!/usr/local/bin/ruby

require "benchmark"

Benchmark.bm(16) do |stats|

{ "Mark Hubbart" => "grouped",

"Thomas Leitner" => "fast",

"Tanaka Akira" => "limited" }.each do |name, library|

require library

stats.report(name) do

50_000.times { Regexp.build(1, 2, 5..100) }

end

end

end

Finally, here are some matching benchmarks (build times excluded

from results):

user system total real

Tanaka Akira 19.090000 0.040000 19.130000 (19.151167)

Mark Hubbart 0.100000 0.000000 0.100000 (0.105672)

Thomas Leitner 0.100000 0.000000 0.100000 (0.098846)

Again, here is the code:

regex_build/match_times.rb

#!/usr/local/bin/ruby

require "benchmark"

Benchmark.bm(16) do |stats|

{ "Mark Hubbart" => "grouped",

"Thomas Leitner" => "fast",

"Tanaka Akira" => "limited" }.each do |name, library|

require library

regex = Regexp.build(1..5_000)

stats.report(name) do

50_000.times { "4098" =~ regex }

end

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/regex_build/build_times.rb
http://media.pragprog.com/titles/fr_quiz/code/regex_build/match_times.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=99

ANSWER 6. REGEXP.BUILD() 100

Additional Exercises

1. Come up with an algorithm that reduces Regexps down to a super

small representation, like [1-9]\d{0,5}|1000000 for 1..1_000_000.

2. Use the benchmark library on the compact algorithm from the

previous exercise and on your original solution, as well as those

shown in this quiz. How does it compare?

3. Adapt your solution to handle non-Integer input, so you could call

it like Regexp.build("cat", "bat", "rat", "dog").

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=100

ANSWER 7. HIGHLINE 101

Answer 7From page 16

HighLine
The solutions to this quiz came in all shapes and sizes. That’s great,

because it helped us see what kind of functionality people really wanted

out of a library such as this.

Implementations were equally varied. Some people wrote procedural

code, just building the needed methods and injecting them into Kernel

so they would be globally available. Others presented their solution as

a framework of classes.

A Class-Based Solution

Ryan Leavengood’s solution is class based. That allows you to assign

the input and output streams, for working with sockets perhaps. It

also adds an object construction step, though as a trade-off. The listing

starts on the next page.

We can see that the code starts by adding a helper method to String.

When called, that method ensures that the String ends in a space. If it

doesn’t, it returns another String that does.

Right at the beginning of HighLine, you can see the input and out-

put stream handling setup that I mentioned earlier. These streams

default to $stdout and $stdin for console output, but there’s no reason

you couldn’t set them to a File stream or Socket.

Next up is the main interface, the ask() method. The method starts by

appending a default to the question (for display), if a default is given.

Then we launch into some kind of a validation_loop() that seems to be

checking for an answer or the case that one is not given when a default

is allowed. The method ends by returning the answer or a default.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=101

ANSWER 7. HIGHLINE 102

highline/highline-oo.rb

class String

def pad_if_needed

self[-1].chr != ' ' ? self + ' ' : self

end

end

class HighLine

attr_accessor :io_out, :io_in

def initialize(io_out=$stdout, io_in=$stdin)

@io_out, @io_in = io_out, io_in

end

def ask(question, default=nil)

q = question.pad_if_needed

q += "[#{default}] " if default

answer = validation_loop(q) do |input|

input.size > 0 or default

end

answer.size > 0 ? answer : default

end

def ask_if?(question)

answer = validation_loop(question.pad_if_needed+'(y,n) ') do |input|

%w(y n yes no).include?(input.downcase)

end

answer.downcase[0,1] == ' y'

end

def ask_int(question, range=nil)

validation_loop(question) do |input|

input =~ /\A\s*-?\d+\s*\Z/ and (not range or range.member?(input.to_i))

end.to_i

end

def ask_float(question, range=nil)

validation_loop(question) do |input|

input =~ /\A\s*-?\d+(.\d*)?\s*\Z/ and

(not range or range.member?(input.to_f))

end.to_f

end

def header(title)

dashes = ' -' *(title.length+4)

io_out.puts(dashes)

io_out.puts("| #{title} |")

io_out.puts(dashes)

end

def list(items, prompt=nil)

items.each_with_index do |item, i|

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/highline/highline-oo.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=102

ANSWER 7. HIGHLINE 103

@io_out.puts "#{i+1}. #{item}"

end

valid_range = 1..items.length

prompt = "Please make a selection: " unless prompt

answer = validation_loop(prompt) do |input|

valid_range.member?(input.to_i)

end

Though the list is shown using a 1-indexed list, return 0-indexed

return answer.to_i-1

end

def validation_loop(prompt)

loop do

@io_out.print prompt.pad_if_needed

answer = @io_in.gets

if answer

answer.chomp!

if yield answer

return answer

end

end

end

end

end

Skip down now, and examine the validation_loop(). This method handles

the stream I/O. It begins by writing out the provided prompt. Then an

answer is read from the input stream, chomp()ed, and checked against

the provided block. If the block OKs the answer, it’s returned. Other-

wise, the whole process loop()s until a valid answer is found.

From there, ask_if(), ask_int(), and ask_float() are trivial to understand.

All three are similar to ask(), except they are looking for their specific

input format and then doing the conversion before returning.

The next method, header(), is just a helper that draws an ASCII border

around the provided title. Clever idea, though. I can even see taking it

a step further to draw things like tables.

Finally, list() adds a great concept not considered by the quiz specifica-

tion. With it, users can display simple menus for users to choose an

option from. You pass the items to display and the desired prompt. From

there, list() numbers them, displays them, retrieves a valid choice, and

returns the index of the choice made. That greatly simplifies a common

task in command-line applications.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=103

ANSWER 7. HIGHLINE 104

Testing I/O

The rest of Ryan’s code is the unit tests:

highline/highline-oo.rb

Unit Tests

if $0 == __FILE__

class MockIO

attr_accessor :output, :input

def initialize

reset

end

def reset

@index = 0

@input=nil

@output=' '

end

def print(*a)

@output << a.join(' ')

end

def puts(*a)

if a.size > 1

@output << a.join("\n")

else

@output << a[0] << "\n"

end

end

def gets

if @input.kind_of?(Array)

@index += 1

@input[@index-1]

else

@input

end

end

end

require ' test/unit'

class TC_HighLine < Test::Unit::TestCase

def initialize(name)

super(name)

@mock_io = MockIO.new

@highline = HighLine.new(@mock_io, @mock_io)

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/highline/highline-oo.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=104

ANSWER 7. HIGHLINE 105

def setup

@mock_io.reset

end

def test_ask

question = ' Am I the coolest?'

@mock_io.input = [nil, ' ' , "\n", "yes\n"]

assert_equal(@mock_io.input[-1].chomp, @highline.ask(question))

assert_equal((question+' ')*4, @mock_io.output)

end

def test_ask_default

question = ' Where are you from? '

default = ' Florida'

@mock_io.input = [nil, "\n"]

assert_equal(default, @highline.ask(question, default))

assert_equal((question+"[#{default}] ")*2, @mock_io.output)

end

def test_ask_if

question = ' Is Ruby the best programming language? '

@mock_io.input = [nil, "0\n", "blah\n", "YES\n"]

assert_equal(true, @highline.ask_if?(question))

assert_equal((question+' (y,n) ')*4, @mock_io.output)

end

def test_ask_int

question = ' Give me a number:'

@mock_io.input = [nil, ' ' , "\n", ' ' , "blah\n", " -4 \n"]

assert_equal(-4, @highline.ask_int(question))

assert_equal((question+' ')*6, @mock_io.output)

@mock_io.reset

@mock_io.input = [nil, ' ' , "\n", ' ' , "blah\n", "3604\n"]

assert_equal(3604, @highline.ask_int(question))

assert_equal((question+' ')*6, @mock_io.output)

end

def test_ask_int_range

question = ' How old are you?'

@mock_io.input = [nil, ' ' , "\n", ' ' , "blah\n", "106\n", "28\n"]

assert_equal(28, @highline.ask_int(question, 0..105))

assert_equal((question+' ')*7, @mock_io.output)

end

def test_ask_float

question = ' Give me a floating point number:'

@mock_io.input = [nil, ' ' , "\n", ' ' , "blah\n", " -4.3 \n"]

assert_equal(-4.3, @highline.ask_float(question))

assert_equal((question+' ')*6, @mock_io.output)

@mock_io.reset

@mock_io.input = [nil, ' ' , "\n", ' ' , "blah\n", "560\n"]

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=105

ANSWER 7. HIGHLINE 106

assert_equal(560.0, @highline.ask_float(question))

assert_equal((question+' ')*6, @mock_io.output)

end

def test_ask_float_range

question = ' Give me a floating point number between 5.0 and 13.5:'

@mock_io.input = [nil, ' ' , "\n", ' ' , "blah\n", " -4.3 \n", "4.9\n",

"13.6\n", "7.55\n"]

assert_equal(7.55, @highline.ask_float(question, 5.0..13.5))

assert_equal((question+' ')*9, @mock_io.output)

end

def test_header

title = ' HighLine Manual'

@highline.header(title)

output = "-------------\n| HighLine Manual |\n-------------\n"

assert_equal(output, @mock_io.output)

end

def test_list

items = [' Ruby' ,' Python' ,' Perl']

prompt = ' Please choose your favorite programming language: '

@mock_io.input = [nil, "0\n", "blah\n", "4\n", "1\n"]

assert_equal(0, @highline.list(items, prompt))

assert_equal("1. Ruby\n2. Python\n3. Perl\n#{prompt * 5}",

@mock_io.output)

end

end

end

Those tests show off usage well, so you can see how this library works.

You can also see that Ryan builds a MockIO object to make it possible

to test the library. Ryan can pass this object supporting the needed

methods from IO into his HighLine framework and later query the object

about what would have been output, had an actual IO object been used.

This is a powerful testing technique even for complex applications. The

end result is a helpful and proven library for console input and output

management.

The Official HighLine

My own solution walked the line between procedures and classes. It

had a complete object-oriented design but allowed you to import some

methods into the global namespace for convenience. Let’s see how

something like that is done:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=106

ANSWER 7. HIGHLINE 107

highline/highline.rb

require "highline/answer"

class HighLine

class QuestionError < StandardError

do nothing, just creating a unique error type

end

Create an instance of HighLine, connected to the streams _input_

and _output_.

def initialize(input = $stdin, output = $stdout)

@input = input

@output = output

end

def ask(question, answer_type = String, &details)

answer = Answer.new(answer_type, &details)

say(question)

begin

input = fetch_line

unless answer.valid?(input)

explain_error(question,

answer.responses[:not_valid],

answer.ask_on_error)

raise QuestionError

end

result = answer.convert(input)

if answer.accept?(result)

result

else

explain_error(question,

answer.responses[:failed_tests],

answer.ask_on_error)

raise QuestionError

end

rescue QuestionError

retry

rescue ArgumentError

explain_error(question,

answer.responses[:invalid_type],

answer.ask_on_error)

retry

rescue NameError

explain_error(question,

answer.responses[:ambiguous_completion],

answer.ask_on_error)

retry

end

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/highline/highline.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=107

ANSWER 7. HIGHLINE 108

We’re looking at the heart of HighLine here, the ask() method. Before we

get to that, though, we can see that HighLine pulls in another source

file, which we will meet in a bit. It also declares a unique type of error

for internal use. Then you can see that initialize() is just for assigning

streams, which default to $stdin and $stdout.

The ask() method looks more complicated than it is. Most of it is

just error handling. First, an Answer object is constructed from the

requested answer_type and a given block. That’s the object from the

other source file, and we will examine it in a bit. From there the code

grabs input from the user with fetch_line(). Then it uses a three-step

process to valid?()ate the answer, convert() it, and accept?() it. Again,

we will see those methods when we get to the other class. When some-

thing goes wrong in here, we can see errors being thrown. It seems that

an explanation is sent to the user, and then retry causes Ruby to try the

question again so we can get a valid answer.

Here’s all the non-Answer methods we saw being called in there:

highline/highline.rb

class HighLine

def agree(yes_or_no_question)

ask(yes_or_no_question, proc { |a| a =~ /\AY(?:es)?\Z/i ? true : false })

end

def say(statement)

if statement[-1, 1] == " " or statement[-1, 1] == "\t"

@output.print(statement)

@output.flush

else

@output.puts(statement)

end

end

private

def explain_error(question, error, reask)

say(error)

if reask == :question

say(question)

elsif reask

say(reask)

end

end

def fetch_line()

@input.gets.chomp

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/highline/highline.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=108

ANSWER 7. HIGHLINE 109

There should be very few surprises in there. agree() is just ask_if() from

the quiz example. say() is used to print messages for the user to see.

The only trick there is that lines ending in whitespace use print() and

flush() instead of puts(). That allows you to ask “Age?” and read the

answer from the same line. explain_error() just forwards the problem

message to the user and then prompts them with a follow-up question.

fetch_line() reads lines from the keyboard.

Let’s get to that Answer object now:

highline/highline/answer.rb

#!/usr/local/bin/ruby -w

require "optparse"

require "date"

class HighLine

class Answer

Create an instance of HighLine::Answer.

def initialize(type)

@type = type

@ask_on_error = "? "

@member = nil

@validate = nil

@responses = Hash.new

yield self if block_given?

@responses = { :ambiguous_completion =>

"Ambiguous choice. " +

"Please choose one of #{@type.inspect}.",

:failed_tests =>

"Your answer must be a member of " +

"#{@member.inspect}.",

:invalid_type =>

"You must enter a valid #{@type}.",

:not_valid =>

"Your answer isn' t valid " +

"(#{@validate.inspect}).' " }.merge(@responses)

end

attr_accessor :ask_on_error, :member, :validate

attr_reader :responses

def convert(string)

if @type.nil?

string

elsif [Float, Integer, String].include?(@type)

Kernel.send(@type.to_s.to_sym, string)

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/highline/highline/answer.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=109

ANSWER 7. HIGHLINE 110

elsif @type == Symbol

string.to_sym

elsif @type == Regexp

Regexp.new(string)

elsif @type.is_a?(Array)

@type.extend(OptionParser::Completion)

@type.complete(string).last

elsif [Date, DateTime].include?(@type)

@type.parse(string)

elsif @type.is_a?(Proc)

@type[string]

end

end

def accept?(answer_object)

@member.nil? or @member.member?(answer_object)

end

def valid?(string)

@validate.nil? or string =~ @validate

end

end

end

This is really just a data class. It sets a bunch of defaults and then

allows the user to change them to fit their needs by passing the object

to a block in initialize(). Inside the block, the user can use the accessors

to set details for the answer they are after.

The only method really worth discussing here is convert(). You can see

that it supports many types the answer can be converted into including

Integer, Symbol, or even DateTime. This method can do two interesting

forms of conversion. First, if the @type (answer_type from the HighLine

layer) is set to an Array of values, the method will autocomplete the

user’s answer to a matching value, using code borrowed from Option-

Parser. Finally, if you set @type to a Proc object, it will be called to handle

whatever custom conversion you need. Glance back at HighLine.agree()

if you want to see an example.

So far, we’ve seen the class system, which could be used directly via

require "highline" when needed. Most of the time, though, we would prob-

ably prefer global access to these methods. For that, HighLine provides

another file you could load with require "highline/import":

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=110

ANSWER 7. HIGHLINE 111

highline/highline/import.rb

#!/usr/local/bin/ruby -w

require "highline"

require "forwardable"

$terminal = HighLine.new

module Kernel

extend Forwardable

def_delegators :$terminal, :agree, :ask, :say

end

The idea here is that we can stick a HighLine object in a global variable

and then just modify Kernel to delegate bare agree(), ask(), or say() calls

to that object. The standard library, Forwardable, handles the latter part

of that process for us via def_delegators(). You just give it the name of

the object to handle the calls and a list of methods to forward. Notice

that Kernel needs to extend Forwardable to gain access to def_delegators().

This library proved helpful enough to me that I continued to develop

it and made it available to the Ruby community through RubyForge.

HighLine has grown and matured from the original quiz submission

and now supports many, many features. Recently, a second devel-

oper, Greg Brown, signed on, bringing a comprehensive menu frame-

work to the project. If you would like to play with the library, see

http://highline.rubyforge.org/ for instructions on obtaining the latest release.

Additional Exercises

1. Create the ASCII table feature mentioned in the discussion of

Ryan’s header() method.

2. Work up a patch to add this feature to the HighLine library on Ruby-

Forge.

3. Extend your solution to fetch an entire Array of answers from the

user.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/highline/highline/import.rb
http://highline.rubyforge.org/
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=111

ANSWER 8. ROMAN NUMERALS 112

Answer 8From page 18

Roman Numerals
Solving this quiz is easy, but how easy? Well, the problem gives us the

conversion chart, which is just crying out to be a Hash:

roman_numerals/simple.rb

ROMAN_MAP = { 1 => "I",

4 => "IV",

5 => "V",

9 => "IX",

10 => "X",

40 => "XL",

50 => "L",

90 => "XC",

100 => "C",

400 => "CD",

500 => "D",

900 => "CM",

1000 => "M" }

That’s the version from my code, but most solutions used something

very similar.

From there we just need to_roman() and to_arabic() methods, right?

Sounded like too much work for a lazy bum like me, so I cheated. If

you build a conversion table, you can get away with just doing the con-

version one way:

roman_numerals/simple.rb

ROMAN_NUMERALS = Array.new(3999) do |index|

target = index + 1

ROMAN_MAP.keys.sort { |a, b| b <=> a }.inject("") do |roman, div|

times, target = target.divmod(div)

roman << ROMAN_MAP[div] * times

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=112

ANSWER 8. ROMAN NUMERALS 113

This is the to_roman() method many solutions hit on. I just used mine

to fill an Array. The algorithm here isn’t too tough. Divide the target

number by each value there is a Roman numeral for copy the numeral

that many times reduce the target, and repeat. Ruby’s divmod() is great

for this.

From there, it’s trivial to wrap a Unix filter around the Array. However,

I do like to validate input, so I did one more little prep task:

roman_numerals/simple.rb

IS_ROMAN = / ^ M{0,3}

(?:CM|DC{0,3}|CD|C{0,3})

(?:XC|LX{0,3}|XL|X{0,3})

(?:IX|VI{0,3}|IV|I{0,3}) $ /ix

IS_ARABIC = /^(?:[123]\d{3}|[1-9]\d{0,2})$/

That first Regexp is a validator for the Roman letter combinations we

accept, split up by powers of ten. The second Regexp is a pattern to

match 1..3999, a number in the range we can convert to and from.

Now, we’re ready for the Unix filter wrapper:

roman_numerals/simple.rb

if __FILE__ == $0

ARGF.each_line() do |line|

line.chomp!

case line

when IS_ROMAN then puts ROMAN_NUMERALS.index(line) + 1

when IS_ARABIC then puts ROMAN_NUMERALS[line.to_i - 1]

else raise "Invalid input: #{line}"

end

end

end

In English that says, for each line of input, see whether it matches

IS_ROMAN, and if it does, look it up in the Array. If it doesn’t match

IS_ROMAN but does match IS_ARABIC, index into the Array to get the

match. If none of that is true, complain about the broken input.

Saving Some Memory

If you don’t want to build the Array, you just need to create the other

converter. It’s not hard. J E Bailey’s script did both, so let’s look at

that:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/simple.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=113

ANSWER 8. ROMAN NUMERALS 114

roman_numerals/dual_conversions.rb

#!/usr/bin/env ruby

@data = [

["M" , 1000],

["CM" , 900],

["D" , 500],

["CD" , 400],

["C" , 100],

["XC" , 90],

["L" , 50],

["XL" , 40],

["X" , 10],

["IX" , 9],

["V" , 5],

["IV" , 4],

["I" , 1]

]

@roman = %r{^[CDILMVX]*$}

@arabic = %r{^[0-9]*$}

def to_roman(num)

reply = ""

for key, value in @data

count, num = num.divmod(value)

reply << (key * count)

end

reply

end

def to_arabic(rom)

reply = 0

for key, value in @data

while rom.index(key) == 0

reply += value

rom.slice!(key)

end

end

reply

end

$stdin.each do |line|

case line

when @roman

puts to_arabic(line)

when @arabic

puts to_roman(line.to_i)

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/dual_conversions.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=114

ANSWER 8. ROMAN NUMERALS 115

Joe Asks. . .

toRoman() or to_roman()?

The methods in J E’s solution were originally toRoman() and
toArabic(). These method names use an unusual (in Ruby cir-
cles) naming convention often referred to as camelCase. Typi-
cal Ruby style is to name methods and variables in snake_case
(such as to_roman() and to_arabic()). We do typically use a
variant of the former (with a capital first letter) in the names
of classes and modules, though.

Why is this important?

Well, with any language first you need to learn the grammar,
but eventually you want to know the slang, right? Same thing.
Someday you may want to write Ruby the way that Ruby gurus
do.

I told you we all used something similar to my Hash. Here it’s just an

Array of tuples.

Right below that, you’ll see J E’s data identifying Regexp declarations.

They’re not as exact as my versions, but certainly they are easier on the

eyes.

Next we see a to_roman() method, which looks very familiar. The imple-

mentation is almost identical to mine, but it comes out a little cleaner

here since it isn’t used to load an Array.

Then we reach the method of interest, to_arabic(). The method starts by

setting a reply variable to 0. Then it hunts for each Roman numeral in

the rom String, increments reply by that value, and removes that numeral

from the String. The ordering of the @data Array ensures that an XL or

IV will be found before an X or I.

Finally, the code provides the quiz-specified Unix filter behavior. Again,

this is very similar to my own solution, but with conversion routines

going both ways.

Romanizing Ruby

Those are simple solutions, but let’s jump over to Dave Burt’s code for

a little Ruby voodoo. Dave’s code builds a module, RomanNumerals, with

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=115

ANSWER 8. ROMAN NUMERALS 116

to_integer() and from_integer(), similar to what we’ve discussed previ-

ously. The module also defines is_roman_numeral?() for checking exactly

what the name claims and some helpful constants such as DIGITS, MAX,

and REGEXP.

roman_numerals/roman_numerals.rb

Contains methods to convert integers to Roman numeral strings, and vice versa.

module RomanNumerals

Maps Roman numeral digits to their integer values

DIGITS = {

' I' => 1,

' V' => 5,

' X' => 10,

' L' => 50,

' C' => 100,

' D' => 500,

' M' => 1000

}

The largest integer representable as a Roman numerable by this module

MAX = 3999

Maps some integers to their Roman numeral values

@@digits_lookup = DIGITS.inject({

4 => ' IV' ,

9 => ' IX' ,

40 => ' XL' ,

90 => ' XC' ,

400 => ' CD' ,

900 => ' CM' }) do |memo, pair|

memo.update({pair.last => pair.first})

end

Based on Regular Expression Grabbag in the O' Reilly Perl Cookbook, #6.23

REGEXP = /^M*(D?C{0,3}|C[DM])(L?X{0,3}|X[LC])(V?I{0,3}|I[VX])$/i

Converts +int+ to a Roman numeral

def self.from_integer(int)

return nil if int < 0 || int > MAX

remainder = int

result = ' '

@@digits_lookup.keys.sort.reverse.each do |digit_value|

while remainder >= digit_value

remainder -= digit_value

result += @@digits_lookup[digit_value]

end

break if remainder <= 0

end

result

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=116

ANSWER 8. ROMAN NUMERALS 117

Converts +roman_string+, a Roman numeral, to an integer

def self.to_integer(roman_string)

return nil unless roman_string.is_roman_numeral?

last = nil

roman_string.to_s.upcase.split(//).reverse.inject(0) do |memo, digit|

if digit_value = DIGITS[digit]

if last && last > digit_value

memo -= digit_value

else

memo += digit_value

end

last = digit_value

end

memo

end

end

Returns true if +string+ is a Roman numeral.

def self.is_roman_numeral?(string)

REGEXP =~ string

end

end

I doubt we need to go over that code again, but I do want to point

out one clever point. Notice how Dave uses a neat dance to keep

things like IV out of DIGITS. In doing so, we see the unusual construct

memo.update({pair.last => pair.first}), instead of the seemingly more natural

memo[pair.last] = pair.first. The reason is that the former returns the Hash

itself, satisfying the continuous update cycle of inject().

Anyway, the module is a small chunk of Dave’s code, and the rest is

fun. Let’s see him put it to use:

roman_numerals/roman_numerals.rb

class String

Considers string a Roman numeral,

and converts it to the corresponding integer.

def to_i_roman

RomanNumerals.to_integer(self)

end

Returns true if the subject is a Roman numeral.

def is_roman_numeral?

RomanNumerals.is_roman_numeral?(self)

end

end

class Integer

Converts this integer to a Roman numeral.

def to_s_roman

RomanNumerals.from_integer(self) || ' '

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=117

ANSWER 8. ROMAN NUMERALS 118

First, he adds converters to String and Integer. This allows you to code

things such as the following:

puts "In the year #{1999.to_s_roman} ..."

Fun, but there’s more. For Dave’s final magic trick he defines a class:

roman_numerals/roman_numerals.rb

Integers that look like Roman numerals

class RomanNumeral

attr_reader :to_s, :to_i

@@all_roman_numerals = []

May be initialized with either a string or an integer

def initialize(value)

case value

when Integer

@to_s = value.to_s_roman

@to_i = value

else

@to_s = value.to_s

@to_i = value.to_s.to_i_roman

end

@@all_roman_numerals[to_i] = self

end

Factory method: returns an equivalent existing object if such exists,

or a new one

def self.get(value)

if value.is_a?(Integer)

to_i = value

else

to_i = value.to_s.to_i_roman

end

@@all_roman_numerals[to_i] || RomanNumeral.new(to_i)

end

def inspect

to_s

end

Delegates missing methods to Integer, converting arguments to Integer,

and converting results back to RomanNumeral

def method_missing(sym, *args)

unless to_i.respond_to?(sym)

raise NoMethodError.new(

"undefined method ' #{sym}' for #{self}:#{self.class}")

end

result = to_i.send(sym,

*args.map {|arg| arg.is_a?(RomanNumeral) ? arg.to_i : arg })

case result

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=118

ANSWER 8. ROMAN NUMERALS 119

when Integer

RomanNumeral.get(result)

when Enumerable

result.map do |element|

element.is_a?(Integer) ? RomanNumeral.get(element) : element

end

else

result

end

end

end

If you use the factory method get() to create these objects, it’s efficient

with reuse, always giving you the same object for the same value.

Note that method_missing() basically delegates to Integer at the end, so

you can treat these objects mostly as Integer objects. This class allows

you to code things like thus:

IV = RomanNumeral.get(4)

IV + 5 # => IX

Even better, though, is that Dave removes the need for that first step

with the following:

roman_numerals/roman_numerals.rb

Enables uppercase Roman numerals to be used interchangeably with integers.

They are autovivified RomanNumeral constants

Synopsis:

4 + IV #=> VIII

VIII + 7 #=> XV

III ** III #=> XXVII

VIII.divmod(III) #=> [II, II]

def Object.const_missing sym

unless RomanNumerals::REGEXP === sym.to_s

raise NameError.new("uninitialized constant: #{sym}")

end

const_set(sym, RomanNumeral.get(sym))

end

This makes it so that Ruby will automatically turn constants like IX into

RomanNumeral objects as needed. That’s just smooth.

Finally, the listing at the top of the facing page shows Dave’s actual

solution to the quiz using the previous tools:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=119

ANSWER 8. ROMAN NUMERALS 120

roman_numerals/roman_numerals.rb

Quiz solution: filter that swaps Roman and arabic numbers

if __FILE__ == $0

ARGF.each do |line|

line.chomp!

if line.is_roman_numeral?

puts line.to_i_roman

else

puts line.to_i.to_s_roman

end

end

end

Additional Exercises

1. Modify your solution to scan free-flowing text documents, replac-

ing all valid Roman numerals with their Arabic equivalents.

2. Create a solution that maps out the conversions similar to the

first example in this discussion, but do it without using a 4,000-

element Array kept in memory.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/roman_numerals/roman_numerals.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=120

ANSWER 9. ROCK PAPER SCISSORS 121

Answer 9From page 20

Rock Paper Scissors
This quiz is a classic computer science problem, though it is often done

with a different game.

The game chosen doesn’t much matter, but the idea is that there really

shouldn’t be much strategy involved. For the game of Rock Paper Scis-

sors, the winning strategy is to be purely random, as Benedikt Huber

explained on the Ruby Talk mailing list:30

You can’t give any predictions on the next move of a random player.

Therefore, you have a 1/3 probability to choose a winning, losing, or

drawing move.

To be fair, Rock Paper Scissors does have quite a bit of strategy theory

these days, but the conditions of that theory (mostly body language)

are unavailable to computer players. Entire books have been written

on the subject, believe it or not.31

So, is random the best we can do? Is that hard to build? Uh, no. Here’s

a sample by Avi Bryant:

rock_paper_scissors/abj_players.rb

class AJBRandomPlayer < Player

def choose

[:paper, :scissors, :rock][rand(3)]

end

end

30Ruby Quiz is hosted on the Ruby Talk mailing list, and you will often see discussion

there about the problems. You can find more information about this mailing list for

general Ruby discussion at http://www.ruby-lang.org/en/20020104.html.
31http://www.worldrps.com/

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/abj_players.rb
http://www.ruby-lang.org/en/20020104.html
http://www.worldrps.com/
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=121

ANSWER 9. ROCK PAPER SCISSORS 122

If we test that, we get the expected 50/50 results:

AJBRandomPlayer vs. JEGPaperPlayer

AJBRandomPlayer: 511.0

JEGPaperPlayer: 489.0

AJBRandomPlayer Wins

AJBRandomPlayer vs. JEGQueuePlayer

AJBRandomPlayer: 499.5

JEGQueuePlayer: 500.5

JEGQueuePlayer Wins

Outthinking a Random Player

Of course, that’s so uninteresting, you’re probably beginning to wonder

if my quiz-selecting skills are on the fritz. Possibly, but interesting

solutions make me look good nonetheless. Christian Neukirchen sent

in more than one of those. Look at all these great strategies:

• CNBiasInverter: Choose so that your bias will be the inverted oppo-

nent’s bias.

• CNIrrflug: Pick a random choice. If you win, use it again; else, use

a random choice.

• CNStepAhead: Try to think a step ahead. If you win, use the choice

where you would have lost. If you lose, use the choice where you

would have won. Use the same on a draw.

• CNBiasFlipper: Always use the choice that beats what the opponent

chose most or second to most often.

• CNBiasBreaker: Always use the choice that beats what the opponent

chose most often.

• CNMeanPlayer: Pick a random choice. If you win, use it again; else,

use the opponent’s choice.

I really should show all of those here, but that would make for a ridicu-

lously large chapter. Let’s go with Christian’s favorite: Spring Cleaning

I factored code out into

the total() method in the

hope it would be a little

easier to read.

rock_paper_scissors/cn_bias_inverter.rb

class CNBiasInverter < Player

def initialize(opponent)

super

@biases = {:rock => 0, :scissors => 0, :paper => 0}

end

def choose

n = ::Kernel.rand(total(:rock, :scissors, :paper)).to_i

case n

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/cn_bias_inverter.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=122

ANSWER 9. ROCK PAPER SCISSORS 123

when 0..@biases[:rock]

:paper

when @biases[:rock]..total(:rock, :scissors)

:rock

when total(:rock, :scissors)..total(:rock, :scissors, :paper)

:scissors

else

p total(:rock, :scissors)..@biases[:paper]

abort n.to_s

end

end

def result(you, them, win_lose_or_draw)

@biases[them] += 1

end

private

def total(*biases)

biases.inject(0) { |sum, bias| sum + @biases[bias] }

end

end

initialize() sets up a Hash for tracking the biases. result() is the comple-

ment to that. It adjusts the proper bias count each time the opponent

makes a selection.

choose() does all the interesting work. It chooses a random number

between zero and the total of all the bias counts.32 That number is

then associated with the indicated bias by some clever use of ranges,

and the opposite of that bias is returned as CNBiasInverter’s choice.

