The .
Png{matn:
TOgraminers

Dave Thomas

with Chad Fowler and Andy Hunt

» o Ruby Series

Programming Ruby 1.9

The Pragmatic Programmers” Guide

Dave Thomas

with Chad Fowler
and Andy Hunt

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and The Pragmatic Programmers, LLC, was aware of a trademark
claim, the designations have been printed in initial capital letters or in all capitals.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for
errors or omissions or for damages that may result from the use of information (including program listings) contained
herein.

This book is a heavily revised version of the book Programming Ruby, originally published by Addison Wesley.
This book is printed with their permission.

Our Pragmatic courses, workshops, and other products can help you and your team create better software and have
more fun. For more information, as well as the latest Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2009 The Pragmatic Programmers, LLC. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN: 1-934356-08-5
ISBN-13: 978-1-934356-08-1

Printing: P2.00, April 2009
Version: 2009-4-18

Text printed on acid-free paper.

http://www.pragmaticprogrammer.com

Contents

FOREWORD 16
PREFACE 17
ROAD MAP 22

PART I—FACETS OF RUBY

1 GETTING STARTED 25
The Command Prompt 25
InstallingRuby 27
RunningRuby o 30
Ruby Documentation: RDocandri 32

2 RUBY.NEW 35
Ruby Is an Object-Oriented Language 35
Some BasicRuby 37
Arraysand Hashes oL 40
Symbols e e e 42
Control Structures e e 43
Regular EXpressions o e 45
Blocks and Iterators 46
Readingand 'Riting 48
Command-Line Arguments 49
Onwardand Upward 49

3 CLASSES, OBJECTS, AND VARIABLES 50
Objects and Attributes 53
Classes Working with Other Classes 58
AccessControl L 61
Variables e 64

4 Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=4

CONTENTS 5

4 CONTAINERS, BLOCKS, AND ITERATORS 67
Blocks and Iterators 74
Containers Everywhere o 90

5 SHARING FUNCTIONALITY: INHERITANCE, MODULES, AND MIXINS 91

Inheritance and Messageso 91
Modules e e e 96
MIXiNS . . . o v v e e e e e e e e e 98
Iterators and the Enumerable Module 100
Composing Modules L 101
Inheritance, Mixins, and Design 104
6 STANDARD TYPES 106
Numbers e e e e e e 106
SIIngs o e 109
Ranges e 114
7 REGULAR EXPRESSIONS 117
What Regular Expressions Let YouDo 117
Ruby’s Regular Expressions 118
Digging Deeper 120
Pattern-Based Substitution Lo 128
Advanced Regular Expressions 130
8 MORE ABOUT METHODS 137
DefiningaMethod L L o 137
CallingaMethod e 140
9 EXPRESSIONS 146
Operator Expressions 147
Miscellaneous Expressions o oo 149
ASSIgNMENt L. e e e e e e e 150
Conditional Execution o o 153
Case EXpressions e 158
Loops . . o o e 160
Variable Scope, Loops, and Blocks 165
10 EXCEPTIONS, CATCH, AND THROW 167
The Exception Class o i i 167
Handling Exceptions L e 168
Raising Exceptions e 172
Catchand Throw 174
11 BASIC INPUT AND OUTPUT 176
WhatIsan IO Object? e 176
Opening and Closing Files 177
Reading and Writing Files o . 178
Talkingto Networks L 181

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=5

CONTENTS 6

12 FIBERS, THREADS, AND PROCESSES 184
Fibers 184
Multithreading L. 186
Controlling the Thread Scheduler 190
Mutual Exclusion 191
Running Multiple Processes 194

13 UNIT TESTING 198
The Testing Framework 200
Structuring Tests e 204
Organizing and Running Tests 206
RSpecand Shoulda 209

14 WHEN TROUBLE STRIKES 220
Ruby Debugger 220
Interactive Ruby 221
Editor Support e 222
ButIt Doesn’t Work! 224
ButIt’'s Too Slow! 227

PART II—RUBY IN ITS SETTING

15 RUBY AND ITS WORLD 233
Command-Line Arguments 233
Program Termination e 236
Environment Variables o o oo 237
Where Ruby Finds Its Libraries, 238
RubyGems Integration e 239
The Rake Build Tool 245
Build Environment L. e 248

16 NAMESPACES, SOURCE FILES, AND DISTRIBUTION 249
Namespaces o v i v e e e e e e e e 249
Organizing Your SOUICe v it v it e 251
Distributing and Installing Your Code 258

17 CHARACTER ENCODING 264
Encodings e 265
Source Files 266
Transcoding L 270
Input and Output Encoding 272
Default External Encoding 274
Encoding Compatibility 275
Default Internal Encoding Lo L. 276
Funwith Unicode 277

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=6

CONTENTS 7

18 INTERACTIVE RUBY SHELL 278
Command Line e 278
Configuration e 282
Commands e e e 286
Restrictions e e 288

19 DOCUMENTING RUBY 290
Adding RDoctoRuby Code 293
Adding RDocto CExtensions 298
RunningRDoc o 299

20 RUBY AND THE WEB 304
Writing CGL Scriptso 304
CooKIES e e 313
Choice of Web Servers e 314
Frameworks e 315

21 RUBY AND MICROSOFT WINDOWS 316
Getting Ruby for Windowso Lo L. 316
Running Ruby Under Windows 317
WIn32APIL e e e e 317
Windows Automation e e e e e e 318

PART III—RUBY CRYSTALLIZED

22 THE RUBY LANGUAGE 325
Source File Encoding L o 325
Source Layout L 325
The Basic Types o o e 327
NameS o e e e e e e e 334
Variables and Constants e e e 336
Expressions 344
Method Definition e 351
InvokingaMethod 355
Allasing L e 358
Class Definition e 358
Module Definitions 360
AccessControl 362
Blocks, Closures, and Proc Objects 363
Exceptions 367
Catchand Throw e 369

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=7

CONTENTS 8

23 DUCK TYPING 370
Classes Aren’t Types o i i i e 371
CodinglikeaDuck 375
Standard Protocols and Coercions 376
Walk the Walk, Talk the Talk 383

24 METAPROGRAMMING 384
Objects and Classes« o v v v v vt it e e e e e e 384
Singletons 387
Inheritance and Visibility o o 393
Modules and MixXins oo e e e 394
Metaprogramming Class-Level Macros 397
Two Other Forms of Class Definition 402
instance_eval and class_eval 406
Hook Methods e 410
One LastExample e 415
Top-Level Execution Environment 417
The Turtle Graphics Program 418

25 REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY 420
Looking at Objects e 420
Looking at Classes i i ittt e e 422
Calling Methods Dynamically 423
System Hooks 426
Tracing Your Program’s Execution 427
Behind the Curtain: The Ruby VM 430
Marshaling and Distributed Ruby oo o oL 431
Compile Time? Runtime? Anytime! 435

26 LOCKING RUBY IN THE SAFE 436
SafeLevels 437
Tainted Objects e 438
Trusted Objects 438

PART IV—RUBY LIBRARY REFERENCE

27 BUILT-IN CLASSES AND MODULES 442
Alphabetical Listing o 443
ATTAY . . o oo o e e e e 447
BasicObject e e e 463
Bignum 466
Binding e 469
Class . . . v e 470
Comparable e 472
Complex e e 473

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=8

CONTENTS)

Dir . . e e e 478
Encoding e 483
Enumerable 487
Enumerator 496
Errno e e e 500
Exception 501
FalseClass e 504
Fiber e 505
File e 506
File::Stat e e 518
FileTest. e 524
Fixnum e e 525
Float e e e 528
GC . e e e 532
Hash e e 533
Integer e 543
) (0 546
Kernel e e 564
Marshal e e e e 583
MatchData e e e 585
Math e 588
Method e 591
Module e 594
Mutex e e e e e e 612
NilClass o e e e 613
NUMETIC o e e e e e e e e e e e e e e e e 615
Object . . . o o e e e e e e 622
ObjJectSpace o i i e e e e e e e 635
Proc e e e 637
Process e e e e e 641
Process::GID e e e 648
Process::Status e e 650
Process::Sys e 653
Process::UID e e e e 655
Range e 656
Rational e 660
Regexp o e 663
Signal . . . L 668
SIIng e 670
Struct e e 696
Struct::Tms e e e e 700
Symbol 701
Thread e 705
ThreadGroup e 712
Time e 714
TrueClass o e e e e 723

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=9

CONTENTS 10

UnboundMethod e 724
28 STANDARD LIBRARY 726
Library ChangesinRuby 1.9 727
Abbrev e e 729
Base6d e e e 730
Benchmark 731
BigDecimal 732
CGlL. . . e 733
CGL:Session o v o e e e e e e e 735
CMath e 736
Complex o e e e e 737
Continuation e e e e e e e e e e 738
CSV e e 739
CUISES . v v ot e e e e e e e e 741
Date/DateTime e e e 742
DBM . . . e e e 743
Delegator. e 744
Digest e 745
. 746
dRuby 747
English e 748
1< 4 o OO 749
Bt . . e e e 751
EBXPECT © o v i e e e e e e e e e e 752
Fentl e 753
Fiber e 754
FileUtils e 755
Find e 756
Forwardable e 757
GDBM . . . e e 758
GetoptlLong 759
GServer e e 760
TIconv . . . e e e e e e 761
TIO/Wait e e e e 762
TPAdr e e e e 763
1 OO 764
JSOM L o i e e e e e 765
Logger e 766
mathn e e e e e e 767
Matrix e e e e e e e e 769
MiniTest o e e e e e 770
MONItor e e e e 771
MUteX_ 1M . . . v v o o e e e e e e e e e e e e e e 772
Net::FTP e e e 773
Net::HTTP e e e e e 774
Net::IMAP e e 776

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=10

CONTENTS 11

Net::POP e e 777
Net::SMTP e e e 778
Net::Telnet e e 779
NKFE . e e 780
Observable e 781
0] 0155 1 O 782
Open3 e 783
OpenSSL 784
OptionParser e e 785
OpenStruct e e e e e 787
Pathname e 788
PP . e e e 789
PrettyPrint e 790
PIrIME oot e e e e e e e e e 791
Profile e e 792
Profiler__ e e e 793
PStore e e e 794
PTY . e e e 795
Rational e 796
Readline e 797
Resolv e 798
REXML e 799
Rinda e 801
Ripper e 802
RSS . e 804
Scanf e e 805
SDBM . . . e e e 806
SecureRandom 807
Set o e 808
Shellwords e e e e e 809
Singleton L 810
Socket . ..o e e e 811
StringlO . . . L L 812
StringScanner e e e 813
Syslog . . . 814
Tempfile e 815
Test::Unit e e e e e e 816
thread e e e 817
ThreadsWait e 818
Time e e 819
Timeout e e e 820
TK . o e e 821
tmpdir e e e e 822
Tracer e e e 823
TSort . . . e e 824
1 N 825

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=11

CONTENTS 12

URI. . . e 826
WeakRef 827
WEBrick e 828
WIN320LE e 829
XMLRPC . .. e 830
YAML . . . e 831
ZIb . oo e e e 832
29 EXTENDING RUBY 833
Your First Extension 833
Ruby Objects inC e 836
The Threading Model 841
The Jukebox Extension 845
Memory Allocation 852
Ruby Type System e 853
Creating an Extension o o 855
Embedding a Ruby Interpreter 860
Bridging Ruby to Other Environments 864
Ruby C Language API 865
MKMFReference e 874
mkmf 874

PART V—APPENDIXES

A SOCKET LIBRARY 878
BasicSocket e e 879
Socket . .. e e e 881
IPSocket e e e 885
TCPSocket e 886
SOCKSSocket e e 887
TCPServer o e e e e 888
UDPSocket e 889
UNIXSocket e 891
UNIXServer o e e e e e e e e e e 892

B SUPPORT 893
WeDbSItes e e e e 893
Usenet Newsgroupo vt 894
Mailing Listso e 894
BugReporting 895

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=12

CONTENTS

C BIBLIOGRAPHY 896

INDEX 897

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=13

List of Tables

2.1
7.1
7.2
7.3
9.1
14.1
15.1
15.2
18.1
20.1
22.1
22.2
22.3
22.4
24.1
26.1
27.1
27.2
27.3
274
27.5
27.6
27.7
27.8
27.9
27.10
27.11
27.12
27.13
27.14
27.15
27.16
27.17
27.18
28.1
28.2
29.1
29.2

Example Variable and Class Names 41
Character Class Abbreviations 125
Posix Character Classes 125
Unicode Character Properties 126
Common Comparison Operatorso v v v v v v v oo . 156
Debugger Commands Lo 231
Environment Variables Usedby Ruby 238
Version Operators v v v vttt e e e e e e e e e e e e 246
irb Command-Line Options 279
Command-Line Options forerb 312
General Delimited Input L L 327
Substitutions in Double-Quoted Strings L. 329
ReservedWords 335
Ruby Operators (High to Low Precedence) 345
Ruby Hook Methods 411
Definition of the Safe Levels 440
Class Array: pack directives v i i i i e e 456
Encoding Names and Class Names 484
Class File: Match-Mode Constants 510
Class File: Path Separators 512
Class File: Open-Mode Constants 514
Class File: Lock-Mode Constants 518
Class I0: Mode Stringso e 547
Module Kernel: Options to Spawn and System 580
Module Kernel: sprintf Flag Characters 581
Module Kernel: sprintf Field Types 581
Module Kernel: File Tests with a Single Argument 582
Module Kernel: File Tests with Two Arguments 582
Class Numeric: Methods and Subclasses 618
Class Numeric: divmod, modulo, and remainder 619
Class String: Optionsto Encode 680
Class String: Backslash Sequences in Substitution Strings 682
Class String: unpack Directives, 694
Class Time: strftime Directives 720
Class ERB: Inline Directives 750
Class OptionParser: Option Definitions 786
C/Ruby Data Type Conversion Functions and Macros 838
Object Accessor Macroso oo vt i il e 841

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=14

List of Figures

3.1

4.1

10.1
13.1
13.2
14.1
14.2
15.1
17.1
19.1
19.2
19.3
19.4
19.5
19.6
20.1
22.1
24.1
24.2
243
244
24.5
27.1
27.2
29.1
29.2

Variables Hold Object References 66
How Arrays AreIndexed 69
Ruby Exception Hierarchy 169
Testing Framework Assertions 218
Additional Test::Unit Assertions 219
SampleirbSession 223
Determining Method Calling Costs Using Benchmark 228
Installed Documentation for Builder 242
Encodings and Their Aliases 266
Browse RDoc Output for Class Counter 291
Browse RDoc Output When Source Has Comments 292
Using ri to Read Documentation 293
Documentation for Class Proc Generated by RDoc/ri 294
Ruby Source File Documented withRDoc 302
C Source File Documented withRDoc 303
Sample CGIForm. 307
State Transitions for BooleanRange 348
Object Model foraBasicClass 387
Object Model for a Singleton Class 389
Basic Class Definition 391
Class with So-Called Class Methods 392
How Modules Are Included 396
Standard Exception Hierarchy 502
Method#arity in Action 592
Wrapping Objects Around C Data Types 846
Building an Extension L oo 856

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=15

Foreword

I wrote forewords to the previous two editions of this book. For the first edition, I wrote
about motivation. For the second edition, I wrote about miracles.

For this third edition, I'd like to write about courage. I always admire brave people. People
around Ruby seem to be brave, like the authors of this book. They were brave to jump in
to a relatively unknown language like Ruby. They were brave to try out new technology.
They could have happily stayed with an old technology, but they didn’t. They built their
own world using new bricks and mortar. They were adventurers, explorers, and pioneers.
By their effort, we have a fruitful result—Ruby.

Now I feel that I've created my own universe with help from those brave people. At first, I
thought it was a miniature universe, like the one in “Fessenden’s Worlds.” But now it seems
like a real universe. Uncountable brave people are now working with Ruby. They challenge
new things every day, trying to make the world better and bigger. I am very glad I am part
of the Ruby world.

I suppose that even the world itself could not contain the books that should be written. But
now we have the first book, updated to the most recent. Enjoy.

Yukihiro Matsumoto, ak.a. “Matz”
FOobL WEUVA
Japan, February 2009

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=16

Preface

This book is a new version of the PickAxe, as Programming Ruby is known to Ruby pro-
grammers. It is a tutorial and reference for the version 1.9 of Ruby programming language.

Ruby 1.9is a significant departure from previous versions. There are major changes in string
handling, the scoping of block variables, and the threading model. It has a new virtual
machine. The built-in libraries have grown, adding many hundreds of new methods and
almost a dozen new classes. The language now supports scores of character encodings,
making Ruby one of the only programming languages to live fully in the whole world.

Given a choice between showing the 1.8 version of some Ruby construct and the 1.9 ver-
sion, this book shows the new way. If you’re planning to use Ruby 1.8 and not Ruby 1.9,
then I'd recommend putting this book down and instead looking at the second edition of
Programming Ruby.'

But, before you run off, I'd also like you to stop for a second and consider switching to
Ruby 1.9. As a language, and as a programming environment, it really is a step up from
previous versions of Ruby. It runs faster, it is more expressive, and it enables even more
programming paradigms. Most frameworks (including Ruby on Rails) are now compatible
with Ruby 1.9. And some Ruby implementations (such as MacRuby—a version of Ruby
that is integrated into the Objective C runtime on the Mac) run only 1.9 code.

Why Ruby?

When Andy and I wrote the first edition, we had to explain the background and appeal
of Ruby. Among other things, we wrote, “When we discovered Ruby, we realized that
we’d found what we’d been looking for. More than any other language with which we have
worked, Ruby stays out of your way. You can concentrate on solving the problem at hand,
instead of struggling with compiler and language issues. That’s how it can help you become
a better programmer: by giving you the chance to spend your time creating solutions for
your users, not for the compiler.”

That belief is even stronger today. Almost eight years later, Ruby is still our language of
choice: I use it for client applications and web applications. I use it to run our publishing
business (our online store, http://pragprog.com, is more than 40,000 lines of Rails code),
and I use it for all those little programming jobs I do just to get things running smoothly.

1. http://pragprog.com/titles/ruby

Report erratum

http://pragprog.com
http://pragprog.com/titles/ruby
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=17

PREFACE

In those eight years, Ruby has progressed nicely. A large number of methods have been
added to the built-in classes and modules, and the size of the standard library (those libraries
included in the Ruby distribution) has grown tremendously. The community now has a stan-
dard documentation system (RDoc), and RubyGems has become the system of choice for
packaging Ruby code for distribution. We have a best-of-breed web application framework,
Ruby on Rails, with others waiting in the wings.

Ruby Versions

This version of the PickAxe documents Ruby 1.9.2
Exactly what version of Ruby did I use to write this book? Let’s ask Ruby:

% ruby -v
ruby 1.9.1p0 (2009-01-30 revision 21907) [1386-darwin9.6.0]

This illustrates an important point. Most of the code samples you see in this book are actu-
ally executed each time I format the book. When you see some output from a program, that
output was produced by running the code and inserting the results back into the book.

Changes in the Book

Throughout the book I’ve tried to mark changes between 1.8 and 1.9 using a small symbol

=2 , in the margin, like the one here. One change I didn’t make: I decided to continue to use the
word we when talking about the authors in the body of the book. Many of the words come
from the first edition, and I certainly don’t want to claim any credit for Andy’s work on that
book.

Resources

Visit the Ruby website at http://www.ruby-1lang.org to see what’s new. Chat with other
Ruby users on the newsgroup or mailing lists (see Appendix B).

And I’d certainly appreciate hearing from you. Comments, suggestions, errors in the text,
and problems in the examples are all welcome. E-mail us at

rubybook@pragprog.com

2. Ruby version numbering used to follow the same scheme used for many other open source projects. Releases
with even minor version numbers—1.6, 1.8, and so on—were stable, public releases. These are the releases that
are prepackaged and made available on the various Ruby websites. Development versions of the software had odd
minor version numbers, such as 1.5 and 1.7. However, in 2007 Matz broke with convention and made 1.9 a stable
public release of Ruby.

Report erratum

http://www.ruby-lang.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=18

PREFACE

If you tell us about errors in the book, I’ll add them to the errata list at
http://www.pragprog.com/titles/ruby3/errata.html
You’ll find links to the source code for almost all the book’s example code at

http://www.pragprog.com/titles/ruby3

Acknowledgments

The first International Ruby Conference had something like 32 attendees. We could all
fit into the tiny hotel bar and talk the night away. Things have changed since then. The
annual conference now sells out many hundreds of seats within hours, and an increasing
number of secondary conferences have sprung up to meet the needs of folks who can’t get
to RubyConf.

As the community has grown, so has Ruby. The language and its libraries are now many
times bigger than they were back when the first edition of this book came out.

And as the language has grown, so has this book. The PickAxe is now massive, mostly
because I still want to document every single built-in class, module, and method. But a
book of this size can never be a solo undertaking. This edition builds on the work from the
first two editions, which included major contributions from Chad Fowler and Andy Hunt.
Just as significant, all three editions have been works created by the Ruby community. On
the mailing lists, in the forums, and on this book’s errata pages, hundreds of people have
contributed ideas, code, and corrections to make it better. As always, I owe every one of you
a big “thank you!” for all you have done and for all that you do. The Ruby community is
still as vibrant, interesting, and (mostly) friendly as it ever was—that’s quite an achievement
given the explosive growth we’ve enjoyed.

Getting this book into production has also been a challenge. Many thanks to Kim Wimpsett
for doing an amazing job on the copy edit, Steve Peter for finding ways to lay out all those
awkward pages full of code, and Janet Furlow for keeping us all on track.

Finally, I'm still deeply indebted to Yukihiro “Matz” Matsumoto, the creator of Ruby.
Throughout this period of growth and change, he has remained helpful, cheery, and ded-
icated to polishing this gem of a language. The friendly and open spirit of the Ruby com-
munity is a direct reflection of the person at its center.

Thank you all. Domo arigato gozaimasu.

Dave Thomas
THE PRAGMATIC PROGRAMMERS
http://www.pragprog.com

Report erratum

http://www.pragprog.com/titles/ruby3/errata.html
http://www.pragprog.com/titles/ruby3
http://www.pragprog.com
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=19

PREFACE

Notation Conventions

Throughout this book, we use the following typographic notations.
Literal code examples are shown using a typewriter-like font:

Download samples/preface_2.rb

class SampleCode
def run
#...
end
end

Within the text, Fred#do_something is a reference to an instance method (in this case
do_something) of class Fred, Fred.new® is a class method, and Fred::EOF is a class con-
stant. The decision to use a hash character to indicate instance methods was a tough one.
It isn’t valid Ruby syntax, but we thought that it was important to differentiate between the
instance and class methods of a particular class. When you see us write File.read, you know
we’re talking about the class method read. When instead we write File#read, we’re referring
to the instance method read. This convention is now standard in most Ruby discussions and
documentation.

The book contains many snippets of Ruby code. Where possible, we’ve tried to show what
happens when they run. In simple cases, we show the value of expressions on the same line
as the expression. For example:

Download samples/preface_3.rb
a=1

b=2
a+b #= 3

Here, you can see that the result of evaluating a + b is the value 3, shown to the right of the
arrow. Note that if you were to run this program, you wouldn’t see the value 3 output—you’d
need to use a method such as puts to write it out.

At times, we’re also interested in the values of assignment statements, in which case we’ll
show them:

Download samples/preface_4.rb

a=1 #=> 1
b=2 #= 2
a+b #= 3

3. In some other Ruby documentation, you may see class methods written as Fred::new. This is perfectly valid
Ruby syntax; we just happen to think that Fred.new is less distracting to read.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/preface_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/preface_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/preface_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=20

PREFACE

If the program produces more complex output, we show it below the program code:
Download samples/preface_5.rb

3.times { puts "Hello!" }

produces:

Hello!
Hello!
Hello!

In some of the library documentation, we wanted to show where spaces appear in the output.
You’ll see these spaces as “_,” characters.

Command-line invocations are shown with literal text in a Roman font, and parameters you
supply are shown in an italic font. Optional elements are shown in large square brackets.

ruby [flags ...] [progname] [arguments ...]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/preface_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=21

Road Map

The main text of this book has four separate parts, each with its own personality and each
addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with some notes on getting
Ruby running on your system followed by a short chapter on some of the terminology and
concepts that are unique to Ruby. This chapter also includes enough basic syntax so that the
other chapters will make sense. The rest of the tutorial is a top-down look at the language.
There we talk about classes and objects, types, expressions, and all the other things that
make up the language. We end with chapters on unit testing and digging yourself out when
trouble strikes.

One of the great things about Ruby is how well it integrates with its environment. Part II,
Ruby in Its Setting, investigates this. Here you’ll find practical information on using Ruby:
using the interpreter options, using irb, documenting your Ruby code, and packaging your
Ruby gems so that others can enjoy them. You’ll also find tutorials on some common
Ruby tasks: using Ruby with the Web and using Ruby in a Microsoft Windows environ-
ment (including wonderful things such as native API calls, COM integration, and Windows
Automation). We’ll also touch on using Ruby to access the 'net.

Part I1I, Ruby Crystallized, contains more advanced material. Here you’ll find all the gory
details about the language, the concept of duck typing, the object model, metaprogram-
ming, tainting, reflection, and marshaling. You could probably speed-read this the first time
through, but we think you’ll come back to it as you start to use Ruby in earnest.

The Ruby Library Reference is Part IV. It’s big. We document more than 1,250 methods in
more than 54 built-in classes and modules (up from 800 methods in 40 classes and modules
in the previous edition). On top of that, we now document the library modules that are
included in the standard Ruby distribution (96 of them).

So, how should you read this book? Well, depending on your level of expertise with pro-
gramming in general and OO in particular, you may initially want to read just a few portions
of the book. Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep the
library reference close at hand as you start to write programs. Get familiar with the basic
classes such as Array, Hash, and String. As you become more comfortable in the environ-
ment, you may want to investigate some of the more advanced topics in Part III.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=22

PREFACE

If you’re already comfortable with Perl, Python, Java, or Smalltalk, then we suggest read-
ing Chapter 1 on page 25, which talks about installing and running Ruby, followed by the
introduction in Chapter 2. From there, you may want to take the slower approach and keep
going with the tutorial that follows, or you can skip ahead to the gritty details starting in
Part II1, followed by the library reference in Part I'V.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the lan-
guage reference in Chapter 22, which begins on page 325, skim the library reference, and
then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way
through page by page.

And don’t forget, if you run into a problem that you can’t figure out, help is available. See
Appendix B, beginning on page 893, for more information.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=23

Part |

Facets of Ruby

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=24

Chapter 1

Getting Started

Before we start talking about the Ruby language, it would be useful if we helped you get
Ruby running on your computer. That way, you can try sample code and experiment on your
own as you read along. In fact, that’s probably essential if you want to learn Ruby—get into
the habit of writing code as you’re reading. We will also show you some different ways to
run Ruby.

The Command Prompt

(Feel free to skip to the next section if you're already comfortable at your system’s command
prompt.)

Although there’s growing support for Ruby in IDEs, you’ll probably still end up spending
some time at your system’s command prompt, also known as a shell prompt or just plain
prompt. If you’re a Linux user, you're probably already familiar with the prompt. If you
don’t already have a desktop icon for it, hunt around for an application called Terminal or
xterm. (On Ubuntu, you can navigate to it using Applications > Accessories > Terminal.)
On Windows, you’ll want to run cmd. exe, accessible by typing cmd into the dialog box that
appears when you select Start > Run. On OS X, run Applications > Utilities > Terminal.app.

In all three cases, a fairly empty window will pop up. It will contain a banner and a prompt.
Try typing echo hello at the prompt and hitting Enter (or Return, depending on your key-
board). You should see hello echoed back, and another prompt should appear.

Directories, Folders, and Navigation

It is beyond the scope of this book to teach the commands available at the prompt, but we
do need to cover the basics of finding your way around.

If you’re used to a GUI tool such as Explorer on Windows, or Finder on OS X, for navigating
to your files, then you’ll be familiar with the idea of folders—locations on your hard drive
that can hold files and other folders.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=25

THE COMMAND PROMPT

When you’re at the command prompt, you have access to these same folders. But, somewhat
confusingly, at the prompt they’re called directories (because they contain lists of other
directories and files). These directories are organized into a strict hierarchy. On Unix-based
systems (including OS X)), there’s one top-level directory, called / (a single forward slash).
On Windows, there is a top-level directory for each drive on your system, so you’ll find the
top level for your C: drive at C:\ (that’s the drive letter, C, a colon, and a single backslash).

The path to a file or directory is the set of directories that you have to traverse to get to
it from the top-level directory, followed by the name of the file or directory itself. Each
component in this name is separated by a forward slash (on Unix) or a backslash (on Win-
dows). So, if you organized your projects in a directory called projects under the top-level
directory and if the projects directory had a subdirectory for your time_planner project,
the full path to the README file would be /projects/time_planner/readme.txt on Unix and
C:\projects\time_planner\readme.txt on Windows.

To navigate to a directory, use the cd command. (Because the Unix prompt varies from
system to system, we’ll just use a single dollar sign to represent it here.)

$ cd /projects/time_planner (on Unix)
C:\> cd \projects\time_planner (on Windows)

Now, on Unix boxes, you probably don’t want to be creating top-level directories. Instead,
Unix gives each user their own home directory. So, if your username is dave, your home
directory might be located in /usr/dave, /home/dave, or /Users/dave. At the shell prompt,
the special character ~ (a single tilde) stands for the path to your home directory. You can
always change directories to your home directory using cd ~, which can also be abbreviated
to just cd.

To find out the directory you’re currently in, you can type pwd (on Unix) or cd on Windows.
So, for Unix users, you could type this:

$ cd /projects/time_planner
$ pwd
/projects/time_planner

$ cd

$ pwd

/Users/dave

$

On Windows, there’s no real concept of a user’s home directory:

C:\> cd \projects\time_planner
C:\projects\time_planner> cd \projects
C:\projects>

You can create a new directory under the current directory using the mkdir command:

$ cd /projects

$ mkdir expense_tracker

$ cd expense_tracker

$ pwd
/projects/expense_tracker

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=26

INSTALLING RUBY

in Dir ry Nam nd Filenam

Most operating systems now allow you to create folders with spaces in
their names. This is great when you’re working at the GUI level. How-
ever, from the command prompt, spaces can be a headache, because
the shell that interprets what you type will treat the spaces in file and
folder names as being parameter separators and not as part of the
name. You can get around this, but it generally isn’'t worth the hassle.
If you are creating new folders and files, it's easiest to avoid spaces in
their names.

Notice that to change to the new directory, we could just give its name relative to the current
directory—we don’t have to enter the full path.

I suggest you create a directory called pickaxe to hold the code you write while reading this
book:

$ mkdir ~/pickaxe (on Unix)
C:\> mkdir \pickaxe (on Windows)

Get into the habit of changing into that directory before you start work:

$ cd ~/pickaxe (on Unix)
C:\> cd \pickaxe (on Windows)

Installing Ruby

Quite often, you won’t even need to download Ruby. It now comes preinstalled on many
Linux distributions, and Mac OS X includes Ruby (although the version of Ruby prein-
stalled on OS X is normally several minor releases behind the current Ruby version). Try
typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system or if you’d like to upgrade to a newer version
(remembering that this book describes Ruby 1.9), you can install it pretty simply. But first,
you have a choice to make: go for a prepackaged distribution or build Ruby from source?

Prepackaged Distributions

A packaged distribution of Ruby simply works out of the box. You install it, and it runs.
Binary distributions are prebuilt for a particular operating environment and are convenient
if you don’t want to mess around with building Ruby from source. The downside of a
packaged distribution is that you may have to take it as given: it may be a minor release
or two behind the leading edge, and it may not have the optional libraries that you might
want (although you may be able to install additional libraries using RubyGems, described

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=27

INSTALLING RUBY

in a moment). If you can live with that, you’ll need to find a packaged distribution for your
operating system and machine architecture.

Windows Distributions

In the old days (where old means Ruby 1.8), things were good for Windows users. There
was a great “batteries included” package that would install not just Ruby but also a vast
array of libraries and gems. This was called the One-Click Installer, or OCL

However, with the advent of Ruby 1.9, the situation has changed somewhat. Ruby 1.9 hasn’t
been around long, so some of the libraries that were included in the 1.8 installer have not
yet been made compatible with 1.9. As I write this, the OCI project is in a state of flux. The
maintainer, Luis Lavena, is planning on releasing a Ruby 1.9 version of the OCI in early
2009, but it may well not contain as many libraries as the 1.8 version. The situation will
improve over time. (And, if you feel strongly about this, I know Luis would welcome your
help porting stuff over.)

So, you have a couple of choices for installing Ruby 1.9 on Windows. You can visithttp://rubyforge.org/p
and see whether a one-click installer is available. If not, you can download a prebuilt binary
from ruby-lang.org.!

Linux Distributions

Most modern Linux distributions use the apt-get system (or the Synaptic GUI) to find and
install Ruby. As of November 2008, the following command installs Ruby, irb, and ri:

$ sudo apt-get install rubyl.9 librubyl.9 libreadline-rubyl.9 irbl.9
$ sudo apt-get install rdocl.9 ril.9

This installs all the Ruby commands with a 1.9 suffix, so you’ll need to do this:

$ rubyl.9 -v
ruby 1.9.0 (2007-12-25 revision 14709) [1486-1inux]

Be aware that the version of Ruby we just installed is many months behind the current
version.

Note that you need to have superuser access to install global packages on a Unix or Linux
box, which is why we use the sudo command.

OS X Distributions

Leopard (OS X 10.5) comes with Ruby 1.8 preinstalled.? If you want to make use of the
new Ruby 1.9 features, you’ll want to install Ruby yourself. You can do this from source,
or you can use a package management system. I personally use MacPorts.®> Once you have

1. Visit http://www.ruby-1lang.org/en/downloads/, and look for Ruby on Windows.

2. At some point, it seems likely that Apple will include MacRuby. This is its own port of Ruby 1.9, tightly inte-
grated into the Objective-C runtime. In the meantime, you can download MacRuby from http: //www.macruby.org.

3. http://www.macports.org/

Report erratum

http://rubyforge.org/projects/rubyinstaller
http://www.ruby-lang.org/en/downloads/
http://www.macruby.org
http://www.macports.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=28

INSTALLING RUBY

the basic ports system installed, as described on its website, installing Ruby is as simple as
doing this:

$ sudo port install ruby19

As with apt-get for Linux, MacPorts currently installs the Ruby executables with a 1.9 suffix
(ruby1.9, irb1.9, and so on). If you don’t already have /opt/local/bin in your path, you’ll need
to add it. As an alternative, you could investigate http://rubyosx.com/, which claims to
offer a packaged OS X installation.

Building Ruby from Source

Because Ruby is an open source project, you can download the interpreter’s source code
and build it on your own system. Compared to using a binary distribution, this gives you
a lot more control over where things go, and you can keep your installation totally up-to-
date. The downside is that you’re taking on the responsibility of managing the build and
installation process. This isn’t onerous, but it can be scary if you’ve never installed an open
source application from source.

The first thing to do is to download the source. This comes in three flavors, all from
http://www.ruby-lang.org/en/downloads:

* The stable release in farball format. A tarball is an archive file, much like a .zip file.

» The stable snapshot. This is a tarball, created nightly, of the latest source code in
Ruby’s stable development branch. The stable branch is intended for production code
and in general will be reliable. However, because the snapshot is taken daily, new fea-
tures may not have received thorough testing yet—the stable tarball in the previous
bullet will be generally more reliable.

* The nightly snapshot. This is again a tarball, created nightly. Unlike the stable code in
the previous two tarballs, this code is leading edge, because it is taken from the head
of the development branch. Expect things to be broken in here.

If you plan on downloading either of the nightly snapshots regularly, it may be easier to
subscribe to the source repository directly. The sidebar on page 31 gives more details.

Once you’ve loaded a tarball, you’ll have to expand the archive into its constituent files. Use
the tar command for this (if you don’t have tar installed, you can try using another archiving
utility, because many now support tar-format files).

$ tar xzf snapshot.tar.gz
ruby/

ruby/bcc32/
ruby/bcc32/Makefile.sub
ruby/bcc32/README.bcc32

This installs the Ruby source tree in the subdirectory ruby/. In that directory, you’ll find a
file named README, which explains the installation procedure in detail. To summarize, you
build Ruby on Unix-based systems using the same four commands you use for most other
open source applications: ./configure, make, make test, and make install. You can build Ruby

Report erratum

http://rubyosx.com/
http://www.ruby-lang.org/en/downloads
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=29

RUNNING RUBY

under other environments (including Windows)—see README.win32 in the distribution’s
win32 subdirectory as a starting point.

Source Code from This Book

We have made the source code from this book available for download from our website at
http://pragprog.com/titles/ruby3/code. Sometimes, the listings of code in the book
correspond to a complete source file. Other times, the book shows just part of the source in
a file—the program file may contain additional scaffolding to make the code run.

Running Ruby

Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled
languages, you have two ways to run Ruby—you can type in code interactively, or you can
create program files and run them. Typing in code interactively is a great way to experiment
with the language, but for code that’s more complex or that you will want to run more than
once, you’ll need to create program files and run them. But, before we go any further, let’s
test to see whether Ruby is installed. Bring up a fresh command prompt, and type this:*

$ ruby -v
ruby 1.9.1p0 (2009-01-30 revision 21907) [1386-darwin9.6.0]

If you believe that you should have Ruby installed and yet you get an error saying something
like “ruby: command not found,” then it is likely that the Ruby program is not in your
path—the list of places that the shell searches for programs to run. If you used the Windows
One-Click Installer, make sure you rebooted before trying this command. If you’re on OS X
and installed Ruby from source, you’ll probably have to add a line like this to the file .profile
in your home directory:

PATH=/usr/local/bin:$PATH

Interactive Ruby

One way to run Ruby interactively is simply to type ruby at the shell prompt. Here we typed
in the single puts expression and an end-of-file character (which is Ctrl+D on our system).
This process works, but it’s painful if you make a typo, and you can’t really see what’s
going on as you type.

% ruby

puts "Hello, world!"
AD

Hello, world!

4. Remember you may need to use ruby1.9 as the command name if you installed using a package management
system.

Report erratum

http://pragprog.com/titles/ruby3/code
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=30

RUNNING RUBY

The Very Latest Ruby

For those who just have to be on the very latest, hot-off-the-press,
and untested cutting edge (as we were while writing this book), you
can get development versions straight from the developers’ working
repository.

The Ruby developers use Subversion (often abbreviated as SVN) as
their revision control system. Subversion clients can be downloaded
from http://subversion.tigris.org/. You can check files out as an
anonymous user from their archive by executing the following SVN
command:

$ svn co http://svn.ruby-lang.org/repos/ruby/trunk ruby

The complete source code tree, just as the developers last left it, will
now be copied to a ruby subdirectory on your machine.

This command will check out the head of the development tree. If you
want the Ruby 1.8 branch, change trunk to branches/ruby_1_8 in the
checkout command.

For most folks, irb—Interactive Ruby—is the tool of choice for executing Ruby interac-
tively. irb is a Ruby shell, complete with command-line history, line-editing capabilities,
and job control. (In fact, it has its own chapter beginning on page 278.) You run irb from
the command line. Once it starts, just type in Ruby code. It will show you the value of each
expression as it evaluates it. Exit an irb session by typing exit or by using the end-of-file
character on your operating system (normally Ctrl+D or Ctrl+Z).

% irb

irb(main):001:0> def sum(nl, n2)
irb(main):002:1> nl1 + n2
irb(main):003:1> end

=> nil

irb(main):004:0> sum(3, 4)

=7

irb(main) :005:0> sum("cat", "dog")
=> "catdog"

irb(main):006:0> exit

We recommend that you get familiar with irb so you can try our examples interactively.

Ruby Programs

The normal way to write Ruby programs is to put them in one or more files. You’ll use a
text editor (Emacs, vim, TextMate, and so on) or an IDE (such as NetBeans) to create and
maintain these files. You’ll then run the files either from within the editor or IDE or from the

Report erratum

http://subversion.tigris.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=31

RuBY DOCUMENTATION: RDOC AND Rl

command line. I personally use both techniques, typically running from within the editor
for single-file programs and from the command line for more complex ones.

Let’s start by creating a simple Ruby program and running it. Open a command window,
and navigate to the pickaxe directory you created earlier:

$ cd ~/pickaxe (unix)
C:\> cd \pickaxe (windows)

Then, using your editor of choice, create the file myprog.rb, containing the following:
Download samples/gettingstarted_2.rb

puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

(Note that the second string contains the text Time.now between curly braces, not parenthe-
ses.)

You can run a Ruby program from a file as you would any other shell script, Perl program, or
Python program. Simply run the Ruby interpreter, giving it the script name as an argument:

$ ruby myprog.rb
Hello, Ruby Programmer
It is now 2009-04-13 13:25:51 -0500

On Unix systems, you can use the “shebang” notation as the first line of the program file:

Download samples/gettingstarted_4.rb

#!/usr/local/bin/ruby -w
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

If you make this source file executable (using, for instance, chmod +x myprog.rb), Unix lets
you run the file as a program:

$./myprog.rb
Hello, Ruby Programmer
It is now 2009-04-13 13:25:51 -0500

You can do something similar under Microsoft Windows using file associations, and you
can run Ruby GUI applications by double-clicking their names in Explorer.

Ruby Documentation: RDoc and ri

As the volume of the Ruby libraries has grown, it has become impossible to document them
all in one book; the standard library that comes with Ruby now contains more than 9,000

5. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using
#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/gettingstarted_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/gettingstarted_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=32

RuBY DOCUMENTATION: RDOC AND Rl

methods. Fortunately, an alternative to paper documentation exists for these methods (and
classes and modules). Many are now documented internally using a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and converted
into HTML and ri formats.

Several websites contain a complete set of the RDoc documentation for Ruby, but http: //www.ruby-doc.org
is probably the best known. Browse on over, and you should be able to find at least some

form of documentation for any Ruby library. The site is adding new documentation all the

time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby distri-
butions now also install the resources used by the ri program.

To find the documentation for a class, type ri ClassName. For example, the following lists
the summary information for the GC class. (For a list of classes with ri documentation, type

ri.)

—— Class: GC
The GC module provides an interface to Ruby's mark and sweep
garbage collection mechanism. Some of the underlying methods are
also available via the ObjectSpace module.

Class methods:
count, disable, enable, malloc_allocated_size, malloc_allocations,
start, stress, stress=

Instance methods:
garbage_collect

For information on a particular method, give its name as a parameter:

% ri GC::enable

Enables garbage collection, returning true if garbage
collection was previously disabled.

GC.disable #=> false
GC.enable #=> true
GC.enable #=> false

If the method you pass to ri occurs in more than one class or module, ri will list all of the
alternatives.

Report erratum

http://www.ruby-doc.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=33

RuUBY DOCUMENTATION: RDOC AND RI

Reissue the command, prefixing the method name with the name of the class and a dot:

$ ri assoc
More than one method matched your request. You can refine your
search by asking for information on one of:

Array#assoc [Ruby 1.9.1]
Array#rassoc [Ruby 1.9.1]
Hash#assoc [Ruby 1.9.1]

Hash#rassoc [Ruby 1.9.1]

$ ri Array.assoc

array.assoc(obj) -> an_array or nil

Searches through an array whose elements are also arrays
comparing obj with the first element of each contained array
using obj.==. Returns the first contained array that matches
(that is, the first associated array), or nil if no match is
found. See also Array#rassoc.

For general help on using ri, type ri --help. In particular, you might want to experiment with
the --format option, which tells ri how to render decorated text (such as section headings). If
your terminal program supports ANSI escape sequences, using --format ansi will generate a
nice, colorful display. Once you find a set of options you like, you can set them into the Rl
environment variable. Using my shell (zsh), this would be done using the following:

% export RI="--format ansi --width 70"

If a class or module isn’t yet documented in RDoc format, ask the friendly folks over at
suggestions@ruby-doc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you’re not a regular visitor to
the shell prompt. But, in reality, it isn’t that difficult, and the power you get from being able
to string together commands this way is often surprising. Stick with it, and you’ll be well
on your way to mastering both Ruby and your computer.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=34

Chapter 2

Ruby.new

Most books on programming languages look about the same. They start with chapters on
basic types: integers, strings, and so on. Then they look at expressions, before moving on
to if and while statements. Then, perhaps around Chapter 7 or 8, they’ll start mentioning
classes. We find that somewhat tedious.

Instead, when we designed this book, we had a grand plan (we were younger then). We
wanted to document the language from the top down, starting with classes and objects and
ending with the nitty-gritty syntax details. It seemed like a good idea at the time. After all,
most everything in Ruby is an object, so it made sense to talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write examples
of classes. Throughout our top-down description, we kept coming across low-level details
we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing). We’d
still describe Ruby starting at the top. But before we did that, we’d add a short chapter that
described all the common language features used in the examples along with the special
vocabulary used in Ruby, a kind of mini-tutorial to bootstrap us into the rest of the book.
And that mini-tutorial is this chapter.

Ruby Is an Object-Oriented Language

Let’s say it again. Ruby is a genuine object-oriented language. Everything you manipulate
is an object, and the results of those manipulations are themselves objects. However, many
languages make the same claim, and their users often have a different interpretation of what
object-oriented means and a different terminology for the concepts they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that
we’ll be using.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=35

RUBY IS AN OBJECT-ORIENTED LANGUAGE

When you write object-oriented programs, you’re normally looking to model concepts from
the real world. Typically during this modeling process you’ll discover categories of things
that need to be represented in code. In a jukebox, the concept of a “song” could be such
a category. In Ruby, you’d define a class to represent each of these entities. A class is a
combination of state (for example, the name of the song) and methods that use that state
(perhaps a method to play the song).

Once you have these classes, you’ll typically want to create a number of instances of each.
For the jukebox system containing a class called Song, you’d have separate instances for
popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String of Pearls,” “Small
Talk,” and so on. The word object is used interchangeably with class instance (and being
lazy typists, we’ll probably be using the word object more frequently).

In Ruby, these objects are created by calling a constructor, a special method associated with
a class. The standard constructor is called new.

Download samples/intro_1.rb

songl = Song.new("Ruby Tuesday")
song2 = Song.new("Enveloped in Python")
and so on

These instances are both derived from the same class, but they have unique characteristics.
First, every object has a unique object identifier (abbreviated as object ID). Second, you
can define instance variables, variables with values that are unique to each instance. These
instance variables hold an object’s state. Each of our songs, for example, will probably have
an instance variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of functionality
that may be called in the context of the class and (depending on accessibility constraints)
from outside the class. These instance methods in turn have access to the object’s instance
variables and hence to the object’s state. A Song class, for example, might define an instance
method called play. If the variable my_way referenced a particular Song instance, you’d be
able to call that instance’s play method and play a particular song.

Methods are invoked by sending a message to an object. The message contains the method’s
name, along with any parameters the method may need.! When an object receives a mes-
sage, it looks into its own class for a corresponding method. If found, that method is exe-
cuted. If the method isn’t found. .. well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is very
natural. Let’s look at some method calls. In this code, we’re using puts, a standard Ruby
method that writes its argument(s) to the console, adding a newline after each:

puts "gin joint".length
puts "Rick".index("c")
puts 42.even?

puts sam.play(song)

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=36

SOME BAsIc RuBY

produces:

9

2

true

duh dum, da dum de dum ...

Each line shows a method being called as an argument to puts. The thing before the period
is called the receiver, and the name after the period is the method to be invoked. The first
example asks a string for its length, and the second asks a different string to find the index
of the letter c. The third line asks the number 42 if it is even (the question mark is part of the
method name even?). Finally, we ask Sam to play us a song (assuming there’s an existing
variable called sam that references an appropriate object).

It’s worth noting here a major difference between Ruby and most other languages. In (say)
Java, you’d find the absolute value of some number by calling a separate function and pass-
ing in that number. You could write this:

num = Math.abs(num) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take care of
the details internally. You simply send the message abs to a number object and let it do the
work:

num -1234 # => -1234
positive = num.abs # => 1234

The same applies to all Ruby objects. In C you’d write strlen(name), but in Ruby it’s
name.length, and so on. This is part of what we mean when we say that Ruby is a gen-
uine object-oriented language.

Some Basic Ruby

Not many people like to read heaps of boring syntax rules when they’re picking up a new
language, so we’re going to cheat. In this section, we’ll hit some of the highlights—the
stuff you’ll just need to know if you’re going to write Ruby programs. Later, in Chapter 22,
which begins on page 325, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We’ll write a method that returns a cheery, person-
alized greeting. We’ll then invoke that method a couple of times:

Download samples/intro_5.rb

def say_goodnight(name)
result = "Good night,
return result

end

Time for bed...

puts say_goodnight ("John-Boy")

puts say_goodnight("Mary-Ellen")

+ name

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=37

SOME BAsIc RuBY

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends of
statements as long as you put each statement on a separate line. Ruby comments start with a
character and run to the end of the line. Code layout is pretty much up to you; indentation is
not significant (but using two-character indentation will make you friends in the community
if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this case,
say_goodnight) and the method’s parameters between parentheses. (In fact, the parentheses
are optional, but we like to use them.) Ruby doesn’t use braces to delimit the bodies of
compound statements and definitions. Instead, you simply finish the body with the keyword
end. Our method’s body is pretty simple. The first line concatenates the literal string "Good
night, " and the parameter name and assigns the result to the local variable result. The next
line returns that result to the caller. Note that we didn’t have to declare the variable result; it
sprang into existence when we assigned to it.

Having defined the method, we invoke it twice. In both cases, we pass the result to the
method puts, which simply outputs its argument followed by a newline (moving on to the
next line of output):

Good night, John-Boy
Good night, Mary-Ellen

The line
puts say_goodnight ("John-Boy")

contains two method calls, one to the method say_goodnight and the other to the method
puts. Why does one call have its arguments in parentheses while the other doesn’t? In this
case, it’s purely a matter of taste. The following lines are both equivalent:

puts say_goodnight ("John-Boy")

puts(say_goodnight ("John-Boy"))
However, life isn’t always that simple, and precedence rules can make it difficult to know
which argument goes with which method invocation, so we recommend using parentheses
in all but the simplest cases.

This example also shows some Ruby string objects. Ruby has many ways to create a string
object, but probably the most common is to use string literals, which are sequences of
characters between single or double quotation marks. The difference between the two forms
is the amount of processing Ruby does on the string while constructing the literal. In the
single-quoted case, Ruby does very little. With a few exceptions, what you type into the
string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions (sequences
that start with a backslash character) and replaces them with some binary value. The most
common of these is \n, which is replaced with a newline character. When a string containing
a newline is output, that newline becomes a line break:

puts "And good night,\nGrandma"
produces:

And good night,
Grandma

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=38

SOME BAsIc RuBY

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{expression} is replaced by the value of expression. We
could use this to rewrite our previous method:

Download samples/intro_10.rb

def say_goodnight(name)
result = "Good night, #{name}"
return result

end

puts say_goodnight('Pa')

produces:

Good night, Pa
‘When Ruby constructs this string object, it looks at the current value of name and substitutes
it into the string. Arbitrarily complex expressions are allowed in the #{. ..} construct. In the

following example, we invoke the capitalize method, defined for all strings, to output our
parameter with a leading uppercase letter:

Download samples/intro_11.rb

def say_goodnight(name)

result = "Good night, #{name.capitalize}"
return result
end

puts say_goodnight('uncle')
produces:
Good night, Uncle

For more information on strings, as well as on the other Ruby standard types, see Chapter
6, which begins on page 106.

Finally, we could simplify this method some more. The value returned by a Ruby method
is the value of the last expression evaluated, so we can get rid of the temporary variable and
the return statement altogether:

Download samples/intro_12.rb

def say_goodnight(name)

"Good night, #{name.capitalize}"
end
puts say_goodnight('ma')

produces:

Good night, Ma
We promised that this section would be brief. We have just one more topic to cover: Ruby
names. For brevity, we’ll be using some terms (such as class variable) that we aren’t going

to define here. However, by talking about the rules now, you’ll be ahead of the game when
we actually come to discuss class variables and the like later.

Ruby uses a convention that may seem strange at first: the first characters of a name indicate
how the name is used. Local variables, method parameters, and method names should all

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_10.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_11.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=39

ARRAYS AND HASHES

start with a lowercase letter or with an underscore. Global variables are prefixed with a
dollar sign ($), and instance variables begin with an “at” sign (@). Class variables start with
two “at” signs (@ @).2 Finally, class names, module names, and constants must start with
an uppercase letter. Samples of different names are given in Table 2.1 on the next page.

Following this initial character, a name can be any combination of letters, digits, and under-
scores (with the proviso that the character following an @ sign may not be a digit). How-
ever, by convention, multiword instance variables are written with underscores between the
words, and multiword class names are written in MixedCase (with each word capitalized).
Method names may end with the characters ?, !, and =.

Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of objects, acces-
sible using a key. With arrays, the key is an integer, whereas hashes support any object as
a key. Both arrays and hashes grow as needed to hold new elements. It’s more efficient to
access array elements, but hashes provide more flexibility. Any particular array or hash can
hold objects of differing types; you can have an array containing an integer, a string, and a
floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements by
supplying an index between square brackets, as the next example shows. Note that Ruby
array indices start at zero.

Download samples/intro_13.rb

a=1[1, 'cat', 3.14] # array with three elements
puts "The first element is #{a[O0]}"

set the third element

a[2] = nil

puts "The array is now #{a.inspect}"

produces:

The first element is 1

The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many languages,
the concept of nil (or null) means “no object.” In Ruby, that’s not the case; nil is an object,
just like any other, that happens to represent nothing. Anyway, let’s get back to arrays and
hashes.

2. Although we talk about global and class variables here for completeness, you’ll find they are rarely used in
Ruby programs. There’s a lot of evidence that global variables make programs harder to maintain. Class variables
are not as dangerous—it’s just that people tend not to use them much.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=40

ARRAYS AND HASHES

Table 2.1. Example Variable and Class Names

Variables Constants and
Local Global Instance Class Class Names
name $debug @name @@total PI
fish_and_chips $CUSTOMER @point_1 @@symtab FeetPerMile
X_axis $ @X @®@N String
thx1138 $plan9 @_ @@x_pos MyClass
26 $Global @plan9 @@SINGLE JazzSong

Sometimes creating arrays of words can be a pain, what with all the quotes and commas.
Fortunately, Ruby has a shortcut: %w does just what we want:

Download samples/intro_14.rb

a=1["ant', 'bee', 'cat', 'dog', 'elk']
a[0] # => "ant"

a[3] # => "dog"

this is the same:

a = %w{ ant bee cat dog elk }

a[0] # => "ant"

a[3] # => "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.
The literal must supply two objects for every entry: one for the key, the other for the value.
The key and value are normally separated by =>.

For example, you may want to map musical instruments to their orchestral sections. You
could do this with a hash:

inst_section = {

'cello’ => 'string',
'clarinet' => 'woodwind',
"drum' => 'percussion',
'oboe' => 'woodwind',
"trumpet' => 'brass',
'violin' => 'string'

3

The thing to the left of the => is the key, and the thing to the right is the corresponding value.
Keys in a particular hash must be unique—you can’t have two entries for “drum.” The keys
and values in a hash can be arbitrary objects—you can have hashes where the values are
arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays. In this code, we’ll use
the p method to write the values to the console. This works like puts but displays values
such as nil explicitly.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=41

SYMBOLS

p inst_section['oboe']
p inst_section['cello']
p inst_section['bassoon’]

produces:

"woodwind"

"string"

nil
As the previous example shows, a hash by default returns nil when indexed by a key it
doesn’t contain. Normally this is convenient, because nil means false when used in condi-
tional expressions. Sometimes you’ll want to change this default. For example, if you’re
using a hash to count the number of times each different word occurs in a file, it’s conve-
nient to have the default value be zero. Then you can use the word as the key and simply
increment the corresponding hash value without worrying about whether you’ve seen that
word before. This is easily done by specifying a default value when you create a new, empty
hash. (The full source for the word frequency counter is on page 72.)

Download samples/intro_17.rb

histogram = Hash.new(0) # The default value is zero
histogram['ruby'] # => 0

histogram['ruby'] = histogram['ruby'] + 1
histogram['ruby'] # => 1

Array and hash objects have lots of useful methods; see the discussion starting on page 67,
and the reference sections starting on pages 447 and 533, for details.

Symbols

Often, when programming, you need to create a name for something significant. For exam-
ple, you might want to refer to the compass points by name, so you’d write this:

NORTH = 1
EAST =2
3
4

SOUTH
WEST =

Then, in the rest of your code, you could use the constants instead of the numbers:

walk (NORTH)
1ook (EAST)

Most of the time, the actual numeric values of these constants are irrelevant (as long as they
are unique). All you want to do is differentiate the four directions.

Ruby offers a cleaner alternative. Symbols are simply constant names that you don’t have to
predeclare and that are guaranteed to be unique. A symbol literal starts with a colon and is
normally followed by some kind of name:

walk(:north)
look(:east)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=42

CONTROL STRUCTURES

There’s no need to assign some kind of value to a symbol—Ruby takes care of that for you.
Ruby also guarantees that no matter where it appears in your program, a particular symbol
will have the same value. That is, you can write the following:

def walk(direction)
if direction == :north
...
end
end

Symbols are frequently used as keys in hashes. We could write our previous example as

this:

inst_section = {
:cello => 'string',
:clarinet => 'woodwind',
:drum => 'percussion',
:oboe => 'woodwind',
:trumpet => 'brass',
:violin => 'string'

}

inst_section[:oboe] # => "woodwind"

inst_section[:cello] # => "string"
Note that strings aren't the same as symbols...
inst_section['cello'] # => nil

In fact, symbols are so frequently used as hash keys that Ruby 1.9 introduces a new syntax—
19 , you can use name: value pairs to create a hash if the keys are symbols:

inst_section = {

cello: 'string',
clarinet: 'woodwind',
drum: 'percussion’,
oboe: 'woodwind',
trumpet: ‘'brass',
violin: 'string’

3

puts "An oboe is a #{inst_section[:oboe]}"

produces:

An oboe is a woodwind

Control Structures

Ruby has all the usual control structures, such as if statements and while loops. Java, C, and
Perl programmers may well get caught by the lack of braces around the bodies of these
statements. Instead, Ruby uses the keyword end to signify the end of a body:

if count > 10
puts "Try again"

elsif tries ==
puts "You lose"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=43

CONTROL STRUCTURES

else
puts "Enter a number"
end

Similarly, while statements are terminated with end:

while weight < 100 and num_pallets <= 30
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions. For
example, the method gets returns the next line from the standard input stream or nil when
end of file is reached. Because Ruby treats nil as a false value in conditions, you could write
the following to process the lines in a file:

while line = gets
puts line.downcase
end

Here, the assignment statement sets the variable line to either the next line of text or nil, and
then the while statement tests the value of the assignment, terminating the loop when it is
nil.

Ruby statement modifiers are a useful shortcut if the body of an if or while statement is just
a single expression. Simply write the expression, followed by if or while and the condition.
For example, here’s a simple if statement:

if radiation > 3000
puts "Danger, Will Robinson"
end

Here it is again, rewritten using a statement modifier:
puts "Danger, Will Robinson" if radiation > 3000
Similarly, a while loop such as this:

square = 2

while square < 1000
square = squarexsquare

end

becomes this more concise version:

square 2
square = squarexsquare while square < 1000

These statement modifiers should seem familiar to Perl programmers.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=44

REGULAR EXPRESSIONS

Regular Expressions

Most of Ruby’s built-in types will be familiar to all programmers. A majority of languages
have strings, integers, floats, arrays, and so on. However, regular expression support is typ-
ically built into only scripting languages, such as Ruby, Perl, and awk. This is a shame,
because regular expressions, although cryptic, are a powerful tool for working with text.
And having them built in, rather than tacked on through a library interface, makes a big
difference.

Entire books have been written about regular expressions (for example, Mastering Regular
Expressions [Fri02]), so we won’t try to cover everything in this short section. Instead,
we’ll look at just a few examples of regular expressions in action. You’ll find full coverage
of regular expressions starting on page 117.

A regular expression is simply a way of specifying a pattern of characters to be matched
in a string. In Ruby, you typically create a regular expression by writing a pattern between
slash characters (/pattern/). And, Ruby being Ruby, regular expressions are objects and can
be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or the
text Python using the following regular expression:

/Perl|Python/

The forward slashes delimit the pattern, which consists of the two things we’re matching,
separated by a pipe character (|). This pipe character means “either the thing on the right
or the thing on the left,” in this case either Perl or Python. You can use parentheses within
patterns, just as you can in arithmetic expressions, so you could also have written this pattern
like this:

/P(erl|ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an a
followed by one or more b’s, followed by a c. Change the plus to an asterisk, and /ab*c/
creates a regular expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common examples
are character classes such as \s, which matches a whitespace character (space, tab, newline,
and so on); \d, which matches any digit; and \w, which matches any character that may
appear in a typical word. A dot (.) matches (almost) any character. A table of these character
classes appears on page 125.

We can put all this together to produce some useful regular expressions:

/\d\d:\d\d:\d\d/ # a time such as 12:34:56

/Perl.«Python/ # Perl, zero or more other chars, then Python
/Perl Python/ # Perl, a space, and Python

/Perl =Python/ # Perl, zero or more spaces, and Python
/Perl +Python/ # Perl, one or more spaces, and Python
/Perl\s+Python/ # Perl, whitespace characters, then Python

/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=45

BLOCKS AND ITERATORS

Once you have created a pattern, it seems a shame not to use it. The match operator =~ can
be used to match a string against a regular expression. If the pattern is found in the string,
=~ returns its starting position; otherwise, it returns nil. This means you can use regular
expressions as the condition in if and while statements. For example, the following code
fragment writes a message if a string contains the text Perl or Python:

if line =~ /Perl|Python/
puts "Scripting language mentioned: #{line}"
end

The part of a string matched by a regular expression can be replaced with different text
using one of Ruby’s substitution methods:

line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby’
line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby’

You can replace every occurrence of Perl and Python with Ruby using this:
line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Blocks and Iterators

This section briefly describes one of Ruby’s particular strengths. We’re about to look at
code blocks, which are chunks of code you can associate with method invocations, almost
as if they were parameters. This is an incredibly powerful feature. One of our reviewers
commented at this point: “This is pretty interesting and important, so if you weren’t paying
attention before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anonymous
inner classes), to pass around chunks of code (but they’re more flexible than C’s function
pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do. ..end. This is a code
block:

{ puts "Hello" }
So is this:

do
club.enroll(person)
person.socialize
end

Why are there two kinds of delimiter? It’s partly because sometimes one feels more natural
to write than another. It’s partly too because they have different precedences: the braces
bind more tightly than the do/end pairs. In this book, we try to follow what is becoming a
Ruby standard and use braces for single-line blocks and do/end for multiline blocks.

All you can do with a block is associate it with a call to a method. You do this by putting
the start of the block at the end of the source line containing the method call.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=46

BLOCKS AND ITERATORS

For example, in the following code, the block containing puts "Hi" is associated with the call
to the method greet (which we don’t show):

greet { puts "Hi" }
If the method has parameters, they appear before the block:
verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield
statement. You can think of yield as being something like a method call that invokes the
block associated with the call to the method containing the yield.

The following example shows this in action. We define a method that calls yield twice. We
then call this method, putting a block on the same line, after the call (and after any arguments
to the method).

Download samples/intro_41.rb

def call_block
puts "Start of method"
yield
yield
puts "End of method"
end

call_block { puts "In the block" }
produces:

Start of method
In the block
In the block
End of method

The code in the block (puts "In the block") is executed twice, once for each call to yield.

You can provide arguments to the call to yield, and they will be passed to the block. Within
the block, you list the names of the parameters to receive these arguments between vertical
bars (| params... |). The following example shows a method calling its associated block
twice, passing the block two arguments each time:

Download samples/intro_42.rb

def who_says_what
yield("Dave", "hello")
yield("Andy", "goodbye")
end
who_says_what {|person, phrase| puts "#{person} says #{phrase}"}

produces:

Dave says hello
Andy says goodbye

3. Some people like to think of the association of a block with a method as a kind of argument passing. This
works on one level, but it isn’t really the whole story. You may be better off thinking of the block and the method as
coroutines, which transfer control back and forth between themselves.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_41.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_42.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=47

READING AND 'RITING

Code blocks are used throughout the Ruby library to implement iterators, which are meth-
ods that return successive elements from some kind of collection, such as an array:

animals = %w(ant bee cat dog elk) # create an array
animals.each {|animal| puts animal } # iterate over the contents

produces:

ant
bee
cat
dog
elk

Many of the looping constructs that are built into languages such as C and Java are simply
method calls in Ruby, with the methods invoking the associated block zero or more times:

Download samples/intro_44.rb

['cat', 'dog', 'horse'].each {|name| print name, " " }
5.times { print "=" }
3.upto(6) {|i| print i }
('a'..'e").each {|char| print char }
produces:

cat dog horse **%xx3456abcde

Here we ask an array to call the block once for each of its elements. Then, object 5 calls a
block five times. Rather than use for loops, in Ruby we can ask the number 3 to call a block,
passing in successive values until it reaches 6. Finally, the range of characters from a to e
invokes a block using the method each.

Reading and ’Riting

Ruby comes with a comprehensive I/O library. However, in most of the examples in this
book, we’ll stick to a few simple methods. We’ve already come across two methods that do
output: puts writes its arguments with a newline after each; print also writes its arguments
but with no newline. Both can be used to write to any I/O object, but by default they write
to standard output.

Another output method we use a lot is printf, which prints its arguments under the control
of a format string (just like printf in C or Perl):

printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")
produces:

Number: 1.23,

String: hello

In this example, the format string "Number: %5.2f,\nString: %s\n" tells printf to substitute in
a floating-point number (with a minimum of five characters, two after the decimal point)
and a string. Notice the newlines (\n) embedded in the string; each moves the output onto
the next line.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_44.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=48

COMMAND-LINE ARGUMENTS

You have many ways to read input into your program. Probably the most traditional is to
use the routine gets, which returns the next line from your program’s standard input stream:

line = gets
print line

Because gets returns nil when it reaches the end of input, you can use its return value in
a loop condition. Notice that here the condition to the while is an assignment: we store
whatever gets returns into the variable line and then test to see whether that returned value
was nil or false before continuing:

while line = gets
print line
end

Command-Line Arguments

When you run a Ruby program from the command line, you can pass in arguments. These
are accessible in two different ways.

First, the array ARGV contains each of the arguments passed to the running program. Create
a file called cmd_line.rb that contains the following:

puts "You gave #{ARGV.size} arguments"
p ARGV

When we run it with arguments, we can see that they get passed in:

$ ruby cmd_line.rb ant bee cat dog

produces:

You gave 4 arguments
["ant", "bee", "cat", "dog"]

Often, the arguments to a program are the names of files that you want to process. In this
case, you can use a second technique: the variable ARGF is a special kind of I/O object that
acts like all the contents of all the files whose names are passed on the command line (or
standard input if you don’t pass any filenames). We’ll look at that some more on page 342.

Onward and Upward

That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby. We
took a look at objects, methods, strings, containers, and regular expressions; saw some sim-
ple control structures; and looked at some rather nifty iterators. We hope this chapter has
given you enough ammunition to be able to attack the rest of this book.

Time to move on and move up—up to a higher level. Next, we’ll be looking at classes and
objects, things that are at the same time both the highest-level constructs in Ruby and the
essential underpinnings of the entire language.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=49

Chapter 3

Classes, Objects,
and Variables

From the examples we’ve shown so far, you may be wondering about our earlier assertion
that Ruby is an object-oriented language. Well, this chapter is where we justify that claim.
We’re going to be looking at how you create classes and objects in Ruby and at some of the
ways in which Ruby is more powerful than most object-oriented languages.

As we saw back on page 35, everything we manipulate in Ruby is an object. And every
object in Ruby was generated either directly or indirectly from a class. In this chapter, we’ll
look in more depth at creating and manipulating those classes.

Let’s give ourselves a simple problem to solve. Let’s say that we’re running a secondhand
bookstore. Every week, we do stock control. A gang of clerks uses portable bar-code scan-
ners to record every book on our shelves. Each scanner generates a simple comma-separated
value (CSV) file containing one row for each book scanned. The row contains (among other
things) the book’s ISBN and price. An extract from one of these files looks something like
this:

"Date","ISBN", "Amount"

"2008-04-12","978-1-9343561-0-4",39.45
"2008-04-13","978-1-9343561-6-6",45.67
"2008-04-14","978-1-9343560-7-4",36.95

Our job is to take all the CSV files and work out how many of each title we have, as well as
the total list price of the books in stock.

Whenever you’re designing OO systems, a good first step is to identify the things you're
dealing with. Typically each type of thing becomes a class in your final program, and the
things themselves are instances of these classes.

It seems pretty clear that we’ll need something to represent each data reading captured by
the scanners. Each instance of this will represent a particular row of data, and the collection
of all of these objects will represent all the data we’ve captured.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=50

Let’s call this class BookInStock. (Remember, class names start with an uppercase letter,
and method names normally start with a lowercase letter.)

class BookInStock
end

As we saw in the previous chapter, we can create new instances of this class using new:

a_book = BookInStock.new
another_book = BookInStock.new

After this code runs, we’d have two distinct objects, both of class BookInStock. But, apart
from the fact that they have different identities, these two objects are otherwise the same—
there’s nothing to distinguish one from the other. And, what’s worse, these objects actually
don’t hold any of the information we need them to hold.

The best way to fix this is to provide the objects with an initialize method. This lets us set the
state of each object as it is constructed. We store this state in instance variables inside the
object. (Remember instance variables? They’re the ones that start with an @ sign.) Because
each object in Ruby has its own distinct set of instance variables, each object can have its
own unique state.

So, here’s our updated class definition:

Download samples/tutclasses_4.rb

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
end

initialize is a special method in Ruby programs. When you call BookInStock.new to create a
new object, Ruby allocates some memory to hold an uninitialized object and then calls that
object’s initialize method, passing in any parameters that were passed to new. This gives you
a chance to write code that sets up your object’s state.

For class BookInStock, the initialize method takes two parameters. These parameters act just
like local variables within the method, so they follow the local variable naming convention
of starting with a lowercase letter. But, as local variables, they would just evaporate once
the initialize method returns, so we need to transfer them into instance variables. This is very
common behavior in an initialize method—the intent is to have our object set up and usable
by the time initialize returns.

This method also illustrates something that often trips up newcomers to Ruby. Notice how
we say @isbn = isbn. It’s easy to imagine that the two variables here, @isbn and isbn, are
somehow related—it looks like they have the same name. But they don’t. The former is an
instance variable, and the “at” sign is actually part of its name.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=51

Finally, this code illustrates a simple piece of validation. The Float method takes its argu-
ment and converts it to a floating-point number,! terminating the program with an error
if that conversion fails. (Later in the book we’ll see how to handle these exceptional sit-
uations.) What we’re doing here is saying that we want to accept any object for the price
parameter as long as that parameter can be converted to a float. We can pass in a float, an
integer, and even a string containing the representation of a float, and it will work. Let’s try
this now. We’ll create three objects, each with different initial state. The p method prints out
an internal representation of an object. Using it, we can see that in each case our parameters
got transferred into the object’s state, ending up as instance variables:

Download samples/tutclasses_5.rb

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
end
bl = BookInStock.new("isbnl", 3)
p bl
b2 = BookInStock.new("isbn2", 3.14)
p b2
b3 = BookInStock.new("isbn3", "5.67")
p b3
produces:

#<BookInStock:0x0a37f0 @isbn="isbnl", @price=3.0>
#<BookInStock:0x0a3584 @isbn="isbn2", @price=3.14>
#<BookInStock:0x0a3354 @isbn="isbn3", @price=5.67>

Why did we use p to write out our objects, rather than puts? Well, let’s repeat the code using
puts:

Download samples/tutclasses_6.rb

bl = BookInStock.new("isbnl", 3)
puts bl

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", 5.67)
puts b3

produces:

#<BookInStock:0x0a38cc>
#<BookInStock:0x0a3764>
#<BookInStock:0x0a36d8>

1. Yes, we know. We shouldn’t be holding prices in inexact old floats. Ruby has classes that hold fixed-point
values exactly, but we want to look at classes, not arithmetic, in this section.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=52

OBJECTS AND ATTRIBUTES

Remember, puts simply writes strings to your program’s standard output. When you pass it
an object based on a class you wrote, it doesn’t really know what to do with it, so it uses a
very simple expedient: it writes the name of the object’s class, followed by a colon and the
object’s unique identifier (a hexadecimal number). It puts the whole lot inside #<...>.

Our experience tells us that during development we’ll be printing out the contents of a
BookInStock object many times, and the default formatting leaves something to be desired.
Fortunately, Ruby has a standard message, to_s, that it sends to any object it wants to render
as a string. So, when we pass one of our BookInStock objects to puts, the puts method calls
to_s in that object to get its string representation. So, let’s override the default implementa-
tion of to_s to give us a better rendering of our objects:

Download samples/tutclasses_7.rb

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
def to_s
"ISBN: #{@isbn}, price: #{@price}"
end
end
bl = BookInStock.new("isbnl", 3)
puts bl
b2 = BookInStock.new("isbn2", 3.14)
puts b2
b3 = BookInStock.new("isbn3", "5.67")
puts b3
produces:

ISBN: isbnl, price: 3.0
ISBN: isbn2, price: 3.14
ISBN: isbn3, price: 5.67

There’s something going on here that’s both trivial and profound. See how the values we
set into the instance variables @isbn and @price in the initialize method are subsequently
available in the to_s method? That shows how instance variables work—they’re stored with
each object and available to all the instance methods of those objects.