In other words, as the opponent chooses more and more of a particular

item, the bias count for that item climbs. This will cause the semiran-

dom choice to drift toward the opposite of that favored move.

Let’s compare with our baseline:

CNBiasInverter vs. JEGPaperPlayer

CNBiasInverter: 995.0

JEGPaperPlayer: 5.0

CNBiasInverter Wins

CNBiasInverter vs. JEGQueuePlayer

CNBiasInverter: 653.5

JEGQueuePlayer: 346.5

CNBiasInverter Wins

32The unusual ::Kernel.rand() call here just makes sure we are calling the rand() method

defined in the Kernel module. This defensive programming technique will make more

sense as we get further into the discussion....

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=123

ANSWER 9. ROCK PAPER SCISSORS 124

The results are getting better. But, of course, random still wins:

AJBRandomPlayer vs. CNBiasInverter

AJBRandomPlayer: 509.5

CNBiasInverter: 490.5

AJBRandomPlayer Wins

There were many, many interesting strategies, like the previous one.

But random remained the great equalizer. This leads us to the critical

question: what exactly is the point of this exercise?

Cheat to Win

Cheating, of course!

With a challenge like this quiz, it’s common to engineer the environment

to be ripe for cheating. Since there’s no winning strategy available, we’ll

need to bend the rules a little bit.33 That’s because programmers have

enormous egos and can’t stand to lose at anything!

What’s the ultimate cheat? Well, here’s my first thought:

rock_paper_scissors/jeg_cheater.rb

#!/usr/biin/env ruby

class JEGCheater < Player

def initialize(opponent)

Object.const_get(opponent).class_eval do

alias_method :old_choose, :choose

def choose

:paper

end

end

end

def choose

:scissors

end

end

It doesn’t get much easier than that! The initialize() method uses the

passed-in name of the opponent to locate the correct Class object and

redefine the choose() method of that Class to something super easy

to deal with. The opponent is modified to always throw :paper, and

JEGCheater always throws :scissors.

33Technically, it’s not even cheating. The definition of cheat that applies here is “to

violate rules dishonestly.” Go back, and reread the quiz if you need to....

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/jeg_cheater.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=124

ANSWER 9. ROCK PAPER SCISSORS 125

That’s 100% successful against anything we’ve seen thus far. Worse,

any player who goes up against JEGCheater is permanently modified,

leaving you vulnerable to clever strategies like CNBiasInverter previously:

AJBRandomPlayer vs. JEGCheater

AJBRandomPlayer: 0

JEGCheater: 1000

JEGCheater Wins

AJBRandomPlayer vs. CNBiasInverter

AJBRandomPlayer: 4.5

CNBiasInverter: 995.5

CNBiasInverter Wins

JEGCheater vs. CNBiasInverter

JEGCheater: 1000

CNBiasInverter: 0

JEGCheater Wins

Ouch!

Psychic Players

Another cheat used by more than one submitter was to try to predict

an opponent’s move and then respond with a counter. Here is Benedikt

Huber’s version:

rock_paper_scissors/bh_cheat_player.rb

KILLER = { :rock => :paper, :paper => :scissors, :scissors => :rock }

class BHCheatPlayer < Player

def initialize(opponent)

super

@opp = Object.const_get(opponent).new(self)

end

def choose

KILLER[@opp.choose]

end

def result(you,them,result)

@opp.result(them,you,result)

end

end

Again initialize() retrieves the Class object, but instead of modifying the

Class, it simply creates an internal copy of the opponent. result() for-

wards each pick to the copied opponent to keep it synchronized with

the real opponent. From there, choose() is obvious: see what the oppo-

nent is about to do, and counter.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/rock_paper_scissors/bh_cheat_player.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=125

ANSWER 9. ROCK PAPER SCISSORS 126

It was pointed out on Ruby Talk that this doesn’t demolish random

players; however, against any random strategy, this becomes a random

player. Countering a random choice is a still a random move, even if

the choice isn’t what the opponent is about to do.

Thinking Outside the Box

There are other great cheats, and some approaches were even over-

looked. For example, no one tried to modify the score, but it can be

done. Next time someone tells you there’s no way to get better odds

than a random player, don’t underestimate the power of cheating! A

large part of programming is learning to attack problems from different

angles until you find something that works.

Additional Exercises

1. Build a cheater that beats JEGCheater 100% of the time.

2. Build a player that repairs itself if cheater code modifies it.

3. Build a cheater that adjusts the game scores in the server.

4. Build a player that flawlessly predicts a random player’s moves

and uses that knowledge to win.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=126

ANSWER 10. KNIGHT’S TRAVAILS 127

Answer 10From page 25

Knight’s Travails
One neat aspect of doing a simple problem now and then is checking

out the elegant solutions people apply to it. With Ruby, that usually

means some pretty code, at least in my mind. For this problem, I really

thought Matthew D Moss wrote some code that showed off how pretty

and clever Ruby can be. His solution is overflowing with cool idioms,

so let’s dive right in. Here’s a “helper class” from the code: Spring Cleaning

I replaced ’a’[0] and

’1’[0] with the more

common ?a and ?1, just

to aid reader recognition.

knights_travails/pretty.rb

class Tile

attr_reader :x, :y

protected :x, :y

def initialize(x, y)

@x, @y = x, y

end

def Tile.named(s)

Tile.new(s.downcase[0] - ?a, s[1] - ?1)

end

def valid?

(0...8) === @x and (0...8) === @y

end

def to_s

to_str

end

def to_str

%w(a b c d e f g h)[@x] + %w(1 2 3 4 5 6 7 8)[@y] if valid?

end

def ==(c)

@x == c.x and @y == c.y

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/knights_travails/pretty.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=127

ANSWER 10. KNIGHT’S TRAVAILS 128

def adjacent?(c)

dx = (@x - c.x).abs

dy = (@y - c.y).abs

valid? and c.valid? and (dx == 1 && dy == 2 or dx == 2 && dy == 1)

end

end

I couldn’t decide if this class was named correctly. It represents a

square, or tile, of the chessboard, but when I think of a square, it’s

as a container for a piece. That’s not what we’re dealing with here. This

class just holds x and y coordinates for the square on the board. Once

you grasp that, the code is easy to follow. You can see this setup right

at the top of the class with the x() and y() readers and initialize() storing

the values. From there, though, the work gets interesting.

The Tile.named() method is another constructor. Instead of building

a Tile from x and y coordinates ranging from 0 to 7, it builds them

from traditional chess notation for a square like “a4” by converting to

coordinates and calling the other constructor. The first step converts

the leading letter to an index by normalizing case and subtracting the

character value of a from the character value of the square’s letter. The

second conversion works the same way for the number.

The next method is valid?(). Its only job is to determine whether this is

a legal square on a real chessboard. That translates to needing x and

y in the Range(0..7). Note that these Ranges are actually built with the

... operator, which excludes the last number. The === check is used in

conditionals for case statements, but you’re welcome to call it yourself,

as you can see. It’s an alias for Range.member?(), which just checks

that the argument is in the Range.

Both to_s() and to_str() allow the object to behave as a String, as long as

it’s a valid Tile. Here again, we have a unique conversion. %w(...) builds

an Array of Strings from the “words” inside the parentheses. In this case,

they’re just individual letters and numbers. Those Arrays are indexed by

x and y, and the results are concatenated with String addition (+).

The == method can quickly determine whether two Tile objects represent

the same square by comparing both x and y values for each. If they

both match, the objects are equal.

Finally, adjacent?() checks to see whether the passed Tile is near the

current Tile. Both “adjacent” and “near” are tricky explanations, though;

the method actually verifies that the Tiles are exactly a knight’s jump

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=128

ANSWER 10. KNIGHT’S TRAVAILS 129

from each other. Like the other methods of this class, the process is

clever. First, dx and dy are filled with deltas for the two x and y values

of each object. If both Tiles are valid?() and one delta is 1 while the other

is 2, they are a knight’s jump apart. The last line of this method uses

an interesting combination of && and or operators. The difference in

precedence allowed the author to avoid adding additional parentheses.

The next section of code puts those Tiles to work:

knights_travails/pretty.rb

def knights_trip(start, finish, *forbidden)

First, build big bucket o' tiles.

board = (0...64).collect { |n| Tile.new(n % 8, n / 8) }

Second, pull out forbidden tiles.

board.reject! { |t| forbidden.include?(t) }

Third, prepare a hash, where layer 0 is just the start.

Remove start from the board.

x = 0

flood = { x => [start] }

board.delete(start)

Fourth, perform a "flood fill" step, finding all board tiles

adjacent to the previous step.

until flood[x].empty? or flood[x].include?(finish) do

x += 1

flood[x] = flood[x-1].inject([]) do |mem, obj|

mem.concat(board.find_all { |t| t.adjacent?(obj) })

end

Remove those found from the board.

board.reject! { |t| flood[x].include?(t) }

end

Finally, determine whether we found a way to the finish and, if so,

build a path.

if not flood[x].empty?

We found a way. Time to build the path. This is built

backwards, so finish goes in first.

path = [finish]

Since we got to finish in X steps, we know there must be

at least one adjacent to finish at X-1 steps, and so on.

until x == 0

x -= 1

Find in flood[x] a tile adjacent to the head of our

path. Doesn' t matter which one. Make it the new head

of our path.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/knights_travails/pretty.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=129

ANSWER 10. KNIGHT’S TRAVAILS 130

jumps = flood[x].find_all { |t| t.adjacent?(path.first) }

path[0,0] = jumps.sort_by { rand }.first

end

Tada!

path

end

end

The knights_trip() method does all the grunt work for this solution. You

pass it the start, finish, and forbidden Tiles. It will return a path, if one

can be found.

The method starts by building a Tile for every board square. After that,

any forbidden Tiles are removed, so they won’t be considered.

Next comes the heart of the algorithm. A Hash is created with pairs of

search depth keys and value Arrays that represent all the Tiles at that

depth. (Note that an Array could be used in place of the Hash, since the

keys are ordered numerical indices.) The until loop fills in the Hash by

searching each successive depth until running out of legal moves or

locating the finish Tile. Each depth is built in the call to inject(), which

just adds all the adjacent?() Tiles from the previous depth to an empty

Array. Tiles are always removed from the board as they are added to

the depth Hash to keep them from coming up as adjacent?() to later

Tile searches. The final if statement builds the path by working back-

ward through the depth search Hash one step at a time, looking for

adjacent?() Tiles.

It takes only a little more code to finish the solution:

knights_travails/pretty.rb

main

args = ARGV.collect { |arg| Tile.named(arg) }

if args.any? { |c| not c.valid? }

puts "Invalid argument(s)!"

else

trip = knights_trip(*args)

if trip

puts "Knight' s trip: " + trip.join(", ")

else

puts "No route available!"

end

end

This snippet puts the previous methods to use. ARGV is translated into

Tile objects, and all those Tiles, if valid?(), are fed to knights_trip(). If a

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/knights_travails/pretty.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=130

ANSWER 10. KNIGHT’S TRAVAILS 131

path is returned, it’s printed. Otherwise, a route is not available, and a

message relays this.

Or with Less Abstraction

For the sake of variety, here’s my own solution to the problem:

knights_travails/knights_travails.rb

#!/usr/local/bin/ruby -w

chessboard in format {square => neighbors_array}

$board = Hash.new

finds all the knight jumps from a given square

def neighbors(square)

consult cache, if it' s available

return $board[square] unless $board[square].nil?

otherwise calculate all jumps

x, y = square[0] - ?a, square[1, 1].to_i - 1

steps = Array.new

[-1, 1].each do |s_off|

[-2, 2].each do |l_off|

[[s_off, l_off], [l_off, s_off]].each do |(x_off, y_off)|

next_x, next_y = x + x_off, y + y_off

next if next_x < 0 or next_x > 7

next if next_y < 0 or next_y > 7

steps << "#{(?a + next_x).chr}#{next_y + 1}"

end

end

end

add this lookup to cache

$board[square] = steps

end

find a path using a breadth-first search

def pathfind(from, to, skips)

paths = [[from]]

until paths.empty? or paths.first.last == to

path = paths.shift

neighbors(path.last).each do |choice|

next if path.include?(choice) or skips.include?(choice)

paths.push(path.dup << choice)

end

end

if paths.empty?

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/knights_travails/knights_travails.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=131

ANSWER 10. KNIGHT’S TRAVAILS 132

nil

else

paths.shift.values_at(1..-1)

end

end

parse command-line arguments

if ARGV.size < 2 and ARGV.any? { |square| square !~ /^[a-h][1-8]$/ }

puts "Usage: #{File.basename(__FILE__)} START STOP [SKIPS]"

exit

end

start, stop = ARGV.shift, ARGV.shift

skips = ARGV

find path and print results

p pathfind(start, stop, skips)

You can see that I begin by storing my chessboard in a global variable.

I decided to use a Hash here, instead of the traditional Array. I store

squares by name, with the value being an Array of knight jumps from

that position, as shown in the neighbors() method.

In neighbors() the code calculates all possible knight jumps from the

passed square. This is done by applying various combinations of -1, 1,

-2, and 2 offsets while verifying that the squares stay inside the bounds

of the board. Just before the method returns, the results are cached, so

all future calls for the same square can just return the cached result.

The real work of this solution is done in pathfind(). This is a breadth-

first search, expanding one jump each time through the loop until the

target square is found or we run out of options. Notice that we skip

the consideration of any square already in the path (to avoid doubling

back) and forbidden squares provided by the user.

The last chunk of code is mainly just argument processing. We verify

that ARGV holds at least two squares and that they are all valid, or we

print a usage statement. The final line solves the problem and prints

the results.

Additional Exercises

1. Alter your solution to “draw” the output. Print out an ASCII art

version of the chessboard, with rank-and-file labels. Number each

of the squares the knight will travel through in order. For example:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=132

ANSWER 10. KNIGHT’S TRAVAILS 133

$ knights_travails a8 b7 b6

+---+---+---+---+---+---+---+---+

8 | 1 | | | | | | | |

+---+---+---+---+---+---+---+---+

7 | | 5 | 2 | | | | | |

+---+---+---+---+---+---+---+---+

6 | | X | | 4 | | | | |

+---+---+---+---+---+---+---+---+

5 | | 3 | | | | | | |

+---+---+---+---+---+---+---+---+

4 | | | | | | | | |

+---+---+---+---+---+---+---+---+

3 | | | | | | | | |

+---+---+---+---+---+---+---+---+

2 | | | | | | | | |

+---+---+---+---+---+---+---+---+

1 | | | | | | | | |

+---+---+---+---+---+---+---+---+

a b c d e f g h

2. Expand your solution to take an integer as an optional final argu-

ment on the command line. When present, the solution should

include exactly that many moves (without revisiting a square), or

the program should report that it is not possible to make the trip

in that many moves.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=133

ANSWER 11. SOKOBAN 134

Answer 11From page 27

Sokoban
Implementing Sokoban is not hard. Here’s a very brief solution from

Dennis Ranke. Dennis decided to keep the levels in their text formats

and lean on Ruby’s text-processing strengths. This probably doesn’t

make for the prettiest of solutions, but it is short.

sokoban/text_manip.rb

class Level

def initialize(level)

@level = level

end

def play

while count_free_crates > 0

printf "\n%s\n\n> ", self

c = gets

c.each_byte do |command|

case command

when ?w

move(0, -1)

when ?a

move(-1, 0)

when ?s

move(0, 1)

when ?d

move(1, 0)

when ?r

return false

end

end

end

printf "\n%s\nCongratulations, on to the next level!\n", self

return true

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/sokoban/text_manip.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=134

ANSWER 11. SOKOBAN 135

private

def move(dx, dy)

x, y = find_player

dest = self[x+dx, y+dy]

case dest

when ?#

return

when ?o, ?*

dest2 = self[x+dx*2, y+dy*2]

if dest2 == 32

self[x+dx*2, y+dy*2] = ?o

elsif dest2 == ?.

self[x+dx*2, y+dy*2] = ?*

else

return

end

dest = (dest == ?o) ? 32 : ?.

end

self[x+dx, y+dy] = (dest == 32) ? ?@ : ?+

self[x, y] = (self[x, y] == ?@) ? 32 : ?.

end

def count_free_crates

@level.scan(/o/).size

end

def find_player

pos = @level.index(/@|\+/)

return pos % 19, pos / 19

end

def [](x, y)

@level[x + y * 19]

end

def []=(x, y, v)

@level[x + y * 19] = v

end

def to_s

(0...16).map {|i| @level[i * 19, 19]}.join("\n")

end

end

levels = File.readlines(' sokoban_levels.txt')

levels = levels.map {|line| line.chomp.ljust(19)}.join("\n")

levels = levels.split(/\n {19}\n/).map{|level| level.gsub(/\n/, ' ')}

levels.each do |level|

redo unless Level.new(level.ljust(19*16)).play

end

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=135

ANSWER 11. SOKOBAN 136

The play() method in the Level class is the primary interface for the code.

It handles one level, start to finish, returning true if the level was solved

and false if it was restarted. It checks for a level being solved by looping

until count_free_crates() returns 0. That method uses scan() to count o

characters. When a player enters a move command, work is handed off

to the game-play routine move().

The first step to performing a move is to find the player. For that,

find_player() uses a combination of index() and math34 to locate an @

or + character. Once found, move() checks the square in front of the

player. If it’s a wall, it ignores the attempted move, and if it’s open,

the player moves. The special case is when there is a crate in front of

the player. When found, move() looks behind the crate to ensure that

the path is clear, and if it is, both crate and player are moved. All this

testing and swapping is handled with the methods [] and [], which read

and write tiles in the Level object.

The last chunk of Dennis’s solution builds some Level objects and puts

them to work. The external level file is parsed and cleaned up, storing

each level in an Array. From there, it takes one call to each() to create a

game.

Objectified Sokoban

Now let’s examine a more abstract OO solution, sent in by Dave Burt:

sokoban/objectified.rb

module Sokoban

NORTH = [-1,0]

SOUTH = [1,0]

EAST = [0,1]

WEST = [0,-1]

class SokobanError < StandardError

end

end

Dave starts by setting up a Sokoban namespace and defining a few con-

stants. He also creates a SokobanError for later exception handling.

Next, Dave starts defining classes to represent game world objects:

34This is a minor weakness of Dennis’s solution. It works only for levels 19 characters

wide and smaller. Standard Sokoban levels are 19 characters wide, but variations exist.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/sokoban/objectified.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=136

ANSWER 11. SOKOBAN 137

sokoban/objectified.rb

module Sokoban

class Tile

def self.create(chr = nil)

case chr

when ' #' : Wall.new

when ' ' : Floor.new

when ' @' : Floor.new(Person.new)

when ' o' : Floor.new(Crate.new)

when ' .' : Storage.new

when ' +' : Storage.new(Person.new)

when ' *' : Storage.new(Crate.new)

else CharTile.new(chr)

end

end

def to_s

' ~'

end

end

class CharTile < Tile

attr_reader :chr

def initialize(chr)

@chr = chr

end

def to_s

chr

end

end

class Wall < Tile

def to_s

' #'

end

end

class Floor < Tile

attr_accessor :resident

def initialize(resident = nil)

@resident = resident

end

def to_s

return resident.to_s if resident

' '

end

def clear

r = @resident

@resident = nil

r

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/sokoban/objectified.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=137

ANSWER 11. SOKOBAN 138

def add(resident)

throw SokobanError.new("Can' t go there - this tile is full") if @resident

@resident = resident

end

alias :<< :add

end

class Storage < Floor

def has_crate?

Crate === resident

end

def to_s

case resident

when Crate

' *'

when Person

' +'

else

' .'

end

end

end

end

Tile serves as a parent class for the different kinds of floor tiles, as well

as a factory for creating the correct subclass from a character repre-

sentation. CharTile is the basic concrete representation of nonessential

board elements.

Wall is your most basic Tile type. It supports display with to_s(). It

accomplishes its real goal as a barrier, simply by being a type other

code can check against.

With Floor we’re getting into basic game functionality. Floor objects can

contain a single @resident, with the intended use being to hold Person or

Crate objects. Notice that Floor’s to_s() draws either itself or what is on

it, as needed.

Storage inherits from Floor, adding a has_crate?() method that helps with

level-complete checks. Note that Storage is careful to display itself and

its contents in to_s().

The Person and Crate classes are simply types with a display method.

They have no functionality other than to be passed around to different

Tile objects. Here’s a look at those:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=138

ANSWER 11. SOKOBAN 139

sokoban/objectified.rb

module Sokoban

class Crate

def to_s

' o'

end

end

class Person

def to_s

' @'

end

end

end

Then we get to the meat of the program, which is the Level class:

sokoban/objectified.rb

module Sokoban

class Level

attr_reader :moves

def initialize(str)

@grid = str.split("\n").map{|ln| ln.split(//).map{|c| Tile.create(c) } }

throw SokobanError.new(' No player found on level') if !player_index

throw SokobanError.new(' No challenge!') if solved?

@moves = 0

end

def [](r, c)

@grid[r][c]

end

def to_s

@grid.map{|row| row.join }.join("\n")

end

returns a 2-element array with the row and column of the

player' s position, respectively

def player_index

@grid.each_index do |row|

@grid[row].each_index do |col|

if @grid[row][col].respond_to?(:resident) &&

Person === @grid[row][col].resident

return [row, col]

end

end

end

nil

end

def solved?

a level is solved when every Storage tile has a Crate

@grid.flatten.all? {|tile| !(Storage === tile) || tile.has_crate? }

end

def move(dir)

if [NORTH,SOUTH,EAST,WEST].include?(dir)

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/sokoban/objectified.rb
http://media.pragprog.com/titles/fr_quiz/code/sokoban/objectified.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=139

ANSWER 11. SOKOBAN 140

pos = player_index

target = @grid[pos[0] + dir[0]][pos[1] + dir[1]]

if Floor === target

if Crate === target.resident

indirect_target = @grid[pos[0] + 2*dir[0]][pos[1] + 2*dir[1]]

if Floor === indirect_target && !indirect_target.resident

@grid[pos[0] + 2*dir[0]][pos[1] + 2*dir[1]] <<

@grid[pos[0] + dir[0]][pos[1] + dir[1]].clear

@grid[pos[0] + dir[0]][pos[1] + dir[1]] <<

@grid[pos[0]][pos[1]].clear

return @moves += 1

end

else

@grid[pos[0] + dir[0]][pos[1] + dir[1]] <<

@grid[pos[0]][pos[1]].clear

return @moves += 1

end

end

end

nil

end

end

end

Level objects build a @grid of Tile objects in initialize() to manage their

state. The methods [] and to_s() provide indexing and display for the

@grid. You can also easily locate the Person object in the @grid with

player_index() and see whether the Level is complete with solved?().

The final method of Level is move(), which works roughly the same as

Dennis’s version. It finds the player and checks the square in the direc-

tion the player is trying to move. If a crate is found there, it also checks

the square behind that one.

The rest of Dave’s solution is an interactive user interface he provided

for it:

sokoban/objectified.rb

module Sokoban

command-line interface

def self.cli(levels_file = ' sokoban_levels.txt')

cli_help = <<-end

Dave' s Cheap Ruby Sokoban (c) Dave Burt 2004

@ is you

+ is you standing on storage

is a wall

. is empty storage

o is a crate

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/sokoban/objectified.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=140

ANSWER 11. SOKOBAN 141

* is a crate on storage

Move all the crates onto storage.

to move: n/k

|

w/h -+- e/l

|

s/j

to restart the level: r

to quit: x or q or !

to show this message: ?

You can queue commands like this: nwwwnnnwnwwsw...

end

cli_help.gsub!(/\t+/,' : ')

puts cli_help

File.read(levels_file).split("\n\n").

each_with_index do |level_string, level_index|

level = Level.new(level_string)

while !level.solved? do

puts level

print ' L:' + (level_index+1).to_s + ' M:' + level.moves.to_s + ' > '

gets.split(//).each do |c|

case c

when ' w' , ' h'

level.move(WEST)

when ' s' , ' j'

level.move(SOUTH)

when ' n' , ' k'

level.move(NORTH)

when ' e' , ' l'

level.move(EAST)

when ' r'

level = Level.new(level_string)

when ' q' , ' x' , ' !'

puts ' Bye!'

exit

when ' d' # debug - ruby prompt

print ' ruby> '

begin

puts eval(gets)

rescue

puts $!

end

when ' ?'

puts cli_help

when "\n", "\r", "\t", " "

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=141

ANSWER 11. SOKOBAN 142

ignore whitespace

else

puts "Invalid command: ' #{c}' "

puts cli_help

end

end

end

puts "\nCongratulations - you beat level #{level_index + 1}!\n\n"

end

end

end

if $0 == __FILE__

Sokoban::cli

end

That’s not as scary as it looks. The first half is a String of instructions

printed to the user, and the second half is just a case statement that

matches user input to all the methods we’ve been examining.

As you can see, this interface could be replaced with GUI method calls

while still leveraging the underlying system. This wouldn’t be any more

work than building the command-line interface was.

Saving Your Fingers

This challenge touches on an interesting aspect of software design:

interface. With a game, interface is critical. Dennis Ranke’s and Dave

Burt’s games read line-oriented input, requiring you to push Enter

(Return) to send a move. Although they do allow you to queue up a

long line of moves, this tires my poor little fingers out, especially on

involved levels.

That begs the question, why did they use this approach?

Portability would be my guess. Reading a single character from a ter-

minal interface can get tricky, depending on which operating system

you are running on. Here’s how I do it on Unix:

def get_character

state = ‘stty -g‘

begin

system "stty raw -echo cbreak"

@input.getc

ensure

system "stty #{state}"

end

end

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=142

ANSWER 11. SOKOBAN 143

Here’s one way you might try the same thing on Windows:

def read_char

require "Win32API"

Win32API.new("crtdll", "_getch", [], "L").Call

end

If you want your game to run on both, you may need to write code to

detect the platform and use the proper method. Here’s one way you

might accomplish that:

begin

require "Win32API"

def read_char

Win32API.new("crtdll", "_getch", [], "L").Call

end

rescue LoadError

def read_char

state = ‘stty -g‘

begin

system "stty raw -echo cbreak"

@input.getc

ensure

system "stty #{state}"

end

end

end

That doesn’t cover every platform, but I believe it will work with Win-

dows and most Unix flavors (including Mac OS X). That may be enough

for some purposes.

Another way to handle this would be to use the Curses library.Curses

is standard Ruby but unfortunately is not so standard in the Windows

world. A great advantage to this approach is being able to use the arrow

keys, which makes for the best interface, I think.

Interface work can quickly get neck deep in external dependencies, it

seems. Since games are largely defined by their interfaces, that makes

for some complex choices. Maybe we should hope for a Swing-like addi-

tion to the Ruby Standard Library sometime in the future.

Additional Exercises

1. Modify your solution’s interface so it responds immediately to indi-

vidual keystrokes (without pressing Return).

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=143

ANSWER 11. SOKOBAN 144

2. Add a move counter, and modify your solution to track a lowest-

moves score for each level.

3. Add a save-and-restore feature to your game to allow players to

suspend play and resume the game at a later time.

4. Solve levels one through ten of Sokoban.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=144

ANSWER 12. CROSSWORDS 145

Answer 12From page 29

Crosswords
Let’s break down a clean solution from Jim D. Freeze:

crosswords/clean.rb

class CrossWordPuzzle

CELL_WIDTH = 6

CELL_HEIGHT = 4

attr_accessor :cell_width, :cell_height

def initialize(file)

@file = file

@cell_width = CELL_WIDTH

@cell_height = CELL_HEIGHT

build_puzzle

end

private

def build_puzzle

parse_grid_file

drop_outer_filled_boxes

create_numbered_grid

end

end

Nothing tricky there. First, initialize some constants and variables.

After that, the private method build_puzzle() outlines the process. Let’s

dig deeper into each of those steps. (In the code extracts that follow,

parse_grid_file(), drop_outer_filled_boxes(), and create_numbered_grid() are

all private methods of class CrossWordPuzzle.

crosswords/clean.rb

def parse_grid_file

@grid = File.read(@file).split(/\n/)

@grid.collect! { |line| line.split }

@grid_width = @grid.first.size

@grid_height = @grid.size

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/crosswords/clean.rb
http://media.pragprog.com/titles/fr_quiz/code/crosswords/clean.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=145

ANSWER 12. CROSSWORDS 146

Step one: read the layout file, break it down by row at each \n character

and by square at each space—this solution requires the spaces from the

quiz description—and find the dimensions of the puzzle.

crosswords/clean.rb

def drop_outer_filled_boxes

loop {

changed = _drop_outer_filled_boxes(@grid)

changed += _drop_outer_filled_boxes(t = @grid.transpose)

@grid = t.transpose

break if 0 == changed

}

end

def _drop_outer_filled_boxes(ary)

changed = 0

ary.collect! { |row|

r = row.join

changed += 1 unless r.gsub!(/^X|X$/, ' ').nil?

changed += 1 unless r.gsub!(/X | X/, ' ').nil?

r.split(//)

}

changed

end

These two methods handle step two, dropping filled border squares.

Jim uses a simple transpose() to perform a two-dimensional search and

replace. More than one submission capitalized on this technique.

The search-and-replace logic is twofold: Turn all Xs at the beginning or

end of the line into spaces, and turn all Xs next to spaces into spaces.

Repeat this until there are no more changes. This causes the edges to

creep in until all filled border squares have been eliminated. Spring Cleaning

I removed a duplicate

grid from

create_numbered_grid()

with a transpose-

operate-transpose trick I

learned earlier from

drop_outer_filled_boxes

in this same solution.

crosswords/clean.rb

def create_numbered_grid

mark_boxes(@grid)

mark_boxes(t = @grid.transpose)

@grid = t.transpose

count = ' 0'

@numbered_grid = []

@grid.each_with_index { |row, i|

r = []

row.each_with_index { |col, j|

r << case col

when /#/ then count.succ!.dup

else col

end

}

@numbered_grid << r

}

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/crosswords/clean.rb
http://media.pragprog.com/titles/fr_quiz/code/crosswords/clean.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=146

ANSWER 12. CROSSWORDS 147

place ' #' in boxes to be numbered

def mark_boxes(grid)

grid.collect! { |row|

r = row.join

r.gsub!(/([X])([\#_]{2,})/) { "#{$1}##{$2[1..-1]}" }

r.gsub!(/^([\#_]{2,})/) { |m| m[0]=?#; m }

r.split(//)

}

end

Here’s the third step, numbering squares. The approach here is much

the same as step two. A combination of transpose() and gsub!() is used

to mark squares at the beginning of words with a number sign. Words

are defined as a run of number sign and/or underscore characters at

the beginning of a line or after a filled box or open space. With num-

ber signs in place, it’s a simple matter to replace them with an actual

number.

Now that the grid has been doctored into the desired format, we need

to wrap cells in borders and space and then stringify them. Here’s the

code for that. (Again, these are methods of CrossWordPuzzle.) Spring Cleaning

I switched both calls to

sprintf() in cell() to use

the same format String.

Both calls were using

identical formatting but

building it different

ways. I thought using

the same format String

would make that easier

to understand.

crosswords/clean.rb

def cell(data)

c = []

case data

when ' X'

@cell_height.times { c << [' #'] * @cell_width }

when ' '

@cell_height.times { c << [' '] * @cell_width }

when /\d/

tb = [' #'] * @cell_width

n = sprintf("#%-#{@cell_width-2}s#", data).split(//)

m = sprintf("#%-#{@cell_width-2}s#", ' ').split(//)

c << tb << n

(@cell_height-3).times { c << m }

c << tb

when ' _'

tb = [' #'] * @cell_width

m = [' #'] + [' ']*(@cell_width-2) + [' #']

c << tb

(@cell_height-2).times { c << m }

c << tb

end

c

end

def overlay(sub, mstr, x, y)

sub.each_with_index { |row, i|

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/crosswords/clean.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=147

ANSWER 12. CROSSWORDS 148

row.each_with_index { |data, j|

mstr[y+i][x+j] = data unless ' #' == mstr[y+i][x+j]

}

}

end

def to_s

puzzle_width = (@cell_width-1) * @grid_width + 1

puzzle_height = (@cell_height-1) * @grid_height + 1

s = Array.new(puzzle_height) { Array.new(puzzle_width) << [] }

@numbered_grid.each_with_index { |row, i|

row.each_with_index { |data, j|

overlay(cell(data), s, j*(@cell_width-1), i*(@cell_height-1))

}

}

s.collect! { |row| row.join }.join("\n")

end

The method to_s() drives the conversion process. It walks the doctored-

up grid calling cell() to do the formatting and overlay() to place it in the

puzzle.

cell() adds number sign borders and space as defined by the quiz, based

on the cell type it is called on.

overlay() happily draws cells. However, it’s called with placements close

enough together to overlay the borders, reducing them to a single line.

This “collapsing borders” technique is common in many aspects of pro-

gramming. Examine the output of the mysql command-line tool, GNU

Chess, or a hundred other tools. It’s also common for GUI libraries to

combine borders of neighboring elements.

With an Array of the entire puzzle assembled, to_s() finishes with few

calls to join().

The “main” program combines the build and display:

crosswords/clean.rb

cwp = CrossWordPuzzle.new(ARGV.shift)

puts cwp.to_s

Passive Building

Now I want to examine another solution, by Trans Onoma. This one

is a little trickier to figure out, but it uses a pretty clever algorithm.

The following code slowly builds up the board, with only the knowledge

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/crosswords/clean.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=148

ANSWER 12. CROSSWORDS 149

it has at the time, constantly refining its image of the board until the

entire puzzle is created. Here’s the code:

crosswords/passive.rb

module CrossWord

CELL_WIDTH = 6

CELL_HEIGHT = 4

def self.build(str)

Board.new(str).build

end

class Board

def initialize(layout)

b = layout.upcase # upcase and duplicate input layout

lines = b.split(/\n/) # split into array of lines

split line into array of tokens...

@board = lines.collect{ |line| line.scan(/[_X]/) }

@cnt=0 # set cell counter (for numbering)

end

def height ; @height ||= @board.length ; end

def width ; @width ||= @board[0].length ; end

the board builds itself as it is called upon

def board(y,x)

return nil if @board[y][x] == ' P' # pending resolution

resolution complete...

return @board[y][x] if @board[y][x] != ' _' and @board[y][x] != ' X'

return @board[y][x] = ' u' if @board[y][x] == ' _'

on edge...

return @board[y][x] = ' e' if y==0 or x==0 or y==height-1 or x==width-1

if @board[y][x] == ' X' # could be edge or solid

@board[y][x] = ' P' # mark as pending (prevents infinite recursion)

return @board[y][x] = ' e' if # edge if neighbor is edge

board(y-1,x) == ' e' or board(y,x+1) == ' e' or

board(y+1,x) == ' e' or board(y,x-1) == ' e'

end

return @board[y][x] = ' s' # else solid

end

build the puzzle

def build

puzzle = Puzzle.new(height, width) # new puzzle

edges must be done first since they clear spaces

@board.each_with_index{ |line,y|

line.each_index{ |x|

type = board(y,x)

puzzle.push(type,y,x,nil) if type == ' e'

}

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/crosswords/passive.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=149

ANSWER 12. CROSSWORDS 150

}

build-up all the solid and filled-in pieces

@board.each_with_index{ |line,y|

line.each_index{ |x|

type = board(y,x)

cnt = upper_left?(type,y,x) ? (@cnt += 1) : ' '

puzzle.push(type,y,x,cnt) if type != ' e'

} }

puzzle.to_s # return the final product

end

determines whether a cell should be numbered

def upper_left?(type,y,x)

return false if type != ' u'

return true if y == 0 and board(y+1,x) == ' u'

return true if x == 0 and board(y,x+1) == ' u'

if x != width-1 and board(y,x+1) == ' u'

return true if board(y,x-1) == ' e'

return true if board(y,x-1) == ' s'

end

if y != height-1 and board(y+1,x) == ' u'

return true if board(y-1,x) == ' e'

return true if board(y-1,x) == ' s'

end

return false

end

end

Puzzle is a simple matrix

class Puzzle

attr_reader :puzzle

def initialize(height, width)

@puzzle = [' '] # build a blank to work on

(height*(CELL_HEIGHT-1)+1).times{ |y|

(width*(CELL_WIDTH-1)+1).times{ |x| @puzzle.last << ' .' }

@puzzle << ' '

}

end

def push(type,y,x,cnt)

c = space(type,cnt)

ny = y * (CELL_HEIGHT - 1)

nx = x * (CELL_WIDTH - 1)

@puzzle[ny+0][nx,CELL_WIDTH] = c[0]

@puzzle[ny+1][nx,CELL_WIDTH] = c[1]

@puzzle[ny+2][nx,CELL_WIDTH] = c[2]

@puzzle[ny+3][nx,CELL_WIDTH] = c[3]

end

def space(type,cnt)

case type

when "u"

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=150

ANSWER 12. CROSSWORDS 151

["######",

"#%-4s#" % cnt,

"# #",

"######"]

when "s"

["######"] * 4

when "e"

[" "] * 4

end

end

def to_s ; @puzzle.join("\n") ; end

end

end

if $0 == __FILE__

$stdout << CrossWord.build(gets(nil))

end

Since the beginning of the code just defines modules and classes that

we don’t yet know about, let’s work backward. Start at the bottom with

that standard if statement that generally signifies the “main” code.

We can see that the whole process is driven by a call to the module

method CrossWord.build() (not to be confused with Board.build()). The

method is passed the layout file slurped into a String and seems to

return the entire result. Now we know where to look next!

Looking to that method, we can see that it doesn’t do much. It con-

structs a Board object from the layout and calls build(). Jumping to

Board.initialize(), we see that it too is pretty basic. It builds a two-

dimensional Array of underscore and X characters, to match the layout

file, with a call to scan(). It also starts a word counter. That leaves only

build(), which is the primary workhorse of this code.

build() starts to get tricky, but it’s basically three steps. First it creates

a Puzzle, whatever that is. Then it does some strange dance with calls

to board() and push(), primarily. Finally it returns a stringified Puzzle.

Sounds like we need to get under the hood of that second class.

If Board is the programmatic representation of the layout, Puzzle repre-

sents the answer. Puzzle.initialize() just builds an Array of Strings the size

of the square-expanded layout. All of these Strings are initialized to a

run of periods.

Then we get to push(). That was one of those two methods that seemed

to do a lot of the magic in build(). This method may not be ideally

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=151

ANSWER 12. CROSSWORDS 152

named, because it’s really just a two-dimensional replace method. It

calls space() and replaces a chunk of the puzzle’s period characters

with the actual square layout. If you look at space(), you’ll see that it

just returns one of the possible squares in a crossword based on the

passed type.

Our knowledge has grown. Let’s go back to build(). Now it should be

easy to see that board() is returning the types that get sent on to push().

That’s the last major method we need to decode.

board() just returns a type character, based on what the square actually

is, at the location identified by the parameters. The method is a simple

cascade, returning the first type it has proven. Note that it does recurse

to check neighboring squares.

The final method called by build() is upper_left?(). It’s another cascade

method that locates the first square in a word so it can be numbered.

When it returns true, build() increments its word counter and passes it

on to push().

From there, Puzzle.to_s() gives us the final solution with a single call to

join(). All of the periods will have been replaced by the actual squares

at this point.

Those are two pretty different approaches, and there are certainly more.

It’s good to examine the thought process of others, because you never

know when an idea will come in handy with your own future coding

needs.

Additional Exercises

1. Modify your solution so it can take a scale as a command-line

switch. A scale integer should be used as the width and height of

output cells.

2. Enhance your program so that a list of clues can follow the board

diagram in the input. Number and print these clues after the

completed board, in two columns.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=152

ANSWER 13. 1-800-THE-QUIZ 153

Answer 13From page 31

1-800-THE-QUIZ
Some problems are just easier to express with recursion. For me, this

is one of those problems.

If you’re not familiar with the idea, recursion is defining a method that

calls itself. Sometimes we humans struggle to understand this con-

cept of defining something in terms of itself, but it can make some

programming challenges easier. Let’s use this problem to explore the

possibilities of recursion.

Word Signatures

The first step to solving this problem is doing the right work when you

read in the dictionary. Come search time, we won’t be interested in

words at all, just groupings of digits. Each word in the dictionary can

be encoded as the digits we would need to type on a phone. If we do

that while we’re reading them in and store them correctly, we can save

ourselves much work down the road. First, let’s begin a PhoneDictionary

object and give it an encoding:

1_800_the_quiz/phone_words.rb

require "enumerator"

class PhoneDictionary

def self.encode(letter)

case letter.downcase

when "a", "b", "c" then "2"

when "d", "e", "f" then "3"

when "g", "h", "i" then "4"

when "j", "k", "l" then "5"

when "m", "n", "o" then "6"

when "p", "q", "r", "s" then "7"

when "t", "u", "v" then "8"

when "w", "x", "y", "z" then "9"

end

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=153

ANSWER 13. 1-800-THE-QUIZ 154

Beware of Recursion

Though it simplifies some problems, recursion has its price. First,
the repeated method calls can be slow. Depending on the size
of the data you are crunching, you may feel the slowdown. Run
the code in this chapter against different-sized dictionaries, and
you’ll start to see the penalty.

Ruby also uses the C stack, which may not be set very deep by
default, so it’s best to avoid problems that need a lot of nested
calls. The examples in this chapter are fine, because they never
go deeper than eight levels. Make sure you stay aware of the
limits in your own code.

There’s no such thing as recursive code that can’t be unrolled
to work as an iterative solution. If the restrictions bite you, you
may just have to do the extra work.

My first instinct was to put the encoding into a constant, but I later

decided a method would make it easy to replace (without a warning

from Ruby). Not all phones are like mine, after all.

Obviously, you just give this method a letter, and it will give you back

the digit for that letter.

Now, we need to set up our dictionary data structure. As with the

rest of the methods in this quiz, this is an instance method in our

PhoneDictionary class.

1_800_the_quiz/phone_words.rb

def initialize(word_file)

@words = Hash.new { |dict, digits| dict[digits] = Array.new }

("0".."9").each { |n| @words[n] << n }

%w{a i}.each { |word| @words[self.class.encode(word)] << word }

warn "Loading dictionary..." if $DEBUG

read_dictionary(word_file)

end

I use a Hash to hold word groups. A group is identified by the digit

encoding (hash key) and is an Array of all words matching that encoding

(hash value). I use Hash’s default block parameter to create word group

arrays as needed.

The next line is a trick to ease the searching process. Since it’s possible

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=154

ANSWER 13. 1-800-THE-QUIZ 155

for numbers to be left in, I decided to just turn individual numbers into

words. This will allow bogus solutions with many consecutive numbers,

but those are easily filtered out after the search.

Finally, I plan to filter out individual letter words, which many dictio-

naries include. Given that, I add the only single-letter words that make

sense to me, careful to use encoding() to convert them correctly.35

At the bottom of that method, you can see the handoff to the dictionary

parser:36

1_800_the_quiz/phone_words.rb

def read_dictionary(dictionary)

File.foreach(dictionary) do |word|

word.downcase!

word.delete!("^a-z")

next if word.empty? or word.size < 2 or word.size > 7

chars = word.enum_for(:each_byte)

digits = chars.map { |c| self.class.encode(c.chr) }.join

@words[digits] << word unless @words[digits].include?(word)

end

end

This method is just a line-by-line read of the dictionary. I normalize the

words to a common case37 and toss out punctuation and whitespace.

The method skips any words below two characters in length as well as

any more than seven. Finally, words are split into characters, using

the handy enum_for() from the Enumerator library (see the sidebar, on

page 157, for details), and then digit encoded and added to the correct

group. The code first verifies that a word wasn’t already in the group,

though, ensuring that our transformations don’t double up any words.

The Search

With setup out of the way, we are ready to search a given phone number

for word matches. First, we need a simple helper method that checks

35Be warned, this step assumes we are dealing with an American English dictionary.
36Notice the $DEBUG message hidden in this section of code. Ruby will automatically

set that variable to true when passed the -d command-line switch, so it’s a handy way to

embed trace instructions you may want to see during debugging.
37Even though we’re going to end up with uppercase results, I generally normalize case

down, not up. Some languages make distinctions between concepts like title case and

uppercase, so downcasing is more consistent.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=155

ANSWER 13. 1-800-THE-QUIZ 156

a digit sequence against the beginning of a number. If it matches, we

want it to return what’s left of the original number:

1_800_the_quiz/phone_words.rb

def self.match(number, digits)

if number[0, digits.length] == digits

number[digits.length..-1]

else

nil

end

end

With that, we are finally ready to search:

1_800_the_quiz/phone_words.rb

def search(number, chunks = Array.new)

@words.inject(Array.new) do |all, (digits, words)|

if remainder = self.class.match(number, digits)

new_chunks = (chunks.dup << words)

if remainder.empty?

all.push(new_chunks)

else

all.push(*search(remainder, new_chunks))

end

else

all

end

end

end

The idea here is to match numbers against the front of the phone num-

ber, passing the matched words and what’s left of the String down recur-

sively, until there is nothing left to match.

The method returns an Array of chunks, each of which is an Array of all

the words that can be used at that point. For example, a small part of

the search results for the quiz example shows that the number could

start with the word USER followed by -8-AX, TAX, or other options:

[...

[["user"], ["8"], ["aw", "ax", "ay", "by"]],

[["user"], ["taw", "tax", "tay"]],

...]

The recursion keeps this method short and sweet, though you may

need to work through the flow a few times to understand it.

The key to successful recursion is always having an exit condition, the

point at which you stop recursing. Here, the method recurses only

when there are remaining digits in the number. Once we’ve matched

them all or failed to find any matches, we’re done.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=156

ANSWER 13. 1-800-THE-QUIZ 157

Enumerator: A Hidden Treasure

The Enumerator library is a hidden treasure of Ruby’s standard
library that was undocumented until very recently. Here’s a
quick tour to get you started using it today.

The main function of the library is to add an enum_for() method
to Object, also aliased as to_enum(). Call this method, pass-
ing a method name and optionally some parameters, and
you’ll receive an Enumerable object using the passed method
as each(). As you can see in the dictionary-parsing code of this
chapter, that’s a handy tool for switching Strings to iterate over
characters, among other uses.

As an added bonus, the library adds two more iterators to Enu-

merable:

>> require "enumerator"

=> true

>> (1..10).each_slice(2) { |slice| p slice }

[1, 2]

[3, 4]

[5, 6]

[7, 8]

[9, 10]

=> nil

>> (1..10).each_cons(3) { |consecutive| p consecutive }

[1, 2, 3]

[2, 3, 4]

[3, 4, 5]

[4, 5, 6]

[5, 6, 7]

[6, 7, 8]

[7, 8, 9]

[8, 9, 10]

=> nil

Cleaning Up and Showing Results

Obviously the results returned from the search aren’t printable as they

stand. Let’s use some more recursion to flatten the nested arrays down

to strings.

1_800_the_quiz/phone_words.rb

def chunks_to_strings(chunks)

chunk, *new_chunks = chunks.dup

if new_chunks.empty?

chunk.map { |word| word.upcase }

else

chunk.map do |word|

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=157

ANSWER 13. 1-800-THE-QUIZ 158

chunks_to_strings(new_chunks).map { |words| "#{word.upcase}-#{words}" }

end.flatten

end

end

Again the idea behind this method is trivial: peel a single word group

off, and combine it with all the other combinations generated through

recursion of the remaining groups. Logically, the exit condition here

is when we reach the final word group, and we can just return those

words when that happens.

The class requires just one more public interface method to tie it all

together:

1_800_the_quiz/phone_words.rb

def number_to_words(phone_number)

warn "Searching..." if $DEBUG

results = search(phone_number)

warn "Preparing output..." if $DEBUG

results.map! { |chunks| chunks_to_strings(chunks) }

results.flatten!

results.reject! { |words| words =~ /\d-\d/ }

results.sort!

results

end

This method runs the workflow. Perform a search, convert the results

to Strings, remove bogus results, clean up, and return the fruits of our

labor. A caller of this method provides a phone number and receives

ready-to-print word replacements.

Here’s the last bit of code that implements the quiz interface:

1_800_the_quiz/phone_words.rb

if __FILE__ == $0

dictionary = if ARGV.first == "-d"

ARGV.shift

PhoneDictionary.new(ARGV.shift)

else

PhoneDictionary.new("/usr/share/dict/words")

end

ARGF.each_line do |phone_number|

puts dictionary.number_to_words(phone_number.delete("^0-9"))

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://media.pragprog.com/titles/fr_quiz/code/1_800_the_quiz/phone_words.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=158

ANSWER 13. 1-800-THE-QUIZ 159

Additional Exercises

1. Unroll the search() method presented in this chapter to build an

iterative solution.

2. Benchmark the recursion and iterative versions of the code. What

was the speed increase?

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=159

ANSWER 14. TEXAS HOLD’EM 160

Answer 14From page 33

Texas Hold’em
There’s a reason we spend a huge portion of our early computer science

education just playing with sorting algorithms. Many programming

challenges are completely or at least mostly solved by the proper sort.

Poker hands are one of those problems.

Ruby’s Sorting Tricks

A couple of sorting niceties in Ruby can make complex sorts a lot easier.

Let’s talk a little about those before we dig into the code that uses them.

First, if you’re not familiar with sort_by(), now is a great time to fix that:

$ ruby -e ' p %w{aardvark bat catfish}.sort_by { |str| str.length }'

["bat", "catfish", "aardvark"]

With sort_by(), you can specify the criteria on which to sort the elements.

You might specify the size of a String, for example. Behind the scenes,

the elements are replaced with the result of the code block you passed,

sorted, and then switched back to the original elements and returned.38

One other useful trick in Ruby is that Arrays themselves are sortable,

and they order themselves by comparing each of their child elements in

turn:

$ ruby -e ' p [[1, 5, 1], [1, 2, 3]].sort'

[[1, 2, 3], [1, 5, 1]]

You can even combine these two tricks for more sorting goodness. You

can feed sort_by() an Array of criteria, which will be compared element

by element to create an ordering of the original data. Let’s look at some

code that uses these tricks to deal with poker hands.

38sort_by() always returns a copy of the data. There is no sort_by!(), so just reassign if

you want to replace the old values.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=160

ANSWER 14. TEXAS HOLD’EM 161

Sorting Cards

We’re not trying to build a full poker game here, just a scoring system.

Because of that, we don’t need a very complex idea of cards. Even

hands themselves can be just an Array of cards. Here’s the setup:

texas_holdem/texas_hold_em.rb

require "enumerator"

Card = Struct.new(:face, :suit)

class Hand

FACE_ORDER = %w{A K Q J T 9 8 7 6 5 4 3 2}

HAND_ORDER = ["Royal Flush", "Straight Flush", "Four of a Kind",

"Full House", "Flush", "Straight", "Three of a Kind",

"Two Pair", "Pair", "High Card"]

the available orderings for cards in a hand

ORDERS = { :suit => lambda { |c, all| c.suit },

:high => lambda { |c, all| FACE_ORDER.index(c.face) },

:face_count => lambda do |c, all|

0 - all.find_all { |o| o.face == c.face }.size

end,

:suit_count => lambda do |c, all|

0 - all.find_all { |o| o.suit == c.suit }.size

end }

def initialize(cards)

@cards = cards

@name = nil # cache for hand lookup, so we only do it once

end

def order(*by)

@cards = @cards.sort_by { |card| by.map { |e| ORDERS[e][card, @cards] } }

end

def hand

return nil if @cards.size < 7

@name ||= HAND_ORDER.find { |hand| send(hand.downcase.tr(" ", "_") + "?") }

end

end

Here I pull in the Enumerator library for each_cons().39 Then I prepare a

simple Struct for Card objects, as promised. Hands are just an Array of

Card objects.

You can see that I define some constants at the top of Hand for later use.

The first two should be fairly obvious, but the third constant, ORDERS,

is a little odd. It’s easiest to figure out if you consider it with the order()

39See the sidebar, on page 157 if you’re not familiar with the method.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/texas_hold_em.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=161

ANSWER 14. TEXAS HOLD’EM 162

method. This method is just a shell over sort_by() that feeds it an Array

of criteria. You can use any criteria in the ORDERS Hash by Symbol name.

The last method in this section, hand(), just gives the name of the hand.

It tries each possible hand, from best to worst, until it finds a match.

This method has the desirable side effect of sorting the used cards to

the front, since that’s the system we used for matching hands.

Name the Hand

Now we need to look at each of the methods called by hand():

texas_holdem/texas_hold_em.rb

class Hand

def royal_flush?

order(:suit_count, :high) and cards =~ /^A(\w)K\1Q\1J\1T\1/

end

end

Can’t get much easier than that! Sorting by :suit_count, or the count of

cards in a suit, and then by high card ensures that a royal flush will

bubble right to the top of the stack. We haven’t seen the cards() method

yet, but it’s easy to guess that it just stringifies the hand from what we

see here. One Regexp later, we will know whether we found the royal

family in a repeating suit.

The hardest hands to match in poker are the straights though:

texas_holdem/texas_hold_em.rb

class Hand

def straight_flush?

it' s not possible unless we have a Flush (also orders hand)

return false unless flush?

save the full hand, so we can muck with it and restore it later

saved_cards = @cards

trim hand to the Flush suit only

@cards = @cards.reject { |card| card.suit != @cards[0].suit }

see if there is a Straight in the trimmed hand

result = straight?

restore the hand, but preserve the order

@cards = (@cards + saved_cards).uniq

return whether or not we found a Straight

result

end

end

This method checks for a flush, reduces the hand to just that suit,

checks for a straight, and returns true only if it found both. The hand

is also restored before returning.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/texas_hold_em.rb
http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/texas_hold_em.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=162

ANSWER 14. TEXAS HOLD’EM 163

To properly understand that, we need to see flush?() and straight?():

texas_holdem/texas_hold_em.rb

class Hand

def four_of_a_kind?

order(:face_count, :high) and faces =~ /^(\w)\1\1\1/

end

def full_house?

order(:face_count, :high) and faces =~ /^(\w)\1\1(\w)\2/

end

def flush?

order(:suit_count, :high) and suits =~ /^(\w)\1\1\1\1/

end

def straight?

sort the cards by unique occurance, then value

seen = Hash.new(0)

@cards = @cards.sort_by do |card|

[(seen[card.face] += 1), ORDERS[:high][card, @cards]]

end

check for the special case, a low ace

return true if faces =~ /^A5432/

walk through all possible Straights and check for match

3.times do

FACE_ORDER.each_cons(5) do |cards|

return true if faces =~ /^#{cards.join}/

end

rotate a card to the end and repeat checks two more times

@cards << @cards.shift

end

if we get this far, we didn' t find one

false

end

end

Those first three methods, including flush?(), should be trivial by now.

Again, we’re just doing the lion’s share of the work with fancy sorting.

The straight?() method is one of the exceptions where we have to do a

bit more work. Sorting the cards by unique occurrence and then order

will get us close but not all the way there. Note that we couldn’t use

the order() shortcut this time, because of the external Hash. Aces can be

low or high in a straight, so we then have to check for the special case.

From there we can check for each of the straights easy enough, but we

have to do some extra card rotating since they may not be at the front

of the hand.

The remaining hands are pure sort and match:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/texas_hold_em.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=163

ANSWER 14. TEXAS HOLD’EM 164

texas_holdem/texas_hold_em.rb

class Hand

def three_of_a_kind?

order(:face_count, :high) and faces =~ /^(\w)\1\1/

end

def two_pair?

order(:face_count, :high) and faces =~ /^(\w)\1(\w)\2/

end

def pair?

order(:face_count, :high) and faces =~ /^(\w)\1/

end

def high_card?

order(:high)

end

end

We have only a few more methods in Hand:

texas_holdem/texas_hold_em.rb

class Hand

def to_s

[hand, cards.scan(/../).join(" ")].reverse.join(" ").strip

end

def rating

return nil if @cards.size < 7

rate hand, then each card in it for breaking ties

[0 - HAND_ORDER.index(hand),

@cards[0..4].map { |card| 0 - FACE_ORDER.index(card.face) }]

end

private

def cards() @cards.map { |card| "#{card.face}#{card.suit}" }.join end

def faces() cards.scan(/(.)./).flatten.join end

def suits() cards.scan(/.(.)/).flatten.join end

end

We can build up a String by finding the hand() and joining it with the

cards(). We just have to be careful to find the hand() first, so the cards()

will be in the proper order, which is why you see reverse() used in to_s().

The rating() method returns an Array, for use in sorting the hands to

find a winner. A rating is first the rank of the type of hand and then

the rank of the face of all five cards used in the hand. That handles

breaking ties (a pair of kings beats a pair of tens) and “kickers” all in

one Array.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/texas_hold_em.rb
http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/texas_hold_em.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=164

ANSWER 14. TEXAS HOLD’EM 165

Finally we have the private helpers used in all the hand matching.

Here’s the tiny last bit of code to implement the quiz interface:

texas_holdem/texas_hold_em.rb

if __FILE__ == $0

read hands

hands = ARGF.inject(Array.new) do |all, line|

all << Hand.new(line.strip.split.map { |card| Card.new(*card.split("")) })

end

rank hands, best to worst

ratings = hands.map { |hand| hand.rating }.compact.sort { |a, b| b <=> a }

show results

puts hands.map { |h| h.rating == ratings[0] ? "#{h} (Winner)" : h }

end

One last time, it’s sorting to the rescue. We read the hands, order them

by rating(), and then print them back out with an added (Winner) if they

have the top rating. That even handles ties.

Additional Exercises

1. Expand your hand-naming output to include as much detail as

possible. For example, “two pair—aces over kings.”

2. Use as much of your solution code as possible to make a two

player game of Texas hold’em. You can find complete rules of play

at http://texasholdem.omnihosts.net/pokerrules.shtml.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/texas_holdem/texas_hold_em.rb
http://texasholdem.omnihosts.net/pokerrules.shtml
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=165

ANSWER 15. SOLITAIRE CIPHER 166

Answer 15From page 36

Solitaire Cipher
$ ruby solitaire.rb "CLEPK HHNIY CFPWH FDFEH"

YOURC IPHER ISWOR KINGX

$ ruby solitaire.rb "ABVAW LWZSY OORYK DUPVH"

WELCO METOR UBYQU IZXXX

That’s what you should have seen, if you ran a working Solitaire cipher

decryption script over the last two lines of the quiz.

There’s nothing inherently difficult about this quiz. It’s really just cod-

ing to a specification. Knowing that, our focus needs to be accuracy.

A great way to achieve that is to use unit tests to validate the process.

Another advantage to this approach is that the quiz itself already gave

us a handful of test cases.

Testing a Cipher

The first part of the quiz describes encryption and decryption, so I

started by yanking all the tests I could find out of the problem. That

gave me a starting set of unit tests.

I will show all of my cipher tests together, but the truth is that I wrote

them method by method. I would come up with some reasonable tests

and then implement the code that makes them pass. Write more tests;

write more code. What I’m describing is a popular software construc-

tion technique known as Test Driven Development (TDD).. This allowed

me to work in very small steps that kept me from getting overwhelmed,

and I recommend trying some projects this way, if you haven’t already.

It really can make it easier to iteratively work up to a complete solution.

OK, let’s get to those tests:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=166

ANSWER 15. SOLITAIRE CIPHER 167

solitaire_cipher/tc_cipher.rb

#!/usr/local/bin/ruby -w

require "test/unit"

require "cipher"

class TestCipher < Test::Unit::TestCase

def setup

@keystream = Object.new

class << @keystream

def next_letter

@letters.shift

end

def reset

@letters = "DWJXH YRFDG TMSHP UURXJ".delete(" ").split("")

end

end

@keystream.reset

@cipher = Cipher.new(@keystream)

end

def test_normalize

assert_equal("CODEI NRUBY LIVEL ONGER",

Cipher.normalize("Code in Ruby, live longer!"))

assert_equal("YOURC IPHER ISWOR KINGX",

Cipher.normalize("Your cipher is working!"))

end

def test_text_to_chars

assert_equal([3, 15, 4, 5, 9,

14, 18, 21, 2, 25,

12, 9, 22, 5, 12,

15, 14, 7, 5, 18],

Cipher.text_to_chars("CODEI NRUBY LIVEL ONGER"))

assert_equal([4, 23, 10, 24, 8,

25, 18, 6, 4, 7,

20, 13, 19, 8, 16,

21, 21, 18, 24, 10],

Cipher.text_to_chars("DWJXH YRFDG TMSHP UURXJ"))

end

def test_chars_to_text

assert_equal("GLNCQ MJAFF FVOMB JIYCB",

Cipher.chars_to_text([7, 12, 14, 3, 17,

13, 10, 1, 6, 6,

6, 22, 15, 13, 2,

10, 9, 25, 3, 2]))

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solitaire_cipher/tc_cipher.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=167

ANSWER 15. SOLITAIRE CIPHER 168

def test_encrypt

assert_equal("GLNCQ MJAFF FVOMB JIYCB",

@cipher.encrypt("Code in Ruby, live longer!"))

end

def test_decrypt

assert_equal("CODEI NRUBY LIVEL ONGER",

@cipher.decrypt("GLNCQ MJAFF FVOMB JIYCB"))

@keystream.reset

assert_equal("YOURC IPHER ISWOR KINGX",

@cipher.decrypt("CLEPK HHNIY CFPWH FDFEH"))

@keystream.reset

assert_equal("WELCO METOR UBYQU IZXXX",

@cipher.decrypt("ABVAW LWZSY OORYK DUPVH"))

end

end

If you compare those with the quiz itself, you will see that I haven’t

really had to do any thinking yet. Those test cases were given to me for

free.

How did I know the answers to the encrypted test cases before I had a

working program? It’s not just that I’m in close with the quiz creator, I

assure you. I validated them with a deck of cards. There’s no shame in

a low-tech, by-hand dry run to make sure you understand the process

you are about to teach to a computer.

The only decisions I have made so far are interface decisions. Running

the cipher seems logically separate from keystream generation, so I

decided that each would receive its own class and the latter could be

passed to the constructor of the former. This makes it possible to build

ciphers using a completely different method of keystream generation.

You can see that I mostly skip resolving what a keystream object will

be at this point. I haven’t come to that part yet, after all. Instead, I just

build a generic object and use Ruby’s singleton class syntax to add a

couple of methods to it. Don’t panic if you’ve never seen that syntax

before; it’s just a means to add a couple of methods to a single object.40

The next_letter() method will be the only interface method Cipher cares

about, and reset() is just a tool for testing.