Objects and Attributes

The BookInStock objects we’ve created so far have an internal state (the ISBN and price).
That state is private to those objects—no other object can access an object’s instance vari-
ables. In general, this is a Good Thing. It means that the object is solely responsible for
maintaining its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then you
can’t do anything with it. You’ll normally define methods that let you access and manipulate
the state of an object, allowing the outside world to interact with the object. These externally
visible facets of an object are called its attributes.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_7.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=53

OBJECTS AND ATTRIBUTES

For our BookInStock objects, the first thing we may need is the ability to find out the ISBN
and price (so we can count each distinct book and perform price calculations). One way of
doing that is to write accessor methods:

Download samples/tutclasses_8.rb

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)
end
def isbn
@isbn
end
def price
@price
end
..
end
book = BookInStock.new("isbnl", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:

ISBN = isbnl
Price 12.34

Here we’ve defined two accessor methods to return the values of the two instance variables.
The method isbn, for example, returns the value of the instance variable @isbn (because the
last thing executed in the method is the expression that simply evaluates the @isbn variable).

Because writing accessor methods is such a common idiom, Ruby provides a convenient
shortcut. attr_reader creates these attribute reader methods for you:

Download samples/tutclasses_9.rb

class BookInStock
attr_reader :isbn, :price
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
..
end
book = BookInStock.new("isbnl", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
produces:
ISBN = isbnl
Price = 12.34

This is the first time we’ve used symbols in this chapter. As we discussed back on page 42,
symbols are just a convenient way of referencing a name. In this code, you can think of

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_8.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=54

OBJECTS AND ATTRIBUTES

sisbn as meaning the name isbn and plain isbn as meaning the value of the variable. In
this example, we named the accessor methods isbn and price. The corresponding instance
variables are @isbn and @price. These accessor methods are identical to the ones we wrote
by hand earlier.

There’s a common misconception, particularly among people who come from languages
such as Java and C#, that the attr_reader declaration somehow declares instance variables.
It doesn’t. It creates the accessor methods, but the variables themselves don’t need to be
declared—they just pop into existence when you use them. Ruby completely decouples
instance variables and accessor methods, as we’ll see in the section Virtual Attributes on the
next page.

Writable Attributes

Sometimes you need to be able to set an attribute from outside the object. For example, let’s
assume that we sometimes have to discount the price of some titles after reading in the raw
scan data.

In languages such as C# and Java, you’d do this with setter functions:

class JavaBookInStock { // Java code
private double _price;
public double getPrice() {
return _price;

}
public void setPrice(double newPrice) {
_price = newPrice;

}

}
b = new JavaBookInStock(....);
b.setPrice(calculate_discount(b.getPrice());

In Ruby, the attributes of an object can be accessed as if they were any other variable. We
saw this earlier with phrases such as book.isbn. So, it seems natural to be able to assign to
these variables when you want to set the value of an attribute. It turns out you do that by
creating a Ruby method whose name ends with an equals sign. These methods can be used
as the target of assignments:

Download samples/tutclasses_11.rb

class BookInStock
attr_reader :isbn, :price
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price=(new_price)
@price = new_price
end
...
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=55

OBJECTS AND ATTRIBUTES

book = BookInStock.new("isbnl", 33.80)

puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

produces:
ISBN = isbnl
Price = 33.8

New price = 25.35

The assignment book.price = book.price * 0.75 invokes the method price= in the book object,
passing it the discounted price as an argument. If you create a method whose name ends with
an equals sign, that name can appear on the left side of an assignment.

Again, Ruby provides a shortcut for creating these simple attribute-setting methods. If you
want a write-only accessor, you can use the form attr_writer, but that’s fairly rare. You’re
far more likely to want both a reader and a writer for a given attribute, so you’ll use the
handy-dandy attr_accessor method:

Download samples/tutclasses_12.rb

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
...
end
book = BookInStock.new("isbnl", 33.80)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

produces:
ISBN = isbnl
Price = 33.8

New price = 25.35

Virtual Attributes

These attribute-accessing methods do not have to be just simple wrappers around an object’s
instance variables. For example, you may want to access the price as an exact number of
cents, rather than as a floating-point number of dollars.”

2. We multiply the floating-point price times 100 to get the price in cents but then add 0.5 before converting
to an integer. Why? Because floating-point numbers don’t always have an exact internal representation. When we

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=56

OBJECTS AND ATTRIBUTES

Download samples/tutclasses_13.rb

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price_in_cents
Integer(price=100 + 0.5)

end

...
end
book = BookInStock.new("isbnl", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"

produces:

33.8
3380

Price
Price in cents

We can take this even further and allow people to assign to our virtual attribute, mapping
the value to the instance variable internally:

Download samples/tutclasses_14.rb

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price_in_cents
Integer(price=100 + 0.5)

end

def price_in_cents=(cents)
@price = cents / 100.0

end

...
end
book = BookInStock.new("isbnl", 33.80)
puts "Price = #{book.price}"

puts "Price in cents = #{book.price_in_cents}"
book.price_in_cents = 1234

multiply 33.8 times 100, we get 3379.99999999999954525265. The Integer method would truncate this to 3379.
Adding 0.5 before calling Integer rounds up the floating-point value, ensuring we get the best integer representation.
This is a good example of why you want to use BigDecimal, not Float, in financial calculations.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_13.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=57

CLASSES WORKING WITH OTHER CLASSES

puts "Price
puts "Price in cents

#{book.price}"
#{book.price_in_cents}"

produces:
Price = 33.8
Price in cents = 3380
Price = 12.34

Price in cents = 1234

Here we’ve used attribute methods to create a virtual instance variable. To the outside world,
price_in_cents seems to be an attribute like any other. Internally, though, it has no corre-
sponding instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Construc-
tion [Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding the dif-
ference between instance variables and calculated values, you are shielding the rest of the
world from the implementation of your class. You’re free to change how things work in the
future without impacting the millions of lines of code that use your class. This is a big win.

Attributes, Instance Variables, and Methods

This description of attributes may leave you thinking that they’re nothing more than methods
—why’d we need to invent a fancy name for them? In a way, that’s absolutely right. An
attribute is just a method. Sometimes an attribute simply returns the value of an instance
variable. Sometimes an attribute returns the result of a calculation. And sometimes those
funky methods with equals signs at the end of their names are used to update the state of
an object. So, the question is, where do attributes stop and regular methods begin? What
makes something an attribute and not just a plain old method? Ultimately, that’s one of
those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how that
state is to appear on the outside (to users of your class). The internal state is held in instance
variables. The external state is exposed through methods we’re calling attributes. And the
other actions your class can perform are just regular methods. It really isn’t a crucially
important distinction, but by calling the external state of an object its attributes, you're
helping clue people in to how they should view the class you’ve written.

Classes Working with Other Classes

Our original challenge was to read in data from multiple CSV files and produce various
simple reports. So far, all we have is BookInStock, a class that represents the data for one
book.

During OO design, you identify external things and make them classes in your code. But
there’s another source of classes in your designs. There are the classes that correspond to
things inside your code itself. For example, we know that the program we’re writing will
need to consolidate and summarize CSV data feeds. But that’s a very passive statement.
Let’s turn it into a design by asking ourselves what does the summarizing and consolidating.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=58

CLASSES WORKING WITH OTHER CLASSES

And the answer (in our case) is a CSV reader. Let’s make it into a class. Here it is in skeletal
form:

class CsvReader
def initialize
...
end

def read_in_csv_data(csv_file_name)
...

end

def total_value_in_stock
...

end

def number_of_each_isbn
...

end

end

We’d call it using something like this:

reader = CsvReader.new
reader.read_in_csv_data("filel.csv")
reader.read_in_csv_data("file2.csv")

puts "Total value in stock = #{reader.total_value_in_stock}"

We need to be able to handle multiple CSV files, so our reader object needs to accumulate
the values from each CSV file it is fed. We’ll do that by keeping an array of values in
an instance variable. And how shall we represent each book’s data? Well, we just finished
writing the BookInStock class, so that problem is solved. The only other question is how we
parse data in a CSV file. Fortunately, Ruby comes with a good CSV library (described on
page 739). Given a CSV file with a header line, we can iterate over the remaining rows and
extract values by name:

class CsvReader
def initialize
@books_in_stock = []
end
def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row]|
@books_in_stock << BookInStock.new(row["ISBN"], row["Amount"])
end
end
end

Just because you’re probably wondering what’s going on, let’s dissect that read_in_csv_data
method. On the first line, we tell the CSV library to open the file with the given name. The
headers: true option tells the library to parse the first line of the file as the names of the
columns.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=59

CLASSES WORKING WITH OTHER CLASSES

The library then reads the rest of the file, passing each row in turn to the block (the code
between do and end).3 Inside the block, we extract the data from the ISBN and Amount
columns and use that data to create a new BookInStock object. We then append that object
to an instance variable called @books_in_stock. And just where does that variable come
from? It’s an array that we created in the initialize method.

Again, this is the pattern you want to aim for. Your initialize method sets up an environment
for your object, leaving it in a usable state. Other methods then use that state.

So, let’s turn this from a code fragment into a working program. We’re going to organize
our source into three files. The first, book_in_stock.rb, will contain the definition of the class
BookInStock. The second, csv_reader.rb, is the source for the CsvReader class. Finally, a
third file, stock_stats.rb, is the main driver program.

Here’s book_in_stock.rb:

Download samples/book_in_stock.rb

class BookInStock
attr_reader :isbn, :price
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
end

Here’s the csv_reader.rb file. The CsvReader class has two external dependencies: it needs
the standard CSV library, and it needs the BookInStock class that’s defined in the file
book_in_stock.rb. Ruby has a couple of helper methods that let us load external files. In
this file we use require to load in the Ruby CSV library and require_relative to load in the
book_in_stock class we wrote. (We use require_relative for this because the location of the
file we’re loading is relative to the file we’re loading it from—they’re both in the same
directory.)

Download samples/csv_reader.rb

require 'csv'
require_relative 'book_in_stock'
class CsvReader
def initialize
@books_in_stock = []
end
def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_in_stock << BookInStock.new(row["ISBN"], row["Amount"])
end
end

3. If you encounter an error along the lines of ‘Float: can’t convert nil into Float (TypeError) when you run this
code, you’ve likely got extra spaces at the end of the header line in your CSV data file. The CSV library is pretty
strict about the formats it accepts.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/book_in_stock.rb
http://media.pragprog.com/titles/ruby3/code/samples/csv_reader.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=60

ACCESS CONTROL

later we'll see how to use inject to sum a collection
def total_value_in_stock

sum = 0.0

@books_in_stock.each {|book| sum += book.price}

sum
end

def number_of_each_isbn
...
end

end
And finally, here’s our main program, in the file stock_stats.rb:
Download samples/stock_stats.rb

require_relative 'csv_reader'
reader = CsvReader.new
ARGV.each do |csv_file_name]
STDERR.puts "Processing #{csv_file_name}"
reader.read_in_csv_data(csv_file_name)
end

puts "Total value = #{reader.total_value_in_stock}"

Again, this file uses require_relative to bring in the library it needs (in this case, just the
csv_reader.rb file). It uses the ARGV variable to access the program’s command-line argu-
ments, loading CSV data for each.

We can run this program using the simple CSV data file we showed on page 50:

$ ruby stock_stats.rb data.csv
produces:

Processing data.csv
Total value = 122.07

Do we need three source files for this? No. In fact, most Ruby developers would probably
start off by sticking all this code into a single file—it would contain both class definitions
as well as the driver code. But as your programs grow (and almost all programs grow over
time), you’ll find that this starts to get cuambersome. You’ll also find it harder to write auto-
mated tests against the code if it is in a monolithic chunk. Finally, you won’t be able to reuse
classes if they’re all bundled into the final program.

Anyway, let’s get back to our discussion of classes.

Access Control

When designing a class interface, it’s important to consider just how much of your class
you’ll be exposing to the outside world. Allow too much access into your class, and you
risk increasing the coupling in your application—users of your class will be tempted to rely
on details of your class’s implementation, rather than on its logical interface. The good news

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/stock_stats.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=61

ACCESS CONTROL

is that the only easy way to change an object’s state in Ruby is by calling one of its methods.
Control access to the methods, and you’ve controlled access to the object. A good rule of
thumb is never to expose methods that could leave an object in an invalid state.

Ruby gives you three levels of protection:

* Public methods can be called by anyone—no access control is enforced. Methods are
public by default (except for initialize, which is always private).

* Protected methods can be invoked only by objects of the defining class and its sub-
classes. Access is kept within the family.

* Private methods cannot be called with an explicit receiver—the receiver is always the
current object, also known as self. This means that private methods can be called only
in the context of the current object; you can’t invoke another object’s private methods.

The difference between “protected” and “private” is fairly subtle and is different in Ruby
than in most common OO languages. If a method is protected, it may be called by any
instance of the defining class or its subclasses. If a method is private, it may be called
only within the context of the calling object—it is never possible to access another object’s
private methods directly, even if the object is of the same class as the caller.

Ruby differs from other OO languages in another important way. Access control is deter-
mined dynamically, as the program runs, not statically. You will get an access violation only
when the code attempts to execute the restricted method.

Specifying Access Control

You specify access levels to methods within class or module definitions using one or more of
the three functions public, protected, and private. You can use each function in two different
ways.

If used with no arguments, the three functions set the default access control of subsequently
defined methods. This is probably familiar behavior if you’re a C++ or Java programmer,
where you’d use keywords such as public to achieve the same effect:

class MyClass
def methodl # default is 'public'

#...
end
protected # subsequent methods will be 'protected'
def method2 # will be 'protected'
#...
end
private # subsequent methods will be 'private'
def method3 # will be 'private'
#...
end
public # subsequent methods will be 'public'
def method4 # so this will be 'public'
#...
end

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=62

ACCESS CONTROL

Alternatively, you can set access levels of named methods by listing them as arguments to
the access control functions:

Download samples/tutclasses_23.rb

class MyClass
def methodl

end
... and so on
public :methodl, :method4

protected :method2
private :method3
end

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this rule,
we’ll make the methods that do the debits and credits private, and we’ll define our external
interface in terms of transactions.

Download samples/tutclasses_24.rb

class Account
attr_accessor :balance
def initialize(balance)
@balance = balance
end
end
class Transaction
def initialize(account_a, account_b)
@account_a = account_a
@account_b = account_b

end
private
def debit(account, amount)
account.balance -= amount
end

def credit(account, amount)
account.balance += amount
end
public
#...
def transfer(amount)
debit(@account_a, amount)
credit(@account_b, amount)
end
#...
end
savings = Account.new(100)
checking = Account.new(200)
trans = Transaction.new(checking, savings)
trans.transfer(50)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_23.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=63

VARIABLES

Protected access is used when objects need to access the internal state of other objects of
the same class. For example, we may want to allow individual Account objects to compare
their cleared balances but to hide those balances from the rest of the world (perhaps because
we present them in a different form):

Download samples/tutclasses_25.rb

class Account
attr_reader :cleared_balance # accessor method 'cleared_balance'
protected :cleared_balance # and make it protected

def greater_balance_than(other)
return @cleared_balance > other.cleared_balance
end
end

Because cleared_balance is protected, it’s available only within Account objects.

Variables

Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t
lose them. Variables are used to keep track of objects; each variable holds a reference to an
object.

Let’s confirm this with some code:

Download samples/tutclasses_26.rb

person = "Tim"

puts "The object in 'person' is a #{person.class}"
puts "The object has an id of #{person.object_id}"
puts "and a value of '#{person}'"

produces:

The object in 'person' is a String
The object has an id of 338010
and a value of 'Tim'

On the first line, Ruby creates a new String object with the value Tim. A reference to this
object is placed in the local variable person. A quick check shows that the variable has
indeed taken on the personality of a string, with an object ID, a class, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference to
an object. Objects float around in a big pool somewhere (the heap, most of the time) and are
pointed to by variables. Let’s make the example slightly more complicated:

Download samples/tutclasses_27.rb

personl = "Tim"

person2 = personl

personl[0] = 'J"'

puts "personl is #{personl}"
puts "person2 is #{person2}"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_25.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_26.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_27.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=64

VARIABLES

produces:

personl is Jim
person2 is Jim

What happened here? We changed the first character of personi, but both person1 and
person2 changed from Tim to Jim.

It all comes back to the fact that variables hold references to objects, not the objects them-
selves. The assignment of personi to person2 doesn’t create any new objects; it simply
copies personi’s object reference to person2 so that both person1 and person2 refer to the
same object. We show this in Figure 3.1 on the following page.

Assignment aliases objects, potentially giving you multiple variables that reference the
same object. But can’t this cause problems in your code? It can, but not as often as you’d
think (objects in Java, for example, work exactly the same way). For instance, in the exam-
ple in Figure 3.1, you could avoid aliasing by using the dup method of String, which creates
anew String object with identical contents:

Download samples/tutclasses_28.rb

personl = "Tim"

person2 = personl.dup
personl[0] = "J"

puts "personl is #{personl}"
puts "person2 is #{person2}"

produces:

personl is Jim
person2 is Tim

You can also prevent anyone from changing a particular object by freezing it. Attempt to
alter a frozen object, and Ruby will raise a RuntimeError exception:

Download samples/tutclasses_29.rb

personl = "Tim"
person2 = personl
personl.freeze # prevent modifications to the object
person2[0] = "J"
produces:

prog.rb:4:in "[]=': can't modify frozen string (RuntimeError)
from /tmp/prog.rb:4:in “<main>'

There’s more to say about classes and objects in Ruby. We still have to look at class methods
and at concepts such as mixins and inheritance. We’ll do that in Chapter 5 on page 91. But,
for now, take away the fact that everything you manipulate in Ruby is an object and the fact
that objects start life as instances of classes. And one of the most common things we do
with objects is create collections of them. But that’s the subject of our next chapter.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_28.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_29.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=65

-
Figure 3.1. Variables Hold Object References

personl = "Tim"

person2 = personl

personl[0] = "J"

personl

|-
personl

|-
person2
personl

|-
person2

Chapter 4

Containers, Blocks,
and Iterators

Most real programs deal with collections of data: the people in a course, the songs in your
playlist, the books in the store. Ruby comes with two built-in classes to handle these col-
lections: arrays and hashes.' Mastery of these two classes is key to being an effective Ruby
programmer. This mastery may take some time, because both classes have large interfaces.

But it isn’t just these classes that give Ruby its power when dealing with collections. Ruby
also has a block syntax that lets you encapsulate chunks of code. When paired with col-
lections, these blocks become powerful iterator constructs. In this chapter, we’ll look at the
two collection classes as well as blocks and iterators.

Arrays

The class Array holds a collection of object references. Each object reference occupies a
position in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A literal
array is simply a list of objects between square brackets. (In the code examples that follow,
we’re often going to show the value of expressions such as a[0] in a comment at the end of
the line. If you simply typed this fragment of code into a file and executed it using Ruby,
you’d see no output—you’d need to add something like a call to puts to have the values
written to the console.)

a = [3.14159, "pie", 99]
a.class # => Array

a.length # => 3
al0] # => 3.14159
a[1l] # => "pie"
a[2] # => 99
a[3] # => nil
1. Some languages call hashes associative arrays or dictionaries.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=67

b = Array.new

b.class # => Array

b.length # => 0

b[0] = "second"

b[1] = "array"

b # => ["second", "array"]

Arrays are indexed using the [] operator. As with most Ruby operators, this is actually a
method (an instance method of class Array) and hence can be overridden in subclasses. As
the example shows, array indices start at zero. Index an array with a non-negative integer,
and it returns the object at that position or returns nil if nothing is there. Index an array with
a negative integer, and it counts from the end. This indexing scheme is illustrated in more
detail in Figure 4.1 on the following page.

a=1[1, 3,5,7,9]1]
al[-1] #=> 9
al[-2] # = 7
a[-99] # => nil

You can also index arrays with a pair of numbers, [start, count]. This returns a new array
consisting of references to count objects starting at position start:

a=[1,3,5 7,91

al1, 31 #=> 1[3,5,7]
a[3, 11 # = [7]
a[-3, 2] # =[5, 7]

Finally, you can index arrays using ranges, in which start and end positions are separated by
two or three periods. The two-period form includes the end position, and the three-period
form does not:

a=1[1,3,5, 7,91
all..3] #=> [3, 5, 7]
all...3] #=> [3, 5]
al3..3] #=> [7]
a[-3..-1] # => [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the array. If
used with a single integer index, the element at that position is replaced by whatever is on
the right side of the assignment. Any gaps that result will be filled with nil:

a=1[1,3,5,7,9]1]
a[l] = ’bat’

a[-3] = ’'cat’

a[31 =109, 81

a[6] = 99

(1, 3, 5, 7, 9]

[1, "bat", 5, 7, 9]

[1, "bat", "cat", 7, 9]

[1, "bat", "cat", [9, 8], 9]

[1, "bat", "cat", [9, 8], 9, nil, 99]

Ll

If the index to []= is two numbers (a start and a length) or a range, then those elements
in the original array are replaced by whatever is on the right side of the assignment. If the
length is zero, the right side is inserted into the array before the start position; no elements
are removed. If the right side is itself an array, its elements are used in the replacement. The
array size is automatically adjusted if the index selects a different number of elements than
are available on the right side of the assignment.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=68

(.)
Figure 4.1. How Arrays Are Indexed
Positive — 0 1 2 3 4 5 6 Negative
indices -7 —6 -5 —4 -3 -2 —1 <« indices
a=[“ant’ | “bat’ | “cat’ [“dog” | *elk’ | “fiy’ | “gnu”
a[2] — “cat”
a3l -
a[1..3] — | “bat” | “cat’ | “dog” |
a[1..3] — | “bat” | “cat’
al-3..-1] — [el | “fy” | “gnu” |
al4.2] —
. J

a=[1,3,5, 7,91 — [1, 3,5, 7, 9]

a[2, 2] = ’cat’ — [1, 3, "cat", 9]

al[2, 0] = ’dog’ — [1, 3, "dog", "cat", 9]

a[1, 11 =019,8,7]1 — [1, 9, 8, 7, "dog", "cat", 9]
a[0..3] =[] — ["dog", "cat", 9]

a[5..6] = 99, 98 — ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using them, you can treat arrays as
stacks, sets, queues, dequeues, and FIFO queues.

For example, push and pop add and remove elements from the end of an array, so you can
use it as a stack:

stack = []
stack.push "red"
stack.push "green"
stack.push "blue"
p stack

puts stack.pop
puts stack.pop
puts stack.pop

p stack

produces:
["red", "green", "blue"]
blue
green
red

[1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=69

Similarly, unshift and shift add and remove elements from the head of an array. Combine
shift and push, and you have a first-in first-out (FIFO) queue:

queue = []
queue.push "red"
queue.push "green"
puts queue.shift
puts queue.shift

produces:

red
green

The first and last methods return the n entries at the head or end of an array without removing
them:

array = [1, 2, 3, 4, 5, 6, 7]
p array.first(4)
p array.last(4)

produces:
[17 27 37 4]
[4, 5, 6, 71

A complete list of array methods starts on page 447. It is well worth firing up irb and playing
with them.

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to arrays
in that they are indexed collections of object references. However, although you index arrays
with integers, you can index a hash with objects of any type: symbols, strings, regular
expressions, and so on. When you store a value in a hash, you actually supply two objects—
the index, which is normally called the key, and the entry to be stored with that key. You can
subsequently retrieve the entry by indexing the hash with the same key value that you used
to store it.

The example that follows uses hash literals: a list of key value pairs between braces:

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length # => 3
h['dog'] # => '"canine"

h['cow'] = 'bovine'

h[12] = 'dodecine'

h['cat'] = 99

h # => {"dog"=>"canine", "cat"=>99, "donkey"=>"asinine",

"cow"=>"bovine", 12=>"dodecine"}

In the previous example, the hash keys were strings. If instead we wanted them to be sym-
bols, we could write the hash literal using either the old syntax with => or the new key:
value syntax introduced in Ruby 1.9.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=70

h = { dog: 'canine', cat: 'feline', donkey: 'asinine' }
same as...
h = { :dog => 'canine', :cat => 'feline', :donkey => 'asinine' }

Compared with arrays, hashes have one significant advantage: they can use any object as an

=2 , index. And, as of Ruby 1.9, you’ll find something that might be surprising: Ruby remembers
the order in which you add items to a hash. When you subsequently iterate over the entries,
Ruby will return them in that order.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A full
list of the methods implemented by class Hash starts on page 533.

Word Frequency: Using Hashes and Arrays

Let’s round off this section with a simple program that calculates the number of times each
word occurs in some text. (So, for example, in this sentence the word the occurs two times.)

The problem breaks down into two parts. First, given some text as a string, return a list of
words. That sounds like an array. Then, build a count for each distinct word. That sounds
like a use for a hash—we can index it with the word and use the corresponding entry to keep
a count.

Let’s start with the method that splits a string into words:

def words_from_string(string)
string.downcase.scan(/[\w']+/)
end

This method uses two very useful String methods: downcase returns a lowercase version of
a string, and scan returns an array of substrings that match a given pattern. In this case, the
pattern is [\w’]+, which matches sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array:

p words_from_string("But I didn't inhale, he said (emphatically)")
produces:

["but", "i", "didn't", "inhale", "he", "said", "emphatically"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash object indexed
by the words in our list. Each entry in this hash stores the number of times that word
occurred. Let’s say we already have read part of the list, and we have seen the word the
already. Then we’d have a hash that contained this:

{ ..., "the" =>1, ...}

If the variable next_word contained the word the, then incrementing the count is as simple
as this:

counts[next_word] += 1
We’d then end up with a hash containing the following:
{ ..., "the" =>2, ...}

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=71

Our only problem is what to do when we encounter a word for the first time. We’ll try to
increment the entry for that word, but there won’t be one, so our program will fail. There are
a number of solutions to this. One is to check to see whether the entry exists before doing
the increment:

if counts.has_key?(next_word)
counts[next_word] += 1

else
counts[next_word] = 1

end

However, there’s a tidier way. If we create a hash object using Hash.new(0), the parameter
(0 in this case) will be used as the hash’s default value—it will be the value returned if
you look up a key that isn’t yet in the hash. Using that, we can write our count_frequency
method:

def count_frequency(word_list)
counts = Hash.new(0)
for word in word_list
counts[word] += 1
end
counts
end

p count_frequency(["sparky", "the", "cat", "sat", "on", "the", "mat"])

produces:

{"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

One little job left. The hash containing the word frequencies is ordered based on the first
time it sees each word. It would be better to display the results based on the frequencies
of the words. We can do that using the hash’s sort_by method. When you use sort_by, you
give it a block that tells the sort what to use when making comparisons. In our case, we’ll
just use the count. The result of the sort is an array containing a set of two-element arrays,
each subarray corresponding to a key/entry pair in the original hash. This makes our whole
program:

Download samples/tutcontainers_21.rb

def words_from_string(string)
string.downcase.scan(/[\w']+/)
end
def count_frequency(word_list)
counts = Hash.new(0)
for word in word_list
counts[word] += 1

end
counts
end
raw_text = File.read("para.txt")
word_list = words_from_string(raw_text)
counts = count_frequency(word_list)
sorted = counts.sort_by {|word, count| count}

top_five = sorted.last(5)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_21.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=72

for i in 0...5 # (this is ugly code
word = top_five[i][0] # which we'll fix shortly)
count = top_five[i][1]
puts "#{word}: #{count}"

end

produces:

that: 2
sounds: 2
like: 2
the: 3

a: 6

At this point, a quick test may be in order. To do this, we’re going to use a testing framework
called Test::Unit that comes with the standard Ruby distributions. We won’t describe it fully
yet (we do that in the Unit Testing chapter starting on page 198). For now, we’ll just say that
the method assert_equal checks that its two parameters are equal, complaining bitterly if
they aren’t. We’ll use assertions to test our two methods, one method at a time. (That’s one
reason why we wrote them as separate methods—it makes them testable in isolation.)

Here are some tests for the word_from_string method:
Download samples/tutcontainers_22.rb

require_relative 'words_from_string.rb'
require 'test/unit’
class TestWordsFromString < Test::Unit::TestCase
def test_empty_string
assert_equal([], words_from_string(""))
assert_equal([], words_from_string(" D)
end
def test_single_word
assert_equal(["cat"], words_from_string("cat"))
assert_equal(["cat"], words_from_string(" cat "))
end
def test_many_words
assert_equal(["the", "cat", "sat", "on", "the", "mat"],
words_from_string("the cat sat on the mat"))

end
def test_ignores_punctuation
assert_equal(["the", "cat's", "mat"],
words_from_string("<the!> cat's, -mat-"))
end
end
produces:

Loaded suite /tmp/prog
Started

Finished in 0.000578 seconds.

4 tests, 6 assertions, O failures, 0 errors, 0 skips

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_22.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=73

BLOCKS AND ITERATORS

The test starts by requiring the source file containing our words_from_string method, along
with the unit test framework itself. It then defines a test class. Within that class, any methods
whose names start test are automatically run by the testing framework. The results show that
four test methods ran, successfully executing six assertions:

Download samples/tutcontainers_23.rb

require_relative 'count_frequency.rb'
require 'test/unit’
class TestCountFrequency < Test::Unit::TestCase
def test_empty_list
assert_equal({}, count_frequency([]))
end
def test_single_word
assert_equal({"cat" => 1}, count_frequency(["cat"]))
end
def test_two_different_words
assert_equal({"cat" => 1, "sat" => 1},
count_frequency(["cat", "sat"]))
end
def test_two_words_with_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1},
count_frequency(["cat", "cat", "sat"]))
end
def test_two_words_with_non_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1},
count_frequency(["cat", "sat", "cat"]))
end
end

produces:

Loaded suite /tmp/prog
Started

Finished in 0.000534 seconds.

5 tests, 5 assertions, 0 failures, O errors, 0 skips

Blocks and Iterators

In our program that wrote out the results of our word frequency analysis, we had the fol-
lowing loop:
for i in 0...5
word = top_five[i][0]
count = top_five[i][1]

puts "#{word}: #{count}"
end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What could
be more natural?

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=74

BLOCKS AND ITERATORS

It turns out there is something more natural. In a way, our for loop is somewhat too intimate
with the array; it magically knows that we’re iterating over five elements, and it retrieves
values in turn from the array. To do this, it has to know that the structure it is working with
is an array of two-element subarrays. This is a whole lot of coupling.

Instead, we could write this code like this:

top_five.each do |word, count]|
puts "#{word}: #{count}"
end

The method each is an iferator—a method that invokes a block of code repeatedly. In fact,
some Ruby programmers might write this more compactly as this:

puts top_five.map { |word, count| "#{word}: #{count}" }

Just how far you take this is a matter of taste. But, however you use them, iterators and code
blocks are among the more interesting features of Ruby, so let’s spend a while looking into
them.

Blocks

A block is simply a chunk of code enclosed between either braces or the keywords do and
end. The two forms are identical except for precedence, which we’ll see in a minute. All
things being equal, the current Ruby style seems to favor using braces for blocks that fit on
one line and do/end when a block spans multiple lines:

some_array.each {|value| puts value * 3 }
sum = 0
other_array.each do |value]
sum += value
puts value / sum
end

You can think of a block as being somewhat like the body of an anonymous method. Just
like a method, the block can take parameters (but, unlike a method, those parameters appear
at the start of the block between vertical bars). Both the blocks in the preceding example
take a single parameter, value. And, just like a method, the body of a block is not executed
when Ruby first sees it. Instead, the block is saved away to be called later.

Blocks can appear in Ruby source code only immediately after the invocation of some
method. If the method takes parameters, the block appears after these. In a way, you can
almost think of the block as being one extra parameter, passed to that method. Let’s look at
a simple example that sums the squares of the numbers in an array:
sum = 0
[1, 2, 3, 4].each do |value]
square = value * value
sum += square
end
puts sum

produces:
30

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=75

BLOCKS AND ITERATORS

The block is being called by the each method once for each element in the array. The
element is passed to the block as the value parameter. But there’s something subtle going
on, too. Take a look at the sum variable. It’s declared outside the block, updated inside the
block, and then passed to puts after the each method returns.

This illustrates an important rule: if there’s a variable inside a block with the same name
as a variable in the same scope outside the block, the two are the same—there’s only one
variable sum in the preceding program. (You can override this behavior, as we’ll see later.)

If, however, a variable appears only inside a block, then that variable is local to the block—
in the preceding program, we couldn’t have written the value of square at the end of the
code, because square is not defined at that point. It is defined only inside the block itself.

Although simple, this behavior can lead to unexpected problems. For example, say our
program was dealing with drawing different shapes. We might have this:

square = Shape.new(sides: 4) # assume Shape defined elsewhere

#

.. lots of code
#

sum = 0

[1, 2, 3, 4].each do |value]|
square = value * value
sum += square

end

puts sum

square.draw # BOOM!

This code would fail, because the variable square, which originally held a Shape object,
will have been overwritten inside the block and will hold a number by the time the each
method returns. This problem doesn’t bite often, but when it does, it can be very confusing.

=2 , Fortunately, Ruby 1.9 has a couple of answers.

First, parameters to a block are now always local to a block, even if they have the same
name as locals in the surrounding scope. (You’ll get a warning message if you run Ruby
with the -w option.)

Download samples/tutcontainers_30.rb

value = "some shape"
[1, 2 J.each {|value| puts value }
puts value

produces:

1
2
some shape

Second, you can now define block local variables by putting them after a semicolon in the
block’s parameter list. So, in our sum-of-squares example, we should have indicated that
the square variable was block-local by writing it as follows:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_30.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=76

BLOCKS AND ITERATORS

Download samples/tutcontainers_31.rb

square = "some shape"

sum = 0

[1, 2, 3, 4].each do |value; square]|
square = value * value # this is a different variable
sum += square

end

puts sum

puts square
produces:

30
some shape

By making square block-local, values assigned inside the block will not affect the value of
the variable with the same name in the outer scope.

Implementing Iterators

A Ruby iterator is simply a method that can invoke a block of code.

We said that a block may appear only in the source adjacent to a method call and that the
code in the block is not executed at the time it is encountered. Instead, Ruby remembers the
context in which the block appears (the local variables, the current object, and so on) and
then enters the method. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using
the yield statement. Whenever a yield is executed, it invokes the code in the block. When
the block exits, control picks back up immediately after the yield.? Let’s start with a trivial
example:

Download samples/tutcontainers_32.rb

def three_times
yield
yield
yield
end
three_times { puts "Hello" }

produces:

Hello
Hello
Hello

2. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the yield
function in Liskov’s language CLU, a language that is more than thirty years old and yet contains features that still
haven’t been widely exploited by the CLU-less.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_31.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_32.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=77

BLOCKS AND ITERATORS

The block (the code between the braces) is associated with the call to the three times meth-
od. Within this method, yield is called three times in a row. Each time, it invokes the code
in the block, and a cheery greeting is printed. What makes blocks interesting, however, is
that you can pass parameters to them and receive values from them. For example, we could
write a simple function that returns members of the Fibonacci series up to a certain value:*

Download samples/tutcontainers_33.rb

def fib_up_to(max)

il, i2 =1, 1 # parallel assignment (il = 1 and i2 = 1)
while il <= max
yield il
il, i2 = i2, il+i2
end
end
fib_up_to(1000) {|f| print £, " " }
produces:

1123581321 34 55 89 144 233 377 610 987

In this example, the yield statement has a parameter. This value is passed to the associated
block. In the definition of the block, the argument list appears between vertical bars. In
this instance, the variable f receives the value passed to yield, so the block prints successive
members of the series. (This example also shows parallel assignment in action. We’ll come
back to this on page 151.) Although it is common to pass just one value to a block, this is
not a requirement; a block may have any number of arguments.

A block may also return a value to the method. The value of the last expression evaluated in
the block is passed back to the method as the value of the yield. This is how the find method
used by class Array works.* Its implementation would look something like the following:

class Array
def find
for i in 0...size
value = self[i]
return value if yield(value)
end
return nil
end
end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } # => 7

This passes successive elements of the array to the associated block. If the block returns true
(that is, a value other than nil or false), the method returns the corresponding element. If no

3. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent term is
the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in analyzing natural
phenomena.

4. The find method is actually defined in module Enumerable, which is mixed into class Array.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_33.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=78

BLOCKS AND ITERATORS

element matches, the method returns nil. The example shows the benefit of this approach to
iterators. The Array class does what it does best, accessing array elements, and leaves the
application code to concentrate on its particular requirement (in this case, finding an entry
that meets some criteria).

Some iterators are common to many types of Ruby collections. We’ve looked at find already.
Two others are each and collect. each is probably the simplest iterator—all it does is yield
successive elements of its collection:

[1, 3,5, 7, 9].each {|i] puts i }

produces:
1

3
5
7
9

The each iterator has a special place in Ruby; on page 162, we’ll describe how it’s used
as the basis of the language’s for loop, and starting on page 100, we’ll see how defining an
each method can add a whole lot more functionality to your class for free.

Another common iterator is collect (also known as map), which takes each element from the
collection and passes it to the block. The results returned by the block are used to construct
anew array. The following example uses the succ method, which increments a string value:

["H", "A", "L"].collect {|x| x.succ } # => ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in the
Fibonacci example, an iterator can return derived values. This capability is used by Ruby
input/output classes, which implement an iterator interface that returns successive lines (or
bytes) in an I/O stream:

f = File.open("testfile")
f.each do |line]|

puts "The line is: #{line}"
end
f.close

produces:

The line is: This is line one
The line is: This is line two
The line is: This is line three
The line is: And so on...

Sometimes you want to keep track of how many times you’ve been through the block. The
each_with_index is your friend. It calls its block with two parameters: the current element
of the iteration and the count (which starts at zero, just like array indices):

f = File.open("testfile")

f.each_with_index do |line, index|
puts "Line #{index} is: #{line}"

end

f.close

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=79

BLOCKS AND ITERATORS

produces:
Line 0 is: This is line one
Line 1 is: This is line two
Line 2 is: This is line three
Line 3 is: And so on...

Let’s look at just one more useful iterator. The (somewhat obscurely named) inject method
(defined in the module Enumerable) lets you accumulate a value across the members of a
collection. For example, you can sum all the elements in an array, and find their product,
using code such as this:

[1,3,5,7].inject(0) {|sum, element| sum+element} # => 16
[1,3,5,7].inject(1) {|product, element| product=element} # => 105

inject works like this: the first time the associated block is called, sum is set to inject’s
parameter, and element is set to the first element in the collection. The second and subse-
quent times the block is called, sum is set to the value returned by the block on the previous
call. The final value of inject is the value returned by the block the last time it was called.
One more thing: if inject is called with no parameter, it uses the first element of the collec-
tion as the initial value and starts the iteration with the second value. This means that we
could have written the previous examples like this:

[1,3,5,7].inject {|sum, element| sum+element} # => 16
[1,3,5,7].inject {|product, element| productrelement} # => 105

And, just to add to the mystique of inject, you can also give it the name of the method you

=2 , want to apply to successive elements of the collection. These examples work because, in
Ruby, addition and multiplication are simply methods on numbers, and :+ is the symbol
corresponding to the method +:

[1,3,5,7].inject(:+)

16
[1,3,5,7].inject(:%) #

105

>
>

Enumerators—EXxternal Iterators

It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of languages
such as C++ and Java. In the Ruby approach, the basic iterator is internal to the collection—
it’s simply a method, identical to any other, that happens to call yield whenever it generates
a new value. The thing that uses the iterator is just a block of code associated with a call to
this method.

In other languages, collections don’t contain their own iterators. Instead, they implement
methods that generate external helper objects (for example, those based on Java’s lterator
interface) that carry the iterator state. In this, as in many other ways, Ruby is a transparent
language. When you write a Ruby program, you concentrate on getting the job done, not on
building scaffolding to support the language itself.

It’s also worth spending another paragraph looking at why Ruby’s internal iterators aren’t
always the best solution. One area where they fall down badly is where you need to treat
an iterator as an object in its own right (for example, passing the iterator into a method that
needs to access each of the values returned by that iterator). It’s also difficult to iterate over
two collections in parallel using Ruby’s internal iterator scheme.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=80

BLOCKS AND ITERATORS

19 , Fortunately, Ruby 1.9 comes with a built-in Enumerator class, which implements external
iterators in Ruby for just such occasions.

One way to create an Enumerator object is to call the to_enum method (or its synonym,
enum_for) on a collection such as an array or a hash:

a=1[1, 3, "cat"]
h = { dog: "canine", fox: "lupine" }

Create Enumerators
enum_a = a.to_enum
enum_h = h.to_enum

enum_a.next # => 1
enum_h.next # => [:dog, "canine"]
enum_a.next # => 3

enum_h.next # => [:fox, "lupine"]

Most of the internal iterator methods—the ones that normally yield successive values to a
block—will also return an Enumerator object if called without a block:

a=1[1, 3, "cat"]
enum_a = a.each # create an Enumerator using an internal iterator

enum_a.next # => 1
enum_a.next # => 3

Ruby has a method called loop that does nothing but repeatedly invoke its block. Typically,
your code in the block will break out of the loop when some condition occurs. But loop
is also smart when you use an Enumerator—when an enumerator object runs out of values
inside a loop, the loop will terminate cleanly. The following example shows this in action—
the loop ends when the three-element enumerator runs out of values.’

short_enum = [1, 2, 3].to_enum
long_enum ('a'..'z").to_enum

loop do
puts "#{short_enum.next} - #{long_enum.next}"
end

produces:
1-a
2-D
3-c¢

5. You can also handle this in your own iterator methods by rescuing the Stoplteration exception, but because
we haven’t talked about exceptions yet, we won’t go into details here.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=81

BLOCKS AND ITERATORS

Enumerators Are Objects

Enumerators take something that’s normally executable code (the act of iterating) and turn
it into an object. This means that you can do things programatically with enumerators that
aren’t easily done with regular loops.

For example, the Enumerable module defines each_with_index. This invokes its host class’s
each method, returning successive values along with an index:

result = []
['a'", 'b', 'c¢'].each_with_index {|item, index| result << [item, index] }
result # => [["a", O], ["b", 11, ["c", 2]]

But what if you wanted to iterate and receive an index but use a different method than each
to control that iteration? For example, you might want to iterate over the characters in a
string. There’s no method called each_char_with_index built into the String class.

Enumerators to the rescue. You can use the fact that the each_char method of strings will
return an enumerator if you don’t give it a block, and you can then call each_with_index on
that enumerator:

result = []

"cat".each_char.each_with_index {|item, index| result << [item, index] }
result # => [["c", 0], ["a", 11, ["t", 2]]

In fact, this is such a common use of enumerators that Matz has given us with_index, which
makes the code read better:
result = []

"cat".each_char.with_index {|item, index| result << [item, index] }
result # => [["c", 0], ["a", 11, ["t", 2]]

You can also create the Enumerator object explicitly—in this case we’ll create one that will
call our string’s each_char method. We can call to_a on that enumerator to iterate over it
and get the result:

enum = "cat".enum_for(:each_char)
enum.to_a # => ["c", "a", "t"]

If the method we’re using as the basis of our enumerator takes parameters, we can pass them
to enum_for:

enum_good = (1..10).enum_for(:each_slice, 3)
enum_good.to_a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

Enumerators Are Generators and Filters

(This is more advanced material that can be skipped on first reading.) As well as creating
enumerators from existing collections, you can create an explicit enumerator, passing it a
block. The code in the block will be used when the enumerator object needs to supply a
fresh value to your program. However, the block isn’t simply executed from top to bottom.
Instead, the block is executed in parallel with the rest of your program’s code. Execution
starts at the top and pauses when the block yields a value to your code. When the code needs
the next value, execution resumes at the statement following the yield. This lets you write
enumerators that generate infinite sequences (among other things):

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=82

BLOCKS AND ITERATORS

Download samples/tutcontainers_50.rb

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count += 1
yielder.yield number
end
end

5.times { puts triangular_numbers.next }
produces:

1
3
6
10
15

Enumerator objects are also enumerable (that is to say, the methods available to enumerable
objects are also available to them). That means we can use enumerable’s methods (such as
first) on them:

triangular_numbers = Enumerator.new do |yielder|

...
end

p triangular_numbers.first(5)
produces:
[1, 3, 6, 10, 15]

You have to be slightly careful with enumerators that can generate infinite sequences. Some
of the regular enumerator methods such as count and select will happily try to read the whole
enumeration before returning a result. If you want a version of select that works with infinite
sequences, you’ll need to write it yourself. Here’s a version that gets passed an enumerator
and a block and returns a new enumerator containing values from the original for which the
block returns true. We’ll use it to return triangular numbers that are multiples of 10.

Download samples/tutcontainers_52.rb

triangular_numbers = Enumerator.new do |yielder|
... as before
end
def infinite_select(enum, &block)
Enumerator.new do |yielder|
enum.each do |value|
yielder.yield(value) if block.call(value)
end
end
end

p infinite_select(triangular_numbers) {|val| val % 10 == 0}.first(5)
produces:
[10, 120, 190, 210, 300]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_50.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_52.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=83

BLOCKS AND ITERATORS

Here we use the &block notation to pass the block as a parameter to the infinite_select
method.

As Brian Candler pointed out in [ruby-core:19679], you can make this more convenient by
adding filters such as infinite_select directly to the Enumerator class. Here’s an example that
returns the first five triangular numbers that are multiples of 10 and that have the digit 3 in
them:

Download samples/tutcontainers_53.rb

triangular_numbers = Enumerator.new do |yielder|
... as before
end
class Enumerator
def infinite_select(&block)
Enumerator.new do |yielder|
self.each do |value]|
yielder.yield(value) if block.call(value)
end
end
end
end
p triangular_numbers
.infinite_select {|val| val % 10 == 0}
.infinite_select {|val| val.to_s =~ /3/ }
.first(5)

produces:
[300, 630, 1830, 3160, 3240]

Blocks for Transactions

Although blocks are often used as the target of an iterator, they have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run under some kind of trans-
actional control. For example, you’ll often open a file, do something with its contents, and
then want to ensure that the file is closed when you finish. Although you can do this using
conventional linear code, a version using blocks is simpler (and turns out to be less error
prone). A naive implementation (ignoring error handling) could look something like the
following:

Download samples/tutcontainers_54.rb

class File
def self.open_and_process(xargs)
f = File.open(xargs)
yield f
f.close()
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_53.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_54.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=84

BLOCKS AND ITERATORS

File.open_and_process("testfile", "r") do |[file]
while line = file.gets
puts line
end
end
produces:

This is line one
This is line two
This is line three
And so on...

open_and_process is a class method—it may be called independently of any particular file
object. We want it to take the same arguments as the conventional File.open method, but
we don’t really care what those arguments are. To do this, we specified the arguments as
*args, meaning ‘“collect the actual parameters passed to the method into an array named
args.” We then call File.open, passing it *args as a parameter. This expands the array back
into individual parameters. The net result is that open_and_process transparently passes
whatever parameters it receives to File.open.

Once the file has been opened, open_and_process calls yield, passing the open file object
to the block. When the block returns, the file is closed. In this way, the responsibility for
closing an open file has been shifted from the users of file objects back to the file objects
themselves.

The technique of having files manage their own life cycle is so useful that the class File
supplied with Ruby supports it directly. If File.open has an associated block, then that block
will be invoked with a file object, and the file will be closed when the block terminates. This
is interesting, because it means that File.open has two different behaviors. When called with
a block, it executes the block and closes the file. When called without a block, it returns the
file object. This is made possible by the method block_given?, which returns true if a block
is associated with the current method. Using this method, you could implement something
similar to the standard File.open (again, ignoring error handling) using the following:

Download samples/tutcontainers_55.rb

class File
def self.my_open(*args)
result = file = File.new(*args)
If there's a block, pass in the file and close
the file when it returns
if block_given?
result = yield file
file.close
end
return result
end
end

This has one last twist: in the previous examples of using blocks to control resources, we
didn’t address error handling. If we wanted to implement these methods properly, we’d need

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_55.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=85

BLOCKS AND ITERATORS

to ensure that we closed a file even if the code processing that file somehow aborted. We do
this using exception handling, which we talk about later (starting on page 167).

Blocks Can Be Objects

Blocks are like anonymous methods, but there’s more to them than that. You can also convert
a block into an object, store it in variables, pass it around, and then invoke its code sometime
later.

Remember I said that you can think of blocks as being a little like an implicit parame-
ter that’s passed to a method? Well, you can also make that parameter explicit. If the last
parameter in a method definition is prefixed with an ampersand (such as &action), Ruby
looks for a code block whenever that method is called. That code block is converted to an
object of class Proc and assigned to the parameter. You can then treat the parameter as any
other variable.

Here’s an example where we create a Proc object in one instance method and store it in an
instance variable. We then invoke the proc from a second instance method.

Download samples/tutcontainers_56.rb

class ProcExample
def pass_in_block(&action)
@stored_proc = action
end
def use_proc(parameter)
@stored_proc.call(parameter)
end
end
eg = ProcExample.new
eg.pass_in_block { |param| puts "The parameter is #{param}" }
eg.use_proc(99)

produces:

The parameter is 99
See how the call method on a proc object invokes the code in the original block?

Many Ruby programs store and later call blocks in this way—it’s a great way of implement-
ing callbacks, dispatch tables, and so on.

But, you can go one step further. If a block can be turned into an object by adding an
ampersand parameter to a method, what happens if that method then returns the Proc object
to the caller?

Download samples/tutcontainers_57.rb

def create_block_object(&block)
block
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_56.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_57.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=86

BLOCKS AND ITERATORS

bo = create_block_object { |param| puts "You called me with #{param}" }

bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

In fact, this is so useful that Ruby provides not one but two built-in methods that convert a
block to an object.® Both lambda and Proc.new take a block and return an object of class
Proc. The objects they return differ slightly in how they behave, but we’ll hold off talking
about that until page 364.

Download samples/tutcontainers_58.rb

bo = lambda { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

Blocks Can Be Closures

Remember I said that a block can use local variables from the surrounding scope? So, let’s
look at a slightly different example of a block doing just that:

Download samples/tutcontainers_59.rb

def n_times(thing)
lambda {|n| thing * n }
end

pl = n_times(23)

pl.call(3) # => 69

pl.call(4) # => 92

p2 = n_times("Hello ")

p2.call(3) # => "Hello Hello Hello "

The method n_times returns a Proc object that references the method’s parameter, thing.
Even though that parameter is out of scope by the time the block is called, the parameter
remains accessible to the block. This is called a closure—variables in the surrounding scope
that are referenced in a block remain accessible for the life of that block and the life of any
Proc object created from that block.

6. There’s actually a third, proc, but it is effectively deprecated.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_58.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_59.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=87

BLOCKS AND ITERATORS

Here’s another example, which is a method that returns a Proc object that returns successive
powers of 2 when called:

Download samples/tutcontainers_60.rb

def power_proc_generator
value = 1
lambda { value += value }
end

power_proc = power_proc_generator

puts power_proc.call
puts power_proc.call
puts power_proc.call

produces:

2
4
8

An Alternative Notation

=2 s Ruby 1.9 has another way of creating Proc objects. Rather than write this:
lambda { |params| ... }
you can now write the following:’
->params { ... }
The parameters can be enclosed in optional parentheses. For example:
Download samples/tutcontainers_63.rb

procl = -> arg { puts "In procl with #{arg}" }

proc2 = -> argl, arg2 { puts "In proc2 with #{argl} and #{arg2}" }
proc3 = ->(argl, arg2) { puts "In proc3 with #{argl} and #{arg2}" }
procl.call "ant"

proc2.call "bee", "cat"

proc3.call "dog", "elk"

produces:

In procl with ant
In proc2 with bee and cat
In proc3 with dog and elk

7. Let’s start by getting something out of the way. Why ->? For compatibility across all the different source file
encodings, Matz is restricted to using pure 7-bit ASCII for Ruby operators, and the choice of available characters is
severely limited by the ambiguities inherent in the Ruby syntax. He felt that -> was (kind of) reminiscent of a Greek
lambda character \.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_60.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_63.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=88

BLOCKS AND ITERATORS

The -> form is more compact than using lambda and seems to be in favor when you want to
pass one or more Proc objects to a method:

Download samples/tutcontainers_64.rb

def my_if(condition, then_clause, else_clause)
if condition
then_clause.call
else
else_clause.call
end
end

5.times do |val]
my_if val < 3,
-> { puts "#{val} is small" },
-> { puts "#{val} is big" }
end

produces:

0 is small
is small
is small
is big
is big

W N R

One good reason to pass blocks to methods is that you can reevaluate the code in those
blocks at any time. Here’s a trivial example of reimplementing a while loop using a method.
Because the condition is passed as a block, it can be evaluated each time around the loop:

Download samples/tutcontainers_65.rb

def my_while(cond, &body)

while cond.call
body.call

end

end

a=0

my_while -> { a < 3 } do
puts a
a+=1

end

produces:

0
1
2

Block Parameter Lists

=2 /s Prior to Ruby 1.9, blocks were to some extent the poor cousins of methods when it came
to parameter lists. Methods could have splat args, default values, and block parameters,
whereas blocks basically had just a list of names (and could accept a trailing splat argument).
Now, however, blocks have the same parameter list capabilities as methods.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_64.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_65.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=89

CONTAINERS EVERYWHERE

Blocks written using the old syntax take their parameter lists between vertical bars. Blocks
written using the -> syntax take a separate parameter list before the block body. In both
cases, the parameter list looks just like the list you can give to methods. It can take default
values, splat args (described on page 143), and a block parameter (a trailing argument start-
ing with an ampersand). You can write blocks that are just as versatile as methods.®

Here’s a block using the original block notation:

Download samples/tutcontainers_66.rb

procl = lambda do |a, *b, &block]

puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

procl.call(l, 2, 3, 4) { puts "in blockl" }

produces:
a=1
b = [2i 31 4]
in blockl

And here’s one using the new -> notation:

Download samples/tutcontainers_67.rb

proc2 = -> a, *b, &block do

puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

proc2.call(l, 2, 3, 4) { puts "in block2" }

produces:
a=1
b = [2i 31 4]
in block2

Containers Everywhere

Containers, blocks, and iterators are core concepts in Ruby. The more you write in Ruby,
the more you’ll find yourself moving away from conventional looping constructs. Instead,
you’ll write classes that support iteration over their contents. And you’ll find that this code
is compact, easy to read, and a joy to maintain. If this all seems too weird, don’t worry.
After a while, it’ll start to come naturally. And you’ll have plenty of time to practice as you
use Ruby libraries and frameworks.

8. Actually, they are more versatile, because these blocks are also closures, while methods are not.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_66.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_67.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=90

Chapter 5

Sharing Functionality:
Inheritance, Modules,
and Mixins

One of the accepted principles of good design is the elimination of unnecessary duplication.
We work hard to make sure that each concept in our application is expressed just once in
our code.!

We’ve already seen how classes help. All the methods in a class are automatically accessible
to instances of that class. But there are other, more general types of sharing that we want
to do. Maybe we’re dealing with an application that ships goods. Many forms of shipping
are available, but all forms share some basic functionality (weight calculation, perhaps). We
don’t want to duplicate the code that implements this functionality across the implementa-
tion of each shipping type. Or maybe we have a more generic capability that we want to
inject into a number of different classes. For example, an online store may need the ability
to calculate sales tax for carts, orders, quotes, and so on. Again, we don’t want to duplicate
the sales tax code in each of these places.

In this chapter, we’ll look at two different (but related) mechanisms for this kind of sharing
in Ruby. The first, class-level inheritance, is common in object-oriented languages. We’ll
then look at mixins, a technique that is often preferable to inheritance. We’ll wind up with a
discussion of when to use each.

Inheritance and Messages

In the previous chapter we saw that when puts needs to convert an object to a string, it
calls that object’s to_s method. But we’ve also written our own classes that don’t explic-

1. Why? Because the world changes. And when you adapt your application to each change, you want to know
that you’ve changed exactly the code you need to change. If each real-world concept is implemented at a single
point in the code, this becomes vastly easier.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=91

INHERITANCE AND MESSAGES

itly implement to_s. Despite this, objects of these classes respond successfully when we
call to_s on them. How this works has to do with inheritance, subclassing, and how Ruby
determines what method to run when you send a message to an object.

Inheritance allows you to create a class that is a refinement or specialization of another
class. This class is called a subclass of the original, and the original is a superclass of the
subclass. People also talk of child and parent classes.

The basic mechanism of subclassing is simple. The child inherits all of the capabilities of
its parent class—all the parent’s instance methods are available in instances of the child.

Let’s look at a trivial example and then later build on it. Here’s a definition of a parent class
and a child class that inherits from it:

Download samples/tutmodules_1.rb

class Parent

def say_hello

puts "Hello from #{self}"

end
end
p = Parent.new
p.say_hello
Subclass the parent...
class Child < Parent
end
¢ = Child.new
c.say_hello

produces:

Hello from #<Parent:0x0a40c4>
Hello from #<Child:0x0a3d68>

The parent class defines a single instance method, say_hello. We call it by creating a new
instance of the class and store a reference to that instance in the variable p.

We then create a subclass using class Child < Parent. The < notation means we’re creating a
subclass of the thing on the right; the fact that we use less-than presumably signals that the
child class is supposed to be a specialization of the parent.

Note that the child class defines no methods, but when we create an instance of it, we can
call say_hello. That’s because the child inherits all the methods of its parent. Note also that
when we output the value of self—the current object—it shows that we’re in an instance of
class Child, even though the method we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

Download samples/tutmodules_2.rb

class Parent

end

class Child < Parent

end

puts "The superclass of Child is #{Child.superclass}"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=92

INHERITANCE AND MESSAGES

produces:

The superclass of Child is Parent
But what’s the superclass of Parent?

class Parent
end
puts "The superclass of Parent is #{Parent.superclass}"

produces:
The superclass of Parent is Object
If you don’t define an explicit superclass when defining a class, Ruby automatically makes
the built-in class Object that class’s parent. Let’s go further:
puts "The superclass of Object is #{Object.superclass}"
produces:
The superclass of Object is BasicObject
=2 / Class BasicObject was introduced in Ruby 1.9. It is used in certain kinds of metaprogram-
ming, acting as a blank canvas. What’s its parent?
puts "The superclass of BasicObject is #{BasicObject.superclass.inspect}"
produces:
The superclass of BasicObject is nil
So, we’ve finally reached the end. BasicObject is the root class of our hierarchy of classes.

Given any class in any Ruby application, you can ask for its superclass, then the superclass
of that class, and so on, and you’ll eventually get back to BasicObject.

We’ve seen that if you call a method in an instance of class Child and that method isn’t in
Child’s class definition, Ruby will look in the parent class. It goes deeper than that, because
if the method isn’t defined in the parent class, Ruby continues looking in the parent’s parent,
the parent’s parent’s parent, and so on, through the ancestors until it runs out of classes.

And this explains our original question. We can work out why to_s is available in just about
every Ruby object. to_s is actually defined in class Object. Because Object is an ancestor of
every Ruby class (except BasicObject), instances of every Ruby class have a to_s method
defined:

Download samples/tutmodules_6.rb

class Person
def initialize(name)
@name = name
end
end
p = Person.new("Michael")
puts p

produces:

#<Person:0x0adefc>

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=93

INHERITANCE AND MESSAGES

We saw in the previous chapter that we can override the to_s method:
Download samples/tutmodules_7.rb

class Person
def initialize(name)
@name = name
end
def to_s
"Person named #{@name}"
end
end
p = Person.new("Michael")
puts p

produces:

Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing special about this.
The puts method calls to_s on its arguments. In this case, the argument is a Person object.
Because class Person defines a to_s method, that method is called. If it hadn’t defined ato_s
method, then Ruby looks for (and finds) to_s in Person’s parent class, Object.

It is common to use subclassing to add application-specific behavior to a standard library
or framework class. If you’ve used Ruby on Rails,? you’ll have subclassed ActionController
when writing your own controller classes. Your controllers get all the behavior of the base
controller and add their own specific handlers to individual user actions. If you’ve used
the FXRuby GUI framework,> you’ll have used subclassing to add your own application-
specific behavior to Fox’s standard GUI widgets.

Here’s a more self-contained example. Ruby comes with a library called GServer that imple-
ments basic TCP server functionality. You add your own behavior to it by subclassing the
GServer class. Let’s use that to write some code that waits for a client to connect on a socket
and then returns the last few lines of the system log file. This is an example of something
that’s actually quite useful in long-running applications—by building in such a server, you
can access the internal state of the application while it is running (possibly even remotely).

The GServer class handles all the mechanics of interfacing to TCP sockets. When you create
a GServer object, you tell it the port to listen on.* Then, when a client connects, the GServer
object calls its serve method to handle that connection. Here’s the implementation of that
serve method in the GServer class:

def serve(io)
end

2. http://www.rubyonrails.com
3. http://www.fxruby.org

4. You can tell it a lot more, as well. We chose to keep it simple here.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_7.rb
http://www.rubyonrails.com
http://www.fxruby.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=94

INHERITANCE AND MESSAGES

As you can see, it does nothing. That’s where our own LogServer class comes in:
Download samples/tutmodules_9.rb

require 'gserver'
class LogServer < GServer
def initialize
super (12345)
end
def serve(client)
client.puts get_end_of_log_file
end
private
def get_end_of_log_file
File.open("/var/log/system.log") do |log]|
log.seek(-1000, IO::SEEK_END) # back up 1000 characters from end

log.gets # ignore partial line
log.read # and return rest
end
end
end

server = LogServer.new
server.start.join

I don’t want to focus too much on the details of running the server. Instead, let’s look at
how inheritance has helped us with this code. First, notice that our LogServer class inherits
from GServer. This means that a log server is a kind of GServer, sharing all the GServer
functionality. It also means we can add our own specialized behavior.

The first such specialization is the initialize method. We want our LogServer to run on TCP
port 12345. That’s a parameter that would normally be passed to the GServer constructor.
So, within the initialize method of the LogServer, we want to invoke the initialize method of
GServer, our parent, passing it the port number. We do that using the Ruby keyword super.
When you invoke super, Ruby sends a message to the parent of the current object, asking it
to invoke a method of the same name as the method invoking super. It passes this method
the parameters that were passed to super.

This is a crucial step and one often forgotten by folks new to OO. When you subclass
another class, you are responsible for making sure the initialization required by that class
gets run. This means that, unless you know it isn’t needed, you’ll need to put a call to super
somewhere in your subclass’s initialize method. (If your subclass doesn’t need an initialize
method, then there’s no need to do anything, because it will be the parent class’s initialize
method that gets run when your objects get created.)

So, by the time our initialize method finishes, our LogServer object will be a fully fledged
TCP server, all without us having to write any protocol-level code. Down at the end of our
program, we start the server. The call to join causes our program to wait for the server to
exit before itself exiting.

While our server is running, it will receive connections from external clients. These invoke
the serve method in the server object. Remember that empty method in class GServer? Well,

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=95

MODULES

our LogServer class provides its own implementation. And because it gets found by Ruby
first when it’s looking for methods to execute, it’s our code that gets run whenever GServer
accepts a connection. And our code reads the last few lines of the log file and returns them
to the client:>

$ telnet 127.0.0.1 12345
Trying 127.0.0.1...
Connected to localhost.
Escape character is 'A]'.

Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...
Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...
Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...
Jul 7 13:42:40 dave login[54768]: DEAD_PROCESS: 54768 ttys001

Jul 7 13:45:34 dave mdworker[54977]: fcntl to turn on F_CHECK...

Jul 7 13:48:44 dave mdworker[54977]: fcntl to turn on F_CHECK...
Connection closed by foreign host.

The use of the serve method shows a common idiom when using subclassing. A parent
class assumes that it will be subclassed and calls a method that it expects its children to
implement. This allows the parent to take on the brunt of the processing but to invoke what
are effectively hook methods in subclasses to add application-level functionality. As we’ll
see at the end of this chapter, just because this idiom is common doesn’t make it good
design.

So, instead, let’s look at mixins, a different way of sharing functionality in Ruby code. But,
before we look at mixins, we’ll need to get familiar with Ruby modules.

Modules

Modules are a way of grouping together methods, classes, and constants. Modules give you
two major benefits:

* Modules provide a namespace and prevent name clashes.

* Modules support the mixin facility.

Namespaces

As you start to write bigger and bigger Ruby programs, you’ll naturally find yourself pro-
ducing chunks of reusable code—Ilibraries of related routines that are generally applicable.
You’ll want to break this code into separate files so the contents can be shared among dif-
ferent Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set of
interrelated classes) into a file. However, there are times when you want to group things
together that don’t naturally form a class.

5. You can also access this server from a web browser by connecting to http://127.0.0.1:12345.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=96

MODULES

Inheritan nd Mixin

Some object-oriented languages (such as C++) support multiple
inheritance, where a class can have more than one immediate parent,
inheriting functionality from each. Although powerful, this technique
can be dangerous, because the inheritance hierarchy can become
ambiguous.

Other languages, such as Java and C#, support single inheritance.
Here, a class can have only one immediate parent. Although cleaner
(and easier to implement), single inheritance also has drawbacks—in
the real world objects often inherit attributes from multiple sources (a
ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you the
simplicity of single inheritance and the power of multiple inheritance. A
Ruby class has only one direct parent, so Ruby is a single-inheritance
language. However, Ruby classes can include the functionality of
any number of mixins (a mixin is like a partial class definition). This
provides a controlled multiple-inheritance-like capability with none of
the drawbacks. We'll explore mixins more beginning on the following

page.

An initial approach may be to put all these things into a file and simply load that file into
any program that needs it. This is the way the C language works. However, this approach
has a problem. Say you write a set of the trigonometry functions sin, cos, and so on. You
stuff them all into a file, trig.rb, for future generations to enjoy. Meanwhile, Sally is working
on a simulation of good and evil, and she codes a set of her own useful routines, including
be_good and sin, and sticks them into moral.rb. Joe, who wants to write a program to find
out how many angels can dance on the head of a pin, needs to load both trig.rb and moral.rb
into his program. But both define a method called sin. Bad news.

The answer is the module mechanism. Modules define a namespace, a sandbox in which
your methods and constants can play without having to worry about being stepped on by
other methods and constants. The trig functions can go into one module:

Download samples/tutmodules_10.rb

module Trig
PI = 3.141592654
def Trig.sin(x)
..
end
def Trig.cos(x)
..
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=97

MIXINS

end
and the good and bad “moral” methods can go into another:

Download samples/tutmodules_11.rb

module Moral

VERY_BAD = 0
BAD =1
def Moral.sin(badness)
...
end
end

Module constants are named just like class constants, with an initial uppercase letter.® The
method definitions look similar, too: module methods are defined just like class methods.

If a third program wants to use these modules, it can simply load the two files (using the
Ruby require statement. In order to reference the name sin unambiguously, our code can
then qualify the name using the name of the module containing the implementation we
want, followed by ::, the scope resolution operator:

require 'trig'

require 'moral'

y = Trig.sin(Trig::PI1/4)

wrongdoing = Moral.sin(Moral: :VERY_BAD)

As with class methods, you call a module method by preceding its name with the module’s
name and a period, and you reference a constant using the module name and two colons.

Mixins
Modules have another, wonderful use. At a stroke, they pretty much eliminate the need for
inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed by the module name. If this made you think of class methods, your next
thought may well be “What happens if I define instance methods within a module?” Good
question. A module can’t have instances, because a module isn’t a class. However, you can
include a module within a class definition. When this happens, all the module’s instance
methods are suddenly available as methods in the class as well. They get mixed in. In fact,
mixed-in modules effectively behave as superclasses.

6. But we will conventionally use all uppercase letters when writing them.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=98

MIXINS

Download samples/tutmodules_13.rb

module Debug
def who_am_i?
"#{self.class.name} (\##{self.object_id}): #{self.to_s}"
end
end
class Phonograph
include Debug
...
end
class EightTrack
include Debug
...
end
ph = Phonograph.new("West End Blues")
et EightTrack.new("Surrealistic Pillow")

ph.who_am_i? # => "Phonograph (#330450): West End Blues"
et.who_am_i? # => "EightTrack (#330420): Surrealistic Pillow"

By including the Debug module, both the Phonograph and EightTrack classes gain access to
the who_am_i? instance method.

We’ll make a couple of points about the include statement before we go on. First, it has
nothing to do with files. C programmers use a preprocessor directive called #include to
insert the contents of one file into another during compilation. The Ruby include statement
simply makes a reference to a module. If that module is in a separate file, you must use
require (or its less commonly used cousin, load) to drag that file in before using include.
Second, a Ruby include does not simply copy the module’s instance methods into the class.
Instead, it makes a reference from the class to the included module. If multiple classes
include that module, they’ll all point to the same thing. If you change the definition of a
method within a module, even while your program is running, all classes that include that
module will exhibit the new behavior.”

Mixins give you a wonderfully controlled way of adding functionality to classes. However,
their true power comes out when the code in the mixin starts to interact with code in the class
that uses it. Let’s take the standard Ruby mixin Comparable as an example. The Comparable
mixin adds the comparison operators (<, <=, ==, >=, and >), as well as the method between?,
to a class. For this to work, Comparable assumes that any class that uses it defines the
operator <=>. So, as a class writer, you define one method, <=>, include Comparable, and
get six comparison functions for free.

Let’s try this with a simple Person class.

7. Of course, we’re speaking only of methods here. Instance variables are always per object, for example.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=99

ITERATORS AND THE ENUMERABLE MODULE 100

We’ll make people comparable based on their names:
Download samples/tutmodules_14.rb

class Person
include Comparable
attr_reader :name
def initialize(name)
@name = name
end
def to_s
"#{@name}"
end
def <=>(other)
self.name <=> other.name
end
end
pl = Person.new("Matz")
p2 Person.new("Guido")
p3 = Person.new("Larry")

Compare a couple of names
if pl > p2

puts "#{pl.name}'s name > #{p2.name}'s name
end

Sort an array of Person objects

puts "Sorted list:"
puts [pl, p2, p3].sort

produces:

Matz's name > Guido's name
Sorted list:

Guido

Larry

Matz

Note that we included Comparable in our Person class and then defined a <=>. We were then
able to perform comparisons (such as p1 > p2) and even sort an array of Person objects.

Ilterators and the Enumerable Module

The Ruby collection classes (Array, Hash, and so on) support a large number of operations
that do various things with the collection: traverse it, sort it, and so on. You may be thinking,
“Gee, it’d sure be nice if my class could support all these neat-o features, too!” (If you
actually thought that, it’s probably time to stop watching reruns of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins and
module Enumerable. All you have to do is write an iterator called each, which returns the
elements of your collection in turn. Mix in Enumerable, and suddenly your class supports
things such as map, include?, and find_all?. If the objects in your collection implement
meaningful ordering semantics using the <=> method, you’ll also get methods such as min,
max, and sort.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=100

COMPOSING MODULES 101

Composing Modules

Enumerable is a standard mixin, implementing a bunch of methods in terms of the host
class’s each method. One of the methods defined by Enumerable is inject, which we saw
back on page 80. This method applies a function or operation to the first two elements in the
collection and then applies the operation to the result of this computation and to the third
element, and so on, until all elements in the collection have been used.

Because inject is made available by Enumerable, we can use it in any class that includes the
Enumerable module and defines the method each. Many built-in classes do this.

Download samples/tutmodules_15.rb

15

[1, 2, 3, 4, 5 J.inject(:+) # =
"abcdefghijklm"

>
('a'..'m").inject(:+) >

We could also define our own class that mixes in Enumerable and hence gets inject support:
Download samples/tutmodules_16.rb

class VowelFinder
include Enumerable
def initialize(string)
@string = string
end
def each
@string.scan(/[aeiou]/) do |vowel|
yield vowel
end
end
end

Download samples/tutmodules_17.rb

vf = VowelFinder.new("the quick brown fox jumped")

vf.inject(:+) # => "euiooue"

Notice that we’ve used the same pattern in the call to inject in these examples—we’re using
it to perform a summation. When applied to numbers, it returns the arithmetic sum; when
applied to strings, it concatenates them. We can use a module to encapsulate this function-
ality too:

Download samples/tutmodules_18.rb

module Summable

def sum
inject(:+)

end

end

class Array
include Summable

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_15.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_16.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_17.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_18.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=101

COMPOSING MODULES 102

class Range
include Summable

end

class VowelFinder
include Summable

end

Download samples/tutmodules_19.rb

1, 2, 3, 4, 5].sum # => 15
a'..'m").sum # => "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")
vf.sum # => "euiooue"

Instance Variables in Mixins

People coming to Ruby from C++ often ask, “What happens to instance variables in a
mixin? In C++, I have to jump through some hoops to control how variables are shared in a
multiple-inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question. Remember how instance variables work in
Ruby: the first mention of an @-prefixed variable creates the instance variable in the current
object, self.