Now we need to go from tests to implementation:

40For a more detailed explanation, see http://www.rubygarden.org/ruby?SingletonTutorial.

Report erratum

http://www.rubygarden.org/ruby?SingletonTutorial
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=168

ANSWER 15. SOLITAIRE CIPHER 169

solitaire_cipher/cipher.rb

class Cipher

def self.chars_to_text(chars)

chars.map { |char| (char + ?A - 1).chr }.join.scan(/.{5}/).join(" ")

end

def self.normalize(text)

text = text.upcase.delete("^A-Z")

text += ("X" * (text.length % 5))

text.scan(/.{5}/).join(" ")

end

def self.text_to_chars(text)

text.delete("^A-Z").split("").map { |char| char[0] - ?A + 1 }

end

def initialize(keystream)

@keystream = keystream

end

def decrypt(message)

crypt(message, :-)

end

def encrypt(message)

crypt(message, :+)

end

private

def crypt(message, operator)

c = self.class

message = c.text_to_chars(c.normalize(message))

keystream = c.text_to_chars(message.map { @keystream.next_letter }.join)

crypted = message.map do |char|

((char - 1).send(operator, keystream.shift) % 26) + 1

end

c.chars_to_text(crypted)

end

end

Nothing too fancy appears in there, really. We have a few class methods

that deal with normalizing the text and converting to and from text and

IntegerArrays. The rest of the class uses these.

The two work methods are encrypt() and decrypt(), but you can see

that they are just a shell over a single crypt() method. Encryption and

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solitaire_cipher/cipher.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=169

ANSWER 15. SOLITAIRE CIPHER 170

decryption have only two minor differences. First, with decryption, the

text is already normalized, so that step isn’t needed. There’s no harm

in normalizing already normalized text, though, so I chose to ignore

that difference completely. The other difference is that we’re adding the

letters in encryption and subtracting them with decryption. That was

solved with a simple operator parameter to 3.

A Deck of Letters

With the Cipher object all figured out, I found myself in need of a

keystream object representing the deck of cards.

Some solutions went pretty far down the abstraction path of decks,

cards, and jokers, but that adds quite a bit of code for what is really a

simple problem. Given that, I decided to keep the quiz’s notion of cards

as just numbers.

Once again, I took my testing straight from the quiz:

solitaire_cipher/tc_cipher_deck.rb

#!/usr/local/bin/ruby -w

require "test/unit"

require "cipher_deck"

class TestCipherDeck < Test::Unit::TestCase

def setup

@deck = CipherDeck.new do |deck|

loop do

deck.move_down("A")

2.times { deck.move_down("B") }

deck.triple_cut

deck.count_cut

letter = deck.count_to_letter

break letter if letter != :skip

end

end

end

def test_move_down

@deck.move_down("A")

assert_equal((1..52).to_a << "B" << "A", @deck.to_a)

2.times { @deck.move_down("B") }

assert_equal([1, "B", (2..52).to_a, "A"].flatten, @deck.to_a)

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solitaire_cipher/tc_cipher_deck.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=170

ANSWER 15. SOLITAIRE CIPHER 171

def test_triple_cut

test_move_down

@deck.triple_cut

assert_equal(["B", (2..52).to_a, "A", 1].flatten, @deck.to_a)

end

def test_count_cut

test_triple_cut

@deck.count_cut

assert_equal([(2..52).to_a, "A", "B", 1].flatten, @deck.to_a)

end

def test_count_to_letter

test_count_cut

assert_equal("D", @deck.count_to_letter)

end

def test_keystream_generation

%w{D W J X H Y R F D G}.each do |letter|

assert_equal(letter, @deck.next_letter)

end

end

end

While writing these tests, I wanted to break them down into the indi-

vidual steps, but those steps count on everything that has come before.

That’s why you see me rerunning previous steps in most of the tests. I

had to get the deck back to the expected state.

You can see that I flesh out the next_letter() interface I decided on earlier

more in these tests. The constructor will take a block that manipu-

lates the deck and returns a letter. Then next_letter() can just call it as

needed.

The idea with the previous design is that CipherDeck is easily modified

to support other card ciphers. You can add any needed manipulation

methods, since Ruby’s classes are open, and then just pass in the block

that handles the new cipher.

You can see from these tests that most of the methods simply manip-

ulate an internal deck representation. The to_a() method will give you

this representation in the form of an Array and was added just to make

testing easy. When a method is expected to return a letter, a mapping

is used to convert the numbers to letters.

Let’s see how all of that comes out in code:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=171

ANSWER 15. SOLITAIRE CIPHER 172

solitaire_cipher/cipher_deck.rb

#!/usr/local/bin/ruby -w

require "yaml"

class CipherDeck

DEFAULT_MAPPING = Hash[*((0..51).map { |n| [n +1, (?A + n % 26).chr] } +

["A", :skip, "B", :skip]).flatten]

def initialize(cards = nil, &keystream_generator)

@cards = if cards and File.exists? cards

File.open(cards) { |file| YAML.load(file) }

else

(1..52).to_a << "A" << "B"

end

@keystream_generator = keystream_generator

end

def count_cut(counter = :bottom)

count = counter_to_count(counter)

@cards = @cards.values_at(count..52, 0...count, 53)

end

def count_to_letter(counter = :top, mapping = DEFAULT_MAPPING)

card = @cards[counter_to_count(counter)]

mapping[card] or raise ArgumentError, "Card not found in mapping."

end

def move_down(card)

if card == @cards.last

@cards[1, 0] = @cards.pop

else

index = @cards.index(card)

@cards[index], @cards[index + 1] = @cards[index + 1], @cards[index]

end

end

def next_letter(&keystream_generator)

if not keystream_generator.nil?

keystream_generator[self]

elsif not @keystream_generator.nil?

@keystream_generator[self]

else

raise ArgumentError, "Keystream generation process not given."

end

end

def save(filename)

File.open(filename, "w") { |file| YAML.dump(@cards, file) }

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solitaire_cipher/cipher_deck.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=172

ANSWER 15. SOLITAIRE CIPHER 173

def triple_cut(first_card = "A", second_card = "B")

first, second = @cards.index(first_card), @cards.index(second_card)

top, bottom = [first, second].sort

@cards = @cards.values_at((bottom + 1)..53, top..bottom, 0...top)

end

def to_a

@cards.inject(Array.new) do |arr, card|

arr << if card.is_a? String then card.dup else card end

end

end

private

def counter_to_count(counter)

unless counter = {:top => :first, :bottom => :last}[counter]

raise ArgumentError, "Counter must be :top or :bottom."

end

count = @cards.send(counter)

if count.is_a? String then 53 else count end

end

end

Methods such as move_down() and triple_cut() are right out of the quiz

and should be easy to understand. I’ve already explained next_letter()

and to_a() as well.

The methods count_cut() and count_to_letter() are also from the quiz,

but they have a strange counter parameter. You can pass either :top or

:bottom to these methods, depending on whether you want to use the

top card of the deck as your count or the bottom. You can see how

these are resolved in the private method counter_to_count().

You can also see the mapping I mentioned in my description of the

tests used in count_to_letter(). DEFAULT_MAPPING is straight from the quiz

description, but you can override it for other ciphers.

The last point of interest in this section is the use of YAML in the con-

structor and the save() method. This allows the cards to be saved out in

a YAML file, which can later be used to reconstruct a CipherDeck object.

This is support for keying the deck, which I’ll discuss a little more with

the final solution.

A Test Suite and Solution

Following my test-then-develop strategy, I tied the test cases up into a

trivial test suite:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=173

ANSWER 15. SOLITAIRE CIPHER 174

Joe Asks. . .

How Secure is a Deck of Cards?

Bruce Schneier set out to design Solitaire to be the first truly
secure hand cipher. However, Paul Crowley has found a bias
in the random number generation used by the cipher. In other
words, it’s not as strong as originally intended, and being a
hand cipher, it does not compete with the more powerful forms
of digital encryption, naturally.

solitaire_cipher/ts_all.rb

#!/usr/local/bin/ruby -w

require "test/unit"

require "tc_cipher_deck"

require "tc_cipher"

Finally, I created a human interface in the format specified by the quiz:

solitaire_cipher/solitaire.rb

#!/usr/local/bin/ruby -w

require "cipher_deck"

require "cipher"

card_file = if ARGV.first == "-f"

ARGV.shift

"cards.yaml"

else

nil

end

keystream = CipherDeck.new(card_file) do |deck|

loop do

deck.move_down("A")

2.times { deck.move_down("B") }

deck.triple_cut

deck.count_cut

letter = deck.count_to_letter

break letter if letter != :skip

end

end

solitaire = Cipher.new(keystream)

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solitaire_cipher/ts_all.rb
http://media.pragprog.com/titles/fr_quiz/code/solitaire_cipher/solitaire.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=174

ANSWER 15. SOLITAIRE CIPHER 175

if ARGV.size == 1 and ARGV.first =~ /^(?:[A-Z]{5})*[A-Z]{5}$/

puts solitaire.decrypt(ARGV.first)

elsif ARGV.size == 1

puts solitaire.encrypt(ARGV.first)

else

puts "Usage: #{File.basename($PROGRAM_NAME)} MESSAGE"

exit

end

keystream.save(card_file) unless card_file.nil?

The first and last chunks of code load from and save to a YAML file,

if the -f command-line option is given. You can rearrange the cards in

this file to represent the keyed deck, and then your cipher will keep it

up with each run.

The second chunk of code creates the Solitaire cipher from our tools.

This should be very familiar after seeing the tests.

Finally, the if block determines whether we’re encrypting or decrypt-

ing as described in the quiz and calls the proper method, printing the

returned results.

Additional Exercises

1. If you haven’t already done so, cover your solution with some unit

tests.

2. Refactor your solution so that the keystream generation is easily

replaced, without affecting encryption or decryption.

3. Text the flexibility of your solution by implementing an alternate

method of keystream generation, perhaps Mirdek.41

41http://www.ciphergoth.org/crypto/mirdek/description.html

Report erratum

http://www.ciphergoth.org/crypto/mirdek/description.html
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=175

ANSWER 16. ENGLISH NUMERALS 176

Answer 16From page 41

English Numerals
The quiz mentioned brute force, so let’s talk about that a bit. A naive

first thought might be to fill an array with the numbers and sort. Does

that work? No. Have a look:

$ ruby -e ' Array.new(10_000_000_000) { |i| i }'

-e:1:in ‘initialize' : bignum too big to convert into ‘long' (RangeError)

from -e:1:in ‘new'

from -e:1

Obviously, that code doesn’t handle English conversion or sorting, but

the point here is that Ruby croaked before we even got to that. An Array,

it seems, is not allowed to be that big. We’ll need to be a little smarter

than that.

A second thought might be something like this:

english_numerals/brute_force.rb

first = num = 1

while num <= 10_000_000_000

English conversion goes here!

first = [first, num].sort.first if num % 2 != 0

num += 1

end

p first

That will find the answer. Of course, depending on your computer

hardware, you may have to wait a couple of days for it. Yuck. We’re

going to need to move a little faster than that.

Grouping Numbers

The “trick” here is easy enough to grasp with a little more thought.

Consider the numbers in the following list:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/english_numerals/brute_force.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=176

ANSWER 16. ENGLISH NUMERALS 177

• ...

• Twenty-eight

• Twenty-nine

• Thirty

• Thirty-one

• Thirty-two

• Thirty-three

• ...

They are not yet sorted, but think of what will happen when they are.

Obviously, all the twenties will sort together, and all the thirties will too,

because of the leading word. Using that knowledge, we could check ten

numbers at a time. However, when we start finding words like thousand

or million at the beginning of our numbers, we can skip a lot more than

ten. That’s the secret to cracking this riddle in a reasonable time frame.

Coding an Idea

Now, let’s look at some code that thinks like that from Eliah Hecht:

english_numerals/quiz.rb

class Integer

DEGREE = [""] + %w[thousand million billion trillion quadrillion

quintillion sextillion septillion octillion nonillion decillion

undecillion duodecillion tredecillion quattuordecillion

quindecillion sexdecillion septdecillion novemdecillion

vigintillion unvigintillion duovigintillion trevigintillion

quattuorvigintillion quinvigintillion sexvigintillion

septvigintillion octovigintillion novemvigintillion trigintillion

untregintillion duotrigintillion googol]

def teen

case self

when 0: "ten"

when 1: "eleven"

when 2: "twelve"

else in_compound + "teen"

end

end

def ten

case self

when 1: "ten"

when 2: "twenty"

else in_compound + "ty"

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/english_numerals/quiz.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=177

ANSWER 16. ENGLISH NUMERALS 178

def in_compound

case self

when 3: "thir"

when 5: "fif"

when 8: "eigh"

else to_en

end

end

def to_en(ands=true)

small_nums = [""] + %w[one two three four five six seven eight nine]

if self < 10: small_nums[self]

elsif self < 20: (self % 10).teen

elsif self < 100:

result = (self/10).ten

result += "-" if (self % 10) != 0

result += (self % 10).to_en

return result

elsif self < 1000

if self%100 != 0 and ands

(self/100).to_en(ands)+" hundred and "+(self%100).to_en(ands)

else ((self/100).to_en(ands)+

" hundred "+(self%100).to_en(ands)).chomp(" ")

end

else

front,back = case (self.to_s.length) % 3

when 0: [0..2,3..-1].map{|i| self.to_s[i]}.map{|i| i.to_i}

when 2: [0..1,2..-1].map{|i| self.to_s[i]}.map{|i| i.to_i}

when 1: [0..0,1..-1].map{|i| self.to_s[i]}.map{|i| i.to_i}

end

result = front.to_en(false) + " " + DEGREE[(self.to_s.length-1)/3]

result += if back > 99: ", "

elsif back > 0: ands ? " and " : " "

else ""

end

result += back.to_en(ands)

return result.chomp(" ")

end

end

end

medium_nums = (1..999).map{|i| i.to_en}

print "The alphabetically first number (1-999) is: "

puts first = medium_nums.min.dup

first_degree = Integer::DEGREE[1..-1].min

first << " " + first_degree

puts "The first non-empty degree word (10**3-10**100) is: "+first_degree

next_first = (["and"] + medium_nums).min

first << " " + next_first

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=178

ANSWER 16. ENGLISH NUMERALS 179

puts "The next first word (numbers 1-999 + ' and') is: "+next_first

if next_first == "and"

puts "Since the last word was ' and' , we need an odd number in 1..99."

odd_nums = []

(0..98).step(2){|i| odd_nums << medium_nums[i]}

first_odd = odd_nums.min

puts "The first one is: "+first_odd

first << " " + first_odd

else # This will never happen; I can' t bring myself to write it.

end

puts "Our first odd number, then, is #{first}."

This code begins by adding methods to Integer to convert numbers to

their English names. The teen(), ten(), and in_compound() methods are

simple branches and easy to follow. The last method, to_en(), is the

interesting code.

This method too is really just a big branch of logic. Note that the early ifs

handle numbers less than ten, then teens, then numbers less that 100,

and finally numbers less than 1000. Beyond that, the code switches

strategies. You can see that the code splits the number into a front and

a back. The front variable is set to the leading digits of the number,

leaving the back holding all the digits that fit into three-digit groupings.

The method then recurses to find words for both chunks, appending

the proper DEGREE word to front and sprinkling with ands and commas

as needed.

The final chunk of code is what actually solves the problem. It makes

use of the programmer’s logic to do very little work and solve a much

bigger range than that presented in the quiz. Interestingly, it also

explains how it is getting the answer. Here’s a run:

The alphabetically first number (1-999) is: eight

The first non-empty degree word (10**3-10**100) is: billion

The next first word (numbers 1-999 + ' and') is: and

Since the last word was ' and' , we need an odd number in 1..99.

The first one is: eighty-five

Our first odd number, then, is eight billion and eighty-five.

Proper Grammar

If you’re a grammar purist, the previous probably bothers you. Glenn

P. Parker explained his frustration with his submitted solution:

I’m afraid I could not bring myself to code up some random ill-defined

method of expressing numbers in English, so I did it the way I was

taught in school, using hyphens and absolutely no ands or commas.

I think I’ve got Strunk & White on my side.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=179

ANSWER 16. ENGLISH NUMERALS 180

Removing the ands does change the answer, so let’s examine Glenn’s

code:

english_numerals/grammatical.rb

#!/usr/bin/ruby

class Integer

Ones = %w[zero one two three four five six seven eight nine]

Teen = %w[ten eleven twelve thirteen fourteen fifteen

sixteen seventeen eighteen nineteen]

Tens = %w[zero ten twenty thirty forty fifty

sixty seventy eighty ninety]

Mega = %w[none thousand million billion]

def to_english

places = to_s.split(//).collect {|s| s.to_i}.reverse

name = []

((places.length + 2) / 3).times do |p|

strings = Integer.trio(places[p * 3, 3])

name.push(Mega[p]) if strings.length > 0 and p > 0

name += strings

end

name.push(Ones[0]) unless name.length > 0

name.reverse.join(" ")

end

private

def Integer.trio(places)

strings = []

if places[1] == 1

strings.push(Teen[places[0]])

elsif places[1] and places[1] > 0

strings.push(places[0] == 0 ? Tens[places[1]] :

"#{Tens[places[1]]}-#{Ones[places[0]]}")

elsif places[0] > 0

strings.push(Ones[places[0]])

end

if places[2] and places[2] > 0

strings.push("hundred", Ones[places[2]])

end

strings

end

end

If there are command-line args, just print out English names.

if ARGV.length > 0

ARGV.each {|arg| puts arg.to_i.to_english}

exit 0

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/english_numerals/grammatical.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=180

ANSWER 16. ENGLISH NUMERALS 181

Return the name of the number in the specified range that is the

lowest lexically.

def minimum_english(start, stop, incr)

min_name = start.to_english

start.step(stop, incr) do |i|

name = i.to_english

min_name = name if min_name > name

end

min_name

end

Find the lowest phrase for each 3-digit cluster of place-values.

The lowest overall string must be composed of elements from this list.

components =

[minimum_english(10**9, 10**10, 10**9),

minimum_english(10**6, 10**9 - 1, 10**6),

minimum_english(10**3, 10**6 - 1, 10**3),

minimum_english(10**0, 10**3 - 1, 2)]

$result = components[-1]

def search_combinations(list, selected = [])

if elem = (list = list.dup).shift

if list.empty?

Always include the final element from list in the selection.

string = selected.dup.push(elem).join(" ")

$result = string if $result > string

else

search_combinations(list, selected)

search_combinations(list, selected.dup.push(elem))

end

end

$result

end

puts search_combinations(components)

You can see that Glenn also extended the Integer class, in this case

with a to_english() method. That method again works in digit trios. It

breaks the number up into an Array of digits and then sends them to

Integer.trio() in groups of three. Integer.trio() handles the small-number

special cases and returns an Array of Strings, the English names. These

are built up, until to_english() can join them to form the complete num-

ber.

Skipping the short command-line arguments test, the rest of the code

is again the solution. The minimum_english() method is very similar to

the brute-force code we were originally playing with, save that it uses

an increment. Next, you can see the components Array is filled with the

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=181

ANSWER 16. ENGLISH NUMERALS 182

minimum_english() result for each three-digit group. (Note that the last

group uses an increment of 2, to examine only odd numbers.)

While components actually holds the final answer in pieces now, a sim-

ple join() would be sufficient, Glenn avoids using his knowledge to skip

steps. Instead, he defines search_combinations() to recursively join() each

of the components, ensuring that the final union would sort first. The

last line prints the result of that search: eight billion eight hundred

eight million eight hundred eight thousand eight hundred eighty-five.

Additional Exercises

1. Write a program, using some of your code for this quiz if you like,

that converts English numbers back into digit form.

2. The ability to convert numbers to and from English words comes

in handy in many applications. Some people have used the code

from this quiz in solutions to other quizzes. Convert your script

so it still solves the quiz normally when run but just loads the

converter methods when used in the require statement of another

program.

3. Solve the quiz again, in the foreign language of your choice.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=182

ANSWER 17. CODE CLEANING 183

Answer 17From page 42

Code Cleaning
Solving this quiz isn’t really about the end result. It’s more about the

process involved. Here’s a stroll through my process for the first script.

Timothy Byrd asked the right first question on Ruby Talk. To para-

phrase, “What does this sucker do?” The programs used are semifa-

mous, and if you follow Redhanded,42 you probably already know.43

If you didn’t, the -rcgi in the first line is a really big hint. -r is the

command-line shortcut for a requiring library, in this case cgi. From

there, it’s pretty easy to assume that the script is a CGI script. That

told me I needed to get it behind a web server to play with it.

Instant Web Serving

I could have put it behind Apache and worked with it that way, but I

chose to use Ruby’s standard WEBrick server instead. I’m glad I did too,

because I ran into a few issues while getting it running that were super

easy to see by watching WEBrick’s responses in my terminal. Here’s the

WEBrick script I wrote to serve it up:

code_cleaning/server.rb

#!/usr/bin/env ruby

require "webrick"

server = WEBrick::HTTPServer.new(:Port => 8080, :DocumentRoot => "cgi-bin")

[' INT' , ' TERM'].each do |signal|

trap(signal) { server.shutdown }

end

server.start

42http://redhanded.hobix.com/
43http://redhanded.hobix.com/bits/batsmansFiveLineWiki.html

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/server.rb
http://redhanded.hobix.com/
http://redhanded.hobix.com/bits/batsmansFiveLineWiki.html
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=183

ANSWER 17. CODE CLEANING 184

That’s super basic WEBrick in action. Pull in the library, initialize a

server with a port and document directory, set signal handlers for shut-

ting down, and start it up. This server can handle HTML, ERB templates,

and, most important here, CGI. Perfect.

I created the referenced cgi-bin directory right next to my server.rb script

and dropped in a file with the code to test, named wiki.rb.

I then browsed over to http://localhost:8080/wiki.rb and was greeted by a

Wiki HomePage. Now that I had it running, I felt like I could start

dealing with the code and see what it was doing.

Finding the Hidden Wiki

The first thing I like to do with any code I can’t read is to inject a lot of

whitespace. It helps me identify the sections of code. A cool trick to get

started with this in golfed/obfuscated Ruby code is a global find and

replace of ; with \n. Then season with space, tab, and return to taste.

Here’s my spaced-out version:

code_cleaning/wiki_spaced.cgi

#!/usr/local/bin/ruby -rcgi

H, B = %w' HomePage w7.cgi?n=%s'

c = CGI.new ' html4'

n, d = c[' n'] != ' ' ? c[' n'] : H, c[' d']

t = ‘cat #{n}‘

d != ' ' && ‘echo #{t = CGI.escapeHTML(d)} > #{n}‘

c.instance_eval {

out {

h1 { n } +

a(B % H) { H } +

pre { t.gsub(/([A-Z]\w+){2}/) { a(B % $&) { $& } } } +

form("get") {

textarea(' d') { t } +

hidden(' n' , n) +

submit

}

}

}

Now we’re getting somewhere. I can see what’s happening. This silly

little change opened my eyes to another problem immediately. Look at

that second line:

Report erratum

http://localhost:8080/wiki.rb
http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/wiki_spaced.cgi
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=184

ANSWER 17. CODE CLEANING 185

H, B = %w' HomePage w7.cgi?n=%s'

I now know what the original script was called: w7.cgi. (The seventh

Wiki? Mauricio is an animal!) I modified the line to play nice with my

version:

H, B = %w' HomePage wiki.cgi?n=%s'

On to the next step. Let’s clean up some of the language constructs

used here. We can spell out -rcgi, make those assignments slightly

more obvious, eliminate the ternary operator, clarify the use of the &&

operator, remove the dependency on the ugly $& variable, and swap

a few { ... } pairs with do ... end pairs. I thought about removing the

instance_eval() call, but to be honest I like that better than typing c. ten

times. Let’s see how the code looks now:

code_cleaning/wiki_lang.cgi

#!/usr/local/bin/ruby

require ' cgi'

H = ' HomePage'

B = ' wiki.cgi?n=%s'

c = CGI.new ' html4'

n = if c[' n'] == ' ' then H else c[' n'] end

d = c[' d']

t = ‘cat #{n}‘

‘echo #{t = CGI.escapeHTML(d)} > #{n}‘ unless d == ' '

c.instance_eval do

out do

h1 { n } +

a(B % H) { H } +

pre do

t.gsub(/([A-Z]\w+){2}/) { |match| a(B % match) { match } }

end +

form("get") do

textarea(' d') { t } +

hidden(' n' , n) +

submit

end

end

end

The whole time I’m working on this code, I’m running it in my WEBrick

server, checking my changes, and learning more about how it func-

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/wiki_lang.cgi
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=185

ANSWER 17. CODE CLEANING 186

tions. One thing I’m noticing is an occasional usage statement from the

cat command-line program:

cat: HomePage: No such file or directory

Sometimes it’s being called on files that don’t exist, probably before we

add content to a given Wiki page. It still works (returning no content),

but we can silence the warning. In fact, we should just remove the

external dependency all together, making the code more portable in the

process. In pure Ruby, ‘cat #{n}‘ is just File.read(n).

The other external dependency is on echo. We can fix that too—we open

a File for writing and spit out the page contents. Here’s where the code

is now:

code_cleaning/wiki_cat.cgi

#!/usr/local/bin/ruby

require ' cgi'

H = ' HomePage'

B = ' wiki.cgi?n=%s'

c = CGI.new ' html4'

n = if c[' n'] == ' ' then H else c[' n'] end

d = c[' d']

t = File.read(n) rescue t = ' '

unless d == ' '

t = CGI.escapeHTML(d)

File.open(n, "w") { |f| f.write t }

end

c.instance_eval do

out do

h1 { n } +

a(B % H) { H } +

pre do

t.gsub(/([A-Z]\w+){2}/) { |match| a(B % match) { match } }

end +

form("get") do

textarea(' d') { t } +

hidden(' n' , n) +

submit

end

end

end

At this point, I understand the code well enough to extend the variable

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/wiki_cat.cgi
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=186

ANSWER 17. CODE CLEANING 187

names and add some comments, which should make its function pretty

clear to others:

code_cleaning/wiki_clean.cgi

#!/usr/local/bin/ruby

wiki.cgi

require ' cgi'

HOME = ' HomePage'

LINK = ' wiki.cgi?name=%s'

query = CGI.new ' html4'

fetch query data

page_name = if query[' name'] == ' ' then HOME else query[' name'] end

page_changes = query[' changes']

fetch file content for this page, unless it' s a new page

content = File.read(page_name) rescue content = ' '

save page changes, if needed

unless page_changes == ' '

content = CGI.escapeHTML(page_changes)

File.open(page_name, ' w') { |f| f.write content }

end

output requested page

query.instance_eval do

out do

h1 { page_name } +

a(LINK % HOME) { HOME } +

pre do # content area

content.gsub(/([A-Z]\w+){2}/) do |match|

a(LINK % match) { match }

end

end +

form(' get') do # update from

textarea(' changes') { content } +

hidden(' name' , page_name) +

submit

end

end

end

That’s probably as far as I would take that code, without trying to make

any fundamental changes. The functionality is still pretty much the

same (including limitations!), but it’s much easier to follow how the

code works.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/wiki_clean.cgi
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=187

ANSWER 17. CODE CLEANING 188

The Other Program

I used pretty much the same process to decrypt Florian’s code, so I

won’t bore you with a repeat. However, one additional tip that did help

me through the complex renaming is worth mentioning here. When

you need to rename a much-used method or variable, just do it, and

then run the program. The error messages will give you the exact line

numbers that need updating.

Here’s the code I ended up with for Florian’s program:

code_cleaning/p2p_clean.rb

#!/usr/local/bin/ruby

#

p2p.rb

#

Server: ruby p2p.rb password server public-uri private-uri merge-servers

Sample: ruby p2p.rb foobar server druby://123.123.123.123:1337

druby://:1337 druby://foo.bar:1337

Client: ruby p2p.rb password client server-uri download-pattern [list-only]

Sample: ruby p2p.rb foobar client druby://localhost:1337 *.rb

###

You are not allowed to use this application for anything illegal

unless you live inside a sane place. Insane places currently include

California (see link) and might soon include the complete

USA. People using this software are responsible for themselves. I

can' t prevent them from doing illegal stuff for obvious reasons. So

have fun, and do whatever you can get away with for now.

#

http://info.sen.ca.gov/pub/bill/sen/sb_0051-0100/-

sb_96_bill_20050114_introduced.html

###

require' drb'

define utility methods

def create_drb_object(uri)

DRbObject.new(nil, uri)

end

def encode(uri)

[PASSWORD, uri].hash

end

def make_safe(path)

File.basename(path[/[^|]+/])

end

parse command-line options

PASSWORD, MODE, URI, VAR, *OPTIONS = ARGV

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/code_cleaning/p2p_clean.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=188

ANSWER 17. CODE CLEANING 189

class Server # define server operation

new.methods.map{ |method| private(method) unless method[/_[_t]/] }

def initialize

@servers = OPTIONS.dup

add(URI)

@servers.each do |u|

create_drb_object(u).add(URI) unless u == URI

end

end

attr_reader :servers

def add(z = OPTIONS)

@servers.push(*z).uniq!

@servers

end

def list(code, pattern)

if encode(URI) == code

Dir[make_safe(pattern)]

else

@servers

end

end

def read(file)

open(make_safe(file), "rb").read

end

end

if MODE["s"] # server

DRb.start_service(VAR, Server.new)

sleep

else # client

servers = create_drb_object(URI).servers

servers.each do |server|

files = create_drb_object(server).list(encode(server), VAR).map do |f|

make_safe f

end

files.each do |file|

if OPTIONS[0]

p(file)

else

open(file, "wb") do |f|

f << create_drb_object(server).read(file)

end

end

end

end

end

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=189

ANSWER 17. CODE CLEANING 190

Additional Exercises

1. Find another obfuscated program but in another language you are

familiar with. Translate it to clean Ruby code.

2. Create a golfed Ruby program for use as an email signature. The

program should be four lines or fewer and have no more than 80

characters per line.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=190

ANSWER 18. BANNED WORDS 191

Answer 18From page 44

Banned Words
The general idea behind a lot of solutions to this quiz is pretty basic:

try a big list (probably the whole list in this problem), and if that gets

blocked, divide it into smaller lists and try again. This approach is

known as divide and conquer.

When one of these chunks of words gets through, we know that every

word in that chunk is clean. The higher up in our search that happens,

the more work that saves us. Because of that, this solution is ideal

when there aren’t a lot of banned words, as would probably be the case

in the real-world example of this quiz.

Here’s my own solution as the most basic example of this process:

banned_words/basic.rb

#!/usr/bin/env ruby

require "filter"

my algorithm

def isolate(list, test)

if test.clean? list.join(" ")

Array.new

elsif list.size == 1

list

else

left, right = list[0...(list.size / 2)], list[(list.size / 2)..-1]

isolate(left, test) + isolate(right, test)

end

end

test code

choose some random words to ban

words = ARGF.read.split " "

filter = LanguageFilter.new words.select { rand <= 0.01 }

solve

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/banned_words/basic.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=191

ANSWER 18. BANNED WORDS 192

start = Time.now

banned = isolate words, filter

time = Time.now - start

display results

puts "#{words.size} words, #{banned.size} banned words found"

puts "Correct? #{filter.verify banned}"

puts "Time taken: #{time} seconds"

puts "Calls: #{filter.clean_calls}"

puts "Words:"

puts banned.map { |word| "\t" + word }

isolate() is a recursive routine that takes an Array of words and a test

filter and returns the banned words. If the entire word list passes a

clean?() test, we return an empty Array (no banned words in the given

list). If we don’t get an OK from clean?() and we have only one word in

the list, we’ve found a banned word and we return the one-word Array

itself to show that. Finally, if we didn’t pass clean?() and we have more

than one word, we divide the list in half, call isolate() on each half, and

combine the results of both of those calls. Eventually, this drills down

to find all the banned words.

Of course, those are just the basics.

Dividing the word list in half at each step may not be the optimal

approach, especially when there are many banned words. Some solu-

tions played around with different ratios and tried to find a fast way

to eliminate many words. Cutting the word list in thirds at each step

seemed to work well, as did using 10% of the word list size. These both

have the advantage of not needing any more external knowledge.

Defining Word Boundaries

The LanguageFilter class from the quiz is far from perfect. It
doesn’t gracefully handle things such as apostrophes and plu-
rals. Even some languages trip it up. Defining a “word” is not
a very simple task. The code was left dumbed down to make
it easy to follow and use but may need to be modified to work
with your dictionary.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=192

ANSWER 18. BANNED WORDS 193

Doing Even Fewer Checks

Wayne Vucenic found a very clever optimization. If we check a big list

and it gets banned, and then we split it up and check the first half and

it comes back clean, we know the second half would be banned and

can skip the check. That could save a significant number of messages

that we would otherwise need to send. Let’s examine that code:

banned_words/optimized.rb

require "test_harness"

class YourAlgorithm < RQ9Algorithm

Returns an array containing all banned words from @words

def run()

if @words.empty?

[]

else

find_banned(@words)

end

end

Returns an array containing all banned words from words

words.size is > 0

def find_banned(words)

if words.size == 1

@filter.clean?(words[0]) ? [] : words

elsif @filter.clean?(words.join(' '))

[]

else

split_index = words.size / 2

if @filter.clean?(words[0...split_index].join(' '))

There is at least one banned word in 0..-1, but not in

0...split_index, so there must be one in split_index..-1

find_banned_there_is_one(words[split_index..-1])

else

From the test above we know there is a banned word in 0...split_index

find_banned_there_is_one(words[0...split_index]) +

find_banned(words[split_index..-1])

end

end

end

Returns an array containing all banned words from words

words.size is > 0

Our caller has determined there is at least one banned word in words

def find_banned_there_is_one(words)

if words.size == 1

Since we know there is at least one banned word and since there is

only one word in the array, we know this word is banned without

having to call clean?

words

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/banned_words/optimized.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=193

ANSWER 18. BANNED WORDS 194

else

split_index = words.size / 2

if @filter.clean?(words[0...split_index].join(' '))

There is at least one banned word in 0..-1, but not in 0...split_index,

so there must be one in split_index..-1

find_banned_there_is_one(words[split_index..-1])

else

From the previous test we know there is a banned word

in 0...split_index

find_banned_there_is_one(words[0...split_index]) +

find_banned(words[split_index..-1])

end

end

end

end

This code is designed to work with a test harness, written by Jannis

Harder.44 All you really need to know is that when run() is called, @words

holds an Array of words in the dictionary, and @filter holds the language

filter from the quiz.

The exciting work happens in find_banned(). It works similarly to the

first example we looked at, except for that final if clause. When it’s

determined that there must be one banned word in the bunch, work

gets handed off to find_banned_there_is_one(), which is smart enough

to skip some checks, as I described previously. It doesn’t always get

to bypass the second check, but it’s often enough to save a significant

number of calls. Wayne’s code found the answers with the least amount

of checks on most of the examples in the test harness.

Additional Exercises

1. Try to improve LanguageFilter’s notion of what a word is as dis-

cussed in the sidebar, on page 192.

2. If you used a divide-and-conquer approach, try to isolate the best

number of chunks to divide the list into at each step, without any

outside knowledge of the word list.

44You can find the test harness files at banned_words/test_harness.rb and

banned_words/test.rb.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/banned_words/test_harness.rb
http://media.pragprog.com/titles/fr_quiz/code/banned_words/test.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=194

ANSWER 19. SECRET SANTAS 195

Answer 19From page 46

Secret Santas
The Secret Santas quiz is one of those problems that seems trivial at

first glance but turns out to be trickier than expected. Some solutions

seem to work but have subtle problems. Let’s examine a naive solution.

When I first encountered this problem, I tried the following process:

1. Collect a list of players from the input.

2. Duplicate that list into a list of Santas, and shuffle.

3. For each player, filter the Santa list to remove anyone with an

identical family name, and choose the first Santa from the filtered

list.

4. Remove the chosen Santa from the list of Santas.

5. Print the current Santa-to-player match.

6. Repeat until all names are assigned.

That translates to Ruby easily enough:

secret_santa/naive.rb

players = ARGF.read.split("\n")

santas = players.sort_by { rand }

while players.size > 0

santa = santas.select { |s| s[/ \w+$/] != players[0][/ \w+$/] }.first

santas.delete(santa)

puts "#{santa} -> #{players.shift}"

end

All we need are some names, and we can test that solution. The test

data from the quiz was picked to show off how tricky this problem can

get. However, it might take several runs to see a problem. We can make

the test even trickier by considering three families, one member each:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/secret_santa/naive.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=195

ANSWER 19. SECRET SANTAS 196

secret_santa/trickydata

Mr. Gray

Mr. Thomas

Mr. Matsumoto

Let’s try a couple of tests:

james> ruby naive.rb < trickydata

Mr. Matsumoto -> Mr. Gray

Mr. Gray -> Mr. Thomas

Mr. Thomas -> Mr. Matsumoto

james> ruby naive.rb < trickydata

Mr. Thomas -> Mr. Gray

Mr. Gray -> Mr. Thomas

-> Mr. Matsumoto

The first run goes just as expected, but what happened to the second

run? Let’s break it down:

1. Mr. Thomas was assigned as a Santa for Mr. Gray.

2. Mr. Gray was then assigned as the Santa for Mr. Thomas.

3. Then we’re stuck! There are no matches left for Mr. Matsumoto.

The only Santa left is Mr. Matsumoto himself, and we’re filtering

him out of the choices.

Depending on how you implement the previous steps, you should see

incorrect output, as we did with my example, or get stuck in an infinite

loop trying to find a matching Santa. Now that we know this problem

has teeth, let’s look at other options.

Notifying Santas

Obviously, printing out the list won’t work if the person running
the Santa selection script wants to play. When this quiz was
originally posted to Ruby Talk, it required sending emails to the
Santas to notify them who they would be giving gifts to. This is
how I handle the game my friends play each year.

I’ve simplified the problem for the sake of this book, but luckily
Ruby makes email sending trivial with Net::SMTP, in the standard
library.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/secret_santa/trickydata
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=196

ANSWER 19. SECRET SANTAS 197

Using a Random Sort

One way to get a working mix of Santas to players is to use a ran-

dom sort. The idea of a random sort is very basic: generate random

matchups until we find a correct mix.

One way to code that up is as follows:

secret_santa/random.rb

def correct_match?(givers, receivers)

receivers.each_with_index do |who, i|

return false if who[/ \w+$/] == givers[i][/ \w+$/]

end

return true

end

players = ARGF.read.split("\n")

begin

santas = players.sort_by { rand }

end until correct_match?(santas, players)

santas.each_with_index do |s, i|

puts "#{players[i]} -> #{s}"

end

This solution just shuffles santas until correct_match?() verifies that

none of the matchups share family names. That ensures no one will

have themself or a common family member, of course.

This method does give us a good random shuffle of the matchups, but

unfortunately, the performance is far from stellar. Depending on the

number of players, how the families break down, and a little bit of bad

luck, this program can take considerable time to run.

If you just need to assign Santas for a small group of friends something

like the previous code may be adequate. However, if you’re running a

Secret Santa game for your company and you have a good number of

employees, you may need to dig a little deeper for a solution.

A Ring of Players

Another way to approach this problem is to use a circular list. With this

technique, you place all the players in a circle. While arranging players,

or with an extra pass of processing afterward, you need to separate

family members so they are not directly next to each other. From there,

assigning Santas is as easy as matching everyone to the player next to

them in the circle, as shown in Figure 1.3, on the following page.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/secret_santa/random.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=197

ANSWER 19. SECRET SANTAS 198M r G r a y M r T h o m a sM r M a t s u m o t o
Figure 1.3: Assigning from a Circular List

Algorithms like this are far more efficient than a random sort. However,

this type of assignment is not truly random and does not allow for all

possible permutations. Consider this: in a circular list approach, it

is impossible for two players to be assigned to each other as Santas.

That’s not to say this is unacceptable. Some groups may even prefer

this behavior. If you like the random feel, though, you’ll need a different

approach.

Grouping

Another common strategy for solving this problem is to divide all the

players into groups by family. Then Santas are selected for players not

in the same grouping.

This strategy is trickier than it sounds. It’s common to see errors sim-

ilar to naive.rb, infinite loops, or matchups that don’t cover all possible

permutations with this approach.

However, Niklas Vermont Frykholm submitted an error-free solution

using family grouping that does produce random matches:

secret_santa/grouping.rb

class Array

def random_member(&block)

return select(&block).random_member if block

return self[rand(size)]

end

def count(&block)

return select(&block).size

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/secret_santa/grouping.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=198

ANSWER 19. SECRET SANTAS 199

class Person

attr_reader :first, :family

def initialize(first, family)

@first, @family = first, family

end

def to_s() "#{first} #{family}" end

end

class AssignSanta

def initialize(persons)

@persons = persons.dup

@santas = persons.dup

@families = persons.collect {|p| p.family}.uniq

@families.each do |f|

if santa_surplus(f) < 0

raise "No santa configuration possible"

end

end

end

Key function - extra santas available for a family

if this is negative - no santa configuration is possible

if this is 0 - next santa must be assigned to this family

def santa_surplus(family)

return @santas.count {|s| s.family != family} -

@persons.count {|p| p.family == family}

end

def call

while @persons.size() > 0

family = @families.detect do |f|

santa_surplus(f)==0 and

@persons.count{|p| p.family == f} > 0

end

person = @persons.random_member do |p|

family == nil || p.family == family

end

santa = @santas.random_member do |s|

s.family != person.family

end

yield(person, santa)

@persons.delete(person)

@santas.delete(santa)

end

end

end

people = STDIN.read.split("\n").map do |line|

first, family = line.chomp.split(' ' , 2)

Person.new(first, family)

end

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=199

ANSWER 19. SECRET SANTAS 200

assigner = AssignSanta.new(people)

assigner.call do |person, santa|

puts "#{person} -> #{santa}"

end

The call() method does most of the work. call() selects players and then

random Santas, from different family groups, to complete matchups.

However, although it works, it constantly avoids painting itself into a

corner with the use of the utility method santa_surplus().

santa_surplus() tracks the number of Santas still available for each family

group. The program uses this to avoid leaving itself no valid matches

in future iterations. As any other selection is allowed, this solution

provides a random mix, eventually touching on all possible permuta-

tions.45

Climbing a Hill

A final type of solution is generally known as a “hill climbing” algorithm.

Dennis Ranke explains his version nicely:

I start by assigning a random Santa to everyone without caring about

the constraints. Then I go through the list of people, and for each

one not having a correct Santa, I swap Santas with someone else so

that both have correct Santas afterward. As far as I can see, this

will fail only when no solution is possible and should be reasonably

unbiased.

Put another way, you start with a random (and likely quite incorrect)

match-up and then correct it one swap at a time. Hill climbing is an

efficient solution in many programming challenges.

Here’s the code to match the description:

secret_santa/hillclimb.rb

class Person

attr_reader :first, :last

attr_accessor :santa

def initialize(line)

m = /(\S+)\s+(\S+)/.match(line)

raise unless m

@first = m[1].capitalize

@last = m[2].capitalize

45Niklas posted his own mathematical analysis of his code to Ruby Talk. You can read

that message at http://ruby-talk.org/cgi-bin/scat.rb/ruby/ruby-talk/114760.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/secret_santa/hillclimb.rb
http://ruby-talk.org/cgi-bin/scat.rb/ruby/ruby-talk/114760
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=200

ANSWER 19. SECRET SANTAS 201

end

def can_be_santa_of?(other)

@last != other.last

end

end

input = STDIN.read

people = []

input.each_line do |line|

line.strip!

people << Person.new(line) unless line.empty?

end

santas = people.dup

people.each do |person|

person.santa = santas.delete_at(rand(santas.size))

end

people.each do |person|

unless person.santa.can_be_santa_of? person

candidates = people.select { |p|

p.santa.can_be_santa_of?(person) && person.santa.can_be_santa_of?(p)

}

raise if candidates.empty?

other = candidates[rand(candidates.size)]

temp = person.santa

person.santa = other.santa

other.santa = temp

end

end

people.each do |person|

printf "%s %s -> %s %s\n", person.santa.first, person.santa.last,

person.first, person.last

end

Santas are randomly assigned in the first people.each iteration and

then swapped until correct in the following people.each iteration. Notice

that candidates is filtered to include only valid matches, so each swap

is assured to take us closer to a correct mix. If there are no candidates

at any point, we cannot step closer to a correct solution, and thus we

know that a match is impossible with this input.

Additional Exercises

1. Prove that your solution is or is not truly random. You can do

this by writing another script that runs your solution repeatedly,

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=201

ANSWER 19. SECRET SANTAS 202

looking for all the possible permutations.

2. Add email support to your solution so that all players just see a

message containing the person they are to play Santa for.

3. It’s not uncommon for people to forget their person and ask to

see the name again. Have your program save a copy of the match

list, and provide an interface for resending the selection email to

a given player.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=202

ANSWER 20. BARREL OF MONKEYS 203

Answer 20From page 48

Barrel of Monkeys
Let’s jump right into a solution and explore aspects of this problem as

we go along. Here’s a helper class from my own code:

barrel_of_monkeys/barrel_of_monkeys.rb

class Song

def initialize(title, artist, duration)

@title = title

@artist = artist

@duration = duration.to_i / 1000

end

attr_reader :title, :artist, :duration

def starts_with()

@title[/[A-Za-z0-9]/].downcase

end

def ends_with()

@title[/[A-Za-z0-9](?=[^A-Za-z0-9]*$)/].downcase

end

def ==(other)

@title == other.title and @artist == other.artist

end

def to_s()

"#{@title} (by #{@artist} - #{@duration} seconds)"

end

end

This class wraps song data. Aside from the accessors, an equality test,

and a String conversion method, I define methods for getting the first

and last characters of the song title. These methods use Regexps to

find a letter or numeral in the proper place.

That leads us to questions about how to handle the names. I took the

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_of_monkeys.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=203

ANSWER 20. BARREL OF MONKEYS 204

easy way out, along with most other submitters, which boils down to

the fact that I don’t try to clean up the names. There are lot of issues

with those names, as there would be with any random sample, and

you would need a lot of very careful rules to produce good results from

them.

Quiz creator Gavin Kistner made a heroic attempt to fix the names with

good results. Gavin’s best trick was to convert numerals to English

words so they could be matched normally. Unfortunately, the truth is

that a human eye could probably normalize any list of names in about

the time it took Gavin to build the code that works for some lists. I think

that’s just one of those areas where the computer isn’t much help.

Let’s move on to my playlist-building code:

barrel_of_monkeys/barrel_of_monkeys.rb

def build_playlist(start, finish, songs)

playlists = [[start]]

until playlists.empty? or

playlists.first.last.ends_with == finish.starts_with

playlist = playlists.shift

next unless songs.include? playlist.last.ends_with

songs[playlist.last.ends_with].each do |song|

next if playlist.find { |s| song.ends_with == s.ends_with }

playlists << (playlist.dup << song)

end

end

if playlist.empty?

nil

else

playlists.shift << finish

end

end

Building a playlist is really a path-finding problem in disguise, and my

method is just a simple breadth-first search. We don’t need to search

all the way to the end song, though; we can stop as soon as we have a

song that ends with the letter the last song begins with. Otherwise, it’s

vanilla searching.

The parameters to this method are the start and finish songs for the

playlist and the songs database. It worth noting that songs is expected to

be a Hash of SongArrays, with the keys being the common letter a group

of Song titles begin with. This makes for faster searching.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_of_monkeys.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=204

ANSWER 20. BARREL OF MONKEYS 205

The process is as follows: First, make a list of paths initialized with a

single path that contains only the starting point. Then, enter a loop that

ends when the list of paths is empty or the first path in the list contains

the endpoint. In that loop, pull the first path off the list, expand that

path into a list of paths that all take one step further to the final point

of the path, and add all those paths to the end of the paths list.

The only trick in doing this kind of a search is to be careful not to

double back on your self, which is usually done by making sure a path

doesn’t already contain the point you’re about to add. I modified that

here to make sure no song already in the list ends with the same letter

as the one we are about to add.

Then the final chunk of the method just returns the results with the

last song added. This is always the shortest playlist, in terms of the

number of songs it contains.

Here’s the set-up interface code:

barrel_of_monkeys/barrel_of_monkeys.rb

unless ARGV.size == 2

puts "Usage: #{File.basename($0)} START_SONG END_SONG"

exit

end

warn "Reading song list..."

if File.exist? "song_list.cache"

songs = File.open("song_list.cache", "r") { |file| Marshal.load(file) }

else

require "rexml/document"

songs = Hash.new

xml = File.open("SongLibrary.xml", "r") { |file| REXML::Document.new(file) }

xml.elements.each("Library/Artist") do |artist|

artist.elements.each("Song") do |song|

name = song.attributes["name"]

next unless name =~ /[A-Za-z0-9]/

new_song = Song.new(name, artist.attributes["name"],

song.attributes["duration"])

songs[new_song.starts_with] ||= Array.new

songs[new_song.starts_with] << new_song

end

end

File.open("song_list.cache", "w") { |file| Marshal.dump(songs, file) }

end

warn "Song list complete."

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_of_monkeys.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=205

ANSWER 20. BARREL OF MONKEYS 206

start_name, finish_name = ARGV.map { |name| name.downcase }

start = nil

songs.values.each do |song_list|

start = song_list.find { |song| song.title.downcase.index(start_name) }

break if start

end

finish = nil

songs.values.each do |song_list|

finish = song_list.find { |song| song.title.downcase.index(finish_name) }

break if finish

end

if start.nil?

puts "Couldn' t find #{start_name} in song list."

exit

end

if finish.nil?

puts "Couldn' t find #{finish_name} in song list."

exit

end

puts

puts "Start song: #{start}"

puts " End song: #{finish}"

puts

After I check for usage with the two song names I’m expecting, the main

problem to deal with is reading the song library. You can examine the

else clause for my read strategy, which is REXML 101. This proved to be

quite slow (around four seconds). When I got to testing my code, that

became annoying very fast. I decided to speed it up by marshaling a

cache file that loads in less than a second.46 I just write the file after

the first REXML load and then check and favor it in the future (the if

clause).

A lot of submitters used similar strategies. One person used YAML

instead of Marshal, but the result was the same if not quite as fast.

Another solution is to parse the XML yourself with Regexps, which

is fast and not too tricky with the provided file but obviously isn’t as

robust as using REXML.

The other issue to look at in the song-loading code is how they are

stored internally. I wanted to make the lookups as fast as possi-

ble when I’m building playlists, which meant not combing through an

entire Array to find songs. Instead, I stored them in a Hash by the let-

46I originally had a default Proc set for the Hash, but I had to remove it to get the Hash

past Marshal.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=206

ANSWER 20. BARREL OF MONKEYS 207

ter they start with. Each letter is a key matched with an Array of Song

objects whose names begin with that letter.

Finally, the set-up code locates the songs for which the user requested

a playlist. You can easily see that my Hash structure doesn’t bend well

to this, since I have to use each() and find() to locate them. However, I

need to do it only these two times at the beginning, so I thought it was

an acceptable trade.

There’s just a tiny little bit of code left to run the actual search process:

barrel_of_monkeys/barrel_of_monkeys.rb

warn "Building playlist..."

playlist = build_playlist(start, finish, songs)

warn "Playlist complete."

puts

if playlist.nil?

puts "A playlist could not be found, between the selected songs."

else

puts playlist

end

That’s as simple as it looks. Find the playlist, and display it. We’ll

know whether no match is possible because the build_playlist() returns

nil when it runs out of paths to try.

Fancy Searching

My solution doesn’t handle durations or any other options. For that,

let’s walk through an option-driven solution by Dave Burt:

barrel_of_monkeys/barrel_with_options.rb

#

A Song has a name, an artist, a duration, and an optional id

#

class Song

def initialize(name, artist, duration = nil, id = 0)

@name = name

@artist = artist

@duration = duration

@id = id

end

attr_accessor :name, :artist, :duration, :id

def basic_name

@name.gsub(/\s*([\[(]).*\1\s*$/, ' ').gsub(/\bfeat.*$/, ' ')

end

def to_s

"#@artist - #@name (#{@duration.min_sec})"

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_of_monkeys.rb
http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_with_options.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=207

ANSWER 20. BARREL OF MONKEYS 208

def inspect

to_s

end

and, for the barrels of monkeys:

def first_letter

m = basic_name.match(/([a-z])/i)

m[1].downcase if m

end

def last_letter

m = basic_name.match(/([a-z])[^a-z]*$/i)

m[1].downcase if m

end

end

This data class is very close to my version that we’ve already examined.

The basic_name() method does minimal attempts to clean up the songs

names, but again this is nothing complete.

barrel_of_monkeys/barrel_with_options.rb

class Integer

#

Display a time in milliseconds as m:ss

#

def min_sec

"#{self/60000}:%02d" % (self/1000 % 60)

end

#

Display a time in milliseconds as h:mm:ss

#

def hr_min_sec

"#{self/3600000}:%02d:%02d" % [self/60000 % 60, self/1000 % 60]

end

end

class Array

#

Return the sum of the durations of the elements

#

def total_duration

inject(0) {|memo, song| memo + song.duration }

end

#

Return a string listing the contents of this array as a playlist, with

an appropriate header

#

def playlist_string

i = 0

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_with_options.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=208

ANSWER 20. BARREL OF MONKEYS 209

"<Playlist tracks: #{size}, duration: #{total_duration.hr_min_sec}>\n" +

map {|song| " #{i += 1}. #{song}\n" }.join

end

end

Next we have a handful of helper methods added to Integer and Array.

These methods cover Song playlist output. Additionally, total_duration()

is a tool for adding up all the durations in an Array of Song objects.

Now let’s get to the option-filled search code:

barrel_of_monkeys/barrel_with_options.rb

#

A barrel of monkeys seems to be a set of songs with the capability to

return playlists whose successive songs match last to first letter.

#

class BarrelOfMonkeys

def initialize(songs)

@songs = songs

end

attr_accessor :songs

#

Index songs by first letter

#

def build_index

@songs_by_first_letter = {}

@songs.each do |song|

(@songs_by_first_letter[song.first_letter] ||= []) << song \

if song.first_letter

end

self

end

#

Searches @songs for barrel of monkeys playlists that match the given

criteria. The first letter in the title of each successive song in

each playlist is always the same as the last letter in the prior song.

#

These are the allowed criteria (all are optional):

first_letter Playlists' first songs must begin with this letter

last_letter Playlists' last songs must end with this letter

min_songs Playlists must have at least this many songs

max_songs Playlists may have no more than this many songs

target_songs Only return playlists with as close as possible to

this number of songs

min_duration Playlists must run at least this many milliseconds

max_duration Playlists must run for no more milliseconds than this

target_duration Only return playlists with as close as possible to

this duration in milliseconds

exclude_songs Playlists must not include any songs included here

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_with_options.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=209

ANSWER 20. BARREL OF MONKEYS 210

#

def playlists(criteria = {})

first_letter = criteria[:first_letter].downcase rescue nil

last_letter = criteria[:last_letter].downcase rescue nil

min_songs = criteria[:min_songs] || 1

max_songs = criteria[:max_songs] || 1.0 / 0.0

target_songs = criteria[:target_songs]

min_duration = criteria[:min_duration] || 0

max_duration = criteria[:max_duration] || 1.0 / 0.0

target_duration = criteria[:target_duration]

exclude_songs = criteria[:exclude_songs] || []

build_index unless @songs_by_first_letter

build list of songs starting with required first letter

result = (@songs_by_first_letter[first_letter] || @songs).map do |song|

[song] unless exclude_songs.include? song

end.

delete_if {|song| song.nil? }

to each of those, add playlists starting with their last letter

(recursively, depth-first(!))

if max_songs > 1

result.map do |playlist|

playlist_duration = playlist.total_duration

playlists(

:first_letter => playlist[-1].last_letter,

:last_letter => last_letter,

:min_songs => [min_songs - 1, 0].max,

:max_songs => max_songs - 1,

:target_songs => target_songs && target_songs - 1,

:min_duration => min_duration - playlist_duration,

:max_duration => max_duration - playlist_duration,

:target_duration => target_duration &&

target_duration - playlist_duration,

:exclude_songs => exclude_songs | playlist

).map do |subplaylist|

playlist + subplaylist if subplaylist

end

end.each do |playlist|

result.concat(playlist.to_a)

end

end

remove all playlists with the wrong last letter

if last_letter

result.delete_if {|pl| pl.last.last_letter != last_letter }

end

remove all playlists with too few songs or too short or too long a

duration

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=210

ANSWER 20. BARREL OF MONKEYS 211

result.delete_if do |pl|

pl.size < min_songs or

not pl.total_duration.between?(min_duration, max_duration)

end

if a specific duration was requested, find the closest

if target_duration

closest_duration = result.inject(1.0/0.0) do |memo, pl|

[memo, (pl.total_duration - target_duration).abs].min

end

result.delete_if do |pl|

(pl.total_duration - target_duration).abs != closest_duration

end

end

if a specific number of songs were requested, find the closest

if target_songs

closest_songs = result.inject(1.0/0.0) do |memo, pl|

[memo, (pl.size - target_songs).abs].min

end

result.delete_if do |playlist|

(playlist.size - target_songs).abs != closest_songs

end

end

result

end

end

The hundred-pound gorilla in here is clearly BarrelOfMonkeys.playlists().

Luckily, the comments walk you through it pretty well. I’ll just add

some additional remarks to that.

You should notice that this is a recursive depth-first search. Because it

does walk all the way down the very large song list and then basically

back up until it finds what it’s looking for, search times can get mighty

hefty. Profiling and tuning may be able to clear up some of this, but the

truth is that it’s probably not the most efficient search format for large

playlists.

On a more positive note, you can see the impressive set of options sup-

ported here. These are mostly handled at the tail end of the method

where playlists are pruned if they don’t match the desired criteria.

Many clever ideas are hiding in here, so be sure and glance at how

all this works.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=211

ANSWER 20. BARREL OF MONKEYS 212

barrel_of_monkeys/barrel_with_options.rb

if $0 == __FILE__

print "Loading..."

HighLine::Dave

http://www.dave.burt.id.au/ruby/highline/dave.rb

require ' highline/dave'

require ' yaml'

SONG_LIST = YAML.load_file("SongLibrary.yaml")

barrel_of_monkeys = BarrelOfMonkeys.new(SONG_LIST)

barrel_of_monkeys.build_index

puts "done."

begin

t = Time.now

criteria = {

:first_letter => ask(

"What letter should the first song start with?", /^[a-z]$/i),

:last_letter => ask(

"What letter should the last song end with?", /^[a-z]$/i),

:min_songs => ask(

"Minimum songs in playlist:", 1),

:max_songs => ask(

"Maximum songs in playlist (more than 3 could take a while):",

SONG_LIST.size),

:target_songs => ask(

"Target number of songs: [no target]",

Integer, :default => false, :display_default => false),

:min_duration => ask(

"Minimum duration in milliseconds:", 0),

:max_duration => ask(

"Maximum duration in milliseconds:", Integer, 1.0/0.0),

:target_duration => ask(

"Target duration in milliseconds: [no target]",

Integer, :default => false, :display_default => false),

}

print "Generating playlists..."

playlists = barrel_of_monkeys.playlists(criteria)

puts "done in #{Time.now - t} seconds."

puts "Found #{playlists.size} playlist#{' s' unless playlists.size == 1}:"

puts playlists.map{|pl| pl.playlist_string }

end while ask("Another barrel of monkeys?", FalseClass)

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/barrel_of_monkeys/barrel_with_options.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=212

ANSWER 20. BARREL OF MONKEYS 213

Finally, we have the code that loads a YAML version of the song list,

asks the user an impressive set of configuration questions using Dave’s

HighLine library, runs the search, and reports results.

Additional Exercises

1. Modify your code to support as many of Dave’s criteria as possible.

2. Spend some time profiling your search and looking for ways to

speed it up. My own code is a bit sluggish with the example “Que

Sera” to “Zaar.” Can you beat my time on that tricky search, a

little more than five seconds on my box?

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=213

ANSWER 21. AMAZING MAZES 214

Answer 21From page 50

Amazing Mazes
Let’s look into Dominik Bathon’s code. It is a nice algorithm and light-

ning quick! On my machine, it makes and solves mazes faster than

the other solutions can make them. Even better, it uses a complex

internal representation (mainly for speed) yet still comes out with clean

algorithms. I was quite impressed by that.

Let’s get to the code. Dominik starts off by defining a helper method in

Hash:

amazing_mazes/fast_maze.rb

class Hash

find the key with the smallest value, delete it and return it

def delete_min_value

return nil if empty?

minkey=min=nil

each { |k, v|

min, minkey=v, k if !min || v<min

}

delete(minkey)

minkey

end

end

The comment pretty much explains what’s going on there. Each pair

in the Hash is compared by value. The pair with the lowest value is

deleted, and the key for that value is returned.

The Internal Bits

On to the interesting parts. Here’s the start of the main class used by

the solution:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=214

ANSWER 21. AMAZING MAZES 215

amazing_mazes/fast_maze.rb

Maze represents the maze ;-)

#

Cells/positions in the maze are represented by Numbers (from 0 to

w*h-1), each position corresponds to x/y coordinates, you can

convert between positions and coordinates by coord2pos and

pos2coord.

#

The walls for each position are stored in the String @data. The

walls for position p are stored in the first two bits of @data[p],

and the other bits are unused. If 1 one is set, then p has a north

wall; if bit 2 is set, then p has a west wall.

#

Maze#generate generates a (random) maze using the method described

at http://www.mazeworks.com/mazegen/mazetut/

#

Maze#shortest_path uses Dijkstra' s shortest path algorithm, so it

can not only find shortest paths in perfect mazes, but also in mazes

where different paths between two positions exist.

class Maze

attr_reader :w, :h # width, height

def initialize(w, h)

@w, @h=[w, 1].max, [h, 1].max

@wh=@w*@h

@neighbors_cache={}

set_all_walls

end

end

I know this code is mostly comments, but you’ll want to read it. It’s

interesting information, and it introduces you to the internal format

the code uses.

After the comment, we see some readers defined and some simple ini-

tialization work. Set a width and height, ensuring they are both at least

1. Nice use of max() there. Calculate width times height or the total

number of cells, initialize a cache, and call set_all_walls().

That means we need some more code:

amazing_mazes/fast_maze.rb

class Maze

def set_all_walls

set all bits

@data=3.chr * (@wh)

nil

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=215

ANSWER 21. AMAZING MAZES 216

def clear_all_walls

all except outer border

@data=0.chr * (@wh)

set north walls of row 0

w.times { |i| @data[i] |= 1 }

set west walls of col 0

h.times { |i| @data[i*w] |= 2 }

nil

end

end

OK, now we start to get tricky. Remember the initial comment about

using bits for the walls. We’re tracking only two walls here, north and

west. Of course, cells can still have up to four walls, but your east wall

is just your neighbor’s west wall, and your south wall is the north wall

of the cell below you.