For a mixin, this means that the module you mix into your client class (the mixee?) may
create instance variables in the client object and may use attr_reader and friends to define
accessors for these instance variables. For instance, the Observable module in the following
example adds an instance variable @observer_list to any class that includes it:

module Observable
def observers
@observer_list ||= []
end
def add_observer(obj)
observers << obj
end
def notify_observers
observers.each {|o| o.update }
end
end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash with
those of the host class or with those of other mixins. The example that follows shows a
class that uses our Observer module but that unluckily also uses an instance variable called
@observer_list. At runtime, this program will go wrong in some hard-to-diagnose ways:

class TelescopeScheduler
other classes can register to get notifications
when the schedule changes
include Observable

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_19.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=102

COMPOSING MODULES 103

def initialize
@observer_list = [] # folks with telescope time
end
def add_viewer (viewer)
@observer_list << viewer
end
...
end

For the most part, mixin modules don’t use instance variables directly—they use accessors
to retrieve data from the client object. But if you need to create a mixin that has to have its
own state, ensure that the instance variables have unique names to distinguish them from
any other mixins in the system (perhaps by using the module’s name as part of the variable
name). Alternatively, the module could use a module-level hash, indexed by the current
object ID, to store instance-specific data without using Ruby instance variables:

Download samples/tutmodules_22.rb

module Test
State = {}
def state=(value)
State[object_id] = value
end
def state
State[object_id]
end
end

Download samples/tutmodules_23.rb

class Client
include Test
end

cl = Client.new
c2 = Client.new
cl.state = 'cat'
c2.state = 'dog'

cl.state # => "cat"
c2.state # => "dog"

A downside of this approach is that the data associated with a particular object will not get
automatically deleted if the object is deleted.

Resolving Ambiguous Method Names

One of the other questions folks ask about mixins is, how is method lookup handled? In
particular, what happens if methods with the same name are defined in a class, in that class’s
parent class, and in a mixin included into the class?

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=103

INHERITANCE, MIXINS, AND DESIGN 104

The answer is that Ruby looks first in the immediate class of an object, then in the mixins
included into that class, and then in superclasses and their mixins. If a class has multiple
modules mixed in, the last one included is searched first.

Inheritance, Mixins, and Design

Inheritance and mixins both allow you to write code in one place and effectively inject that
code into multiple classes. So, when do you use each?

As is usual with most questions of design, the answer is, to some extent, it depends. How-
ever, over the years developers have come up with some pretty clear general guidelines to
help us decide.

First, let’s look at subclassing. Classes in Ruby are related to the idea of types. It would be
natural to say that "cat" is a string and [1,2] is an array. And that’s another way of saying that
the class of "cat" is String and the class of [1,2] is Array. When we create our own classes,
you can think of it as adding new types to the language. And when we subclass either a
built-in class or our own class, we’re creating a subtype.

Now, a lot of research has been done on type theories. One of the more famous results is
the Liskov Substitution Principle. Formally, this states: “Let q(x) be a property provable
about objects x of type T. Then q(y) should be true for objects y of type S where S is a
subtype of T.” What this means is that you should be able to substitute an object of a child
class wherever you use an object of the parent class—the child should honor the parent’s
contract. There’s another way of looking at this: we should be able to say that the child
object is a kind of the parent. We’re used to saying this in English: a car is a vehicle, a cat
is an animal, and so on. This means that a cat should, at the very least, be capable of doing
everything we say that an animal can do.

So, when you’re looking for subclassing relationships while designing your application, be
on the lookout for these is-a relationships.

But...here’s the bad news. In the real world, there really aren’t that many true is a relation-
ships. Instead, it’s far more common to have has a or uses a relationships between things.
The real world is built using composition, not strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. Because inheritance was
the only scheme available for sharing code, we got lazy and said things like “My Person
class is a subclass of my DatabaseWrapper class.”® But a person object is not a kind of
database wrapper object. A person object uses a database wrapper to provide persistence
services.

Is this just a theoretical issue? No! Inheritance represents an incredibly tight coupling of two
components. Change a parent class, and you risk breaking the child class. But, even worse, if
code that uses objects of the child class relies on those objects also having methods defined

8. Indeed, the Rails framework makes just this mistake.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=104

INHERITANCE, MIXINS, AND DESIGN 105

in the parent, then all that code will break, too. The parent class’s implementation leaks
through the child classes and out into the rest of the code. With a decent-sized program, this
becomes a serious inhibitor to change.

And that’s where we need to move away from inheritance in our designs. Instead, we need
to be using composition wherever we see a case of A uses a B or A has a B. Our persisted
Person object won’t subclass DataWrapper. Instead, it’ll construct a reference to a database
wrapper object and use that object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of mixins and metapro-
gramming comes to the rescue, because we can say this:

class Person
include Persistable
...

end

instead of

class Person < DataWrapper
...
end

If you’re new to object-oriented programming, this discussion probably feels remote and
abstract. But as you start to code larger and larger programs, I urge you to think about the
issues discussed here. Try to reserve inheritance for the times where it is justified. And try
to explore all the cool ways that mixins let you write decoupled, flexible code.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=105

Chapter 6

Standard Types

So far we’ve been having fun implementing programs using arrays, hashes, and procs, but
we haven’t really covered the other basic types in Ruby: numbers, strings, ranges, and reg-
ular expressions. Let’s spend a few pages on these basic building blocks now.

Numbers

Ruby supports integers and floating-point, rational, and complex numbers. Integers can be
any length (up to a maximum determined by the amount of free memory on your system).
Integers within a certain range (normally —230 230 _ 1 or =262 252 _ 1) are held
internally in binary form and are objects of class Fixnum. Integers outside this range are
stored in objects of class Bignum (currently implemented as a variable-length set of short
integers). This process is transparent, and Ruby automatically manages the conversion back
and forth:

num = 81

6.times do
puts "#{num.class}: #{num}"
num == num

end

produces:
Fixnum: 81
Fixnum: 6561
Fixnum: 43046721
Bignum: 1853020188851841
Bignum: 3433683820292512484657849089281
Bignum: 11790184577738583171520872861412518665678211592275841109096961

You write integers using an optional leading sign, an optional base indicator (0 for octal, 0d
for decimal [the default], 0x for hex, or Ob for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string (some folks use them
in place of commas in larger numbers).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=106

NUMBERS

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
Oxaabb => 43707 # Fixnum - hexadecimal

0377 => 255 # Fixnum - octal

-0b10_1010 => -42 # Fixnum - binary (negated)

123_456_789_123_456_789 => 123456789123456789 # Bignum

A numeric literal with a decimal point and/or an exponent is turned into a Float object,
corresponding to the native architecture’s double data type. You must both precede and
follow the decimal point with a digit (if you write 1.0e3 as 1.e3, Ruby will try to invoke the
method e3 on the object 1).

19 , Asof Ruby 1.9, rational and complex number support is built into the interpreter. Rational
numbers are the ratio of two integers—they are fractions—and hence have an exact rep-
resentation (unlike floats). Complex numbers represent points on the complex plane. They
have two components, the real and imaginary parts.

Ruby doesn’t have a literal syntax for representing rational and complex numbers. Instead,
you create them using explicit calls to the constructor methods Rational and Complex (al-
though, as we’ll see, you can use the mathn library to make working with rational numbers

easier).
Rational(3, 4) * Rational(2, 3) # => (1/2)
Rational("3/4") % Rational("2/3") # => (1/2)

Complex(1l, 2) * Complex(3, 4) # => (-5+101i)
Complex("1+2i") * Complex("3+4i") # => (-5+10i)

All numbers are objects and respond to a variety of messages (listed in full starting on pages
466 [Bignum], 473 [Complex], 525 [Fixnum], 528 [Float], 543 [Integer], 615 [Numeric], and
660 [Rational]). So, unlike (say) C++, you find the absolute value of a number by writing
num.abs, not abs(num).

Finally, we’ll offer a warning for Perl users. Strings that contain just digits are not automat-
ically converted into numbers when used in expressions. This tends to bite most often when
reading numbers from a file. For example, we may want to find the sum of the two numbers
on each line for a file such as the following:

34
56
78

The following code doesn’t work:

some_file.each do |line]

vl, v2 = line.split # split line on spaces
print vl + v2, " "
end
produces:
34 56 78

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=107

NUMBERS 108

The problem is that the input was read as strings, not numbers. The plus operator concate-
nates strings, so that’s what we see in the output. To fix this, use the Integer method to
convert the strings to integers:

some_file.each do |line]

vl, v2 = line.split

print Integer(vl) + Integer(v2),
end

produces:
7 11 15

How Numbers Interact

Most of the time, numbers work the way you’d expect. If you perform some operation
between two numbers of the same class, the answer will typically be a number of that same
class (although, as we’ve seen, fixnums can become bignums, and vice versa). If the two
numbers are different classes, the result will have the class of the more general one. If you
mix integers and floats, the result will be a float; if you mix floats and complex numbers,
the result will be complex.

1+2 #=> 3

1+2.0 # = 3.0

1.0 + 2 #= 3.0

1.0 + Complex(1,2) # => (2.0+21)

1 + Rational(2,3) # => (5/3)

1.0 + Rational(2,3) # => 1.66666666666667

The return-type rule still applies when it comes to division. However this often confuses
folks, because division between two integers yields an integer result:

1.0 /2 #= 0.5
1/2.0 #= 0.5
1/ 2 #=> 0

If you’d prefer that integer division instead return a fraction (a Rational number), require
the mathn library (described on page 767). This will cause arithmetic operations to attempt
to find the most natural representation for their results. For integer division where the result
isn’t an integer, a fraction will be returned.

22 /7 #=> 3
Complex::I * Complex::I # => (-1+0i)

require 'mathn'’
22 /7 #=> (22/7)
Complex::I * Complex::I # => -1

Note that 22/7 is effectively a rational literal once mathn is loaded (albeit one that’s calcu-
lated at runtime).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=108

STRINGS 109

Looping Using Numbers

Integers also support several useful iterators. We’ve seen one already: 6.times in the code
example on page 106. Others include upto and downto for iterating up and down between
two integers. Class Numeric also provides the more general method step, which is more like
a traditional for loop.

3.times { print "X " }

1.upto(5) {li| print i, " " }

99.downto(95) {l|i| print i, " " }

50.step(80, 5) {|i| print i, " " }
produces:

XXX1234599 98 97 96 95 50 55 60 65 70 75 80
&/ As with other iterators, if you leave the block off, the call returns an Enumerator object:
10.downto(7) .with_index {|num, index| puts "#{index}: #{num}"}

produces:
0: 10

w N R
~N 0 ©

Strings

19 , Ruby strings are simply sequences of characters.! They normally hold printable characters,
but that is not a requirement; a string can also hold binary data. Strings are objects of class
String.

Strings are often created using string literals—sequences of characters between delimiters.
Because binary data is otherwise difficult to represent within program source, you can place
various escape sequences in a string literal. Each is replaced with the corresponding binary
value as the program is compiled. The type of string delimiter determines the degree of sub-
stitution performed. Within single-quoted strings, two consecutive backslashes are replaced
by a single backslash, and a backslash followed by a single quote becomes a single quote.

'escape using "\\"' # => escape using "\"
'That\'s right' # => That's right

Double-quoted strings support a boatload more escape sequences. The most common is
probably \n, the newline character. Table 22.2 on page 329 gives the complete list. In addi-
tion, you can substitute the value of any Ruby code into a string using the sequence #{ expr }.
If the code is just a global variable, a class variable, or an instance variable, you can omit
the braces.

1. Prior to Ruby 1.9, strings were sequences of 8-bit bytes.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=109

STRINGS

"Seconds/day: #{24+60+60}" # => Seconds/day: 86400
"#{'Ho! '«3}Merry Christmas!" # => Ho! Ho! Ho! Merry Christmas!
"This is line #$." # => This is line 3

The interpolated code can be one or more statements, not just an expression:

puts '"now is #{ def the(a)
'the ' + a
end
the('time'")
} for all good coders..."
produces:

now is the time for all good coders...
You have three more ways to construct string literals: %q, %Q, and here documents.

%q and %Q start delimited single- and double-quoted strings (you can think of %q as a thin
quote ' and %Q as a thick quote "):

%q/general single-quoted string/ # => general single-quoted string
%Q!general double-quoted string! # => general double-quoted string
%Q{Seconds/day: #{24+60%60}} # => Seconds/day: 86400

In fact, the Q is optional:

%!general double-quoted string! # => general double-quoted string
%{Seconds/day: #{24+60+60}} # => Seconds/day: 86400

The character following the g or Q is the delimiter. If it is an opening bracket ([), brace
({), parenthesis ((), or less-than sign (<), the string is read until the matching close symbol
is found. Otherwise, the string is read until the next occurrence of the same delimiter. The
delimiter can be any nonalphanumeric or nonmultibyte character.

Finally, you can construct a string using a here document:

string = <<END_OF_STRING
The body of the string
is the input lines up to
one starting with the same
text that followed the '<<'
END_OF_STRING

A here document consists of lines in the source up to but not including the terminating
string that you specify after the << characters. Normally, this terminator must start in the
first column. However, if you put a minus sign after the << characters, you can indent the
terminator:

string = <<-END_OF_STRING
The body of the string is the input lines up to
one starting with the same text that followed the '<<'
END_OF_STRING

You can also have multiple here documents on a single line. Each acts as a separate string.
The bodies of the here documents are fetched sequentially from the source lines that follow.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=110

STRINGS 111

print <<-STRING1l, <<-STRING2
Concat
STRING1
enate
STRING2
produces:

Concat
enate

Note that Ruby does not strip leading spaces off the contents of the strings in these cases.

Strings and Encodings

=2 , In Ruby 1.9, every string has an associated encoding. The default encoding of a string
literal depends on the encoding of the source file that contains it. With no explicit encoding,
a source file (and its strings) will be US-ASCII.

plain_string = "dog"
puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"
produces:

Encoding of "dog" is US-ASCII
If you override the encoding, you’ll do that for all strings in the file:

#encoding: utf-8

plain_string = "dog"

puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"

utf_string = "dog"

puts "Encoding of #{utf_string.inspect} is #{utf_string.encoding}"
produces:

Encoding of "dog" is UTF-8
Encoding of "dog" is UTF-8

We’ll have a lot more to say about encoding in Chapter 17 on page 264.

Character Constants

Technically, Ruby does not have a class for characters—characters are simply strings of
length one. For historical reasons, character constants can be created by preceding the char-
acter (or sequence that represents a character) with a question mark:

7a #=>"a" (printable character)
Nn #=>"\n" (code for a newline (0x0a))
NC-a #=>"\x01" (control a)

NM-a #=>"\xE1" (meta sets bit 7)
NM-\C-a #=>"\x81" (meta and control a)
NC-? #=>"\x7F" (delete character)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=111

STRINGS 112

Do yourself a favor and immediately forget this section. It’s far easier to use regular octal
and hex escape sequences than to remember these ones. Use "a" rather than ?a, and use "\n"
rather than ?\n.

Working with Strings

String is probably the largest built-in Ruby class, with more than 100 standard methods.
We won’t go through them all here; the library reference has a complete list. Instead, we’ll
look at some common string idioms—things that are likely to pop up during day-to-day
programming.

Maybe we’ve been given a file containing information on a song playlist. For historical
reasons (are there any other kind?), the list of songs is stored as lines in the file. Each line
holds the name of the file containing the song, the song’s duration, the artist, and the title,
all in vertical bar—separated fields. A typical file may start like this:

/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'
/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many methods to
extract and clean up the fields before we use them. At a minimum, we’ll need to

¢ break each line into fields,
* convert the running times from mm:ss to seconds, and
* remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#split will do the job nicely. In this
case, we’ll pass split a regular expression, /As*\|\s*/, that splits the line into tokens wherever
split finds a vertical bar, optionally surrounded by spaces. And, because the line read from
the file has a trailing newline, we’ll use String#chomp to strip it off just before we apply the
split. We’ll store details of each song in a Struct that contains an attribute for each of the
three fields. (A Struct is simply a data structure that contains a given set of attributes—in
this case the title, name, and length. See page 696 for the gory details.)

Download samples/tutstdtypes_24.rb

Song = Struct.new(:title, :name, :length)
File.open("songdata") do |song_file]
songs = []
song_file.each do |line]|
file, length, name, title = line.chomp.split(/\s+*\|\s*/)
songs << Song.new(title, name, length)
end

puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutstdtypes_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=112

STRINGS 113

Unfortunately, whoever created the original file entered the artists’ names in columns, so
some of them contain extra spaces that we’d better remove before we go much further. We
have many ways of doing this, but probably the simplest is String#squeeze, which trims
runs of repeated characters. We’ll use the squeeze! form of the method, which alters the
string in place:

Download samples/tutstdtypes_25.rb

Song = Struct.new(:title, :name, :length)
File.open("songdata") do |song_file]
songs = []
song_file.each do |line]|
file, length, name, title = line.chomp.split(/\s+*\|\s*/)
name.squeeze! (" ")
songs << Song.new(title, name, length)
end
puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Finally, we have the minor matter of the time format: the file says 2:58, and we want the
number of seconds, 178. We could use split again, this time splitting the time field around
the colon character:

mins, secs = length.split(/:/)

Instead, we’ll use a related method. String#scan is similar to split in that it breaks a string
into chunks based on a pattern. However, unlike split, with scan you specify the pattern that
you want the chunks to match. In this case, we want to match one or more digits for both
the minutes and seconds components. The pattern for one or more digits is Ad+/:

Download samples/tutstdtypes_27.rb

Song = Struct.new(:title, :name, :length)
File.open("songdata") do |song_file]|
songs = []
song_file.each do |line]
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze! (" ")
mins, secs = length.scan(/\d+/)
songs << Song.new(title, name, mins.to_i*60 + secs.to_i)
end
puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length=178>

We could spend the next 50 pages looking at all the methods in class String. However, let’s
move on instead to look at a simpler data type: the range.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutstdtypes_25.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutstdtypes_27.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=113

RANGES 114

Ranges

Ranges occur everywhere: January to December, O to 9, rare to well done, lines 50 through
67, and so on. If Ruby is to help us model reality, it seems natural for it to support these
ranges. In fact, Ruby goes one better: it actually uses ranges to implement three separate
features: sequences, conditions, and intervals.

Ranges as Sequences

The first and perhaps most natural use of ranges is to express a sequence. Sequences have a
start point, an end point, and a way to produce successive values in the sequence. In Ruby,
these sequences are created using the .. and ... range operators. The two-dot form creates
an inclusive range, and the three-dot form creates a range that excludes the specified high
value:

0..."cat".length

You can convert a range to an array using the to_a method and convert it to an Enumerator
19 , using to_enum:?

(1..10).to_a #= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
('bar'..'bat').to_a # => ["bar", "bas", "bat"]

enum = ('bar'..'bat').to_enum

enum.next # => "bar"

enum.next # => "bas"

Ranges have methods that let you iterate over them and test their contents in a variety of

ways:
digits = 0..9
digits.include?(5) # => true
digits.min #=> 0
digits.max #=> 9
digits.reject {|i| i <5} # = [5, 6, 7, 8, 9]
digits.inject(:+) # => 45

So far we’ve shown ranges of numbers and strings. However, as you’d expect from an
object-oriented language, Ruby can create ranges based on objects that you define. The
only constraints are that the objects must respond to succ by returning the next object in
sequence and the objects must be comparable using <=>. Sometimes called the spaceship
operator, <=>, compares two values, returning —1, 0, or +1 depending on whether the first
is less than, equal to, or greater than the second.

2. Sometimes people worry that ranges take a lot of memory. That’s not an issue: the range 1..100000 is held as
a Range object containing references to two Fixnum objects. However, convert a range into an array, and all that
memory will get used.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=114

RANGES 115

In reality, this isn’t something you do very often, so examples tend to be a bit contrived.
Here’s one—a class that presents numbers that are powers of 2. Because it defines <=> and
succ, we can use objects of this class in ranges:

Download samples/tutstdtypes_31.rb

class PowerOfTwo
attr_reader :value
def initialize(value)
@value = value
end
def <=>(other)
@value <=> other.value
end
def succ
PowerOfTwo.new(@value + @value)
end
def to_s
@value.to_s
end
end

pl = PowerOfTwo.new(4)
p2 = PowerOfTwo.new(32)

puts (pl..p2).to_a

produces:

4
8
16
32

Ranges as Conditions

As well as representing sequences, ranges can also be used as conditional expressions. Here,
they act as a kind of toggle switch—they turn on when the condition in the first part of the
range becomes true, and they turn off when the condition in the second part becomes true.
For example, the following code fragment prints sets of lines from standard input, where
the first line in each set contains the word start and the last line contains the word end:

while line = gets
puts line if line =~ /start/ .. line =~ /end/
end

Behind the scenes, the range keeps track of the state of each of the tests. We’ll show some
examples of this in the description of loops that starts on page 160 and in the language
section on page 348.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutstdtypes_31.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=115

RANGES 116

Ranges as Intervals

A final use of the versatile range is as an interval test: seeing whether some value falls within

the interval represented by the range. We do this using ===, the case equality operator:
(1..10) === # => true
(1..10) === 15 # => false
(1..10) === 3.14159 # => true
('a'.."j") === "c' # => true
('a'.."j'") === "z' # => false
This is most often used in case statements:
car_age = gets.to_f # let's assume it's 5.2
case car_age
when 0...1
puts "Mmm.. new car smell”
when 1...3
puts "Nice and new"
when 3...6
puts "Reliable but slightly dinged"
when 6...10
puts "Can be a struggle"
when 10...30
puts "Clunker"
else
puts "Vintage gem"
end
produces:

Reliable but slightly dinged

Note the use of exclusive ranges in the previous example. These are normally the correct
choice in case statements. If instead we’d written the following, we’d get the wrong answer
because 5.2 does not fall within any of the ranges, so the else clause triggers:

Download samples/tutstdtypes_35.rb

car_age = gets.to_f # let's assume it's 5.2
case car_age
when 0..0
puts "Mmm.. new car smell"
when 1..2
puts "Nice and new"
when 3..5
puts "Reliable but slightly dinged"
when 6..9
puts "Can be a struggle"
when 10..29
puts "Clunker"
else
puts "Vintage gem"
end
produces:

Vintage gem

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutstdtypes_35.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=116

Chapter 7

Regular Expressions

We probably spend most of our time in Ruby working with strings, so it seems reasonable
for Ruby to have some great tools for working with those strings. As we’ve seen, the String
class itself is no slouch—it has more than 100 methods. But there are still things that the
basic String class can’t do. For example, we might want to see whether a string contains
two or more repeated characters, or we might want to replace every word longer than fifteen
characters with its first five characters and an ellipsis. This is when we turn to the power of
regular expressions.

Now, before we get too far in, here’s a warning: there have been whole books written on
regular expressions.! There is complexity and subtlety here that rivals that of the rest of
Ruby. So if you’ve never used regular expressions, don’t expect to read through this whole
chapter the first time. In fact, you’ll find two emergency exits in what follows. If you’re
new to regular expressions, I strongly suggest you read through to the first and then bail
out. When some regular expression question next comes up, come back here and maybe
read through to the next exit. Then, later, when you’re feeling comfortable with regular
expressions, you can give the whole chapter a read.

What Regular Expressions Let You Do

A regular expression is a pattern that can be matched against a string. It can be a simple
pattern, such as the string must contain the sequence of letters “cat”, or the pattern can
be complex, such as the string must start with a protocol identifier, followed by two literal
forward slashes, followed by..., and so on. This is cool in theory. But what makes regular
expressions so powerful is what you can do with them in practice:

* You can test a string to see whether it matches a pattern.
* You can extract from a string the sections that match all or part of a pattern.
* You can change the string, replacing parts that match a pattern.

Ruby provides built-in support that makes pattern matching and substitution convenient and
concise. In this section, we’ll work through the basics of regular expression patterns and

1. Such as Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools [Fri02]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=117

RUBY’S REGULAR EXPRESSIONS 118

see how Ruby supports matching and replacing based on those patterns. In the sections that
follow, we’ll dig deeper into both the patterns and Ruby’s support for them.

Ruby’s Regular Expressions

There are many ways of creating a regular expression pattern. By far the most common is
to write it between forward slashes. Thus, the pattern /cat/ is a regular expression literal in
the same way that "cat" is a string literal.

/cat/ is an example of a simple, but very common, pattern. It matches any string that contains
the substring cat. In fact, inside a pattern, all characters except ., I, ,), [, 1, {, }, +, \, *, $,
* and ? match themselves. So, at the risk of creating something that sounds like a logic
puzzle, here are some patterns and examples of strings they match and don’t match:

/cat/ matches "dog and cat", and "catch", but not "Cat" or "c.a.t."
/123/ matches "86512312" and "abc123", but not "1.23"
/tab/ matches "hit a ball" but not "table"

If you want to match one of the special characters literally in a pattern, precede it with a
backslash, so /*/ is a pattern that matches a single asterisk, and /\// is a pattern that matches
a forward slash.

Pattern literals are like double-quoted strings. In particular, you can use #{. ..} expression
substitutions in the pattern.

Matching Strings with Patterns

The Ruby operator =~ matches a string against a pattern. It returns the character offset into
the string at which the match occurred:

/cat/ =~ "dog and cat" # => 8
/cat/ =~ "catch" #=> 0
/cat/ =~ "Cat" # => nil
You can put the string first if you prefer:?
"dog and cat" =~ /cat/ # => 8
"catch" =~ /cat/ #=> 0
"Cat" =~ /cat/ # => nil

Because pattern matching returns nil when it fails and because nil is equivalent to false in
Ruby, you can use the result of a pattern match as a condition in statements such as if and
while.

str = "cat and dog"
if str =~ /cat/

puts "There's a cat here somewhere"
end

2. Some folks say this is inefficient, because the string will end up calling the regular expression code to do the
match. These folks are correct in theory but wrong in practice.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=118

RUBY’S REGULAR EXPRESSIONS 119

produces:

There's a cat here somewhere
The following code prints lines in testfile that contain on:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if line =~ /on/
end

produces:
0: This is line one
3: And so on...

You can test to see whether a pattern does not match a string using !~:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if line !~ /on/
end
produces:

1: This is line two
2: This is line three

Changing Strings with Patterns

The sub takes a pattern and some replacement text:* If it finds a match for the pattern in the
string, it replaces the matched substring with the replacement text.

str = "Dog and Cat"

new_str = str.sub(/Cat/, "Gerbil")

puts "Let's go to the #{new_str} for a pint."
produces:

Let's go to the Dog and Gerbil for a pint.

The sub method changes only the first match it finds. To replace all matches, use gsub. (The
g stands for global.)

str = "Dog and Cat"

new_strl = str.sub(/a/, "=")
new_str2 = str.gsub(/a/, "*")
puts "Using sub: #{new_strl}"
puts "Using gsub: #{new_str2}"

produces:
Using sub: Dog *nd Cat
Using gsub: Dog »nd Cxt

Both sub and gsub return a new string. (If no substitutions are made, that new string will
just be a copy of the original.)

3. Actually, it does more than that, but we won’t get to that for a while.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=119

DIGGING DEEPER 120

If you want to modify the original string, use the sub! and gsub! forms:

str = "now is the time"
str.sub!(/i/, "+")
str.gsub!(/t/, "T")
puts str

produces:

now *s The Time

Unlike sub and gsub, sub! and gsub! return the string only if the pattern was matched. If no
match for the pattern is found in the string, they return nil instead. This means it can make
sense (depending on your need) to use the ! forms in conditions.

So, at this point you know how to use patterns to look for text in a string and how to
substitute different text for those matches. And, for many people, that’s enough. So if you're
itching to get on to other Ruby topics, now is a good time to move on to the next chapter.
At some point, you’ll likely need to do something more complex with regular expressions
(for example, matching a time by looking for two digits, a colon, and two more digits). You
can then come back and read the next section.

Or, you can just stay right here as we dig deeper into patterns, matches, and replacements.

Digging Deeper

Like most things in Ruby, regular expressions are just objects—they’re instances of class
Regexp. This means you can assign them to variables, pass them to methods, and so on:

str = "dog and cat"
pattern = /nd/

pattern =~ str # => 5§
str =~ pattern # => 5

You can also create regular expression objects by calling the Regexp class’s new method
and by using the %r{...} syntax. The %r syntax is particularly useful when creating patterns
that contain forward slashes:

/mm\/dd/ #=> /mm\/dd/
Regexp.new("mm/dd") # => /mm\/dd/
%r{mm/dd} # => /mm\/dd/

Regular Expression Options

A regular expression may include one or more options that modify the way the pattern
matches strings. If you’re using literals to create the Regexp object, then the options are one
or more characters placed immediately after the terminator. If you’re using Regexp.new, the
options are constants used as the second parameter of the constructor.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=120

DIGGING DEEPER

Playing with Regular Expressions

If you're like me, you’ll sometimes get confused by regular expres-
sions. You create something that should work, but it just doesn’t seem
to match. That's when | fall back to irb. I'll cut and paste the regular
expression into irb and then try to match it against strings. I'll slowly
remove portions until | get it to match my target string and add stuff
back until it fails. At that point, I'll know what | was doing wrong.

i Case insensitive. The pattern match will ignore the case of letters in the pattern and
string. (The old technique of setting $= to make matches case insensitive no longer
works.)

0 Substitute once. Any #... substitutions in a particular regular expression literal will be
performed just once, the first time it is evaluated. Otherwise, the substitutions will be
performed every time the literal generates a Regexp object.

TRl

m Multiline mode. Normally, “.” matches any character except a newline. With the /m
option, “.” matches any character.

x Extended mode. Complex regular expressions can be difficult to read. The x option
allows you to insert spaces and newlines in the pattern to make it more readable. You

can also use # to introduce comments.

Another set of options allows you to set the language encoding of the regular expression. If
none of these options is specified, the regular expression will have US-ASCII encoding if it
contains only 7-bit characters. Otherwise, it will use the default encoding of the source file
containing the literal: n: no encoding (ASCII), e: EUC, s: SJIS, and u: UTF-8.

Matching Against Patterns

Once you have a regular expression object, you can match it against a string using the
Regexp#match(string) method or the match operators =~ (positive match) and !~ (negative
match). The match operators are defined for both String and Regexp objects. One operand
of the match operator must be a regular expression.

name = "Fats Waller"

name =~ /a/ #=> 1

name =~ /z/ # => nil

/a/ =~ name #=> 1
/a/.match(name) # => #<MatchData "a'">

Regexp.new("all").match(name) # => #<MatchData "all">

The match operators return the character position at which the match occurred, while the
match method returns a MatchData object. In all forms, if the match fails, nil is returned.

After a successful match, Ruby sets a whole bunch of magic variables. For example, $&
receives the part of the string that was matched by the pattern, $* receives the part of the

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=121

DIGGING DEEPER

string that preceded the match, and $' receives the string after the match. However, these
particular variables are considered to be fairly ugly, so most Ruby programmers instead use
the MatchData object returned from the match method, because it encapsulates all the infor-
mation Ruby knows about the match. Given a MatchData object, you can call pre_match to
return the part of the string before the match, post_match for the string after the match, and
index using [0] to get the matched portion.

We can use these methods to write a method, show_regexp, that illustrates where a particular
pattern matches:

def show_regexp(string, pattern)
match = pattern.match(string)
if match
"#{match.pre_match}->#{match[0]}<-#{match.post_match}"
else
"no match"
end
end

very in->t<-eresting
F->a<-ts Waller

Fats Wa->lle<-r

no match

show_regexp('very interesting', /t/)
show_regexp('Fats Waller', /a/)
show_regexp('Fats Waller', /lle/)
show_regexp('Fats Waller', /z/)

H OH K H
1l
V V. V V

Deeper Patterns

We said earlier that, within a pattern, all characters match themselves except ., I, (,), [, 1, {,
L+ L AS, % and 2. Let’s dig a bit deeper into this.

First, always remember that you need to escape any of these characters with a backslash if
you want them to be treated as regular characters to match:

show_regexp('yes | no', /\|/) # => yes ->|<- no
show_regexp('vyes (no)', /\(no\)/) # => vyes ->(no)<-
show_regexp('are you sure?', /e\?/) # => are you sur->e?<-

Now let’s see what some of these characters mean if you use them without escaping them.

Anchors

By default, a regular expression will try to find the first match for the pattern in a string.
Match /iss/ against the string “Mississippi,” and it will find the substring “iss” starting at
position 1 (the second character in the string). But what if you want to force a pattern to
match only at the start or end of a string?

The patterns * and $ match the beginning and end of a line, respectively. These are often
used to anchor a pattern match; for example, /*option/ matches the word option only if it
appears at the start of a line. The sequence \A matches the beginning of a string, and \z and
\Z match the end of a string. (Actually, \Z matches the end of a string unless the string ends
with a \n, in which case it matches just before the \n.)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=122

DIGGING DEEPER

str = "this is\nthe time"
show_regexp(str, /Athe/) # => this is\n->the<- time
show_regexp(str, /is$/) # => this ->is<-\nthe time

show_regexp(str, /\Athis/) # => ->this<- is\nthe time
show_regexp(str, /\Athe/) # => no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries, respec-
tively. Word characters are ASCII letters, numbers, and underscores:

show_regexp("this is\nthe time", /\bis/) # => this ->is<-\nthe time
show_regexp("this is\nthe time", /\Bis/) # => th->is<- is\nthe time

Character Classes

A character class is a set of characters between brackets: [characters] matches any sin-
gle character between the brackets. [aeiou] will match a vowel, [,.:;!?] matches some
punctuation, and so on. The significance of the special regular expression characters—
() {+"$*?—is turned off inside the brackets. However, normal string substitution still
occurs, so (for example) \b represents a backspace character and \n a newline (see Table 22.2
on page 329). In addition, you can use the abbreviations shown in Table 7.1 on page 125 so
that (for example) \s matches any whitespace character, not just a literal space:

show_regexp('Price $12.', /[aeiou]/) # => Pr->i<-ce $12.
show_regexp('Price $12.', /[\s]l/) # => Price-> <-$12.
show_regexp('Price $12.', /[$.1/) # => Price ->$<-12.

Within the brackets, the sequence c;-co represents all the characters from c¢; to ¢y in the
current encoding:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[A-F1/) #
show_regexp(a, /[A-Fa-f]/) #
show_regexp(a, /[0-91/) #
show_regexp(a, /[0-9][0-9]/) #

> see [The Pick->A<-xe-page 123]
> s->e<-e [The PickAxe-page 123]
> see [The PickAxe-page ->1<-23]
> see [The PickAxe-page ->12<-3]

You can negate a character class by putting an up arrow or caret (*) immediately after the
opening bracket:

show_regexp('Price $12.', /[*A-Z]1/) #
show_regexp('Price $12."', /[M\w]/) #
show_regexp('Price $12.', /[a-z][*a-z]/) #

> P->r<-ice $12.
> Price-> <-$12.
> Pric->e <-$12.

The POSIX character classes in Table 7.2 on page 125 correspond to the ctype(3) macros of
the same names. They can also be negated by putting an up arrow (or caret) after the first
colon:

=> Pr->i<-ce $12.
Price $->1<-2.
=> Price-> <-$12.
=> Price-> <-$12.
Pr->i<-ce $12.

show_regexp('Price $12.', /[aeiou]l/)
show_regexp('Price $12.', /[[:digit:11/)
show_regexp('Price $12.', /[[:space:1]1/)
show_regexp('Price $12.', /[[:7alpha:]1/)
show_regexp('Price $12.', /[[:punct:]aeioul/)

H R H B
|
\4

F*
|
\'2

If you want to include the literal characters] and - within a character class, put them at the
start or escape them with \:

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=123

DIGGING DEEPER

a = 'see [The PickAxe-page 123]'

show_regexp(a, /[1]1/) # => see [The PickAxe-page 123->]<-
show_regexp(a, /[0-9\1]1/) # => see [The PickAxe-page ->1<-23]
show_regexp(a, /[\d\-1/) # => see [The PickAxe->-<-page 123]

Some character classes are used so frequently that Ruby provides abbreviations for them.
These abbreviations are listed in Table 7.1 on the next page—they may be used both within
brackets and in the body of a pattern.

show_regexp('It costs $12.', /\s/) # => 1It-> <-costs $12.
show_regexp('It costs $12.', /\d/) # => It costs $->1<-2.

You can create the intersection of character classes using &&. So, to match all lowercase
ASCII letters that aren’t vowels, you could use this:

str = "now is the time"
str.gsub(/[a-z&&[*aeioul]/, "+') # => "wo* i* wxxe =ixe"

=2 /s The \p construct is new with Ruby 1.9. It gives you an encoding-aware way of matching a
character with a particular Unicode property (shown in Table 7.3 on page 126):

encoding: utf-8

string = "dy/dx = 27x"
show_regexp(string, /\p{Alnum}/)
show_regexp(string, /\p{Digit}/)
show_regexp(string, /\p{Space}/)
show_regexp(string, /\p{Greek}/)
show_regexp(string, /\p{Graph}/)

=> 0->y<-/0x = 27X
=> 0y/dx = ->2<-TX
= 0y/dx-> <-= 2mx
=> 0y/0x = 2->T<-X
=> ->0<-y/0x = 27X

HOH K B W
|
\%

Finally, a period (.) appearing outside brackets represents any character except a newline
(though in multiline mode it matches a newline, too):

a = 'It costs $12.'

show_regexp(a, /c.s/) # => It ->cos<-ts $12.
show_regexp(a, /./) # => —->I<-t costs $12.
show_regexp(a, /\./) # => It costs $12->.<-

Repetition

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we wanted to
match a vertical bar surrounded by an arbitrary amount of whitespace. We now know that
the \s sequences match a single whitespace character and \| means a literal vertical bar, so
it seems likely that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk
is one of a number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then

r* Matches zero or more occurrences of r.

r+ Matches one or more occurrences of r.

r? Matches zero or one occurrence of r.

r{m,n} Matches at least m and at most n occurrences of r.
r{m,} Matches at least m occurrences of 7.

r{,n} Matches at most n occurrences of 7.

r{m} Matches exactly m occurrences of r.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=124

DIGGING DEEPER 125

Table 7.1. Character Class Abbreviations
Text in parentheses indicates the Unicode classes. These apply if the regular expression’s
encoding is one of the Unicode encodings.

Sequence As|...] Meaning (Unicode)
\d [0-9] Decimal digit character (Decimal_Number)
\D [~0-9] Any character except a digit
\h [0-9a-fA-F] Hexadecimal digit character
\H [*0-9a-fA-F] Any character except a hex digit
\s [_\\r\n\f] Whitespace character (+ Line_Separator)
\S [_\A\r\n\f] Any character except whitespace
\w [A-Za-z0-9_] Word character (+ Connector_Punctuation, Letter, Mark,
and Number)
\W ["A-Za-z0-9_] Any character except a word character

Table 7.2. Posix Character Classes
Text in parentheses indicates the Unicode classes. These apply if the regular expression’s
encoding is one of the Unicode encodings.

POSIX Character Classes (Unicode)

[:alnum:] Alphanumeric (Letter | Mark | Decimal_Number)
[:alpha:] Uppercase or lowercase letter (Letter | Mark)

[:ascii:] 7-bit character including nonprinting
[blank:] Blank and tab (+ Space_Separator)
[:entrl:] Control characters—at least 0x00-0x1f, 0x7f (Control | Format | Unassigned |

Private_Use | Surrogate)

[:digit:] Digit (Decimal_Number)

[:graph:] Printable character excluding space (Unicode also excludes Control, Unas-
signed, and Surrogate)

[lower:] Lowercase letter (Lowercase_Letter)

[:print:] Any printable character (including space)

[;punct:] Printable character excluding space and alphanumeric. Unicode: (Connec-
tor_Punctuation | Dash_Punctuation | Close_Punctuation | Final_Punctuation
| Initial_Punctuation | Other_Punctuation | Open_Punctuation)

[:space:] Whitespace (same as \s)

[:upper:] Uppercase letter (Uppercase_Letter)

[:xdigit:] Hex digit (0-9, a—f, A-F)

[:word:] Alphanumeric, underscore, and multibyte (Letter | Mark | Decimal_Number |
Connector_Punctuation)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=125

DIGGING DEEPER 126

Table 7.3. Unicode Character Properties

Character Properties

\p{name} Matches character with named property
\p{*name} Matches any character except named property
\P{name} Matches any character except named property

Property names

All encodings ~ Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper,
XDigit, Word, ASCIL

EUC and SJIS Hiragana, Katakana

UTF-n Any, Assigned, C, Cc, Cf, Cn, Co, Cs, L, L1, Lm, Lo, Lt, Lu, M, Mc, Me, Mn, N,
Nd, NI, No, P, Pc, Pd, Pe, Pf, Pi, Po, Ps, S, Sc, Sk, Sm, So, Z, Z1, Zp, Zs, Arabic,
Armenian, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_Aboriginal,
Cherokee, Common, Coptic, Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic,
Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo,
Hebrew, Hiragana, Inherited, Kannada, Katakana, Kharoshthi, Khmer, Lao, Latin,
Limbu, Linear_B, Malayalam, Mongolian, Myanmar, New_Tai_Lue, Ogham,
Old_Italic, Old_Persian, Oriya, Osmanya, Runic, Shavian, Sinhala, Syloti_Nagri,
Syriac, Tagalog, Tagbanwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan,
Tifinagh, Ugaritic, Yi

These repetition constructs have a high precedence—they bind only to the immediately
preceding matching construct in the pattern. /ab+/ matches an a followed by one or more
b’s, not a sequence of ab’s.

These patterns are called greedy, because by default they will match as much of the string
as they can. You can alter this behavior, and have them match the minimum, by adding
a question mark suffix. The repetition is then called lazy—it stops once it has done the
minimum amount of work required.

a = "The moon is made of cheese"

show_regexp(a, /\w+/) # => ->The<- moon is made of cheese
show_regexp(a, /\s.*\s/) # => The-> moon is made of <-cheese
show_regexp(a, /\s.*?\s/) # => The-> moon <-is made of cheese
show_regexp(a, /[aeiou]{2,99}/) # => The m->00<-n is made of cheese
show_regexp(a, /mo?0/) # => The ->moo<-n is made of cheese
here's the lazy version

show_regexp(a, /mo??o0/) # => The ->mo<-on is made of cheese

(There’s an additional modifier, +, that makes them greedy and also stops backtracking, but
that will have to wait until the advanced section of the chapter.)

Be very careful when using the * modifier. It matches zero or more occurences. I know
that I personally often forget about the zero part. In particular, a pattern that contains just
a * repetition will always match, whatever string you pass it. The pattern /a*/ will always
match, because every string contains zero or more a’s.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=126

DIGGING DEEPER

a = "The moon is made of cheese"

both of these match an empty substring at the start of the string
show_regexp(a, /m*/) # => -><-The moon is made of cheese
show_regexp(a, /Zx/) # => -><-The moon is made of cheese

Alternation

We know that the vertical bar is special, because our line-splitting pattern had to escape it
with a backslash. That’s because an unescaped vertical bar | matches either the construct
that precedes it or the construct that follows it:

a = "red ball blue sky"

show_regexp(a, /dl|e/) # => r->e<-d ball blue sky
show_regexp(a, /al|lu/) # => red b->al<-1 blue sky
show_regexp(a, /red ball|angry sky/) # => ->red ball<- blue sky

There’s a trap for the unwary here, because | has a very low precedence. The last example in
the previous lines matches red ball or angry sky, not red ball sky or red angry sky. To match
red ball sky or red angry sky, you’d need to override the default precedence using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within the
group is treated as a single regular expression.

This matches an 'a' followed by one or more 'n's
show_regexp('banana', /an+/) # => b->an<-ana
This matches the sequence 'an' one or more times
show_regexp('banana', /(an)+/) # => b->anan<-a

a = 'red ball blue sky'
show_regexp(a, /blue|red/)
show_regexp(a, /(blue|red) \w+/)
show_regexp(a, /(red|blue) \w+/)
show_regexp(a, /red|blue \w+/)

1l
Vv

->red<- ball blue sky
->red ball<- blue sky
=> ->red ball<- blue sky
=> ->red<- ball blue sky

H R W W
1l
\%

show_regexp(a, /red (ball|angry) sky/) # => no match
a = 'the red angry sky'
show_regexp(a, /red (ball|angry) sky/) # => the ->red angry sky<-

Parentheses also collect the results of pattern matching. Ruby counts opening parentheses
and for each stores the result of the partial match between it and the corresponding closing
parenthesis. You can use this partial match both within the rest of the pattern and in your
Ruby program. Within the pattern, the sequence \1 refers to the match of the first group, \2
the second group, and so on. Outside the pattern, the special variables $1, $2, and so on,
serve the same purpose.

/(\d\d): (\d\d)(..)/ =~ "12:50am" #=> 0

"Hour is #$1, minute #$2" # => "Hour is 12, minute 50"
/CA\d\d):(\d\d))(..)/ =~ "12:50am" # => O

"Time is #$1" # => "Time is 12:50"

"Hour is #$2, minute #$3" # => "Hour is 12, minute 50"
"AM/PM is #$4" # => "AM/PM is am"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=127

PATTERN-BASED SUBSTITUTION 128

If you’re using the MatchData object returned by the match method, you can index into it to
get the corresponding subpatterns:

md = /(\d\d):(\d\d)(..)/.match("12:50am")
"Hour is #{md[1]}, minute #{md[2]}" # => "Hour is 12, minute 50"
md = /((\d\d):(\d\d))(..)/.match("12:50am")

"Time is #{md[1]}" # => "Time is 12:50"
"Hour is #{md[2]}, minute #{md[3]}" # => "Hour is 12, minute 50"
"AM/PM is #{md[4]}" # => "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for various
forms of repetition:

match duplicated letter

show_regexp('He said "Hello"', /(\w)\1l/) # => He said "He->1ll<-o"
match duplicated substrings

show_regexp('Mississippi’', /(\w+)\1/) # => M->ississ<-ippi

Rather than use numbers, you can also use names to refer to previously matched content.
You give a group a name by placing ?<name> immediately after the opening parenthesis.
You can subsequently refer to this named group using \k<name> (or \k'name’).

match duplicated letter
str = 'He said "Hello"'
show_regexp(str, /(?<char>\w)\k<char>/) # => He said "He->11l<-o"

match duplicated adjacent substrings
str = 'Mississippi’
show_regexp(str, /(?<seg>\w+)\k<seqg>/) # => M->ississ<-ippi

The named matches in a regular expression are also available as local variables:*

/(?<hour>\d\d) : (?<min>\d\d)(..)/ =~ "12:50am" # => O
"Hour is #{hour}, minute #{min}" # => "Hour is 12, minute
50"

Once you use named matches in a particular regular expression, Ruby no longer bothers to
capture unnamed groups. Thus, in the previous example, you couldn’t refer to the last group
(which matches am) as $3.

Pattern-Based Substitution

We’ve already seen how sub and gsub replace the matched part of a string with other text.
In those previous examples, the pattern was always fixed text, but the substitution methods
work equally well if the pattern contains repetition, alternation, and grouping.

4. Note that this works only with literal regular expressions (so you can’t, for example, assign a regular expres-
sion object to a variable, match the contents of that variable against a string, and expect the local variables to be
set).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=128

PATTERN-BASED SUBSTITUTION 129

a = "quick brown fox"

a.sub(/[aeiou]/, 'x') # => "g+ick brown fox"
a.gsub(/[aeiou]/, "+') # => "g#xck brxwn f=x"
a.sub(/\s\S+/, '") # => "quick fox"
a.gsub(/\s\S+/, '") # => "quick"

The substitution methods can take a string or a block. If a block is used, it is passed the
matching substring, and the block’s value is substituted into the original string.

a = "quick brown fox"
a.sub(/A./) {|match| match.upcase } # => "Quick brown fox"
a.gsub(/[aeiou]/) {|vowel| vowel.upcase } # => '"qUIck brOwn fOx"

Maybe we want to normalize names entered by users into a web application. They may enter
DAVE THOMAS, dave thomas, or dAVE tHoMas, and we’d like to store it as Dave Thomas.
The following method is a simple first iteration. The pattern that matches the first character
of a word is \b\w—Ilook for a word boundary followed by a word character. Combine this
with gsub, and we can hack the names:

def mixed_case(name)
name .downcase.gsub(/\b\w/) {|first| first.upcase }
end

> "Dave Thomas"
> "Dave Thomas"
> "Dave Thomas"

mixed_case("DAVE THOMAS") # =
mixed_case("dave thomas") #
mixed_case("dAvE tHoMas") #

=2 , There’s an idiomatic way to write the substitution in Ruby 1.9, but we’ll have to wait until
Chapter 23 on page 379 to see why it works:

def mixed_case(name)
name.downcase.gsub(/\b\w/, &:upcase)
end

mixed_case("dAvE tHoMas") # => "Dave Thomas"

You can also give sub and gsub a hash as the replacement parameter, in which case they
will look up matched groups and use the corresponding values as replacement text:

replacement = { "cat" => "feline", "dog" => "canine" }

replacement.default = "unknown"

"cat and dog".gsub(/\w+/, replacement) # => '"feline unknown canine"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the pattern, standing
for the nth group matched so far. The same sequences can be used in the second argument
of sub and gsub.

puts "fred:smith".sub(/(\w+):(\w+)/, '\2, \1")
puts "nercpyitno".gsub(/(.)(.)/, "\2\1")

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=129

ADVANCED REGULAR EXPRESSIONS 130

produces:
smith, fred
encryption

You can also reference named groups:

puts "fred:smith".sub(/(?<first>\w+):(?<last>\w+)/, '\k<last>, \k<first>')
puts "nercpyitno".gsub(/(?<cl>.)(?<c2>.)/, '\k<c2>\k<c1l>")

produces:

smith, fred
encryption

Additional backslash sequences work in substitution strings: \& (last match), \+ (last
matched group), \" (string prior to match), \' (string after match), and \\ (a literal backslash).

It gets confusing if you want to include a literal backslash in a substitution. The obvious
thing is to write this:

str.gsub(/A\/, "\\\\")

Clearly, this code is trying to replace each backslash in str with two. The programmer dou-
bled up the backslashes in the replacement text, knowing that they’d be converted to \\ in
syntax analysis. However, when the substitution occurs, the regular expression engine per-
forms another pass through the string, converting \\ to \, so the net effect is to replace each
single backslash with another single backslash. You need to write gsub(AV, "\W\\')!

str = 'a\b\c' # => "a\b\c"
str.gsub(/\\/, "\\\\\\\\") # => "a\\b\\c"

However, using the fact that \& is replaced by the matched string, you could also write this:

str = 'a\b\c' # => "a\b\c"

str.gsub(/\\/, "\&\&') # => "a\\b\\c"
If you use the block form of gsub, the string for substitution is analyzed only once (during
the syntax pass), and the result is what you intended:

str = 'a\b\c' # => "a\b\c"

str.gsub(/A\/) { "\\\\' } # => "a\\b\\c"
At the start of this chapter, we said that it contained two emergency exits. The first was after
we discussed basic matching and substitution. This is the second: you now know as much

about regular expressions as the vast majority of Ruby developers. Feel free to break away
and move on to the next chapter. But if you’re feeling brave...

Advanced Regular Expressions

You may never need the information in the rest of this chapter. But, at the same time, know-
ing some of the real power in the Ruby regular expression implementation might just dig
you out of a hole.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=130

ADVANCED REGULAR EXPRESSIONS 131

Regular Expression Extensions

Ruby uses the Oniguruma regular expression library. This offers a large number of exten-
sions over traditional Unix regular expressions. Most of these extensions are written
between the characters (? and). The parentheses that bracket these extensions are groups,
but they do not necessarily generate backreferences. Some do not set the values of \1 and
$1, and so on.

The sequence (?# comment) inserts a comment into the pattern. The content is ignored
during pattern matching. As we’ll see, commenting complex regular expressions can be as
helpful as commenting complex code.

(?:re) makes re into a group without generating backreferences. This is often useful when
you need to group a set of constructs but don’t want the group to set the value of $1 or what-
ever. In the example that follows, both patterns match a date with either colons or slashes
between the month, day, and year. The first form stores the separator character (which can
be a slash or a colon) in $2 and $4, but the second pattern doesn’t store the separator in an
external variable.

date = "12/25/2008"

date =~ %r{(\d+)(/1:)A\d+)(/1:)(\d+)}
[$1,$2,$3,$4,$5] # => ["12", "/", "25", "/", "2008"]

date =~ %r{(\d+)(?:/[:)(\d+)(?:/]:)(\d+)}
[$1,$2,$3] #=> ["12", "25", "2008"]

Lookahead and Lookbehind

You’ll sometimes want to match a pattern only if the matched subsubtring is preceded by
or followed by some other pattern. That is, you want to set some context for your match but
don’t want to capture that context as part of the match.

For example, you might want to match every word in a string that is followed by a comma,
but you don’t want the comma to form part of the match. Here you could use the charmingly
named zero-width positive lookahead extension. (?=re) matches re at this point but does not
consume it—you can look forward for the context of a match without affecting $&. In this
example, we’ll use scan to pick out the words:

str = "red, white, and blue"
str.scan(/[a-z]+(?=,)/) # => ["red", "white"]

You can also match before the pattern using (?<=re) (zero-width positive lookbehind). This
lets you look for characters that precede the context of a match without affecting $&. The
following example matches the letters dog but only if they are preceded by the letters hot:

show_regexp("seadog hotdog", /(?<=hot)dog/) # => seadog hot->dog<-

For the lookbehind extension, re either must be a fixed length or consist of a set of fixed
length alternatives. That is, (?<=aa) and (?<=aa|bbb) are valid, but (?<=a+b) is not.

Both forms have negated versions, (?!re) and (?<!re), which are true if the context is not
present in the target string.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=131

ADVANCED REGULAR EXPRESSIONS 132

Controlling Backtracking

Say you’re given the problem of searching a string for a sequence of Xs not followed by an
0. You know that a string of Xs can be represented as (X+), and you can use a lookahead to
check that it isn’t followed by an O, so you code up the pattern /(X+)(?!0)/. Let’s try it:

re = /(X+)(?!0)/

This one works
re =~ "test XXXY" # => 5
$1 # => "XXX"

But, unfortunately, so does this one
re =~ "test XXX0" # => 5
$1 # = "XX"

Why did the second match succeed? Well, the regular expression engine saw the X+ in the
pattern and happily gobbled up all the Xs in the string. It then saw the pattern (?!0), saying
that it should not now be looking at an O. Unfortunately, it is looking at an O, so the match
doesn’t succeed. But the engine doesn’t give up. No sir! Instead it says, “Maybe I was
wrong to consume every single X in the string. Let’s try consuming one less and see what
happens.” This is called backtracking—when a match fails, the engine goes back and tries
to match a different way. In this case, by backtracking past a single character, it now finds
itself looking at the last X in the string (the one before the final O). And that X is not an O,
so the negative lookahead succeeds, and the pattern matches. Look carefully at the output
of the previous program: there are three Xs in the first match but only two in the second.

But this wasn’t the intent of our regexp. Once it finds a sequence of Xs, those Xs should be
locked away. We don’t want one of them being the terminator of the pattern. We can get that
behavior by telling Ruby not to backtrack once it finds a string of Xs. There are a couple of
ways of doing this.

The sequence (?>re) nests an independent regular expression within the first regular expres-
sion. This expression is anchored at the current match position. If it consumes characters,
these will no longer be available to the higher-level regular expression. This construct there-
fore inhibits backtracking.

Let’s try it with our previous code:
re = /((?>X+))(?!0)/
This one works

re =~ "test XXXY" #=> 5
$1 # => "XXX"

Now this doesn't match
re =~ "test XXX0O" # => nil
$1 # => nil

And this finds the second string of Xs

re =~ "test XXX0 XXXXY" # => 10
$1 # = "XXXX"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=132

ADVANCED REGULAR EXPRESSIONS 133

You can also control backtracking by using a third form of repetition. We’re already seen
greedy repetition, such as re+, and lazy repetition, re+?. The third form is called possessive.
You code it using a plus sign after the repetition character. It behaves just like greedy repe-
tition, consuming as much of the string as it can. But once consumed, that part of the string
can never be reexamined by the pattern—the regular expression engine can’t backtrack past
a possessive qualifier. This means we could also write our code as this:

re = /(X++)(?!0)/

re =~ "test XXXY" #=> 5

$1 # => "XXX"
re =~ "test XXX0" # => nil
$1 # => nil
re =~ "test XXX0 XXXXY" # => 10

$1 # = "XXXX"

Backreferences and Named Matches

Within a pattern, the sequences \n, \k'n’, and \k<n> all refer to the nth captured subpattern.
Thus, the expression /(...)\1/ matches six characters with the first three characters being the
same as the last three.

Rather than refer to matches by their number, you can give them names and then refer to
those names. A subpattern is named using either of the syntaxes (?<name>...) or (?’name’...).
You then refer to these named captures using either \ke<name> or \k'name’.

For example, the following shows different ways of matching a time range (in the form
hh:mm-hh:mm) where the hour part is the same:

same = "12:15-12:45"
differ = "12:45-13:15"

use numbered backreference
same =~ /(\d\d):\d\d-\1:\d\d/

0
differ =~ /(\d\d):\d\d-\1:\d\d/ #

nil

>
>

use named backreference
same =~ /(?<hour>\d\d) :\d\d-\k<hour>:\d\d/ # => 0
differ =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => nil

Negative backreference numbers refer count backward from the place they’re used, so they
are relative, not absolute numbers. The following pattern matches four-letter palindromes:’

"abab" =~ /(.)(.)\k<-1>\k<-2>/ # => nil
"abba" =~ /(.)(.)\k<-1>\k<-2>/ # => 0

5. These are words that read the same forward and backward.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=133

ADVANCED REGULAR EXPRESSIONS 134

You can invoke a named subpattern using \g<name> or \g<number>. Note that this reex-
ecutes the match in the subpattern, in contrast to \k<name>, which matches whatever is
matched by the subpattern:

re = /(?<color>red|green|blue) \w+ \g<color> \w+/

re =~ "red sun blue moon" #=> 0
re =~ "red sun white moon" # => nil

You can use \g recursively, invoking a subpattern within that pattern. The following code
matches a string in which braces are properly nested:

re = /
\A
(?<brace_expression>
{
(
[A{}] # anything other than braces

|
\g<brace_expression>
)
}
)
\Z
/X

We use the x option to allow us to write the expression with lots of space, which makes it
easier to understand. We also indent it, just as we would indent Ruby code. And we can also
use Ruby-style comments to document the tricky stuff. You can read this regular expression
as follows: a brace expression is an open brace, then a sequence of zero or more characters
or brace expressions, and then a closing brace.

Nested Groups

The ability to invoke subpatterns recursively means that backreferences can get tricky. Ruby
solves this by allowing you to refer to a named or numbered group at a particular level of
the recursion—simply (!) add a +n or -n to refer to the capture at the given level relative to
the current level.

Here’s an example from the Oniguruma cheat sheet. It matches palindromes:
/N\A(?<a>]| .| (?:(?.)\g<a>\k<b+0>))\z/

That’s pretty hard to read, so let’s spread it out.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=134

ADVANCED REGULAR EXPRESSIONS 135

palindrome_matcher = /

\A
(?<palindrome>
nothing, or
|
\w # a single character, or
|
(?: # X <palindrome> x
(?<some_letter>\w)
\g<palindrome>
\k<some_letter+0>
)
)
\z
/X

palindrome_matcher.match "madam" # => #<MatchData "madam"
palindrome: "madam"

some_letter:"a">

palindrome_matcher.match "m" # => #<MatchData "m" palindrome:"m"
some_letter:nil>
palindrome_matcher.match "adam" # => nil

So, a palindrome is an empty string, a string containing a single character, or a character
followed by a palindrome, followed by that same character. The notation \k<some_letter+0>
means that the letter matched at the end of the inner palindrome will be the same letter that
was at the start of it. Inside the nesting, however, a different letter may wrap the interior
palindrome.

Named Subroutines

There’s a trick that allows us to write subroutines inside regular expressions. Recall that we
can invoke a named group using \g<name>, and we define the group using (?<names>...).
Normally, the definition of the group is itself matched as part of executing the pattern.
However, if you add the suffix {0} to the group, it means “zero matches of this group,” so
the group is not executed when first encountered:

sentence = %r{

(?<subject> cat | dog | gerbil){0}

(?<verb> eats | drinks| generates){0}

(?<object> water | bones | PDFs){0}

(?<adjective> big | small | smelly){0}

(?<opt_adj> (\g<adjective>\s)?){0}

The\s\g<opt_adj>\g<subject>\s\g<verb>\s\g<opt_adj>\g<object>
Ix

md = sentence.match("The cat drinks water")
puts "The subject is #{md[:subject]} and the verb is #{md[:verb]}"

md = sentence.match("The big dog eats smelly bones")
puts "The last adjective in the second sentence is #{md[:adjective]}"

sentence =~ "The gerbil generates big PDFs"
puts "And the object in the last sentence is #{$~[:object]}"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=135

ADVANCED REGULAR EXPRESSIONS 136

produces:

The subject is cat and the verb is drinks
The last adjective in the second sentence is smelly
And the object in the last sentence is PDFs

Setting Options

As we saw at the start of this chapter, you can add one or more of the options i (case
insensitive), m (multiline), and x (allow spaces) to the end of a regular expression literal.
You can also embed these options within the pattern itself.

(?imx) Turns on the corresponding i, m, or x option. If used inside a group, the
effect is limited to that group.
(?-imx) Turns off the i, m, or x option.
(?imx:re) Turns on the i, m, or x option for re.
(?-imx:re) Turns off the i, m, or x option for re.

So, that’s it. If you’ve made it this far, consider yourself a regular expression ninja. Get out
there and match some strings.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=136

Chapter 8

More About Methods

So far in this book, we’ve been defining and using methods without much thought. Now it’s
time to get into the details.

Defining a Method

As we’ve seen, a method is defined using the keyword def. Method names should begin with
a lowercase letter or underscore,! followed by letters, digits, and underscores.

A method name may end with one of ?, |, or =. Methods that return a boolean result (so-
called predicate methods) are often named with a trailing ?:

1.even? # => false
2.even? # => true
1.instance_of?(Fixnum) # => true

Methods that are “dangerous,” or that modify their receiver, may be named with a trail-
ing exclamation mark, !. These are sometimes called bang methods. For instance, String
provides both chop and chop! methods. The first one returns a modified string; the second
modifies the receiver in place.

Methods that can appear on the left side of an assignment (a feature we discussed on
page 55) end with an equals sign (=).

?, |, and = are the only “weird” characters allowed as method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some parame-
ters. These are simply a list of local variable names in parentheses. (The parentheses around
a method’s arguments are optional; our convention is to use them when a method has argu-
ments and omit them when it doesn’t.)

1. You won’t get an immediate error if you start a method name with an uppercase letter, but when Ruby sees
you calling the method, it might guess that it is a constant, not a method invocation, and as a result it may parse the
call incorrectly. By convention, methods names starting with an uppercase letter are used for type conversion. The
Integer method, for example, converts its parameter to an integer.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=137

DEFINING A METHOD 138

def my_new_method(argl, arg2, arg3) # 3 arguments
Code for the method would go here

end

def my_other_new_method # No arguments
Code for the method would go here

end

Ruby lets you specify default values for a method’s arguments—values that will be used if
the caller doesn’t pass them explicitly. You do this using an equals sign (=) followed by a
Ruby expression. That expression can include references to previous arguments in the list:

def cool_dude(argl="Miles", arg2="Coltrane", arg3="Roach")
"#{argl}, #{arg2}, #{arg3}."
end

"Miles, Coltrane, Roach."
"Bart, Coltrane, Roach."
"Bart, Elwood, Roach."
"Bart, Elwood, Linus."

cool_dude

cool_dude("Bart")

cool_dude("Bart", "Elwood")
cool_dude("Bart", "Elwood", "Linus")

vV V V V

#
#
#
#

Here’s an example where the default argument references a previous argument:

def surround(word, pad_width=word.length/2)
"[" % pad_width + word + "]" * pad_width

end

surround("elephant") # => "[[[[elephant]]]]"
surround("fox") # => "[fox]"

surround("fox", 10) #=> "[LLLLLOCO0[fox111101111]"

The body of a method contains normal Ruby expressions. The return value of a method is
the value of the last expression executed or the result of an explicit return expression.

Variable-Length Argument Lists

But what if you want to pass in a variable number of arguments or want to capture multiple
arguments into a single parameter? Placing an asterisk before the name of the parame-
ter after the “normal” parameters lets you do just that. This is sometimes called splatting
an argument (presumably because the asterisk looks somewhat like a bug after hitting the
windscreen of a fast moving car).

def varargs(argl, =rest)
"argl=#{argl}. rest=#{rest.inspect}"

end

varargs("one") # => argl=one. rest=[]
varargs("one", "two") # => argl=one. rest=[two]
varargs "one", "two", "three" # => argl=one. rest=[two, three]

In this example, the first argument is assigned to the first method parameter as usual. How-
ever, the next parameter is prefixed with an asterisk, so all the remaining arguments are
bundled into a new Array, which is then assigned to that parameter.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=138

DEFINING A METHOD 139

Folks sometimes use a splat to specify arguments that are not used by the method (but that
are perhaps used by the corresponding method in a superclass. (Note that in this example
we call super with no parameters. This is a special case that means “invoke this method in
the superclass, passing it all the parameters that were given to the original method.”)

class Child < Parent
def do_something(*not_used)
our processing
super
end
end

In this case, you can also leave off the name of the parameter and just write an asterisk:

class Child < Parent
def do_something(*)
our processing
super
end
end

=2 /s InRuby 1.9, you can put the splat argument anywhere in a method’s parameter list, allowing
you to write this:

def split_apart(first, =splat, last)
puts "First: #{first.inspect}, splat: #{splat.inspect}, " +
"last: #{last.inspect}"
end
split_apart(1,2)
split_apart(1,2,3)
split_apart(1,2,3,4)
produces:
First: 1, splat: [], last: 2
First: 1, splat: [2], last: 3
First: 1, splat: [2, 3], last: 4

If you cared only about the first and last parameters, you could define this method using
this:

def split_apart(first, =, last)
...
end

You can have only one splat argument in a method—if you had two, it would be ambiguous.
You also can’t put arguments with default values after the splat argument. In all cases, the
splat argument receives the values left over after assigning to the regular argument.

Methods and Blocks

As we discussed in the section on blocks and iterators beginning on page 74, when a method
is called, it may be associated with a block.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=139

CALLING A METHOD 140

Normally, you simply call the block from within the method using yield:

Download samples/tutmethods_10.rb

def double(pl)
yield(plx2)
end

double(3) {|val| "I got #{val}" } # => "I got 6"
double("tom") {|val| "Then I got #{val}" } # => "Then I got tomtom"

However, if the last parameter in a method definition is prefixed with an ampersand, any
associated block is converted to a Proc object, and that object is assigned to the parameter.
This allows you to store the block for use later.

Download samples/tutmethods_11.rb

class TaxCalculator
def initialize(name, &block)
@name, @block = name, block
end
def get_tax(amount)
"#@name on #{amount} = #{ @block.call(amount) }"
end
end

tc = TaxCalculator.new("Sales tax") {|amt| amt * 0.075 }

"Sales tax on 100 = 7.5"
"Sales tax on 250 = 18.75"

tc.get_tax(100)

=>
tc.get_tax(250) # =>

Calling a Method

You call a method by optionally specifying a receiver, giving the name of the method, and
optionally passing some parameters and an optional block. Here’s a code fragment that
shows us calling a method with a receiver, a parameter, and a block:

connection.download_mp3("jitterbug") {|p| show_progress(p) }

In this example, the object connection is the receiver, download_mp3 is the name of the
method, the string "jitterbug" is the parameter, and the stuff between the braces is the asso-
ciated block. During this method call, Ruby first sets self to the receiver and then invokes
the method in that object: For class and module methods, the receiver will be the class or
module name.

File.size("testfile") # => 66
Math.sin(Math: :PI/4) # => 0.707106781186547

If you omit the receiver, it defaults to self, the current object.

class InvoiceWriter
def initialize(order)
@order = order
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_10.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=140

CALLING A METHOD 141

def write_on(output)
write_header_on(output) # called on current object.
write_body_on(output) # self is not changed, as
write_totals_on(output) # there is no receiver
end
def write_header_on(output)
...
end
def write_body_on(output)
...
end
def write_totals_on(output)
...
end
end
writer = InvoiceWriter.new(my_order)
writer.write_on(STDOUT)

This defaulting mechanism is how Ruby implements private methods. Private methods may
not be called with a receiver, so they must be methods available in the current object. In the
previous example, we’d probably want to make the helper methods private, because they
shouldn’t be called from outside the InvoiceWriter class:

class InvoiceWriter
def initialize(order)
@order = order
end
def write_on(output)
write_header_on(output)
write_body_on(output)
write_totals_on(output)
end
private
def write_header_on(output)
...
end
def write_body_on(output)
...
end
def write_totals_on(output)
...
end
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=141

CALLING A METHOD 142

Passing Parameters to a Method

Any parameters follow the method name. If no ambiguity exists, you can omit the parenthe-
ses around the argument list when calling a method.? However, except in the simplest cases
we don’t recommend this—some subtle problems can trip you up.® Our rule is simple: if
you have any doubt, use parentheses.

a = obj.hash # Same as

a = obj.hash() # this.

obj.some_method "Argl", arg2, arg3d # Same thing as
obj.some_method("Argl", arg2, arg3) # with parentheses.

Older Ruby versions compounded the problem by allowing you to put spaces between the
method name and the opening parenthesis. This made it hard to parse: is the parenthesis the
start of the parameters or the start of an expression? As of Ruby 1.8 you get a warning if
you put a space between a method name and an open parenthesis.

Method Return Values

Every called method returns a value (although there’s no rule that says you have to use that
value). The value of a method is the value of the last statement executed by the method:

def meth_one
"one"
end

meth_one # => "one

def meth_two(arg)
case
when arg > 0 then "positive"
when arg < 0 then "negative"
else "zero"
end

end

meth_two(23) # => "positive"
meth_two(0) # => '"zero"

Ruby has a return statement, which exits from the currently executing method. The value
of a return is the value of its argument(s). It is idiomatic Ruby to omit the return if it isn’t
needed, as shown by the previous two examples.

2. Other Ruby documentation sometimes calls these method calls without parentheses commands.

3. In particular, you must use parentheses on a method call that is itself a parameter to another method call
(unless it is the last parameter).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=142

CALLING A METHOD 143

This next example uses return to exit from a loop inside the method:

def meth_three
100.times do |num|
square = num=num
return num, square if square > 1000
end
end
meth_three # => [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns them
in an array. You can use parallel assignment to collect this return value:

num, square = meth_three
num #=> 32
square # => 1024

Splat! Expanding Collections in Method Calls

Earlier we saw that if you put an asterisk in front of a parameter in a method definition,
multiple arguments in the call to the method will be bundled into an array. Well, the same
thing works in reverse.

=2 ,/ When you call a method, you can convert any collection or enumerable object into its con-
stituent elements and pass those elements as individual parameters to the method. Do this
by prefixing array arguments with an asterisk:

def five(a, b, c, d, e)
"I was passed #{a} #{b} #{c} #{d} #{e}"
end

five(1, 2, 3, 4, 5)
five(1, 2, 3, *#['a', 'b'])
five(«['a', 'b'], 1, 2, 3) => "I was passed a b1 2 3"
five(*(10..14)) => "I was passed 10 11 12 13 14"
five(*[1,21, 3, *(4..5)) # => "I was passed 1 2 3 4 5"

=> "I was passed 1 2 3 4 5"
"I was passed 1 2 3 a b"

* R H W
U
\%

=2 , As of Ruby 1.9, splat arguments can appear anywhere in the parameter list, and you can
intermix splat and regular arguments.

Making Blocks More Dynamic

We’ve already seen how to associate a block with a method call:

for_each_bone(aardvark) do |bone]|
...
end

Normally, this is perfectly good enough—you associate a fixed block of code with a method
in the same way you’d have a chunk of code after an if or while statement.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=143

CALLING A METHOD 144

Sometimes, however, you’d like to be more flexible. For example, we may be teaching math
skills.* The student could ask for an n-plus table or an n-times table. If the student asked for
a 2-times table, we’d output 2, 4, 6, 8, and so on. (This code does not check its inputs for
errors.)

Download samples/tutmethods_23.rb

print "(t)imes or (p)lus:
operator = gets
print "number:

number = Integer(gets)

if operator =~ /At/

puts((1..10).collect {|n| n*number }.join(", "))
else

puts((1..10).collect {|n| n+number }.join(", "))
end

produces:
(t)imes or (p)lus: t

number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if statement. It
would be nice if we could factor out the block that does the calculation:

Download samples/tutmethods_24.rb

print "(t)imes or (p)lus:
operator = gets
print "number:

number = Integer(gets)

if operator =~ /At/
calc = lambda {|n| n*number }
else
calc = lambda {|n| n+number }
end
puts((1..10).collect(&calc).join(", "))

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it is a
Proc object. It removes it from the parameter list, converts the Proc object into a block, and
associates it with the method.

4. Of course, Andy and Dave would have to learn math skills first. Conrad Schneiker reminded us that there are
three kinds of people: those who can count and those who can’t.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_23.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=144

CALLING A METHOD 145

Collecting Hash Arguments

Some languages feature keyword arguments. Instead of passing a specific number of argu-
ments in a given order, you can invoke the method with the names of the arguments, each
with a corresponding value, in any order. Ruby 1.9 does not have keyword arguments,
although they might appear in Ruby 2.0. In the meantime, people are using hashes as a
way of achieving the same effect. For example, we could consider adding a search facility
to an MP3 playlist:

class SonglList

def search(name, params)

...

end
end
list.search(:titles,

{ :genre => "jazz",
:duration_less_than => 270

)

The first parameter tells the search what to return. The second parameter is a hash literal
containing search parameters. (Note how we used symbols as the keys for this options hash.
This has become idiomatic in Ruby libraries and frameworks.) The use of a hash means we
can simulate keywords: look for songs with a genre of “jazz” and a duration less than 4%
minutes.