What do you get if you turn two bits on? 3. The set_all_walls() method

translates that to a character and duplicates it for every cell. The result

is a string representing the entire maze with all the walls turned on.

That should make clear_all_walls() more obvious. This time we want no

walls so we don’t set any bits. Translate 0 to a character, and duplicate.

However, we still need the edges of the maze. All cells in the top row

need a north wall (set the 1 bit). Then all the cells in the first column

need a west wall (set the 2 bit). That makes up the rest of the method.

Ready for the next chunk?

amazing_mazes/fast_maze.rb

class Maze

positions in path will be printed as "X"

def to_s(path=[])

ph={}

path.each { |i| ph[i]=true }

res=""

h.times { |y|

w.times { |x|

res << "+" << ((@data[y*w+x] & 1 > 0) ? "--" : " ")

}

res << "+\n"

w.times { |x|

res << ((@data[y*w+x] & 2 > 0) ? "|" : " ")

res << (ph[y*w+x] ? " X " : " ")

}

res << "|\n"

}

res << ("+--"*w) << "+"

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=216

ANSWER 21. AMAZING MAZES 217

def inspect

"#<#{self.class.name} #{w}x#{h}>"

end

end

The to_s() method draws mazes. The first two lines fill a Hash with the

solution path, if one is given. The Hash is indexed in the same way as

the maze String, and values can be true (if it’s on the path) or the default

nil (when it’s not).

The rest of that method does the drawing. It walks row by row with

h.times down the maze drawing cells. The first w.times call handles the

north walls. First it adds a plus, and then it adds a horizontal line if

the 1 bit is set or spaces if it’s not. Next we need another plus and

a newline. Now the second w.times block handles the west wall and

path. First it checks to see whether the 2 bit is set for the current cell,

outputting a vertical line if it is and a space if it’s not. Then the path is

checked. If this cell is on the path, it’s filled with an X, and if it’s not,

the code adds a space.

The last two lines of the method are important. They ensure a final

vertical line is always added to the end of a row and a final horizontal

line is placed at the end of each column of the maze. This handles the

east and south borders of the maze, which are not covered by the bits.

The other method, inspect(), returns a class name, width, and height.

amazing_mazes/fast_maze.rb

class Maze

maze positions are cell indices from 0 to w*h-1

the following functions do conversions to and from coordinates

def coord2pos(x, y)

(y % h) * w + (x % w)

end

def pos2coord(p)

[p % w, (p / w) % h]

end

end

These converters were explained in the initial comment, and they are

explained again here. No surprises here.

amazing_mazes/fast_maze.rb

class Maze

returns valid neighbors to p, doesn' t care about walls

def neighbors(p)

if ce=@neighbors_cache[p]; return ce; end

res=[p-w, p+w]

res << p-1 if p%w > 0

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=217

ANSWER 21. AMAZING MAZES 218

res << p+1 if p%w < w-1

@neighbors_cache[p] = res.find_all { |t| t>=0 && t<@wh }

end

end

This returns indices of the up to four neighboring cells. It caches this

lookup the first time it does it, since it will never change. The first line

uses the cache if it has already been figured. The second line adds the

cell above and the cell below. Note that these numbers are found by

simple math and could be outside the bounds of the maze. The next

two lines add the left and right cells. We’re more careful with our math

here, because a wrong answer could look right: the last cell of the first

row is “left” of the first cell of the second row in our one-dimensional

String that holds the maze data. The final line stores the indices to the

cache and returns them, after using find_all() to eliminate any bogus

numbers that crept in.

amazing_mazes/fast_maze.rb

class Maze

def wall_between?(p1, p2)

p1, p2=[p1, p2].sort

if p2-p1==w # check north wall of p2

@data[p2] & 1 > 0

elsif p2-p1==1 # check west wall of p2

@data[p2] & 2 > 0

else

false

end

end

def set_wall(p1, p2)

p1, p2=[p1, p2].sort

if p2-p1==w # set north wall of p2

@data[p2] |= 1

elsif p2-p1==1 # set west wall of p2

@data[p2] |= 2

end

nil

end

def unset_wall(p1, p2)

p1, p2=[p1, p2].sort

if p2-p1==w # unset north wall of p2

@data[p2] &= ~1

elsif p2-p1==1 # unset west wall of p2

@data[p2] &= ~2

end

nil

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=218

ANSWER 21. AMAZING MAZES 219

These three methods are all very similar. Given two cells, the first

checks whether there is a wall between them, the second sets the wall

between them, and the third unsets it. The ifs figure out whether we

are talking about a north wall or a west wall. The rest is bit testing or

setting.

Making a Maze

On to maze generation:

amazing_mazes/fast_maze.rb

class Maze

generate a (random) perfect maze

def generate(random=true)

set_all_walls

(random) depth first search method

visited={0 => true}

stack=[0]

until stack.empty?

n=neighbors(stack.last).reject { |p| visited[p] }

if n.empty?

stack.pop

else

choose one unvisited neighbor

np=n[random ? rand(n.size) : 0]

unset_wall(stack.last, np)

visited[np]=true

if all neighbors are visited then there is

nothing left to do

stack.pop if n.size==1

stack.push np

end

end

self

end

end

This algorithm came out very cleanly, I think. Not a bit operation in

sight. First it turns all the walls on. Then it sets up an Hash for tracking

visited cells and a stack to drive the process. While there is something on

the stack, the code looks at each not-yet-visited neighbor. If there are

no neighbors in that set, the stack is popped, and the routine moves on.

However, if there are, one is chosen at random, and the wall is knocked

out between them. If that neighbor was the last unvisited one for this

cell, the code pops the current cell off the stack. The neighbor cell is set

to visited and pushed onto the stack, moving the build process to that

location for the next iteration.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=219

ANSWER 21. AMAZING MAZES 220

Solving a Maze

That covers creation. Now we need a solver:

amazing_mazes/fast_maze.rb

class Maze

central part of Dijkstra' s shortest path algorithm:

returns a hash that associates each reachable (from start) position

p, with the previous position on the shortest path from start to p

and the length of that path.

example: if the shortest path from 0 to 2 is [0, 1, 2], then

prev[2]==[1, 2], prev[1]==[0, 1] and prev[0]==[nil, 0].

so you can get all shortest paths from start to each reachable

position out of the returned hash.

if stop_at!=nil the method stops when the previous cell on the

shortest path from start to stop_at is found.

def build_prev_hash(start, stop_at=nil)

prev={start=>[nil, 0]} # hash to be returned

return prev if stop_at==start

positions that we have seen, but we are not yet sure about

the shortest path to them (the value is length of the path,

for delete_min_value):

active={start=>0}

until active.empty?

get the position with the shortest path from the

active list

cur=active.delete_min_value

return prev if cur==stop_at

newlength=prev[cur][1]+1 # path to cur length + 1

for all reachable neighbors of cur, check whether we found

a shorter path to them

neighbors(cur).each { |n|

ignore unreachable

next if wall_between?(cur, n)

if old=prev[n] # was n already visited

if we found a longer path, ignore it

next if newlength>=old[1]

end

(re)add new position to active list

active[n]=newlength

set new prev and length

prev[n]=[cur, newlength]

}

end

prev

end

end

I really don’t think I need to launch into too deep an explanation here

because the comments guide you right through it. The short story is

that this method branches out from a starting cell, walking to each

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=220

ANSWER 21. AMAZING MAZES 221

neighbor and always counting its steps. While doing this, it is build-

ing the Hash described in the first comment, which points to the cell

that came before on the shortest path. Using that Hash, returned by

this method, you can easily construct the shortest path to any cell the

algorithm visited. Handy stuff! Let’s see how it gets put to use:

amazing_mazes/fast_maze.rb

class Maze

def shortest_path(from, to)

prev=build_prev_hash(from, to)

if prev[to]

path found, build it by following the prev hash from

"to" to "from"

path=[to]

path.unshift(to) while to=prev[to][0]

path

else

nil

end

end

end

Given a starting and ending cell, this returns just what the name

implies. It builds the magic Hash we looked at on the first line and

then just walks the path in reverse until it reaches the start (nil in the

Hash). Again, clean and simple. Nice coding, Dominik.

Let’s look at the other search the code provides:

amazing_mazes/fast_maze.rb

class Maze

finds the longest shortest path in this maze, works only if there is

at least one position that can reach only one neighbor, because we

search only starting at those positions.

def longest_shortest_path

startp=endp=nil

max=-1

@wh.times { |p|

if current p can only reach 1 neighbor

if neighbors(p).reject { |n| wall_between?(p, n) }.size==1

prev=build_prev_hash(p)

search longest path from p

tend, tmax=nil, -1

prev.each { |k, v|

if v[1]>tmax

tend=k

tmax=v[1]

end

}

if tmax>max

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=221

ANSWER 21. AMAZING MAZES 222

max=tmax

startp, endp=p, tend

end

end

}

if startp # path found

shortest_path(startp, endp)

else

nil

end

end

end

This method walks the maze, looking for cells that are dead ends. From

each of those, it builds the path Hash and checks the lengths of each

path found. In the end, it will return the longest shortest path it found.

Interface

Just a little more code is needed for the human interface:

amazing_mazes/fast_maze.rb

if $0 == __FILE__

ARGV.shift if search_longest=ARGV[0]=="-l"

w, h, from, to=ARGV

m=Maze.new(w.to_i, h.to_i)

m.generate

puts "Maze:", m.to_s

if from=~/(\d+),(\d+)/

p1=m.coord2pos($1.to_i, $2.to_i)

else

p1=rand(m.w*m.h)

end

if to=~/(\d+),(\d+)/

p2=m.coord2pos($1.to_i, $2.to_i)

else

p2=rand(m.w*m.h)

end

path=m.shortest_path(p1, p2)

puts "\nShortest path from #{m.pos2coord(p1).inspect} to " \

"#{m.pos2coord(p2).inspect}:", m.to_s(path)

if search_longest

path=m.longest_shortest_path

puts "\nLongest shortest path (from " \

"#{m.pos2coord(path[0]).inspect} to " \

"#{m.pos2coord(path[-1]).inspect}:",

m.to_s(path)

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/amazing_mazes/fast_maze.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=222

ANSWER 21. AMAZING MAZES 223

This is simply option parsing and displaying. The code checks for a

special first -l option, which sets a flag to add the long search.

The next chunk reads a width and height and then builds and displays

a maze of the indicated size. The code next reads from and to cells

for a solution search, if they were provided. Random coordinates are

used when from or to cells are absent. Note the use of the coord2pos()

converter in here.

Finally, the shortest path is displayed. The longer search is also added,

if requested. Dominik uses an unusual Ruby idiom here. Placing two

string literals next to each other will cause Ruby to concatenate them,

even without a + between them. (I didn’t know this!) However, the

rumor is that this feature may vanish in a future version of Ruby, so

it’s probably not a good technique to use.

Additional Exercises

1. Clifford Heath points out the following:

Unfortunately, if you look at the mazes this algorithm generates,

you’ll see a serious flaw. They always seem to “fan out” from

the start position—in other words, there is not a random nature

to the shape of the paths away from the start position. It makes

the mazes much easier to solve. I made the same mistake when

I first wrote a maze generator.

There is a commonly accepted alternative method (which pro-

duces “random” mazes).

The idea is to start as Dominik did, with a maze having all walls

intact—every cell has two intact walls so it’s closed from every

other cell. Every cell is numbered, say top-left to bottom-right, as

in 0..(W×H-1). This number is known as the domain number,

and every cell bearing a certain number is defined to be reach-

able from any cell in that domain.

Whenever you break a wall separating two domains, you join

them into one domain, because any cell in either domain can now

reach any cell in the other domain. So to keep things intact, you

must eliminate one domain by changing all occurrences of that

number to the other one. I always eliminate the higher-numbered

one, so the maze ends up as one domain numbered zero.

Whenever you consider a wall you might want to break, check

the domain numbers on either side. If they’re the same, there is

already a path between the two cells, and breaking this wall will

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=223

ANSWER 21. AMAZING MAZES 224

make a duplicate path, which is not what you want. If they’re

different, however, there is no path between the two cells, and

it’s OK to break this wall, eliminating one of the two domains.

The only remaining task is to find an efficient and random search

for a wall to break. The easiest way is to choose a cell at random,

check both walls (in random order), and if that wall divides two

domains, break it. If not, consider the next cell (circular search)

until you find a wall you can break.

As you have W×H cells, there are initially that many domains,

and because every break reduces the domain count by one, you

must break exactly W×H-1 walls to get to a maze where every

cell is reachable from every other.

Try implementing this algorithm.

2. Modify your solution to allow a user to try to solve the maze inter-

actively. The user should be able to enter the direction they want

to go, and then the path can be extended in that direction. If the

user backtracks, erase their abandoned steps.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=224

ANSWER 22. LEARNING TIC-TAC-TOE 225

Answer 22From page 52

Learning Tic-Tac-Toe
The first thing any solution to this quiz is going to need is a few tools to

manipulate tic-tac-toe positions. While they are really just a means to

an end, the tools are interesting enough to warrant some discussion of

their own. Here’s my tic-tac-toe framework:

learning_tic_tac_toe/tictactoe.rb

module TicTacToe

module SquaresContainer

def [](index) @squares[index] end

def blanks() @squares.find_all { |s| s == " " }.size end

def os() @squares.find_all { |s| s == "O" }.size end

def xs() @squares.find_all { |s| s == "X" }.size end

end

class Board

class Row

def initialize(squares, names)

@squares = squares

@names = names

end

include SquaresContainer

def to_board_name(index)

Board.index_to_name(@names[index])

end

end

def self.name_to_index(name)

x = name.gsub!(/([a-cA-C])/, "").to_i - 1

y = ($1.downcase)[0] - ?a

x + y * 3

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/tictactoe.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=225

ANSWER 22. LEARNING TIC-TAC-TOE 226

def self.index_to_name(index)

if index >= 6

"c" + (index - 5).to_s

elsif index >= 3

"b" + (index - 2).to_s

else

"a" + (index + 1).to_s

end

end

def initialize(squares)

@squares = squares

end

include SquaresContainer

def [](*indices)

if indices.size == 2

super indices[0] + indices[1] * 3

elsif indices[0].is_a? Fixnum

super indices[0]

else

super Board.name_to_index(indices[0].to_s)

end

end

def each_row

rows = [[0, 1, 2], [3, 4, 5], [6, 7, 8],

[0, 3, 6], [1, 4, 7], [2, 5, 8],

[0, 4, 8], [2, 4, 6]]

rows.each do |e|

yield Row.new(@squares.values_at(*e), e)

end

end

def moves

moves = []

@squares.each_with_index do |s, i|

moves << Board.index_to_name(i) if s == " "

end

moves

end

def won?

each_row do |row|

return "X" if row.xs == 3

return "O" if row.os == 3

end

return " " if blanks == 0

false

end

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=226

ANSWER 22. LEARNING TIC-TAC-TOE 227

def to_s

@squares.join

end

end

end

Breaking that code down, we see that our tools live in the TicTacToe

namespace. The first of those is a mix-in module called SquaresCon-

tainer. It provides methods for indexing a given square and counting

blanks, Xs, and Os.

We then reach the definition of a TicTacToe::Board. This begins by defin-

ing a helper class called Row. Row accepts an array of squares and

their corresponding board names or positions on the actual Board. It

includes SquaresContainer, so we get access to all its methods. Finally, it

defines a helper method, to_board_name(), you can use to ask Row what

a given square would be called in the Board object.

Now we can actually dig into how Board works. It begins by creating

class methods that translate between a chess-like square name (such

as “b3”) and the internal index representation.

We can see from initialize() that Board is just a collection of squares. We

can also see, right under that, that it too includes SquaresContainer.

However, Board overrides the []() method to allow indexing by name, x

and y indices, or a single 0 to 8 index.

Next we run into Board’s primary iterator, each_row(). The method

builds a list of all the Rows we care about in tic-tac-toe: three across,

three down, and two diagonal. Then each of those Rows is yielded to

the provided block. This makes it easy to run some logic over the whole

Board, Row by Row.

The moves() method returns a list of moves available. It does this by

walking the list of squares and looking for blanks. It translates those

to the prettier name notation as it finds them.

The next method, won?(), is an example of each_row() put to good use.

It calls the iterator, passing a block that searches for three Xs or Os. If

it finds them, it returns the winner. Otherwise, it returns false. That

allows it to be used in boolean tests and to find out who won a game.

Finally, to_s() just returns the Array of squares in String form.

The next thing we need are some players. Let’s start that off with a

base class:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=227

ANSWER 22. LEARNING TIC-TAC-TOE 228

learning_tic_tac_toe/tictactoe.rb

module TicTacToe

class Player

def initialize(pieces)

@pieces = pieces

end

attr_reader :pieces

def move(board)

raise NotImplementedError, "Player subclasses must define move()."

end

def finish(final_board)

end

end

end

Player tracks, and provides an accessor for, the Player’s pieces. It also

defines move(), which subclasses must override to play the game, and

finish(), which subclasses can override to see the end result of the game.

Using that, we can define a HumanPlayer with a terminal interface:

learning_tic_tac_toe/tictactoe.rb

module TicTacToe

class HumanPlayer < Player

def move(board)

draw_board board

moves = board.moves

print "Your move? (format: b3) "

move = $stdin.gets

until moves.include?(move.chomp.downcase)

print "Invalid move. Try again. "

move = $stdin.gets

end

move

end

def finish(final_board)

draw_board final_board

if final_board.won? == @pieces

print "Congratulations, you win.\n\n"

elsif final_board.won? == " "

print "Tie game.\n\n"

else

print "You lost tic-tac-toe?!\n\n"

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/tictactoe.rb
http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/tictactoe.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=228

ANSWER 22. LEARNING TIC-TAC-TOE 229

private

def draw_board(board)

rows = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

names = %w{a b c}

puts

print(rows.map do |r|

names.shift + " " + r.map { |e| board[e] }.join(" | ") + "\n"

end.join(" --+--+--\n"))

print " 1 2 3\n\n"

end

end

end

The move() method shows the board to the player and asks for a move.

It loops until it has a valid move and then returns it. The other overrid-

den method, finish(), displays the final board and explains who won. The

private method draw_board() is the tool used by the other two methods

to render a human-friendly board from Board.to_s().

Taking that a step further, let’s build a couple of AI Players. These won’t

be legal solutions to the quiz, but they give us something to go on. Here

are the classes:

learning_tic_tac_toe/tictactoe.rb

module TicTacToe

class DumbPlayer < Player

def move(board)

moves = board.moves

moves[rand(moves.size)]

end

end

class SmartPlayer < Player

def move(board)

moves = board.moves

If I have a win, take it. If he is threatening to win, stop it.

board.each_row do |row|

if row.blanks == 1 and (row.xs == 2 or row.os == 2)

(0..2).each do |e|

return row.to_board_name(e) if row[e] == " "

end

end

end

Take the center if open.

return "b2" if moves.include? "b2"

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/tictactoe.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=229

ANSWER 22. LEARNING TIC-TAC-TOE 230

Defend opposite corners.

if board[0] != @pieces and board[0] != " " and board[8] == " "

return "c3"

elsif board[8] != @pieces and board[8] != " " and board[0] == " "

return "a1"

elsif board[2] != @pieces and board[2] != " " and board[6] == " "

return "c1"

elsif board[6] != @pieces and board[6] != " " and board[2] == " "

return "a3"

end

Defend against the special case XOX on a diagonal.

if board.xs == 2 and board.os == 1 and board[4] == "O" and

(board[0] == "X" and board[8] == "X") or

(board[2] == "X" and board[6] == "X")

return %w{a2 b1 b3 c2}[rand(4)]

end

Or make a random move.

moves[rand(moves.size)]

end

end

end

The first AI, DumbPlayer, just chooses random moves from the legal

choices. It has no knowledge of the games, but it doesn’t learn any-

thing either.

The other AI, SmartPlayer, can play stronger tic-tac-toe. Note that this

implementation is a little unusual. Traditionally, tic-tac-toe is solved

on a computer with a minimax search. The idea behind minimax is

that your opponent will always choose the best, or “maximum,” move.

Given that, we don’t need to concern ourselves with obviously dumb

moves. While looking over the opponent’s best move, we can choose

the least, or “minimum,” damaging move to our cause and head for

that. Though vital to producing something like a strong chess player,

minimax always seems like overkill for tic-tac-toe. I took the easy way

out and distilled my own tic-tac-toe knowledge into a few tests to create

SmartPlayer.

The final class we need for tic-tac-toe is a Game class:

learning_tic_tac_toe/tictactoe.rb

module TicTacToe

class Game

def initialize(player1, player2, random = true)

if random and rand(2) == 1

@x_player = player2.new("X")

@o_player = player1.new("O")

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/tictactoe.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=230

ANSWER 22. LEARNING TIC-TAC-TOE 231

else

@x_player = player1.new("X")

@o_player = player2.new("O")

end

@board = Board.new([" "] * 9)

end

attr_reader :x_player, :o_player

def play

until @board.won?

update_board @x_player.move(@board), @x_player.pieces

break if @board.won?

update_board @o_player.move(@board), @o_player.pieces

end

@o_player.finish @board

@x_player.finish @board

end

private

def update_board(move, piece)

m = Board.name_to_index(move)

@board = Board.new((0..8).map { |i| i == m ? piece : @board[i] })

end

end

end

The constructor for Game takes two factory objects that can produce

the desired subclasses of Player. This is a common technique in object-

oriented programming, but Ruby makes it trivial, because classes are

objects—you simply pass the Class objects to the method. Instances of

those classes are assigned to instance variables after randomly deciding

who goes first, if random is true. Otherwise, they are assigned in the

passed order. The last step is to create a Board with nine empty squares.

The play() method runs an entire game, start to finish, alternating

moves until a winner is found. The private update_board() method

makes this possible by replacing the Board instance variable with each

move.

It’s trivial to turn that into a playable game:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=231

ANSWER 22. LEARNING TIC-TAC-TOE 232

learning_tic_tac_toe/tictactoe.rb

if __FILE__ == $0

if ARGV.size > 0 and ARGV[0] == "-d"

ARGV.shift

game = TicTacToe::Game.new TicTacToe::HumanPlayer,

TicTacToe::DumbPlayer

else

game = TicTacToe::Game.new TicTacToe::HumanPlayer,

TicTacToe::SmartPlayer

end

game.play

end

That builds a Game and calls play(). It defaults to using a SmartPlayer,

but you can request a DumbPlayer with the -d command-line switch.

Enough playing around with tic-tac-toe. We now have what we need to

solve the quiz. How do we “learn” the game? Let’s look to history for

the answer.

The History of MENACE

This quiz was inspired by the research of Donald Michie. In 1961

he built a “machine” that learned to play perfect tic-tac-toe against

humans, using matchboxes and beads. He called the machine MEN-

ACE (Matchbox Educable Naughts And Crosses Engine). Here’s how he

did it.

More than 300 matchboxes were labeled with images of tic-tac-toe posi-

tions and filled with colored beads representing possible moves. At

each move, a bead would be rattled out of the proper box to determine

a move. When MENACE would win, more beads of the colors played

would be added to each position box. When it would lose, the beads

were left out to discourage these moves.

Michie claimed that he trained MENACE in 220 games. That sounds

promising, so let’s update MENACE to modern-day Ruby.

Filling a Matchbox Brain

First, we need to map out all the positions of tic-tac-toe. We’ll store

those in an external file so we can reload them as needed. What for-

mat shall we use for the file, though? I say Ruby itself. We can just

store some constructor calls inside an Array and call eval() to reload as

needed.

Here’s the start of my solution code:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/tictactoe.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=232

ANSWER 22. LEARNING TIC-TAC-TOE 233

learning_tic_tac_toe/menace.rb

require "tictactoe"

class MENACE < TicTacToe::Player

class Position

def self.generate_positions(io)

io << "[\n"

queue = [self.new]

queue[-1].save(io)

seen = [queue[-1]]

while queue.size > 0

positions = queue.shift.leads_to.

reject { |p| p.over? or seen.include?(p) }

positions.each { |p| p.save(io) } if positions.size > 0 and

positions[0].turn == "X"

queue.push(*positions)

seen.push(*positions)

end

io << "]\n"

end

end

end

You can see that MENACE begins by defining a class to hold Positions. The

class method generate_positions() walks the entire tree of possible tic-

tac-toe moves with the help of leads_to(). This is really just a breadth-

first search looking for all possible endings. We do keep track of what

we have seen before, though, because there is no sense in examining a

Position and the Positions resulting from it twice.

Note that only X-move positions are mapped. The original MENACE

always played X, and to keep things simple I’ve kept that convention

here.

You can see that this method writes the Array delimiters to io, before

and after the Position search. The save() method that is called during

the search will fill in the contents of the previously discussed Ruby

source file format.

Let’s see those methods generate_positions() is depending on:

learning_tic_tac_toe/menace.rb

class MENACE < TicTacToe::Player

class Position

def initialize(box = TicTacToe::Board.new([" "] * 9),

beads = (0..8).to_a * 4)

@box = box

@beads = beads

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/menace.rb
http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/menace.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=233

ANSWER 22. LEARNING TIC-TAC-TOE 234

def leads_to()

@box.moves.inject([]) do |all, move|

m = TicTacToe::Board.name_to_index(move)

box = TicTacToe::Board.new((0..8).

map { |i| i == m ? turn : @box[i] })

beads = @beads.reject { |b| b == m }

if turn == "O"

i = beads.rindex(beads[0])

beads = beads[0...i] unless i == 0

end

all << self.class.new(box, beads)

end

end

def over?()

@box.moves.size == 1 or @box.won?

end

def save(io)

box = @box.to_s.split("").map { |c| %Q{"#{c}"} }.join(", ")

beads = @beads.inspect

io << " MENACE::Position.new([#{box}], #{beads}),\n"

end

def turn()

if @box.xs == @box.os then "X" else "O" end

end

def box_str()

@box.to_s

end

def ==(other)

box_str == other.box_str

end

end

end

If you glance at initialize(), you’ll see that a Position is really just a match-

box and some beads. The tic-tac-toe framework provides the means to

draw positions on the box, and beads are an Array of Integer indices.

The leads_to() method returns all Positions reachable from the current

setup. It uses the tic-tac-toe framework to walk all possible moves.

After pulling the beads out to pay for the move, the new box and beads

are wrapped in a Position of their own and added to the results. This does

involve knowledge of tic-tac-toe, but it’s used only to build MENACE’s

memory map. It could be done by hand.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=234

ANSWER 22. LEARNING TIC-TAC-TOE 235

Obviously, over?() starts returning true as soon as anyone has won the

game. Less obvious, though, is that over?() is used to prune last move

positions as well. We don’t need to map positions where we have no

choices.

The save() method handles marshaling the data to a Ruby format. My

implementation is simple and will have a trailing comma for the final

element in the Array. Ruby allows this, for this very reason. Handy, eh?

The turn() method is a helper used to get the current player’s sym-

bol, and the last two methods just define equality between positions.

Two positions are considered equal if their boxes show the same board

setup.

learning_tic_tac_toe/menace.rb

class MENACE < TicTacToe::Player

class Position

def learn_win(move)

return if @beads.size == 1

2.times { @beads << move }

end

def learn_loss(move)

return if @beads.size == 1

@beads.delete_at(@beads.index(move))

@beads.uniq! if @beads.uniq.size == 1

end

def choose_move()

@beads[rand(@beads.size)]

end

end

end

The other interesting methods in Position are learn_win() and learn_loss().

When a position is part of a win, we add two more beads for the selected

move. When it’s part of a loss, we remove the bead that caused the

mistake. Draws have no effect. That’s how MENACE learns.

Flowing naturally from that we have choose_move(), which randomly

selects a bead. That represents the best of MENACE’s collected knowl-

edge about this Position.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/menace.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=235

ANSWER 22. LEARNING TIC-TAC-TOE 236

Ruby’s MENACE

Let’s examine the player itself:

learning_tic_tac_toe/menace.rb

class MENACE < TicTacToe::Player

BRAIN_FILE = "brain.rb"

unless test(?e, BRAIN_FILE)

File.open(BRAIN_FILE, "w") { |file| Position.generate_positions(file) }

end

BRAIN = File.open(BRAIN_FILE, "r") { |file| eval(file.read) }

def initialize(pieces)

super

@moves = []

end

def move(board)

choices = board.moves

return choices[0] if choices.size == 1

current = Position.new(board, [])

position = BRAIN.find() { |p| p == current }

move = position.choose_move

@moves << [position, move]

TicTacToe::Board.index_to_name(move)

end

def finish(final_board)

if final_board.won? == @pieces

@moves.each { |(pos, move)| pos.learn_win(move) }

elsif final_board.won? != " "

@moves.each { |(pos, move)| pos.learn_loss(move) }

end

end

end

MENACE uses the constant BRAIN to contain its knowledge. If BRAIN_FILE

doesn’t exist, it is created. In either case, it’s eval()ed to produce BRAIN.

Building the brain file can take a few minutes, but it needs to be done

only once. If you want to see how to speed it up, look at the Joe Asks

box on the next page.

The rest of MENACE is a trivial three-step process: initialize() starts keep-

ing track of all our moves for this game, move() shakes a bead out of

the box, and finish() ensures we learn from our wins and losses.

We can top that off with a simple “main” program to create a game:

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/menace.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=236

ANSWER 22. LEARNING TIC-TAC-TOE 237

Joe Asks. . .

Three Hundred Positions?

I said that Donald Michie used a little more than 300 match-
boxes. Then I went on to build a solution that uses 2,201. What’s
the deal?

Michie trimmed the positions needed with a few tricks. Turning
the board 90 degrees doesn’t change the position any, and we
could do that up to three times. Mirroring the board, swapping
the top and bottom rows, is a similar harmless change. Then we
could rotate that mirrored board up to three times. All of these
changes reduce the positions to consider, but it does compli-
cate the solution to work them in.

There are rewards for the work, though. Primarily, MENACE would
learn faster with this approach, because it wouldn’t have to
learn the same position in multiple formats.

learning_tic_tac_toe/menace.rb

if __FILE__ == $0

puts "Training..."

if ARGV.size == 1 and ARGV[0] =~ /^\d+$/

ARGV[0].to_i.times do

game = TicTacToe::Game.new(MENACE, TicTacToe::SmartPlayer, false)

game.play

end

end

play_again = true

while play_again

game = TicTacToe::Game.new(MENACE, TicTacToe::HumanPlayer, false)

game.play

print "Play again? "

play_again = $stdin.gets =~ /^y/i

end

end

The command-line argument is the number of times to train MENACE

against SmartPlayer. After, you can play interactive games against the

machine. I suggest 10,000 training games and then playing with the

machine a bit. It won’t be perfect yet, but it will be starting to learn. Try

catching it out the same way until you see it learn to avoid the mistake.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/learning_tic_tac_toe/menace.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=237

ANSWER 22. LEARNING TIC-TAC-TOE 238

Additional Exercises

1. Implement MinimaxPlayer.

2. Shrink the positions listing using rotations and mirroring.

3. Adapt MENACE to retain its knowledge between runs.

4. Adapt MENACE to show when it has mastered the game.

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=238

ANSWER 23. COUNTDOWN 239

Answer 23From page 53

Countdown
At first glance, the search space for this problem looks very large. The

six source numbers can be ordered various ways, and you don’t have to

use all the numbers. Beyond that, you can have one of four operators

between each pair of numbers. Finally, consider that 1 * 2 + 3 is different

from 1 * (2 + 3). That’s a lot of combinations.

However, we can prune that large search space significantly. Let’s start

with some simple examples and work our way up. Addition and multi-

plication are commutative, so we have this:

1 + 2 = 3 and 2 + 1 = 3

1 * 2 = 2 and 2 * 1 = 2

We don’t need to handle it both ways. One will do.

Moving on to numbers, the example in the quiz used two 5s as source

numbers. Obviously, these two numbers are interchangeable. The first

5 plus 2 is 7, just as the second 5 plus 2 is 7.

What about the possible source number 1? Anything times 1 is itself,

so there is no need to check multiplication of 1. Similarly, anything

divided by 1 is itself. No need to divide by 1.

Let’s look at 0. Adding and subtracting 0 is pointless. Multiplying by 0

takes us back to 0, which is pretty far from a number from 100 to 999

(our goal). Dividing 0 by anything is the same story, and dividing by 0

is illegal, of course. Conclusion: 0 is useless. Now, you can’t get 0 as a

source number; but, you can safely ignore any operation(s) that result

in 0.

Those are all single-number examples, of course. Time to think bigger.

What about negative numbers? Our goal is somewhere from 100 to

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=239

ANSWER 23. COUNTDOWN 240

999. Negative numbers are going the wrong way. They don’t help, so

you can safely ignore any operation that results in a negative number.

Finally, consider this:

(5 + 5) / 2 = 5

The previous is just busywork. We already had a 5; we didn’t need to

make one. Any operations that result in one of their operands can be

ignored.

Using simplifications like the previous, you can get the search space

down to something that can be brute-force searched pretty quickly, as

long as we’re dealing only with six numbers.

Pruning Code

Dennis Ranke submitted the most complete example of pruning, so let’s

start with that. Here’s the code:

countdown/pruning.rb

class Solver

class Term

attr_reader :value, :mask

def initialize(value, mask, op = nil, left = nil, right = nil)

@value = value

@mask = mask

@op = op

@left = left

@right = right

end

def to_s

return @value.to_s unless @op

"(#@left #@op #@right)"

end

end

def initialize(sources, target)

printf "%s -> %d\n", sources.inspect, target

@target = target

@new_terms = []

@num_sources = sources.size

@num_hashes = 1 << @num_sources

the hashes are used to check for duplicate terms

(terms that have the same value and use the same

source numbers)

@term_hashes = Array.new(@num_hashes) { {} }

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/countdown/pruning.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=240

ANSWER 23. COUNTDOWN 241

enter the source numbers as (simple) terms

sources.each_with_index do |value, index|

each source number is represented by one bit in the bit mask

mask = 1 << index

p mask

p value

term = Term.new(value, mask)

@new_terms << term

@term_hashes[mask][value] = term

end

end

end

The Term class is easy enough. It is used to build tree-like representa-

tions of math operations. A Term can be a single number or @left Term,

@right Term, and the @op joining them. The @value of such a Term would

be the result of performing that math.

The tricky part in this solution is that it uses bit masks to compare

Terms. The mask is just a collection of bit switches used to represent

the source numbers. The bits correspond to the index for that source

number. You can see this being set up right at the bottom of initialize().

These mask-to-Term pairs get stored in @term_hashes. This variable

holds an Array, which will be indexed with the mask of source num-

bers in a Term. For example, an index mask of 0b000101 (5 in decimal)

means that the first and third source numbers are used, which are

index 0 and 2 in both the binary mask and the source list.

Inside the Array, each index holds a Hash. Those Hashes hold decimal

value to Term pairs. The values are numbers calculated by combining

Terms. For example, if our first source number is 100 and the second is

2, the Hash at Array index 0b000011 (3) will eventually hold the keys 50,

98, 102, and 200. The values for these will be the Term objects showing

the operators needed to produce the number.

All of this bit twiddling is very memory efficient. It takes a lot less

computer memory to store 0b000011 than it does [100, 2].

countdown/pruning.rb

class Solver

def run

collision = 0

best_difference = 1.0/0.0

next_new_terms = [nil]

until next_new_terms.empty?

next_new_terms = []

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/countdown/pruning.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=241

ANSWER 23. COUNTDOWN 242

temporary hashes for terms found in this iteration

(again to check for duplicates)

new_hashes = Array.new(@num_hashes) { {} }

iterate through all the new terms (those that weren' t yet used

to generate composite terms)

@new_terms.each do |term|

iterate through the hashes and find those containing terms

that share no source numbers with ' term'

index = 1

term_mask = term.mask

skip over indices that clash with term_mask

index += collision - ((collision - 1) & index) while

(collision = term_mask & index) != 0

while index < @num_hashes

hash = @term_hashes[index]

iterate through the hashes and build composite terms using

the four basic operators

hash.each_value do |other|

new_mask = term_mask | other.mask

hash = @term_hashes[new_mask]

new_hash = new_hashes[new_mask]

sort the source terms so that the term with the larger

value is left

(we don' t allow fractions and negative subterms are not

necessairy as long as the target is positive)

if term.value > other.value

left_term = term

right_term = other

else

left_term = other

right_term = term

end

[:+, :-, :*, :/].each do |op|

don' t allow fractions

next if op == :/ &&

left_term.value % right_term.value != 0

calculate value of composite term

value = left_term.value.send(op, right_term.value)

don' t allow zero

next if value == 0

ignore this composite term if this value was already

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=242

ANSWER 23. COUNTDOWN 243

found for a different term using the same source

numbers

next if hash.has_key?(value) || new_hash.has_key?(value)

new_term = Term.new(value, new_mask, op, left_term,

right_term)

if the new term is closer to the target than the

best match so far print it out

if (value - @target).abs < best_difference

best_difference = (value - @target).abs

printf "%s = %d (error: %d)\n", new_term, value,

best_difference

return if best_difference == 0

end

remember the new term for use in the next iteration

next_new_terms << new_term

new_hash[value] = new_term

end

end

index += 1

index += collision - ((collision - 1) & index) while

(collision = term_mask & index) != 0

end

end

merge the hashes with the new terms into the main hashes

@term_hashes.each_with_index do |hash, index|

hash.merge!(new_hashes[index])

end

the newly found terms will be used in the next iteration

@new_terms = next_new_terms

end

end

end

That’s very well-commented code, so I won’t bother to break it all down.

I do want to point out a few things, though.

This method repeatedly walks through all of the @new_terms, combining

them with all the already found @term_hashes to reach new values. At

each step we build up a collection of next_new_terms that will replace

@new_terms when the process loops. Also being loaded is new_hashes,

which will be merged into @term_hashes, giving us more to expand on in

the next iteration.

Be sure to spot the two pieces of code for avoiding collisions. If we

find ourselves working with an index that matches the term_mask at any

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=243

ANSWER 23. COUNTDOWN 244

point, we know we are duplicating work because we are working with

the same source list. In these cases, index gets bumped to move us

along.

The rest of the method is the pruning work we looked into at the start

of this discussion. The comments will point out what each section of

code is skipping.

Here’s the code you need to turn all that work into a solution:

countdown/pruning.rb

if ARGV[0] && ARGV[0].downcase == ' random'

ARGV[0] = rand(900) + 100

ARGV[1] = (rand(4) + 1) * 25

5.times {|i| ARGV[i + 2] = rand(10) + 1}

end

if ARGV.size < 3

puts "Usage: ruby #$0 <target> <source1> <source2> ..."

puts " or: ruby #$0 random"

exit

end

start_time = Time.now

Solver.new(ARGV[1..-1].map {|v| v.to_i}, ARGV[0].to_i).run

printf "%f seconds\n", Time.now - start_time

The previous solution is lightning fast. Run it a few times to see for

yourself. It can work so fast because heavy pruning allows it to skip a

lot of useless operations.

Coding Different Strategies

Next, I want to look at Brian Schröder’s solution. I won’t show the

whole thing here because it’s quite a lot of code. However, it can switch

solving methods as directed and even solve using fractions. Here’s the

heart of it:

countdown/countdown.rb

Search all possible terms for the ones that fit best.

Systematically create all terms over all subsets of the set of numbers in

source, and find the one that is closest to target.

#

Returns the solution that is closest to the target.

#

If a block is given, calls the block each time a better or equal solution

is found.

#

As a heuristic to guide the search, sort the numbers ascending.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/countdown/pruning.rb
http://media.pragprog.com/titles/fr_quiz/code/countdown/countdown.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=244

ANSWER 23. COUNTDOWN 245

def solve_countdown(target, source, use_module)

source = source.sort_by{|i|-i}

best = nil

best_distance = 1.0/0.0

use_module::each_term_over(source) do | term |

distance = (term.value - target).abs

if distance <= best_distance

best_distance = distance

best = term

yield best if block_given?

end

end

return best

end

This method takes the target and source numbers in addition to a Module

(which I’ll return to in a minute) as parameters. The first line is the sort

mentioned in the comment. Then best and best_distance are initialized

to nil and infinity (1.0/0.0) to track the best solution discovered so far.

After the setup, the method calls into the each_term_over() method, pro-

vided by the Module it was called with. The Module to use is determined

by the interface code (not shown) based on the provided command-line

switches. There are four possible choices. Two deal with fractions while

two are integer only, and there is a recursive and “memoized” version

for each number type. The program switches solving strategies based

on the user’s requests. (This is a nice use of the Strategy design pat-

tern.)

Here is each_term_over() in the ModuleRecursive::Integral:

countdown/countdown-recursive.rb

module Recursive

Allow only integral results

module Integral

Call the given block for each term that can be constructed over a set

of numbers.

#

Recursive implementation that calls a block each time a new term has been

stitched together. Returns each term multiple times.

#

This version checks that only integral results may result.

#

Here I explicitly coded the operators, because there is not

much redundance.

#

This may be a bit slow, because it zips up through the whole callstack

each time a new term is created.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/countdown/countdown-recursive.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=245

ANSWER 23. COUNTDOWN 246

def Integral.each_term_over(source)

if source.length == 1

yield source[0]

else

source.each_partition do | p1, p2 |

each_term_over(p1) do | op1 |

yield op1

each_term_over(p2) do | op2 |

yield op2

if op2.value != 0

yield Term.new(op1, op2, :+)

yield Term.new(op1, op2, :-)

yield Term.new(op1, op2, :' /') if op2.value != 1 and

op1.value % op2.value == 0

end

if op1.value != 0

yield Term.new(op2, op1, :-)

if op1.value != 1

yield Term.new(op2, op1, :' /') if op2.value % op1.value == 0

yield Term.new(op1, op2, :*) if op2.value != 0 and

op2.value != 1

end

end

end

end

end

end

end

end

end

This method recursively generates terms in every possible combination.

This is a key point to a working solution. If you try adding a number at

a time, you generate solutions looking like these:

(((num op num) op num) op num)...

A tricky example posted to Ruby Talk by daz, "Target: 926, Source: 75,

2, 8, 5, 10, 10," shows off the folly of this approach. The only answer is

the following:

(75 - 5 + 8) * (2 + 10) - 10

As you can see, the 2 + 10 term must be built separately from the 75 - 5

+ 8 term, and then the two can be combined.

Getting back to the previous code, the each_partition() method it uses

was added to Array in a different section of the code (not shown). It

returns “each true partition (containing no empty set) exactly once.”

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=246

ANSWER 23. COUNTDOWN 247

Term objects (not shown) just manage their operands and operator, pro-

viding mainly String representation and result evaluation.

The block we’re yielding to is the block passed by solve_countdown(),

which we examined earlier. It simply keeps track of the best solution

generated so far.

The interesting part of all this is the same method in a different mod-

ule. The listing on the next page is the each_term_over() method from

Memoized::Integral.

The result of this method is the same, but it uses a technique called

memoization to work faster. When Terms are generated in here, they

get added to the Hash memo. After that, all the magic is in the very

first line, which simply skips all the work the next time those source

numbers are examined.

This trades memory (the Hash of stored results) for speed (no repeat

work). That’s why the solution provides other options too. Maybe the

target platform won’t have the memory to spare. This is a handy tech-

nique showcased in a nice implementation.

Additional Exercises

1. Try adding some pruning or memoization to your solution. Time

solving the same problem before and afterward to see if whether

speeds up the search.

2. You can find a great web-based interactive solver for this number

game at http://www.crosswordtools.com/numbers-game/. Extend your

solution to provide a similar web interface.

Report erratum

http://www.crosswordtools.com/numbers-game/
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=247

ANSWER 23. COUNTDOWN 248

countdown/countdown-memoized.rb

module Memoized

module Integral

Call the given block for each term that can be constructed over

a set of numbers.

#

Recursive implementation that calls a block each time a new term

has been stitched together. Returns each term multiple times.

#

This version checks that only integral results may result.

#

Here I explicitly coded the operators, because there is not much

redundance.

#

This may be a bit slow, because it zips up through the whole

callstack each time a new term is created.

def Integral.each_term_over(source, memo = {}, &block)

return memo[source] if memo[source]

result = []

if source.length == 1

result << source[0]

else

source.each_partition do | p1, p2 |

each_term_over(p1, memo, &block).each do | op1 |

each_term_over(p2, memo, &block).each do | op2 |

if op2.value != 0

result << Term.new(op1, op2, :+)

result << Term.new(op1, op2, :-)

result << Term.new(op1, op2, :' /') if op2.value != 1 and

op1.value % op2.value == 0

end

if op1.value != 0

result << Term.new(op2, op1, :-)

if op1.value != 1

result << Term.new(op2, op1, :' /') if op2.value %

op1.value == 0

result << Term.new(op1, op2, :*) if op2.value != 0 and

op2.value != 1

end

end

end

end

end

end

result.each do | term | block.call(term) end

memo[source] = result

end

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/countdown/countdown-memoized.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=248

ANSWER 24. SOLVING TACTICS 249

Answer 24From page 55

Solving Tactics
Tactics is a strange game to us chess players. I’m so used to considering

going first to be an advantage that I was just sure it would be true here

too. Wrong again. In Tactics, the second player can always force a win.

Though “why” this is true was part of the quiz, it hasn’t really been

answered to my satisfaction. I suspect it has to do with the moves

remaining. The first player starts with the lead. The second player can

always choose to respond with moves that keep the first player in the

lead. If you’re in the lead at the end of the game, you lose. Put another

way, the second player can always add to the first player’s move just

the right amount of squares to keep the number of remaining moves

optimal.

We can take that a step further and prove it with code. What you’re

really looking for in Tactics is a chance to leave the opponent with a

single square to move in. When that opportunity comes, you can seize

it and win. Until then, you want to try to make sure two moves, at

minimum, are left. That ensures you will get another turn and another

shot at the win. We can translate that to Ruby pretty easily, but first

we need a way to store positions.

A couple of people, including myself, posted about our failed attempts

to build the entire move tree as some complex data structure. You need

to be a bit more clever than that. The key optimization is realizing that

all squares are either on or off, thus ideal bit representation material.

An empty board is just 0b0000_0000_0000_0000 and the final board is

0b1111_1111_1111_1111. To make a move, just OR (|) it to the board. To

see whether a move is possible, AND (&) it to the board, and check for a

result of zero (nonzero values shared some bits, so there were already

pieces on those squares).

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=249

ANSWER 24. SOLVING TACTICS 250

Let’s see whether we can put that together to generate a move list:

solving_tactics/perfect_play.rb

class TacticsPosition

MOVES = []

a quick hack to load all possible moves (idea from Bob Sidebotham)

(0..3).each do |row|

take all the moves available in one row...

[0b1000, 0b0100, 0b0010, 0b0001, 0b1100,

0b0110, 0b0011, 0b1110, 0b0111, 0b1111].each do |move|

spread it to each row of the board...

move = move << 4 * row

MOVES << move

and transpose it to the columns too

MOVES << (0..15).inject(0) do |trans, i|

q, r = i.divmod(4);

trans |= move[i] << q + r * 4

end

end

end

MOVES.uniq!

end

The first thing I needed was a list of all possible moves. If we view

the entire board as one long set of bit switches representing whether a

piece is present, a move is just a group of consecutive bits to flip on.

The good news is that we can generate all the moves from one row of

moves, as the comments show us here.

Now I’m ready to flesh out a position class:

solving_tactics/perfect_play.rb

class TacticsPosition

def initialize(position = 0b0000_0000_0000_0000, player = :first)

@position = position

@player = player

end

include Enumerable

passes the new position after each available move to the block

def each(&block)

moves.map do |m|

TacticsPosition.new(@position | m, next_player)

end.each(&block)

end

def moves

MOVES.reject { |m| @position & m != 0 }

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solving_tactics/perfect_play.rb
http://media.pragprog.com/titles/fr_quiz/code/solving_tactics/perfect_play.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=250

ANSWER 24. SOLVING TACTICS 251

def next_player

if @player == :first then :second else :first end

end

end

Each TacticsPosition object stores a single board position. Internally,

these are managed as a single Integer using bit math.

TacticsPosition objects are Enumerable, allowing you to walk the next posi-

tions that can be reached from legal moves. As you can see, moves()

are found by ANDing the board with all possible MOVES and tossing out

anything that doesn’t equal zero.

Finally, next_player() is just a helper method used by each() to flip-flop

the player in new positions.

Let’s get to playing:

solving_tactics/perfect_play.rb

class TacticsPosition

the minimum number of plays left from this position

def minimum_moves_left

minimum = 0

game = self

until game.over?

game = game.min { |a, b| a.moves.size <=> b.moves.size }

minimum += 1

end

return minimum

end

select a perfect move from this position, returning the resulting position

def perfect_play

win = find { |m| m.moves.size == 1 }

if win # if we can force a win, do so...

win

else # otherwise, try to ensure at least two more moves

choices = to_a.sort_by { |m| m.minimum_moves_left }

best = choices.find { |m| m.moves.size % 2 == 0 }

best or choices.first

end

end

def over?

@position == 0b1111_1111_1111_1111

end

end

The real magic here is the combination of minimum_moves_left() and per-

fect_play(). You can see that the latter is almost a direct translation of

the strategy I outlined previously. To do that, perfect_play() is relying

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solving_tactics/perfect_play.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=251

ANSWER 24. SOLVING TACTICS 252

on answers from minimum_move_left(), always keeping the move count

optimal. minimum_moves_left() uses over?() to decide whether it can stop

counting, which is simply when the board is completely full of pieces.

We just need a couple of helper methods to finish off this class:

solving_tactics/perfect_play.rb

class TacticsPosition

pretty display for humans (no bits!)

def to_s

board = "%016b" % @position

board.tr!("01", "_X").gsub!("", " ").strip!

board.gsub!(/(?:[X_]){4}/, "\\&\n")

if @position == 0b0000_0000_0000_0000

"\n#{board}"

else

"\nThe #{next_player} player moves:\n\n#{board}\n\n"

end

end

def winner

@player

end

end

This code builds up a display string by translating the @position integer

to a string of 0s and 1s, swapping those with Xs and blank squares, and

finally inserting whitespace to break things up. The use of next_player()

is a little tricky here—next_player() is also the last player, so we use it

here to find who just moved.

If you run this solution, you will see that it gets the right answer.

Assuming there is no flaw in my perfect-play strategy, the previous

does represent a valid solution to the quiz. The challenge here is the

proof of the strategy, which could be quite tricky. Let’s move on to some

solutions that use less knowledge of the game and see whether we can

find our proof.

From Playing to Solving

If you want to solve the quiz without any outside math or strategy help,

you’ll need some form of search. That can get tricky, though. As Bob

Sidebotham said in the README of his solution, there are 2
16 (65,536)

possible positions. Luckily, bits are fast and efficient, so they allow us

to traverse the space quickly.

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solving_tactics/perfect_play.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=252

ANSWER 24. SOLVING TACTICS 253

One solution (not shown), by Sea&Gull, was built from the logic that a

4×4 board would provide the same results as a 4×2 board. Solving that

cut the search space severely, and the solution got the right answer.

The burden there is proving the boards are indeed equal. That’s the

same problem we had before, so we will have to keep looking.

Bob Sidebotham came up with the solution that answers the quiz ques-

tion to my satisfaction. We will get to exactly how he did that in just a

moment, but first we need to see his Tactics library:

solving_tactics/tactics.rb

class Tactics

The tactics board is represented as a 16-bit integer,

0s representing empty square; 1s representing filled squares.

EMPTY, FULL = 0, 0xFFFF

Record a WIN or LOSS for potentially each of the 2**16 possible

board positions. A position is recorded as a WIN (or LOSS) if

that position represents a WIN (or LOSS) to a player prior to

moving from that position.

WIN, LOSS = 1, 0

(@@position = Array.new(0x10000))[FULL] = WIN

Create a new Tactics game, starting at the specified position.

def initialize(board = EMPTY, possible_moves = Tactics.all_possible_moves)

@board = board

@possible_moves = prune_possible_moves(board, possible_moves)

end

Play from the current position. If *any* move guarantees a win,

then mark this position as a WIN and return it. Otherwise this

position loses.

def play

@possible_moves.each do |move|

new_board = @board | move

if (@@position[new_board] ||

Tactics.new(new_board, @possible_moves).play) == LOSS then

return @@position[@board] = WIN

end

end

@@position[@board] = LOSS

end

private

Reduce the set of possible moves provided to the actual moves

that are possible from the specified starting position.

def prune_possible_moves(board, possible_moves)

possible_moves.reject { |move| (board & move) != 0 }

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solving_tactics/tactics.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=253

ANSWER 24. SOLVING TACTICS 254

Compute all possible moves from an empty board.

def self.all_possible_moves

Replicate the possibilities for a single row over each row and column of

the grid.

(0..3).inject([]) do |moves, row|

[0b1000, 0b0100, 0b0010, 0b0001, 0b1100,

0b0110, 0b0011, 0b1110, 0b0111, 0b1111].each do |bits|

move = bits << 4 * row

moves << move << transpose(move)

end

moves

end.uniq

end

Return the transposed board (horizontal to vertical, or vice versa)

def self.transpose(board)

(0..15).inject(0) { |xboard, i|

q,r = i.divmod(4); xboard |= board[i] << q + r*4

}

end

end

I’m not going to insult everyone’s intelligence by breaking down well-

commented code, but I do want to point out a few things. Toward the

top the constant FULL is set to 0xFFFF. This is just another way to say

0b1111_1111_1111_1111, which I mentioned earlier. On the second line

of play(), you can see moves being made with |. prune_possible_moves()

uses & and the check for zero to see what’s possible at a given position.

That should all be very familiar from the earlier solution.

The other point of interest is play(). Bob decided to work backward. It’s

easy to identify a win at the end of the game. Leave your opponent with

only one square, as we discussed earlier. Expanding on that, any move

that has a play leading to a position where you can leave the oppo-

nent stranded is also a win, because you will obviously make those two

forced-win moves. We can keep walking that backward. Any position

leading to those described is a win. And so on. Now if you don’t have

that sequence of forced moves, your opponent does, by simple logic.

Anything that’s a loss for you is a win for the opponent. If we take that

all the way back to the first move, we can find the forced win and which

side has it.

That’s an exhaustive search, but thanks to the relatively small search

space and the efficiency of our bit representation, we can afford to

check everything. In fact, Bob’s code needs only a little more than

two seconds to find the answer on my box. Here’s how he does it:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=254

ANSWER 24. SOLVING TACTICS 255

solving_tactics/whowins.rb

require ' tactics'

puts %(#{Tactics.new.play == Tactics::WIN ? "First" : "Second"} player wins.)

Obviously, that just calls play(), triggering the exhaustive search we

just examined. I’m not done showing off Bob yet, though. He provided

another system of proof with his code.

Proof through Unit Testing

Have a look at this beautiful set of unit tests:

solving_tactics/tactics_test.rb

require ' test/unit'

require ' tactics.rb'

class TestTactics < Test::Unit::TestCase

Test the play engine by trying various board positions that we

know are winning or losing positions. Each of these is justified

(no point in using ones that are just hunches on our part-' cause

then what would we be verifying?).

def test_play

Each position description is the position you' re faced with

just before playing. So "1 square loses" means that if it' s

your turn to play and there' s only one square available,

you lose.

1 square loses (obviously)

assert_equal(Tactics::LOSS, Tactics.new(0b0111_1111_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1011_1111_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1101_1111_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1110_1111_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_0111_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1011_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1101_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1110_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_0111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1011_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1101_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1110_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1111_0111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1111_1011).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1111_1101).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1111_1110).play)

2 squares in a row wins (because you can reduce to one square)

assert_equal(Tactics::WIN, Tactics.new(0b0011_1111_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1001_1111_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1100_1111_1111_1111).play)

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/solving_tactics/whowins.rb
http://media.pragprog.com/titles/fr_quiz/code/solving_tactics/tactics_test.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=255

ANSWER 24. SOLVING TACTICS 256

assert_equal(Tactics::WIN, Tactics.new(0b1111_0011_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1001_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1100_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_0011_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1001_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1100_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1111_0011).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1111_1001).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1111_1100).play)

assert_equal(Tactics::WIN, Tactics.new(0b0111_0111_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_0111_0111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_0111_0111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1011_1011_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1011_1011_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1011_1011).play)

assert_equal(Tactics::WIN, Tactics.new(0b1101_1101_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1101_1101_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1101_1101).play)

assert_equal(Tactics::WIN, Tactics.new(0b1110_1110_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1110_1110_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1110_1110).play)

3 squares in a row wins (because you can reduce to one square)

assert_equal(Tactics::WIN, Tactics.new(0b0001_1111_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1000_1111_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_0001_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1000_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_0001_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1000_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1111_0001).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1111_1000).play)

assert_equal(Tactics::WIN, Tactics.new(0b0111_0111_0111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_0111_0111_0111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1011_1011_1011_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1011_1011_1011).play)

assert_equal(Tactics::WIN, Tactics.new(0b1101_1101_1101_1111).play)

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=256

ANSWER 24. SOLVING TACTICS 257

assert_equal(Tactics::WIN, Tactics.new(0b1111_1101_1101_1101).play)

assert_equal(Tactics::WIN, Tactics.new(0b1110_1110_1110_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1110_1110_1110).play)

4 squares in a row wins (because you can reduce to one square)

assert_equal(Tactics::WIN, Tactics.new(0b0000_1111_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_0000_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_0000_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1111_0000).play)

assert_equal(Tactics::WIN, Tactics.new(0b0111_0111_0111_0111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1011_1011_1011_1011).play)

assert_equal(Tactics::WIN, Tactics.new(0b1101_1101_1101_1101).play)

assert_equal(Tactics::WIN, Tactics.new(0b1110_1110_1110_1110).play)

2x2 square loses (because your opponent can always reduce it to one

square immediately after your move)

assert_equal(Tactics::LOSS, Tactics.new(0b0011_0011_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_0011_0011_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_0011_0011).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1001_1001_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1001_1001_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1001_1001).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1100_1100_1111_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1100_1100_1111).play)

assert_equal(Tactics::LOSS, Tactics.new(0b1111_1111_1100_1100).play)

2x3 (or 3x2) rectangle wins (because you can reduce it to a 2x2)

assert_equal(Tactics::WIN, Tactics.new(0b0011_0011_0011_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1001_1001_1001_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1100_1100_1100_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_0011_0011_0011).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1001_1001_1001).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1100_1100_1100).play)

assert_equal(Tactics::WIN, Tactics.new(0b0001_0001_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1000_1000_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_0001_0001_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1000_1000_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_0001_0001).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1111_1000_1000).play)

Now we' ll play from an empty board. The purpose of this assertion

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=257

ANSWER 24. SOLVING TACTICS 258

is just to verify that we get the same answer that we get when

the engine is started from scratch. In this case, we have done all the

preceding plays-the results of which are stored in the engine.

assert_equal(Tactics::LOSS, Tactics.new(0b0000_0000_0000_0000).play)

Also check that it works the same with the defaulted empty board.

assert_equal(Tactics::LOSS, Tactics.new.play)

Continue with a few random assertions. No attempt to be exhaustive

this time. This is deliberately located below the full play, above,

to see that intermediate board positions that have been stored

are accurate. Of course, this doesn' t test very many of them.

A 2x2 L shape. Trivially reducible to 1 square.

assert_equal(Tactics::WIN, Tactics.new(0b0011_0111_1111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1011_1001_1111).play)

A 2x3 L shape. Trivially reducible to 1 square.

assert_equal(Tactics::WIN, Tactics.new(0b0011_0111_0111_1111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_1011_1000_1111).play)

A 2x4 L shape. Trivially reducible to 1 square.

assert_equal(Tactics::WIN, Tactics.new(0b0011_0111_0111_0111).play)

assert_equal(Tactics::WIN, Tactics.new(0b1111_0111_0000_1111).play)

A 3x4 L shape. Reducible to two lengths of two.

assert_equal(Tactics::WIN, Tactics.new(0b0001_0111_0111_0111).play)

assert_equal(Tactics::WIN, Tactics.new(0b0000_0111_0111_1111).play)

A checkerboard. Wins as long as the number of open squares is even.

assert_equal(Tactics::WIN, Tactics.new(0b0101_1010_0101_1010).play)

assert_equal(Tactics::WIN, Tactics.new(0b1010_0101_1010_0101).play)

end

end

That’s a flawless combination of code and comment logic, if you ask

me. With these tests, Bob is verifying everything he can prove by hand.

If his engine agrees in all of these cases, it will be hard to question its

judgment.

Additional Exercises

1. Write some code to validate the perfect-play strategy at the begin-

ning of this discussion. (Hint: Bob already did most of the work

for you.)

2. Write some code to prove that a 4×2 board yields the same results

as a 4×4 board. (Hint: Again, you can solve this by taking another

page out of Bob’s book.)

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=258

ANSWER 25. CRYPTOGRAMS 259

Answer 25From page 57

Cryptograms
Odds are that if you tried a brute-force approach, you didn’t get very

far. Quiz creator Glenn P. Parker explains why that is:

Solving a cryptogram by brute force is prohibitively expensive. The

maximum number of possible solutions is 26!, or roughly 4 × 1026, so

the first challenge is to pare down the search to something manage-

able.

The size of the search space makes this problem quite challenging.

Glenn’s own solution has trouble with some inputs. Glenn didn’t wait

on it to finish crypto3.txt, for example, because it may take days to solve

that one. However, the code is still useful, and I want to take a closer

look at it.

Using Word Signatures

First, let’s take a look at Glenn’s explanation of how the code works:

My solution begins with the insight that any word, either a regular

dictionary word or a cryptographic token, can be viewed as a pattern

of repeated and nonrepeated characters. For example, banana has

the pattern [1 2 3 2 3 2], where the first letter is used exactly once,

the second letter is used three times, and the third letter is used

twice. These patterns group all known words into families. The word

banana belongs to the same family as the word rococo.

All words in a dictionary can be grouped into families according to

their patterns, and each cryptographic token has its own pattern that

corresponds (with any luck) to one of the families from the dictionary.

If a token has no matching family, then it cannot be solved with the

given dictionary, so we won’t worry about that case too much.

Let’s dive right in and look at Glenn’s dictionary code:

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=259

ANSWER 25. CRYPTOGRAMS 260

cryptograms/crypto.rb

STDOUT.sync = true

A utility class to read files containing words one-per-line

class WordReader

include Enumerable

def initialize(filename)

@filename = filename

end

def each

File.open(@filename) do |file|

file.each do |word|

word.chomp!

next if word.length == 0

yield word

end

end

end

end

A copy of the dictionary, with words grouped by "signature".

A signature simplifies a word to its repeating letter patterns.

The signature for "cat" is 1.2.3 because each successive letter

in cat is unique. The signature for "banana" is 1.2.3.2.3.2,

where letter 2, "a", is repeated three times and letter 3, "n"

is repeated twice.

class Dictionary

def initialize(filename)

@all = {}

@sigs = {}

WordReader.new(filename).each { |word|

word.downcase!

word.gsub!(/[^a-z]/, ' ')

next if word.empty?