However, this approach is slightly clunky, and that set of braces could easily be mistaken
for a block associated with the method. So, Ruby has a shortcut. You can place key => value
pairs in an argument list, as long as they follow any normal arguments and precede any splat
and block arguments. All these pairs will be collected into a single hash and passed as one
argument to the method. No braces are needed.

list.search(:titles,
:genre => 'jazz',
:duration_less_than => 270)

=2 / Option passing is one of the reasons for the new hash literal syntax in Ruby 1.9:
list.search(:titles, genre: 'jazz', duration_less_than: 270)

A well-written Ruby program will typically contain many methods, each quite small, so it’s
worth getting familiar with the options available when defining and using Ruby methods. At
some point you’ll probably want to read the section called Method Arguments on page 353 to
see exactly how arguments in a method call get mapped to the method’s formal parameters
when you have combinations of default parameters and splat parameters.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=145

Chapter 9

Expressions

So far we’ve been fairly cavalier in our use of expressions in Ruby. After all, a=b+c is
pretty standard stuff. You could write a whole heap of Ruby code without reading any of
this chapter.

But it wouldn’t be as much fun ;-).

One of the first differences with Ruby is that anything that can reasonably return a value
does: just about everything is an expression. What does this mean in practice?

Some obvious things include the ability to chain statements together:

a=b=c=0 #=> 0

[3, 1, 7, 0].sort.reverse # => [7, 3, 1, 0]

Perhaps less obvious, things that are normally statements in C or Java are expressions in
Ruby. For example, the if and case statements both return the value of the last expression

executed:

song_type = if song.mp3_type == MP3::Jazz
if song.written < Date.new(1935, 1, 1)
Song: :TradJazz

else
Song::Jazz
end
else
Song: :0ther
end

rating = case votes_cast
when 0...10 then Rating::SkipThisOne
when 10...50 then Rating::CouldDoBetter
else Rating: :Rave
end

We’ll talk more about if and case starting on page 156.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=146

OPERATOR EXPRESSIONS 147

Operator Expressions

Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A
complete list of the operators, and their precedences, is given in Table 22.4 on page 345.

In Ruby, many operators are actually implemented as method calls. For example, when you
write a*b + ¢, you're actually asking the object referenced by a to execute the method *,
passing in the parameter b. You then ask the object that results from that calculation to
execute the + method, passing ¢ as a parameter. This is equivalent to writing the following
(perfectly valid) Ruby:

a, b, c=1, 2,3
a*b+c # => 5
(a.*(b)).+(c) #=> 5

Because everything is an object and because you can redefine instance methods, you can
always redefine basic arithmetic if you don’t like the answers you’re getting:

Download samples/tutexpressions_4.rb

class Fixnum
alias old_plus + # We can reference the original '+' as 'old_plus'

def +(other) # Redefine addition of Fixnums. This is a BAD IDEA!
old_plus(other).succ
end
end
1+2 #=> 4
a=3
a+= 4 #=> 8

a+a+a #=> 26

More useful is that classes you write can participate in operator expressions just as if they
were built-in objects. For example, the left shift operator, <<, is often used to mean append
to receiver. Arrays support this:

a=1[1, 2, 3]
a<<4 #= [1, 2, 3, 4]

You can add similar support to your classes:
Download samples/tutexpressions_6.rb

class ScoreKeeper

def initialize
@total_score = 0
@count = 0

end

def <<(score)
@total_score += score
@count += 1
self

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_4.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=147

OPERATOR EXPRESSIONS

def average
fail "No scores" if @count ==
Float(@total_score) / @count
end
end
scores = ScoreKeeper.new
scores << 10 << 20 << 40
puts "Average = #{scores.average}"

produces:
Average = 23.3333333333333

Note that there’s a subtlety in this code—the << method explicitly returns self. It does this
to allow the method chaining in the line scores << 10 << 20 << 40. Because each call to
<< returns the scores object, you can then call << again, passing in a new score.

As well as the obvious operators, such as +, *, and <<, indexing using square brackets is
also implemented as a method call. When you write this:

some_obj[1,2,3]

you’re actually calling a method named [] on some_obj, passing it three parameters. You’d
define this method using this:

class SomeClass
def [1(pl, p2, p3)
...
end
end

Similarly, assignment to an element is implemented using the []= method. This method
receives each object passed as an index as its first n parameters and the value of the assign-
ment as its last parameter:

Download samples/tutexpressions_9.rb

class SomeClass
def []=(*params)
value = params.pop
puts "Indexed with #{params.join(', ')}"
puts "value = #{value.inspect}"

end

end

s = SomeClass.new

s[1] = 2

s['cat', 'dog'] = 'enemies'
produces:

Indexed with 1

value = 2

Indexed with cat, dog

value = "enemies"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=148

MISCELLANEOUS EXPRESSIONS 149

Miscellaneous Expressions

As well as the obvious operator expressions and method calls and the (perhaps) less obvious
statement expressions (such as if and case), Ruby has a few more things that you can use in
expressions.

Command Expansion

If you enclose a string in backquotes (sometimes called backticks) or use the delimited form
prefixed by %k, it will (by default) be executed as a command by your underlying operating
system. The value of the expression is the standard output of that command. Newlines will
not be stripped, so it is likely that the value you get back will have a trailing return or
linefeed character.

“date’ # => "Mon Apr 13 13:25:58 CDT 2009\n"

“1s.split[34] # => "ext_c_win32ole.tip"

%x{echo "Hello there"} # => "Hello there\n"

You can use expression expansion and all the usual escape sequences in the command string:

for i in 0..3
status = ‘dbmanager status id=#{i}"
...

end

The exit status of the command is available in the global variable $?.

Redefining Backquotes

In the description of the command output expression, we said that the string in backquotes
would “by default” be executed as a command. In fact, the string is passed to the method
called Kernel.” (a single backquote). If you want, you can override this. This example uses
$?, which contains the status of the last external process run:

Download samples/tutexpressions_12.rb

alias old_backquote °

def " (cmd)
result = old_backquote(cmd)
if $? 1= 0
puts "+++ Command #{cmd} failed: status = #{$?.exitstatus}"
end
result
end

print “1s -1 /etc/passwd’
print "1s -1 /etc/wibble"
produces:

-rw-r--r-- 1 root wheel 2888 Sep 23 2007 /etc/passwd
1s: /etc/wibble: No such file or directory
##% Command 1s -1 /etc/wibble failed: status = 1

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=149

ASSIGNMENT 150

Assignment

Just about every example we’ve given so far in this book has featured assignment. Perhaps
it’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the /value) to refer to
the value on the right (the rvalue). It then returns that rvalue as the result of the assignment
expression. This means you can chain assignments, and you can perform assignments in
some unexpected places:

a=b=1+2+3
a #=> 6
b #=> 6
a=(b=1+2)+3
a #=> 6
b #= 3

File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference to a variable
or constant. This form of assignment is hardwired into the language:

instrument = "piano"
MIDDLE_A = 440

The second form of assignment involves having an object attribute or element reference on
the left side. These forms are special, because they are implemented by calling methods in
the lvalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method name
ending in an equals sign. This method receives as its parameter the assignment’s rvalue.
We’ve also seen that you can define [] as a method:

Download samples/tutexpressions_15.rb

class ProjectList
def initialize
@projects = []
end
def projects=(list)
@projects = list.map(&:upcase) # store list of names in uppercase
end
def [](offset)
@projects[offset]
end
end

list = ProjectList.new

list.projects = %w{ strip sand prime sand paint sand paint rub paint }
list[3] # => "SAND"

list[4] # => "PAINT"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=150

ASSIGNMENT 151

As this example shows, these attribute-setting methods don’t have to correspond with inter-
nal instance variables, and you don’t need an attribute reader for every attribute writer (or
vice versa).

In older Ruby versions, the result of the assignment was the value returned by the attribute-
setting method. As of Ruby 1.8, the value of the assignment is always the value of the
parameter; the return value of the method is discarded. In the code that follows, older ver-
sions of Ruby would set a to 99. Now a will be set to 2.

Download samples/tutexpressions_16.rb

class Test
def val=(val)
@val = val
return 99
end
end

Test.new
a = (t.val = 2)
a #=> 2

o+
1]

Parallel Assignment

During your first week in a programming course (or the second semester if it was a party
school), you may have had to write code to swap the values in two variables:

int a = 1;
int b = 2;
int temp;
temp = a;
a = b;

b = temp;

You can do this much more cleanly in Ruby:
=1
=2

,b=">b, a

(SR

Ruby lets you have a comma-separated list of rvalues (the things on the right of the assign-

ment). Once Ruby sees more than one rvalue in an assignment, the rules of parallel assign-

ment come into play. What follows is a description at the logical level: what happens inside

the interpreter is somewhat hairier. Users of older versions of Ruby should note that these
=2 / rules have changed in Ruby 1.9.

First, all the rvalues are evaluated, left to right, and collected into an array (unless they are
already an array). This array will be the eventual value returned by the overall assignment.

Next, the left side (lhs) is inspected. If it contains a single element, the array is assigned to
that element.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_16.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=151

ASSIGNMENT 152

a=1, 2, 3, 4 # a=[1, 2, 3, 4]
b = [1, 2, 3, 4] # b=[1, 2, 3, 4]

If the lhs contains a comma, Ruby matches values on the rhs against successive elements
on the lhs. Excess elements are discarded.

a, b=1, 2, 3, 4 # a=1, b=2

c, =1, 2, 3, 4 # c=1

Splats and Assignment

If Ruby sees any splats on the right side of an assignment (that is, rvalues preceded by an
asterisk), each will be expanded inline into its constituent values during the evaluation of
the rvalues and before the assignment to lvalues starts:

a, b, ¢, d, e ==+(..2), 3, =[4, 5] # a=1, b=2, c=3, d=4, e=5

Exactly one lvalue may be a splat. This makes it greedy—it will end up being an array, and
that array will contain as many of the corresponding rvalues as possible. So, if the splat is
the last lvalue, it will soak up any rvalues that are left after assigning to previous lvalues:

a, *b =1, 2, 3 # a=1, b=[2, 3]
a, *b = 1 # a=1, b=[]

If the splat is not the last lvalue, then Ruby ensures that the lvalues that follow it will all
receive values from rvalues at the end of the right side of the assignment—the splat lvalue
will soak up only enough rvalues to leave one for each of the remaining lvalues. (OK, that’s
a pretty tortuous explanation—some examples will help.)

*a, b =1, 2, 3, 4 # a=[1, 2, 3], b=4
c, »d, e=1, 2, 3, 4 # c=1, d=[2, 3], e=4
£, g, h, i, j=1,2, 3, 4 # £=1, g=[], h=2, i=3, j=4

As with method parameters, you can use a raw asterisk to ignore some rvalues:

first, =, last = 1,2,3,4,5,6 # first=1, last=6

Nested Assignments

Parallel assignments have one more feature worth mentioning. The left side of an assign-
ment may contain a parenthesized list of terms. Ruby treats these terms as if they were a
nested assignment statement. It extracts the corresponding rvalue, assigning it to the paren-
thesized terms, before continuing with the higher-level assignment.

a, (b, ¢), d=1,2,3,4 # a=1, b=2, c=nil, d=3
a, (b, ¢), d = [1,2,3,4] # a=1, b=2, c=nil, d=3
a, (b, ¢), d =1,[2,3],4 # a=1, b=2, c=3, d=4

a, (b, ¢), d=1,[2,3,4],5 # a=1, b=2, c=3, d=5

a, (b,*c), d =1,[2,3,4],5 # a=1, b=2, c=[3, 4], d=5

Other Forms of Assignment

In common with many other languages, Ruby has a syntactic shortcut: a=a+2 may be
written as a +=2.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=152

CONDITIONAL EXECUTION 153

The second form is converted internally to the first. This means that operators you have
defined as methods in your own classes work as you’d expect:

Download samples/tutexpressions_26.rb

class Bowdlerize
def initialize(string)
@value = string.gsub(/[aeiou]/, '=')
end
def +(other)
Bowdlerize.new(self.to_s + other.to_s)
end
def to_s
@value
end
end

a = Bowdlerize.new("damn ") # => d*mn
a += "shame" # => d+mn shsm=

Something you won’t find in Ruby are the autoincrement (++) and autodecrement (--) oper-
ators of C and Java. Use the += and -= forms instead.

Conditional Execution

Ruby has several different mechanisms for conditional execution of code; most of them
should feel familiar, and many have some neat twists. Before we get into them, though, we
need to spend a short time looking at boolean expressions.

Boolean Expressions

Ruby has a simple definition of truth. Any value that is not nil or the constant false is true—
"cat", 99, 0, and :a_song are all considered true.

In this book, when we want to talk about a general true or false value, we use regular Roman
type: true and false. When we want to refer to the actual constants, we write true and false.

The fact that nil is considered to be false is convenient. For example, |0#gets, which returns
the next line from a file, returns nil at the end of file, enabling you to write loops such as
this:

while line = gets
process line
end

However, C, C++, and Perl programmers sometimes fall into a trap. The number zero is
not interpreted as a false value. Neither is a zero-length string. This can be a tough habit to
break.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_26.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=153

CONDITIONAL EXECUTION 154

And, Or, and Not

Ruby supports all the standard boolean operators. Both the keyword and and the operator
&& return their first argument if it is false. Otherwise, they evaluate and return their second
argument (this is sometimes known as shortcircuit evaluation). The only difference in the
two forms is precedence (and binds lower than &&).

nil && 99 # => nil
false && 99 # => false
"cat" && 99 # => 99

Thus, && and and both return a true value only if both of their arguments are true, as
expected.

Similarly, both or and || return their first argument unless it is false, in which case they
evaluate and return their second argument.

nil [99 # => 99
false || 99 # => 99
"cat" || 99 # => "cat"

As with and, the only difference between or and || is their precedence. To make life inter-
esting, and and or have the same precedence, but && has a higher precedence than ||.

A common idiom is to use ||= to assign a value to a variable only if that variable isn’t already
set:

var ||= "default value"

This is almost, but not quite, the same as var = var || "default value". It differs in that no
assignment is made at all if the variable is already set. In pseudocode, this might be written
as var = "default value" unless var or as var || var = "default value".

not and ! return the opposite of their operand (false if the operand is true, and true if the
operand is false). And, yes, not and ! differ only in precedence.

All these precedence rules are summarized in Table 22.4 on page 345.

defined?

The defined? operator returns nil if its argument (which can be an arbitrary expression) is
not defined; otherwise, it returns a description of that argument. If the argument is yield,
defined? returns the string “yield” if a code block is associated with the current context.

defined? 1 # => "expression"
defined? dummy # => nil

defined? printf # => "method"

defined? String # => "constant"
defined? $_ # => "global-variable"
defined? Math::PI # => '"constant"
defined? a = 1 # => "assignment"
defined? 42.abs # => "method"

defined? nil # => "nil"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=154

CONDITIONAL EXECUTION 192

Comparing Objects

In addition to the boolean operators, Ruby objects support comparison using the methods

are defined in class Object but are often overridden by descendants to provide appropriate
semantics. For example, class Array redefines == so that two array objects are equal if they
have the same number of elements and the corresponding elements are equal.

=2 , Both == and =~ have negated forms, != and !~. As of Ruby 1.9, the interpreter first looks
for methods called != or !~, calling them if found. If not, it will then invoke either == or =~,
negating the result.

In the following example, Ruby calls the == method to perform both comparisons:

Download samples/tutexpressions_32.rb

class T
def ==(other)
puts "Comparing self == #{other}"

other == "value"
end

end

t = T.new

p(t == "value")

p(t !'= "value")
produces:

Comparing self == value

true

Comparing self == value

false

If instead we explicitly define !=, Ruby calls it instead:

Download samples/tutexpressions_33.rb

class T
def ==(other)
puts "Comparing self == #{other}"
other == "value"
end
def !=(other)
puts "Comparing self != #{other}"

other != "value"
end

end

t = T.new

p(t == "value")

p(t !'= "value")
produces:

Comparing self == value

true

Comparing self != value

false

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_32.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_33.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=155

CONDITIONAL EXECUTION 156

Table 9.1. Common Comparison Operators

Operator Meaning

== Test for equal value.

=== Used to compare each of the items with the target in the when clause of a
case statement.

<=> General comparison operator. Returns —1, 0, or +1, depending on whether
its receiver is less than, equal to, or greater than its argument.

<, <=,>=,> Comparison operators for less than, less than or equal, greater than or equal,
and greater than.

=~ Regular expression pattern match.

eql? True if the receiver and argument have both the same type and equal values.
1 == 1.0 returns true, but 1.eql?(1.0) is false.

equal? True if the receiver and argument have the same object ID.

You can use a Ruby range as a boolean expression. A range such as exp1..exp2 will evaluate
as false until exp1 becomes true. The range will then evaluate as true until exp2 becomes
true. Once this happens, the range resets, ready to fire again. We show some examples of
this on page 160.

Prior to Ruby 1.8, you could use a bare regular expression as a boolean expression. This
is now deprecated. You can still use the ~ operator (described on page 665) to match $_
against a pattern, but this will probably also disappear in the future.

If and Unless Expressions

An if expression in Ruby is pretty similar to if statements in other languages:

if artist == "Gillespie" then
handle = "Dizzy"

elsif artist == "Parker" then
handle = "Bird"

else
handle = "unknown"

end

The then keyword is optional if you lay out your statements on multiple lines:

if song.artist == "Gillespie"
handle = "Dizzy"

elsif song.artist == "Parker"
handle = "Bird"

else
handle = "unknown"

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=156

CONDITIONAL EXECUTION 157

However, if you want to lay out your code more tightly, you must separate the boolean
expression from the following statements with the then keyword: !

if artist == "Gillespie" then handle = "Dizzy"
elsif artist == "Parker" then handle = "Bird"
else handle = "unknown"

end

You can have zero or more elsif clauses and an optional else clause. And notice that there’s
no e in the middle of elsif.

As we’ve said before, an if statement is an expression—it returns a value. You don’t have to
use the value of an if statement, but it can come in handy:

handle = if artist == "Gillespie"
"Dizzy"
elsif artist == "Parker"
"Bird"
else
"unknown"
end

Ruby also has a negated form of the if statement:

unless duration > 180
listen_intently
end

The unless statement does support else, but most people seem to agree that it’s clearer to
switch to an if statement in these cases.

Finally, for the C fans out there, Ruby also supports the C-style conditional expression:

cost = duration > 180 ? 0.35 : 0.25

A conditional expression returns the value of either the expression before or the expression
after the colon, depending on whether the boolean expression before the question mark
is true or false. In the previous example, if the duration is greater than three minutes, the
expression returns 0.35. For shorter durations, it returns 0.25. The result is then assigned to
cost.

If and Unless Modifiers

Ruby shares a neat feature with Perl. Statement modifiers let you tack conditional statements
onto the end of a normal statement:

mon, day, vear = $1, $2, $3 if date =~ /(\d\d)-(\d\d)-(\d\d)/
puts "a = #{a}" if $DEBUG
print total unless total.zero?

1. Ruby 1.8 allowed you to use a colon character in place of the then keyword. This is no longer supported.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=157

CASE EXPRESSIONS 158

For an if modifier, the preceding expression will be evaluated only if the condition is true.
unless works the other way around:

File.foreach("/etc/passwd") do |line|

next if line =~ /A#/ # Skip comments
parse(line) unless line =~ /A$/ # Don't parse empty lines
end

Because if itself is an expression, you can get really obscure with statements such as this:

if artist == "John Coltrane"
artist = "'Trane"
end unless use_nicknames == "no"

This path leads to the gates of madness.

Case Expressions

The Ruby case expression is a powerful beast: a multiway if on steroids. And just to make
it even more powerful, it comes in two flavors.

The first form is fairly close to a series of if statements; it lets you list a series of conditions
and execute a statement corresponding to the first one that’s true:

case

when song.name == "Misty"
puts "Not again!"

when song.duration > 120
puts "Too long!"

when Time.now.hour > 21
puts "It's too late"

else
song.play

end

The second form of the case statement is probably more common. You specify a target at
the top of the case statement, and each when clause lists one or more comparisons:

case command

when "debug"
dump_debug_info
dump_symbols

when /p\s+(\w+)/
dump_variable($1)

when "quit", "exit"

exit
else

print "Illegal command: #{command}"
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=158

CASE EXPRESSIONS 159

As with if, case returns the value of the last expression executed, and you can use a then
keyword if the expression is on the same line as the condition:?

kind = case year
when 1850..1889 then "Blues"
when 1890..1909 then "Ragtime"
when 1910..1929 then "New Orleans Jazz"
when 1930..1939 then "Swing"
when 1940..1950 then "Bebop"
else "Jazz"
end

case operates by comparing the target (the expression after the keyword case) with each
of the comparison expressions after the when keywords. This test is done using compari-
son === target. As long as a class defines meaningful semantics for === (and all the built-in
classes do), objects of that class can be used in case expressions.

For example, regular expressions define === as a simple pattern match:

case line

when /title=(.x)/
puts "Title is #$1"

when /track=(.x)/
puts "Track is #$1"

when /artist=(.*)/
puts "Artist is #$1"

end

Ruby classes are instances of class Class. The === operator is defined in Class to test
whether the argument is an instance of the receiver or one of its superclasses. So (aban-
doning the benefits of polymorphism and bringing the gods of refactoring down around
your ears), you can test the class of objects:

case shape
when Square, Rectangle
...
when Circle
...
when Triangle
...
else
...
end

1.9 2,

=~ 7 Ruby 1.8 allowed you to use a colon character in place of the then keyword. As of Ruby 1.9, this is no longer

supported.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=159

Loops

Don’t tell anyone, but Ruby has pretty primitive built-in looping constructs.

The while loop executes its body zero or more times as long as its condition is true. For
example, this common idiom reads until the input is exhausted:

while line = gets
...
end

The until loop is the opposite; it executes the body until the condition becomes true:

until play_list.duration > 60
play_list.add(song_list.pop)
end

As with if and unless, you can use both of the loops as statement modifiers:

=1

%= 2 while a < 100
= 128

-= 10 until a < 100
= 98

SR T DR R

On page 156, in the section on boolean expressions, we said that a range can be used as
a kind of flip-flop, returning true when some event happens and then staying true until a
second event occurs. This facility is normally used within loops. In the example that follows,
we read a text file containing the first ten ordinal numbers (“first,” “second,” and so on) but
print only the lines starting with the one that matches “third” and ending with the one that

matches “fifth”:

file = File.open("ordinal")
while line = file.gets

puts(line) if line =~ /third/ .. line =~ /fifth/
end

produces:

third
fourth
fifth

You may find folks who come from Perl writing the previous example slightly differently:

file = File.open("ordinal")
while file.gets

print if ~/third/ .. ~/fifth/
end

produces:

third
fourth
fifth

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=160

161

This uses some behind-the-scenes magic behavior: gets assigns the last line read to the
global variable $_, the ~ operator does a regular expression match against $_, and print with
no arguments prints $_. This kind of code is falling out of fashion in the Ruby community
and may end up being removed from the language.

The start and end of a range used in a boolean expression can themselves be expressions.
These are evaluated each time the overall boolean expression is evaluated. For example, the
following code uses the fact that the variable $. contains the current input line number to
display line numbers 1 through 3 as well as those between a match of /eig/ and /nin/:

File.foreach("ordinal") do |line]
if (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)
print line
end
end

produces:

first
second
third
eighth
ninth

You’ll come across a wrinkle when you use while and until as statement modifiers. If the
statement they are modifying is a begin/end block, the code in the block will always execute
at least one time, regardless of the value of the boolean expression:

print "Hello\n" while false
begin
print "Goodbye\n"
end while false
produces:

Goodbye

lterators

If you read the beginning of the previous section, you may have been discouraged. “Ruby
has pretty primitive built-in looping constructs,” it said. Don’t despair, gentle reader, for we
have good news. Ruby doesn’t need any sophisticated built-in loops, because all the fun
stuff is implemented using Ruby iterators.

For example, Ruby doesn’t have a for loop—at least not the kind you’d find in C, C++, and
Java. Instead, Ruby uses methods defined in various built-in classes to provide equivalent,
but less error-prone, functionality.

Let’s look at some examples:

3.times do
print "Ho! "
end

produces:
Ho! Ho! Ho!

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=161

It’s easy to avoid fence-post and off-by-one errors; this loop will execute three times, period.
In addition to times, integers can loop over specific ranges by calling downto and upto, and
all numbers can loop using step. For instance, a traditional “for” loop that runs from O to 9
(something like i=0; i < 10; i++) is written as follows:

0.upto(9) do |x|
print x, " "
end

produces:
0123456789
A loop from O to 12 by 3 can be written as follows:
0.step(12, 3) {|x| print x, " " }
produces:

036912

Similarly, iterating over arrays and other containers is easy if you use their each method:

[1, 1, 2, 3, 5].each {|val| print val, " " }
produces:
11235

And once a class supports each, the additional methods in the Enumerable module (docu-
mented beginning on page 487 and summarized on page 100) become available. For exam-
ple, the File class provides an each method, which returns each line of a file in turn. Using
the grep method in Enumerable, we could iterate over only those lines that end with a d:

File.open("ordinal").grep(/d$/) do |line]
puts line
end

produces:

second
third

Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator called
loop:

loop do
block ...
end

The loop iterator calls the associated block forever (or at least until you break out of the
loop, but you’ll have to read ahead to find out how to do that).

For... In

Earlier we said that the only built-in Ruby looping primitives were while and until. What’s
this for thing, then? Well, for is almost a lump of syntactic sugar.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=162

When you write this:

for song in playlist
song.play
end

Ruby translates it into something like this:

playlist.each do |song]|
song.play
end

The only difference between the for loop and the each form is the scope of local variables
that are defined in the body. This is discussed on page 165.

You can use for to iterate over any object that responds to the method each, such as an Array
or a Range:
for i in ['fee', 'fi', 'fo', 'fum']
print i, " "
end
for i in 1..3
print i, " "
end
for i in File.open("ordinal").find_all {|line| line =~ /d$/}
print i.chomp, " "
end

produces:

fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop to traverse its
objects:

Download samples/tutexpressions_64.rb

class Periods

def each
yield "Classical”
yield "Jazz"
yield "Rock"
end
end

periods = Periods.new
for genre in periods

print genre, " "
end

produces:

Classical Jazz Rock

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexpressions_64.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=163

164

Break, Redo, and Next

The loop control constructs break, redo, and next let you alter the normal flow through a
loop or iterator.’

break terminates the immediately enclosing loop; control resumes at the statement following
the block. redo repeats current iteration of the loop from the start but without reevaluating
the condition or fetching the next element (in an iterator). next skips to the end of the loop,
effectively starting the next iteration:

while line = gets
next if line =~ /A\s#*#/ # skip comments
break if line =~ /AEND/ # stop at end
substitute stuff in backticks and try again
redo if line.gsub!(/ (.*?) /) { eval($1l) }
process line ...

end

These keywords can also be used within blocks. Although you can use them with any block,
they typically make the most sense when the block is being used for iteration:
i=0
loop do
i+=1
next if i < 3
print i
break if i > 4
end

produces:
345

A value may be passed to break and next. When used in conventional loops, it probably
makes sense only to do this with break, where it sets the value returned by the loop. (Any
value given to next is effectively lost.) If a conventional loop doesn’t execute a break, its
value is nil.

result = while line = gets
break(line) if line =~ /answer/
end
process_answer (result) if result

If you want the nitty-gritty details of how break and next work with blocks and procs, take
a look at the reference description starting on page 365. If you are looking for a way of
exiting from nested blocks or loops, take a look at Kernel.catch, described on pages 369 and
567.

3. Prior versions of Ruby also supported the retry keyword as a looping mechanism. This has been removed in
Ruby 1.9.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=164

VARIABLE SCOPE, LOOPS, AND BLOCKS 165

Variable Scope, Loops, and Blocks

The while, until, and for loops are built into the language and do not introduce new scope;
previously existing locals can be used in the loop, and any new locals created will be avail-
able afterward.

The blocks used by iterators (such as loop and each) are a little different. Normally, the
local variables created in these blocks are not accessible outside the block:

[1, 2, 3]J.each do |x]|
y=x+1

end

[x, v 1

produces:

prog.rb:4:in “<main>': undefined local variable or method “x' for
main:0bject (NameError)

However, if at the time the block executes a local variable already exists with the same name
as that of a variable in the block, the existing local variable will be used in the block. Its

=2 , value will therefore be available after the block finishes. As the following example shows,
this applies to normal variables in the block but not to the block’s parameters:

x = "initial value"
y = "another value"
[1, 2, 3].each do |x]|
v=x+1
end
[x, v1 #=> ["initial value", 4]

Note that the assignment to the variable doesn’t have to be executed; the Ruby interpreter
just needs to have seen that the variable exists on the left side of an assignment:

if false

a = "never used"
end
3.times {|i| a =i }

a #=> 2

=2 , Ruby 1.9 introduced the concept of block-local variables. These are listed in the block’s
parameter list, preceded by a semicolon. Contrast this code, which does not use block-
locals:

square = "yes"

total = 0

[1, 2, 3].each do |val]
square = val * val
total += square

end

puts "Total = #{total}"

puts "Square = #{square}"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=165

VARIABLE SCOPE, LOOPS, AND BLOCKS 166

produces:
Total = 14
Square = 9

with the following code, which uses a block-local variable, so square in the outer scope is
not affected by a variable of the same name within the block:

square = "yes"

total = 0

[1, 2, 3].each do |val; square]|
square = val * val
total += square

end

puts "Total = #{total}"

puts "Square = #{square}"

produces:

Total = 14
Square = yes

If you are concerned about the scoping of variables with blocks, turn on Ruby warnings,
and declare your block-local variables explicitly.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=166

Chapter 10

Exceptions,
Catch, and Throw

So far we’ve been developing code in Pleasantville, a wonderful place where nothing ever,
ever goes wrong. Every library call succeeds, users never enter incorrect data, and resources
are plentiful and cheap. Well, that’s about to change. Welcome to the real world!

In the real world, errors happen. Good programs (and programmers) anticipate them and
arrange to handle them gracefully. This isn’t always as easy as it may sound. Often the code
that detects an error does not have the context to know what to do about it. For example,
attempting to open a file that doesn’t exist is acceptable in some circumstances and is a fatal
error at other times. What’s your file-handling module to do?

The traditional approach is to use return codes. The open method could return some spe-
cific value to say it failed. This value is then propagated back through the layers of calling
routines until someone wants to take responsibility for it. The problem with this approach
is that managing all these error codes can be a pain. If a function calls open, then read, and
finally close and each can return an error indication, how can the function distinguish these
error codes in the value it returns to its caller?

To a large extent, exceptions solve this problem. Exceptions let you package information
about an error into an object. That exception object is then propagated back up the calling
stack automatically until the runtime system finds code that explicitly declares that it knows
how to handle that type of exception.

The Exception Class

The package that contains the information about an exception is an object of class Exception
or one of class Exception’s children. Ruby predefines a tidy hierarchy of exceptions, shown
in Figure 10.1 on page 169. As we’ll see later, this hierarchy makes handling exceptions
considerably easier.

When you need to raise an exception, you can use one of the built-in Exception classes, or
you can create one of your own. Make your own exceptions subclasses of StandardError or
one of its children. If you don’t, your exceptions won’t be caught by default.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=167

HANDLING EXCEPTIONS 168

Every Exception has associated with it a message string and a stack backtrace. If you define
your own exceptions, you can add extra information.

Handling Exceptions

Here’s some simple code that uses the open-uri library to download the contents of a web
page and write it to a file, line by line:

Download samples/tutexceptions_1.rb

require 'open-uri'
web_page = open("http://pragprog.com/podcasts")
output = File.open("podcasts.html", "w")
while line = web_page.gets
output.puts line
end
output.close

What happens if we get a fatal error halfway through? We certainly don’t want to store an
incomplete page to the output file.

Let’s add some exception-handling code and see how it helps. To do exception handling,
we enclose the code that could raise an exception in a begin/end block and use one or more
rescue clauses to tell Ruby the types of exceptions we want to handle. Because we specified
Exception in the rescue line, we’ll handle all exceptions of class Exception and all of its
subclasses (which covers all Ruby exceptions). In the error-handling block, we report the
error, close and delete the output file, and then reraise the exception:

Download samples/tutexceptions_2.rb

require 'open-uri'
page = "podcasts"
file_name = "#{page}.html"
web_page = open("http://pragprog.com/#{page}")
output = File.open(file_name, "w")
begin
while line = web_page.gets
output.puts line
end
output.close
rescue Exception
STDERR.puts "Failed to download #{page}: #{$!}"
output.close
File.delete(file_name)
raise
end

When an exception is raised, and independent of any subsequent exception handling, Ruby
places a reference to the associated Exception object into the global variable $! (the excla-
mation point presumably mirroring our surprise that any of our code could cause errors). In
the previous example, we used the $! variable to format our error message.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=168

HANDLING EXCEPTIONS 169

e
Figure 10.1. Ruby Exception Hierarchy

Exception
— fatal used internally by Ruby
~— NoMemoryError
~— ScriptError
LoadError
NotimplementedError
SyntaxError
— SecurityError was under StandardError in Ruby 1.8
— SignalException
Interrupt
M StandardError
M ArgumentError
N FiberError (1.9)
M IndexError
KeyError (1.9)
Stoplteration (1.9)
~— IOError
_ EOFError
— LocalJumpError
~— NameError
_ NoMethodError
— RangeError
 FloatDomainError
— RegexpError
M RuntimeError
~— SystemCallError
- system-dependent exceptions (Errno::xxx)
N ThreadError
M TypeError
“— ZeroDivisionError
M SystemExit
— SystemStackError was under StandardError in Ruby 1.8

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=169

HANDLING EXCEPTIONS 170

After closing and deleting the file, we call raise with no parameters, which reraises the
exception in $!. This is a useful technique, because it allows you to write code that filters
exceptions, passing on those you can’t handle to higher levels. It’s almost like implementing
an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can specify
multiple exceptions to catch. At the end of each rescue clause, you can give Ruby the name
of a local variable to receive the matched exception. Most people find this more readable
than using $! all over the place:

begin
eval string
rescue SyntaxError, NameError => boom

print "String doesn't compile: " + boom
rescue StandardError => bang
print "Error running script: " + bang

end

How does Ruby decide which rescue clause to execute? It turns out that the processing is
pretty similar to that used by the case statement. For each rescue clause in the begin block,
Ruby compares the raised exception against each of the parameters in turn. If the raised
exception matches a parameter, Ruby executes the body of the rescue and stops looking.
The match is made using parameter===$!. For most exceptions, this means that the match
will succeed if the exception named in the rescue clause is the same as the type of the
currently thrown exception or is a superclass of that exception.! If you write a rescue clause
with no parameter list, the parameter defaults to StandardError.

If no rescue clause matches or if an exception is raised outside a begin/end block, Ruby
moves up the stack and looks for an exception handler in the caller, then in the caller’s
caller, and so on.

Although the parameters to the rescue clause are typically the names of Exception classes,
they can actually be arbitrary expressions (including method calls) that return an Exception
class.

System Errors

System errors are raised when a call to the operating system returns an error code. On
POSIX systems, these errors have names such as EAGAIN and EPERM. (If you’re on a Unix
box, you could type man errno to get a list of these errors.)

Ruby takes these errors and wraps them each in a specific exception object. Each is a sub-
class of SystemCallError, and each is defined in a module called Errno. This means you’ll
find exceptions with class names such as Errno::EAGAIN, Errno::EIO, and Errno::EPERM. If
you want to get to the underlying system error code, Errno exception objects each have a
class constant called (somewhat confusingly) Errno that contains the value.

1. This comparison happens because exceptions are classes, and classes in turn are kinds of Module. The ===
method is defined for modules, returning true if the class of the operand is the same as or is a descendant of the
receiver.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=170

HANDLING EXCEPTIONS 171

Errno: :EAGAIN: :Errno # => 35
Errno: :EPERM: :Errno #=> 1
Errno::EIO::Errno #=> 5
Errno: :EWOULDBLOCK: :Errno # => 35

Note that EWOULDBLOCK and EAGAIN have the same error number. This is a feature of
the operating system of the computer used to produce this book—the two constants map to
the same error number. To deal with this, Ruby arranges things so that Errno::EAGAIN and
Errno::EWOULDBLOCK are treated identically in a rescue clause. If you ask to rescue one,
you’ll rescue either. It does this by redefining SystemCallError#=== so that if two subclasses
of SystemCallError are compared, the comparison is done on their error number and not on
their position in the hierarchy.

Tidying Up

Sometimes you need to guarantee that some processing is done at the end of a block of
code, regardless of whether an exception was raised. For example, you may have a file open
on entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains a
chunk of code that will always be executed as the block terminates. It doesn’t matter if
the block exits normally, if it raises and rescues an exception, or if it is terminated by an
uncaught exception—the ensure block will get run:

f = File.open("testfile")
begin

.. process
rescue

.. handle error
ensure

f.close
end

Beginners commonly make the mistake of putting the File.open inside the begin block. In
this case, that would be incorrect, because open can itself raise an exception. If that were to
happen, you wouldn’t want to run the code in the ensure block, because there’d be no file
to close.

The else clause is a similar, although less useful, construct. If present, it goes after the
rescue clauses and before any ensure. The body of an else clause is executed only if no
exceptions are raised by the main body of code.

f = File.open("testfile")
begin
.. process
rescue
.. handle error
else
puts "Congratulations-- no errors!"
ensure
f.close
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=171

RAISING EXCEPTIONS 172

Play It Again

Sometimes you may be able to correct the cause of an exception. In those cases, you can
use the retry statement within a rescue clause to repeat the entire begin/end block. Clearly,
tremendous scope exists for infinite loops here, so this is a feature to use with caution (and
with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, take a look at the following, adapted from
Minero Aoki’s net/smtp.rb library:

@esmtp = true
begin
First try an extended login. If it fails because the
server doesn't support it, fall back to a normal login
if @esmtp then
@command.ehlo(helodom)
else
@command . helo(helodom)
end
rescue ProtocolError
if @esmtp then
@esmtp = false
retry
else
raise
end
end

This code tries first to connect to an SMTP server using the EHLO command, which is not
universally supported. If the connection attempt fails, the code sets the @esmtp variable to
false and retries the connection. If this fails a second time, the exception is raised up to the
caller.

Raising Exceptions

So far we’ve been on the defensive, handling exceptions raised by others. It’s time to turn
the tables and go on the offensive. (Some say your gentle authors are always offensive, but
that’s a different book.)

You can raise exceptions in your code with the Kernel.raise method (or its somewhat judg-
mental synonym, Kernel.fail):

raise
raise "bad mp3 encoding"
raise InterfaceException, "Keyboard failure", caller

The first form simply reraises the current exception (or a RuntimeError if there is no current
exception). This is used in exception handlers that need to intercept an exception before
passing it on.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=172

RAISING EXCEPTIONS 173

The second form creates a new RuntimeError exception, setting its message to the given
string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument and the stack trace to the third argument. Typically the
first argument will be either the name of a class in the Exception hierarchy or a reference to
an object instance of one of these classes.? The stack trace is normally produced using the
Kernel.caller method.

Here are some typical examples of raise in action:

raise
raise "Missing name" if name.nil?
if i >= names.size
raise IndexError, "#{i} >= size (#{names.size})"
end
raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is often
useful in library modules. We do this using the caller method, which returns the current stack
trace. We can take this further; the following code removes two routines from the backtrace
by passing only a subset of the call stack to the new exception:

raise ArgumentError, "Name too big", caller[1..-1]

Adding Information to Exceptions

You can define your own exceptions to hold any information that you need to pass out from
the site of an error. For example, certain types of network errors may be transient depending
on the circumstances. If such an error occurs and the circumstances are right, you could set
a flag in the exception to tell the handler that it may be worth retrying the operation:

class RetryException < RuntimeError
attr :ok_to_retry
def initialize(ok_to_retry)
@ok_to_retry = ok_to_retry
end
end

Somewhere down in the depths of the code, a transient error occurs:

def read_data(socket)
data = socket.read(512)
if data.nil?
raise RetryException.new(true), "transient read error"
end
.. normal processing
end

2. Technically, this argument can be any object that responds to the message exception by returning an object
such that object.kind_of?(Exception) is true.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=173

CATCH AND THROW 174

Higher up the call stack, we handle the exception:

begin
stuff = read_data(socket)
.. process stuff

rescue RetryException => detail
retry if detail.ok_to_retry
raise

end

Catch and Throw

Although the exception mechanism of raise and rescue is great for abandoning execution
when things go wrong, it’s sometimes nice to be able to jump out of some deeply nested
construct during normal processing. This is where catch and throw come in handy. Here’s
a trivial example—this code reads a list of words one at a time and adds them to an array.
When done, it prints the array in reverse order. However, if any of the lines in the file doesn’t
contain a valid word, we want to abandon the whole process.

Download samples/tutexceptions_14.rb

word_list = File.open("wordlist")
catch (:done) do
result = []
while line = word_list.gets
word = line.chomp
throw :done unless word =~ /A\w+$/
result << word
end
puts result.reverse
end

catch defines a block that is labeled with the given name (which may be a Symbol or a
String). The block is executed normally until a throw is encountered.

‘When Ruby encounters a throw, it zips back up the call stack looking for a catch block with
a matching symbol. When it finds it, Ruby unwinds the stack to that point and terminates the
block. So, in the previous example, if the input does not contain correctly formatted lines,
the throw will skip to the end of the corresponding catch, not only terminating the while
loop but also skipping the code that writes the reversed list. If the throw is called with the
optional second parameter, that value is returned as the value of the catch. In this example,
our word list incorrectly contains the line “*wow*.” Without the second parameter to throw,
the corresponding catch returns nil.

Download samples/tutexceptions_15.rb

word_list = File.open("wordlist")
word_in_error = catch(:done) do
result = []
while line = word_list.gets
word = line.chomp

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_14.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=174

CATCH AND THROW

throw(:done, word) unless word =~ /A\w+$/
result << word
end
puts result.reverse
end
if word_in_error
puts "Failed: '#{word_in_error}' found, but a word was expected"
end

produces:

Failed: '»wowx' found, but a word was expected

The following example uses a throw to terminate interaction with the user if ! is typed in
response to any prompt:

Download samples/tutexceptions_16.rb

def prompt_and_get(prompt)
print prompt
res = readline.chomp
throw :quit_requested if res ==
res
end

catch :quit_requested do
name = prompt_and_get("Name:
age = prompt_and_get("Age: ")

~

sex = prompt_and_get("Sex: ")
..
process information

end

As this example illustrates, the throw does not have to appear within the static scope of the
catch.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_16.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=175

Chapter 11

Basic Input and Output

Ruby provides what at first sight looks like two separate sets of I/O routines. The first is the
simple interface—we’ve been using it pretty much exclusively so far:

print "Enter your name:
name = gets

A whole set of I/0-related methods is implemented in the Kernel module—gets, open, print,
printf, putc, puts, readline, readlines, and test—that makes it simple and convenient to write
straightforward Ruby programs. These methods typically do I/O to standard input and stan-
dard output, which makes them useful for writing filters. You’ll find them documented start-
ing on page 564.

The second way, which gives you a lot more control, is to use IO objects.

What Is an 10 Object?

Ruby defines a single base class, 10, to handle input and output. This base class is subclassed
by classes File and BasicSocket to provide more specialized behavior, but the principles
are the same. An IO object is a bidirectional channel between a Ruby program and some
external resource.' An 10 object may have more to it than meets the eye, but in the end you
still simply write to it and read from it.

In this chapter, we’ll be concentrating on class |0 and its most commonly used subclass,
class File. For more details on using the socket classes for networking, see the section begin-
ning on page 878.

1. For those who just have to know the implementation details, this means that a single IO object can sometimes
be managing more than one operating system file descriptor. For example, if you open a pair of pipes, a single 10
object contains both a read pipe and a write pipe.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=176

OPENING AND CLOSING FILES 177

Opening and Closing Files

As you may expect, you can create a new file object using File.new:

file = File.new("testfile", "r")
... process the file
file.close

The first parameter is the filename. The second is the mode string, which lets you open the
file for reading, writing, or both. (Here we opened testfile for reading with an "r". We could
also have used "w" for write or "r+" for read-write. The full list of allowed modes appears
on page 547.) You can also optionally specify file permissions when creating a file; see the
description of File.new on page 512 for details. After opening the file, we can work with
it, writing and/or reading data as needed. Finally, as responsible software citizens, we close
the file, ensuring that all buffered data is written and that all related resources are freed.

But here Ruby can make life a little bit easier for you. The method File.open also opens a
file. In regular use, it behaves just like File.new. However, if you associate a block with the
call, open behaves differently. Instead of returning a new File object, it invokes the block,
passing the newly opened File as a parameter. When the block exits, the file is automatically
closed.

File.open("testfile", "r") do |file]
... process the file
end # << file automatically closed here

This second approach has an added benefit. In the earlier case, if an exception is raised
while processing the file, the call to file.close may not happen. Once the file variable goes
out of scope, then garbage collection will eventually close it, but this may not happen for a
while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside the
block, the file is closed before the exception is propagated on to the caller. It’s as if the open
method looks like the following:

class File
def File.open(xargs)
result = f = File.new(*args)
if block_given?
begin
result = yield f
ensure
f.close
end
end

return result
end
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=177

READING AND WRITING FILES 178

Reading and Writing Files

The same methods that we’ve been using for “simple” I/O are available for all file objects.
So, gets reads a line from standard input (or from any files specified on the command line
when the script was invoked), and file.gets reads a line from the file object file.

For example, we could create a program called copy.rb:

while line = gets
puts line
end

If we run this program with no arguments, it will read lines from the console and copy them
back to the console. Note that each line is echoed once the Return key is pressed. (In this
and later examples, we show user input in a bold font.)

% ruby copy.rb
These are lines
These are lines
that I am typing
that I am typing
AD

We can also pass in one or more filenames on the command line, in which case gets will
read from each in turn:

% ruby copy.rb testfile
This is line one

This is line two

This is line three

And so on...

Finally, we can explicitly open the file and read from it:

File.open("testfile") do |file]
while line = file.gets
puts line
end
end

produces:

This is line one
This is line two
This is line three
And so on...

As well as gets, I/0 objects enjoy an additional set of access methods, all intended to make
our lives easier.

Iterators for Reading

As well as using the usual loops to read data from an |O stream, you can also use various
Ruby iterators. I0#each_byte invokes a block with the next 8-bit byte from the 10 object (in

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=178

READING AND WRITING FILES 179

this case, an object of type File). The chr method converts an integer to the corresponding
ASCII character:

File.open("testfile") do |file]
file.each_byte {|ch| print "#{ch.chr}:#{ch} " }
end

produces:

T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 1:108 i:105 ...
T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 1:108 i:105 ...
T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 1:108 i:105 ...
A:65 n:110 d:100 :32 s:115 0:111 :32 0:111 n:110 .:46 ...

I0#each_line calls the block with each line from the file. In the next example, we’ll make
the original newlines visible using String#dump so you can see that we’re not cheating:

File.open("testfile") do |file]
file.each_line {|line| puts "Got #{line.dump}" }
end

produces:
Got "This is line one\n"
Got "This is line two\n"

Got "This is line three\n"
Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will break up
the input accordingly, returning the line ending at the end of each line of data. That’s why
you see the \n characters in the output of the previous example. In the next example, we’ll
use the character e as the line separator:

File.open("testfile") do |file]
file.each_line("e") {|line| puts "Got #{ line.dump }" }
end

produces:

Got "This is line"

Got " one"

Got "\nThis is line"

Got " two\nThis is line"
Got " thre"

Got "e"

Got "\nAnd so on...\n"

If you combine the idea of an iterator with the autoclosing block feature, you get 10.foreach.
This method takes the name of an I/O source, opens it for reading, calls the iterator once for
every line in the file, and then closes the file automatically:

I10.foreach("testfile") {|1line| puts line }
produces:

This is line one
This is line two
This is line three
And so on...

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=179

READING AND WRITING FILES

Or, if you prefer, you can retrieve an entire file into a string or into an array of lines:

read into string

str = I0.read("testfile")

str.length # => 66

str[0, 30] # => "This is line one\nThis is line

read into an array

arr = I0.readlines("testfile")
arr.length # => 4

arr[0] # => "This is line one\n"

Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised on
most errors, and you should be ready to rescue them and take appropriate action.

Writing to Files

So far, we’ve been merrily calling puts and print, passing in any old object and trusting that
Ruby will do the right thing (which, of course, it does). But what exactly is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts and
print is converted to a string by calling that object’s to_s method. If for some reason the to_s
method doesn’t return a valid string, a string is created containing the object’s class name
and ID, something like #<ClassName:0x123456>:

Note the "w", which opens the file for writing
File.open("output.txt", "w") do |[file|

file.puts "Hello"

file.puts "1 + 2 = #{1+2}"
end
Now read the file in and print its contents to STDOUT
puts File.read("output.txt")

produces:

Hello
1+2=3

=2 , The exceptions are simple, too. The nil object will print as the empty string, and an array
passed to puts will be written as if each of its elements in turn were passed separately to
puts.

What if you want to write binary data and don’t want Ruby messing with it? Well, normally
you can simply use |O#print and pass in a string containing the bytes to be written. How-
ever, you can get at the low-level input and output routines if you really want—Ilook at the
documentation for 10#sysread and 10#syswrite on page 562.

And how do you get the binary data into a string in the first place? The three common ways
are to use a literal, poke it in byte by byte, or use Array#pack:

strl = "\001\002\003" # => "\x01\x02\x03"
str2 = ""

Str2 << 1 << 2 << 3 # => "\x01\x02\x03"
[1, 2, 3 J.pack("c*") # => "\x01\x02\x03"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=180

TALKING TO NETWORKS 181

But | Miss My C++ iostream

Sometimes there’s just no accounting for taste. . .. However, just as you can append an object
to an Array using the << operator, you can also append an object to an output IO stream:

endl = "\n"
STDOUT << 99 << " red balloons" << endl

produces:
99 red balloons

Again, the << method uses to_s to convert its arguments to strings before sending them on
their merry way.

Although we started off disparaging the poor << operator, there are actually some good
reasons for using it. Because other classes (such as String and Array) also implement a <<
operator with similar semantics, you can quite often write code that appends to something
using << without caring whether it is added to an array, a file, or a string. This kind of
flexibility also makes unit testing easy. We discuss this idea in greater detail in the chapter
on duck typing, starting on page 370.

Doing I/0 with Strings

There are often times where you need to work with code that assumes it’s reading from
or writing to one or more files. But you have a problem: the data isn’t in files. Perhaps
it’s available instead via a SOAP service, or it has been passed to you as command-line
parameters. Or maybe you’re running unit tests, and you don’t want to alter the real file
system.

Enter StringlO objects. They behave just like other I/O objects, but they read and write
strings, not files. If you open a StringlO object for reading, you supply it with a string. All
read operations on the StringlO object then read from this string. Similarly, when you want
to write to a StringlO object, you pass it a string to be filled.

require 'stringio'

ip = StringIO.new('"now is\nthe time\nto learn\nRuby!")

op StringIO.new("", "w")

ip.each_line do |line]
op.puts line.reverse
end
op.string # => "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

Talking to Networks

Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set of classes
in the socket library (documented starting on page 878). These classes give you access

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=181

TALKING TO NETWORKS 182

to TCP, UDP, SOCKS, and Unix domain sockets, as well as any additional socket types
supported on your architecture. The library also provides helper classes to make writing
servers easier. Here’s a simple program that gets information about the “mysql” user on our
local machine using the finger protocol:

require 'socket'

client = TCPSocket.open('127.0.0.1', 'finger')
client.send("mysql\n", 0) # 0 means standard packet
puts client.readlines

client.close

produces:

Login: _mysql Name: MySQL Server
Directory: /var/empty Shell: /usr/bin/false
Never logged in.

No Mail.

No Plan.

At a higher level, the 1ib/net set of library modules provides handlers for a set of appli-
cation-level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are docu-
mented starting on page 773. For example, the following program lists the images that are
displayed on this book’s home page:

Download samples/tutio_18.rb

require 'net/http'

h = Net::HTTP.new('www.pragprog.com', 80)

response = h.get('/titles/ruby3/programming-ruby-3')

if response.message == "OK"
puts response.body.scan(/<img alt=".%?" src="(.*?)"/m).uniq
end
produces:

http://assetsl.pragprog.com/images/logo.gif?1239424264
http://assets0.pragprog.com/images/login-button.gif?1239424264
http://assetsl.pragprog.com/images/covers/190x228/betas/ruby3. jpg?1236205316
http://assetsl.pragprog.com/images/covers/40x48/fr_rr.jpg?1184184147

Although attractively simple, this example could be improved significantly. In particular, it
doesn’t do much in the way of error handling. It should really report “Not Found” errors
(the infamous 404) and should handle redirects (which happen when a web server gives the
client an alternative address for the requested page).

We can take this to a higher level still. By bringing the open-uri library into a program, the
Kernel.open method suddenly recognizes hitp:// and ftp:/ URLs in the filename. Not just
that—it also handles redirects automatically.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutio_18.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=182

TALKING TO NETWORKS 183

Download samples/tutio_19.rb

require 'open-uri'
open('http://pragprog.com') do |f]|

puts f.read.scan(/<img alt=".#*?" src="(.*?)"/m).uniq
end

produces:

http://assetsl.pragprog.com/images/logo.gif?1239424264
http://assets0.pragprog.com/images/login-button.gif?1239424264
http://assetsl.pragprog.com/images/front_page.png?1239424264
http://assets3.pragprog.com/images/covers/75x90/1tp2. jpg?1236205271
http://assets0.pragprog.com/images/covers/75x90/jrport.jpg?1236205229

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutio_19.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=183

Chapter 12

Fibers, Threads,
and Processes

Ruby gives you two basic ways to organize your program so that you can run different parts
of it apparently “at the same time.” Fibers let you suspend execution of one part of your pro-
gram and run some other part. For more decoupled execution, you can split up cooperating
tasks within the program, using multiple threads, or you can split up tasks between different
programs, using multiple processes. Let’s look at each in turn.

Fibers

Ruby 1.9 introduced fibers to the language. Although the name suggests some kind of
lightweight thread, in reality Ruby’s fibers are really just a very simple coroutine mecha-
nism. They allow you to write programs that look like you are manually scheduling threads
without incurring any of the complexity inherent in threading. Let’s look at a simple exam-
ple. We’d like to analyze a text file, counting the occurrence of each word. We could do this
(without using fibers) in a simple loop:

Download samples/tutthreads_1.rb

counts = Hash.new(0)
File.foreach("testfile") do |line|
line.scan(/\w+/) do |word]|
word = word.downcase
counts[word] += 1
end
end
counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

However, this code is messy because it conflates the concepts of finding words with the
counting of the words.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=184

FIBERS 185

We could fix this by writing a method that reads the file and yields each successive word.
But fibers give us a simpler solution:

Download samples/tutthreads_2.rb

words = Fiber.new do
File.foreach("testfile") do |line]
line.scan(/\w+/) do |word]|
Fiber.yield word.downcase
end
end
end
counts = Hash.new(0)
while word = words.resume
counts[word] += 1
end
counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

The constructor for the Fiber class takes a block and returns a fiber object. For now, the code
in the block is not executed.

Subsequently, we can call resume on the fiber object. This causes the block to start execu-
tion. The file is opened, and the scan method starts extracting individual words. However, at
this point, Fiber.yield is invoked. This suspends execution of the block—the resume method
that we called to run the block returns any value given to Fiber.yield.

Our main program enters the body of the loop and increments the count for the first word
returned by the fiber. It then loops back up to the top of the while loop, which again calls
words.resume while evaluating the condition. The resume call goes back into the block,
continuing just after it left off (at the line after the Fiber.yield call).

When the fiber runs out of words in the file, the block exits. The next time resume is called,
it returns nil (because the block has exited). (You’ll get a FiberError if you attempt to call
resume again after this.)

Fibers are often used to generate values from infinite sequences on demand. Here’s a fiber
that returns successive integers divisible by 2 and not divisible by 3:

Download samples/tutthreads_3.rb

twos = Fiber.new do

num = 2
loop do
Fiber.yield(num) unless num % 3 ==
num += 2
end
end
10.times { print twos.resume, " " }
produces:

2 48 10 14 16 20 22 26 28

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=185

MULTITHREADING 186

Because fibers are just objects, you can pass them around, store them in variables, and so
on. Fibers can be resumed only in the thread that created them.

Fibers, Coroutines, and Continuations

The basic fiber support in Ruby is limited—fibers can yield control only back to the code
that resumed them. However, Ruby comes with two standard libraries that extend this behav-
ior. The fiber library (described on page 754) adds full coroutine support. Once it is loaded,
fibers gain a transfer method, allowing them to transfer control to arbitrary other fibers.

A related but more general mechanism is the continuation. A continuation is a way of
recording the state of your running program (where it is, the current binding, and so on)
and then resuming from that state at some point in the future. You can use continuations to
implement coroutines (and other new control structures). Continuations have also been used
to store the state of a running web application between requests—a continuation is created
when the application sends a response to the browser; then, when the next request arrives
from that browser, the continuation is invoked, and the application continues from where it
left off. You enable continuations in Ruby by requiring the continuation library, described
on page 738.

Multithreading

Often the simplest way to do two things at once is by using Ruby threads. Prior to Ruby 1.9,
these were implemented as so-called green threads—threads were switched totally within

=2 / the interpreter. In Ruby 1.9, threading is now performed by the operating system. This is
an improvement, but not quite as big an improvement as you might want. Although threads
can now take advantage of multiple processors (and multiple cores in a single processor),
there’s a major catch. Many Ruby extension libraries are not thread safe (because they were
written for the old threading model). So, Ruby compromises: it uses native operating system
threads but operates only a single thread at a time. You’ll never see two threads in the same
application running Ruby code truly concurrently. (You will, however, see threads busy
doing (say) I/O while another thread executes Ruby code. That’s part of the point....)

Creating Ruby Threads

Creating a new thread is pretty straightforward. The code that follows is a simple example.
It downloads a set of web pages in parallel. For each URL that it is asked to download, the
code creates a separate thread that handles the HTTP transaction.

Download samples/tutthreads_4.rb

require 'net/http'
pages = %w(www.rubycentral.com slashdot.org www.google.com)
threads = []
for page_to_fetch in pages
threads << Thread.new(page_to_fetch) do |url|

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=186

MULTITHREADING

h = Net::HTTP.new(url, 80)
print "Fetching: #{url}\n"
resp = h.get('/")
print "Got #{url}: #{resp.message}\n"
end
end

threads.each {|thr| thr.join }

produces:

Fetching: www.rubycentral.com
Fetching: slashdot.org
Fetching: www.google.com

Got www.google.com: OK

Got www.rubycentral.com: OK
Got slashdot.org: OK

Let’s look at this code in more detail, because a few subtle things are happening.

New threads are created with the Thread.new call. It is given a block that contains the code
to be run in a new thread. In our case, the block uses the net/http library to fetch the top page
from each of our nominated sites. Our tracing clearly shows that these fetches are going on
in parallel.

When we create the thread, we pass the required URL as a parameter. This parameter is
passed to the block as url. Why do we do this, rather than simply using the value of the
variable page_to_fetch within the block?

A thread shares all global, instance, and local variables that are in existence at the time the
thread starts. As anyone with a kid brother can tell you, sharing isn’t always a good thing.
In this case, all three threads would share the variable page_to_fetch. The first thread gets
started, and page_to_fetch is set to "www.rubycentral.com". In the meantime, the loop cre-
ating the threads is still running. The second time around, page_to_fetch gets set to "slash-
dot.org". If the first thread has not yet finished using the page_to_fetch variable, it will
suddenly start using this new value. These kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—each
thread will have its own copy of these variables. In our case, the variable url will be set at
the time the thread is created, and each thread will have its own copy of the page address.
You can pass any number of arguments into the block via Thread.new.

This code also illustrates a gotcha. Inside the loop, the threads use print to write out the
messages, rather than puts. Why? Because behind the scenes, puts splits its work into two
chunks: it writes its argument, and then it writes a newline. Between these two, a thread
could get scheduled, and the output would be interleaved. Calling print with a single string
that already contains the newline gets around the problem.

Manipulating Threads

Another subtlety occurs on the last line in our download program. Why do we call join on
each of the threads we created?

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=187

MULTITHREADING 188

When a Ruby program terminates, all threads are killed, regardless of their states. However,
you can wait for a particular thread to finish by calling that thread’s Thread#join method.
The calling thread will block until the given thread is finished. By calling join on each
of the requester threads, you can make sure that all three requests have completed before
you terminate the main program. If you don’t want to block forever, you can give join a
timeout parameter—if the timeout expires before the thread terminates, the join call returns
nil. Another variant of join, the method Thread#value, returns the value of the last statement
executed by the thread.

In addition to join, a few other handy routines are used to manipulate threads. The current
thread is always accessible using Thread.current. You can obtain a list of all threads using
Thread.list, which returns a list of all Thread objects that are runnable or stopped. To deter-
mine the status of a particular thread, you can use Thread#status and Thread#alive?.

In addition, you can adjust the priority of a thread using Thread#priority= . Higher-priority
threads will run before lower-priority threads. We’ll talk more about thread scheduling, and
stopping and starting threads, in just a bit.

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.
Variables local to the block containing the thread code are local to the thread and are not
shared.

But what if you need per-thread variables that can be accessed by other threads—including
the main thread? Class Thread features a special facility that allows thread-local variables
to be created and accessed by name. You simply treat the thread object as if it were a Hash,
writing to elements using []= and reading them back using []. In the example that follows,
each thread records the current value of the variable count in a thread-local variable with the
key mycount. To do this, the code uses the string "mycount” when indexing thread objects.
(A race condition' exists in this code, but we haven’t talked about synchronization yet, so
we’ll just quietly ignore it for now.)

Download samples/tutthreads_6.rb

count = 0
threads = []
10.times do |i]
threads[i] = Thread.new do
sleep(rand(0.1))
Thread.current["mycount"] = count
count += 1
end
end
threads.each {|t| t.join; print t["mycount"], ", " }
puts "count = #{count}"

1. A race condition occurs when two or more pieces of code (or hardware) both try to access some shared
resource, and the outcome changes depending on the order in which they do so. In the example here, it is possible
for one thread to set the value of its mycount variable to count, but before it gets a chance to increment count, the
thread gets descheduled and another thread reuses the same value of count. These issues are fixed by synchronizing
the access to shared resources (such as the count variable).

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=188

MULTITHREADING 189

produces:
7,0,8,6,5,4,1,9, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints out the value of count
captured by each. Just to make it more interesting, we have each thread wait a random time
before recording the value.

Threads and Exceptions

What happens if a thread raises an unhandled exception? It depends on the setting of the
abort_on_exception flag (documented on pages 705 and 707) and on the setting of the inter-
preter’s debug flag (described on page 234).

If abort_on_exception is false and the debug flag is not enabled (the default condition), an
unhandled exception simply Kkills the current thread—all the rest continue to run. In fact,
you don’t even hear about the exception until you issue a join on the thread that raised it.
In the following example, thread 2 blows up and fails to produce any output. However, you
can still see the trace from the other threads.

Download samples/tutthreads_7.rb

threads = []
4.times do |number|
threads << Thread.new(number) do |i]
raise "Boom!" if i == 2
print "#{i}\n"
end
end
sleep 1

produces:

0
1
3

You normally don’t use sleep to wait for threads to terminate. Instead, you’ll use the join
method. If you join to a thread that has raised an exception, then that exception will be
raised in the thread that does the joining:

Download samples/tutthreads_8.rb

threads = []
4.times do |number|
threads << Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"
end
end
threads.each do |t]|
begin
t.join
rescue RuntimeError => e
puts "Failed: #{e.message}"
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_7.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_8.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=189

CONTROLLING THE THREAD SCHEDULER 190

produces:
0
1

3
Failed: Boom!

However, set abort_on_exception to true or use -d to turn on the debug flag, and an unhan-
dled exception kills all running threads. Once thread 2 dies, no more output is produced.

Download samples/tutthreads_9.rb

Thread.abort_on_exception = true
threads = []
4.times do |number|
threads << Thread.new(number) do |i]
raise "Boom!" if i ==
print "#{i}\n"
end
end
threads.each {|t| t.join }

produces:

0
1
3
prog.rb:5:in "block (2 levels) in <main>': Boom! (RuntimeError)

Controlling the Thread Scheduler

In a well-designed application, you’ll normally just let threads do their thing; building tim-
ing dependencies into a multithreaded application is generally considered to be bad form,
because it makes the code far more complex and also prevents the thread scheduler from
optimizing the execution of your program.

Class Thread provides a number of methods that control the scheduler. Invoking Thread.stop
stops the current thread, and invoking Thread#run arranges for a particular thread to be run.
Thread.pass deschedules the current thread, allowing others to run, and Thread#join and
Thread#value suspend the calling thread until a given thread finishes. These last two are the
only low-level thread control methods that the average program should use. In fact, I now
consider most of the other low-level thread control methods too dangerous to use correctly
in programs I write.? Fortunately, Ruby has support for higher-level thread synchronization.

2. And, worse, some of these primitives are unsafe in use. Charles Nutter of JRuby fame has a blog post that
illustrates one problem:
http://headius.blogspot.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_9.rb
http://headius.blogspot.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=190

MUTUAL EXCLUSION 191

Mutual Exclusion

Let’s start by looking at a simple example of a race condition—two threads updating a
shared variable:

Download samples/tutthreads_10.rb

def inc(n)
n+1
end
sum = 0
threads = (1..10).map do
Thread.new do
10_000.times do
sum = inc(sum)
end
end
end
threads.each(&:join)
p sum

produces:
17335

We create 10 threads, and each increments the shared sum variable 10,000 times. And yet,
when the threads all finish, the final value in sum is considerably less than 100,000. Clearly
we have a race condition. In one thread, we call inc, passing it the current value in sum—
let’s say that value is 99. It returns the new value 100, which we assign back into sum. But
what happens if, during that sequence, another thread gets scheduled? It also passes the
value 99 to inc. Let’s say the second thread finishes the call to inc first. It assigns 100 back
into sum. Then the first thread gets rescheduled and finishes its call to inc. That call returns
100 as well, which gets assigned into sum. So, we had two calls, in two threads, but the
overall effect was that sum changed only from 99 to 100. We lost data.

Fortunately, that’s easy to fix. We can use the built-in class Mutex to create synchronized
regions—areas of code that only one thread may enter at a time.

Some schools coordinate students’ access to the bathrooms during class time using a system
of bathroom passes. Each room has two passes, one for girls and one for boys. To visit the
bathroom, you have to take the appropriate pass with you. If someone else already has that
pass, you have to cross your legs and wait for them to return. The bathroom pass controls
access to the critical resource—you have to own the pass to use the resource, and only one
person can own it at a time.

A mutex is like that bathroom pass. You create a mutex to control access to a resource and
then lock it when you want to use that resource. If no one else has it locked, your thread
continues to run. If someone else has already locked that particular mutex, your thread
suspends until they unlock it.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=191

MUTUAL EXCLUSION 192

Here’s a version of our counting code that uses a mutex to ensure that only one thread
updates the count at a time:

Download samples/tutthreads_11.rb

def inc(n)
n+1
end
sum = 0
mutex = Mutex.new
threads = (1..10).map do
Thread.new do
10_000.times do

mutex.lock H#t##
sum = inc(sum) # one at a time, please
mutex.unlock H#t##
end
end
end

threads.each(&:join)
p sum

produces:
100000

This pattern is so common that the Mutex class provides Mutex#synchronize, which locks
the mutex, runs the code in a block, then unlocks the mutex. This also ensures that the mutex
will get unlocked even if an exception is thrown while it is locked.

Download samples/tutthreads_12.rb

def inc(n)
n+1
end
sum = 0
mutex = Mutex.new
threads = (1..10).map do
Thread.new do
10_000.times do
mutex.synchronize do ####
sum = inc(sum) # one at a time, please
end #H##
end
end
end
threads.each(&:join)
p sum

produces:

100000

There are times when you want to claim a mutex lock if the mutex is currently unlocked, but
you don’t want to suspend the current thread if it isn’t. The Mutex#try_lock method does just

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_11.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=192

MUTUAL EXCLUSION 193

that, taking the lock if it can, but returning false if the lock is already taken. The following
code illustrates a hypothetical currency converter. The ExchangeRates class caches rates
from an online feed, and a background thread updates that cache once an hour. This update
takes a minute or so. In the main thread, we interact with our user. However, rather than just
go dead if we can’t claim the mutex that protects the rate object, we use try_lock and print a
status message if the update is in process.

rate_mutex = Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed
Thread.new do
loop do
sleep 3600
rate_mutex.synchronize do
exchange_rates.update_from_online_feed
end
end
end
loop do
print "Enter currency code and amount:
line = gets
if rate_mutex.try_lock

begin
puts exchange_rates.convert(line)
ensure
rate_mutex.unlock
end
else
puts "Sorry, rates being updated. Try again in a minute"
end

end

If you are holding the lock on a mutex and you want to temporarily unlock it, allowing others
to use it, you can call Mutexi#sleep. We could use this to rewrite the previous example:

rate_mutex = Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed
Thread.new do
rate_mutex.lock
loop do
rate_mutex.sleep 3600
exchange_rates.update_from_online_feed
end
end
loop do
print "Enter currency code and amount:
line = gets
if rate_mutex.try_lock
begin
puts exchange_rates.convert(line)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=193

RUNNING MULTIPLE PROCESSES 194

ensure
rate_mutex.unlock
end
else
puts "Sorry, rates being updated. Try again in a minute"
end
end

Queues and Condition Variables

Most of the examples in this chapter use the Mutex class for synchronization. However,
another technique is useful, particularly when you need to synchronize work between pro-
ducers and consumers. The Queue class, located in the thread library, implements a thread-
safe queuing mechanism. Multiple threads can add and remove objects from each queue,
and each addition and removal is guaranteed to be atomic. For an example, see the descrip-
tion of the thread library on page 817.

A condition variable is a controlled way of communicating an event (or a condition) between
two threads. One thread can wait on the condition, and the other can signal it. The thread
library extends threads with condition variables. Again, see the library description for an
example.

Running Multiple Processes

Sometimes you may want to split a task into several process-sized chunks—maybe to take
advantage of all those cores in your shiny new processor. Or perhaps you need to run a sep-
arate process that was not written in Ruby. Not a problem: Ruby has a number of methods
by which you may spawn and manage separate processes.

Spawning New Processes

You have several ways to spawn a separate process; the easiest is to run some command and
wait for it to complete. You may find yourself doing this to run some separate command or
retrieve data from the host system. Ruby does this for you with the system and backquote
(or backtick) methods:

system("tar xzf test.tgz") # => true
result = “date’
result # => "Mon Apr 13 13:26:03 CDT 2009\n"

The method Kernel.system executes the given command in a subprocess; it returns true if the
command was found and executed properly. It raises an exception if the command cannot

&/ be found. It returns false if the command ran but returned an error. In case of failure, you’ll
find the subprocess’s exit code in the global variable $?.

One problem with system is that the command’s output will simply go to the same desti-
nation as your program’s output, which may not be what you want. To capture the standard

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=194

RUNNING MULTIPLE PROCESSES 195

output of a subprocess, you can use the backquote characters, as with “date’ in the previ-
ous example. Remember that you may need to use String#chomp to remove the line-ending
characters from the result.

OK, this is fine for simple cases—we can run some other process and get the return status.
But many times we need a bit more control than that. We’d like to carry on a conversation
with the subprocess, possibly sending it data and possibly getting some back. The method
10.popen does just this. The popen method runs a command as a subprocess and connects
that subprocess’s standard input and standard output to a Ruby 10 object. Write to the 10
object, and the subprocess can read it on standard input. Whatever the subprocess writes is
available in the Ruby program by reading from the IO object.

For example, on our systems one of the more useful utilities is pig, a program that reads
words from standard input and prints them in pig latin (or igpay atinlay). We can use this
when our Ruby programs need to send us output that our five-year-olds shouldn’t be able to
understand:

pig = I0.popen("/usr/local/rubybook/bin/pig", "w+")
pig.puts "ice cream after they go to bed"
pig.close_write
puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the more subtle real-world com-
plexities involved in driving subprocesses through pipes. The code certainly looks simple
enough: open the pipe, write a phrase, and read back the response. But it turns out that the
pig program doesn’t flush the output it writes. Our original attempt at this example, which
had a pig.puts followed by a pig.gets, hung forever. The pig program processed our input,
but its response was never written to the pipe. We had to insert the pig.close_write line. This
sends an end-of-file to pig’s standard input, and the output we’re looking for gets flushed as
pig terminates.

popen has one more twist. If the command you pass it is a single minus sign (—), popen
will fork a new Ruby interpreter. Both this and the original interpreter will continue running
by returning from the popen. The original process will receive an 10 object back, and the
child will receive nil. This works only on operating systems that support the fork(2) call (and
for now this excludes Windows).

Download samples/tutthreads_17.rb

pipe = IO.popen(W)
if pipe
pipe.puts "Get a job!"
STDERR.puts "Child says '#{pipe.gets.chomp}"'"

else
STDERR.puts "Dad says '#{gets.chomp}'"
puts "OK"
end
produces:

Dad says 'Get a job!'
Child says 'OK'

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=195

RUNNING MULTIPLE PROCESSES 196

In addition to the popen method, some platforms support the methods Kernel.fork, Ker-
nel.exec, and 10.pipe. The filenaming convention of many 10 methods and Kernel.open will
also spawn subprocesses if you put a | as the first character of the filename (see the introduc-
tion to class 10 on page 546 for details). Note that you cannot create pipes using File.new;
it’s just for files.

Independent Children

Sometimes we don’t need to be quite so hands-on; we’d like to give the subprocess its
assignment and then go on about our business. Sometime later, we’ll check to see whether
it has finished. For instance, we may want to kick off a long-running external sort:

exec("sort testfile > output.txt") if fork.nil?

The sort is now running in a child process
carry on processing in the main program

... dum di dum ...

then wait for the sort to finish
Process.wait

The call to Kernel.fork returns a process ID in the parent, and nil in the child, so the child pro-
cess will perform the Kernel.exec call and run sort. Sometime later, we issue a Process.wait
call, which waits for the sort to complete (and returns its process ID).

If you’d rather be notified when a child exits (instead of just waiting around), you can set
up a signal handler using Kernel.trap (described on page 579). Here we set up a trap on
SIGCLD, which is the signal sent on “death of child process”:

trap("CLD") do

pid = Process.wait

puts "Child pid #{pid}: terminated"
end

fork { exec("sort testfile > output.txt") }
Do other stuff...

produces:

Child pid 83170: terminated

For more information on using and controlling external processes, see the documentation
for Kernel.open, |0.popen, and the section on the Process module on page 641.

Blocks and Subprocesses

10.popen works with a block in pretty much the same way as File.open does. If you pass it
a command, such as date, the block will be passed an 10 object as a parameter:

Download samples/tutthreads_20.rb
I10.popen("date") {|f| puts "Date is #{f.gets}" }

produces:
Date is Mon Apr 13 13:26:03 CDT 2009

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_20.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=196

RUNNING MULTIPLE PROCESSES 197

The 10 object will be closed automatically when the code block exits, just as it is with
File.open.

If you associate a block with Kernel.fork, the code in the block will be run in a Ruby sub-
process, and the parent will continue after the block:

Download samples/tutthreads_21.rb

fork do
puts "In child, pid = #$$"
exit 99

end

pid = Process.wait
puts "Child terminated, pid = #{pid}, status = #{$7.exitstatus}"

produces:

In child, pid = 83177
Child terminated, pid = 83177, status = 99

$7? is a global variable that contains information on the termination of a subprocess. See the
section on Process::Status beginning on page 650 for more information.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_21.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=197

Chapter 13

Unit Testing

Unit testing is testing that focuses on small chunks (units) of code, typically individual
methods or lines within methods. This is in contrast to most other forms of testing, which
consider the system as a whole.

Why focus in so tightly? It’s because ultimately all software is constructed in layers; code
on one layer relies on the correct operation of the code in the layers below. If this underlying
code turns out to contain bugs, then all higher layers are potentially affected. This is a big
problem. Fred may write some code with a bug one week, and then you may end up calling
it, indirectly, two months later. When your code generates incorrect results, it will take you
a while to track down the problem in Fred’s method. And when you ask Fred why he wrote
it that way, the likely answer will be “I don’t remember. That was months ago.”

If instead Fred had unit tested his code when he wrote it, two things would have happened.
First, he’d have found the bug while the code was still fresh in his mind. Second, because
the unit test was only looking at the code he’d just written, when the bug did appear, he’d
only have to look through a handful of lines of code to find it, rather than doing archaeology
on the rest of the code base.

Unit testing helps developers write better code. It helps before the code is actually written,
because thinking about testing leads you naturally to create better, more decoupled designs.
It helps as you’re writing the code, because it gives you instant feedback on how accurate
your code is. And it helps after you’ve written code, both because it gives you the ability to
check that the code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

But why have a chapter on unit testing in the middle of a book on Ruby? Well, it’s because
unit testing and languages such as Ruby seem to go hand in hand. The flexibility of Ruby
makes writing tests easy, and the tests make it easier to verify that your code is working.
Once you get into the swing of it, you’ll find yourself writing a little code, writing a test or
two, verifying that everything is copacetic, and then writing some more code.

Unit testing is also pretty trivial—run a program that calls part of your application’s code,
get back some results, and then check the results are what you expected.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=198

Let’s say we’re testing a Roman number class. So far the code is pretty simple: it just lets us
create an object representing a certain number and display that object in Roman numerals:

Download samples/unittesting_1.rb

NOTE: This code has bugs!
class Roman
MAX_ROMAN = 4999
def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end
@value = value
end
FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["1", 50], ["x1", 40],
["x", 10], ["ix", 91, ["v", 51, ["iv", 4],
[, 111
def to_s
value = @value
roman = ""

for code, factor in FACTORS
count, value = value.divmod(factor)
roman << code unless count.zero?
end
roman
end
end

We could test this code by writing another program, like this:

require 'roman'’

r = Roman.new(1)

fail "'i' expected" unless r.to_s == "i"
r = Roman.new(9)

fail "'ix' expected" unless r.to_s == "ix"

However, as the number of tests in a project grows, this kind of ad hoc approach can start to
get complicated to manage. Over the years, various unit testing frameworks have emerged
to help structure the testing process. Ruby comes with one preinstalled. In Ruby 1.8, this
used to be Nathaniel Talbott’s Test::Unit framework. Ruby 1.9 instead comes with Ryan
Davis’ MiniTest.

MiniTest is largely compatible with Test::Unit but without a lot of bells and whistles (test-
case runners, GUI support, and so on). However, because there are areas where it is different
and because there are tens of thousands of tests out there that assume the Test::Unit API,
Ryan has also added a compatibility layer to MiniTest. For a little bit more information on
the differences between the two, see the sidebar on the following page. In this chapter, we’ll
be using the Test::Unit wrapper, because it automatically runs tests for us. But we’ll also be
using some of the new assertions available in MiniTest.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=199

THE TESTING FRAMEWORK < 200

MiniTest::Unit vs. Test::Unit

Folks have been using Test::Unit with Ruby for a good number of years
now. However, the core team decided to replace the testing frame-
work that comes as standard with Ruby with something a little leaner.
Ryan Davis and Eric Hodel wrote MiniTest::Unit as a partial drop-in
replacement for Test::Unit.

Most of the assertions in MiniTest mirror those in Test::Unit:: TestCase.
The major differences are the absence of assert not_raises and
assert_not_throws and the renaming of all the negative assertions.
Whereas in Test::Unit you'd say assert_not_nil(x) and assert_not(x), in
MiniTest you'd use refute_nil(x) and refute(x).

MiniTest also drops most of the little-used features of Test::Unit,
including test cases, GUI runners, and some assertions.

And, probably most significantly, MiniTest does not automatically
invoke the test cases when you execute a file that contains them.

So, you have three basic options with this style of unit testing:
* require ‘'minitest/unit’ and use the MiniTest functionality.

* require 'test/unit’ and use Minitest with the Test::Unit compatibility
layer. This adds in the assertions in Figure 13.2 on page 219 and
reenables the autorun functionality.

* You can install the test-unit gem and get all the original Test::Unit
functionality back.

The Testing Framework

The Ruby testing framework is basically three facilities wrapped into a neat package:
* It gives you a way of expressing individual tests.
* It provides a framework for structuring the tests.

* It gives you flexible ways of invoking the tests.

Assertions == Expected Results

Rather than have you write series of individual if statements in your tests, the testing frame-
work provides a set of assertions that achieve the same thing. Although a number of different
styles of assertion exist, they all follow basically the same pattern. Each assertion gives you
a way of specifying a desired result or outcome and a way of passing in the actual outcome.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=200

THE TESTING FRAMEWORK 201

If the actual doesn’t equal the expected, the assertion outputs a nice message and records
the fact as a failure.

For example, we could rewrite our previous test of the Roman class using the testing
framework. For now, ignore the scaffolding code at the start and end, and just look at the
assert_equal methods:

Download samples/unittesting_3.rb
require 'roman'’
require 'test/unit'

class TestRoman < MiniTest::Unit::TestCase
def test_simple

assert_equal("i", Roman.new(1l).to_s)
assert_equal("ix", Roman.new(9).to_s)
end
end
produces:

Loaded suite /tmp/prog
Started

Finished in 0.000499 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

The first assertion says that we’re expecting the Roman number string representation of 1
to be “1,” and the second test says we expect 9 to be “ix.” Luckily for us, both expectations
are met, and the tracing reports that our tests pass. Let’s add a few more tests:

Download samples/unittesting_4.rb
require 'roman'’
require 'test/unit'

class TestRoman < Test::Unit::TestCase
def test_simple

assert_equal("i", Roman.new(1).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)
end
end
produces:
Loaded suite /tmp/prog
Started
F

Finished in 0.000594 seconds.

1) Failure:
<"ii"> expected but was

<"17>.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=201

THE TESTING FRAMEWORK 202

1 tests, 2 assertions, 1 failures, 0 errors, 0 skips
test_simple(TestRoman) [/tmp/prog.rb:8]:

Uh-oh! The second assertion failed. See how the error message uses the fact that the assert
knows both the expected and actual values: it expected to get “ii” but instead got “i.” Look-
ing at our code, you can see a clear bug in to_s. If the count after dividing by the factor is
greater than zero, then we should output that many Roman digits. The existing code outputs
just one. The fix is easy:

Download samples/unittesting_5.rb

def to_s
value = @value
roman = ""
for code, factor in FACTORS
count, value = value.divmod(factor)
roman << (code * count)
end
roman
end

Now let’s run our tests again:

Loaded suite /tmp/prog
Started

Finished in 0.000462 seconds.

1 tests, 5 assertions, 0 failures, 0 errors, 0 skips
Looking good. We can now go a step further and remove some of that duplication:

Download samples/unittesting_7.rb

require 'roman'’
require 'test/unit’
class TestRoman < Test::Unit::TestCase
NUMBERS = [
[, "i*1, 2, "ii" 1, [3, "iii" 1],
[4, "iv"], [5 i
1
def test_simple
NUMBERS.each do |arabic, roman|
r = Roman.new(arabic)
assert_equal(roman, r.to_s)
end
end
end

produces:

Loaded suite /tmp/prog
Started

Finished in 0.000469 seconds.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_7.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=202

THE TESTING FRAMEWORK 203

1 tests, 6 assertions, 0 failures, 0 errors, 0 skips

What else can we test? Well, the constructor checks that the number we pass in can be
represented as a Roman number, throwing an exception if it can’t. Let’s test the exception:

Download samples/unittesting_8.rb

require 'roman'’
require 'test/unit’
class TestRoman < Test::Unit::TestCase
def test_range
no exception for these two...
Roman.new(1)
Roman.new(4999)
but an exception for these
assert_raises(RuntimeError) { Roman.new(0) }
assert_raises(RuntimeError) { Roman.new(5000) }
end
end

produces:

Loaded suite /tmp/prog
Started

Finished in 0.000583 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

We could do a lot more testing on our Roman class, but let’s move on to bigger and better
things. Before we go, though, we should say that we’ve only scratched the surface of the
set of assertions available inside the testing framework. For example, for every positive
assertion, such as assert_equal, there’s a negative refutation (in this case refute_equal).
Figure 13.2 on page 219 lists the additional assertions you get if you load the Test::Unit
shim (which we do in this chapter), and Figure 13.1 on page 218 gives a full list of the
MiniTest assertions.

The final parameter to every assertion is a message that will be output before any failure
message. This normally isn’t needed, because the failure messages are normally pretty rea-
sonable. The one exception is the test refute_nil (or assert_not_nil in Test::Unit), where the
message “Expected nil to not be nil” doesn’t help much. In that case, you may want to add
some annotation of your own. (This code assumes the existence of some kind of User class.)

Download samples/unittesting_9.rb

require 'test/unit’
class ATestThatFails < Test::Unit::TestCase
def test_user_created
user = User.find(1)
refute_nil(user, "User with ID=1 should exist")
end
end

produces:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_8.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=203

STRUCTURING TESTS 204

Loaded suite /tmp/prog
Started

F

Finished in 0.000568 seconds.

1) Failure:
User with ID=1 should exist.
Expected nil to not be nil.

1 tests, 1 assertions, 1 failures, 0 errors, 0 skips
test_user_created(ATestThatFails) [/tmp/prog.rb:10]:

Structuring Tests

Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look at it.
You include the testing framework facilities in your unit test with either this:

require 'test/unit'
or, for raw MiniTest, with this:

require 'minitest/unit’

Unit tests seem to fall quite naturally into high-level groupings, called test cases, and lower-
level groupings, the test methods themselves. The test cases generally contain all the tests
relating to a particular facility or feature. Our Roman number class is fairly simple, so all the
tests for it will probably be in a single test case. Within the test case, you’ll probably want
to organize your assertions into a number of test methods, where each method contains the
assertions for one type of test; one method could check regular number conversions, another
could test error handling, and so on.

The classes that represent test cases must be subclasses of Test::Unit::TestCase. The meth-
ods that hold the assertions must have names that start with test. This is important: the
testing framework uses reflection to find tests to run, and only methods whose names start
with test are eligible.

Quite often you’ll find all of the test methods within a test case start by setting up a particular
scenario. Each test method then probes some aspect of that scenario. Finally, each method
may then tidy up after itself. For example, we could be testing a class that extracts jukebox
playlists from a database:

Download samples/unittesting_12.rb

require 'test/unit'

require 'dbi’

require 'playlist_builder’

class TestPlaylistBuilder < Test::Unit::TestCase

def test_empty_playlist

db = DBI.connect('DBI:mysqgl:playlists')
pb = PlaylistBuilder.new(db)
assert_empty(pb.playlist)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=204

STRUCTURING TESTS 205

db.disconnect
end

def test_artist_playlist
db = DBI.connect('DBI:mysql:playlists')
pb PlaylistBuilder.new(db)
pb.include_artist("krauss")
refute_empty(pb.playlist, "Playlist shouldn't be empty")
pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)

end
db.disconnect

end

def test_title_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include_title("midnight")
refute_empty(pb.playlist, "Playlist shouldn't be empty")
pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)

end
db.disconnect

end

...

end

produces:

Loaded suite /tmp/prog
Started

Finished in 0.000629 seconds.

3 tests, 46 assertions, 0 failures, O errors, O skips

Each test starts by connecting to the database and creating a new playlist builder. Each test
ends by disconnecting from the database. (The idea of using a real database in unit tests is
questionable, because unit tests are supposed to be fast running, context independent, and
easy to set up, but it illustrates a point.)

We can extract all this common code into setup and teardown methods. Within a TestCase
class, a method called setup will be run before each and every test method, and a method
called teardown will be run after each test method finishes. Let’s emphasize that: the setup
and teardown methods bracket each test, rather than being run once per test case. Our test
would then become this:

Download samples/unittesting_13.rb

require 'test/unit'

require 'dbi’

require 'playlist_builder’

class TestPlaylistBuilder < Test::Unit::TestCase

def setup
@db = DBI.connect('DBI:mysql:playlists')

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=205

ORGANIZING AND RUNNING TESTS

@pb = PlaylistBuilder.new(@db)

end

def teardown
@db.disconnect

end

def test_empty_playlist
assert_empty(@pb.playlist)

end

def test_artist_playlist
@pb.include_artist("krauss")
refute_empty(@pb.playlist, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)

end

end

def test_title_playlist
@pb.include_title("midnight")
refute_empty(@pb.playlist, "Playlist shouldn't be empty")
@pb.playlist.each do |entry]|

assert_match(/midnight/i, entry.title)

end

end

...

end

produces:

Loaded suite /tmp/prog
Started

Finished in 0.000619 seconds.

3 tests, 46 assertions, 0 failures, O errors, 0 skips

Inside the teardown method, you can detect whether the preceding test succeeded with the
passed? method.

Organizing and Running Tests

The test cases we’ve shown so far are all runnable Test::Unit programs. If, for example, the
test case for the Roman class was in a file called test_roman.rb, we could run the tests from
the command line using this:

% ruby test_roman.rb

Loaded suite test_roman
Started

Finished in 0.000883 seconds.

2 tests, 7 assertions, 0 failures, 0 errors, 0 skips

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=206

ORGANIZING AND RUNNING TESTS 207

Test::Unit is clever enough to run the tests even though there’s no main program. It collects
all the test case classes and runs each in turn.

If we want, we can ask it to run just a particular test method:

% ruby test_roman.rb -n test_range
Loaded suite test_roman
Started

Finished in 0.000600 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips
or tests whose names match a regular expression:

% ruby test_roman.rb -n /range/
Loaded suite test_roman
Started

Finished in 0.001036 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

This last capability is a great way of grouping your tests. Use meaningful names, and you’ll
be able to run (for example) all the shopping-cart-related tests by simply running tests with
names matching /cart/.

Where to Put Tests

Once you get into unit testing, you may well find yourself generating almost as much test
code as production code. All of those tests have to live somewhere. The problem is that if
you put them alongside your regular production code source files, your directories start to
get bloated—effectively you end up with two files for every production source file.

A common solution is to have a test/ directory where you place all your test source files.
This directory is then placed parallel to the directory containing the code you're developing.
For example, for our Roman numeral class, we may have this:

roman
N lib/

t roman.rb
other files. ..
M test/
t test_roman.rb
other tests. ..

“— other stuff

This works well as a way of organizing files but leaves you with a small problem: how do
you tell Ruby where to find the library files to test? For example, if our TestRoman test code
was in a test/ subdirectory, how does Ruby know where to find the roman.rb source file,
the thing we’re trying to test?

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=207

ORGANIZING AND RUNNING TESTS 208

An option that doesn’t work reliably is to build the path into require statements in the test
code and run the tests from the test/ subdirectory:

require 'test/unit'

require '../lib/roman’

class TestRoman < Test::Unit::TestCase
...

end

Why doesn’t it work? Because our roman.rb file may itself require other source files in the
library we’re writing. It’ll load them using require (without the leading ../lib/), and because
they aren’t in Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t run. A sec-
ond, less immediate problem is that we won’t be able to use these same tests to test our
classes once installed on a target system, because then they’ll be referenced simply using
require 'roman'.

A better solution is to assume that your Ruby program is packaged according to the con-
ventions we’ll be discussing in Section 16 on page 251. In this arrangement, the top-level
directory of your application is assumed to be in Ruby’s load path by all other components
of the application. Given that, your unit tests can assume that they can find the components
they are testing using the path lib/xxx.rb.

Your test code would then be as follows:

require 'test/unit’

require 'lib/roman'’

class TestRoman < Test::Unit::TestCase
...

end

And you’d run it using this:
% ruby -I path/to/app path/to/app/test/test_roman.rb

The normal case, where you’re already in the application’s directory, would be as follows:
% ruby -I . test/test_roman.rb

This would be a good time to investigate using Rake to automate your testing....

Test Suites

After a while, you’ll grow a decent collection of test cases for your application. You may
well find that these tend to cluster: one group of cases tests a particular set of functions, and
another group tests a different set of functions. If so, you can group those test cases together
into test suites, letting you run them all as a group.

This is easy to do—just create a Ruby file that requires test/unit and then requires each of
the files holding the test cases you want to group. This way, you build yourself a hierarchy
of test material.

* You can run individual tests by name.
* You can run all the tests in a file by running that file.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=208

RSPEC AND SHOULDA 209

* You can group a number of files into a test suite and run them as a unit.
* You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,
testing just one method or testing the entire application.

At this point, it’s worthwhile to think about naming conventions. Nathaniel Talbott, the
author of Test::Unit, uses the convention that test cases are in files named tc_xxx and test
suites are in files named ts_xxx. Most people seem to use test_ as the test-case filename
prefix:

file ts_dbaccess.rb
require 'test/unit'
require 'test_connect'
require 'test_query'
require 'test_update’
require 'test_delete'

Now, if you run Ruby on the file ts_dbaccess.rb, you execute the test cases in the four files
you’ve required.

RSpec and Shoulda

The built-in testing framework has a lot going for it. It is simple, and it is compatible in
style with frameworks from other languages (such as JUnit for Java and NUnit for C#).

However, there’s a growing movement in the Ruby community to use a different style of
testing. So-called behavior-driven development encourages people to write tests in terms
of your expectations of the program’s behavior in a given set of circumstances. In many
ways, this is like testing according to the content of user stories, a common requirements-
gathering technique in agile methodologies. With these testing frameworks, the focus is not
on assertions. Instead, you write expectations.

Although both RSpec and Shoulda allow this style of testing, they focus on different things.
RSpec is very much concerned with driving the design side of things. You can write and
execute specs with RSpec well before you’ve written a line of application code. These specs,
when run, will output the user stories that describe your application. Then, as you fill in the
code, the specs mutate into tests that validate that your code meets your expectations.

Shoulda, on the other hand, is really more focused on the testing side. Whereas RSpec is
a complete framework, Shoulda works inside Test::Unit—you can even mix Shoulda tests
with regular Test::Unit test methods.

Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches

The scoring system used in lawn tennis originated in the middle ages. As players win suc-
cessive points, their scores are shown as 15, 30, and 40. The next point is a win unless your

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=209

RSPEC AND SHOULDA 210

opponent also has 40. If you’re both tied at 40, then different rules apply—the first player
with a clear two-point advantage is the winner.'

We’re tasked with writing a class that handles this scoring system. Let’s use RSpec specifi-
cations to drive the process. We install RSpec with gem install rspec. We’ll then create our
first specification file:

Download samples/unittesting_20.rb

describe "TennisScorer", "basic scoring" do
it "should start with a score of 0-0"
it "should be 15-0 if the server wins a point"
it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"
...

end

This file contains nothing more than a description of an aspect of the tennis scoring class
(that we haven’t yet written, by the way). It contains a description of the basic scoring
system. Inside the description are a set of four expectations (it "should start..." and so on).
We can run this specification using the spec command:

$ spec ts_spec.rb

produces:

Pending:

TennisScorer basic scoring should start with a score of 0-0 (Not Yet
Implemented)
ts_spec.rb:2:in ‘block in <top (required)>'

TennisScorer basic scoring should be 15-0 if the server wins a point
(Not Yet Implemented)
ts_spec.rb:3:in ‘block in <top (required)>'

TennisScorer basic scoring should be 0-15 if the receiver wins a point
(Not Yet Implemented)

ts_spec.rb:4:in "block in <top (required)>'

TennisScorer basic scoring should be 15-15 after they both win a point
(Not Yet Implemented)

ts_spec.rb:5:in “block in <top (required)>'

Finished in 0.038935 seconds

4 examples, 0 failures, 4 pending

1. Some say the 0, 15, 30, 40 system is a corruption of the fact that scoring used to be done using the quarters of
a clock face. Me, I just think those medieval folks enjoyed a good joke.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_20.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=210

RSPEC AND SHOULDA 211

That’s pretty cool. Executing the tests echoes our expectations back at us, telling us that
each has yet to be implemented. Coding, like life, is full of these disappointments. How-
ever, unlike life, fixing things is just a few keystrokes away. Let’s start by meeting the first
expectation—when a game starts, the score should be 0 to 0. We’ll start by fleshing out the
test:

Download samples/unittesting_22.rb

require "tennis_scorer"”
describe TennisScorer do
it "should start with a score of 0-0" do
ts = TennisScorer.new
ts.score.should == "0-0"
end
it "should be 15-0 if the server wins a point"
it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"
end

Note that we’ve assumed we have a class TennisScorer in a file called tennis_scorer.rb. Our
first expectation now has a code block associated with it. Inside that block, we create a
TennisScorer and then use a funky RSpec syntax to validate that the score starts out at O to
0. This particular aspect of RSpec probably generates the most controversy—some people
love it, others find it awkward. Either way, ts.score.should == "0-0" is basically the same as
an assertion in Test::Unit.

We’ll beef up our TennisScorer class, but only enough to let it satify this assertion:
Download samples/unittesting_23.rb

class TennisScorer

def score
"O-Q"
end
end

Well run our spec again:

$ spec ts_spec.rb

produces:

ek

Pending:

TennisScorer should be 15-0 if the server wins a point (Not Yet
Implemented)

ts_spec.rb:9:in ‘block in <top (required)>'

TennisScorer should be 0-15 if the receiver wins a point (Not Yet

Implemented)
ts_spec.rb:10:in “block in <top (required)>'

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=211

RSPEC AND SHOULDA

TennisScorer should be 15-15 after they both win a point (Not Yet
Implemented)
ts_spec.rb:11:in ‘block in <top (required)>'

Finished in 0.015241 seconds

4 examples, 0 failures, 3 pending
Note that we now have three pending expectations; the first one has been satisfied.
Let’s flesh out the next expectation:

Download samples/unittesting_25.rb

require "tennis_scorer"
describe TennisScorer, "basic scoring" do
it "should start with a score of 0-0" do
ts = TennisScorer.new
ts.score.should == "0-0"
end
it "should be 15-0 if the server wins a point" do
ts = TennisScorer.new
ts.give_point_to(:server)
ts.score.should == "15-0"
end

it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"
end

This won’t run, because our TennisScorer class doesn’t implement a give_point_to method.
Let’s rectify that. Our code isn’t finished, but it lets the test pass:

Download samples/unittesting_26.rb

class TennisScorer
OPPOSITE_SIDE_OF_NET = {
:server => :receiver,
:receiver => :server
}
def initialize
@score = { :server => 0, :receiver => 0 }
end
def score
"#{@score[:server]*15}-#{@score[:receiver]*15}"
end
def give_point_to(player)
other = OPPOSITE_SIDE_OF_NET[player]
fail "Unknown player #{player}" unless other
@score[player] += 1
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_25.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_26.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=212

RSPEC AND SHOULDA PAK]

Again, we’ll run the specification:
$ spec ts_spec.rb

produces:

T
Pending:

TennisScorer basic scoring should be 0-15 if the receiver wins a point
(Not Yet Implemented)
ts_spec.rb:16:in ‘block in <top (required)>'

TennisScorer basic scoring should be 15-15 after they both win a point
(Not Yet Implemented)
ts_spec.rb:17:in ‘block in <top (required)>'

Finished in 0.016136 seconds

4 examples, 0 failures, 2 pending

We’re now meeting two of the four initial expectations. But, before we move on, note there’s
a bit of duplication in the specification: both our expections create a new TennisScorer
object. We can fix that by using a before stanza in the specification. This works a bit like the
setup method in Test::Unit, allowing us to run code before expecations are executed. Let’s
use this feature and, at the same time, build out the last two expectations:

Download samples/unittesting_28.rb

require "tennis_scorer"

describe TennisScorer, "basic scoring" do
before(:each) do
@ts = TennisScorer.new

end

it "should start with a score of 0-0" do
@ts.score.should == "0-0"

end

it "should be 15-0 if the server wins a point" do
@ts.give_point_to(:server)
@ts.score.should == "15-0"

end

it "should be 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver)
@ts.score.should == "0-15"

end

it "should be 15-15 after they both win a point" do
@ts.give_point_to(:receiver)
@ts.give_point_to(:server)
@ts.score.should == "15-15"

end

end

Let’s run it:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_28.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=213

RSPEC AND SHOULDA 214

$ spec ts_spec.rb

produces:

Finished in 0.016362 seconds

4 examples, 0 failures

We’re going to stop here, but I suggest that you might want to take this code and continue
to develop it. Write expectations such as these:

Download samples/unittesting_30.rb

it "should be 40-0 after the server wins three points"

it "should be W-L after the server wins four points"

it "should be L-W after the receiver wins four points"

it "should be Deuce after each wins three points"

it "should be A-server after each wins three points and the server
gets one more"

it "should be A-receiver after each wins three points and the receiver
gets one more"

and so on. Note that none of these expectations is met by our current implementation.

RSpec has a lot more depth than just the description of expectations. In particular, it has
an entire language for describing and running complete user stories. But that’s beyond the
scope of this book.

Anyone for Shoulda?

RSpec is testing with attitude. On the other hand, Shoulda takes many of the ideas from
RSpec and humbly offers them to you for integration into your regular unit tests. For many
developers, particularly those with existing Test::Unit tests, this is a good compromise. You
get much of the descriptive power of RSpec-style expectations without having to commit to
the full framework.

Install Shoulda using this:
% gem install thoughtbot-shoulda --source=http://gems.github.com

Then, unlike RSpec, write a regular Test::Unit test case. Inside it, though, you can use the
Shoulda mini-language to describe your tests.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_30.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=214

RSPEC AND SHOULDA

Let’s recast our final RSpec tennis scoring tests using Shoulda:
Download samples/unittesting_31.rb
require 'rubygems'
require 'test/unit’

require 'shoulda'
require 'tennis_scorer.rb'’

class TennisScorerTest < Test::Unit::TestCase

def assert_score(target)
assert_equal(target, @ts.score)

end
context "Tennis scores" do
setup do
@ts = TennisScorer.new
end

should "start with a score of 0-0" do
assert_score("0-0")

end

should "be 15-0 if the server wins a point" do
@ts.give_point_to(:server)
assert_score("15-0")

end

should "be 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver)
assert_score("0-15")

end

should "be 15-15 after they both win a point" do
@ts.give_point_to(:receiver)
@ts.give_point_to(:server)
assert_score("15-15")

end

end
end

$ ruby ts_spec.rb

produces:

Loaded suite ts_shoulda
Started

Finished in 0.000689 seconds.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

Behind the scenes, Shoulda is creating Test::Unit test methods for each should block in your
tests. This is why we can use regular test::Unit assertions in Shoulda code. But Shoulda also
works hard to maintain the right context for our tests. For example, I can nest contexts and
their setup blocks, allowing me to have some initialization that’s common to all tests and
some that’s common to just a subset. We can apply this to our tennis example. We’ll write
nested contexts and put setup blocks at each level. When Shoulda executes our tests, it runs
all the appropriate setup blocks for the should blocks.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_31.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=215

RSPEC AND SHOULDA

Download samples/unittesting_33.rb

require 'rubygems'

require 'test/unit’
require 'shoulda'

require 'tennis_scorer.rb'’

class TennisScorerTest < Test::Unit::TestCase

def assert_score(target)
assert_equal(target, @ts.score)

end
context "Tennis scores" do
setup do
@ts = TennisScorer.new
end

should "start with a score of 0-0" do
assert_score("0-0")
end
context "where the server wins a point" do
setup do
@ts.give_point_to(:server)
end
should "be 15-0" do
assert_score("15-0")
end
context "and the oponent wins a point" do
setup do
@ts.give_point_to(:receiver)
end
should "be 15-15" do
assert_score("15-15")
end
end
end
should "be 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver)
assert_score("0-15")
end
end
end

Let’s run it:

$ ruby ts_spec.rb
produces:

Loaded suite ts_shoulda_1
Started

Finished in 0.000806 seconds.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_33.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=216

RSPEC AND SHOULDA 217

Would I use these nested contexts for this tennis scoring example? I probably wouldn’t as it
stands, because the linear form is easier to read. But I use them all the time when I have tests
where I want to run through a complex and building scenario. This nesting lets me set up an
environment, run some tests, then change the environment, run more tests, change it again,
run even more tests, and so on. It ends up making tests far more compact and removes a lot
of duplication.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=217

RSPEC AND SHOULDA

Figure 13.1. Testing Framework Assertions

assert | refute(boolean, [message])
Fails if boolean is (is not) false or nil.

assert_block { block }
Expects the block to return true.

assert_ | refute_empty(collection, [message])
Expects empty? on collection to return true (false).

assert_ | refute_equal(expected, actual, [message])
Expects actual to equal/not equal expected, using ==.

assert_ | refute_in_delta(expected_float, actual_float, delta, [message])
Expects that the actual floating-point value is (is not) within delta of the expected value.

assert_ | refute_in_epsilon(expected._float, actual_float, epsilon=0.001, [message])
Calculates a delta value as epsilon * min(expected, actual), then calls the _in_delta test.

assert_ | refute_includes(collection, obj, [message])
Expects include?(obj) on collection to return true (false).

assert_ | refute_instance_of(klass, obj, [message)
Expects obj to be (not to be) a instance of klass.

assert_ | refute_kind_of(klass, obj, [message 1)
Expects obj to be (not to be) a kind of klass.

assert_ | refute_match(regexp, string, [message])
Expects string to (not) match regexp.

assert_ | refute_nil(obj, [message)
Expects obj to be (not) nil.

assert_ | refute_operator(obj1, operator, obj2, [message 1)
Expects the result of sending the message operator to objl with parameter obj2 to be (not to be) true.

assert_raises(Exception, ...) { block }
Expects the block to raise one of the listed exceptions.

assert_ | refute_respond_to(obj, message, [message])
Expects obj to respond to (not respond to) message (a symbol).

assert_ | refute_same(expected, actual, [message])
Expects expected.equal?(actual).

assert_send(send_array, [message])
Sends the message in send_array/[1] to the receiver in send_array[0], passing the rest of send_array

as arguments. Expects the return value to be true.
assert_throws(expected _symbol,[message]) { block }

Expects the block to throw the given symbol.
flunk(message="Epic Fail!")

Always fails.

skip(message)
Indicates that a test is deliberately not run.

pass
Always passes.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=218

-
Figure 13.2. Additional Test::Unit Assertions

assert_not_equal(expected, actual, [message])
Expects actual not to equal expected, using ==. Like refute_equal.

assert_not_match(regexp, string, [message])
Expects string not to match regexp. Like refute_match.

assert_not_nil(obj, [message])
Expects obj not to be nil. Like refute_nil.

assert_not_same(expected, actual, [message |)
Expects lexpected.equal?(actual). Like refute_same.

assert_nothing_raised(Exception, ...) { block }
Expects the block not to raise one of the listed exceptions.

assert_nothing_thrown(expected _symbol,[message]) { block }
Expects the block not to throw the given symbol.

assert_raise(Exception, ...) { block }
Synonym for assert_raises.

Chapter 14

When Trouble Strikes

It’s sad to say, but it is possible to write buggy programs using Ruby. Sorry about that.

But not to worry! Ruby has several features that will help debug your programs. We’ll look
at these features, and then we’ll show some common mistakes you can make in Ruby and
how to fix them.

Ruby Debugger

Ruby comes with a debugger, which is conveniently built into the base system. You can
run the debugger by invoking the interpreter with the -r debug option, along with any other
Ruby options and the name of your script:

ruby -r debug [debug-options | [programfile] [program-arguments]

The debugger supports the usual range of features you’d expect, including the ability to
set breakpoints, to step into and step over method calls, and to display stack frames and
variables. It can also list the instance methods defined for a particular object or class, and it
allows you to list and control separate threads within Ruby. Table 14.1 on page 231 lists all
the commands that are available under the debugger.

If your Ruby installation has readline support enabled, you can use cursor keys to move back
and forth in command history and use line-editing commands to amend previous input.

To give you an idea of what the Ruby debugger is like, here is a sample session (with user
input in bold type):

% ruby -r debug t.rb
Debug.rb
Emacs support available.
t.rb:1:def fact(n)
(rdb:1) list1-9
[1, 9] in t.rb
=> 1 def fact(n)

2 if n<=0

3 1

4 else

5 n = fact(n-1)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=220

INTERACTIVE RUBY 221

6 end

7 end

8

9 p fact(5)

(rdb:1) b2

Set breakpoint 1 at t.rb:2

(rdb:1) €

breakpoint 1, fact at t.rb:2

t.rb:2: if n<=0

(rdb:1) dispn

1l: n=5

(rdb:1) del1

(rdb:1) watch n==

Set watchpoint 2

(rdb:1) C

watchpoint 2, fact at t.rb:fact

t.rb:1:def fact(n)

l: n=1

(rdb:1) where

-—> #1 t.rb:1:in “fact'
#2 .rb:5:in “fact'
#3 .rb:5:in “fact'
#4 .rb:5:in “fact'
#5 .rb:5:in “fact'
#6 t.rb:9

(rdb:1) del 2

(rdb:1) C

120

o+ &t +

Interactive Ruby

If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is essen-
tially a Ruby “shell” similar in concept to an operating system shell (complete with job
control). It provides an environment where you can “play around” with the language in real
time. You launch irb at the command prompt:

irb [irb-options | [ruby_script] [program-arguments]|
irb will display the value of each expression as you complete it. For instance:

% irb

irb(main):001:0> a=1 +
irb(main):002:0+« 2* 3/
irb(main):003:0+ 4% 5
= 2

irb(main):004:0> 2+2

=> 4

irb(main):005:0> def test
irb(main):006:1> puts "Hello, world!"
irb(main):007:1> end

=> nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=221

EDITOR SUPPORT 222

irb(main):008:0> test
Hello, world!

=> nil
irb(main):009:0>

irb also allows you to create subsessions, each one of which may have its own context.
For example, you can create a subsession with the same (top-level) context as the original
session or create a subsession in the context of a particular class or instance. The sample
session shown in Figure 14.1 on the following page is a bit longer but shows how you can
create subsessions and switch between them.

For a full description of all the commands that irb supports, see the reference beginning on
page 278.

As with the debugger, if your version of Ruby was built with GNU readline support, you
can use Emacs- or vi-style key bindings to edit individual lines or to go back and reexecute
or edit a previous line—just like a command shell.

irb is a great learning tool. It’s very handy if you want to try an idea quickly and see whether
it works.

Editor Support

The Ruby interpreter is designed to read a program in one pass; this means you can pipe an
entire program to the interpreter’s standard input, and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs, for
instance, you can select a region of Ruby text and use the command Meta-| to execute Ruby.
The Ruby interpreter will use the selected region as standard input, and output will go to a
buffer named *Shell Command Output*. This feature has come in quite handy for us while
writing this book—just select a few lines of Ruby in the middle of a paragraph, and try it!

You can do something similar in the vi editor using :%!ruby, which replaces the program text
with its output, or :w_!ruby, which displays the output without affecting the buffer. Other
editors have similar features.'

Some Ruby developers look for IDE support. Several decent alternatives came to the fore
during 2007 and 2008. Arachno Ruby, NetBeans, Ruby in Steel, Idea, and so on, all have
their devotees. It’s a rapidly changing field, so I'd recommend a quick web search rather
than rely on my advice here.

While we are on the subject, this would probably be a good place to mention that a Ruby
mode for Emacs is included in the Ruby source distribution as ruby-mode.el in the misc/
subdirectory. Many other editors now include support for Ruby; check your documentation
for details.

1. If you use a Mac, take a look at Textmate (http://macromates.com). It isn’t free, but it is a great Ruby
environment.

Report erratum

http://macromates.com
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=222

EDITOR SUPPORT

Figure 14.1. Sample irb Session)

% irb

irb(main):001:0> irb

irb#1(main):001:0> jobs

#0->irb on main (#<Thread:0x401bd654>: stop)

#1->irb#1 on main (#<Thread:0x401d5a28>: running)

irb#1(main):002:0> fg 0

#<IRB: :Irb:@scanner=#<RubyLex:0x401lca7>,@signal_status=:IN_EVAL,
@context=#<IRB: :Context:0x401ca86c>>

irb(main):002:0> class VolumeKnob I i 5 -

irb(main):003:1> end n this same irb session,

—> nil we’ll create a new

irb(main):004:0> irb VolumeKnob _ _ subsession in the context of

irb#2(VolumeKnob):001:0> def initialize class VolumeKnob.

irb#2(VolumeKnob):002:1> @vol=50

irb#2 (VolumeKnob) :003:1> end We can use fg 0 to switch

=> nil back to the main session,

irb#2(VolumeKnob) :004:0> def up take a look at all current

irb#2(VolumeKnob):005:1> @VOI +=10 jobs’ and see what instance

irb#2(VolumeKnob):006:1> end methods VolumeKnob

=> nil / defines.

irb#2(VolumeKnob):007:0> fg 0

#<IRB: :Irb:@scanner=#<RubyLex:0x401lca7>,@signal_status=:IN_EVAL,
@context=#<IRB: :Context:0x401ca86c>>

irb(main):005:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)

#1->irb#1 on main (#<Thread:0x401d5a28>: stop)

#2->irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)

irb(main):006:0> VolumeKnob.instance_methods

=> ["up"]

irb(main):007:0> v = VolumeKnob.new Make a new VolumeKnob

#<VolumeKnob: @vol=50> \ object, and create a new

irb(main):008:0> irb v subsession with that object

irb#3(#<VolumeKnob:0x401e7d40>):001:0> up as the context.

=> 60

irb#3 (#<VolumeKnob:0x401e7d40>):002:0> up

=> 70 Switch back to the main

irb#3(#<VolumeKnob:0x401e7d40>) :003:0> Uup session, kill the

=> 80 subsessions, and exit.

irb#3(Volumeknob):004:0> fg 0 «——— —

#<IRB: :Irb:@scanner=#<RubyLex:0x401lca7>,@signal_status=:IN_EVAL,
@context=#<IRB::Context:0x401ca86c>>

irb(main):009:0> kill 1,2,3

= [1, 2, 3]

irb(main):010:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)

irb(main):011:0> exit

|\ J

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=223

BuT IT DOESN’'T WORK! 224

But It Doesn’t Work!

So, you’ve read through enough of the book, you start to write your very own Ruby program,
and it doesn’t work. Here’s a list of common gotchas and other tips:

* First and foremost, run your scripts with warnings enabled (the -w command-line
option).

If you happen to forget a comma (,) in an argument list—especially to print—you can
produce some very odd error messages.

* A parse error at the last line of the source often indicates a missing end keyword,
sometimes quite a bit earlier.
* This ugly message:
syntax error, unexpected $end, expecting keyword_end
means that you have an end missing somewhere in your code. (The $end in the message
means end-of-file, so the message simply means that Ruby hit the end of your code

before finding all the end keywords it was expecting.) Try running with -w, which will
warn when it finds ends that aren’t aligned with their opening if/while/class....

An attribute setter is not being called. Within a class definition, Ruby will parse setter=
as an assignment to a local variable, not as a method call. Use the form self.setter= to
indicate the method call:

class Incorrect

attr_accessor :one, :two
def initialize

one = 1 # incorrect - sets local variable
self.two = 2
end

end

obj = Incorrect.new
obj.one # => nil
obj.two # => 2

* Objects that don’t appear to be properly set up may have been victims of an incorrectly
spelled initialize method:

class Incorrect
attr_reader :answer

def initialise # <-- spelling error
@answer = 42
end
end

ultimate = Incorrect.new
ultimate.answer # => nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=224

BUT IT DOESN’T WORK!

The same kind of thing can happen if you misspell the instance variable name:

class Incorrect
attr_reader :answer
def initialize
@anwser = 42 #<-- spelling error
end
end

ultimate = Incorrect.new
ultimate.answer # => nil

19 , * As of Ruby 1.9, block parameters are no longer in the same scope as local variables.
This may cause compatibility problems with older code. Run with the -w flag to spot
these issues:

entry = "wibble"
[1, 2, 3].each do |entry|
do something with entry
end
puts "Last entry = #{entry}"

produces:

/tmp/prog.rb:2: warning: shadowing outer local variable - entry
Last entry = wibble

* Watch out for precedence issues, especially when using {} instead of do/end:

def one(arg)
if block_given?
"block given to 'one' returns #{yield}
else
arg
end
end
def two
if block_given?
"block given to 'two' returns #{yield}"

end

end

resultl = one two {
"three"

}

result2 = one two do
"three"

end

puts "With braces, result = #{resultl}"
puts "With do/end, result = #{result2}"

produces:

With braces, result = block given to 'two' returns three
With do/end, result = block given to 'one' returns three

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=225

BUT IT DOESN’T WORK! 226

* Output written to a terminal may be buffered. This means you may not see a mes-
sage you write immediately. In addition, if you write messages to both STDOUT and
STDERR, the output may not appear in the order you were expecting. Always use
nonbuffered I/O (set sync=true) for debug messages.

e If numbers don’t come out right, perhaps they’re strings. Text read from a file will
be a String and will not be automatically converted to a number by Ruby. A call to
Integer will work wonders (and will throw an exception if the input isn’t a well-formed
integer). The following is a common mistake Perl programmers make:

while line = gets
numl, num2 = line.split(/,/)
...

end

You can rewrite this as follows:

while line = gets
numl, num2 = line.split(/,/)
numl = Integer (numl)
num2 = Integer(num?2)
...
end

Or, you could convert all the strings using map:

while line = gets
numl, num2 = line.split(/,/).map {|val| Integer(val) }
...

end

Unintended aliasing—if you are using an object as the key of a hash, make sure it
doesn’t change its hash value (or arrange to call Hash#rehash if it does):

Download samples/trouble_10.rb

arr = [1, 2]

hash = { arr => "value" }

hash[arr] # => "value"

arr[0] = 99

hash[arr] # => nil

hash.rehash # => {[99, 2]=>"value"}
hash[arr] # => "value"

Make sure the class of the object you are using is what you think it is. If in doubt, use
puts my_obj.class.

Make sure your method names start with a lowercase letter and class and constant
names start with an uppercase letter.

If method calls aren’t doing what you’d expect, make sure you've put parentheses
around the arguments.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/trouble_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=226

BUT IT’S Too SLow! 227

* Make sure the open parenthesis of a method’s parameter list butts up against the end
of the method name with no intervening spaces.

* Use irb and the debugger.

* Use Objectifreeze. If you suspect that some unknown portion of code is setting a vari-
able to a bogus value, try freezing the variable. The culprit will then be caught during
the attempt to modify the variable.

One major technique makes writing Ruby code both easier and more fun. Develop your
applications incrementally. Write a few lines of code, and then write tests (perhaps using
Test::Unit). Write a few more lines of code, and then exercise them. One of the major
benefits of a dynamically typed language is that things don’t have to be complete before
you use them.

But It’s Too Slow!

Ruby is an interpreted, high-level language, and as such it may not perform as fast as a
lower-level language such as C. In the following sections, we’ll list some basic things you
can do to improve performance; also take a look in the index under Performance for other
pointers.

Typically, slow-running programs have one or two performance graveyards, places where
execution time goes to die. Find and improve them, and suddenly your whole program
springs back to life. The trick is finding them. The Benchmark module and the Ruby profil-
ers can help.

Benchmark

You can use the Benchmark module, also described on page 731, to time sections of code.
For example, we may wonder what the overhead of method invocation is. How to use Bench-
mark to find out is shown in Figure 14.2 on the next page.

You have to be careful when benchmarking, because oftentimes Ruby programs can run
slowly because of the overhead of garbage collection. Because this garbage collection can
happen any time during your program’s execution, you may find that benchmarking gives
misleading results, showing a section of code running slowly when in fact the slowdown
was caused because garbage collection happened to trigger while that code was executing.
The Benchmark module has the bmbm method that runs the tests twice, once as a rehearsal
and once to measure performance, in an attempt to minimize the distortion introduced by
garbage collection. The benchmarking process itself is relatively well mannered—it doesn’t
slow down your program much.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=227

BUT IT’S Too SLow! 228

r
Figure 14.2. Determining Method Calling Costs Using Benchmark

Download samples/trouble_11.rb

require 'benchmark'
include Benchmark

LOOP_COUNT = 1_000_000

bmbm(12) do |test]
test.report("inline:") do
LOOP_COUNT. times do |x]|
nothing
end
end
test.report("method:") do
def method
nothing
end
LOOP_COUNT. times do |x|
method
end
end
end

produces:
Rehearsal ------------—-—-—-"-"-"--—-—-—--------------++

inline: 0.080000 0.000000 0.080000 (0.083641)
method: 0.140000 0.000000 0.140000 (0.137155)
—————————————————————————————————————— total: 0.220000sec

user system total real
inline: 0.080000 0.000000 0.080000 (0.083544)
method: 0.140000 0.000000 0.140000 (0.136044)

The Profiler

Ruby comes with a code profiler (documentation begins on page 792). The profiler shows
you the number of times each method in the program is called and the average and cumula-
tive time that Ruby spends in those methods.

You can add profiling to your code using the command-line option -r profile or from within
the code using require 'profile'.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/trouble_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=228

BUT IT’S Too SLow! 229

For example:
Download samples/trouble_12.rb

require 'profile'
count = 0
words = File.open("/usr/share/dict/words")
while word = words.gets

word = word.chomp!

if word.length == 12

count += 1

end

end

puts "#{count} twelve-character words"

The first time we ran this (without profiling) against a dictionary of almost 235,000 words,
it took a noticeable time to complete. Wondering if we could improve on this, we added the
-r profile command-line option and tried again. Eventually we saw output that looked like
the following:

20460 twelve-character words

% cumulative self self total
time seconds seconds calls ms/call ms/call name

0.00 0.00 0.00 1 0.00 0.00 File#initialize

0.00 0.00 0.00 1 0.00 0.00 IO#open

0.00 0.00 0.00 2 0.00 0.00 IO#write

0.00 0.00 0.00 1 0.00 0.00 Fixnum#to_s

0.00 0.00 0.00 1 0.00 0.00 Kernel.puts
16.05 1.25 1.25 234936 0.01 0.01 String#chomp!
20.67 2.86 1.61 234937 0.01 0.01 IO#gets

0.00 7.79 0.00 1 0.00 7790.00 #toplevell

The first thing to notice is that the timings shown are a lot slower than when the program runs
without the profiler. Profiling has a serious overhead, but the assumption is that it applies
across the board, and therefore the relative numbers are still meaningful. This particular
program clearly spends a lot of time in the loop, which executes almost 235,000 times.
Each time, it invokes both gets and chomp!. We could probably improve performance if we
could either make the stuff in the loop less expensive or eliminate the loop altogether. One
way of doing the latter is to read the word list into one long string and then use a pattern to
match and extract all twelve character words:

Download samples/trouble_13.rb

words = File.read("/usr/share/dict/words")
count = words.scan(/A............ \n/).size

puts "#{count} twelve-character words"

Our profile numbers are now a lot better (and the program runs more than five times faster
when we take the profiling back out):

% cumulative self self total
time seconds seconds calls ms/call ms/call name
95.45 0.21 0.21 1 210.00 210.00 String#scan
4.55 0.22 0.01 1 10.00 10.00 IO#read
0.00 0.22 0.00 1 0.00 0.00 Fixnum#to_s

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/trouble_12.rb
http://media.pragprog.com/titles/ruby3/code/samples/trouble_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=229

BUT IT’S Too SLow!

0.00 0.22 0.00 1 0.00 0.00 Array#size
0.00 0.22 0.00 2 0.00 0.00 IO#write
0.00 0.22 0.00 1 0.00 0.00 IO#puts
0.00 0.22 0.00 1 0.00 0.00 Kernel.puts
0.00 0.22 0.00 1 0.00 220.00 #toplevel

20460 twelve-character words

Remember to check the code without the profiler afterward, though—sometimes the slow-
down the profiler introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the pro-
grammer of the need to apply common sense: creating unnecessary objects, performing
unneeded work, and creating bloated code will slow down your programs regardless of the
language.

Code Execution Coverage

Ruby 1.9.1 comes with experimental support for code coverage analysis—it will track
which lines of code were executed in your code. However, the support is currently labeled
as experimental and is by default disabled in the VM. By the time you read this, it may have
settled down. Try doing this:

$ ri coverage

Of course, there’s a good chance it may never make it to production. In that case, feel free
to cut out this section of your book and use the words in your next writing project.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=230

BuT IT’s Too SLow! 231

Table 14.1. Debugger Commands

b [reak] [file|class:]line
b[reak] [file|class:]name
b [reak]

wat[ch] expr

del[ete] [nnn]

cat[ch] exception
cat[ch]

tr [ace] (on|off) [all]

Sets breakpoint at given line in file (default current file) or class.
Sets breakpoint at method in file or class.

Displays breakpoints and watchpoints.

Breaks when expression becomes true.

Deletes breakpoint nnn (default all).

Stops when exception is raised.

Lists current catches.

Toggles execution trace of current or all threads.

disp [lay] expr

disp[lay]
undisp [lay] [nnn]

Displays value of nnn every time debugger gets control.
Shows current displays.
Removes display (default all).

clont]
s [tep] nnn=1
n[ext] nnn=1

Continues execution.
Executes next nnn lines, stepping into methods.
Executes next nnn lines, stepping over methods.

fin[ish] Finishes execution of the current function.
q[uit] Exits the debugger.

w [here] Displays current stack frame.

f[rame] Synonym for where.

I[ist] [start—end] Lists source lines from start to end.

up nnn=1 Moves up nnn levels in the stack frame.
down nnn=1 Moves down nnn levels in the stack frame.

v[ar] g[lobal]

v[ar] I[ocal]

v [ar] i[stance] obj
v[ar] c[onst] Name

Displays global variables.

Displays local variables.

Displays instance variables of 0bj.

Displays constants in class or module name.

m [ethod] i [nstance] obj
m [ethod] Name

Displays instance methods of 0bj.
Displays instance methods of the class or module name.

th[read] I[ist]

th [read] [c[ur[rent]]]
th[read] [c[ur[rent]]] nnn
th [read] stop nnn
th[read] resume nnn

th [read] [sw][itch]] nnn

Lists all threads.

Displays status of current thread.
Makes thread nnn current and stops it.
Makes thread nnn current and stops it.
Resumes thread nnn.

Switches thread context to nnn.

[p] expr

hlelp]

Evaluates expr in the current context. expr may include assignment to
variables and method invocations.
Shows summary of commands.

empty

A null command repeats the last command.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=231

Part Il

Ruby in Its Setting

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=232

Chapter 15

Ruby and Its World

It’s an unfortunate fact of life that our applications have to deal with the big, bad world.
In this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Win-
dows users will probably also want to look at platform-specific information beginning on
page 316.

Command-Line Arguments

“In the beginning was the command line.”! Regardless of the system in which Ruby is

deployed, whether it be a super high-end scientific graphics workstation or an embedded
PDA device, you have to start the Ruby interpreter somehow, and that gives us the opportu-
nity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, optionally
the name of a program to run, and optionally a set of arguments for that program:

ruby [options | [--] [programfile] [arguments]|

The Ruby options are terminated by the first word on the command line that doesn’t start
with a hyphen or by the special flag -- (two hyphens).

If no filename is present on the command line or if the filename is a single hyphen (-), Ruby
reads the program source from standard input.

Arguments for the program itself follow the program name. For example, the following:
% ruby -w - "Hello World"

will enable warnings, read a program from standard input, and pass it the string "Hello World"
as an argument.

1. This is the title of a marvelous essay by Neal Stephenson (available online at
http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine).

Report erratum

http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=233

COMMAND-LINE ARGUMENTS 234

Command-Line Options

-O[octall
The 0 flag (the digit zero) specifies the record separator character (\0, if no digit fol-
lows). -00 indicates paragraph mode: records are separated by two successive default
record separator characters. -0777 reads the entire file at once (as it is an illegal char-
acter). Sets $/.

-a Autosplit mode when used with -n or -p; equivalent to executing $F = $_.split at the top
of each loop iteration.

-C directory
Changes working directory to directory before executing.

-¢c Checks syntax only; does not execute the program.

--copyright
Prints the copyright notice and exits.
-d, --debug

Sets $DEBUG and $VERBOSE to true. This can be used by your programs to enable
additional tracing.

--disable-gems
= 7 Stops Ruby automatically loading RubyGems from require.

-E encoding, --encoding encoding, --encoding=encoding
= 7 Specifies the default character encoding for data read from and written to the outside
world. This can be used to set both the external encoding (the encoding to be assumed
for file contents) and optionally the default internal encoding (the file contents are
transcoded to this when read and transcoded from this when written). The format of
the encoding parameter is -E external, -E external:internal, or -E :internal. See 17 on
page 264 for details. See also -U.

-e 'command’
Executes command as one line of Ruby source. Several -e’s are allowed, and the com-
mands are treated as multiple lines in the same program. If programfile is omitted when
-e is present, execution stops after the -e commands have been run. Programs run using
-e have access to the old behavior of ranges and regular expressions in conditions—
ranges of integers compare against the current input line number, and regular expres-
sions match against $_.

-F pattern
Specifies the input field separator ($;) used as the default for split() (affects the -a
option).

-h, --help

Displays a short help screen.

-l directories
Specifies directories to be prepended to $LOAD_PATH ($:). Multiple - options may be
present. Multiple directories may appear following each -I, separated by a colon (:) on
Unix-like systems and by a semicolon (;) on DOS/Windows systems.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=234

COMMAND-LINE ARGUMENTS 235

-i [extension]
Edits ARGV files in place. For each file named in ARGV, anything you write to standard
output will be saved back as the contents of that file. A backup copy of the file will be
made if extension is supplied.

% ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" *.txt

-l Enables automatic line-ending processing; sets $\ to the value of $/ and chops every
input line automatically.

-n Assumes a while gets; ... ; end loop around your program. For example, a simple grep
command could be implemented as follows:

% ruby -n -e "print if /wombat/" x.txt
-p Places your program code within the loop while gets; ... ; print; end.

% ruby -p -e "$_.downcase!" =.txt

-r library
19 , requires the named library or gem before executing.

-S Looks for the program file using the RUBYPATH or PATH environment variable.

-s Any command-line switches found after the program filename, but before any filename
arguments or before a --, are removed from ARGV and set to a global variable named
for the switch. In the following example, the effect of this would be to set the variable
$opt to "electric":

% ruby -s prog -opt=electric ./mydata

-Tllevel]

19 , Sets the safe level, which among other things enables tainting and untrusted checks

(see page 436). Sets $SAFE.

-U Sets the default internal encoding to UTF-8. See 17 on page 264 for details. See also
-E.

-v, --verbose
Sets $VERBOSE to true, which enables verbose mode. Also prints the version number.
In verbose mode, compilation warnings are printed. If no program filename appears on
the command line, Ruby exits.

--version
Displays the Ruby version number and exits.

-w Enables verbose mode. Unlike -v, reads program from standard input if no program
files are present on the command line. We recommend running your Ruby programs
with -w.

-W level
Sets the level of warnings issued. With a level or two (or with no level specified), equiv-
alent to -w—additional warnings are given. If level is 1, runs at the standard (default)
warning level. With -WO0, absolutely no warnings are given (including those issued
using Kernel.warn).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=235

PROGRAM TERMINATION 236

-X directory
Changes working directory to directory before executing. This is the same as -C direc-

tory.

-x [dlirectory]
Strips off text before #!ruby line and changes working directory to directory if given.

Y, —-yydebug
Enables yacc debugging in the parser (waaay too much information).

ARGV

Any command-line arguments after the program filename are available to your Ruby pro-
gram in the global array ARGV. For instance, assume test.rb contains the following pro-
gram:

ARGV.each {|arg| p arg }
Invoke it with the following command line:

% ruby -w test.rb "Hello World" al 1.6180
It’ll generate the following output:

"Hello World"
na1"
"1.6180"

There’s a gotcha here for all you C programmers—ARGV[0] is the first argument to the
program, not the program name. The name of the current program is available in the global

&/ variable $0, which is aliased to $PROGRAM_NAME. Notice that all the values in ARGV are
strings.

If your program reads from standard input (or uses the special object ARGF, described on
page 342), the program arguments in ARGV will be taken to be filenames, and Ruby will
read from these files. If your program takes a mixture of arguments and filenames, make
sure you empty the nonfilename arguments from the ARGV array before reading from the
files.

Program Termination

The method Kernel#exit terminates your program, returning a status value to the operating
system. However, unlike some languages, exit doesn’t terminate the program immediately.
Kernel#exit first raises a SystemExit exception, which you may catch, and then performs
a number of cleanup actions, including running any registered at_exit methods and object
finalizers. See the reference for Kernel#exit beginning on page 569 for details.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=236

ENVIRONMENT VARIABLES 237

Environment Variables

You can access operating system environment variables using the predefined variable ENV.
It responds to the same methods as Hash.?

ENV['SHELL'] # => "/bin/bash"

ENV['HOME'] # => "/Users/dave"

ENV['USER'] # => "dave"

ENV.keys.size # => 38

ENV.keys[0, 4] # => ["MANPATH", "TERM_PROGRAM", "SHELL", "TERM"]

The values of some environment variables are read by Ruby when it first starts. These vari-
ables modify the behavior of the interpreter, as shown in Table 15.1 on the following page.

Writing to Environment Variables

A Ruby program may write to the ENV object. On most systems, this changes the values of
the corresponding environment variables. However, this change is local to the process that
makes it and to any subsequently spawned child processes. This inheritance of environment
variables is illustrated in the code that follows. A subprocess changes an environment vari-
able, and this change is inherited by a process that it then starts. However, the change is not
visible to the original parent. (This just goes to prove that parents never really know what
their children are doing.)

19 , Asof Ruby 1.9, setting an environment variable’s value to nil removes the variable from the
environment:

Download samples/rubyworld_3.rb

puts "In parent, term = #{ENV['TERM']}"
fork do
puts "Start of child 1, term = #{ENV['TERM']}"
ENV['TERM'] = "ansi"
fork do
puts "Start of child 2, term = #{ENV['TERM']}"
end
Process.wait
puts "End of child 1, term = #{ENV['TERM']}"
end
Process.wait
puts "Back in parent, term = #{ENV['TERM']}"

produces:

In parent, term = xterm-color

Start of child 1, term = xterm-color
Start of child 2, term = ansi

End of child 1, term = ansi

Back in parent, term = xterm-color

2. ENV is not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/rubyworld_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=237

WHERE RUBY FINDS ITS LIBRARIES 238

Table 15.1. Environment Variables Used by Ruby

Variable Name Description

DLN_LIBRARY_PATH Specifies the search path for dynamically loaded modules.

HOME Points to user’s home directory. This is used when expanding ~ in
file and directory names.

LOGDIR Specifies the fallback pointer to the user’s home directory if
$HOME is not set. This is used only by Dir.chdir.

OPENSSL_CONF Specifies the location of OpenSSL configuration file.

RUBYLIB Specifies an additional search path for Ruby programs ($SAFE
must be 0).

RUBYLIB_PREFIX (Windows only) Mangles the RUBYLIB search path by adding this
prefix to each component.

RUBYOPT Specifies additional command-line options to Ruby; examined
after real command-line options are parsed ($SAFE must be 0).

RUBYPATH With -S option, specifies the search path for Ruby programs
(defaults to PATH).

RUBYSHELL Specifies shell to use when spawning a process under Windows; if
not set, will also check SHELL or COMSPEC.

RUBY_TCL_DLL Overrides default name for TCL shared library or DLL.

RUBY_TK_DLL Overrides default name for Tk shared library or DLL. Both this

and RUBY_TCL_DLL must be set for either to be used.

1o . Where Ruby Finds Its Libraries

You use require or load to bring a library into your Ruby program. Some of these libraries
are supplied with Ruby, some you may have installed from the Ruby Application Archive,
some may have been packaged as RubyGems (of which more later), and some you may
have written yourself. How does Ruby find them?

Let’s start with the basics. When Ruby is built for your particular machine, it predefines a
set of standard directories to hold library stuff. Where these are depends on the machine in
question. You can determine this from the command line with something like this:

% ruby -e 'puts $:'

On my OS X box, this produces the following list (note that I have my Ruby installed in a
nonstandard place while I'm writing this book):

/usr/local/rubybook/lib/ruby/gems/1.9.0/gems/BlueCloth-1.0.0/1ib
/usr/local/rubybook/lib/ruby/gems/1.9.0/gems/BlueCloth-1.0.0/bin
/usr/local/rubybook/lib/ruby/site_ruby/1.9
/usr/local/rubybook/lib/ruby/site_ruby/1.9.0/i686-darwin8.11.1
/usr/local/rubybook/1lib/ruby/site_ruby
/usr/local/rubybook/1ib/ruby/vendor_ruby/1.9
/usr/local/rubybook/1lib/ruby/vendor_ruby/1.9.0/i686-darwin8.11.1
/usr/local/rubybook/lib/ruby/vendor_ruby /usr/local/rubybook/lib/ruby/1.9
/usr/local/rubybook/lib/ruby/1.9.0/1686-darwin8.11.1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=238

RUBYGEMS INTEGRATION 239

Let’s skip the gems directory for now.

The site_ruby directories are intended to hold modules and extensions that you’ve added.
The architecture-dependent directories (i686-darwin8.11.1 in this case) hold executables
and other things specific to this particular machine. All these directories are automatically
included in Ruby’s search for libraries.

Sometimes this isn’t enough. Perhaps you’re working on a large project written in Ruby and
you and your colleagues have built a substantial library of Ruby code. You want everyone
on the team to have access to all this code. You have a couple of options to accomplish this.
If your program runs at a safe level of zero (see Chapter 26 beginning on page 436), you can
set the environment variable RUBYLIB to a list of one or more directories to be searched.?
If your program is not setuid, you can use the command-line parameter -l to do the same
thing.

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen, this
variable is initialized to the list of standard directories, plus any additional ones you spec-
ified using RUBYLIB and -I. You can always add directories to this array from within your
running program.

.o RubyGems Integration

This section is based on the start of the chapter on RubyGems written by Chad Fowler for the second
edition of this book.

RubyGems is a standardized packaging and installation framework for Ruby libraries and
applications. RubyGems makes it easy to locate, install, upgrade, and uninstall Ruby pack-
ages.

Before RubyGems came along, installing a new library involved searching the Web, down-
loading a package, and attempting to install it—only to find that its dependencies haven’t
been met. If the library you want is packaged using RubyGems, however, you can now
simply ask RubyGems to install it (and all its dependencies). Everything is done for you.

In the RubyGems world, developers bundle their applications and libraries into single files
called gems. These files conform to a standardized format and typically are stored in repos-
itories on the ’net (but you can also create your own repositories if you want).

The RubyGems system provides a command-line tool, appropriately named gem, for manip-
ulating these gem files. It also provides integration into Ruby so that your programs can
access gems as libraries.

Prior to Ruby 1.9, it was your responsibility to install the RubyGems software on your
computer. Now, however, Ruby comes with RubyGems baked right in.

3. The separator between entries depends on your platform. For Windows, it’s a semicolon; for Unix, it’s a colon.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=239

RUBYGEMS INTEGRATION 240

Installing Gems on Your Machine

Your latest project calls for a lot of XML generation. You could just hard-code it, but
you’ve heard great things about Jim Weirich’s Builder library, which lets you construct
XML directly from Ruby code.

Let’s start by seeing whether Builder is available as a gem:

% gem query --details --remote --name-matches build
*%% REMOTE GEMS ##%

AntBuilder (0.4.3)
Author: JRuby-extras
Homepage: http://jruby-extras.rubyforge.org/

AntBuilder: Use ant from JRuby. Only usable within JRuby

builder (2.1.2)
Author: Jim Weirich
Homepage: http://onestepback.org

Builders for MarkUp.

The --details option displays the description of any gems it finds. The --remote option
searches the remote repository. And the --name-matches option says to search the central
gem repository for any gem whose name matches the regular expression /build/. (We could
have used the short-form options -d, -r, and -n.) The result shows a number of gems have
build in their name; the one we want is just plain Builder.

The number after the name shows the latest version. You can see a list of all available
versions using the --all option. We’ll also use the list command, because it lets us match on
an exact name:

% gem list --details --remote --all builder
*%% REMOTE GEMS ##%

builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0,
1.0.0, 0.1.1, 0.1.0)
Author: Jim Weirich
Homepage: http://onestepback.org

Builders for MarkUp.

Because we want to install the most recent one, we don’t have to state an explicit version
on the install command; the latest is downloaded by default:

% gem install builder

Successfully installed builder-2.1.2

1 gem installed

Installing ri documentation for builder-2.1.2...

ERROR: While generating documentation for builder-2.1.2

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=240

RUBYGEMS INTEGRATION 241

. MESSAGE: Unhandled special: Special: type=17, text="<!-- HI -->"
. RDOC args: --ri --op /usr/local/rubybook/lib/ruby/gems/1.9.0/...
(continuing with the rest of the installation)
Installing RDoc documentation for builder-2.1.2...

Several things happened here. First, we see that the latest version of the Builder gem (2.1.2)
has been installed. Next we see that RubyGems has determined that Jim has created doc-
umentation for his gem, so it sets about extracting it using RDoc. During the extraction,
RDoc encounters a construct it can’t handle and complains. You’ll see this happen every
now and then. It’s annoying, but you can ignore the message.

If you’re running gem install on a Unix platform, you’ll need to prefix the command with
sudo, because by default the local gems are installed into shared system directories.

During installation, you can add the -t option to the RubyGems install command, causing
RubyGems to run the gem’s test suite (if one has been created). If the tests fail, the installer
will prompt you to either keep or discard the gem. This is a good way to gain a little more
confidence that the gem you’ve just downloaded works on your system the way the author
intended.

Let’s see what gems we now have installed on our local box:

% gem list
*%% LOCAL GEMS #xx
builder (2.1.2)

Reading the Gem Documentation

Being that this is your first time using Builder, you’re not exactly sure how to use it. Fortu-
nately, RubyGems installed the documentation for Builder on your local machine. We just
have to find it.

As with most things in RubyGems, the documentation for each gem is stored in a cen-
tral, protected, RubyGems-specific place. This will vary by system and by where you may
explicitly choose to install your gems. The most reliable way to find the documents is to ask
the gem command where your RubyGems main directory is located:

% gem environment gemdir
/usr/local/lib/ruby/gems/1.9.0

RubyGems stores generated documentation beneath the doc/ subdirectory of this directory,
in this case /usr/local/lib/ruby/gems/1.9.0/doc. Each gem has its own documentation
directory. Inside this directory, you’ll find the HTML in the subdirectory rdoc/. You can
open index.html and view the documentation (the full path is /usr/local/1ib/ruby/
gems/1.9.0/doc/builder-2.1.2/rdoc/index.html. The result will look something like
Figure 15.1 on the following page.

If you find yourself using this path often, you can create a shortcut.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=241

RUBYGEMS INTEGRATION 242

Figure 15.1. Installed Documentation for Builder
[iciels) Builder —- Easy XML Building
¥ -
PR I t (4 file:/{ hsr/local flib/ruby/gems/ 1.9 /doc/ builder-2.1.2 frdoc/index.html ~'Q- Google
[X1 ABEL TYPE gchart Simula cookies arv DTD TT Rails2 Shriram Kris._as Software erlang PIP Trac tmobile Ruby2v conf 33
Files |4 || Classes 4|| .Methods L
CHANGES ¥ || BlankSlate ¥ || << (Builder::XmlBase) ¥
README m Builder m _end_tag (Builder: :XmlEvents) m:
Rakefile Builder: :TllegalBlockError _start_tag (Builder: :XmIEvents) |
doc/releases/builder- Builder::XmlBase append_features (Moduie)
1.2.4.rdoc 4| Builder::XmlEvents 4 || cdata! (Builder::XmIMarkup) .
doc/releases/builder- v | Builder::XmIMarkup v | check_for_name_collision (Builder) =
Path: README
Last Update: 2007-12-24 08:28:10 -0600
Project: Builder
Goal
Provide a simple way to create XML markup and data structures.
Classes
Builder::XmIMarkup: Generate XML markup notiation
Builder::Xm|Events: Generate XML events (i.e. SAX-like)
Notes::
® An Builder::xmiTree class to generate XML tree (i.e. DOM-like) structures is also planned, but not yet
implemented. Also, the events builder is currently lagging the markup builder in features.
Usage
require 'rubygems' il
require_gem 'builder', '=> 2.0' E3
\. J/

Here’s one way to do that on Mac OS X boxes:

% gemdoc="gem environment gemdir'/doc

% 1ls $gemdoc

builder-2.1.2

% open $gemdoc/builder-2.1.2/rdoc/index.html

To save time, you could declare $gemdoc in your login shell’s profile or .rc file.

The second (and easier) way to view gems’ RDoc documentation is to use RubyGems’
19 , included gem server utility. To start gem server, simply type this:

% gem server
Starting gem server on http://localhost:8808/

gem server starts a web server running on whatever computer you run it on. By default,
it will start on port 8808 and will serve gems and their documentation from the default
RubyGems installation directory. Both the port and the gem directory are overridable via
command-line options, using the -p and -d options, respectively.

Once you’ve started the gem server program, if you are running it on your local computer,
you can access the documentation for your installed gems by pointing your web browser

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=242

RUBYGEMS INTEGRATION 243

to http://localhost:8808. There, you will see a list of the gems you have installed with
their descriptions and links to their RDoc documentation.

Using a Gem

Once a gem is installed, you use require to load it into your own code, just as you would
any other Ruby library:*

Download samples/rubyworld_5.rb

require 'builder'
xml = Builder::XmlMarkup.new(target: STDOUT, indent: 2)
xml.person(type: "programmer") do
xml.name do
xml.first "Dave"
xml.last "Thomas"
end
xml.location "Texas"
xml .preference("ruby")
end

produces:

<person type="programmer">
<name>
<first>Dave</first>
<last>Thomas</last>
</name>
<location>Texas</location>
<preference>ruby</preference>
</person>

Gems and Versions

Maybe you first started using Builder a few years ago. Back then the interface was a little
bit different—with versions prior to Build 1.0, you could say this:

xml = Builder: :XmlMarkup.new(STDOUT, 2)
xml.person do

name("Dave Thomas")

location("Texas")
end

Note that the constructor takes positional parameters. Also, in the do block, we can say just
name(...) (whereas the current Builder requires xml.name(...)).

4. Prior to Ruby 1.9, before you could use a gem in your code, you first had to load a support library called
rubygems. Ruby now integrates that support directly, so this step is no longer needed.

Report erratum

http://localhost:8808
http://media.pragprog.com/titles/ruby3/code/samples/rubyworld_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=243

RUBYGEMS INTEGRATION 244

We could go through our old code and update it all to work with the new-style Builder—
that’s probably the best long-term solution. But we can also let RubyGems handle the issue
for us.

When we asked for a listing of the Builder gems in the repository, we saw that multiple
versions were available:

% gem list -ra builder

#«%% REMOTE GEMS #xx

builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1,
1.2.0, 1.1.0, 1.0.0, 0.1.1, 0.1.0)

When we installed Builder previously, we didn’t specify a version, so RubyGems automat-
ically installed the latest. But we can also get it to install a specific version or a version
meeting some given criteria. Let’s install the most recent release of Builder whose version
number is less than 1:

% gem install builder --version '< 1°'
Successfully installed builder-0.1.1

1 gem installed

Installing ri documentation for builder-0.1.1...
Installing RDoc documentation for builder-0.1.1...

Have we just overwritten the 2.1.2 release of Builder that we’d previously installed? Let’s
find out by listing our locally installed gems:

% gem list builder
ws%% LOCAL GEMS %%
builder (2.1.2, 0.1.1)

Now that we have both versions installed locally, how do we tell our legacy code to use
the old one while still having our new code use the latest version? It turns out that require
automatically loads the latest version of a gem, so the code from page 243 will work fine.
If we want to specify a version number when we load a gem, we have to do a little bit more
work, making it explicit that we’re using RubyGems:

gem 'builder', '< 1.0'
require 'builder’
xml = Builder: :XmlMarkup.new(STDOUT, 2)
xml.person do
name("Dave Thomas")
location("Texas")
end

The magic is the gem line, which says, “When looking for the builder gem, consider only
those versions less than 1.0.” The subsequent require honors this, so the code loads the
correct version of Builder and runs. The '< 1.0’ part of the gem line is a version predicate.
Table 15.2 on page 246 shows the various predicates that RubyGems supports. You can
specify multiple version predicates, so the following is valid:

gem 'builder', '> 0.1', '< 0.1.5'

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=244

THE RAKE BUILD TooL 245

Unfortunately, after all this work, there’s a problem. Older versions of Builder don’t run
under 1.9 anyway. You can still run this code in Ruby 1.8, but you’d have to update your
code to use the new-style Builder if you want to use Ruby 1.9.

Gems Can Be More Than Libraries

As well as installing libraries that can be used inside your application code, RubyGems can
also install utility programs that you can invoke from the command line. Often these util-
ities are wrappers around the libraries included in the gem. For example, Marcel Molina’s
AWS:S3 gem is a library that gives you programmatic access to Amazon’s S3 storage facil-
ity. As well as the library itself, Marcel provided a command-line utility, s3sh, which lets
you interact with your S3 assets. When you install the gem, s3sh is automatically loaded
into the same bin/ directory that holds the Ruby interpreter.

There’s a small problem with these installed utilities. Although gems supports versioning
of libraries, it does not version command-line utilities. With these, it’s “last one in wins.”

The Rake Build Tool

As well as the Builder gem, Jim Weirich wrote an incredibly useful utility program called
=2 / Rake. Prior to Ruby 1.9, you had to install Rake as a separate gem, but it is now included in
the base Ruby installation.

Rake was initially implemented as a Ruby version of Make, the common build utility. How-
ever, calling Rake a build utility is to miss its true power. Really, Rake is an automation
tool—it’s a way of putting all those tasks that you perform in a project into one neat and
tidy place.

Let’s start with a trivial example. As you edit files, you often accumulate backup files in
your working directories. On Unix systems, these files often have the same name as the
original files, but with a tilde character appended. On Windows boxes, the files often have a
.bak extension.

We could write a trivial Ruby program that deletes these files. For a Unix box, it might look
something like this:

require 'fileutils'
files = Dir['#~"]
FileUtils::rm files, verbose: true

The FileUtils module defines methods for manipulating files and directories (see the descrip-
tion on page 755). Our code uses its rm method. We use the Dir class to return a list of
filenames matching the given pattern and pass that list to rm.

Let’s package this code as a task—a chunk of code that Rake can execute for us.

By default, Rake searches the current directory (and its parents) for a file called Rakefile.
This file contains definitions for the tasks that Rake can run.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=245

THE RAKE BUILD TooL 246

Table 15.2. Version Operators
Both the gem method and the add_dependency attribute in a Gem::Specification accept arguments
that specify a version dependency. RubyGems version dependencies are of the form operator
major.minor.patch_level. Listed next is a table of all the possible version operators.

Operator Description

Exact version match. Major, minor, and patch level must be identical.
Any version that is not the one specified.

> Any version that is greater (even at the patch level) than the one specified.

< Any version that is less than the one specified.

>= Any version greater than or equal to the specified version.

<= Any version less than or equal to the specified version.

~> “Boxed” version operator. Version must be greater than or equal to the specified

version and less than the specified version after having its minor version number
increased by 1. This is to avoid API incompatibilities between minor version
releases.

So, put the following code into a file called Rakefile:

desc "Remove files whose names end with a tilde"
task :delete_unix_backups do

files = Dir['x~"]

rm(files, verbose: true) unless files.empty?
end

Although it doesn’t have an .rb extension, this is actually just a file of Ruby code. Rake
defines an environment containing methods such as desc and task and then executes the
Rakefile.

The desc method provides a single line of documentation for the task that follows it. The
task method defines a Rake task that can be executed from the command line. The parameter
is the name of the task (a symbol), and the block that follows is the code to be executed.
Here we can just use rm—all the methods in FileUtils are automatically available inside
Rake files.

‘We can invoke this task from the command line:

% rake delete_unix_backups
(in /Users/dave/BS2/titles/RUBY3/Book/code/rake)
rm entry~

The first line shows us the name of the directory where Rake found the Rakefile (remember
that this might be in a directory above our current working directory). The next line is the
output of the rm method, in this case showing it deleted the single file entry-~.

OK, now let’s write a second task in the same Rakefile. This one deletes Windows backup
files.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=246

THE RAKE BUILD TooL

desc "Remove files whose names end with a tilde"
task :delete_unix_backups do

files = Dir['#~"]

rm(files, verbose: true) unless files.empty?
end
desc "Remove files with a .bak extension"
task :delete_windows_backups do

files = Dir['«.bak']

rm(files, verbose: true) unless files.empty?
end

We can run this with rake delete_windows_backups.

But let’s say that our application could be used on both platforms, and we wanted to let our
users delete backup files on either. We could write a combined task, but Rake gives us a
better way—it lets us compose tasks. Here, for example, is a new task:

desc "Remove Unix and Windows backup files"
task :delete_backups =>
[:delete_unix_backups, :delete_windows_backups] do
puts "All backups deleted"
end

The task’s name is delete_backups, and it depends on two other tasks. This isn’t some
special Rake syntax: we’re simply passing the task method a Ruby hash containing a single
entry whose key is the task name and whose value is the list of antecedent tasks. What
this means is that Rake will execute the two platform-specific tasks before executing the
delete_backups task:

% rake delete_backups

(in /Users/dave/0ldWork/BS2/titles/RUBY3/Book/code/rake)
rm entry~

rm index.bak list.bak

All backups deleted

Our current Rakefile contains some duplication between the Unix and Windows deletion
tasks. As it is just Ruby code, we can simply define a Ruby method to eliminate this:

def delete(pattern)
files = Dir[pattern]
rm(files, verbose: true) unless files.empty?
end
desc "Remove files whose names end with a tilde"
task :delete_unix_backups do
delete "x~"
end
desc "Remove files with a .bak extension"
task :delete_windows_backups do
delete "x.bak"
end
desc "Remove Unix and Windows backup files"
task :delete_backups => [:delete_unix_backups, :delete_windows_backups] do
puts "All backups deleted"
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=247

BUILD ENVIRONMENT 248

If a Rake task is named default, it will be executed if you invoke Rake with no parameters.

You can find the tasks implemented by a Rakefile (or, more accurately, the tasks for which
there is a description) using this:

% rake -T

(in /Users/dave/BS2/titles/RUBY3/Book/code/rake)

rake delete_backups # Remove Unix and Windows backup files
rake delete_unix_backups # Remove files whose names end with a tilde

rake delete_windows_backups # Remove files with a .bak extension

This section only touches on the full power of Rake. It can handle dependencies between
files (for example, rebuilding an executable file if one of the source files has changed), it
knows about running tests and generating documentation, and it can even package gems
for you. Martin Fowler has written a good overview of Rake if you’re interested in digging
deeper.’ You might also want to investigate Sake, a tool that makes Rake tasks available no
matter what directory you’re in.°

Build Environment

When Ruby is compiled for a particular architecture, all the relevant settings used to build
it (including the architecture of the machine on which it was compiled, compiler options,
source code directory, and so on) are written to the module Config within the library file
rbconfig.rb. After installation, any Ruby program can use this module to get details on
how Ruby was compiled:

require 'rbconfig'

include Config

CONFIG["host"] # => "i386-apple-darwin9.6.0"
CONFIG["1libdir"] # => "/usr/local/rubybook/lib"

Extension libraries use this configuration file in order to compile and link properly on any
given architecture. See Chapter 29 beginning on page 833 and the reference for mkmf begin-
ning on page 874 for details.

5. http://martinfowler.com/articles/rake.html

6. http://errtheblog.com/posts/60-sake-bomb

Report erratum

http://martinfowler.com/articles/rake.html
http://errtheblog.com/posts/60-sake-bomb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=248

Chapter 16

Namespaces, Source Files,
and Distribution

As your programs grow (and they all seem to grow over time), you’ll find that you’ll need
to start organizing your code—simply putting everything into a single huge file becomes
unworkable (and makes it hard to reuse chunks of code in other projects). So, we need to
find a way to split our project into multiple files and then to knit those files together as our
program runs.

There are two major aspects to this organization. The first is internal to your code: how
do you prevent different things with the same name from clashing? The second area is
related—how do you conveniently organize the source files in your project?

Namespaces

We’ve already encountered a way that Ruby helps you manage the names of things in your
programs. If you define methods or constants in a class, Ruby ensures that their names can
be used only in the context of that class (or its objects, in the case of instance methods):

Download samples/packaging_1.rb

class Triangle
SIDES = 3
def area
..
end
end
class Square
SIDES = 4
def initialize(side_length)
@side_length = side_length
end
def area
@side_length * @side_length
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=249

NAMESPACES 250

puts "A triangle has #{Triangle::SIDES} sides"
sq = Square.new(3)
puts "Area of square = #{sq.area}"

produces:

A triangle has 3 sides
Area of square = 9

Both classes define a constant called SIDES and an instance method area, but these things
don’t get confused. You access the instance method via objects created from the class, and
you access the constant by prefixing it with the name of the class followed by a double
colon. The double colon (::) is Ruby’s namespace resolution operator. The thing to the left
must be a class or module, and the thing to the right is a constant defined in that class or
module.'

So, putting code inside a module or class is a good way of separating it from other code.
Ruby’s Math module is a good example—it defines constants such as Math::PI and Math::E
and methods such as Math.sin and Math.cos. You can access these constants and methods
via the Math module object:

Math::E # => 2.71828182845905
Math.sin(Math::PI/6.0) # => 0.5

(Modules have another, significant, use—they implement Ruby’s mixin functionality, which
we discussed on page 98).

Ruby has an interesting little secret. The names of classes and modules are themselves
just constants.”> And that means that if you define classes or modules inside other classes
and modules, the names of those inner classes follow the same namespacing rules as other
constants:

module Formatters
class Html
...
end
class Pdf
...
end
end

html_writer = Formatters::Html.new

You can nest classes and modules inside other classes and modules to any depth you want
(although it’s rare to see them more than three deep).

So, now we know that we can use classes and modules to partition the names used by our
programs. The second question to answer is, what do we do with the source code?

1. The thing to the right of the :: can also be a class or module method, but this use is falling out of favor—using
a period makes it clearer that it’s just a regular old method call.

2. Remember that we said that most everything in Ruby is an object. Well, classes and modules are, too. The
name that you use for a class, such as String, is really just a Ruby constant containing the object representing that
class.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=250

ORGANIZING YOUR SOURCE 251

Organizing Your Source

This section covers two related issues: how do we split our source code into separate files,
and where in the file system do we put those files?

Some languages, such as Java, make this easy. They dictate that each outer-level class should
be in its own file, and that file should be named according to the name of the class. Other
languages, such as Ruby, have no rules relating source files and their content. In Ruby,
you’re free to organize your code as you like.

But, in the real world, you’ll find that some kind of consistency really helps. It will make
it easier for you to navigate your own projects, and it will also help when you read (or
incorporate) other people’s code.

So, the Ruby community is gradually adopting a kind of de facto standard. In many ways,
it follows the spirit of the Java model, but without some of the inconveniences suffered by
our Java brethren. Let’s start with the basics.

Small Programs

Small, self-contained scripts can be in a single file. However, if you do this, you won’t easily
be able to write automated tests for your program, because the test code won’t be able to
load the file containing your source without the program itself running. So, if you want to
write a small program that also has automated tests, split that program into a trivial driver
that provides the external interface (the command-line part of the code) and one or more
files containing the rest. Your tests can then exercise these separate files without actually
running the main body of your program.

Let’s try this for real. Here’s a simple program that finds anagrams in a dictionary. Feed it
one or more words, and it gives you the anagrams of each. For example:

$ ruby anagram.rb teaching code
Anagrams of teaching: cheating, teaching
Anagrams of code: code, coed

If I were typing this program in for casual use, I might just enter it into a single file (perhaps
anagram.rb). It would look something like this:

Download samples/packaging_4.rb

#!/usr/bin/env ruby
require 'optparse'

dictionary = "/usr/share/dict/words"
OptionParser.new do |opts]|
opts.banner = "Usage: anagram [options] word..."
opts.on("-d", "--dict path", String, "Path to dictionary") do |dict]|
dictionary = dict
end
opts.on("-h", "--help", "Show this message") do
puts opts
exit
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=251

ORGANIZING YOUR SOURCE

begin
ARGV << "-h" if ARGV.empty?
opts.parse! (ARGV)
rescue OptionParser::ParseError => e
STDERR.puts e.message, "\n", opts
exit(-1)
end
end
convert "wombat" into "abmotw". All anagrams share a signature
def signature_of(word)
word.unpack("c*").sort.pack("c*")
end
signatures = Hash.new
File.foreach(dictionary) do |line]|
word = line.chomp
signature = signature_of(word)
(signatures[signature] ||= []) << word
end
ARGV.each do |word]|
signature = signature_of(word)
if signatures[signature]

puts "Anagrams of #{word}: #{signatures[signature].join(', ')}"
else
puts "No anagrams of #{word} in #{dictionary}"
end
end

Then someone asks me for a copy, and I start to feel embarassed. It has no tests, and it isn’t
particularly well packaged.

Looking at the code, there are clearly three sections. The first twenty-five or so lines do
option parsing, the next ten or so lines read and convert the dictionary, and the last few lines
look up each command-line argument and report the result.

Let’s split our file into four parts:

* An option parser

* A class to hold the lookup table for anagrams

* A class that looks up words given on the command line
* A trivial command-line interface

The first three of these are effectively library files, used by the fourth.

Where do we put all these files? The answer is driven by some strong Ruby conventions,
first seen in Minero Aoki’s setup.rb and later enshrined in the RubyGems system. We’ll
create a directory for our project containing (for now) three subdirectories:

anagram/ <- top-level
bin/ <- command-line interface goes here
1lib/ <- three library files go here
test/ <- test files go here

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=252

ORGANIZING YOUR SOURCE 253

Now let’s look at the library files. We know we’re going to be defining (at least) three
classes. Right now, these classes will be used only inside our command-line program, but
it’s conceivable that other people might want to include one or more of our libraries in their
own code. This means that we should be polite and not pollute the top-level Ruby namespace
with the names of all our classes and so on. We’ll create just one top-level module, Anagram,
and then place all our classes inside this module. This means that the full name of (say) our
options-parsing class will be Anagram::Options.

This choice informs our decision on where to put the corresponding source files. Because
class Options is inside the module Anagram, it makes sense to put the corresponding file
options.rb inside a directory named anagram/ in the lib/ directory. This helps people who
read your code in the future; when they see a name like A::B::C, they know to look for c.rb
in the b/ directory in the a/ directory of your library.

So, we can now flesh out our directory structure with some files:

anagram/
bin/
anagram <- command-line interface
lib/
anagram/
finder.rb
options.rb
runner.rb
test/
. various test files

Let’s start with the option parser. Its job is to take an array of command-line options and
return to us the path to the dictionary file and the list of words to look up as anagrams. The
source, in lib/anagram/options.rb, looks like this:

Download samples/packaging_5.rb

require 'optparse'
module Anagram
class Options
DEFAULT_DICTIONARY = "/usr/share/dict/words"
attr_reader :dictionary
attr_reader :words_to_find
def initialize(argv)
@dictionary = DEFAULT_DICTIONARY
parse(argv)
@words_to_find = argv
end
private
def parse(argv)
OptionParser.new do |opts]|

opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict]|
@dictionary = dict

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=253

ORGANIZING YOUR SOURCE 254

opts.on("-h", "--help"”, "Show this message") do
puts opts
exit

end

begin

argv = ["-h"] if argv.empty?
opts.parse! (argv)

rescue OptionParser::ParseError => e
STDERR.puts e.message, "\n", opts
exit(-1)

end

end
end
end
end

Notice how we define the Options class inside a top-level Anagram module.

Let’s write some unit tests for this code. This should be relatively easy, because options.rb is
self-contained—the only external dependency is to the standard Ruby OptionParser. We’ll
use the standard Ruby Test::Unit framework, extended using the Shoulda gem.> We’ll put
the source of this test in the file test/test_options.rb:

Download samples/packaging_6.rb

require 'test/unit'
require 'shoulda’
require_relative

../lib/anagram/options’
class TestOptions < Test::Unit::TestCase
context "specifying no dictionary" do
should "return default" do
opts = Anagram: :Options.new(["someword"])
assert_equal Anagram::Options::DEFAULT_DICTIONARY, opts.dictionary
end
end
context "specifying a dictionary" do
should "return it" do

opts = Anagram::Options.new(["-d", "mydict", "someword"])
assert_equal "mydict", opts.dictionary
end

end
context "specifying words and no dictionary" do
should "return the words" do
opts = Anagram::Options.new(["wordl", "word2"])
assert_equal ["wordl", "word2"], opts.words_to_find
end
end
context "specifying words and a dictionary" do

3. We talk about Shoulda starting on page 209.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=254

ORGANIZING YOUR SOURCE 255

should "return the words" do
opts = Anagram::Options.new(["-d", "mydict", "wordl", "word2"])
assert_equal ["wordl", "word2"], opts.words_to_find
end
end
end

The line to note in this file is as follows:

require_relative '../lib/anagram/options’

This is where we load in the source of the Options class we just wrote. We use the new
=2 , Ruby 1.9 feature, require_relative. This is like regular old require, but it always loads from
a path relative to the directory of the file that invokes it.

$ ruby test/test_options.rb
produces:

Loaded suite test/test_options
Started

Finished in 0.001247 seconds.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

The finder code (in lib/anagram/finder.rb) is modified slightly from the original version. To
make it easier to test, we’ll have the default constructor take a list of words, rather than a
filename. We’ll then provide an additional factory method, from_file, that takes a filename
and constructs a new Finder from that file’s contents:

Download samples/packaging_10.rb

module Anagram
class Finder

def self.from_file(file_name)
new(File.readlines(file_name))
end

def initialize(dictionary_words)
@signatures = Hash.new
dictionary_words.each do |line]
word = line.chomp
signature = Finder.signature_of(word)
(@signatures[signature] ||= []) << word
end
end
def lookup(word)
signature = Finder.signature_of(word)
@signatures[signature]
end
def self.signature_of(word)
word.unpack("c*").sort.pack("c=")
end
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=255

ORGANIZING YOUR SOURCE 256

require_relative and Ruby 1.8

In case you're still running Ruby 1.8, you can still use require_relative.
Just put the following code into a file, and then require that file at the
top of your program:

def require_relative(relative_feature)
c = caller.first
fail "Can't parse #{c}" unless c.rindex(/:\d+(:in ".=')?$/)
file = §$°
if /\A\(C(.*)\)/ =~ file # eval, etc.
raise LoadError, "require_relative is called in #{$1}"
end
absolute = File.expand_path(relative_feature,
File.dirname(file))
require absolute
end

Again, we embed the Finder class inside the top-level Anagram module. And, again, this
code is self-contained, allowing us to write some simple unit tests:

Download samples/packaging_11.rb

require 'test/unit'
require 'shoulda'
require_relative

../lib/anagram/finder"'
class TestFinder < Test::Unit::TestCase
context "signature" do
{ "cat" => "act", "act" => "act", "wombat" => "abmotw" }.each do
|word, signature]
should "be #{signature} for #{word}" do
assert_equal signature, Anagram::Finder.signature_of(word)

end
end
end
context "lookup" do
setup do
@finder = Anagram::Finder.new(["cat", "wombat"])
end

should "return word if word given" do
assert_equal ["cat"], @finder.lookup("cat")

end

should "return word if anagram given" do
assert_equal ["cat"], @finder.lookup("act")
assert_equal ["cat"], @finder.lookup("tca")

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=256

ORGANIZING YOUR SOURCE 257

end

should "return nil if no word matches anagram" do
assert_nil @finder.lookup("wibble")
end
end

end
These go in lib/test_finder.rb:

$ ruby test/test_finder.rb
produces:

Loaded suite test/test_finder
Started

Finished in 0.000772 seconds.

6 tests, 7 assertions, O failures, 0 errors, 0 skips

So, now we have all the support code in place. We just need to run it. We’ll make the
command-line interface—the thing the end user actually executes—really thin. It’s in a file
called bin/anagram (no .rb extension, because that would be unusual in a command). If
you’re on Windows, you might want to wrap the invocation of this in a .cmd file:

Download samples/packaging_13.rb

#! /usr/local/rubybook/bin/ruby
require 'anagram/runner'

runner = Anagram: :Runner.new(ARGV)
runner.run

The code that this script invokes (lib/runner.rb) knits our other libraries together:
Download samples/packaging_14.rb

require_relative 'finder'
require_relative 'options'
module Anagram
class Runner
def initialize(argv)
@options = Options.new(argv)
end
def run
finder = Finder.from_file(@options.dictionary)
@options.words_to_find.each do |word]|
anagrams = finder.lookup(word)
if anagrams

puts "Anagrams of #{word}: #{anagrams.join(', ')}"
else
puts "No anagrams of #{word} in #{@options.dictionary}"
end
end
end

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_13.rb
http://media.pragprog.com/titles/ruby3/code/samples/packaging_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=257

DISTRIBUTING AND INSTALLING YOUR CODE 258

end

In this case, the two libraries finder and options are in the same directory as the runner, so
require_relative finds them perfectly.

Now all our files are in place, we can run our program from the command line:

$ ruby -I 1lib bin/anagram teaching code
produces:

Anagrams of teaching: cheating, teaching
Anagrams of code: code, coed

Nothing like a cheating coed teaching code.

Distributing and Installing Your Code

Now that we have our code a little tidier, it would be nice to be able to distribute it to others.
We could just zip or tar it up and send them our files, but then they’d have to run the code
the way we do, remembering to add the correct -1 lib options and so on. They’d also have
some problems if they wanted to reuse one of our library files—it would be sitting in some
random directory on their hard drive, not in a standard location used by Ruby.

So, we’re really looking for a way to take our little application and install it in a standard
way.

Now Ruby already has a standard installation structure on your computer. When Ruby is
installed, it puts its commands (ruby, ri, irb, and so on) into a directory of binary files. It puts
its libraries into another directory tree and documentation somewhere else. So, one option
would be to write an installation script that you distribute with your code that copies com-
ponents of your application to the appropriate directories on the system that’s installing it.

Using setup.rb

Rather than write this script yourself, you could instead use Minero Aoki’s setup.rb. Follow
the download link from http://i.loveruby.net/en/projects/setup/, and you’ll end
up with a gzipped tarball. When you extract the files, you’ll find a lot of documentation
and other support material. But the key is the file setup.rb that you’ll find in the top-level
directory. Copy this file into the top-level directory of our new application:

anagram/
bin/
anagram
1lib/
anagram/
finder.rb
options.rb
runner.rb
setup.rb <- installer
test/

Report erratum

http://i.loveruby.net/en/projects/setup/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=258

DISTRIBUTING AND INSTALLING YOUR CODE 259

. various test files

Perhaps surprisingly, that’s all that’s needed. The directory structure we chose to use for
our application is recognized by setup.rb, so it will automatically copy things into the cor-
rect location on our (and other people’s) system. (However, before doing this for the first
time, you need to be aware of one major hole in setup.rb—it has no uninstall capability.
Once you’ve run it, your application will be installed into the Ruby directory structure. The
only way to uninstall is to manually delete your application’s files. As we’ll see shortly,
RubyGems gets around this issue.)

So, installing the application is as simple as this:

$ sudo ruby setup.rb

---> bin

<--- bin

---> bin

mkdir -p /usr/local/bin/

install anagram /usr/local/bin/

<--- bin

---> lib

mkdir -p /usr/local/lib/ruby/site_ruby/1.9.0/

---> lib/anagram

mkdir -p /usr/local/lib/ruby/site_ruby/1.9.0/anagram

install finder.rb /usr/local/lib/ruby/site_ruby/1.9.0/anagram
install options.rb /usr/local/lib/ruby/site_ruby/1.9.0/anagram
install runner.rb /usr/local/lib/ruby/site_ruby/1.9.0/anagram
<--- lib/anagram

<--- 1lib

At this point, our anagram script is available globally on our system (or on the system of
whoever installed it).

setup.rb can do a lot more than we showed here. Take a look at the documentation in the
downloaded archive or at http://i.loveruby.net/en/projects/setup/doc/ for some
pointers.

Being a Good Packaging Citizen

So, I've ignored some stuff that you’d want to do before distributing your code to the world.
Your distributed directory tree really should have a README file, outlining what it does and
probably containing a copyright statement; an INSTALL file, giving installation instructions;
and a LICENSE file, giving the license it is distributed under.

You’ll probably want to distribute some documentation, too. This would go in a directory
called doc/, parallel with the bin and lib directories.

You might also want to distribute native C-language extensions with your library. We talk
about creating these in Extending Ruby on page 833. These extensions would go into your
project’s ext/ directory.

Report erratum

http://i.loveruby.net/en/projects/setup/doc/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=259

DISTRIBUTING AND INSTALLING YOUR CODE 260

Using RubyGems

The RubyGems package management system (which is also just called Gems) has become
19 , the standard for distributing and managing Ruby code packages. As of Ruby 1.9, it comes
bundled with Ruby itself.

RubyGems is also a great way to package your own code. If you want to make your code
available to the world, RubyGems is the way to go. Even if you're just sending code to
a few friends, or within your company, RubyGems gives you dependency and installation
management—one day you’ll be grateful for that.

Unlike setup.rb, RubyGems needs to know information about your project that isn’t con-
tained in the directory structure. Instead, you have to write a short RubyGems specification:
a GemSpec. You can create this in a separate file, but the most convenient way is to use rake
(which comes with Ruby 1.9). Using Rake means that the GemSpec will be packaged with
a set of tasks that you can use to build your gem. So, let’s create the Rakefile in the top-level
directory of our application:

Download samples/packaging_16.rb

require 'rake/gempackagetask'
spec = Gem::Specification.new do |s]|

s.name = "anagram"
S.summary = "Find anagrams of words supplied on the command line"
s.description= File.read(File.join(File.dirname(__FILE__), 'README'))
s.requirements =
["An installed dictionary (most Unix systems have one)']
s.version = "0.0.1"
s.author = "Dave Thomas"
s.email = "dave@pragprog.com"
s.homepage = "http://pragdave.pragprog.com"
s.platform = Gem: :Platform: :RUBY
s.required_ruby_version = '>=1.9'
s.files = Dir["#+/*x"]
s.executables = ['anagram']
s.test_files = Dir["test/test*.rb"]
s.has_rdoc = false

end
Rake: :GemPackageTask.new(spec).define

The first line of this file requires the Rake task definitions for gem packaging. The last line
of the file tells Rake to use these definitions. The rest of the file is the GemSpec.

The first line of the spec gives our gem a name. This is important—it will be used as part
of the package name, and it will appear as the name of the gem when installed. Although
it can be mixed case, I personally find that confusing—do my poor brain a favor and use
lowercase for gem names.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/packaging_16.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=260

DISTRIBUTING AND INSTALLING YOUR CODE 261

The version string is significant, because RubyGems will use it both for package naming
and for dependency management. Stick to the x.y.z format.*

The platform field tells RubyGems that (in this case) our gem is pure Ruby code. It’s also
possible to package (for example) Windows .exe files inside a gem, in which case you’d use
Gem::Platform::Win32.

The next line is also important (and oft-forgotten by package developers). Because we use
require_relative, our gem will run only with Ruby 1.9 and later.

We then tell RubyGems which files to include when creating the gem package. Here we’ve
been lazy and included everything. You can be more specific.

The s.executables line tells RubyGems to install the anagram command-line script when
the gem gets installed on a user’s machine.

To save space, we haven’t added RDoc documentation comments to our source files (RDoc
is described in Appendix 19 on page 290). The last line of the spec tells RubyGems not to
try to extract documentation when the gem is installed.

Obviously I've skipped a lot of details here. A full description of GemSpecs is available
online,’ along with other documents on RubyGems.®

Packaging Your RubyGem

Once the Rakefile containing the gem specification is complete, you’ll want to create the
packaged .gem file for distribution. This is as easy as navigating to the top level of your
project and typing this:

$ rake gem
(in /Users/dave/code/anagram)
WARNING: no rubyforge_project specified
WARNING: RDoc will not be generated (has_rdoc == false)
Successfully built RubyGem
Name: anagram
Version: 0.0.1
File: anagram-0.0.1.gem

You’ll find you now have a directory called pkg:

$ 1s pkg
anagram-0.0.1.gem

There’s your gem. You can install it:

$ sudo gem install pkg/anagram-0.0.1.gem
Successfully installed anagram-0.0.1
1 gem installed

4. And read http://www.rubygems.org/read/chapter/7 for information on what the numbers mean.
5. http://www.rubygems.org/read/book/4

6. http://www.rubygems.org/

Report erratum

http://www.rubygems.org/read/chapter/7
http://www.rubygems.org/read/book/4
http://www.rubygems.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=261

DISTRIBUTING AND INSTALLING YOUR CODE 262

And the check to see it is there:

$ gem list anagram -d

w%% LOCAL GEMS %%

anagram (0.0.1)
Author: Dave Thomas
Homepage: http://pragdave.pragprog.com
Installed at: /usr/local/lib/ruby/gems/1.9.0

Find anagrams of words supplied on the command line

Now you can send your .gem file to friends and colleagues or share it from a server. Or, you
could go one better and share it from a RubyGems server.

If you have RubyGems installed on your local box, you can share them over the network to
others. Simply run this:

$ gem server
Starting gem server on http://localhost:8808/

This starts a server (by default on port 8808, but the --port option overrides that). Other
people can connect to your server to list and retrieve RubyGem:s:

$ gem list --remote --source http://dave.local:8808
#«%% REMOTE GEMS #xx
anagram (0.0.1)

builder (2.1.2, 0.1.1)

This is particularly useful in a corporate environment.

You can speed up the serving of gems by creating a static index—see the help for gem
generate_index for details.

Serving Public RubyGems

RubyForge (http://rubyforge.org) has become the main repository for public Ruby
libraries and projects. And, if you create a RubyForge project, you can upload your .gem
file to the project’s download area. Within a few hours, their servers will pick up your gem
and add it to their master list. And, at that point, any Ruby user in the world can do this:

$ gem search -r anagram
*%% REMOTE GEMS ##%

anagram (0.0.1)

and, even better

$ gem install anagram

Report erratum

http://rubyforge.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=262

DISTRIBUTING AND INSTALLING YOUR CODE 263

GitHub has recently emerged as an alternative place where people are developing and stor-
ing RubyGems. You’ll find information at http://gems.github.com/. At the time of writ-
ing, there are some security concerns related to the naming conventions of GitHub gems,’
but this will likely be resolved soon.

Adding Even More Automation

The Hoe library® helps create a rich set of Rake tasks for RubyGems. Install using gem
install hoe. You can then use their sow utility to create an empty project directory, which
you populate with code. Hoe provides a number of Rake tasks that will, for example, upload
your gem to RubyForge automatically.

Nic Williams has a gem called newgem? that extends Hoe even further. After installing the
newgem gem, you use the newgem command to create a new project directory structure
that contains (among other things) a wonderfully lurid default project website, which it will
upload to RubyForge on request.

Some folks like the extra features of these utilities, while others prefer the leaner “roll-your-
own” approach. Whatever route you take, taking the time to package your applications and
libraries will pay you back many times over.

7. http://www.infoq.com/news/2008/08/gems-from-rubyforge-and-github
8. http://seattlerb.rubyforge.org/hoe/

9. http://newgem.rubyforge.org/

Report erratum

http://gems.github.com/
http://www.infoq.com/news/2008/08/gems-from-rubyforge-and-github
http://seattlerb.rubyforge.org/hoe/
http://newgem.rubyforge.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=263

Chapter 17

Character Encoding

19 , Priorto Ruby 1.9, Ruby programs were basically written using the ASCII character encod-

ing. You could always override this with the -K command-line option, but this led to incon-
sistencies when manipulating strings and doing file I/O.

Ruby 1.9 changes all this. Ruby now supports the idea of character encodings. And, what’s
more, these encodings can be applied relatively independently to your program source files,
to objects in your running programs, and to the interpretation of I/O streams.

Before delving into the details, let’s spend a few minutes thinking about why we need to
separate the encodings of source files, variables, and I/O streams. Let’s imagine Yui is a
developer in Japan who wants to code in her native language. Her editor lets her write code
using Shift JIS (which we’ll call SJIS from now on), a Japanese character encoding, so
she writes her variable names using katakana and kanji characters. But, by default, Ruby
assumes that source files are written in ASCII, and the SJIS characters would not be recog-
nized as such. However, by setting the encoding to be used when compiling the source file,
Ruby can now parse her program.

She converts her program into a gem, and users around the world try it out. Dan, in the
United States, doesn’t read Japanese, so the content of her source files makes no sense to
him. However, because the source files carry their encoding around with them, there’s no
problem; his Ruby happily compiles her code. But Dan wants to test her code against a file
that contains regular old ASCII characters. That’s no problem, because the file encoding is
determined by Dan’s locale, not by the encoding of the Ruby source. Similarly, Sophie in
Paris uses the same library, but her data file is encoded in ISO-8859-1 (which is basically
ASCII plus a useful subset of accented European characters in character positions above
127). Again, no problem.

But, back in Japan, Yui has a new feature to add to her library. Users want to create short
PDF summaries of the data she reads, but the PDF writing library she’s using supports only
ISO-8859-1 characters. So, regardless of the encoding of the source code of her program
and the encoding of the files she reads, she needs to be able to create strings at runtime
with 8859-1 encoding. So, again, we need to be able to decouple the encoding of individual
objects from the encoding of everything else.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=264

ENCODINGS 265

If this sounds complex, well...it is. But the good news is that the Ruby team spent a long
time thinking up ways to make it all relatively easy to use when you’re writing code. In
this section, we’ll look at how to work with the various encodings, and I'll try to list some
conventions that will make your code work in the brave new multinational world.

Encodings

At the heart of the Ruby encoding system is the new Encoding class. Objects of class Encod-
ing each represent a different character encoding. The Encoding.list method returns a list of
the built-in encodings, and the Encoding.aliases method returns a hash where the keys are
aliases and the values are the corresponding base encoding. We can use these two methods
to build a table of known encoding names:

Download samples/encoding_1.rb

encodings = {}
Encoding.list.each {|enc| encodings[enc.name] = [enc.name] }
Encoding.aliases.each do |alias_name, base_name|
fail "#{base_name} #{alias_name}" unless encodings[base_name]
encodings[base_name] << alias_name
end
names = encodings
.values
.sort_by {|base_name, *| base_name.downcase}
.map do |base_name, *rest|
if rest.empty?
base_name
else
"#{base_name} (#{rest.join(', ")})"
end
end

puts names

We can see the output, wrapped into columns, in Figure 17.1 on the next page:

However, that’s not the full story. Encodings in Ruby can be dynamically loaded—Ruby
actually comes with more encodings than those shown in the output from this code.

Strings, regular expressions, symbols, I/O streams, and program source files are all associ-
ated with one of these encoding objects.

Encodings commonly used in Ruby programs include ASCII (7 bit characters), ASCII-
8BIT,' UTF-8, and Shift JIS.

1. There isn’t actually a character encoding called ASCII-8BIT. It’s a Ruby fantasy, but a useful one. We’ll talk
about it shortly.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=265

SOURCE FILES

266

()
Figure 17.1. Encodings and Their Aliases
ASCII-8BIT (BINARY) Big5 (CP950) CP51932
CP850 (IBM850) CP852 CP855
CP949 Emacs-Mule EUC-JP (euclP)
EUC-KR (eucKR) EUC-TW (eucTW) eucJP-ms (euc-jp-ms)
GB12345 GB18030 GB1988
GB2312 (EUC-CN, eucCN) GBK (CP936) IBM437 (CP437)
1BM737 (CP737) IBM775 (CP775) IBM852
IBM855 I1BM857 (CP857) IBM860 (CP860)
1BM861 (CP861) 1BM862 (CP862) IBM863 (CP863)
1BM864 (CP864) 1BM865 (CP865) IBM866 (CP866)
1BM869 (CP869) 1S0O-2022-JP (1S02022-JP) 1SO-2022-JP-2 (IS02022-JP2)
1SO-8859-1 (ISO8859-1) 1SO-8859-10 (ISO8859-10) 1SO-8859-11 (ISO8859-11)
1SO-8859-13 (ISO8859-13) 1SO-8859-14 (ISO8859-14) 1SO-8859-15 (ISO8859-15)
1SO-8859-16 (ISO8859-16) 1SO-8859-2 (1SO8859-2) 1SO-8859-3 (1SO8859-3)
1SO-8859-4 (1SO8859-4) 1SO-8859-5 (1SO8859-5) 1SO-8859-6 (1SO8859-6)
1SO-8859-7 (1SO8859-7) 1SO-8859-8 (1SO8859-8) 1SO-8859-9 (1SO8859-9)
KOI8-R (CP878) KOI8-U macCentEuro
macCroatian macCyrillic macGreek
maclceland MacJapanese (MacJapan) macRoman
macRomania macThai macTurkish
macUkraine Shift_JIS (SJIS) stateless-ISO-2022-JP
TIS-620 US-ASCII (ASCII, ANSI_X3.4-1968, 646) UTF-16BE (UCS-2BE)
UTF-16LE UTF-32BE (UCS-4BE) UTF-32LE (UCS-4LE)
UTF-7 (CP65000) UTEF-8 (CP65001, locale, external) UTF8-MAC (UTF-8-MAC)
Windows-1250 (CP1250) Windows-1251 (CP1251) ‘Windows-1252 (CP1252)
Windows-1253 (CP1253) Windows-1254 (CP1254) ‘Windows-1255 (CP1255)
Windows-1256 (CP1256) Windows-1257 (CP1257) ‘Windows-1258 (CP1258)
Windows-31J (CP932, csWindows31J) Windows-874 (CP874)

\. J/

Source Files

First and foremost, there’s a simple rule: if you only ever use 7-bit ASCII characters in your
source, then the source file encoding is irrelevant. So, the simplest way to write Ruby source
files that just work everywhere is to stick to boring old ASCII.

However, once a source file contains a byte whose top bit is set, you’ve just left the com-
fortable world of ASCII and entered the wild and wacky nightmare of character encodings.

Here’s how it works.

If your source files are not written using 7-bit ASCII, you probably want to tell Ruby about
it. Because the encoding is an attribute of the source file, and not anything to do with the
environment where the file is used, Ruby has a way of setting the encoding on a file-by-file
basis using a new magic comment. If the first line of a file? is a comment (or the second line
if the first line is a #! shebang line), Ruby scans it looking for the string coding:. If it finds it,
Ruby then skips any spaces and looks for the (case-insensitive) name of an encoding. Thus,
to specify that a source file is in UTF-8 encoding, you can write this:
coding: utf-8
As Ruby is just scanning for coding:, you could also write this:

encoding: ascii

2. Or a string passed to eval.

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=266

SOURCE FILES 267

Emacs users might like the fact that this also works:

-%— encoding: shift_jis -=-
(Your favorite editor may also support some kind of flag comment to set a file’s encoding.)
If there’s a shebang line, the encoding comment must be the second line of the file:

#!/usr/local/rubybook/bin/ruby
encoding: utf-8

Additionally, Ruby detects any files that start with a UTF-8 byte order mark (BO). If Ruby
sees the byte sequence \xEF\xBB\xBF at the start of a source file, it assumes that file is UTF-8
encoded.

The special constant _ ENCODING___ returns the encoding of the current source file.

Source Elements That Have Encodings

If nothing overrides the setting, the default encoding for source is US-ASCII. This is basi-
cally the same as Ruby 1.8—you write your programs using 7-bit ASCII characters. How-
ever, unlike Ruby 1.8, if any characters with the top bit set (that is, with a character code
greater than 127) do sneak into your source, Ruby will report an error, probably saying
something like “invalid multibyte char.” Here’s an example where we typed some UTF-8
characters into a Ruby program:

T = 3.14159
puts "m = #{mw}"

produces:

prog.rb:1: invalid multibyte char (US-ASCII)
The character 7 actually consists of the two bytes: \xcf \x80. In the default Ruby source
encoding of US-ASCII, these characters raise an error because the top bit is set and Ruby
doesn’t know how to handle them.

We can fix that by setting the encoding:

encoding: utf-8
m = 3.14159
puts "m = #{mw}"

produces:
T = 3.14159

Note that Ruby is correctly interpreting 7 as a single character:

encoding: utf-8
PI = "x"
puts "The size of a string containing m is #{PI.size}"

produces:

The size of a string containing 7 is 1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=267

SOURCE FILES 268

Now, let’s get perverse. The two-byte sequence “\xcf\x8” represents 7 in UTF-8 but is not
a valid byte sequence in the SJIS encoding. Let’s see what happens if we tell Ruby that
this same source file is SJIS encoded. (Remember: when we do this, we’re not changing the
actual bytes in the string—we’re just telling Ruby to interpret them with a different set of
encoding rules.)

encoding: sjis
PI = "x"
puts "The size of a string containing m is #{PI.size}"

produces:

puts "The size of a string containing m is #{PI.size}"
A

prog.rb:2: invalid multibyte char (Shift_JIS)
prog.rb:3: syntax error, unexpected tCONSTANT, expecting $end

This time, Ruby complains because the file contains byte sequences that are illegal in the
given encoding. And, to make matters even more confusing, the parser swallowed up the
double quote after the 7 character, presumably while trying to build a valid SJIS character.
This led to the second error message, because the word The is now interpreted as program
text.

String literals are always encoded using the encoding of the source file that contains them,
regardless of the content of the string:

encoding: utf-8
def show_encoding(str)
puts "'#{str}' (size #{str.size}) is #{str.encoding.name}"

end

show_encoding "cat" # latin 'c', 'a', 't'

show_encoding "dog" # greek delta, latin 'o', 'g'
produces:

'cat' (size 3) is UTF-8
'dog' (size 3) is UTF-8

Symbols and regular expression literals that contain only 7-bit characters are encoded using
US-ASCII. Otherwise, they will have the encoding of the file that contains them.

encoding: utf-8
def show_encoding(str)
puts "#{str.inspect} is #{str.encoding.name}"
end
show_encoding :cat
show_encoding :dog

show_encoding /cat/
show_encoding /dog/

produces:
rcat is US-ASCII
:dog is UTF-8

/cat/ is US-ASCII
/dog/ is UTF-8

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=268

SOURCE FILES 269

You can create arbitrary Unicode characters in strings and regular expressions using the \u
escape. This has two forms: \uxxxx lets you encode a character using four hex digits, and
\u{x... x... x...} lets you specify a variable number of characters, each with a variable number
of hex digits:

encoding: utf-8

"Greek pi: \u03c0" #
"Greek pi: \u{3cO}" #
"Greek \u{70 69 3a 20 3cO0}" #

> "Greek pi: 7
> "Greek pi: 7
> "Greek pi: 7

Literals containing a \u sequence will always be encoded UTF-8, regardless of the source
file encoding.

The String#bytes method is a convenient way to inspect the bytes in a string object. Notice
that in the following code, the 16-bit codepoint is converted to a two-byte UTF-8 encoding:

encoding: utf-8
"pi: \u03cO0".bytes.to_a # => [112, 105, 58, 32, 207, 128]

Eight-bit Clean Encodings

Ruby supports a virtual encoding called ASCII-8BIT. Despite the ASCII in the name, this
is really intended to be used on data streams that contain binary data (hence its alias of
BINARY). However, you can also use this as an encoding for source files. If you do, Ruby
interprets all characters with codes below 128 as regular ASCII and all other characters as
valid constituents of variable names. This is basically a neat hack, because it allows you to
compile a file written in an encoding you don’t know—the characters with the high-order
bit set will be assumed to be printable.

Download samples/encoding_15.rb

encoding: ascii-8bit

m = 3.14159

puts "m = #{mw}"

puts "Size of 'm' = #{'7'.size}"
produces:

T = 3.14159
Size of 'w' = 2

The last line of output illustrates why ASCII-8BIT is a dangerous encoding for source files.
Because it doesn’t know to use UTF-8 encoding, the 7 character looks to Ruby like two
separate characters.

Source Encoding Is Per-File

Clearly, a large application will be built from many source files. Some of these files may
come from other people (possibly as libraries or gems). In these cases, you may not have
control over the encoding used in a file.

Ruby supports this by allowing different encodings in the files that make up a project. Each
file starts with the default encoding of US-ASCII. The file’s encoding may then be set with
either a coding: comment or a UTF-8§ BOM.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=269

TRANSCODING

Here’s a file called 1s0-8859-1.rb. Notice the explicit encoding.

-+- encoding: iso-8859-1 -x-
STRING_ISO = "olé" # \x6f \x6c \xe9

And here’s its UTF-8 counterpart:

file: utf.rb, encoding: utf-8
STRING_U = "dog" # \xe2\x88\x82\x6f\x67

Now let’s require both of these files into a third file. Just for the heck of it, let’s declare the
third file to have SJIS encoding:

encoding: sjis
require 'iso-8859-1'
require 'utf'
def show_encoding(str)
puts "'#{str}' (size #{str.size}) is #{str.encoding.name}"
end
show_encoding (STRING_ISO)
show_encoding (STRING_U)
show_encoding("cat")

produces:
'0lé' (size 3) is IS0-8859-1

'dog' (size 3) is UTF-8
'cat' (size 3) is Shift_JIS

Notice how each file has an independent encoding. String literals in each retain their own
encoding, even when used in a different file. All the encoding directive does is tell Ruby
how to interpret the characters in the file and what encoding to use on literal strings and
regular expressions containing non-ASCII characters. Ruby will never change the actual
bytes in a source file when reading them in.

Transcoding

As we’ve already seen, strings, symbols, and regular expressions are now labeled with their
encoding. You can convert a string from one encoding to another using the String#encode
method. For example, we can convert the word olé from UTF-8 to ISO-8859-1:

encoding: utf-8

ole_in_utf = "olé"

ole_in_utf.encoding # => #<Encoding:UTF-8>
ole_in_utf.bytes.to_a # => [111, 108, 195, 169]

ole_in_8859 = ole_in_utf.encode("is0-8859-1")

ole_in_8859.encoding # => #<Encoding:IS0-8859-1>
ole_in_8859.bytes.to_a # => [111, 108, 233]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=270

TRANSCODING 271

You have to be careful when using encode—if the target encoding doesn’t contain charac-
ters that appear in your source string, Ruby will throw an exception. For example, the m
character is available in UTF-8 but not in ISO-8859-1:

encoding: utf-8

pi = "pi= 7"

pi.encode("iso-8859-1")
produces:

prog.rb:3:in “encode': "\xCF\x80" from UTF-8 to IS0-8859-1 (Encoding::UndefinedConversion
from /tmp/prog.rb:3:in “<main>'

You can, however, override this behavior, for example supplying a placeholder character to
use when no direct translation is possible. (See the description of String#encode on page 678
for more details.)

encoding: utf-8

pi = "pi = 7"

puts pi.encode("iso-8859-1", undef: :replace, replace: "??")
produces:

pi = ??

Sometimes you’ll have a string containing binary data and you want that data to be inter-
preted as if it had a particular encoding. You can’t use the encode method for this, because
you don’t want to change the byte contents of the string—you’re just changing the encoding
associated with those bytes. Use the String#force_encoding method to do this:

Download samples/encoding_22.rb

encoding: ascii-8bit

str = "\xc3\xa9" # e-acute in UTF-8
str.encoding # => #<Encoding:ASCII-8BIT>
str.force_encoding("utf-8")

str.bytes.to_a # => [195, 169]
str.encoding # => #<Encoding:UTF-8>

Finally, you can use encode (with two parameters) to convert between two encodings if
your source string is ASCII-8BIT. This might happen if, for example, you're reading data
in binary mode from a file and choose not to encode it at the time you read it. Here we
fake that out by creating an ASCII-8BIT string that contains an ISO-8859-1 sequence (our
old friend ol¢). We then convert the string to UTF-8. To do this, we have to tell encode the
actual encoding of the bytes by passing it a second parameter:

Download samples/encoding_23.rb

encoding: ascii-8bit

original = "ol\xe9" # e-acute in IS0-8859-1
original.bytes.to_a # => [111, 108, 233]
original.encoding # => #<Encoding:ASCII-8BIT>

new = original.encode("utf-8", "iso-8859-1")
new.bytes.to_a # => [111, 108, 195, 169]
new.encoding # => #<Encoding:UTF-8>

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/encoding_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=271

INPUT AND OUTPUT ENCODING 272

If you’re writing programs that will support multiple encodings, you probably want to read
the section on Default Internal Encoding on page 274—it will greatly simplify your life.

Input and Output Encoding

Playing around with encodings within a program is all very well, but in most code we’ll
want to read data from and write data to external files. And, often, that data will be in a
particular encoding.

Ruby’s I/O objects support both encoding and transcoding of data. What does this mean?

Every I/O object has an associated external encoding. This is the encoding of the data
being read from or written to the outside world. Through a piece of magic I’ll describe
on page 274, all Ruby programs run with the concept of a default external encoding. This
is the external encoding that will be used by I/O objects unless you override it when you
create the object (for example, by opening a file).

Now, your program may want to operate internally in a different encoding. For example,
some of my files may be encoded with ISO-8859-1, but I want my Ruby program to work
internally using UTF-8. Ruby I/O objects manage this by having an optional associated
internal encoding. If set, then input will be transcoded from the external to the internal
encodings on read operations, and output will be transcoded from internal to external encod-
ing on write operations.

Let’s start with the simple cases. On my OS X box, the default external encoding is UTF-8.
If I don’t override it, all my file I/O will therefore also be in UTF-8. I can query the external
encoding of an I/O object using the |IO#external_encoding method:

f = File.open("/etc/passwd")

puts "File encoding is #{f.external_encoding}"

line = f.gets

puts "Data encoding is #{line.encoding}"
produces:

File encoding is UTF-8
Data encoding is UTF-8

Notice that the data is tagged with a UTF-8 encoding even though it (presumably) con-
tains just 7-bit ASCII characters. Only literals in your Ruby source files have the “change
encoding if they contain 8-bit data” rule.

You can force the external encoding associated with an I/O object when you open it—simply
add the name of the encoding, preceded by a colon, to the mode string. Note that this in no
way changes the data that’s read—it simply tags it with the encoding you specify:

f = File.open("/etc/passwd", "r:ascii")

puts "File encoding is #{f.external_encoding}"
line = f.gets

puts "Data encoding is #{line.encoding}"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=272

INPUT AND OUTPUT ENCODING 273

produces:

File encoding is US-ASCII
Data encoding is US-ASCII

You can force Ruby to transcode—change the encoding—of data it reads and writes by
putting two encoding names in the mode string, again with a colon before each. For exam-
ple, the file is0-8859-1. txt contains the word olé in ISO-8859-1 encoding. In this encod-
ing, the e-acute character is encoded by the single byte \xe9. I can view this file’s contents
in hex using the od command-line tool. (Windows users can use the d command in debug
to do the same.)

% od -t x1 iso0-8859-1.txt
0000000 6f 6c e9 Oa
0000004

If we try to read it with our default external encoding of UTF-8, we’ll encounter a problem:

f = File.open("iso0-8859-1.txt")
puts f.external_encoding.name
line = f.gets

puts line.encoding

puts line

produces:

UTF-8

UTF-8

0l?
The problem is that the binary sequence for the e-acute isn’t the same in ISO-8859-1 and
UTEF-8. Ruby just assumed the file contained UTF-8 characters, tagging the string it read
accordingly.

We can tell the program that the file contains ISO-8859-1:

f = File.open("iso0-8859-1.txt", "r:iso-8859-1")
puts f.external_encoding.name

line = f.gets

puts line.encoding

puts line

produces:

IS0-8859-1
I1S0-8859-1
ol?

This doesn’t help us much. The string is now tagged with the correct encoding, but our
operating system is still expecting UTF-8 output.

The solution is to map the ISO-8859-1 to UTF-8 on input:

f = File.open("iso-8859-1.txt", "r:iso-8859-1:utf-8")
puts f.external_encoding.name

line = f.gets

puts line.encoding

puts line

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=273

DEFAULT EXTERNAL ENCODING 274

produces:
IS0-8859-1
UTF-8
olé

If you specify two encoding names when opening an I/O object, the first is the external
encoding, and the second is the internal encoding. Data is transcoded from the former to the
latter on reading and the opposite way on writing. That’s how I created the file containing
olé in the first place:

% ruby -e 'File.open("is0-8859-1.txt", "w:is0-8859-1:utf-8") { Ifl f.puts "olé"}’

Binary Files

In the old days, we Unix users used to make little snide comments about the way that
Windows users had to open binary files using a special binary mode. Well, now the Windows
folks can get their own back. If you want to open a file containing binary data in Ruby, you
must now specify the binary flag, which will automatically select the 8-bit clean ASCII-
8BIT encoding. To make things explicit, you can use “binary” as an alias for the encoding:

Download samples/encoding_31.rb

f = File.open("iso0-8859-1.txt", "rb")

puts "Implicit encoding is #{f.external_encoding.name}"
f = File.open("is0-8859-1.txt", "rb:binary")

puts "Explicit encoding is #{f.external_encoding.name}
line = f.gets

puts "String encoding is #{line.encoding.name}"

produces:

Implicit encoding is ASCII-8BIT
Explicit encoding is ASCII-8BIT
String encoding is ASCII-8BIT

Default External Encoding

If you look at the text files on your computer, the chances are that they’ll all use the same
encoding. In the United States, that’ll probably be UTF-8 or ASCIL In Europe, it might
be UTF-8 or ISO-8859-x. If you use a Windows box, you may be using a different set of
encodings (use the console chcp command to find your current code page). But whatever
encoding you use, the chances are good that you’ll stick with it for the majority of your
work.

On Unix-like boxes, you’ll probably find you have the LANG environment variable set. On
my OS X box, I have this:

% echo $LANG
en_US.UTF-8

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_31.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=274

ENCODING COMPATIBILITY 275

This says that I'm using the English language in the U.S. territory and my default codeset is
UTEF-8. On startup, Ruby looks for this environment variable and, if present, sets the default
external encoding from the codeset component. Thus, on my box, Ruby 1.9 programs run
with a default external encoding of UTF-8. If instead I were in Japan and my LANG variable
were set to ja_JP.sjis, my encoding would be set to Shift JIS. We can look at the default
external encoding by querying the Encoding class. While we’re at it, we’ll experiment with
different values in the LANG environment variable:

% echo $LANG

en_US.UTF-8

% ruby -e 'p Encoding.default_external.name'

"UTF-8"

% LANG=ja_JP.sjis ruby -e 'p Encoding.default_external.name'
"Shift_JIS"

% LANG= ruby -e 'p Encoding.default_external.name'
"US-ASCII"

The encoding set from the environment does not affect the encoding Ruby uses for source
files—it affects only the encoding of data read and written by your programs.

Finally, you can use the -E command-line option (or the long-form --encoding) to set the
default external encoding of your I/O objects:

% ruby -E utf-8 -e 'p Encoding.default_external.name'

"UTF-8"

% ruby -E sjis -e 'p Encoding.default_external.name'
"Shift_JIS"

% ruby -E sjis:is0-8859-1 -e 'p Encoding.default_internal.name'
"IS0-8859-1"

Encoding Compatibility

Before Ruby performs operations involving strings or regular expressions, it first has to
check that the operation makes sense. For example, it is valid to perform an equality test
between two strings with different encodings, but it is not valid to append one to the other.

The basic steps in this checking are as follows:
1. If the two objects have the same encoding, the operation is valid.

2. If the two objects each contain only 7-bit characters, the operation is permitted regard-
less of the encodings.

3. If the encodings in the two objects are compatible (which we’ll discuss next), the oper-
ation is permitted.

4. Otherwise, an exception is raised.

Let’s say you have a set of text files containing markup. In some of the files, authors used the
sequence \dots to represent an ellipsis. In other files, which have UTF-8 encoding, authors
used an actual ellipsis character (\u2026). We want to convert both forms to three periods.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=275

DEFAULT INTERNAL ENCODING 276

We can start off with a simplistic solution:

encoding: utf-8
while line = gets

result = line.gsub(/\\dots/, "...")
.gsub(/.../, "...") # unicode ellipsis
puts result
end

In my environment, the content of files is by default assumed to be UTF-8. Feed our code
ASCII files and UTF-encoded files, and it works just fine. But what happens when we feed
it a file that contains ISO-8859-1 characters?

dots.rb:4:in “gsub': broken UTF-8 string (ArgumentError)

Ruby tried to interpret the input text, which is ISO-8859-1 encoded, as UTF-8. Because the
byte sequences in the file aren’t valid UTF, it failed.

There are three solutions to this problem. The first is to say that it makes no sense to feed
files with both ISO-8859 and UTF-8 encoding to the same program without somehow dif-
ferentiating them. That’s perfectly true. This approach means we’ll need some command-
line options, liberal use of force_encoding, and probably some kind of code to delegate the
pattern matching to different sets of patterns depending on the encoding of each file.

A second hack is to simply treat both the data and the program as ASCII-8BIT and perform
all the comparisons based on the underlying bytes. This isn’t particularly reliable, but it
might work in some circumstances.

The third solution is to choose a master encoding and to transcode strings into it before
doing the matches. Ruby provides built-in support for this with the default_internal encoding
mechanism.

Default Internal Encoding

By default, Ruby performs no automatic transcoding when reading and writing data. How-
ever, two command-line options allow you to change this.

We’ve already seen the -E option, which sets the default encoding applied to the content of
external files. When you say -E xxx, the default external encoding is set to xxx.

However, -E takes a second option. In the same way that you can give File#open both an
external and an internal encoding, you can also set a default internal encoding using the
folllowing option:

-E external:internal

Thus, if all your files are written with ISO-8859-1 encoding but you want your program to
have to deal with their content as if it were UTF-8, you can use this:

ruby -E iso-8859-1:utf-8

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=276

FUN wITH UNICODE 277

You can specify just an internal encoding by omitting the external option but leaving the
colon:

ruby -E :utf-8

Indeed, because UTF-8 is probably the best of the available transcoding targets, Ruby has
the -U command-line option, which sets the internal encoding to UTF-8.

You can query the default internal encoding in your code with the Encoding.default_internal
method. This returns nil if no default internal encoding has been set.

One last note before we leave this section: if you compare two strings with different encod-
ings, Ruby does not normalize them. Thus, "é" tagged with a UTF-8 encoding will not
compare equal to "é" tagged with ISO-8859-1, because the underlying bytes are different.

Fun with Unicode

As Daniel Berger pointed out, the fact that UTF-8 is now supported in Ruby means that
we can do interesting things with our method and variable names:

Download samples/encoding_36.rb
encoding: utf-8
def X (xargs)
args.inject(:+)
end
puts X 1, 3, 5, 9
produces:
18
Of course, this way can lead to some pretty obscure and hard-to-use code. (For example, is

the summation character in the previous code a real summation, \u2211, or a Greek sigma,
\u03a3?) Just because we can do something doesn’t mean we necessarily should....

3. http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_36.rb
http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=277

Chapter 18

Interactive Ruby Shell

Back on page 221 we introduced irb, a Ruby module that lets you enter Ruby programs
interactively and see the results immediately. This chapter goes into more detail on using
and customizing irb.

Command Line

irb is run from the command line:
irb [irb-options | [ruby_script | [program arguments]

The command-line options for irb are listed in Table 18.1 on the following page. Typically,
you’ll run irb with no options, but if you want to run a script and watch the blow-by-blow
description as it runs, you can provide the name of the Ruby script and any options for that
script.

Once started, irb displays a prompt and waits for input. In the examples that follow, we’ll
use irb’s default prompt, which shows the current binding, the indent (nesting) level, and
the line number.

At a prompt, you can type Ruby code. irb includes a Ruby parser, so it knows when state-
ments are incomplete. When this happens, the prompt will end with an asterisk. You can
leave irb by typing exit or quit or by entering an end-of-file character (unless IGNORE_EOF
mode is set).

% irb
irb(main):001:0> 1 + 2
= 3

irb(main):002:0> 3 +
irb(main):003:0% 4
=7

irb(main):004:0> quit
%

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=278

279

COMMAND LINE

Table 18.1. irb Command-Line Options

Option

Description

--back-trace-limit n

--context-mode n
-d

-E enc

-f

-h, --help

-l path
--inf-ruby-mode

--inspect, --noinspect
--irb_debug n

-m
--noprompt
--prompt prompt-mode

--prompt-mode prompt-mode
-r module

--readline, --noreadline
--sample-book-mode
--simple-prompt

--single-irb

--tracer

-U

-v, --version

Displays backtrace information using the top n and last n
entries. The default value is 16.

See :CONTEXT_MODE on page 284.

Sets $DEBUG to true (same as ruby -d).

Same as Ruby’s -E option.

Suppresses reading ~/.irbrc.

Displays usage information.

Specifies the SLOAD_PATH directory.

Sets up irb to run in inf-ruby-mode under Emacs. Same as
--prompt inf-ruby --noreadline.

Uses/doesn’t use Object#inspect to format output (--inspect
is the default, unless in math mode).

Sets internal debug level to n (only useful for irb develop-
ment).

Math mode (fraction and matrix support is available).
Does not display a prompt. Same as --prompt null

Switches prompt. Predefined prompt modes are null,
default, classic, simple, xmp, and inf-ruby.

Same as --prompt.

Requires module. Same as ruby -r.

Uses/doesn’t use readline extension module.

Same as --prompt simple.

Same as --prompt simple.

Nested irb sessions will all share the same context.
Displays trace for execution of commands.

Same as Ruby’s -U option.

Prints the version of irb.

During an irb session, the work you do is accumulated in irb’s workspace. Variables you
set, methods you define, and classes you create are all remembered and may be used subse-

quently in that session.

irb(main):001:0> def fib_up_to(n)

irb(main):002:1>
irb(main):003:1>

fi, f2 =1, 1
while f1 <= n

irb(main):004:2>
irb(main):005:2> f1, £f2 = £2, f1+f2
irb(main):006:2> end
irb(main):007:1> end

=> nil

irb(main) :008:0> fib_up_to(4)

puts f1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=279

COMMAND LINE 280

Notice the nil return values. These are the results of defining the method and then running
it—our method printed the Fibonacci numbers but then returned nil.

A great use of irb is experimenting with code you’ve already written. Perhaps you want to
track down a bug, or maybe you just want to play. If you load your program into irb, you
can then create instances of the classes it defines and invoke its methods. For example, the
file code/fib_up_to.rb contains the following method definition:

Download samples/irb_1.rb

def fib_up_to(max)
il, i2 =1, 1
while il <= max

yield il
il, i2 = i2, il+i2
end

end

We can load this into irb and play with the method:

% irb

irb(main):001:0> load 'code/fib_up_to.rb'

=> true

irb(main):002:0> result = []

= []

irb(main):003:0> fib_up_to(20) {|val| result << val}
=> nil

irb(main):004:0> result

= [1, 1, 2, 3, 5, 8, 13]

In this example, we use load, rather than require, to include the file in our session. We do
this as a matter of practice: load allows us to load the same file multiple times, so if we find
a bug and edit the file, we could reload it into our irb session.

Tab Completion

If your Ruby installation has readline support, then you can use irb’s completion facility.
Once loaded (and we’ll get to how to load it shortly), completion changes the meaning
of the key when typing expressions at the irb prompt. When you press partway
through a word, irb will look for possible completions that make sense at that point. If there
is only one, irb will fill it in automatically. If there’s more than one valid option, irb initially
does nothing. However, if you hit again, it will display the list of valid completions at
that point.

For example, you may be in the middle of an irb session, having just assigned a string object
to the variable a:

irb(main):002:0> a = "cat"
—> "cat"

You now want to try the method String#reverse on this object. You start by typing a.re and
then hit twice.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=280

COMMAND LINE 281

irb(main):003:0> a.re(TAB|(TAB

a.reject a.replace a.respond_to? a.reverse a.reverse!

irb lists all the methods supported by the object in a whose names start with re. We see the
one we want, reverse, and enter the next character of its name, v, followed by the key:

irb(main):003:0> a.rev{TAB]
irb(main):003:0> a.reverse
=> "tac"

irb(main):004:0>

irb responds to the key by expanding the name as far as it can go, in this case com-
pleting the word reverse. If we keyed twice at this point, it would show us the current
options, reverse and reverse!. However, because reverse is the one we want, we instead hit
(ENTER), and the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab completion
works when we try to invoke one of its methods:

irb(main):004:0> class Test
irb(main):005:1> def my_method
irb(main):006:2> end
irb(main):007:1> end

=> nil

irb(main):008:0> t = Test.new
=> #<Test:0x35b724>
irb(main):009:0> t.m
irb(main):009:0> t.my_method

Tab completion is implemented as an extension library. On some systems this is loaded by
default. On others you’ll need to load it when you invoke irb from the command line:

% irb -r irb/completion
You can also load the completion library when irb is running:

irb(main):001:0> require 'irb/completion’
=> true

If you use tab completion all the time, it’s probably most convenient to put the require
command into your .irbrc file:

require 'irb/completion'

Subsessions

irb supports multiple, concurrent sessions. One is always current; the others lie dormant
until activated. Entering the command irb within irb creates a subsession, entering the jobs
command lists all sessions, and entering fg activates a particular dormant session. This
example also illustrates the -r command-line option, which loads in the given file before
irb starts:

% irb -r code/fib_up_to.rb
irb(main):001:0> result = []
=> []

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=281

CONFIGURATION 282

irb(main):002:0> fib_up_to(10) {|val| result << val }
=> nil

irb(main):003:0> result

= [1, 1, 2, 3, 5, 8]

irb(main):004:0> # Create a nested irb session
irb(main):005:0+« irb

irb#1(main) :001:0> result = %w{ cat dog horse }
=> ["cat", "dog", "horse"]

irb#1(main) :002:0> result.map {|val| val.upcase }
=> ["CAT", "DOG", "HORSE"]

irb#1(main):003:0> jobs

=> #0->irb on main (#<Thread:0x331740>: stop)
#1->irb#1 on main (#<Thread:0x341694>: running)
irb#1(main):004:0> fg 0

irb(main):006:0> result

= [1, 1, 2, 3, 5, 8]

irb(main):007:0> fg 1

irb#1(main) :005:0> result

=> ["cat", "dog", "horse"]

Subsessions and Bindings

If you specify an object when you create a subsession, that object becomes the value of
self in that binding. This is a convenient way to experiment with objects. In the following
example, we create a subsession with the string “wombat” as the default object. Methods
with no receiver will be executed by that object.

% irb

irb(main):001:0> self

=> main

irb(main):002:0> irb "wombat"
irb#1(wombat) :001:0> self

=> "wombat"

irb#1(wombat):002:0> upcase

=> "WOMBAT"

irb#1(wombat):003:0> size

=> 6

irb#1(wombat):004:0> gsub(/[aeiou]l/, '=')
=> "wxmb=t"

irb#1(wombat):005:0> irb_exit
irb(main):003:0> self

=> main

irb(main) :004:0> upcase

NameError: undefined local variable or method ‘upcase' for main:Object

Configuration

irb is remarkably configurable. You can set configuration options with command-line op-
tions, from within an initialization file, and while you’re inside irb itself.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=282

CONFIGURATION 283

Initialization File

irb uses an initialization file in which you can set commonly used options or execute any
required Ruby statements. When irb is run, it will try to load an initialization file from one
of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbre, and $irbre.

Within the initialization file, you may run any arbitrary Ruby code. You can also set configu-
ration values. The list of configuration variables is given starting on the following page—the
values that can be used in an initialization file are the symbols (starting with a colon). You
use these symbols to set values into the IRB.conf hash. For example, to make SIMPLE the
default prompt mode for all your irb sessions, you could have the following in your initial-
ization file:

IRB.conf[:PROMPT_MODE] = :SIMPLE

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc object.
This proc will be invoked whenever the irb context is changed and will receive the configu-
ration for that context as a parameter. You can use this facility to change the configuration
dynamically based on the context. For example, the following .irbrc file sets the prompt
so that only the main prompt shows the irb level, but continuation prompts and the result
still line up:

Download samples/irb_5.rb

IRB.conf[:IRB_RC] = lambda do |conf]|
leader = " " * conf.irb_name.length
conf.prompt_i = "#{conf.irb_name} -->
conf.prompt_s = leader + ' \-" '
conf.prompt_c = leader + ' \-+

conf.return_format = leader + " ==> %s\n\n"
puts "Welcome!"
end

An irb session using this .irbrec file looks like the following:

% irb

Welcome!

irb --> 1 + 2
==> 3

irb -->
\-+

==>

AN

Extending irb

Because the things you type into irb are interpreted as Ruby code, you can effectively extend
irb by defining new top-level methods. For example, you may want to time how long certain
things take. You can use the measure method in the Benchmark library to do this, but it’s
more convenient to wrap this in a helper method.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=283

CONFIGURATION 284

Add the following to your .irbrc file:

Download samples/irb_6.rb

def time(&block)
require 'benchmark'’
result = nil
timing = Benchmark.measure do
result = block. ()
end
puts "It took: #{timing}"
result
end

The next time you start irb, you’ll be able to use this method to get timings:

irb(main):001:0> time { 1000000.times { "cat".upcase }}
It took: 0.550000 0.000000 0.550000 (0.545647)
=> 1000000

irb(main):002:0>

Interactive Configuration

Most configuration values are also available while you’re running irb. The list starting on
the current page shows these values as conf.xxx. For example, to change your prompt back
to DEFAULT, you could use the following:

irb(main):001:0> 1 +

irb(main):002:0+ 2

=> 3

irb(main) :003:0> conf.prompt_mode = :SIMPLE
=> :SIMPLE

>> 1 +

?> 2

=> 3

irb Configuration Options

In the descriptions that follow, a label of the form :XXX signifies a key used in the IRB.conf
hash in an initialization file, and conf.xxx signifies a value that can be set interactively. The
value in square brackets at the end of the description is the option’s default.

:AUTO_INDENT / conf.auto_indent_mode
If true, irb will indent nested structures as you type them. [false]

:BACK_TRACE_LIMIT / conf.back_trace_limit
Displays n initial and n final lines of backtrace. [16]

:CONTEXT_MODE
What binding to use for new workspaces: 0— proc at the top level, 1— binding in a loaded,
anonymous file, 2— per thread binding in a loaded file, 3— binding in a top-level function. [3]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=284

CONFIGURATION 285

:DEBUG_LEVEL / conf.debug_level
Sets the internal debug level to n. This is useful if you’re debugging irb’s lexer. [0]
:IGNORE_EOF / conf.ignore_eof
Specifies the behavior of an end of file received on input. If true, it will be ignored; otherwise,
irb will quit. [false]
{IGNORE_SIGINT / conf.ignore_sigint
If false, ~C (Ctrl+c) will quit irb. If true, ~C during input will cancel input and return to the top

level; during execution, AC will abort the current operation. [true]

:INSPECT_MODE / conf.inspect_mode
Specifies how values will be displayed: true means use inspect, false uses to_s, and nil uses inspect
in nonmath mode and to_s in math mode. [nil]

2IRB_RC
Can be set to a proc object that will be called when an irb session (or subsession) is started. [nil]

conf.last_value
The last value output by irb. [...]

:LOAD_MODULES / conf.load_modules
A list of modules loaded via the -r command-line option. [[]]

:MATH_MODE / conf.math_mode

If true, irb runs with the mathn library loaded (see page 767) and does not use inspect to display
values. [false]

conf.prompt_c
The prompt for a continuing statement (for example, immediately after an if). [depends]

conf.prompt_i
The standard, top-level prompt. [depends]

:PROMPT_MODE / conf.prompt_mode
The style of prompt to display. [:DEFAULT]

conf.prompt_s
The prompt for a continuing string. [depends]

:PROMPT
See Configuring the Prompt on page 287. [{ ... }]

:RC/ conf.rc
If false, do not load an initialization file. [true]

conf.return_format

The format used to display the results of expressions entered interactively. [depends]

:SAVE_HISTORY / conf.save_history
The number of commands to save between irb sessions. [nil]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=285

COMMANDS 286

:SINGLE_IRB
If true, nested irb sessions will all share the same binding; otherwise, a new binding will be
created according to the value of :CONTEXT_MODE. [nil]

conf.thread
A read-only reference to the currently executing Thread object. [current thread]

:USE_LOADER // conf.use_loader
Specifies whether irb’s own file reader method is used with load/require. [false]

:USE_READLINE / conf.use_readline
irb will use the readline library if available (see page 797) unless this option is set to false, in
which case readline will never be used, or nil, in which case readline will not be used in inf-ruby-
mode. [depends]

:USE_TRACER/ conf.use_tracer
If true, traces the execution of statements. [false]

:VERBOSE / conf.verbose
In theory, switches on additional tracing when true; in practice, almost no extra tracing results.
[true]

Commands

At the irb prompt, you can enter any valid Ruby expression and see the results. You can also
use any of the following commands to control the irb session:'

help ClassName, string, or symbol
19 , Displays the ri help for the given thing. To get the help for a method name, you’ll
probably want to pass a string, like this:

irb(main):001:0> help "String.encoding"

Returns the Encoding object that represents the encoding of obj.

exit, quit, irb_exit, irb_quit
Quits this irb session or subsession. If you’ve used cb to change bindings (see below),
exits from this binding mode.

conf, context, irb_context
Displays current configuration. Modifying the configuration is achieved by invoking
methods of conf. The list starting on page 284 shows the available conf settings.

1. For some inexplicable reason, many of these commands have up to nine different aliases. We don’t bother to
show all of these.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=286

COMMANDS 287

For example, to set the default prompt to something subservient, you could use this:

irb(main):001:0> conf.prompt_i = "Yes, Master? "
=> "Yes, Master? "
Yes, Master? 1 + 2

cb, irb_change_binding (obj)
Creates and enters a new binding (sometimes called a workspace) that has its own
scope for local variables. If 0bj is given, it will be used as self in the new binding.

pushb obj, popb
Pushes and pops the current binding.
bindings
Lists the current bindings.
irb_cwws
Prints the object that’s the binding of the current workspace.
irb (obj)
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs
Lists irb subsessions.

fg n, irb_fg n
Switches into the specified irb subsession. n may be any of the following: an irb sub-
session number, a thread ID, an irb object, or the object that was the value of self when
a subsession was launched.

kill n, irb_kill n
Kills an irb subsession. n may be any of the values as described for irb_fg.

source filename
Loads and executes the given file, displaying the source lines.

Configuring the Prompt

You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts are
stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called MY_PROMPT, you could enter the
following (either directly at an irb prompt or in the .irbrc file):

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode

:PROMPT_I => '-->"', # normal prompt

:PROMPT_S => '--"", # prompt for continuing strings
:PROMPT_C => '--+"', # prompt for continuing statement
:RETURN => " ==>%s\n" # format to return value

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=287

RESTRICTIONS 288

Once you’ve defined a prompt, you have to tell irb to use it. From the command line, you
can use the --prompt option. (Notice how the name of the prompt mode is automatically
converted to uppercase, with hyphens changing to underscores.)

% irb --prompt my-prompt

If you want to use this prompt in all your future irb sessions, you can set it as a configuration
value in your .irbrec file:
IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols PROMPT_I, PROMPT_S, and PROMPT_C specify the format for each of the
prompt strings. In a format string, certain % sequences are expanded:

Flag Description

%N Current command.

%m to_s of the main object (self).

%M inspect of the main object (self).

%l Delimiter type. In strings that are continued across a line break, %l will display
the type of delimiter used to begin the string, so you’ll know how to end it. The
delimiter will be one of ", ', /,], or ".

%ni Indent level. The optional number n is used as a width specification to printf, as
printf("%nd").

%nn Current line number (n used as with the indent level).

%% A literal percent sign.

For instance, the default prompt mode is defined as follows:

IRB.conf[:PROMPT][:DEFAULT] = {
:PROMPT_I => "%N(%m):%03n:%i> ",
:PROMPT_S => "%N(%m):%03n:%i%1 ",
:PROMPT_C => "%N(%m) :%03n:%i* ",
:RETURN => "=> %s\n"

Restrictions

Because of the way irb works, it is slightly incompatible with the standard Ruby interpreter.
The problem lies in the determination of local variables.

Normally, Ruby looks for an assignment statement to determine whether something is a
variable—if a name hasn’t been assigned to, then Ruby assumes that name is a method call:

eval "var = 0"
var

produces:

prog.rb:2:in ‘<main>': undefined local variable or method ‘var' for
main:0bject (NameError)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=288

RESTRICTIONS 289

In this case, the assignment is there, but it’s within a string, so Ruby doesn’t take it into
account.

irb, on the other hand, executes statements as they are entered:

irb(main):001:0> eval "var = 0"
0

irb(main):002:0> var

0

In irb, the assignment was executed before the second line was encountered, so var is cor-
rectly identified as a local variable.

If you need to match the Ruby behavior more closely, you can place these statements within
a begin/end pair:

irb(main):001:0> begin

irb(main):002:1+* eval "var = 0"

irb(main):003:1> var

irb(main):004:1> end

NameError: undefined local variable or method ‘var'

(irb):3:in “irb_binding'

Saving Your Session History

If you have readline support in irb (that is, you can hit the up arrow key and irb recalls the
previous command you entered), then you can also configure irb to remember the commands
you enter between sessions. Simply add the following to your .irbrec file:

Download samples/irb_14.rb

IRB.conf[:SAVE_HISTORY] = 50 # save last 50 commands

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=289

Chapter 19

Documenting Ruby

As of version 1.8, Ruby comes bundled with RDoc, a tool that extracts and formats doc-
umentation that’s embedded in Ruby source code files. This tool is used to document the
built-in Ruby classes and modules. An increasing number of libraries and extensions are
also documented this way.

RDoc does two jobs. First, it analyzes Ruby and C source files, looking for information to
document.' Second, it takes this information and converts it into something readable. Out of
the box, RDoc produces two kinds of output: HTML and ri. Some HTML-formatted RDoc
output in a browser window is shown in Figure 19.1 on the following page. This is the
result of feeding RDoc a Ruby source file with no additional documentation—RDoc does
a credible job of producing something meaningful. If our source code contains comments,
RDoc can use them to spice up the documentation it produces. Typically, the comment
before an element is used to document that element, as shown in Figure 19.2 on page 292.

RDoc can also be used to produce documentation that can be read by the ri command-line
utility. For example, if we ask RDoc to document the code in Figure 19.2 this way, we can
then access the documentation using ri, as shown in Figure 19.3 on page 293. New Ruby
distributions have the built-in classes and modules (and some libraries) documented this
way. The output produced if you type ri Proc is shown in Figure 19.4 on page 294.

1. RDoc can also document Fortran 77 programs.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=290

000 RDoc Documentation

Files || Classes [[Methods

exl.rb || Counter inc (Counter)
new (Counter)

Counter (Class)

In: exlrb
Parent: Object

Methods |
Inc new class Counter
attr_reader :counter
def initialize(initial_value=0)
. @counter = initial_value |
Attributes end |

def inc
@counter += 1
end
end

Public Class methods ‘

new (initial_valie=0)

counter [}

Public Instance methods

inc()

[Validate]

This figure shows some RDoc output in a browser window. The overlaid box shows
the source program from which this output was generated. Even though the source
contains no internal documentation, RDoc still manages to extract interesting infor-
mation from it. We have three panes at the top of the screen showing the files,
classes, and methods for which we have documentation. For class Counter, RDoc
shows us the attributes and methods (including the method signatures). And if we
clicked a method signature, RDoc would pop up a window containing the source
code for the corresponding method.

Figure 19.1. Browse RDoc Output for Class Counter

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=291

(S) 0 &) RDoc Documentation

Files . Classes Methods

ex2.rb Counter inc (Counter)
new (Counter)

(Class)

Counter

In: ex2rb

Parent: Object

Implements a simple accumulator, whose value is accessed via the attribute counter. Calling the
method Counterffinc increments this value.

Implements a simple accumulator, whose
value is accessed via the attribute
counter. Calling the method Counter#inc

‘MEthOds # increment; this value.

inc new

class Counter

The current value of the count

‘ Attributes attr_reader :counter

counter [k The current value of the count # create a new Counter with the given
initial value

def initialize(initial_value=0)
@counter = initial_value

. ~
'Public Class methods end
= # increment the current value of the count
new{inuial_value=0) def inc
@counter += 1
create a new Counter with the given initial value :nd
en

'Public Instance methods
inc()

increment the current value of the count

[Vahdate]

4

Notice how the comments before each element now appear in the RDoc output,
reformatted into HTML. Less obvious is that RDoc has detected hyperlink oppor-
tunities in our comments: in the class-level comment, the reference to Counter#inc
is a hyperlink to the method description, and in the comment for the new method,
the reference to class Counter hyperlinks back to the class documentation. This is a
key feature of RDoc: it is designed to be unintrusive in the Ruby source files and to
make up for this by trying to be clever when producing output.

Figure 19.2. Browse RDoc Output When Source Has Comments

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=292

ADDING RDoc 1o RuBYy CODE

Figure 19.3. Using ri to Read Documentation

% ri Counter

—— Class: Counter
Implements a simple accumulator, whose value is
accessed via the attribute counter. Calling the
method Counter#inc increments this value.

Class methods:
new

Instance methods:
inc

Attributes:
counter

% ri Counter.inc
___ Counter#inc

increment the current value of the count

Adding RDoc to Ruby Code

RDoc parses Ruby source files to extract the major elements (classes, modules, methods,
attributes, and so on). You can choose to associate additional documentation with these by
simply adding a comment block before the element in the file.

Comment blocks can be written fairly naturally, either by using # on successive lines of the
comment or by including the comment in a =begin. . .=end block. If you use the latter form,
the =begin line must be flagged with an rdoc tag to distinguish the block from other styles
of documentation.

=begin rdoc

Calculate the minimal-cost path though the graph
using Debrinkski's algorithm, with optimized
inverse pruning of isolated leaf nodes.

=end

def calculate_path

end

Within a documentation comment, paragraphs are lines that share the left margin. Text
indented past this margin is formatted verbatim.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=293

ADDING RDoc 1o RuBYy CODE

. : :)
Figure 19.4. Documentation for Class Proc Generated by RDoc/ri
% ri Proc
——— Class: Proc

Proc objects are blocks of code that have been
bound to a set of local variables. Once bound,
the code may be called in different contexts and
still access those variables.
def gen_times(factor)
return Proc.new {|n| nxfactor }
end
times3 = gen_times(3)
times5 = gen_times(5)
times3.call(12) #=> 36
times5.call(5) #=> 25
times3.call(times5.call(4)) #=> 60
Class methods:
new
Instance methods:
==, [], arity, binding, call, clone, eql?, hash,
to_proc, to_s
\. J

Nonverbatim text can be marked up. To set individual words in italic, bold, or typewriter
fonts, you can use _word_, *word*, and +word+, respectively. If you want to do this to mul-
tiple words or text containing nonword characters, you can use multiple words,
more words, and <tt>yet more words</tt>. Putting a backslash before inline markup
stops it being interpreted.

RDoc stops processing comments if it finds a comment line starting #--. This can be used
to separate external from internal comments or to stop a comment being associated with a
method, class, attribute, or module. Documenting can be turned back on by starting a line
with #++:

Extract the age and calculate the

date of birth.

#__

FIXME: fails if the birthday falls on

February 29th, or if the person

was born before epoch and the installed
Ruby doesn't support negative time_t
#++

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=294

ADDING RDoc 1o RuBY CODE 295

The DOB is returned as a Time object.
#——

But should probably change to use Date.
def get_dob(person)

end

Hyperlinks

Names of classes, source files, and any method names containing an underscore or preceded
by a hash character are automatically hyperlinked from comment text to their description.

Hyperlinks to the ’net starting http:, mailto:, ftp:, and www: are recognized. An HTTP URL
that references an external image file is converted into an inline <IMG. .. > tag. Hyperlinks
starting link: are assumed to refer to local files whose paths are relative to the --op directory,
where output files are stored.

Hyperlinks can also be of the form label[url], in which case the label is used in the
displayed text and url is used as the target. If the label contains multiple words, surround it
in braces: {two words}[url].

Lists
Lists are typed as indented paragraphs with

e A * or - (for bullet lists)

* A digit followed by a period for numbered lists

* An uppercase or lowercase letter followed by a period for alpha lists
For example, you could produce something like the previous text with this:

Lists are typed as indented paragraphs with

+* a * or - (for bullet lists),

% a digit followed by a period for
numbered lists,

% an uppercase or lowercase letter followed

by a period for alpha lists.

H R K B

Note how subsequent lines in a list item are indented to line up with the text in the element’s
first line.

Labeled lists (sometimes called description lists) are typed using square brackets for the

label:
[cat] Small domestic animal
[+cat+] Command to copy standard input
to standard output

Labeled lists may also be produced by putting a double colon after the label. This sets the
result in tabular form so the descriptions all line up in the output.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=295

ADDING RDoc 1o RuBY CODE 296

cat:: Small domestic animal
+cat+:: Command to copy standard input
to standard output

For both kinds of labeled lists, if the body text starts on the same line as the label, then the
start of that text determines the block indent for the rest of the body. The text may also start
on the line following the label, indented from the start of the label. This is often preferable
if the label is long. Both of the following are valid labeled list entries:

<tt>--output</tt> <i>name [, name]</i>::
specify the name of one or more output files. If multiple
files are present, the first is used as the index.
#
<tt>--quiet:</tt>:: do not output the names, sizes, byte counts,
index areas, or bit ratios of units as
they are processed.
Headings

Headings are entered on lines starting with equals signs. The more equals signs, the higher
the level of heading:

= Level One Heading
== Level Two Heading
and so on...

Rules (horizontal lines) are entered using three or more hyphens:

and so it goes...
-
The next section...

Documentation Modifiers

Method parameter lists are extracted and displayed with the method description. If a method
calls yield, then the parameters passed to yield will also be displayed. For example, con-
sider the following code:

def fred
yield line, address

This will get documented as follows:

fred() {|line, address| ... }
You can override this using a comment containing :yields: ... on the same line as the method
definition:

def fred # :yields: index, position

yield line, address
which will get documented as follows:

fred() {|index, position| ... }

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=296

ADDING RDoc 1o RuBY CODE 297

tyields: is an example of a documentation modifier. These appear immediately after the start
of the document element they are modifying.

Other modifiers include the following:

:nodoc: [all]
Don’t include this element in the documentation. For classes and modules, the meth-
ods, aliases, constants, and attributes directly within the affected class or module will
also be omitted from the documentation. By default, though, modules and classes
within that class or module will be documented. This is turned off by adding the all
modifier. For example, in the following code, only class SM::Input will be documented:

module SM #:nodoc:
class Input
end
end
module Markup #:nodoc: all
class Output
end
end

:doc:
This forces a method or attribute to be documented even if it wouldn’t otherwise be.
This is useful if, for example, you want to include documentation of a particular private
method.

inotnew:
(Applicable only to the initialize instance method.) Normally RDoc assumes that the
documentation and parameters for #initialize are actually for the corresponding class’s
new method and so fakes out a new method for the class. The :notnew: modifier stops
this. Remember that #initialize is protected, so you won’t see the documentation unless
you use the -a command-line option.

Other Directives
Comment blocks can contain other directives:

:call-seq: lines...
Text up to the next blank comment line is used as the calling sequence when gener-
ating documentation (overriding the parsing of the method parameter list). A line is
considered blank even if it starts with #. For this one directive, the leading colon is
optional.

rinclude: filename
This includes the contents of the named file at this point. The file will be searched for
in the directories listed by the --include option or in the current directory by default.
The contents of the file will be shifted to have the same indentation as the : at the start
of the :include: directive.

rtitle: text
This sets the title for the document. It’s equivalent to the --titte command-line parame-
ter. (The command-line parameter overrides any :title: directive in the source.)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=297

ADDING RDoC TO C EXTENSIONS 298

:main: name
This is equivalent to the --main command-line parameter, setting the initial page dis-
played for this documentation.

:stopdoc: / :startdoc:
This stops and starts adding new documentation elements to the current container. For
example, if a class has a number of constants that you don’t want to document, put
a :stopdoc: before the first and a :startdoc: after the last. If you don’t specify a
:startdoc: by the end of the container, this disables documentation for the entire
class or module.

renddoc:
This documents nothing further at the current lexical level.

A larger example of a file documented using RDoc is shown in Figure 19.5 on page 302.

Adding RDoc to C Extensions

RDoc understands many of the conventions used when writing extensions to Ruby in C.

If RDoc sees a C function named Init_Classname, it treats it as a class definition—any C
comment before the Init_ function will be used as the class’s documentation.

The Init_ function is normally used to associate C functions with Ruby method names.
For example, a Cipher extension may define a Ruby method salt=, implemented by the C
function salt_set using a call such as this:

rb_define_method(cCipher, "salt=", salt_set, 1);

RDoc parses this call, adding the salt= method to the class documentation. RDoc then
searches the C source for the C function salt_set. If this function is preceded by a com-
ment block, RDoc uses this for the method’s documentation.

This basic scheme works with no effort on your part beyond writing the normal documen-
tation in the comments for functions. However, RDoc cannot discern the calling sequence
for the corresponding Ruby method. In this example, the RDoc output will show a single
argument with the (somewhat meaningless) name “argl.” You can override this using the
call-seq directive in the function’s comment. The lines following call-seq (up to a blank
line) are used to document the calling sequence of the method:

/5‘:

%« call-seq:

% cipher.salt = number
% cipher.salt = "string"

*

+ Sets the salt of this cipher to either a binary +number+ or
% bits in +string+.

*/

static VALUE

salt_set(cipher, salt)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=298

RUNNING RDoc 299

If a method returns a meaningful value, it should be documented in the call-seq following
the characters ->:

/*

%« call-seq:

% cipher.keylen -> Fixnum or nil
%/

Although RDoc heuristics work well for finding the class and method comments for simple
extensions, they don’t always work for more complex implementations. In these cases, you
can use the directives Document-class: and Document-method: to indicate that a C comment
relates to a given class or method, respectively. The modifiers take the name of the Ruby
class or method that’s being documented:

/*
% Document-method: reset
*

&

Clear the current buffer and prepare to add new
* cipher text. Any accumulated output cipher text
+* is also cleared.

/

Finally, it is possible in the Init_xxx function to associate a Ruby method with a C function
in a different C source file. RDoc would not find this function without your help: you add a
reference to the file containing the function definition by adding a special comment to the
rb_define_method call. The following example tells RDoc to look in the file md5. c for the
function (and related comment) corresponding to the md5 method:

rb_define_method(cCipher, "md5", gen_md5, -1); /* in md5.c =/

A C source file documented using RDoc is shown in Figure 19.6 on page 303. Note that the
bodies of several internal methods have been elided to save space.

Running RDoc

You run RDoc from the command line:
% rdoc [options] [filenames...]
Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain collected, before any output is produced.
This allows cross-references between all files to be resolved. If a name is a directory, it is
traversed. If no names are specified, all Ruby files in the current directory (and subdirecto-
ries) are processed.

A typical use may be to generate documentation for a package of Ruby source (such as
RDoc itself):

% rdoc

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=299

RUNNING RDoC 10]0]

This command generates HTML documentation for all the Ruby and C source files in and
below the current directory. These will be stored in a documentation tree starting in the
subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames ending .rb and
.rbw are assumed to be Ruby source. Filenames ending .c are parsed as C files. All other
files are assumed to contain just markup (with or without leading # comment markers). If
directory names are passed to RDoc, they are scanned recursively for source files only. To
include nonsource files such as READMEs in the documentation process, their names must be
given explicitly on the command line.

When writing a Ruby library, you often have some source files that implement the public
interface, but the majority are internal and of no interest to the readers of your documen-
tation. In these cases, construct a .document file in each of your project’s directories. If
RDoc enters a directory containing a .document file, it will process only the files in that
directory whose names match one of the lines in that file. Each line in the file can be a
filename, a directory name, or a wildcard (a file system “glob” pattern). For example, to
include all Ruby files whose names start main, along with the file constants.rb, you could
use a .document file containing this:

main+*.rb
constants.rb

Some project standards ask for documentation in a top-level README file. You may find it
convenient to write this file in RDoc format and then use the :include: directive to incorporate
the README into the documentation for the main class.

Create Documentation for ri

RDoc is also used to create documentation, which will be later displayed using ri.
When you run ri, it by default looks for documentation in three places:>

* The system documentation directory, which holds the documentation distributed with
Ruby and which is created by the Ruby install process

* The site directory, which contains sitewide documentation added locally
* The user documentation directory, stored under the user’s own home directory
You can find these three directories in the following locations:

e $datadir/ri/<ver>/system/...
* $datadir/ri/<ver>/site/...
e ~/.rdoc/....

The variable $datadir is the configured data directory for the installed Ruby. Find your
local datadir using this:

ruby -r rbconfig -e 'p Config::CONFIG["datadir"]'

2. You can override the directory location using the --op option to RDoc and subsequently using the --doc-dir
option with ri.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=300

RUNNING RDoC 301

To add documentation to ri, you need to tell RDoc which output directory to use. For your
own use, it’s easiest to use the --ri option, which installs the documentation into ~/.rdoc:

% rdoc --ri filel.rb file2.rb
If you want to install sitewide documentation, use the --ri-site option:
% rdoc --ri-site filel.rb file2.rb

The --ri-system option is normally used only to install documentation for Ruby’s built-in
classes and standard libraries. You can regenerate this documentation from the Ruby source
distribution (not from the installed libraries themselves):

% cd <ruby source base>/lib
% rdoc --ri-system

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=301

RUNNING RDoC

e
Figure 19.5. Ruby Source File Documented with RDoc

This module encapsulates functionality related to the

generation of Fibonacci sequences.

#——

Copyright (c) 2004 Dave Thomas, The Pragmatic Programmers, LLC.
Licensed under the same terms as Ruby. No warranty is provided.
module Fibonacci

Calculate the first _count_ Fibonacci numbers, starting with 1,1.

#
#
:call-seq:
Fibonacci.sequence(count) -> array
Fibonacci.sequence(count) {|val| ... } -> nil
#
If a block is given, supply successive values to the block and
return +nil+, otherwise return all values as an array.
def Fibonacci.sequence(count, &block)
result, block = setup_optional_block(block)
generate do |val|
break if count <= 0
count -= 1
block[val]
end
result
end

Calculate the Fibonacci numbers up to and including _max_.

#
#
:call-seq:
Fibonacci.upto(max) -> array
Fibonacci.upto(max) {|vall| ... } -> nil
#
If a block is given, supply successive values to the
block and return +nil+, otherwise return all values as an array.
def Fibonacci.upto(max, &block)
result, block = setup_optional_block(block)
generate do |val|
break if val > max
block[val]
end
result
end

private

Yield a sequence of Fibonacci numbers to a block.
def Fibonacci.generate
f1, f2=1,1
loop do
yield f1
1, f2 = £2, f1+f2
end
end

If a block parameter is given, use it, otherwise accumulate into an
array. Return the result value and the block to use.
def Fibonacci.setup_optional_block(block)
if block.nil?
[result = [], lambda {|val| result << val }]
else
[nil, block]
end
end
end

II%iHiilHHii%il|Ii|IIIIIIIIIIIIIIIIIIIIIII

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=302

RUNNING RDoC

(
Figure 19.6. C Source File Documented with RDoc

#include "ruby.h"
#include "cdjukebox.h"

static VALUE cCDPlayer;

static void cd_free(void *p) { ... }

static VALUE cd_alloc(VALUE klass) { ... }

static void progress(CDJukebox *rec, int percent) { ... }
/* call-seq:

CDPlayer.new(unit) -> new_cd_player

w ok ok F

Assign the newly created CDPlayer to a particular unit
4

static VALUE cd_initialize(VALUE self, VALUE unit) {

int unit_id;

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);

return self;

~ -

call-seq:
player.seek(int_disc, int_track) -> nil
player.seek(int_disc, int_track) {|percent| } -> nil

Seek to a given part of the track, invoking the block
with the percent complete as we go.
/
static VALUE
cd_seek(VALUE self, VALUE disc, VALUE track) {
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);

*
*

jukebox_seek(jb, NUM2INT(disc), NUM2INT(track), progress);
return Qnil;

3

/+ call-seq:
* player.seek_time -> Float
+« Return the average seek time for this unit (in seconds)
«/
static VALUE
cd_seek_time(VALUE self)
{
double tm;
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
tm = get_avg_seek_time(jb);
return rb_float_new(tm)

3

/* Interface to the Spinzalot[http://spinzalot.cd]
+« CD Player library.
*/

void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);
rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);
rb_define_method(cCDPlayer, "seek", cd_seek, 2);
rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=303

Chapter 20

Ruby and the Web

Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP
daemon, or web server in Ruby, but you can also use Ruby for more usual tasks such as
CGI programming or as a replacement for PHP.

Many options are available for using Ruby to implement web applications, and a single
chapter can’t do them all justice. Instead, we’ll try to touch some of the highlights and point
you toward libraries and resources that can help.

Let’s start with some simple stuff: running Ruby programs as Common Gateway Interface
(CGI) programs.

Writing CGl Scripts

You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate HTML
output, all you need is something like this:

#!/usr/bin/ruby
print "Content-type: text/html\r\n\r\n"
print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

Put this script in a CGI directory, mark it as executable, and you’ll be able to access it via
your browser. (If your web server doesn’t automatically add headers, you’ll need to add the
response header yourself, as shown in the following code.)

#!/usr/bin/ruby

print "HTTP/1.0 200 OK\r\n"

print "Content-type: text/html\r\n\r\n"

print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

However, that’s hacking around at a pretty low level. You’d need to write your own request
parsing, session management, cookie manipulation, output escaping, and so on. Fortunately,
options are available to make this easier.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=304

WRITING CGI SCRIPTS 305

Using cgi.rb

Class CGlI provides support for writing CGI scripts. With it, you can manipulate forms,
cookies, and the environment; maintain stateful sessions; and so on. It’s a fairly large class,
but we’ll take a quick look at its capabilities here.

Quoting

When dealing with URLs and HTML code, you must be careful to quote certain characters.
For instance, a slash character (/) has special meaning in a URL, so it must be “escaped”
if it’s not part of the path name. That is, any / in the query portion of the URL will be
translated to the string %2F and must be translated back to a / for you to use it. Space and
ampersand are also special characters. To handle this, CGl provides the routines CGl.escape
and CGl.unescape:

Download samples/web_3.rb

require 'cgi
puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")
produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn
More frequently, you may want to escape HTML special characters:

Download samples/web_4.rb

require 'cgi
puts CGI.escapeHTML("a < 100 && b > 200")
produces:

a < 100 && b > 200
To get really fancy, you can decide to escape only certain HTML elements within a string:

Download samples/web_5.rb

require 'cgi

puts CGI.escapeElement('<hr>Click Here
','A')
produces:

<hr>Click Here

Here only the A element is escaped; other elements are left alone. Each of these methods
has an “un-" version to restore the original string:

Download samples/web_6.rb

require 'cgi
puts CGI.unescapeHTML("a < 100 && b > 200")
produces:

a < 100 && b > 200

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/web_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/web_4.rb
http://media.pragprog.com/titles/ruby3/code/samples/web_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/web_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=305

WRITING CGI SCRIPTS 306

Query Parameters

HTTP requests from the browser to your application may contain parameters, either passed
as part of the URL or passed as data embedded in the body of the request.

Processing of these parameters is complicated by the fact that a value with a given name
may be returned multiple times in the same request. For example, say we’re writing a survey
to find out why folks like Ruby. The HTML for our form looks like this:

<html>
<head><title>Test Form</title></head>
<body>
I like Ruby because:
<form action="cgi-bin/survey.rb">
<input type="checkbox" name="reason" value="flexible" />
It's flexible

<input type="checkbox" name="reason" value="transparent" />
It's transparent

<input type="checkbox" name="reason" value="perlish" />
It's like Perl

<input type="checkbox" name="reason" value="fun" />

It's fun
<p>
Your name: <input type="text" name="name">
</p>
<input type="submit"/>
</form>
</body>
</html>

When someone fills in this form, they might check multiple reasons for liking Ruby (as
shown in Figure 20.1 on the following page). In this case, the form data corresponding to
the name reason will have three values, corresponding to the three checked boxes.

Class CGil gives you access to form data in a couple of ways. First, we can just treat the CGI
object as a hash, indexing it with field names and getting back field values.

Download samples/web_8.rb

require 'cgi'
cgi = CGI.new
cgi['name'] # => "Dave Thomas"
cgi['reason'] # => "flexible"

However, this doesn’t work well with the reason field, because we see only one of the three

=2 , values. We can ask to see them all by using the CGl#params method. The value returned by
params acts like a hash containing the request parameters. You can both read and write this
hash (the latter allows you to modify the data associated with a request). Note that each of
the values in the hash is actually an array.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/web_8.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=306

WRITING CGI SCRIPTS 307

e
Figure 20.1. Sample CGl Form

B N Test Form

4 B ' 4 hitp: / /localhost/form.html "‘J'Qv Google

i Rendezvous - POPw Pragmatic Pr._ming ripoff hp_r.l[e

[like Ruby because:
It's flexible

@ TIt's transparent
! It's like Perl

M TIt's fun

F
I

Your name: Dave Thomas

[Submit |

L ,ia

q.p,‘W—wﬁiﬁ-H y

Download samples/web_9.rb

require 'cgi

cgi = CGI.new

cgi.params # => {"name"=>["Dave Thomas"],
"reason"=>["flexible", "transparent",
"fun"]}

cgi.params['name’'] # => ["Dave Thomas"]

cgi.params['reason'] # => ["flexible", "transparent", "fun"]

cgi.params['name'] = [cgi['name'].upcase]

cgi.params # => {"name"=>["DAVE THOMAS"],
"reason"=>["flexible", "transparent",
"fun"]}

You can determine whether a particular parameter is present in a request by using
CGl#thas_key?:

Download samples/web_10.rb

require 'cgi
cgi = CGI.new

cgi.has_key?('name') # => true
cgi.has_key?('age') # => false

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/web_9.rb
http://media.pragprog.com/titles/ruby3/code/samples/web_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=307

WRITING CGI SCRIPTS 308

Generating HTML

CGl contains a huge number of methods that can be used to create HTML—one method
per element. To enable these methods, you must create a CGl object by calling CGl.new,
passing in the required version of HTML. In these examples, we’ll use html3.

To make element nesting easier, these methods take their content as code blocks. The code
blocks should return a String, which will be used as the content for the element. For this
example, we’ve added some gratuitous newlines to make the output fit on the page:

Download samples/web_11.rb

require 'cgi
cgi = CGI.new("html3") # add HTML generation methods
cgi.out do
cgi.html do
cgi.head { "\n"+cgi.title { "This Is a Test"} } +
cgi.body do "\n"+
cgi.form do"\n"+
cgi.hr +
cgi.hl { "A Form: " } + "\n"+
cgi.textarea("get_text") +"\n"+
cgi.br +
cgi.submit
end
end
end
end

produces:

Content-Type: text/html
Content-Length: 302

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HIML 3.2 Final//EN"><HTML><HEAD>
<TITLE>This Is a Test</TITLE></HEAD><BODY>

<FORM METHOD="post" ENCTYPE="application/x-www-form-urlencoded">
<HR><H1>A Form: </H1>

<TEXTAREA NAME="get_text" COLS="70" ROWS="10"></TEXTAREA>

<INPUT TYPE="submit"></FORM></BODY></HTML>

Although vaguely interesting, this method of generating HTML is fairly laborious and prob-

ably isn’t used much in practice. Most people seem to write the HTML directly, use a tem-

plating system, or use an application framework, such as Rails. Unfortunately, we don’t have

space here to discuss Rails—take a look at the online documentation at http: /rubyonrails. com—Ji
but we can look at templating (including erb, the templating engine used by Rails).

Templating Systems

Templating systems let you separate the presentation and logic of your application. It seems
that just about everyone who writes a web application using Ruby at some point also writes a

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/web_11.rb
http:/rubyonrails.com
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=308

WRITING CGI SCRIPTS 309

templating system; the RubyGarden wiki lists quite a few,' and even this list isn’t complete.
For now, let’s just look at two: Haml and erb/eruby. Also, remember to look at Builder if
you need to generate XHTML or XML. (We saw Builder briefly starting on page 240.)

Haml

Haml® is a library that generates HTML documents from a template. Unlike many other
templating systems, Haml uses indentation to indicate nesting (yup, just like Python). For
example, you can represent a in Haml using this:

%ul
%1i item one
%1i item two

Install Haml using this:
% gem install haml

The Haml input syntax is rich and powerful, and the example that follows touches on only
a subset of the features. Lines starting % get converted to HTML tags, nested in the output
according to their indentation in the input. An equals sign means substitute in the value of
the Ruby code that follows. A minus sign executes Ruby code but doesn’t substitute the
value in—our example uses that to look over the reasons when constructing the table.

There are many ways of getting values passed in to the template. In this example, we chose
to pass in a hash as the second parameter to render. This results in local variables getting
set as the template is expanded, one variable for each key in the hash:

Download samples/web_13.rb

require 'haml'
engine = Haml::Engine.new(%{
%body
#welcome-box
%p= greeting
[4D
As of
= Time.now
the reasons you gave were:
%table
%tr
%th Reason
%th Rank
- for reason in reasons
%tr
%td= reason[:reason_name]
%td= reason[:rank]

D

1. http://www.rubygarden.org/ruby?HtmlTemplates

2. http://haml.hamptoncatlin.com//

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/web_13.rb
http://www.rubygarden.org/ruby?HtmlTemplates
http://haml.hamptoncatlin.com//
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=309

WRITING CGI SCRIPTS 310

data = {
:greeting => 'Hello, Dave Thomas',
:reasons => [

{ :reason_name => 'flexible', :rank => '87' },
{ :reason_name => 'transparent', :rank => '76' },
{ :reason_name => 'fun', :rank => '94"' },
1
}
puts engine.render(nil, data)
produces:
<body>

<div id='welcome-box'>
<p>Hello, Dave Thomas</p>
</div>
<p>
As of
2009-04-13 13:26:10 -0500
the reasons you gave were:
</p>
<table>
<tr>
<th>Reason</th>
<th>Rank</th>
</tr>
<tr>
<td>flexible</td>
<td>87</td>
</tr>
<tr>
<td>transparent</td>
<td>76</td>
</tr>
<tr>
<td>fun</td>
<td>94</td>
</tr>
</table>
</body>

erb and eruby

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem
inside out; we can actually embed Ruby in an HTML document.

A number of packages allow you to embed Ruby statements in some other sort of a docu-
ment, especially in an HTML page. Generically, this markup is known as “eRuby.” Specif-
ically, several different implementations of eRuby exist, including erubis and erb. erubis
is available as a gem, while erb is written in pure Ruby and is included with the standard
distribution. We’ll look at erb here.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=310

WRITING CGI SCRIPTS 311

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equivalent
of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using erb

erb is normally used as a filter. Input text is passed through untouched, with the following
exceptions:

Expression Description

<% ruby code %> This executes the Ruby code between the delimiters.

<%= ruby expression %> This evaluates the Ruby expression and replaces the sequence
with the expression’s value.

<%# ruby code %> The Ruby code between the delimiters is ignored (useful for
testing).

% line of ruby code A line that starts with a percent is assumed to contain just Ruby
code.

You can run erb from the command line:
erb [options] [document]

If the document is omitted, erb will read from standard input. The command-line options
for erb are shown in Table 20.1 on the following page.

Let’s look at some simple examples. We’ll run the erb executable on the following input:

% 99.downto(96) do |number |
<%= number %> bottles of beer...
% end

The lines starting with the percent sign simply execute the given Ruby. In this case, it’s a
loop that iterates the line between them. This middle line contains the sequence <%= number
%>, which substitutes in the value of number into the output.

% erb fl.erb

produces:

99 bottles of beer...
98 bottles of beer...
97 bottles of beer...
96 bottles of beer...

erb works by rewriting its input as a Ruby script and then executing that script. You can see
the Ruby that erb generates using the -n or -x option:

% erb -x fl.erb

produces:
_erbout = ''; 99.downto(96) do |number|
_erbout.concat((number).to_s); _erbout.concat " bottles of beer...\n"
end
_erbout

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=311

WRITING CGI SCRIPTS

Table 20.1. Command-Line Options for erb

Option Description

-d Sets $DEBUG to true

-E ext[:int] Sets the default external/internal encodings
-n Displays resulting Ruby script (with line numbers)
-r library Loads the named library

-P Doesn’t do erb processing on lines starting %
-S level Sets the safe level

-T mode Sets the trim mode

-U Sets default encoding to UTF-8

-v Enables verbose mode

X Displays resulting Ruby script

Notice how erb builds a string, _erbout, containing both the static strings from the template
and the results of executing expressions (in this case the value of number).

Embedding erb in Your Code

So far we’ve shown erb running as a command-line filter. However, the most common use
is to use it as a library in your own code. (This is what Rails does with its .erb templates.)

Download samples/web_17.rb

require 'erb'

SOURCE =

%{<% for number in min..max %>
The number is <%= number %>
<% end %>

}

erb = ERB.new(SOURCE)
min = 4

max = 6

puts erb.result(binding)

produces:

The number is 4
The number is 5

The number is 6

Notice how we can use local variables within the erb template. This works because we pass
the current binding to the result method. erb can use this binding to make it look as if the
template is being evaluated in the context of the calling code.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/web_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=312

COOKIES 313

erb comes with excellent documentation: use ri to read it. One thing that Rails users should
know is that in the standard version of erb, you can’t use the -%> trick to suppress blank
lines. (In the previous example, that’s why we have the extra blank lines in the output.) Take
a look at the description of trim modes in the documentation of ERB.new for alternatives.

Cookies

Cookies are a way of letting web applications store their state on the user’s machine.
Frowned upon by some, cookies are still a convenient (if unreliable) way of remembering
session information.

The Ruby CGI class handles the loading and saving of cookies for you. You can access the
cookies associated with the current request using the CGl#cookies method, and you can set
cookies back into the browser by setting the cookie parameter of CGl#out to reference either
a single cookie or an array of cookies:

#!/usr/bin/ruby
COOKIE_NAME = 'chocolate chip'

require 'cgi
cgi = CGI.new
values = cgi.cookies[COOKIE_NAME]

if values.empty?

msg = "It looks as if you haven't visited recently"
else

msg = "You last visited #{values[O]}"
end

cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)
cookie.expires = Time.now + 30%24%3600 # 30 days
cgi.out("cookie" => cookie) { msg }

Sessions

Cookies by themselves still need a bit of work to be useful. We really want sessions: infor-
mation that persists between requests from a particular web browser. Sessions are handled
by class CGl::Session, which uses cookies but provides a higher-level abstraction.

As with cookies, sessions emulate a hashlike behavior, letting you associate values with
keys. Unlike cookies, sessions store the majority of their data on the server, using the
browser-resident cookie simply as a way of uniquely identifying the server-side data. Ses-
sions also give you a choice of storage techniques for this data: it can be held in regular files,
in a PStore (see the description on page 794), in memory, or even in your own customized
store.

Sessions should be closed after use, because this ensures that their data is written out to the
store. When you’ve permanently finished with a session, you should delete it.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=313

CHoICE OF WEB SERVERS

require 'cgi
require 'cgi/session'
cgi = CGI.new("html3")
sess = CGI::Session.new(cgi,
"session_key" => "rubyweb",
"prefix" => "web-session.")
if sess['lastaccess']

msg = "<p>You were last here #{sess['lastaccess']}.</p>"
else

msg = "<p>Looks like you haven't been here for a while</p>"
end
count = (sess["accesscount"] || 0).to_i

count += 1
msg << "<p>Number of visits: #{count}</p>"
sess["accesscount”] = count
sess["lastaccess"] = Time.now.to_s
sess.close
cgi.out {
cgi.html {
cgi.body {
msg
}
}
}

The code in the previous example used the default storage mechanism for sessions: per-
sistent data was stored in files in your default temporary directory (see Dir.tmpdir). The
filenames will all start with web-session. and will end with a hashed version of the session
number. See ri CGl::Session for more information.

Choice of Web Servers

So far, we’ve been running Ruby scripts under the Apache web server. However, Ruby
comes bundled with WEBTrick, a flexible, pure-Ruby HTTP server toolkit. WEBrick’s an
extensible plug-in—based framework that lets you write servers to handle HTTP requests
and responses. Here’s a basic HTTP server that serves documents and directory indexes:

#!/usr/bin/ruby
require 'webrick'
include WEBrick
s = HTTPServer.new(
:Port => 2000,
:DocumentRoot => File.join(Dir.pwd, "/html"))
trap("INT") { s.shutdown }
s.start

The HTTPServer constructor creates a new web server on port 2000. The code sets the
document root to be the html/ subdirectory of the current directory. It then uses Kernel.trap to
arrange to shut down tidily on interrupts before starting the server running. If you point your
browser at http://localhost:2000, you should see a listing of your html subdirectory.

Report erratum

http://localhost:2000
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=314

FRAMEWORKS Bill5

WEBrick can do far more than serve static content. You can use it just like a Java servlet
container. The following code mounts a simple servlet at the location /hello. As requests
arrive, the do_GET method is invoked. It uses the response object to display the user agent
information and parameters from the request.

#!/usr/bin/ruby
require 'webrick'
include WEBrick
s = HTTPServer.new(:Port => 2000)
class HelloServlet < HTTPServlet::AbstractServlet
def do_GET(req, res)
res['Content-Type'] = "text/html"
res.body = %{

<html><body>
<p>Hello. You're calling from a #{req['User-Agent']}</p>
<p>I see parameters: #{req.query.keys.join(', ')}</p>
</body></html>
}
end
end

s.mount (" /hello", HelloServlet)
trap("INT"){ s.shutdown }
s.start

More information on WEBrick is available from http://www.webrick.org. There you’ll
find links to a set of useful servlets, including one that lets you write SOAP servers in Ruby.

Frameworks

In reality, CGI is just the start of using Ruby on the Web. Most of the real action these days
is with frameworks. Frameworks abstract away all this low-level detail and also help you
structure your code into something that is both easy to write and (probably more impor-
tantly) easy to maintain.

At the time of writing, Ruby on Rails® is the leading web framework for Ruby. It has an
incredibly active community and a vast set of plug-ins so the chances are good you’ll find a
lot of preexisting code to help you kick-start your application. Merb* is a lighter-weight
alternative. Rails and Merb will merge and become Rails 3. Other alternatives include
Camping, Sinatra, and Ramaze.> By the time you read this, the list will have grown. And, if
you fancy writing your own framework, consider making it independent of the underlying
web server by building it on top of Rack.®

3. http://www.rubyonrails.com
4. http://merbivore.com/

5. http://camping.rubyforge.org/files/README.html, http://sinatra.rubyforge.org/, and
http://ramaze.net/

6. http://rack.rubyforge.org/

Report erratum

http://www.webrick.org
http://www.rubyonrails.com
http://merbivore.com/
http://camping.rubyforge.org/files/README.html
http://sinatra.rubyforge.org/
http://ramaze.net/
http://rack.rubyforge.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=315

Chapter 21

Ruby and Microsoft Windows

Ruby runs in a number of environments. Some of these are Unix-based, and others are based
on the various flavors of Microsoft Windows. Ruby came from people who were Unix-
centric, but over the years it has developed a whole lot of useful features in the Windows
world, too. In this chapter, we’ll look at these features and share some secrets that let you
use Ruby effectively under Windows.

Getting Ruby for Windows

Although you could build Ruby for Windows from source, most people simply download
the prebuilt binaries from the main Ruby FTP site.! Create a directory for your Ruby instal-
lation, and download the latest zip file into it. Unzip the file, and you’ll end up with a
complete, standard Ruby directory tree (\bin, \doc, \lib and so on). Add the bin directory to
your path, and Ruby should be available to you. For example, I downloaded the .zip file
into the directory C:\ruby19:

C:\> mkdir \rubyl9

C:\rubyl9> cd \rubyl9

C:\rubyl9> ftp ftp.ruby-lang.org

Connected to carbon.ruby-lang.org.

User (carbon.ruby-lang.org:(none)): ftp
331 Please specify the password.

Password: your email address

230 Login successful.

ftp> cd pub/ruby/binaries/mswin32/unstable
250 Directory successfully changed.

ftp> dir

-rw-r--r-- 1 ... Jul 08 2007 ruby-1.9.0-20070709-i386-mswin32.zip
-rw-r--r-- 1 ... Jul 08 2007 ruby-1.9.0-20070709-x64-mswin64_80.zip
-rw-r--r-- 1 ... Oct 28 15:31 ruby-1.9.1-previewl-i386-mswin32.zip
-rw-r--r-- 1 ... Oct 28 15:31 ruby-1.9.1-previewl-x64-mswin64_80.zip

1. ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/unstable/

6 Report erratum

ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/unstable/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=316

RUNNING RuBY UNDER WINDOWS

ftp> bin
200 Switching to Binary mode.
ftp> get ruby-1.9.1-previewl-i386-mswin32.zip
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection
for ruby-1.9.1-previewl-i386-mswin32.zip (13535099 bytes).
226 File send OK.
ftp: 13535099 bytes received in 48.06Seconds 280.21Kbytes/sec.
ftp> by
C:\rubyl9> unzip.exe ruby-1.9.0-0-i386-mswin32.zip

C:\ruby19> PATH=\ruby19\bin;%PATH%
C:\rubyl9> ruby -v
ruby 1.9.1 (2008-10-28 revision 19983) [i386-mswin32]

Running Ruby Under Windows

You’ll find two executables in the Ruby Windows distribution.

ruby.exe is meant to be used at a command prompt (a DOS shell), just as in the Unix version.
For applications that read and write to the standard input and output, this is fine. But this
also means that any time you run ruby.exe, you’ll get a DOS shell even if you don’t want
one—Windows will create a new command prompt window and display it while Ruby is
running. This may not be appropriate behavior if, for example, you double-click a Ruby
script that uses a graphical interface (such as Tk) or if you are running a Ruby script as a
background task or from inside another program.

In these cases, you will want to use rubyw.exe. It is the same as ruby.exe except that it does
not provide standard in, standard out, or standard error and does not launch a DOS shell
when run.

You can set up file associations using the assoc and ftype commands so that Ruby will
automatically run Ruby when you double-click the name of a Ruby script:

C:\> assoc .rb=RubyScript
C:\> ftype RubyScript="C:\rubyl.9\bin\ruby.exe %1 %

Win32API

If you plan on doing Ruby programming that needs to access some Windows 32 API func-
tions directly or that needs to use the entry points in some other DLLs, we’ve got good news
for you—the Win32API library.

As an example, here’s some code that’s part of a larger Windows application used by our
book fulfillment system to download and print invoices and receipts. A web application
generates a PDF file, which the Ruby script running on Windows downloads into a local
file. The script then uses the print shell command under Windows to print this file.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=317

WINDOWS AUTOMATION 318

What A he One-Click Installer?

Ruby 1.8 had a no-assembly-required package called the One-Click
Ruby Installer (1CRI). Download it, and it will install Ruby, a bunch of
gems, and even a version of the original PickAxe.

However, because this installer packages so many gems and because
many of these gems haven’t been updated for Ruby 1.9, the team has
not released a Ruby 1.9 version of 1CRI at the time of this writing.
Check http://rubyinstaller.rubyforge.org for the current status.

arg = "ids=#{resp.intl_orders.join(",")}"
fname = "/temp/invoices.pdf"
site = Net::HTTP.new(HOST, PORT)
site.use_ssl = true
http_resp, = site.get2("/ship/receipt?" + arg,
'Authorization' => 'Basic
["name:passwd"].pack('m"').strip)
File.open(fname, "wb") {|f| f.puts(http_resp.body) }
shell = Win32API.new("shell32","ShellExecute",
‘', 'e','p', PP 'L, 'L)
shell.Call(0, "print", fname, 0,0, SW_SHOWNORMAL)

+

You create a Win32API object that represents a call to a particular DLL entry point by
specifying the name of the function, the name of the DLL that contains the function, and the
function signature (argument types and return type). In the previous example, the variable
shell wraps the Windows function ShellExecute in the shell32 DLL. The second parameter
is an array of characters describing the types of the parameters the method takes: ‘n’ and ‘1’
represent numbers, ‘i’ represent integers, ‘p’ represents pointers to data stored in a string,
and ‘v’ a void type (used for export parameters only). These strings are case-insensitive. So
our method takes a number, four string pointers, and a number. The last parameter says that
the method returns a number. The resulting object is a proxy to the underlying ShellExecute
function, and can be used to make the call to print the file that we downloaded.

Many of the arguments to DLL functions are binary structures of some form. Win32API
handles this by using Ruby String objects to pass the binary data back and forth. You will
need to pack and unpack these strings as necessary.

Windows Automation

If groveling around in the low-level Windows API doesn’t interest you, Windows Automa-
tion may—you can use Ruby as a client for Windows Automation thanks to a Ruby exten-

Report erratum

http://rubyinstaller.rubyforge.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=318

WINDOWS AUTOMATION 319

sion called WIN32OLE, written by Masaki Suketa. Win320OLE is part of the standard Ruby
distribution.

Windows Automation allows an automation controller (a client) to issue commands and
queries against an automation server, such as Microsoft Excel, Word, and so on.

You can execute an automation server’s method by calling a method of the same name from
a WIN320LE object. For instance, you can create a new WIN320LE client that launches a
fresh copy of Internet Explorer and commands it to visit its home page:

require 'win32ole’

ie = WIN320LE.new('InternetExplorer.Application')
ie.visible = true

ie.gohome

You could also make it navigate to a particular page:

require 'win32ole’

ie = WIN320LE.new('InternetExplorer.Application')
ie.visible = true
ie.navigate("http://www.pragprog.com")

Methods that aren’t known to WIN320LE (such as visible, gohome, or navigate) are passed
on to the WIN320LE#invoke method, which sends the proper commands to the server.

Getting and Setting Properties

You can set and get properties from the server using normal Ruby hash notation. For exam-
ple, to set the Rotation property in an Excel chart, you could write this:

excel = WIN320LE.new("excel.application")
excelchart = excel.Charts.Add()

excelchart['Rotation'] = 45
puts excelchart['Rotation']

An OLE object’s properties are automatically set up as attributes of the WIN320LE object.
This means you can set a property by assigning to an object attribute:

excelchart.rotation = 45
r = excelchart.rotation

The following example is a modified version of the sample file excel2.rb (found in the
ext/win32/samples directory). It starts Excel, creates a chart, and then rotates it on the screen.
‘Watch out, Pixar!

require 'win32ole’
-4100 is the value for the Excel constant x13DColumn.
ChartTypeVal = -4100;

excel = WIN320LE.new("excel.application")
Create and rotate the chart
excel['Visible'] = TRUE

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=319

WINDOWS AUTOMATION 320

excel.Workbooks.Add()

excel.Range("al")['Value'] = 3
excel.Range("a2")['Value'] = 2
excel.Range("a3")['Value'] = 1

excel.Range("al:a3").Select()

excelchart = excel.Charts.Add()
excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot|
excelchart.rotation = rot
sleep(0.1)

end

excel.ActiveWorkbook.Close(0)
excel.Quit()

Named Arguments

Other automation client languages such as Visual Basic have the concept of named argu-
ments. Suppose you had a Visual Basic routine with the following signature:

Song(artist, title, length): rem Visual Basic

Instead of calling it with all three arguments in the order specified, you could use named
arguments:

Song title := 'Get It On': rem Visual Basic
This is equivalent to the call Song(nil, 'Get It On’, nil).
In Ruby, you can use this feature by passing a hash with the named arguments:

Song.new('title' => 'Get It On')

for each

‘Where Visual Basic has a for each statement to iterate over a collection of items in a server, a
WIN320LE object has an each method (which takes a block) to accomplish the same thing:

require 'win32ole'
excel = WIN320LE.new("excel.application")
excel.Workbooks.Add

excel.Range("al").Value = 10
excel.Range("a2").Value = 20
excel.Range("a3").Value = "=al+a2"

excel.Range("al:a3").each do |cell]
p cell.Value
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=320

WINDOWS AUTOMATION 321

Events

Your automation client written in Ruby can register itself to receive events from other pro-
grams. This is done using the WIN320LE_EVENT class.

This example (based on code from the Win320LE 0.1.1 distribution) shows the use of an
event sink that logs the URLSs that a user browses to when using Internet Explorer:

require 'win32ole'
$urls = []
def navigate(url)

$urls << url
end
def stop_msg_loop

puts "IE has exited..."

throw :done
end
def default_handler(event, =args)

case event

when "BeforeNavigate"

puts "Now Navigating to #{args[0]}..."

end
end
ie = WIN320LE.new('InternetExplorer.Application')
ie.visible = TRUE
ie.gohome
ev = WIN320LE_EVENT.new(ie, 'DWebBrowserEvents')
ev.on_event {|+args| default_handler(+args)}
ev.on_event ("NavigateComplete") {|url| navigate(url)}
ev.on_event ("Quit") {|*args| stop_msg_loop}
catch(:done) do

loop do

WIN320LE_EVENT.message_loop

end

end

puts "You Navigated to the following URLs:
$urls.each_with_index do |url, i|

puts "(#{i+1}) #{url}"
end

Optimizing
As with most (if not all) high-level languages, it can be all too easy to churn out code that

is unbearably slow, but that can be easily fixed with a little thought.

With WIN320LE, you need to be careful with unnecessary dynamic lookups. Where possi-
ble, it is better to assign a WIN320LE object to a variable and then reference elements from
it, rather than creating a long chain of “.” expressions.

For example, instead of writing this:

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=321

WINDOWS AUTOMATION 322

workbook .Worksheets(1l) .Range("Al").value
workbook .Worksheets(1) .Range("A2").value
workbook .Worksheets(1) .Range("A3").value
workbook .Worksheets(1) .Range("A4").value

oo
BN R

we can eliminate the common subexpressions by saving the first part of the expression to a
temporary variable and then make calls from that variable:

worksheet = workbook.Worksheets(1)
worksheet.Range("Al").value = 1

worksheet.Range("A2").value
worksheet.Range("A3").value
worksheet.Range("A4").value

2
4
8

You can also create Ruby stubs for a particular Windows type library. These stubs wrap the
OLE object in a Ruby class with one method per entry point. Internally, the stub uses the
entry point’s number, not name, which speeds access.

Generate the wrapper class using the olegen.rb script in the ext\win32ole\samples directory,
giving it the name of the type library to reflect on:

C:\> ruby olegen.rb 'NetMeeting 1.1 Type Library' >netmeeting.rb

The external methods and events of the type library are written as Ruby methods to the
given file. You can then include it in your programs and call the methods directly. Let’s try
some timings:

require 'netmeeting'
require 'benchmark'
include Benchmark
bmbm(10) do |test]|
test.report("Dynamic") do
nm = WIN320LE.new('NetMeeting.App.1l')
10000.times { nm.Version }
end
test.report("Via proxy") do
nm = NetMeeting_App_1.new
10000.times { nm.Version }
end
end

produces:

Rehearsal -----------——-—-—-—"+"+-----+--++++ -+ ("~
Dynamic 0.600000 0.200000 0.800000 (1.623000)
Via proxy 0.361000 0.140000 0.501000 (0.961000)
———————————————————————————————————— total: 1.301000sec

user system total real
Dynamic 0.471000 0.110000 0.581000 (1.522000)
Via proxy 0.470000 0.130000 0.600000 (0.952000)

The proxy version is more than 40 percent faster than the code that does the dynamic lookup.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=322

WINDOWS AUTOMATION 323

More Help

If you need to interface Ruby to Windows NT, 2000, or XP, you may want to take a look
at Daniel Berger’s Win32Utils project (http://rubyforge.org/projects/win32utils/).
There you’ll find modules for interfacing to the Windows clipboard, event log, scheduler,
and so on.

Also, the DL library (described briefly on page 746) allows Ruby programs to invoke meth-
ods in dynamically loaded shared objects. On Windows, this means that your Ruby code can
load and invoke entry points in a Windows DLL. For example, the following code, taken
from the DL source code in the standard Ruby distribution, pops up a message box on a
Windows machine and determines which button the user clicked:

Download samples/win32_15.rb

require 'dl’
User32 = DL.dlopen("user32")
MB_OKCANCEL = 1
message_box = User32['MessageBoxA', 'ILSSI']
r, rs = message_box.call(0, 'OK?', 'Please Confirm', MB_OKCANCEL)
case r
when 1
print("OK!\n")
when 2
print("Cancel!\n")
end

This code opens the User32 DLL. It then creates a Ruby object, message_box, that wraps
the MessageBoxA entry point. The second paramater, "ILSSI", declares that the method
returns an Integer and takes a Long, two Strings, and an Integer as parameters.

The wrapper object is then used to call the message box entry point in the DLL. The return
values are the result (in this case, the identifier of the button pressed by the user) and an
array of the parameters passed in (which we ignore).

Report erratum

http://rubyforge.org/projects/win32utils/
http://media.pragprog.com/titles/ruby3/code/samples/win32_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=323

Part Ill

Ruby Crystallized

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=324

Chapter 22

The Ruby Language

This chapter is a bottom-up look at the Ruby language. Most of what appears here is the syn-
tax and semantics of the language itself—we mostly ignore the built-in classes and modules
(these are covered in depth starting on page 442). However, Ruby sometimes implements
features in its libraries that in most languages would be part of the basic syntax. We’ve
included these methods here and have tried to flag them with “Library” in the margin.

The contents of this chapter may look familiar—with good reason. We’ve covered just about
all of this in the earlier tutorial chapters. Consider this chapter to be a self-contained refer-
ence to the core Ruby language.

1o Source File Encoding

Ruby programs are by default written in 7-bit ASCII, also called US-ASCIL. If a code set
other than 7-bit ASCII is to be used, place a comment containing coding: followed by the
name of an encoding on its own on the first line of each source file containing non-ASCII
characters. The coding: comment can be on the second line of the file if the first line is a
shebang comment. Ruby skips characters in the comment before the word coding:

coding: utf-8 # -*- encoding: is0-8859-1 -*- #!/usr/bin/ruby
fileencoding: us-ascii
UTF-8 source... 1SO-8859-1 source... ASCII source...

Source Layout

Ruby is a line-oriented language. Ruby expressions and statements are terminated at the
end of a line unless the parser can determine that the statement is incomplete—for example,
if the last token on a line is an operator or comma. A semicolon can be used to separate
multiple expressions on a line. You can also put a backslash at the end of a line to continue
it onto the next. Comments start with # and run to the end of the physical line. Comments
are ignored during syntax analysis.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=325

SOURCE LAYOUT 326

a=1
b=2; c=3
d=4+5+
6 + 7 # no '\' needed
e=8+9 \
+ 10 # '\' needed

Physical lines between a line starting with =begin and a line starting with =end are ignored
by Ruby and may be used to comment out sections of code or to embed documentation.

Ruby reads its program input in a single pass, so you can pipe programs to the Ruby inter-
preter’s standard input stream:

echo 'puts "Hello | ruby

b}

If Ruby comes across a line anywhere in the source containing just “__END__”, with no
leading or trailing whitespace, it treats that line as the end of the program—any subsequent
lines will not be treated as program code. However, these lines can be read into the running
program using the global 10 object DATA, described on page 343.

BEGIN and END Blocks

Every Ruby source file can declare blocks of code to be run as the file is being loaded (the
BEGIN blocks) and after the program has finished executing (the END blocks):

BEGIN {
begin code

3

END {
end code
}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in the
order they are encountered. END blocks are executed in reverse order.

General Delimited Input

As well as the normal quoting mechanism, alternative forms of literal strings, arrays, regular
expressions, and shell commands are specified using a generalized delimited syntax. All
these literals start with a percent character, followed by a single character that identifies the
literal’s type. These characters are summarized in Table 22.1 on the next page; the actual
literals are described in the corresponding sections later in this chapter.

Following the type character is a delimiter, which can be any nonalphabetic or nonmulti-
byte character. If the delimiter is one of the characters (, [, {, or <, the literal consists of the
characters up to the matching closing delimiter, taking account of nested delimiter pairs.
For all other delimiters, the literal comprises the characters up to the next occurrence of the
delimiter character.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=326

THE BASIC TYPES 327

Table 22.1. General Delimited Input

Type Meaning See Page
%q Single-quoted string 328
%Q, % Double-quoted string 328
%W, %W Array of strings 330
Yot Regular expression pattern 332
%S A symbol 331
YoX Shell command 344

%q/this is a string/
%q-string-
%q(a (nested) string)

Delimited strings may continue over multiple lines; the line endings and all spaces at the
start of continuation lines will be included in the string:

meth = %q{def fred(a)
a.each {|i| puts i }
end}

The Basic Types

The basic types in Ruby are numbers, strings, arrays, hashes, ranges, symbols, and regular
expressions.

Integer and Floating-Point Numbers

Ruby integers are objects of class Fixnum or Bignum. Fixnum objects hold integers that
fit within the native machine word minus 1 bit. Whenever a Fixnum exceeds this range, it
is automatically converted to a Bignum object, whose range is effectively limited only by
available memory. If an operation with a Bignum result has a final value that will fit in a
Fixnum, the result will be returned as a Fixnum.

Integers are written using an optional leading sign and an optional base indicator (0 or Oo
for octal, 0d for decimal, Ox for hex, or Ob for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string.

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
Oxaabb => 43707 # Fixnum - hexadecimal

0377 => 255 # Fixnum - octal

00377 => 255 # Fixnum - octal

-0b10_1010 => -42 # Fixnum - binary (negated)

123_456_789_123_456_789 => 123456789123456789 # Bignum

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=327

THE BASIC TYPES 328

A numeric literal with a decimal point and/or an exponent is turned into a Float object,
corresponding to the native architecture’s double data type. You must follow the decimal
point with a digit; if you write 1.e3, Ruby tries to invoke the method e3 on the Fixnum 1.
You must place at least one digit before the decimal point.

12.34 #=> 12.34
-0.1234e2 # => -12.34
1234e-2 #=> 12.34

Rational and Complex Numbers

Classes that support rational numbers (ratios of integers) and complex numbers are built into
1.9 : :] .
=2 / the Ruby interpreter. However, Ruby provides no language-level support for these numeric
types. There are for rational or complex literals, for example. See the descriptions of Com-
plex and Rational on pages 473 and 660 for more information.

Strings

Ruby provides a number of mechanisms for creating literal strings. Each generates objects
of type String. The different mechanisms vary in terms of how a string is delimited and
how much substitution is done on the literal’s content. Literal strings are encoded using the
source encoding of the file that contains them.

Single-quoted string literals (‘stuff" and %aq/stuff /) undergo the least substitution. Both con-
vert the sequence \\ into a single backslash, and the form with single quotes converts \'
into a single quote. All other backslashes appear literally in the string.

'hello’ # => hello

'a backslash \"\\\'' # => a backslash '\'
%q/simple string/ # => simple string
%q(nesting (really) works) # => nesting (really) works
%q no_blanks_here ; # => no_blanks_here

Double-quoted strings ("stuff", %Q/stuff /, and %/stuff /) undergo additional substitutions,
shown in Table 22.2 on the following page.

a =123
"\123mile" # => Smile
"Greek pi: \u03c0" # => Greek pi: 7
"Greek \u{70 69 3a 20 3c0}" # => Greek pi: 7w
"Say \"Hello\"" # => Say "Hello"
%Q!"I said 'nuts'," I said! # => "I said 'nuts'," I said
%Q{Try #{a + 1}, not #{a - 1}} # => Try 124, not 122
%<Try #{a + 1}, not #{a - 1}> # => Try 124, not 122
"Try #{a + 1}, not #{a - 1}" # => Try 124, not 122
%»{ #{ a=1; b=2; a+b } } # => 3
19 , Last, and probably least (in terms of usage), you can get the string corresponding to an

ASCII character by preceding that character with a question mark. You can use the back-
slash escapes shown in Table 22.2 on the next page.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=328

THE BASIC TYPES 329

Table 22.2. Substitutions in Double-Quoted Strings

\a Bell/alert (0x07) \nnn Octal nnn

\b Backspace (0x08) \xnn Hex nn

\e Escape (0x1b) \cx Control-x

\f Formfeed (0x0c) \C-x Control-x

\n Newline (0x0a) \M-x Meta-x

\r Return (0x0d) \M-\C-x Meta-control-x

\s Space (0x20) \x X

\t Tab (0x09) #{code} Value of code

\v Vertical tab (0x0b) \UXXXX Unicode character

\u{xx xx xx} Unicode characters

7a #=>"a" (ASCII character)

Nn #=>"\n" (newline (0x0a))

NC-a #=>"\x01" (control a = 0x65 & 0x9f = 0x01)
N\M-a #=>"xE1" (meta sets bit 7)

NM-\C-a #=>"\x81" (meta and control a)

NC-? #=>"\x7F" (delete character)

Strings can continue across multiple input lines, in which case they will contain newline
characters. It is also possible to use here documents to express long string literals. Whenever
Ruby parses the sequence <<identifier or <<quoted string, it replaces it with a string literal
built from successive logical input lines. It stops building the string when it finds a line
that starts with identifier or quoted string. You can put a minus sign immediately after
the << characters, in which case the terminator can be indented from the left margin. If a
quoted string was used to specify the terminator, its quoting rules will be applied to the here
document; otherwise, double-quoting rules apply.

print <<HERE

Double quoted \

here document.

It is #{Time.now}

HERE

print <<-'THERE'
This is single quoted.
The above used #{Time.now}
THERE

produces:

Double quoted here document.

It is 2009-04-13 13:26:11 -0500
This is single quoted.
The above used #{Time.now}

Adjacent single- and double-quoted strings in the input are concatenated to form a single
String object:

'Con' "cat en' "ate" # => "Concatenate"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=329

THE BASIC TYPES 330

Every time a string literal is used in an assignment or as a parameter, a new String object is

created:
3.times do
print 'hello'.object_id, " "
end
produces:

338430 338370 338330

The documentation for class String starts on page 670.

Ranges

Outside the context of a conditional expression, expr..expr and expr...expr construct Range
objects. The two-dot form is an inclusive range; the one with three dots is a range that
excludes its last element. See the description of class Range on page 656 for details. Also
see the description of conditional expressions on page 348 for other uses of ranges.

Arrays

Literals of class Array are created by placing a comma-separated series of object references
between square brackets. A trailing comma is ignored.

arr = [fred, 10, 3.14, "This is a string", barney("pebbles"),]

Arrays of strings can be constructed using the shortcut notations %w and %W. The lower-
case form extracts space-separated tokens into successive elements of the array. No substi-
tution is performed on the individual strings. The uppercase version also converts the words
to an array but performs all the normal double-quoted string substitutions on each individual
word. A space between words can be escaped with a backslash. This is a form of general
delimited input, described on pages 326-327.

arr = %w(fred wilma barney betty great\ gazoo)

arr # => ["fred", "wilma", "barney", "betty", "great gazoo"]

arr = %w(Hey!\tIt is now -#{Time.now}-)

arr # => ["Hey!\tIt", "is", "now", "-#{Time.now}-"

arr = %W(Hey!\tIt is now -#{Time.now}-)

arr # => ["Hey! It", "is", "now", "-2009-04-13 13:26:11 -0500-"
Hashes

A literal Ruby Hash is created by placing a list of key/value pairs between braces. Keys and
values can be separated by the sequence =>.!

colors = { "red" => 0xf00, "green" => 0x0f0, "blue" => 0x00f }

1. As of Ruby 1.9, a comma may no longer be used to separate keys and values in hash literals. A comma still
appears between each key/value pair.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=330

THE BASIC TYPES 33il

If the keys are symbols, you can use this alternative notation:

colors = { red: 0xf00, green: 0x0f0, blue: 0x00f }

The keys and/or values in a particular hash need not have the same type.

Requirements for a Hash Key

Hash keys must respond to the message hash by returning a hash code, and the hash code
for a given key must not change. The keys used in hashes must also be comparable using
eql?. If eql? returns true for two keys, then those keys must also have the same hash code.
This means that certain classes (such as Array and Hash) can’t conveniently be used as keys,
because their hash values can change based on their contents.

If you keep an external reference to an object that is used as a key and use that reference
to alter the object, thus changing its hash code, the hash lookup based on that key may not
work. You can force the hash to be reindexed by calling its rehash method.

arr = [1, 2, 3]

hash = { arr => 'value' }
hash[arr] # => "value"
arr[1] = 99
hash #
hash[arr] # =
hash.rehash
hash[arr] # => "value"

{[1, 99, 3]=>"value"}
nil

Because strings are the most frequently used keys and because string contents are often
changed, Ruby treats string keys specially. If you use a String object as a hash key, the hash
will duplicate the string internally and will use that copy as its key. The copy will be frozen.
Any changes made to the original string will not affect the hash.

If you write your own classes and use instances of them as hash keys, you need to make
sure that either (a) the hashes of the key objects don’t change once the objects have been
created or (b) you remember to call the Hash#rehash method to reindex the hash whenever
a key hash is changed.

Symbols

A Ruby symbol is an identifier corresponding to a string of characters, often a name. You
construct the symbol for a name by preceding the name with a colon, and you can construct
the symbol for an arbitrary string by preceding a string literal with a colon. Substitution
occurs in double-quoted strings. A particular name or string will always generate the same
symbol, regardless of how that name is used within the program. You can also use the %s
delimited notation to create a symbol.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=331

THE BASIC TYPES 332

:Object

:my_variable

:"Ruby rules"

a = "cat"

:'catsup' # => :catsup

"#{a}sup" # => :catsup

:'#{a}sup’ # => "\#{a}sup"

%s{symbol} # => :symbol

%s{ symbol with spaces } # => :" symbol with spaces "

Other languages call this process interning and call symbols atoms.

Regular Expressions

This section contains a summary on the Oniguruma regular expression engine used by Ruby.
See Chapter 7 on page 117 for a detailed description of regular expressions.

Regular expression literals are objects of type Regexp. They are created explicitly by call-
ing Regexp.new or implicitly by using the literal forms, /pattern/ and %r{pattern}. The %r
construct is a form of general delimited input (described on pages 326-327).

/pattern/

/pattern/options

%r{pattern}

%r{pattern}options

Regexp.new('pattern' [, options |)

options is one or more of i (case insensitive), o (substitute once), m (. matches newline), and
x (allow spaces and comments). You can additionally override the default encoding of the
pattern with n (no encoding-ASCII), e (EUC), s (Shift_JIS), or u (UTF-8).

Regular Expression Patterns

19 , (This section contains many differences from previous versions of this book. Ruby 1.9 uses
the Oniguruma regular expression engine.)’

characters All except ., I, (), [, \, A, {, + $, *, and ? match themselves. To match
one of these characters, precede it with a backslash.
\a \cx \e \f \r \t \unnnn \v \xnn \nnn \C-\M-x \C-x \M-x
Match the character derived according to Table 22.2 on page 329.

NS Match the beginning/end of a line.
\A,\z, \Z Match the beginning/end of the string. \Z ignores trailing \n.
\d, \h Match any decimal digit (or Unicode Decimal_Number), hexadecimal
digit ([0-9a-fA-F]).
\s Matches any whitespace character: tab, newline, vertical tab, form feed,
return, and space. For Unicode, add Line_Separator codepoints.

2. Some of the information here is based on http://www.geocities.jp/kosako3/oniguruma/doc/RE. txt.

Report erratum

http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=332

\w

\D2\H,\S, \W

\b, \B
\G

THE BASIC TYPES 333

Matches any word character: alphanumerics and underscores. For Uni-
code, add in the codepoints in Connector_Punctuation, Letter, Mark,
and Number.

The negated forms of \d, \h, \s, and \w, matching characters that are not
digits, hexadecimal digits, whitespace, or word characters.

Match word/nonword boundaries.

The position where a previous repetitive search completed.

\p{property}, \P{property}, \p{\property}

. (period)

[characters)
re*

re+

re{m,n}
re{m,}
re{,n}

re{m}

re?

rel|re2
(-r)
#{...}

\0,\1,\2, ... \n, \&, \

(?# comment)
(?:re)

(?=re), (?'re)
(?<=re), (?<!re)

(?>re)

(?imx), (?-imx)

Match a character that is in/not in the given property (see Table 7.3 on
page 126).

Appearing outside brackets, matches any character except a newline.
(With the /m option, it matches newline, too).

Matches a single character from the specified set. See page 123.
Matches zero or more occurrences of re.
Matches one or more occurrences of re.
Matches at least “m” and at most “n”” occurrences of re.
Matches at least “m” occurrences of re.
Matches at most “n”” occurrences of re.
Matches exactly “m” occurrences of re.
y
Matches zero or one occurrence of re.

The ?, *, +, and {m,n} modifiers are greedy by default. Append a ques-
tion mark to make them minimal, and append a plus sign to make them
possessive (that is, they are greedy and will not backtrack).

Matches either rel or re2.
Group regular expressions and introduce extensions.

Substitutes expression in the pattern, as with strings. By default, the sub-
stitution is performed each time a regular expression literal is evaluated.
With the /o option, it is performed just the first time.

N\ \+

Substitute the value matched by the nth grouped subexpression or by
the entire match, pre- or postmatch, or the highest group.

Inserts a comment into the pattern.
Makes re into a group without generating backreferences.

Matches if re is/is not at this point but does not consume it.

Matches if re is/is not before this point but does not consume it.
Matches re, but inhibits subsequent backtracking.

Turn on/off the corresponding i, m, or x option. If used inside a group,
the effect is limited to that group.

(?imx:re), (?-imx:re)

Report erratum

Turn on/off the i, m, or x option for re.

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=333

\n, \k'n’, and \k<n>

The n?" captured subpattern.
(?<name>...) or (?’name’...)
Name the string captured by the group.
\k<name> or \k'name’
The contents of the named group.
\k<name>+n/1 or \k'name’+/-n
The contents of the named group at the given relative nesting level.
\g<name> or \g<number>
Invoke the named or numbered group.

Names

Ruby names are used to refer to constants, variables, methods, classes, and modules. The
first character of a name helps Ruby to distinguish its intended use. Certain names, listed in
Table 22.3 on the next page, are reserved words and should not be used as variable, method,
class, or module names.

Method names are described in the section beginning on page 351.

In these descriptions, Uppercase letter means A though Z, and digit means 0 through 9. low-
ercase letter means the characters a though z, as well as _, the underscore. In addition, any
non-7-bit characters that are valid in the current encoding are considered to be lowercase.>

A name is an uppercase letter, a lowercase letter, or an underscore, followed by name char-
acters: any combination of upper- and lowercase letters, underscores, and digits.

A local variable name consists of a lowercase letter followed by name characters. It is
conventional to use underscores rather than camelCase to write multiword names, but the
interpreter does not enforce this:

fred anObject _x three_two_one
If the source file encoding is UTF-8, delta and été are both valid local variable names.

An instance variable name starts with an “at” sign (@) followed by a name. It is generally
a good idea to use a lowercase letter after the @.

@name @_ @size
A class variable name starts with two “at” signs (@@) followed by a name.
@@name @@_ @@Size

A constant name starts with an uppercase letter followed by name characters. Class names
and module names are constants and follow the constant naming conventions.

3. Such names will not be usable from other source files with different encoding.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=334

Table 22.3. Reserved Words

__FILE__ and def end in or self unless
__LINE__ begin defined? ensure module redo super until
BEGIN break do false next rescue then when

END case else for nil retry true while
alias class elsif if not return undef yield

By convention, constant object references are normally spelled using uppercase letters and
underscores throughout, while class and module names are MixedCase:

module Math
ALMOST_PI = 22.0/7.0
end
class BigBlob
end

Global variables, and some special system variables, start with a dollar sign ($) followed
by name characters. In addition, Ruby defines a set of two-character global variable names
in which the second character is a punctuation character. These predefined variables are
listed starting on page 339. Finally, a global variable name can be formed using $- followed
by a single letter or underscore. These latter variables typically mirror the setting of the
corresponding command-line option (see the table starting on page 341 for details):

$params $PROGRAM §$! $_ $-a $-K

Variable/Method Ambiguity

When Ruby sees a name such as a in an expression, it needs to determine whether it is a
local variable reference or a call to a method with no parameters. To decide which is the
case, Ruby uses a heuristic. As Ruby parses a source file, it keeps track of symbols that have
been assigned to. It assumes that these symbols are variables. When it subsequently comes
across a symbol that could be a variable or a method call, it checks to see whether it has
seen a prior assignment to that symbol. If so, it treats the symbol as a variable; otherwise,
it treats it as a method call. As a somewhat pathological case of this, consider the following
code fragment, submitted by Clemens Hintze:

def a
print "Function 'a' called\n"
99
end
for i in 1..2
if i ==
print "a=", a, "\n"
else
a=1
print "a=", a, "\n"
end
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=335

VARIABLES AND CONSTANTS 336

produces:

a=1
Function 'a' called
a=99

During the parse, Ruby sees the use of a in the first print statement and, because it hasn’t yet
seen any assignment to a, assumes that it is a method call. By the time it gets to the second
print statement, though, it has seen an assignment and so treats a as a variable.

Note that the assignment does not have to be executed—Ruby just has to have seen it. This
program does not raise an error.

a =1 if false; a

Variables and Constants

Ruby variables and constants hold references to objects. Variables themselves do not have
an intrinsic type. Instead, the type of a variable is defined solely by the messages to which
the object referenced by the variable responds.*

A Ruby constant is also a reference to an object. Constants are created when they are first
assigned to (normally in a class or module definition). Ruby, unlike less flexible languages,
lets you alter the value of a constant, although this will generate a warning message:

MY_CONST = 1
MY_CONST = 2 # generates a warning

produces:
/tmp/prog.rb:2: warning: already initialized constant MY_CONST

Note that although constants should not be changed, you can alter the internal states of the
objects they reference:’

MY_CONST = "Tim"
MY_CONST[O] = "J" # alter string referenced by constant
MY_CONST # => "Jim"

Assignment potentially aliases objects, creating two references to the same object.

Scope of Constants and Variables

Constants defined within a class or module may be accessed unadorned anywhere within
the class or module. Outside the class or module, they may be accessed using the scope
operator, :: prefixed by an expression that returns the appropriate class or module object.
Constants defined outside any class or module may be accessed unadorned or by using the

4. When we say that a variable is not typed, we mean that any given variable can at different times hold references
to objects of many different types.

5. You can freeze objects to prevent this.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=336

VARIABLES AND CONSTANTS 337

scope operator :: with no prefix. Constants may not be defined in methods. Constants may
be added to existing classes and modules from the outside by using the class or module
name and the scope operator before the constant name.

OUTER_CONST = 99
class Const
def get_const

CONST
end
CONST = OUTER_CONST + 1
end
Const.new.get_const # => 100
Const: :CONST # => 100
: :OUTER_CONST #=> 99

Const::NEW_CONST = 123

Global variables are available throughout a program. Every reference to a particular global
name returns the same object. Referencing an uninitialized global variable returns nil.

Class variables are available throughout a class or module body. Class variables must be ini-
tialized before use. A class variable is shared among all instances of a class and is available
within the class itself.

class Song
@@count = 0
def initialize
@@count += 1
end
def Song.get_count
@@count
end
end

Class variables belong to the innermost enclosing class or module. Class variables used at

the top level are defined in Object and behave like global variables. Class variables defined

within singleton methods belong to the top level (although this usage is deprecated and
19 , generates a warning). In Ruby 1.9, class variables are private to the defining class:

class Holder
@@var = 99
def Holder.var=(val)
@@var = val
end
def var
@@var
end
end

@@var = "top level variable
a = Holder.new

a.var # => "top level variable"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=337

VARIABLES AND CONSTANTS 338

Holder.var = 123
a.var # => 123

This references the top-level object
def a.get_var
@@var
end
a.get_var # => "top level variable"

Class variables are inherited by children but are unique across children:

class Top
@@A = 1
@B = 1
def dump
puts values
end
def values
"#{self.class.name}: @Q@A = #@@A, Q@B = #@@B"

end

end

class MiddleOne < Top
@@B = 2
@ac = 2

def values
super + ", C = #@@C"

end

end

class MiddleTwo < Top
@@B = 3
@ac = 3

def values
super + ", C = #@@C"

end
end
class BottomOne < MiddleOne; end
class BottomTwo < MiddleTwo; end
Top.new.dump
MiddleOne.new.dump
MiddleTwo.new.dump
BottomOne.new.dump
BottomTwo.new.dump

produces:

Top: @@A = 1, @@B = 3
MiddleOne: @@A = 1, @@B
MiddleTwo: @@A = 1, @@B
1
1

w w w w
[eNeNeNe]

BottomOne: @@A = 1, @@B =
BottomTwo: @@A = 1, @@B =

W N WN

I recommend against using class variables for this reason.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=338

VARIABLES AND CONSTANTS 339

Instance variables are available within instance methods throughout a class body. Referenc-
ing an uninitialized instance variable returns nil. Each instance of a class has a unique set
of instance variables. Instance variables are not available to class methods (although classes
[and modules] also may have instance variables—see page 387).

Local variables are unique in that their scopes are statically determined but their existence
is established dynamically.

A local variable is created dynamically when it is first assigned a value during program
execution. However, the scope of a local variable is statically determined to be the imme-
diately enclosing block, method definition, class definition, module definition, or top-level
program. Referencing a local variable that is in scope but that has not yet been created gen-
erates a NameError exception. Local variables with the same name are different variables if
they appear in disjoint scopes.

Method parameters are considered to be variables local to that method.
Block parameters are assigned values when the block is invoked.
If a local variable is first assigned in a block, it is local to the block.

If a block uses a variable that is previously defined in the scope containing the block’s
definition, then the block will share that variable with the scope. There are two exceptions
to this. Block parameters are always local to the block. In addition, variables listed after a
semicolon at the end of the block parameter list are also always local to the block.

a=1
b=2
c=3

some_method { |b; ¢l a=b+1;c=a+1;d=c+ 1}

In this previous example, the variable a inside the block is shared with the surrounding
scope. The variables b and c are not shared, because they are listed in the block’s parameter
list, and the variable d is not shared because it occurs only inside the block.

A block takes on the set of local variables in existence at the time that it is created. This
forms part of its binding. Note that although the binding of the variables is fixed at this
point, the block will have access to the current values of these variables when it executes.
The binding preserves these variables even if the original enclosing scope is destroyed.

The bodies of while, until, and for loops are part of the scope that contains them; previously
existing locals can be used in the loop, and any new locals created will be available outside
the bodies afterward.

Predefined Variables

The following variables are predefined in the Ruby interpreter. In these descriptions, the
notation [r/0] indicates that the variables are read-only; an error will be raised if a pro-
gram attempts to modify a read-only variable. After all, you probably don’t want to change
the meaning of true halfway through your program (except perhaps if you’re a politician).
Entries marked [thread] are thread local.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=339

VARIABLES AND CONSTANTS 340

Many global variables look something like Snoopy swearing: $_, $!, $&, and so on. This is
for “historical” reasons because most of these variable names come from Perl. If you find
memorizing all this punctuation difficult, you may want to take a look at the library file
called English, documented on page 748, which gives the commonly used global variables
more descriptive names.

In the tables of variables and constants that follow, we show the variable name, the type of
the referenced object, and a description.

Exception Information

$! Exception The exception object passed to raise. [thread]

@ Array The stack backtrace generated by the last exception. See Kernel#caller on page 567
for details. [thread]

Pattern Matching Variables
These variables (except $=) are set to nil after an unsuccessful pattern match.

$& String The string matched (following a successful pattern match). This variable is local to
the current scope. [r/0, thread]

$+ String The contents of the highest-numbered group matched following a successful pattern
match. Thus, in "cat" =~/(c|a)(t|z)/, $+ will be set to “t.” This variable is local to the
current scope. [r/0, thread]

$ String The string preceding the match in a successful pattern match. This variable is local
to the current scope. [r/0, thread]

$ String The string following the match in a successful pattern match. This variable is local
to the current scope. [r/0, thread]

$1...%n String The contents of successive groups matched in a successful pattern match. In "cat"
=~/(cla)(t|z)/, $1 will be set to “a” and $2 to “t.” This variable is local to the current
scope. [r/o0, thread]

$~ MatchData An object that encapsulates the results of a successful pattern match. The variables
$&, $°, $', and $1 to $9 are all derived from $~. Assigning to $~ changes the values
of these derived variables. This variable is local to the current scope. [thread]

The variable $=, which previously controlled case-insensitive matches, has been removed
=2 , from Ruby 1.9.

Input/Output Variables

$/ String The input record separator (newline by default). This is the value that routines such
as Kernel#gets use to determine record boundaries. If set to nil, gets will read the
entire file.

$-0 String Synonym for $/.

$\ String The string appended to the output of every call to methods such as Kernel#print and

|O#write. The default value is nil.

$, String The separator string output between the parameters to methods such as Kernel#print
and Array#join. Defaults to nil, which adds no text.

$. Fixnum The number of the last line read from the current input file.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=340

VARIABLES AND CONSTANTS 341

$; String The default separator pattern used by String#split. May be set from the command
line using the -F flag.

$< Object An object that provides access to the concatenation of the contents of all the files
given as command-line arguments or $stdin (in the case where there are no argu-
ments). $< supports methods similar to a File object: binmode, close, closed?,
each, each_byte, each_line, eof, eof?, file, filename, fileno, getc, gets, lineno,
lineno=, path, pos, pos=, read, readchar, readline, readlines, rewind, seek, skip,
tell, to_a, to_i, to_io, to_s, along with the methods in Enumerable. The method file
returns a File object for the file currently being read. This may change as $< reads
through the files on the command line. [r/0]

$> 10 The destination of output for Kernel#print and Kernel#printf. The default value is
$stdout.
$_ String The last line read by Kernel#gets or Kernel#readline. Many string-related functions

in the Kernel module operate on $_ by default. The variable is local to the current
scope. [thread]

$-F String Synonym for $;.

$stderr 10 The current standard error output.

$stdin 10 The current standard input.

$stdout 10 The current standard output. Assignment to $stdout is not permitted: use $std-

out.reopen instead.

1.9, The variables $defout and $deferr have been removed from Ruby 1.9.

Execution Environment Variables

$0 String The name of the top-level Ruby program being executed. Typically this will be
the program’s filename. On some operating systems, assigning to this variable will
change the name of the process reported (for example) by the ps(1) command.

$* Array An array of strings containing the command-line options from the invocation of the
program. Options used by the Ruby interpreter will have been removed. [r/0]

$" Array An array containing the filenames of modules loaded by require. [r/0]
$$ Fixnum The process number of the program being executed. [/0]
$? Process::Status

The exit status of the last child process to terminate. [r/0, thread]

$: Array An array of strings, where each string specifies a directory to be searched for Ruby
scripts and binary extensions used by the load and require methods. The initial value
is the value of the arguments passed via the -| command-line option, followed by
an installation-defined standard library location, followed by the current directory
(““.”). This variable may be set from within a program to alter the default search path;
typically, programs use $: << dir to append dir to the path. [r/0]

$-a Object True if the -a option is specified on the command line. [r/0]
&/ __callee_ Symbol The name of the lexically enclosing method.

$-d Object Synonym for $DEBUG.

$DEBUG Object Set to true if the -d command-line option is specified.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=341

VARIABLES AND CONSTANTS 342

__ENCODING_ _
l'_/ String The encoding of the current source file. [r/0]
__FILE_ String The name of the current source file. [r/0]
$F Array The array that receives the split input line if the -a command-line option is used.
$FILENAME String The name of the current input file. Equivalent to $<.filename. [r/0]
$-i String If in-place edit mode is enabled (perhaps using the -i command-line option), $-i
holds the extension used when creating the backup file. If you set a value into $-i,
enables in-place edit mode. See page 235.
$-l Array Synonym for $:. [r/0]
$-l Object Set to true if the -l option (which enables line-end processing) is present on the
command line. See page 235. [r/0]
__LINE_ String The current line number in the source file. [r/0]
$LOAD_PATH Array A synonym for $:. [r/0]
$LOADED_FEATURES
Array Synonym for $". [r/0]
&/ __method__ Symbol The name of the lexically enclosing method.
$PROGRAM_NAME
String Alias for $0.
$-p Object Set to true if the -p option (which puts an implicit while gets ... end loop around

your program) is present on the command line. See page 235. [r/0]

$SAFE Fixnum The current safe level (see page 437). This variable’s value may never be reduced
by assignment. [thread]

$VERBOSE Object Set to true if the -v, --version, -W, or -w option is specified on the command line.
Set to false if no option, or -W1 is given. Set to nil if -WO was specified. Setting
this option to true causes the interpreter and some library routines to report addi-
tional information. Setting to nil suppresses all warnings (including the output of
Kernel.warn).

$-v Object Synonym for $VERBOSE.
$-w Object Synonym for $VERBOSE.
$-W Object Return the value set by the -W command-line option.

Standard Objects

ARGF Object A synonym for $<.
ARGV Array A synonym for $*.
ENV Object A hash-like object containing the program’s environment variables. An instance of

class Object, ENV implements the full set of Hash methods. Used to query and set
the value of an environment variable, as in ENV["PATH"] and ENV["term"]="ansi".

false FalseClass Singleton instance of class FalseClass. [r/0]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=342

VARIABLES AND CONSTANTS 343

nil NilClass The singleton instance of class NilClass. The value of uninitialized instance and
global variables. [r/0]

self Object The receiver (object) of the current method. [r/0]

true TrueClass Singleton instance of class TrueClass. [r/0]

Global Constants

The following constants are defined by the Ruby interpreter.

DATA 10 If the main program file contains the directive __END__, then the con-
stant DATA will be initialized so that reading from it will return lines
following __END_ _ from the source file.

FALSE FalseClass Constant containing reference to false.

NIL NilClass Constant containing reference to nil.

RUBY_COPYRIGHT String The interpreter copyright.

&/ RUBY_DESCRIPTION String Version number and architecture of the interpreter.
&/ RUBY_ENGINE String The name of the Ruby interpreter. Returns ruby for Matz’s version.

Other interpreters include macruby, ironruby, jruby, and rubinius.
&/ RUBY_PATCHLEVEL String The patch level of the interpreter.
&/ RUBY_PLATFORM String The identifier of the platform running this program. This string is in the

same form as the platform identifier used by the GNU configure utility
(which is not a coincidence).

RUBY_RELEASE_DATE

String The date of this release.

RUBY_REVISION String The revision of the interpreter.

RUBY_VERSION String The version number of the interpreter.

STDERR 10 The actual standard error stream for the program. The initial value of
$stderr.

STDIN 10 The actual standard input stream for the program. The initial value of
$stdin.

STDOUT 10 The actual standard output stream for the program. The initial value of
$stdout.

SCRIPT_LINES Hash If a constant SCRIPT_LINES__ is defined and references a Hash, Ruby

will store an entry containing the contents of each file it parses, with
the file’s name as the key and an array of strings as the value. See Ker-
nel.require on page 576 for an example.

TOPLEVEL_BINDING Binding A Binding object representing the binding at Ruby’s top level—the level
where programs are initially executed.

TRUE TrueClass A reference to the object true.

The constant __FILE__ and the variable $0 are often used together to run code only if it
appears in the file run directly by the user. For example, library writers often use this to

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=343

EXPRESSIONS 344

include tests in their libraries that will be run if the library source is run directly, but not if
the source is required into another program.

library code

...

if __FILE__ == $0
tests...

end

Expressions

Single terms in an expression may be any of the following.

* Literal. Ruby literals are numbers, strings, arrays, hashes, ranges, symbols, and regular
expressions. These are described starting on page 327.

* Shell command. A shell command is a string enclosed in backquotes or in a general
delimited string (page 326) starting with %x. The value of the string is the standard
output of running the command represented by the string under the host operating
system’s standard shell. The execution also sets the $? variable with the command’s
exit status.

filter = "x.c"
files = '1s #{filter}"
files = %x{1ls #{filter}}

Variable reference or constant reference. A variable is referenced by citing its name.
Depending on scope (see page 336), a constant is referenced either by citing its name or
by qualifying the name, using the name of the class or module containing the constant
and the scope operator (::).

barney # variable reference
APP_NAMR # constant reference
Math::PI # qualified constant reference

* Method invocation. The various ways of invoking a method are described starting on
page 355.

Operator Expressions

Expressions may be combined using operators. Table 22.4 on the following page lists the
Ruby operators in precedence order. The operators with a v/ in the Method column are
implemented as methods and may be overridden.

More on Assignment

The assignment operator assigns one or more rvalues (the r stands for “right,” because rval-
ues tend to appear on the right side of assignments) to one or more /values (“left” values).
What is meant by assignment depends on each individual Ivalue.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=344

EXPRESSIONS 345

Table 22.4. Ruby Operators (High to Low Precedence)

Method Operator Description
v [11]= Element reference, element set
v b Exponentiation
v b~ + = Not, complement, unary plus and minus
(method names for the last two are +@ and
-@)
v *| % Multiply, divide, and modulo
v + - Plus and minus
v >> << Right and left shift (<< is also used as the
append operator)
v & “And” (bitwise for integers)
v A Exclusive “or” and regular “or” (bitwise for
integers)
v <= < > >= Comparison operators
v <=> == === |= =~ I~ Equality and pattern match operators
&& Logical “and”
I Logical “or”
..... Range (inclusive and exclusive)
?: Ternary if-then-else
= %= /= —= 4= |= &= >>= Assignment
<<= "= &&= [||= 7=
not Logical negation
or and Logical composition
if unless while until Expression modifiers
begin/end Block expression

If an lvalue is a variable or constant name, that variable or constant receives a reference to
the corresponding rvalue:

a = /regexp/
b, ¢, d =1, "cat", [3, 4, 5]

If the lvalue is an object attribute, the corresponding attribute setting method will be called
in the receiver, passing as a parameter the rvalue:

obj = A.new
obj.value = "hello" # equivalent to obj.value=("hello")

If the lvalue is an array element reference, Ruby calls the element assignment operator ([]=)
in the receiver, passing as parameters any indices that appear between the brackets followed
by the rvalue. This is illustrated in the following table.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=345

EXPRESSIONS 346

Element Reference Actual Method Call

var[] = "one" var.[]=("one")
var[1] = "two" var.[]=(1, "two")
var["a", /*cal/] = "three" var.[]=("a", /Acat/, "three")

If you are writing an []= method that accepts a variable number of indices, it might be
convenient to define it using this:

def []=(+indices, value)
...
end

The value of an assignment expression is its rvalue. This is true even if the assignment is to
an attribute method that returns something different.

Parallel Assignment

An assignment expression may have one or more lvalues and one or more rvalues. This
section explains how Ruby handles assignment with different combinations of arguments:

1. If any rvalue is prefixed with an asterisk and implements to_a, the rvalue is replaced
with the elements returned by to_a, with each element forming its own rvalue.

2. If the assignment contains one lvalue and multiple rvalues, the rvalues are converted to
an array and assigned to that lvalue.

3. If the assignment contains multiple lvalues and one rvalue, the rvalue is expanded if
possible into a set of rvalues as described in (1).

4. Successive rvalues are assigned to the lvalues. This assignment effectively happens in
parallel, so that (for example) a,b=b,a swaps the values in a and b.

5. If there are more lvalues than rvalues, the excess will have nil assigned to them.
6. If there are more rvalues than Ivalues, the excess will be ignored.

7. At most one lvalue can be prefixed by an asterisk. This lvalue will end up being an
array and will contain as many rvalues as possible. If there are Ivalues to the right of
the starred lvalue, these will be assigned from the trailing rvalues, and whatever rvalues
are left will be assigned to the splat lvalue.

8. If an lvalue contains a parenthesized list, the list is treated as a nested assignment
statement, and then it is assigned from the corresponding rvalue as described by these
rules.

The tutorial has examples starting on page 151. The value of a parallel assignment is its set
of rvalues.

Block Expressions

begin
body
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=346

EXPRESSIONS 347

Expressions may be grouped between begin and end. The value of the block expression is
the value of the last expression executed.

Block expressions also play a role in exception handling, which is discussed starting on
page 367.

Boolean Expressions

Ruby predefines the globals false and nil. Both of these values are treated as being false in
a boolean context. All other values are treated as being true. The constant true is available
for when you need an explicit “true” value.

And, Or, Not

The and and && operators evaluate their first operand. If false, the expression returns the
value of the first operand; otherwise, the expression returns the value of the second operand:

expr1 and expr2
expri && expr2

The or and || operators evaluate their first operand. If true, the expression returns the value
of their first operand; otherwise, the expression returns the value of the second operand:

exprl or expr2
exprl || expr2

The not and ! operators evaluate their operand. If true, the expression returns false. If false,
the expression returns true. For historical reasons, a string, regexp, or range may not appear
as the single argument to not or |.

The word forms of these operators (and, or, and not) have a lower precedence than the
corresponding symbol forms (&&, ||, and !). See Table 22.4 on page 345 for details.

defined?

The defined? keyword returns nil if its argument, which can be an arbitrary expression, is
not defined. Otherwise, it returns a description of that argument. For examples, see page
154 in the tutorial.

Comparison Operators

these operators are implemented as methods. By convention, the language also uses the
standard methods eql? and equal? (see Table 9.1 on page 156). Although the operators
have intuitive meaning, it is up to the classes that implement them to produce meaningful
comparison semantics. The library reference starting on page 442 describes the comparison
semantics for the built-in classes. The module Comparable provides support for implement-
ing the operators ==, <, <=, >, and >=, as well as the method between? in terms of <=>. The
operator === is used in case expressions, described on page 349.

Both == and =~ have negated forms, != and !~. If an object defines these methods, Ruby will
1.9 , call them. Otherwise, a l=b is mapped to !(a==b), and a !~ b is mapped to !(a =~b).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=347

EXPRESSIONS 348

Figure 22.1. State Transitions for Boolean Range h
exprl is true
start
expri is false expr2 is true expr2 is false
\. J

Ranges in Boolean Expressions

if expr1 .. expr2
while expr! ... expr2

A range used in a boolean expression acts as a flip-flop. It has two states, set and unset, and
is initially unset. On each call, the range executes a transition in the state machine shown in
Figure 22.1. The range expression returns true if the state machine is in the set state at the
end of the call, and false otherwise.

The two-dot form of a range behaves slightly differently than the three-dot form. When the
two-dot form first makes the transition from unset to set, it immediately evaluates the end
condition and makes the transition accordingly. This means that if exprl and expr2 both
evaluate to true on the same call, the two-dot form will finish the call in the unset state.
However, it still returns true for this call.

The three-dot form does not evaluate the end condition immediately upon entering the set
state.

The difference is illustrated by the following code:

a = (11..20).collect {|i| (i%4 == 0)..(i%3 == 0) ? i : nil}
a # = [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]

a = (11..20).collect {|i| (i%4 == 0)...(i%3 == 0) ? i : nil}
a # => [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]

Regular Expressions in Boolean Expressions

19 , In versions of Ruby prior to 1.8, a single regular expression in boolean expression was
matched against the current value of the variable $_. This behavior is now supported only if
the condition appears in a command-line -e parameter:

$ ruby -ne 'print if /one/' testfile

In regular code, the use of implicit operands and $_ is being slowly phased out, so it is better
to use an explicit match against a variable. If a match against $_ is required, use this:

if ~/re/ ... or if $_ =~ /re/ ...

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=348

EXPRESSIONS 349

if and unless Expressions

if boolean-expression [then]
body

[elsif boolean-expression [then]
body , ...]

[else
body]

end

unless boolean-expression [then]
body

[else
body |

end

The then keyword separates the body from the condition.® It is not required if the body
starts on a new line. The value of an if or unless expression is the value of the last expression
evaluated in whichever body is executed.

if and unless Modifiers

expression if boolean-expression
expression unless boolean-expression

This evaluates expression only if boolean-expression is true (for if) or false (for unless).

Ternary Operator
boolean-expression ? exprl : expr2

This returns exprl if boolean expression is true and expr2 otherwise.

case Expressions

Ruby has two forms of case statement. The first allows a series of conditions to be evaluated,
executing code corresponding to the first condition that is true:

case

when condition [, condition]... [then]
body

when condition [, condition]... [then]
body

[else
body |

end

6. Prior to Ruby 1.9, you could use a colon instead of then. This is no longer supported.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=349

EXPRESSIONS 350

The second form of a case expression takes a target expression following the case keyword.
It searches for a match by starting at the first (top left) comparison, performing compari-
son === target:

case target

when comparison [, comparison]... [then]
body

when comparison [, comparison]... [then]
body

[else
body |

end

A comparison can be an array reference preceded by an asterisk, in which case it is expanded
into that array’s elements before the tests are performed on each. When a comparison returns
true, the search stops, and the body associated with the comparison is executed (no break
is required). case then returns the value of the last expression executed. If no comparison
matches, this happens: if an else clause is present, its body will be executed; otherwise,
case silently returns nil.

The then keyword separates the when comparisons from the bodies and is not needed if the
body starts on a new line.

=2 / Asan optimization in Matz’s Ruby 1.9, comparisons with literal strings and numbers do not
use ===.
Loops
while boolean-expression [do]
body
end

This executes body zero or more times as long as boolean-expression is true.

until boolean-expression [do]|
body
end

This executes body zero or more times as long as boolean-expression is false.

In both forms, the do separates boolean-expression from the body and can be omitted when
the body starts on a new line:

for name [, name]... in expression [do]|
body
end

The for loop is executed as if it were the following each loop, except that local variables
defined in the body of the for loop will be available outside the loop, and those defined
within an iterator block will not.

expression.each do | name [, name]... |
body
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=350

METHOD DEFINITION 351

loop, which iterates its associated block, is not a language construct—it is a method in Library
module Kernel.

loop do
print "Input:
break unless line = gets
process(line)

end

while and until Modifiers

expression while boolean-expression
expression until boolean-expression

If expression is anything other than a begin/end block, executes expression zero or more
times while boolean-expression is true (for while) or false (for until).

If expression is a begin/end block, the block will always be executed at least one time.

break, redo, next, and retry

break, redo, next, and retry alter the normal flow through a while, until, for, or iterator con-
trolled loop.

break terminates the immediately enclosing loop—control resumes at the statement follow-
ing the block. redo repeats the loop from the start but without reevaluating the condition or
fetching the next element (in an iterator). The next keyword skips to the end of the loop,
effectively starting the next iteration. retry restarts the loop, reevaluating the condition.

break and next may optionally take one or more arguments. If used within a block, the given
argument(s) are returned as the value of the yield. If used within a while, until, or for loop,
the value given to break is returned as the value of the statement, and the value given to next
is silently ignored. If break is never called or if it is called with no value, the loop returns
nil.
match = while line = gets
next if line =~ /A#/
break line if line =~ /ruby/
end

match = for line in ARGF.readlines
next if line =~ /A#/
break line if line =~ /ruby/
end

Method Definition

def defname [([arg [=val], ...][, &blockarg])]
body
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=351

METHOD DEFINITION 352

defname is both the name of the method and optionally the context in which it is valid.

defname <« methodname
constant. methodname
(expr) . methodname

A methodname is either a redefinable operator (see Table 22.4 on page 345) or a name. If
methodname is a name, it should start with a lowercase letter (or underscore) optionally
followed by uppercase and lowercase letters, underscores, and digits. A methodname may
optionally end with a question mark (?), exclamation point (!), or equals sign (=). The ques-
tion mark and exclamation point are simply part of the name. The equals sign is also part of
the name but additionally signals that this method may be used as an lvalue (described on
page 55).

A method definition using an unadorned method name within a class or module definition
creates an instance method. An instance method may be invoked only by sending its name
to a receiver that is an instance of the class that defined it (or one of that class’s subclasses).

Outside a class or module definition, a definition with an unadorned method name is added
as a private method to class Object and hence may be called in any context without an
explicit receiver.

A definition using a method name of the form constant. methodname or the more general
(expr).methodname creates a method associated with the object that is the value of the con-
stant or expression; the method will be callable only by supplying the object referenced by
the expression as a receiver. This style of definition creates per object or singleton methods.

class MyClass

def MyClass.method # definition
end
end
MyClass.method # call
obj = Object.new
def obj.method # definition
end
obj.method # call
def (1.class).fred # receiver may be an expression
end
Fixnum.fred # call

Method definitions may not contain class or module definitions. They may contain nested
instance or singleton method definitions. The internal method is defined when the enclosing
method is executed. The internal method does not act as a closure in the context of the
nested method—it is self-contained.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=352

METHOD DEFINITION 353

def toggle
def toggle
"subsequent times"
end
"first time"
end

toggle # => "first time"
toggle # => '"subsequent times"
toggle # => '"subsequent times"

The body of a method acts as if it were a begin/end block, in that it may contain exception
handling statements (rescue, else, and ensure).

Method Arguments

A method definition may have zero or more regular arguments and an optional block argu-
ment. Arguments are separated by commas, and the argument list may be enclosed in paren-
theses.

A regular argument is a local variable name, optionally followed by an equals sign and
an expression giving a default value. The expression is evaluated at the time the method
is called. The expressions are evaluated from left to right. An expression may reference a
parameter that precedes it in the argument list.

def options(a=99, b=a+l)

[a, b]
end
options # => [99, 100]
options 1 # => [1, 2]
options 2, 4 # => [2, 4]

=2 , In Ruby 1.9, arguments without default values may appear after arguments with defaults.
When such a method is called, Ruby will use the default values only if fewer parameters are
passed to the method call than the total number of arguments.

def mixed(a, b=50, c=b+10, d)

[a, b, c, d]
end
mixed 1, 2 # = [1, 50, 60, 2]
mixed 1, 2, 3 # = [1, 2, 12, 3]

mixed 1, 2, 3, 4 # = [1, 2, 3, 4]

As with parallel assignment, one of the arguments may start with an asterisk. If the method
call specifies any parameters in excess of the regular argument count, all these extra param-
eters will be collected into this newly created array.

def varargs(a, #b)

[a, b]
end
varargs 1 #=> [1, []1]
varargs 1, 2 #=> [1, [2]]
varargs 1, 2, 3 # => [1, [2, 3]]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=353

METHOD DEFINITION 354

19, m Ruby 1.9, this argument need not be the last in the argument list. See the description of
parallel assignment to see how values are assigned to this parameter.

def splat(a, *b, c)

[a, b, c]
end
splat 1, 2 # = [1, []1, 2]
splat 1, 2, 3 # => [1, [2], 3]
splat 1, 2, 3, 4 # => [1, [2, 3], 4]

If an array argument follows arguments with default values, parameters will first be used to
override the defaults. The remainder will then be used to populate the array.

def mixed(a, b=99, =*c)

[a, b, c]
end
mixed 1 #=>[1, 99, []]
mixed 1, 2 # = [1, 2, [1]
mixed 1, 2, 3 # = [1, 2, [3]]
mixed 1, 2, 3, 4 # => [1, 2, [3, 4]]

The optional block argument must be the last in the list. Whenever the method is called,
Ruby checks for an associated block. If a block is present, it is converted to an object of
class Proc and assigned to the block argument. If no block is present, the argument is set to

nil.
def example(&block)
puts block.inspect
end
example
example { "a block" }
produces:

nil
#<Proc:0x0a5064@/tmp/prog.rb:6>

Undefining a Method

The keyword undef allows you to undefine a method.
undef name | symbol [, ...]

An undefined method still exists—it is simply marked as being undefined. If you undefine a
method in a child class and then call that method on an instance of that child class, Ruby will
immediately raise a NoMethodError—it will not look for the method in the child’s parents.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=354

INVOKING A METHOD 355

Invoking a Method

[receiver. | name [parameters] [block]
[receiver::] name [parameters] [block]

parameters «— ([param, ...] [, hashlist] [«array] [&a proc])

block «— { blockbody }
do blockbody end

The parentheses around the parameters may be omitted if it is otherwise unambiguous.

Initial parameters are assigned to the actual arguments of the method. Following these
=2 / parameters may be a list of key => value or key: value pairs. These pairs are collected into a
single new Hash object and passed as a single parameter.

=2 / Any parameter may be a single parameter prefixed with an asterisk. If a starred parameter
supports the to_a method, that method is called, and the resulting array is expanded inline
to provide parameters to the method call. If a starred argument does not support to_a, it is
simply passed through unaltered.

def regular(a, b, =c)
"a=#{a}, b=#{b}, c=#{c}"
end

regular 1, 2, 3, 4 # => a=1, b=2, c=[3, 4]
regular(1, 2, 3, 4) # => a=1, b=2, c=[3, 4]
regular(1, =[2, 3, 4]) # => a=1, b=2, c=[3, 4]
regular(1, =[2, 3], 4) # => a=1, b=2, c=[3, 4]
regular(1l, *[2, 3], *4) # => a=1, b=2, c=[3, 4]
regular(=[], 1, =[], =[2, 3], =[], 4) # => a=1, b=2, c=[3, 4]

A block may be associated with a method call using either a literal block (which must start
on the same source line as the last line of the method call) or a parameter containing a
reference to a Proc or Method object prefixed with an ampersand character.

def some_method
yield
end
some_method { }
some_method do
end
a_proc = lambda { 99 }
some_method(&a_proc)

Ruby arranges for the value of Kernel.block_given? to reflect the availability of a block
associated with the call, regardless of the presence of a block argument. A block argument
will be set to nil if no block is specified on the call to a method.

def other_method(&block)
puts "block_given = #{block_given?}, block = #{block.inspect}"
end
other_method { }
other_method

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=355

INVOKING A METHOD 356

produces:

block_given = true, block = #<Proc:0x0a4f88@/tmp/prog.rb:4>
block_given = false, block = nil

A method is called by passing its name to a receiver. If no receiver is specified, self is
assumed. The receiver checks for the method definition in its own class and then sequen-
tially in its ancestor classes. The instance methods of included modules act as if they were
in anonymous superclasses of the class that includes them. If the method is not found, Ruby
invokes the method method_missing in the receiver. The default behavior defined in Ker-
nel.method_missing is to report an error and terminate the program. Library

When a receiver is explicitly specified in a method invocation, it may be separated from the
method name using either a period (.) or two colons (::). The only difference between these
two forms occurs if the method name starts with an uppercase letter. In this case, Ruby will
assume that a receiver::Thing method call is actually an attempt to access a constant called
Thing in the receiver unless the method invocation has a parameter list between parentheses.
Using :: to indicate a method call is mildly deprecated.

Foo.Bar() # method call
Foo.Bar # method call
Foo::Bar() # method call
Foo::Bar # constant access

The return value of a method is the value of the last expression executed.

def odd_or_even(val)
if val.odd?
"odd"
else
"even"
end
end

odd_or_even(26) # => '"even"
odd_or_even(27) # => "odd"

A return expression immediately exits a method.
return [expr, ...]

The value of a return is nil if it is called with no parameters, the value of its parameter if it
is called with one parameter, or an array containing all of its parameters if it is called with
more than one parameter.

super
super [([param, ...] [=array])] [block]

Within the body of a method, a call to super acts just like a call to that original method,
except that the search for a method body starts in the superclass of the object that was found
to contain the original method. If no parameters (and no parentheses) are passed to super,

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=356

INVOKING A METHOD 357

the original method’s parameters will be passed; otherwise, the parameters to super will be
passed.

Operator Methods

expr1 operator
operator expr1
expr1 operator expr2

If the operator in an operator expression corresponds to a redefinable method (see Table 22.4
on page 345), Ruby will execute the operator expression as if it had been written like this:

(expr1) . operator() or
(expr1) . operator(expr2)

Attribute Assignment

receiver. attrname = rvalue

When the form receiver.attrname appears as an lvalue, Ruby invokes a method named atir-
name= in the receiver, passing rvalue as a single parameter. The value returned by this
assignment is always rvalue—the return value of the method attrname= is discarded. If you
want to access the return value (in the unlikely event that it isn’t the rvalue anyway), send
an explicit message to the method.

class Demo
attr_reader :attr
def attr=(val)
@attr = val
"return value"
end
end

d = Demo.new

In all these cases, @attr is set to 99
d.attr = 99 # => 99
d.attr=(99) # => 99
d.send(:attr=, 99) # => ‘'"return value"
d.attr # => 99

Element Reference Operator

receiver[expr [, expr]... 1
receiver[expr [, expr]... 1 = rvalue

When used as an rvalue, element reference invokes the method [] in the receiver, passing as
parameters the expressions between the brackets.

When used as an Ivalue, element reference invokes the method []= in the receiver, passing
as parameters the expressions between the brackets, followed by the rvalue being assigned.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=357

ALIASING 358

Aliasing
alias new_name old_name

This creates a new name that refers to an existing method, operator, global variable, or
regular expression backreference ($&, $°, $', and $+). Local variables, instance variables,
class variables, and constants may not be aliased. The parameters to alias may be names or
symbols.

class Fixnum
alias plus +
end
1.plus(3) # => 4

alias $prematch $°
"string" =~ /i/ # => 3
$prematch # =>

str

alias :cmd :°
cmd "date" # => "Mon Apr 13 13:26:12 CDT 2009\n"

When a method is aliased, the new name refers to a copy of the original method’s body. If
the method is subsequently redefined, the aliased name will still invoke the original imple-
mentation.

def meth
"original method"
end
alias original meth
def meth
"new and improved"
end
meth # => '"new and improved"
original # => ‘"original method"

Class Definition

class [scope::] classname [< superexpr |
body
end

class << obj
body
end

A Ruby class definition creates or extends an object of class Class by executing the code
in body. In the first form, a named class is created or extended. The resulting Class object
is assigned to a constant named classname (keep reading for scoping rules). This name
should start with an uppercase letter. In the second form, an anonymous (singleton) class is
associated with the specific object.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=358

CLASS DEFINITION 359

If present, superexpr should be an expression that evaluates to a Class object that will be
the superclass of the class being defined. If omitted, it defaults to class Object.

Within body, most Ruby expressions are executed as the definition is read. However:
* Method definitions will register the methods in a table in the class object.

¢ Nested class and module definitions will be stored in constants within the class, not as
global constants. These nested classes and modules can be accessed from outside the
defining class using :: to qualify their names.

module NameSpace
class Example
CONST = 123
end
end
obj = NameSpace: :Example.new
a = NameSpace: :Example: : CONST

* The Module#include method will add the named modules as anonymous superclasses
of the class being defined.

The classname in a class definition may be prefixed by the names of existing classes or
modules using the scope operator (::). This syntax inserts the new definition into the names-
pace of the prefixing module(s) and/or class(es) but does not interpret the definition in the
scope of these outer classes. A classname with a leading scope operator places that class or
module in the top-level scope.

In the following example, class C is inserted into module A’s namespace but is not inter-
preted in the context of A. As a result, the reference to CONST resolves to the top-level
constant of that name, not A’s version. We also have to fully qualify the singleton method
name, because C on its own is not a known constant in the context of A::C.

CONST = "outer"

module A
CONST = "inner" # This is A::CONST
end

module A
class B
def B.get_const
CONST
end
end
end

A::B.get_const # => "inner"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=359

MODULE DEFINITIONS 360

class A::C
def (A::C).get_const
CONST
end
end

A::C.get_const # => "outer"

It is worth emphasizing that a class definition is executable code. Many of the directives used
in class definitions (such as attr and include) are actually simply private instance methods of
class Module (documented starting on page 605). The value of a class definition is the value
of the last executed statement.

Chapter 24, which begins on page 384, describes in more detail how Class objects interact
with the rest of the environment.

Creating Objects from Classes

obj = classexpr.new [([args, ...])]

Class Class defines the instance method Class#new, which creates an object of the class of
the receiver (classexpr in the syntax example). This is done by calling the method class-
expr.allocate. You can override this method, but your implementation must return an object
of the correct class. It then invokes initialize in the newly created object and passes it any
arguments originally passed to new.

If a class definition overrides the class method new without calling super, no objects of that
class can be created, and calls to new will silently return nil.

Like any other method, initialize should call super if it wants to ensure that parent classes
have been properly initialized. This is not necessary when the parent is Object, because class
Object does no instance-specific initialization.

Class Attribute Declarations

Class attribute declarations are not part of the Ruby syntax; they are simply methods defined Library
in class Module that create accessor methods automatically.

class name
attr attribute [, writable]|

attr_reader attribute [, attribute J...

attr_writer attribute [, attribute J...

attr_accessor attribute [, attribute]...
end

Module Definitions

module name
body
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=360

MODULE DEFINITIONS 361

A module is basically a class that cannot be instantiated. Like a class, its body is executed
during definition, and the resulting Module object is stored in a constant. A module may
contain class and instance methods and may define constants and class variables. As with
classes, module methods are invoked using the Module object as a receiver, and constants
are accessed using the :: scope resolution operator. The name in a module definition may
optionally be preceded by the names of enclosing class(es) and/or module(s).

CONST = "outer"
module Mod
CONST = 1
def Mod.methodl # module method
CONST + 1
end
end
module Mod: :Inner
def (Mod::Inner).method?2
CONST + " scope"

end
end
Mod: : CONST #=> 1
Mod.methodl #=> 2
Mod: :Inner::method2 # => "outer scope"

Mixins: Including Modules

class|module name
include expr
end

A module may be included within the definition of another module or class using the include
method. The module or class definition containing the include gains access to the constants, Library
class variables, and instance methods of the module it includes.

If a module is included within a class definition, the module’s constants, class variables, and
instance methods made available via an anonymous (and inaccessible) superclass for that
class. Objects of the class will respond to messages sent to the module’s instance methods.
Calls to methods not defined in the class will be passed to the module(s) mixed into the class
before being passed to any parent class. A module may choose to define an initialize method,
which will be called upon the creation of an object of a class that mixes in the module if
either (a) the class does not define its own initialize method or (b) the class’s initialize method
invokes super.

A module may also be included at the top level, in which case the module’s constants, class
variables, and instance methods become available at the top level.

Module Functions

Although include is useful for providing mixin functionality, it is also a way of bringing
the constants, class variables, and instance methods of a module into another namespace.
However, functionality defined in an instance method will not be available as a module
method.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=361

AcCESs CONTROL 362

module Math

def sin(x)

#

end
end
Only way to access Math.sin is...
include Math
sin(1)

The method Module#module_function solves this problem by taking one or more module Library
instance methods and copying their definitions into corresponding module methods.

module Math

def sin(x)

#

end

module_function :sin
end
Math.sin(1)
include Math
sin(1)

The instance method and module method are two different methods: the method definition
is copied by module_function, not aliased.

You can also use module_function with no parameters, in which case all subsequent methods
will be module methods.

Access Control

Ruby defines three levels of protection for module and class constants and methods:

* Public. Accessible to anyone.

* Protected. Can be invoked only by objects of the defining class and its subclasses.

* Private. Can be called only in functional form (that is, with an implicit self as the
receiver). Private methods therefore can be called in the defining class and by that
class’s descendents and ancestors, but only within the same object. See the discussion
starting on page 61 for examples.

private [symbol, ...]
protected [symbol, ...]
public [symbol, ...]
Each function can be used in two different ways: Library

* If used with no arguments, the three functions set the default access control of subse-
quently defined methods.

* With arguments, the functions set the access control of the named methods and con-
stants.

Access control is enforced when a method is invoked.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=362

BLOCKS, CLOSURES, AND PROC OBJECTS 363

Blocks, Closures, and Proc Objects

A code block is a set of Ruby statements and expressions between braces or a do/end pair.
The block may start with an argument list between vertical bars. A code block may appear
only immediately after a method invocation. The start of the block (the brace or the do)
must be on the same logical line as the end of the invocation.

invocation do | al, a2, ... |
end

invocation { | a1, a2, ... |
}

Braces have a high precedence; do has a low precedence. If the method invocation has
parameters that are not enclosed in parentheses, the brace form of a block will bind to the
last parameter, not to the overall invocation. The do form will bind to the invocation.

Within the body of the invoked method, the code block may be called using the yield key-
word. Parameters passed to the yield will be assigned to arguments in the block. A warning
will be generated if yield passes multiple parameters to a block that takes just one. The
return value of the yield is the value of the last expression evaluated in the block or the value
passed to a next statement executed in the block.

A block is a closure; it remembers the context in which it was defined, and it uses that
context whenever it is called. The context includes the value of self, the constants, class
variables, local variables, and any captured block.

class BlockExample
CONST = 0
@@a = 3
def return_closure
a=1
@a = 2
lambda { [CONST, a, @a, @@a, yield] }
end
def change_values
@a += 1
@@a += 1
end
end

eg = BlockExample.new
block = eg.return_closure { "original" }

block.call # => [0, 1, 2, 3, "original"]

eg.change_values

block.call # => [0, 1, 3, 4, "original"]
Here, the return_closure method returns a lambda that encapsulates access to the local vari-
able a, instance variable @a, class variable @@a, and constant CONST. We call the block
outside the scope of the object that contains these values, and they are still available via the

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=363

BLOCKS, CLOSURES, AND PROC OBJECTS 364

closure. If we then call the object to change some of the values, the values accessed via the
closure also change.
Block Arguments
=2 / Asof Ruby 1.9, block argument lists are more like method argument lists:
* You can specify default values.
* You can specify splat (starred) arguments.

* The last argument can be prefixed with an ampersand, in which case it will collect any
block passed when the original block is called.

These changes make it possible to use Module#define_method to create methods based on
blocks that have similar capabilities to methods created using def.

Proc Objects

Ruby’s blocks are chunks of code attached to a method. They operate in the context in which
they were defined. Blocks are not objects, but they can be converted into objects of class
Proc. There are four ways of converting a block into a Proc object.

* By passing a block to a method whose last parameter is prefixed with an ampersand.
That parameter will receive the block as a Proc object.

def methl(pl, p2, &block)
puts block.inspect

end
meth1(1,2) { "a block" }
methl(3,4)
produces:
#<Proc:0x0a4f4c@/tmp/prog.rb:4>
nil
* By calling Proc.new, again associating it with a block.” Library

block = Proc.new { "a block" }
block # => #<Proc:0x0a53c0@/tmp/prog.rb:1>

* By calling the method Kernel.lambda, associating a block with the call. Library

block = lambda { "a block" }
block # => #<Proc:0x0a53e8@/tmp/prog.rb:1 (lambda)>

=2 7 * As of Ruby 1.9, using the -> syntax.

lam = —>(pl1, p2) { p1 + p2 }
lam.call(4, 3) # => 7

Note that there cannot be a space between > and the opening parenthesis.

1.9 7.

=T 7/ There’s also a built-in Kernel.proc method. In Ruby 1.8, this was equivalent to lambda. In Ruby 1.9, it is the

same as Proc.new. Don’t use proc in new code.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=364

BLOCKS, CLOSURES, AND PROC OBJECTS 365

The first two styles of Proc object are identical in use. We’ll call these objects raw procs.
The third and fourth styles, generated by lambda and ->, add some functionality to the Proc
object, as we’ll see in a minute. We’ll call these objects lambdas.

Calling a Proc

You can call a proc by invoking its methods call, yield, or []. The three forms are identical.
Each takes arguments that can be passed to the proc, just as if it were a regular method call.
If the proc you’re invoking is a lambda, Ruby will check that the supplied arguments match
the expected parameters.

You can also invoke a proc using the syntax name.(args...). This is mapped internally into
a.call(...).

Procs, break, and next

Within both raw procs and lambdas, executing next causes the block to exit. The value of
the block is the value (or values) passed to next, or nil if no values are passed.

def meth

res = yield

"The block returns #{res}"
end

meth { next 99 } # => "The block returns 99"

pr = Proc.new { next 99 }
pr.call # => 99

pr = lambda { next 99 }
pr.call # => 99

pr = ->() { next 99 }
pr.call #=> 99

Within a raw proc, a break terminates the method that invoked the block. The return value
of the method is any parameters passed to the break.

Return and Blocks

A return from inside a block that’s still in scope acts as a return from that scope. A return
from a block whose original context is not longer valid raises an exception (LocalJumpError
or ThreadError depending on the context). The following example illustrates the first case:

def methl
(1..10).each do |val|
return val # returns from methl
end
end

methl # => 1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=365

BLOCKS, CLOSURES, AND PROC OBJECTS

This example shows a return failing because the context of its block no longer exists:

def meth2(&b)

b
end
res = meth2 { return }
res.call
produces:

prog.rb:5:in "block in <main>': unexpected return (LocalJumpError)
from /tmp/prog.rb:6:in “call'
from /tmp/prog.rb:6:in “<main>'

And here’s a return failing because the block is created in one thread and called in another:

def meth3
yield
end
t = Thread.new do
meth3 { return }
end
t.join
produces:
prog.rb:6:in "block (2 levels) in <main>': unexpected return (LocalJumpError)
from /tmp/prog.rb:2:in ‘meth3’
from /tmp/prog.rb:6:in "block in <main>'

The situation with Proc objects is slightly more complicated. If you use Proc.new to create
a proc from a block, that proc acts like a block, and the previous rules apply:

def meth4
p = Proc.new { return 99 }
p.call
puts "Never get here"

end

methd # => 99

If the Proc object is created using Kernel.lambda, it behaves more like a free-standing
method body: a return simply returns from the block to the caller of the block:

def meth5
p = lambda { return 99 }
res = p.call
"The block returned #{res}"
end

meth5 # => "The block returned 99"

Because of this, if you use Module#define_method, you’ll probably want to pass it a proc
created using lambda, not Proc.new, because return will work as expected in the former and
will generate a LocaldumpkError in the latter.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=366

EXCEPTIONS 367

Exceptions

Ruby exceptions are objects of class Exception and its descendents (a full list of the built-in
exceptioons is given in Figure 27.1 on page 502).

Raising Exceptions
The Kernel.raise method raises an exception: Library

raise
raise string
raise thing [, string [stack trace]]

The first form reraises the exception in $! or a new RuntimeError if $! is nil.

The second form creates a new RuntimeError exception, setting its message to the given
string.

The third form creates an exception object by invoking the method exception on its first
argument. It then sets this exception’s message and backtrace to its second and third argu-
ments.

Class Exception and objects of class Exception contain a factory method called exception,
so an exception class name or instance can be used as the first parameter to raise.

When an exception is raised, Ruby places a reference to the Exception object in the global
variable $!.

Handling Exceptions

Exceptions may be handled in the following ways:
* Within the scope of a begin/end block:

begin
code...
code...
[rescue [parm, ...] [=> var] [then]
error handling code... ,
[else
no exception code... |
[ensure
always executed code... |
end

* Within the body of a method:

def method and args
code...
code...
[rescue [parm, ...] [=> var] [then]
error handling code... ,
[else
no exception code... |

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=367

EXCEPTIONS 368

[ensure
always executed code... |
end

 After the execution of a single statement:
statement [rescue statement, ...]|

A block or method may have multiple rescue clauses, and each rescue clause may specify
Zero or more exception parameters. A rescue clause with no parameter is treated as if it
had a parameter of StandardError. This means that some lower-level exceptions will not be
caught by a parameterless rescue class. If you want to rescue every exception, use this:

rescue Exception => e

When an exception is raised, Ruby scans the call stack until it finds an enclosing begin/end
block, method body, or statement with a rescue modifier. For each rescue clause in that
block, Ruby compares the raised exception against each of the rescue clause’s parameters
in turn; each parameter is tested using parameter===3$!. If the raised exception matches a
rescue parameter, Ruby executes the body of the rescue and stops looking. If a matching
rescue clause ends with => and a variable name, the variable is set to $!.

Although the parameters to the rescue clause are typically the names of Exception classes,
they can actually be arbitrary expressions (including method calls) that return an appropriate
class.

If no rescue clause matches the raised exception, Ruby moves up the stack looking for a
higher-level begin/end block that matches. If an exception propagates to the top level of the
main thread without being rescued, the program terminates with a message.

If an else clause is present, its body is executed if no exceptions were raised in code. Excep-
tions raised during the execution of the else clause are not captured by rescue clauses in the
same block as the else.

If an ensure clause is present, its body is always executed as the block is exited (even if an
uncaught exception is in the process of being propagated).

Within a rescue clause, raise with no parameters will reraise the exception in $!.

Rescue Statement Modifier

A statement may have an optional rescue modifier followed by another statement (and
by extension another rescue modifier, and so on). The rescue modifier takes no exception
parameter and rescues StandardError and its children.

If an exception is raised to the left of a rescue modifier, the statement on the left is aban-
doned, and the value of the overall line is the value of the statement on the right:

values = ["1", "2.3", /pattern/]
result = values.map {|v| Integer(v) rescue Float(v) rescue String(v) }

result # => [1, 2.3, "(?-mix:pattern)"]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=368

CATCH AND THROW 369

Retrying a Block

The retry statement can be used within a rescue clause to restart the enclosing begin/end
block from the beginning.

Catch and Throw

The method Kernel.catch executes its associated block: Library

catch (symbol | string) do
block...
end

The method Kernel.throw interrupts the normal processing of statements: Library
throw(symbol | string [, obj])

When a throw is executed, Ruby searches up the call stack for the first catch block with a
matching symbol or string. If it is found, the search stops, and execution resumes past the
end of the catch’s block. If the throw was passed a second parameter, that value is returned as
the value of the catch. Ruby honors the ensure clauses of any block expressions it traverses
while looking for a corresponding catch.

If no catch block matches the throw, Ruby raises a NameError exception at the location of
the throw.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=369

Chapter 23

Duck Typing

You’ll have noticed that in Ruby we don’t declare the types of variables or methods—
everything is just some kind of object.

Now, it seems like folks react to this in two ways. Some like this kind of flexibility and
feel comfortable writing code with dynamically typed variables and methods. If you’re one
of those people, you might want to skip to the section called “Classes Aren’t Types” on
the next page. Some, though, get nervous when they think about all those objects floating
around unconstrained. If you’ve come to Ruby from a language such as C# or Java, where
you’re used to giving all your variables and methods a type, you may feel that Ruby is just
too sloppy to use to write “real” applications.

Itisn’t.

We’d like to spend a couple of paragraphs trying to convince you that the lack of static
typing is not a problem when it comes to writing reliable applications. We’re not trying to
criticize other languages here. Instead, we’d just like to contrast approaches.

The reality is that the static type systems in most mainstream languages don’t really help
that much in terms of program security. If Java’s type system were reliable, for example,
it wouldn’t need to implement ClassCastException. The exception is necessary, though,
because there is runtime type uncertainty in Java (as there is in C++, C#, and others). Static
typing can be good for optimizing code, and it can help IDEs do clever things with tooltip
help, but we haven’t seen much evidence that it promotes more reliable code.

On the other hand, once you use Ruby for a while, you realize that dynamically typed vari-
ables actually add to your productivity in many ways. You’ll also be surprised to discover
that your fears about the type chaos were unfounded. Large, long-running, Ruby programs
run significant applications and just don’t throw any type-related errors. Why is this?

Partly, it’s a question of common sense. If you coded in Java (pre-Java 1.5), all your con-
tainers were effectively untyped: everything in a container was just an Object, and you cast
it to the required type when you extracted an element. And yet you probably never saw
a ClassCastException when you ran these programs. The structure of the code just didn’t
permit it. You put Person objects in, and you later took Person objects out. You just don’t
write programs that would work in another way.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=370

CLASSES AREN'T TYPES 371

Well, it’s the same in Ruby. If you use a variable for some purpose, chances are very good
that you’ll be using it for the same purpose when you access it again three lines later. The
kind of chaos that could happen just doesn’t happen.

On top of that, folks who code Ruby a lot tend to adopt a certain style of coding. They write
lots of short methods and tend to test as they go along. The short methods mean that the
scope of most variables is limited; there just isn’t that much time for things to go wrong
with their type. And the testing catches the silly errors when they happen; typos and the like
just don’t get a chance to propagate through the code.

The upshot is that the “safety” in “type safety” is often illusory and that coding in a more
dynamic language such as Ruby is both safe and productive. So, if you’re nervous about the
lack of static typing in Ruby, we suggest you try to put those concerns on the back burner
for a little while and give Ruby a try. We think you’ll be surprised at how rarely you see
errors because of type issues and at how much more productive you feel once you start to
exploit the power of dynamic typing.

Classes Aren’t Types

The issue of types is actually somewhat deeper than an ongoing debate between strong
typing advocates and the hippie-freak dynamic typing crowd. The real issue is the question,
what is a type in the first place?

If you’ve been coding in conventional typed languages, you’ve probably been taught that
the fype of an object is its class—all objects are instances of some class, and that class is the
object’s type. The class defines the operations (methods) the object can support, along with
the state (instance variables) on which those methods operate. Let’s look at some Java code:

Customer c;
¢ = database.findCustomer("dave"); /% Java =/

This fragment declares the variable ¢ to be of type Customer and sets it to reference the
customer object for Dave that we’ve created from some database record. So, the type of the
object in ¢ is Customer, right?

Maybe. However, even in Java, the issue is slightly deeper. Java supports the concept of
interfaces, which are a kind of emasculated abstract base class. A Java class can be declared
as implementing multiple interfaces. Using this facility, you may have defined your classes
as follows:

public interface Customer {
long getID();
Calendar getDateOfLastContact();
/] ...
}
public class Person
implements Customer {

public long getID() { ... }
public Calendar getDateOfLastContact() { ... }
/] ...

}

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=371

CLASSES AREN'T TYPES 372

So, even in Java, the class is not always the type—sometimes the type is a subset of the
class, and sometimes objects implement multiple types.

In Ruby, the class is never (OK, almost never) the type. Instead, the type of an object is
defined more by what that object can do. In Ruby, we call this duck typing. If an object
walks like a duck and talks like a duck, then the interpreter is happy to treat it as if it were
a duck.

Let’s look at an example. Perhaps we’ve written a method to write our customer’s name to
the end of an open file:

Download samples/ducktyping_3.rb

class Customer
def initialize(first_name, last_name)
@first_name = first_name
@last_name = last_name
end
def append_name_to_file(file)
file << @first_name << " "
end
end

<< @last_name

Being good programmers, we’ll write a unit test for this. Be warned, though—it’s messy
(and we’ll improve on it shortly):

Download samples/ducktyping_4.rb

require 'test/unit'’
require 'addcust'
class TestAddCustomer < Test::Unit::TestCase
def test_add
c = Customer.new("Ima", "Customer™)
f = File.open("tmpfile", "w") do |f|
c.append_name_to_file(f)
end
f = File.open("tmpfile") do |f|
assert_equal("Ima Customer", f.gets)
end
ensure
File.delete("tmpfile") if File.exist?("tmpfile")
end
end

produces:
Finished in 0.001084 seconds.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

We have to do all that work to create a file to write to, then reopen it, and read in the contents
to verify the correct string was written. We also have to delete the file when we’ve finished
(but only if it exists).

Instead, though, we could rely on duck typing. All we need is something that walks like a
file and talks like a file that we can pass in to the method under test. And all that means in

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=372

CLASSES AREN'T TYPES 373

this circumstance is that we need an object that responds to the << method by appending
something. Do we have something that does this? How about a humble String?

Download samples/ducktyping_5.rb

require 'test/unit'
require 'addcust'
class TestAddCustomer < Test::Unit::TestCase
def test_add
¢ = Customer.new("Ima", "Customer")
£ o o
c.append_name_to_file(f)
assert_equal("Ima Customer", f)
end
end

produces:

Finished in 0.000361 seconds.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The method under test thinks it’s writing to a file, but instead it’s just appending to a string.
At the end, we can then just test that the content is correct.

We didn’t have to use a string—for the object we’re testing here, an array would work just
as well:

Download samples/ducktyping_6.rb

require 'test/unit'
require 'addcust'
class TestAddCustomer < Test::Unit::TestCase
def test_add
¢ = Customer.new("Ima", "Customer")
f=11
c.append_name_to_file(f)
assert_equal(["Ima", " ", "Customer"], f)
end
end

produces:

Finished in 0.000405 seconds.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Indeed, this form may be more convenient if we wanted to check that the correct individual
things were inserted.

So, duck typing is convenient for testing, but what about in the body of applications them-
selves? Well, it turns out that the same thing that made the tests easy in the previous example
also makes it easy to write flexible application code.

In fact, Dave had an interesting experience where duck typing dug him (and a client) out of
a hole. He’d written a large Ruby-based web application that (among other things) kept a

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=373

CLASSES AREN'T TYPES 374

database table full of details of participants in a competition. The system provided a comma-
separated value (CSV) download capability, allowing administrators to import this informa-
tion into their local spreadsheets.

Just before competition time, the phone starts ringing. The download, which had been work-
ing fine up to this point, was now taking so long that requests were timing out. The pressure
was intense, because the administrators had to use this information to build schedules and
send out mailings.

A little experimentation showed that the problem was in the routine that took the results of
the database query and generated the CSV download. The code looked something like this:

def csv_from_row(op, row)
res = ""
until row.empty?
entry = row.shift.to_s
if /[,"]1/ =~ entry
entry = entry.gsub(/"/, '""")

res << << entry <<
else
res << entry
end
res << "," unless row.empty?
end
op << res << CRLF
end
result = ""

query.each_row {|row| csv_from_row(result, row)}
http.write result

When this code ran against moderate-size data sets, it performed fine. But at a certain input
size, it suddenly slowed right down. The culprit? Garbage collection. The approach was
generating thousands of intermediate strings and building one big result string, one line at
a time. As the big string grew, it needed more space, and garbage collection was invoked,
which necessitated scanning and removing all the intermediate strings.

The answer was simple and surprisingly effective. Rather than build the result string as it
went along, the code was changed to store each CSV row as an element in an array. This
meant that the intermediate lines were still referenced and hence were no longer garbage.
It also meant that we were no longer building an ever-growing string that forced garbage
collection. Thanks to duck typing, the change was trivial:

def csv_from_row(op, row)
as before
end

result = []
query.each_row {|row| csv_from_row(result, row)}

http.write result.join

All that changed is that we passed an array into the csv_from_row method. Because it
(implicitly) used duck typing, the method itself was not modified; it continued to append

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=374

CODING LIKE A Duck 375

the data it generated to its parameter, not caring what type that parameter was. After the
method returned its result, we joined all those individual lines into one big string. This one
change reduced the time to run from more than three minutes to a few seconds.

Coding like a Duck

If you want to write your programs using the duck typing philosophy, you really need to
remember only one thing: an object’s type is determined by what it can do, not by its class.

=2 /s (In fact, older versions of Ruby had a method Object#type that returned the class of an
object. That has been removed in Ruby 1.9—the name type was misleading.)

What does this mean in practice? At one level, it simply means that there’s often little value
testing the class of an object.

For example, you may be writing a routine to add song information to a string. If you come
from a C# or Java background, you may be tempted to write this:

def append_song(result, song)
test we're given the right parameters
unless result.kind_of?(String)
fail TypeError.new("String expected")
end
unless song.kind_of?(Song)
fail TypeError.new("Song expected")
end
result << song.title << "
end

(" << song.artist << ")"

result =
append_song(result, song) # => "I Got Rhythm (Gene Kelly)"

Embrace Ruby’s duck typing, and you’d write something far simpler:

def append_song(result, song)
result << song.title << " (" << song.artist << ")"
end

result =
append_song(result, song) # => "I Got Rhythm (Gene Kelly)"

You don’t need to check the type of the arguments. If they support << (in the case of result)
or title and artist (in the case of song), everything will just work. If they don’t, your method
will throw an exception anyway (just as it would have done if you’d checked the types). But
without the check, your method is suddenly a lot more flexible. You could pass it an array,
a string, a file, or any other object that appends using <<, and it would just work.

Now sometimes you may want more than this style of laissez-faire programming. You may
have good reasons to check that a parameter can do what you need. Will you get thrown out

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=375

STANDARD PROTOCOLS AND COERCIONS 376

of the duck typing club if you check the parameter against a class? No, you won’t.! But you
may want to consider checking based on the object’s capabilities, rather than its class:

Download samples/ducktyping_11.rb

def append_song(result, song)
test we're given the right parameters
unless result.respond_to?(:<<)
fail TypeError.new("'result' needs "<<' capability")
end
unless song.respond_to?(:artist) && song.respond_to?(:title)
fail TypeError.new("'song' needs 'artist' and 'title'")
end
result << song.title << "
end

(" << song.artist << ")"

result =
append_song(result, song) # => "I Got Rhythm (Gene Kelly)"

However, before going down this path, make sure you’re getting a real benefit—it’s a lot of
extra code to write and to maintain.

Standard Protocols and Coercions

Although not technically part of the language, the interpreter and standard library use vari-
ous protocols to handle issues that other languages would deal with using types.

Some objects have more than one natural representation. For example, you may be writing a
class to represent Roman numbers (I, II, III, IV, V, and so on). This class is not necessarily a
subclass of Integer, because its objects are representations of numbers, not numbers in their
own right. At the same time, they do have an integer-like quality. It would be nice to be able
to use objects of our Roman number class wherever Ruby was expecting to see an integer.

To do this, Ruby has the concept of conversion protocols—an object may elect to have itself
converted to an object of another class. Ruby has three standard ways of doing this.

We’ve already come across the first. Methods such as to_s and to_i convert their receiver
into strings and integers. These conversion methods are not particularly strict. If an object
has some kind of decent representation as a string, for example, it will probably have a
to_s method. Our Roman class would probably implement to_s in order to return the string
representation of a number (VII, for instance).

The second form of conversion function uses methods with names such as to_str and to_int.
These are strict conversion functions. You implement them only if your object can naturally
be used every place a string or an integer could be used. For example, our Roman number

1. The duck typing club doesn’t check to see whether you’re a member anyway. ...

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=376

STANDARD PROTOCOLS AND COERCIONS 377

objects have a clear representation as an integer and so should implement to_int. When it
comes to stringiness, however, we have to think a bit harder.

Roman numbers clearly have a string representation, but are they strings? Should we be able
to use them wherever we can use a string itself? No, probably not. Logically, they’re a rep-
resentation of a number. You can represent them as strings, but they aren’t plug-compatible
with strings. For this reason, a Roman number won’t implement to_str—it isn’t really a
string. Just to drive this home: Roman numerals can be converted to strings using to_s, but
they aren’t inherently strings, so they don’t implement to_str.

To see how this works in practice, let’s look at opening a file. The first parameter to File.new
can be either an existing file descriptor (represented by an integer) or a filename to open.
However, Ruby doesn’t simply look at the first parameter and check whether its type is
Fixnum or String. Instead, it gives the object passed in the opportunity to represent itself as
a number or a string. If it were written in Ruby, it may look something like this:

Download samples/ducktyping_12.rb

class File
def File.new(file, =args)
if file.respond_to?(:to_int)
I0.new(file.to_int, =args)
else
name = file.to_str
call operating system to open file 'name'
end
end
end

So, let’s see what happens if we want to pass a file descriptor integer stored as a Roman
number into File.new. Because our class implements to_int, the first respond_to? test will
succeed. We’ll pass an integer representation of our number to 10.open, and the file descrip-
tor will be returned, all wrapped up in a new 1O object.

A small number of strict conversion functions are built into the standard library.

to_ary — Array
This is used when interpreter needs a parameter to a method to be an array, and when
expanding parameters and assignments containing the *xyz syntax.

Download samples/ducktyping_13.rb

class OneTwo

def to_ary
[1, 2]
end
end

ot = OneTwo.new
puts ot

produces:

1
2

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_12.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=377

STANDARD PROTOCOLS AND COERCIONS 378

to_a — Array
This is used when interpreter needs to convert an object into an array for parameter
19 , passing or multiple assignment.

Download samples/ducktyping_14.rb

class OneTwo

def to_a
[1, 2]
end
end

ot = OneTwo.new

a, b = »ot

puts "a = #{a}, b = #{b}"

printf("%d -- %d\n", =*ot)
produces:

a=1,b=2
1--2

to_enum — Enumerator
= 7 This converts an object (presumably a collection) to an enumerator. It’s never called
internally by the interpreter.

to_hash — Hash
This is used when the interpreter expects to see Hash. (The only known use is the
second parameter to Hash#replace.)

to_int — Integer
This is used when the interpreter expects to see an integer value (such as a file descrip-
tor or as a parameter to Kernel.Integer).

to_io — 10
This is used when the interpreter is expecting I/O objects (for example, as parameters
to |O#reopen or 10.select).

to_open — 10
This is called (if defined) on the first parameter to 10.open.

to_path — String
= 7 This is called by the interpreter when it is looking for a filename (for example, by
File#open).

to_proc — Proc
This is used to convert an object prefixed with an ampersand in a method call.

class OneTwo
def to_proc
proc { "one-two" }
end
end
def silly
yield
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=378

STANDARD PROTOCOLS AND COERCIONS 379

Download samples/ducktyping_16.rb

ot = OneTwo.new
silly(&ot) # => "one-two"

to_regexp — Regexp
19 , This is invoked by Regexp#try_convert to convert its argument to a regular expression.

to_str — String
This is used pretty much any place the interpreter is looking for a String value.

Download samples/ducktyping_17.rb

class OneTwo

def to_str

"one-two"

end
end
ot = OneTwo.new
puts("count: " + ot)
File.open(ot) rescue puts $!.message

produces:

count: one-two
No such file or directory - one-two

to_sym — Symbol
This expresses the receiver as a symbol. This is used by the interpreter when compiling
instruction sequences, but it’s probably not useful in user code.

One last point is that classes such as Integer and Fixnum implement the to_int method, and
String implements to_str. That way you can call the strict conversion functions polymorphi-
cally:

it doesn't matter if obj is a Fixnum or a
Roman number, the conversion still succeeds
num = obj.to_int

The Symbol.to_proc Trick

=2 , Ruby 1.9 implements the to_proc for objects of class symbol. Say you want to convert an
array of strings to uppercase. You could write this:

names = %{ant bee cat}
result = names.map {|name| name.upcase}

That’s fairly concise, right? Return a new array where each element is the corresponding
element in the original, converted to uppercase. But, as of Ruby 1.9, you can instead write
this:

names = %{ant bee cat}
result = names.map(&:upcase)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_16.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=379

STANDARD PROTOCOLS AND COERCIONS 380

Now that’s concise: apply the upcase method to each element of names.
So, how does it work? It relies on Ruby’s type coercions. Let’s start at the top.

When you say names.map(&xxx), you're telling Ruby to pass the Proc object in xxx to the
map method as a block. If xxx isn’t already a Proc object, Ruby tries to coerce it into one
by sending it a to_proc message.

Now :upcase isn’t a