@all[word] = true

sig = signature(word)

@sigs[sig] ||= []

@sigs[sig].push(word)

}

self.freeze

end

def lookup(word)

@all[word]

end

def candidates(cipher)

@sigs[signature(cipher)]

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=260

ANSWER 25. CRYPTOGRAMS 261

private

def signature(word)

seen = {}

u = 0

sig = []

word.each_byte do |b|

if not seen[b]

u += 1

seen[b] = u

end

sig.push(seen[b])

end

sig.join(' .')

end

end

As the comment says, WordReader is a helper class that allows you to

iterate over a word file without worrying about annoyances like calling

chomp() for every line. The main work method here is each(), which

will provide callers with one word from the file at a time. WordReader

includes Enumerable to gain access to all the other standard iterators.

The file name must be set with object construction.

The word file is wrapped in a Dictionary object. As Glenn explained,

it maps words based on their signature(). If you glance down at that

method, you will see that it performs the conversion Glenn described.

The initialize() method puts this converter and WordReader to use by

transferring the word file into its own internal representation. Words

are stored both normally in @all and by signature family in @sigs.

The final two methods allow user code to query the Dictionary. lookup()

tells you whether a word is in the Dictionary, and, candidates(), returns

an array containing the family of words matching the signature of the

provided word.

Building the Map

Let’s go back to Glenn for an explanation of the rest of his algorithm:

We start by assuming that one of the cryptographic tokens corre-

sponds to one of the words in its family. This pairing produces a

partial map of input to output characters. So, if we examine the token,

xyzyzy, we might assume that it is really the word banana. The partial

map that results is x->b y->a z->n, or the following:

abcdefghijklmnopqrstuvwxyz

.......................ban

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=261

ANSWER 25. CRYPTOGRAMS 262

Note that this mapping will affect all other cryptographic tokens that

share the letters x, y, and z. In fact, it may even solve some of them

completely (as zyx becomes nab, for example). Or, the map may con-

vert another token into a word that is not in the dictionary, so zyxxyz

becomes nabban, which is not in my dictionary. This is a useful trick

that will reduce the size of the search.

Next we assume that another token can be mapped into a dictionary

word from its family, which produces another partial map that must

be combined with the first map. This combination can fail in two

ways. First, the new map may have a previously mapped input letter

going to a different output letter, so if we mapped uvwxyz to monkey,

the result would be a map where x mapped to both b and k. Second,

the new map may have a previously unused input letter going to an

output letter that was already used, so if we mapped abcdef to mon-

key, the result would map both c and z to n. Failed mappings also

serve to reduce the size of the search.

For my solution, I used a depth-first search, working through the

tokens and trying every word in its family. The tokens are ordered

according to increasing family size, so the tokens with the fewest pos-

sible solutions are examined first. At each level of the recursion, all

the words for a token are applied in sequence to the current map. If

the resulting map is valid, I recurse, and the new map is applied to the

remaining unsolved tokens to see whether they are already solved or

unsolvable. Solved tokens are ignored for the rest of this branch of

the search, and unsolvable tokens are shelved. Then I start working

on the next token with the new map.

The recursion terminates when a complete map is found, the number

of shelved (unsolvable) tokens exceeds a limit, or every family word

has been used for the last token.

We are interested in maps that do not yield dictionary words for

every token. This is because cryptograms often contain nondictionary

words, so we may be satisfied by a partial solution even when a full

solution is impossible. Finding partial solutions is more expensive

than finding only full solutions, since the search space can be sig-

nificantly larger. Aside from the trick of shelving unsolvable words,

partial solutions require us to selectively ignore tokens that may be

“spoiling” the search even though they produce valid maps. My solu-

tion does not fully implement this.

There’s plenty of code to go along with the explanation, but we will

work through it a piece at a time. Here’s the map class that manages

the translation from puzzle (or cipher text) to answer (or plain text):

Report erratum

http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=262

ANSWER 25. CRYPTOGRAMS 263

cryptograms/crypto.rb

CMap maintains the mapping from cipher text to plain text and

some state related to the solution. @map is the actual mapping.

@solved is just a string with all the solved words. @shelved

is an array of cipher text words that cannot be solved because

the current mapping resolves all their letters and the result

is not found in the dictionary.

class CMap

attr_reader :map, :solved, :shelved

def initialize(arg = nil, newmap = nil, dword = nil)

case

when arg.kind_of?(String)

@map = arg.dup

when arg.kind_of?(CMap)

@map = newmap || arg.map.dup

@solved = arg.solved.dup

@shelved = arg.shelved.dup

append_solved(dword) if dword

else

@map = ' .' * 26

@solved = ' '

@shelved = []

end

end

def dup

CMap.new(self)

end

Attempt to update the map to include all letter combinations

needed to map cword into dword. Return nil if a conflict is found.

def learn(cword, dword)

newmap = @map.dup

(0...cword.length).each do |i|

c = cword[i] - ?a

p = newmap[c]

check for correct mapping

next if p == dword[i]

check for incorrect mapping

return nil if (p != ?.) || newmap.include?(dword[i])

create new mapping

newmap[c] = dword[i]

end

CMap.new(self, newmap, dword)

end

def append_solved(dword)

@solved += ' ' unless @solved.empty?

@solved += dword

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=263

ANSWER 25. CRYPTOGRAMS 264

def shelve(cword)

@shelved << cword

end

def convert(cword)

pattern = ' '

cword.each_byte do |c|

pattern << @map[c - ?a]

end

pattern

end

end

The comments are strong here and should give you a great idea of

what is going on in initialize() and learn(), the two tricky methods. The

standard initialize() is really three constructors in one. It can be passed

a String mapping, a CMap object (copy constructor used by dup()), or

nothing at all. Each branch of the case handles one of those conditions

by setting instance variables as described in the comment.

The other method doing heavy work is learn(). Given a cipher word and

a dictionary word, it updates a copy of its current mapping, character

by character. The process is aborted (and nil returned) if the method

finds that a provided character has already been mapped. Otherwise,

learn returns the newly constructed CMap object.

The methods append_solved() and shelve() both add words to the indi-

cated listing. Finally, convert() uses the mapping to convert a provided

cipher word. The return value will have known letters switched and

contain . characters as placeholders for unknown letters.

Assembling a Solution

The next class wraps those tools up into a solution:

cryptograms/crypto.rb

class Cryptogram

def initialize(filename, dict)

@dict = dict

@words = WordReader.new(filename).to_a

clist is the input cipher with no duplicated words

and no unrecognized input characters

@clist = []

@words.each do |word|

word.downcase!

word.gsub!(/[^a-z]/, ' ')

next if word.empty? || @clist.include?(word)

@clist.push(word)

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=264

ANSWER 25. CRYPTOGRAMS 265

Sort by increasing size of candidate list

@clist = @clist.sort_by {|w| @dict.candidates(w).length}

end

end

The constructor is mainly responsible for reading Cryptogram. It uses

WordReader(), adding each normalized word to an internal cipher list.

cryptograms/crypto.rb

class Cryptogram

def solve(max_unsolved = 0, stop_on_first = true)

@max_unsolved = max_unsolved

@stop_on_first = stop_on_first

@checks = 0

@solutions = {}

@partials = {}

solve_p(@clist, CMap.new, 0)

end

def solve_p(list, cmap, depth)

Simplify list if possible

list = prescreen(list, cmap)

return if check_solution(list, cmap)

solve_r(list, cmap, depth)

return if done?

end#solve_p

def solve_r(start_list, start_cmap, depth)

for i in (0...start_list.length)

Pull a cword out of start_list

list = start_list.dup

cword = list.delete_at(i)

pattern = start_cmap.convert(cword)

search(cword, pattern) do |dword|

Try to make a new cmap by learning dword for cword

next unless cmap = start_cmap.learn(cword, dword)

Recurse on remaining words

solve_p(list, cmap, depth + 1)

return if done?

end#search

end#for

end#solve_r

def done?

@stop_on_first && @solutions.length > 0

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=265

ANSWER 25. CRYPTOGRAMS 266

Return the subset of cwords in list that are not fully solved by cmap.

Update cmap with learned and shelved words.

def prescreen(list, cmap)

start_list = []

list.each do |cword|

pattern = cmap.convert(cword)

if pattern.include?(?.)

cword was not fully resolved.

start_list << cword

elsif @dict.lookup(pattern)

cword was resolved and is a known word.

cmap.learn(cword, pattern)

else

cword cannot be solved.

cmap.shelve(cword)

end

end

start_list

end

end

The methods solve(), solve_p(), and solve_r() are three pieces of one pro-

cess. The interface is solve(), and it sets up a handful of instance

variables to track its work on the solution. A handoff is then made

to solve_p(), which makes a prescreening attempt to simplify the list.

When the list is ready, the work is again passed to solve_r(). That

method iterates over the unknown words, trying to find matches for

them and updating the map based on those matches. At each step,

it passes the remaining list back to solve_p() (indirect recursion). This

process repeats until either method detects an end condition.

The done?() method is the check used to stop processing by solve_p()

and solve_r(). It just verifies that a solution has been found and we don’t

want to continue looking for more.

Indirectly, solve_p() uses prescreen() to trim the list. The method just

walks the word list using the current map to convert the words. Words

are fed to the map to learn if they are in the dictionary, kept in the

working list whether they’re partially solved, and shelved if they cannot

be solved with this dictionary.

cryptograms/crypto.rb

class Cryptogram

Generate dictionary words matching the pattern

def search(cword, pattern)

the pattern will normally have at least one unknown character

if pattern.include? ?.

re = Regexp.new("^#{pattern}$")

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=266

ANSWER 25. CRYPTOGRAMS 267

@dict.candidates(cword).each do |dword|

yield dword if re =~ dword

end

otherwise, just check that the pattern is actually a known word.

elsif @dict.lookup(pattern)

yield pattern

end

end

end

The search() method is used in solve_r() to iterate over a dictionary family

by pattern. You give search() a cipher word and a pattern from the

current map, and it will yield to the provided block all candidate words

for the cipher word matching the pattern. This is why patterns use dots

for unknown letters; it’s a direct Regexp translation.

cryptograms/crypto.rb

class Cryptogram

def check_solution(list, cmap)

@checks += 1

unsolved = list.length + cmap.shelved.length

Did we get lucky?

if unsolved == 0

if not @solutions.has_key?(cmap.map)

@solutions[cmap.map] = true

if not @stop_on_first

puts "\nfound complete solution \##{@solutions.length}"

puts "performed #{@checks} checks"

show_cmap(cmap)

end

end

return true

end

Give up if too many words cannot be solved

return true if cmap.shelved.length > @max_unsolved

Check for satisfactory partial solution

if unsolved <= @max_unsolved

if not @partials.has_key?(cmap.map)

@partials[cmap.map] = true

puts "\nfound partial \##{@partials.length} with #{unsolved} unsolved"

puts "performed #{@checks} checks"

puts Time.now

show_cmap(cmap)

end

end

return false

end

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=267

ANSWER 25. CRYPTOGRAMS 268

The last real work method is check_solution(). It examines the current

word list and map to see whether a solution has been found. That

can be true if all words have been completed, there are too many

unknowns and we are forced to give up, or we’re in an acceptable range

of unknown (or partially solved) words. The method returns a true or

false answer.

cryptograms/crypto.rb

class Cryptogram

def show

puts "Performed #{@checks} checks"

puts "Found #{@solutions.length} solutions"

@solutions.each_key { |sol| show_cmap(CMap.new(sol)) }

puts

puts "Found #{@partials.length} partial solutions"

@partials.each_key { |sol| show_cmap(CMap.new(sol)) }

end

def show_cmap(cmap)

puts((' a' ..' z').to_a.join(' '))

puts cmap.map

puts

@words.each do |word|

pattern = cmap.convert(word)

printf "%-20s %s %-20s\n", word,

(@dict.lookup(pattern) ? ' ' : ' *'), pattern

end

puts ' -' * 42

end

end

The last two methods, show() and show_cmap(), are just utility methods

for printing a result set to the terminal.

Finally, here’s the last little piece of code that starts the process:

cryptograms/crypto.rb

DICTFILE = ARGV[0]

PARTIAL = ARGV[1].to_i

puts "Reading dictionary #{DICTFILE}"

dict = Dictionary.new(DICTFILE)

ARGV[2..-1].each do |filename|

puts "Solving cryptogram #{filename} allowing #{PARTIAL} unknowns", Time.now

cryp = Cryptogram.new(filename, dict)

cryp.solve PARTIAL

puts "Cryptogram solution", Time.now

cryp.show

end

Report erratum

http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://media.pragprog.com/titles/fr_quiz/code/cryptograms/crypto.rb
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=268

ANSWER 25. CRYPTOGRAMS 269

This chunk of code is really just processing command-line arguments.

The dictionary file is read along with the number of allowed partials

(words not in the dictionary). The rest of the arguments are filtered

through the Cryptogram class, and the results are shown to the user.

A Look at Limitations

This solution has a few problems. If you play around with the code,

you’ll notice that speed is one of them. There’s a lot of data to churn

through, and although the script displays some results quickly, it can

take it some time to present a final answer. Luckily, the early work is

usually close enough that the user can easily fill in the blanks.

The other problem I’ll leave to Glenn to explain:

The weakness in my approach is that tokens are always added to

the solution using a single, predefined order. But the tokens that are

mixed in first can have an overwhelming influence on the final maps

that result. In the worst case, the first token to be mapped can make

it impossible to add any other tokens to the map.

The only solution I know is to add another wrapper around the entire

search process that mutates the order of the token mixing.

Additional Exercises

1. Implement the wrapper to fix the order problem Glenn describes.

2. Enhance your own code, or Glenn’s code, with a vowel check dur-

ing mapping. Assume that all words contain at least one a, e, i, o,

u, or y.

3. Solve a cryptogram without the help of a computer. You can find a

nice collection by difficulty online at http://www.oneacross.com/cryptograms/.

Report erratum

http://www.oneacross.com/cryptograms/
http://books.pragprog.com/titles/fr_quiz/errata/add?pdf_page=269

Appendix A

Resources
A.1 Bibliography

[Ste00] Neal Stephenson. Cryptonomicon. Perennial, 2000.

[Tzu05] Sun Tzu. The Art of War, Special Edition. El Paso Norte Press,

2005.

Index
Symbols
<%= . . . %>, see ERB; Template

$* variable, see ARGV

1-800-THE-QUIZ

challenge, 31–32

discussion, 153–159

A
AI (Artificial intelligence), 20, 52

Akira, Tanaka, 93

Algorithms

Binary tree, 81

Bit manipulation, 70, 249

Breadth-first search, 132, 204

Circular list, 197

Depth-first search, 211, 262

Divide and conquer, 191

Encode words as bitmap, 91

Encryption, 36

Hill climbing, 200

Path finding, 204

Pruning search space, 239

Recursion, 153

Shuffle, 197

Sorting, 160

State machine, 72

Word signatures, 91

Amazing Mazes

challenge, 50–51

discussion, 214–224

Animal Quiz

challenge, 11–12

discussion, 81–88

ARGF, 77

ARGV variable, 66

Artificial intelligence, 20, 52

B
Bailey, J E, 25, 113

Banned Words

challenge, 44–45

discussion, 191–194

Barrel of Monkeys

challenge, 48–49

discussion, 203–213

Bathon, Dominik, 214

Benchmarking, 99

Binary tree algorithm, 81

Bingo (in Scrabble), 13

Bit manipulation algorithm, 70, 249

Bitmap, for Tactics positions, 249

Bitmap, of letters in a word, 91

Border, drawing, 103

Breadth-first search algorithm, 132,

204

Bryant, Avi, 121

Bubbart, Mark, 94

Buck, Jamis, 9, 77

Burt, Dave, 115, 136, 207

Byrd, Timothy, 41, 183

C
Camelcase, 115

Candler, Brian, 53

Cards, for encryption, see Solitaire

Cipher, Cryptograms

CBreak mode, terminal, 142

Cecil (Countdown Electronic Calculator

In Leeds), 53

CGI library, 183

Challenge

1-800-THE-QUIZ, 31–32

Amazing Mazes, 50–51

Animal Quiz, 11–12

Banned Words, 44–45

Barrel of Monkeys, 48–49

Code Cleaning, 42–43

Countdown, 53–54

CHARACTER 272 $DEBUG VARIABLE

Crosswords, 29–30

Cryptograms, 57–59

English Numerals, 41

GEDCOM Parser, 9–10

HighLine, 16–17

Knight’s Travails, 25

LCD Numbers, 8

Learning Tic-Tac-Toe, 52

Mad Libs, 6–7

Regexp.build(), 14–15

Rock Paper Scissors, 20–24

Roman Numerals, 18–19

Scrabble Stems, 13

Secret Santas, 46–47

Sokoban, 27–28

Solitaire Cipher, 36–40

Solving Tactics, 55–56

Texas Hold’em, 33–35

Character, reading single, 142

Character-interactive applications, 142

Cheating, Rock Paper Scissors, 124

Chess

draw board, 132

knights moves, 25

notation, 25

Christmas presents, see Secret Santas

Cipher, see Solitaire Cipher,

Cryptograms

Circular list algorithm, 197

Class, singleton, 168

Code Cleaning

challenge, 42–43

discussion, 183–190

Code, downloading source, 3

Command line

interaction, 83

see also HighLine quiz

Console, see Command line

Constant, interpret as Roman number,

119

Contributors

Akira, Tanaka, 93

Bailey, J E, 25, 113

Bathon, Dominik, 214

Bryant, Avi, 121

Bubbart, Mark, 94

Buck, Jamis, 9, 77

Burt, Dave, 115, 136, 207

Byrd, Timothy, 41, 183

Candler, Brian, 53

DeMello, Martin, 13

Fernández, Mauricio, 42

Freeze, Jim D., 145

Frykholm, Niklas Vermont, 198

Fugal, Hans, 76

Groß, Florian, 42, 70

Harder, Jannis, 194

Heath, Clifford, 223

Hecht, Eliah, 177

Huber, Benedikt, 121, 125

Jagenheim, Fredrik, 44

König, Markus, 16, 84

Kistner, Gavin, 48

Leavengood, Ryan, 101

Leitner, Thomas, 97

Linnell, Matthew, 50

Martenson, Dale, 72

Moss, Matthew, 33, 127

Neukirchen, Christian, 122

Onoma, Trans, 148

Parker, Glenn P., 57, 179

Ranke, Dennis, 90, 134, 200, 240

Schröder, Brian, 244

See&Gull, 253

Sidebotham, Bob, 55, 252

Stevens, Tait, 92

Tran, Hao (David), 68

Vucenic, Wayne, 193

Weirich, Jim, 11, 81, 87

Countdown

challenge, 53–54

discussion, 239–248

Crosswords

challenge, 29–30

discussion, 145–152

Crowley, Paul, 174

crtdll (Windows), 143

Cryptograms

challenge, 57–59

discussion, 259–269

online, 269

see also Solitaire Cipher

Cryptonomicon, 36

Curses library, 143

Custom template, 62

Cypher, see Solitaire Cipher,

Cryptograms

D
daz, 246

$DEBUG variable, 155

DECYPTION 273 KNIGHT’S TRAVAILS

Decyption, see Solitaire Cipher,

Cryptograms

Delegation, 111

DeMello, Martin, 13

Depth-first search algorithm, 211, 262

Dictionary, online, 13, 59

Discussion

1-800-THE-QUIZ, 153–159

Amazing Mazes, 214–224

Animal Quiz, 81–88

Banned Words, 191–194

Barrel of Monkeys, 203–213

Code Cleaning, 183–190

Countdown, 239–248

Crosswords, 145–152

Cryptograms, 259–269

English Numerals, 176–182

GEDCOM Parser, 76–80

HighLine, 101–111

Knight’s Travails, 127–133

LCD Numbers, 68–75

Learning Tic-Tac-Toe, 225–238

Mad Libs, 61–67

Regexp.build(), 93–100

Rock Paper Scissors, 121–126

Roman Numerals, 112–120

Scrabble Stems, 89–92

Secret Santas, 195–202

Sokoban, 134–144

Solitaire Cipher, 166–175

Solving Tactics, 249–258

Texas Hold’em, 160–165

Distribution, of letters, 92

Divide and conquer algorithm, 191

Download source code, 3

E
E-Mail (sending), 196

Eficiency, see Optimizing

Encode words as bitmap algorithm, 91

Encryption algorithm, 36

Encyption, see Solitaire Cipher,

Cryptograms

English Numerals, 204

challenge, 41

discussion, 176–182

Enumerator library, 155, 157

ERB, 61

Example code, downloading, 3

Exit condition, recursion, 156

Extreme Programming, 80

F
Family tree, see GEDCOM Parser

Fernández, Mauricio, 42

Filter, make program into, 113

Forwardable, 111

Freeze, Jim D., 145

Frykholm, Niklas Vermont, 198

Fugal, Hans, 76

G
Game, golf, see Golf

GEDCOM Parser

challenge, 9–10

discussion, 76–80

file format, 9

Geneological data, see GEDCOM Parser

_getch() (Windows), 143

Gifts, see Secret Santas

Golf (short programs), 42, 66, 190

Gray, Dana, 4

Groß, Florian, 42, 70

H
Harder, Jannis, 194

Hasbro (Scrabble), 13

Heath, Clifford, 223

Hecht, Eliah, 177

HighLine

challenge, 16–17

discussion, 101–111

Hill climbing algorithm, 200

Huber, Benedikt, 121, 125

I
Imabayashi, Hiroyuki (Sokoban

inventor), 27

Inheritance

from Struct, 79

J
Jagenheim, Fredrik, 44

K
König, Markus, 16, 84

Keystream, see Solitaire Cipher,

Cryptograms

Kicker, Texas Hold’em, 35

Kistner, Gavin, 48

Knight’s Travails

KNUTH 274 ROCK PAPER SCISSORS

challenge, 25

discussion, 127–133

Knuth, Donald E., 29

L
LCD Numbers

challenge, 8

discussion, 68–75

Learn, programs that, 11, 52

Learning Tic-Tac-Toe

challenge, 52

discussion, 225–238

sample players, 230

Leavengood, Ryan, 101

Leitner, Thomas, 97

Letter distribution, 92

Linnell, Matthew, 50

M
Mad Libs

challenge, 6–7

discussion, 61–67

online, 7

Martenson, Dale, 72

Match, see Regular expression

Math club, U.S. national, 41

Maze, see Amazing Mazes

Memoization (optimization technique),

247

MENACE (matchbox tic-tac-toe player),

232

Method naming, 115

Michie, Dennis, 232

Miradek (keystream generator), 175

Mock object, 106

Moss, Matthew, 33, 127

N
Naming conventions, 115

Neukirchen, Christian, 122

Net::SMTP library, 196

Notation, chess, 25

Noughts and Crosses, see Learning

Tic-Tac-Toe

Numbers, English, see English

Numerals

Numbers, telephone, see under the

digit 1

O
1-800-THE-QUIZ, see under the digit 1

Onoma, Trans, 148

Optimizing

divide and conquer, 193

memoization, 247

memory by streaming, 77

memory vs. coding ease, 89

MENACE, 237

pruning search space, 239, 262

regular expression, 94

search for numerals, 177

see also Benchmarking

OptionParser, 16

P
Parker, Glenn P., 57, 179

Parse, 62

with regexp, 77

XML, see REXML

Path finding algorithm, 204

Performance, see Optimizing

Pi Mu Epsilon, 41

Placeholder (Mad Libs), 6

Playlist, see Barrel of Monkeys

Poker, see Texas Hold’em

Presents, see Secret Santas

Pruning search space algorithm, 239

Q
Quiz

URL for site, 2

see also Entries in Table of Contents

R
Range, matching with regexp, 14

Ranke, Dennis, 90, 134, 200, 240

Raw mode, terminal, 142

Recursion algorithm, 153

dangers of, 154

exit condition, 156

Redhanded, 183

Regexp.build()

challenge, 14–15

discussion, 93–100

Regular expression

substituting with, 67

used to parse, 77

REXML, 77, 206

Rock Paper Scissors

challenge, 20–24

cheating at, 124

discussion, 121–126

ROMAN NUMERALS 275 WORD LIST

game engine, 22

rules, 20

Roman Numerals

challenge, 18–19

constants as, 119

discussion, 112–120

syntax of, 18

rubyquiz.com, 2

S
Schneier, Bruce, 36, 174

Schröder, Brian, 244

Scrabble Stems

challenge, 13

discussion, 89–92

Sea&Gull, 253

Search (using transpose()), 146

Secret Santas

challenge, 46–47

discussion, 195–202

Seven segment display, see LCD

Numbers

Short programs, see Golf

Shuffle algorithm, 197

Sidebotham, Bob, 55, 252

Single-character I/O, 142

Singleton class, 168

Sokoban

challenge, 27–28

discussion, 134–144

Solitaire Cipher

challenge, 36–40

discussion, 166–175

keystream, 38, 175

triple cut, 39

weakness in, 174

Solving Tactics

challenge, 55–56

discussion, 249–258

Song names, online, 49

sort_by() method, 160

Sorting algorithm, 160

Source code, downloading, 3

Spam filtering, see Banned Words

State machine algorithm, 72

Stem, see Scrabble stem

Stephenson, Neal, 36

Stevens, Tait, 92

Struct class, 79

stty command, 142

Substituting, see Match

T
Tactics, see Solving Tactics

TDD (Test Driven Development), 166

Telephone numbers, see

1-800-THE-QUIZ

Template, 61

custom, 62

ERB, 61

for LCD numbers, 68

placeholder, 63

Terminal, raw mode, 142

Test Driven Development, 166

Testing, 106

with mock objects, 106

unit, 255

Texas Hold’em

challenge, 33–35

discussion, 160–165

hand ranking, 34

rules, 165

Thinking Rabbit (Sokoban), 27

Tic-Tac-Toe, see Learning Tic-Tac-Toe

Timing, see Benchmarking

Token, see Parse

Tran, Hao (David), 68

transpose() (used in search), 146

Tree, see Binary tree

Triple cut, see Solitaire Cipher,

Cryptograms

Two-dimensional search, 146

U
Unix filter, 113

URL

Mad Libs online, 7

rubyquiz.com, 2

U.S. National Math Club, 41

V
Variable naming, 115

Vucenic, Wayne, 193

W
Warehouse man, see Sokoban

WEBrick (web server), 183

Weirich, Jim, 11, 81, 87

Wikipedia, 92

WikiWiki web, 184

Win32API, 143

Word list, see Dictionary

WORD SIGNATURES ALGORITHM 276 YAML

Word signatures algorithm, 91

X
XMAS, see Secret Santas

XML

escaping, 80

see also REXML

XP (eXtreme Programming), 80

Y
YAML, 82, 173, 206

Facets of Ruby Series
Now that you’re a Ruby programmer, you’ll want the definitive book on the Ruby lan-

guage. Learn how to use Ruby to write exciting new applications. And if you’re thinking

of using Ruby to create Web applications, you really need to look at Ruby on Rails.

Programming Ruby (The PickAxe)
• The definitive guide for Ruby programmers. • Up-to-date

and expanded for Ruby version 1.8. • Complete docu-

mentation of all the built-in classes, modules, and meth-

ods. • Complete descriptions of all ninety-eight standard

libraries. • 200+ pages of new content in this edition.

• Learn more about Ruby’s web tools, unit testing, and pro-

gramming philosophy.

Programming Ruby: The Pragmatic Programmer’s

Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

Agile Web Development with Rails
• The definitive guide for Rails developers. • Tutorial

introduction, and in-depth reference. • All the scoop

on ActiveRecord, ActionPack, and ActionView. • Special

David Says... content by the inventor of Rails. • Chapters

on testing, web services, Ajax, security, e-mail, deployment,

and more.

Agile Web Development with Rails

Dave Thomas and David Heinemeier Hansson, with Leon

Breedt, Mike Clark, Thomas Fuchs, and Andreas Schwarz

(560 pages) ISBN: 0-9745140-0-X. $34.95

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help programmers stay on top of their

game.

Visit Us Online
Best of Ruby Quiz

pragmaticprogrammer.com/titles/fr_quiz

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/fr_quiz.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/fr_quiz
www.pragmaticprogrammer.com/catalog

	Introduction
	Spring Cleaning

	Part I The Quizzes
	Mad Libs
	LCD Numbers
	GEDCOM Parser
	GEDCOM Format
	The Challenge
	Sample Input

	Animal Quiz
	Scrabble Stems
	Regexp.build()
	HighLine
	Roman Numerals
	Rock Paper Scissors
	Knight's Travails
	Sokoban
	Crosswords
	1-800-THE-QUIZ
	Texas Hold'em
	Solitaire Cipher
	Encryption
	Decryption
	The Keystream
	Your Script

	English Numerals
	Code Cleaning
	Banned Words
	Secret Santas
	Barrel of Monkeys
	Amazing Mazes
	Generating the Maze
	Solving the Maze
	Bonus Points

	Learning Tic-Tac-Toe
	Countdown
	Solving Tactics
	Cryptograms

	Part II Answers and Discussion
	Mad Libs
	Custom Templating
	Mini Libs
	Additional Exercises

	LCD Numbers
	Using Templates
	On and Off Bits
	Using a State Machine
	Additional Exercises

	GEDCOM Parser
	Optimizing the Read and Write Cycles
	Additional Exercises

	Animal Quiz
	Arrays Instead of Custom Objects
	Leaving the Trees
	Additional Exercises

	Scrabble Stems
	Eating Less RAM
	Additional Exercises

	Regexp.build()
	Shrinking a Regexp
	Speeding Up the Build
	Timing the Solutions
	Additional Exercises

	HighLine
	A Class-Based Solution
	Testing I/O
	The Official HighLine
	Additional Exercises

	Roman Numerals
	Saving Some Memory
	Romanizing Ruby
	Additional Exercises

	Rock Paper Scissors
	Outthinking a Random Player
	Cheat to Win
	Psychic Players
	Thinking Outside the Box
	Additional Exercises

	Knight's Travails
	Or with Less Abstraction
	Additional Exercises

	Sokoban
	Objectified Sokoban
	Saving Your Fingers
	Additional Exercises

	Crosswords
	Passive Building
	Additional Exercises

	1-800-THE-QUIZ
	Word Signatures
	The Search
	Cleaning Up and Showing Results
	Additional Exercises

	Texas Hold'em
	Ruby's Sorting Tricks
	Sorting Cards
	Name the Hand
	Additional Exercises

	Solitaire Cipher
	Testing a Cipher
	A Deck of Letters
	A Test Suite and Solution
	Additional Exercises

	English Numerals
	Grouping Numbers
	Coding an Idea
	Proper Grammar
	Additional Exercises

	Code Cleaning
	Instant Web Serving
	Finding the Hidden Wiki
	The Other Program
	Additional Exercises

	Banned Words
	Doing Even Fewer Checks
	Additional Exercises

	Secret Santas
	Using a Random Sort
	A Ring of Players
	Grouping
	Climbing a Hill
	Additional Exercises

	Barrel of Monkeys
	Fancy Searching
	Additional Exercises

	Amazing Mazes
	The Internal Bits
	Making a Maze
	Solving a Maze
	Interface
	Additional Exercises

	Learning Tic-Tac-Toe
	The History of MENACE
	Filling a Matchbox Brain
	Ruby's MENACE
	Additional Exercises

	Countdown
	Pruning Code
	Coding Different Strategies
	Additional Exercises

	Solving Tactics
	From Playing to Solving
	Proof through Unit Testing
	Additional Exercises

	Cryptograms
	Using Word Signatures
	Building the Map
	Assembling a Solution
	A Look at Limitations
	Additional Exercises

	Resources
	Bibliography

	Index

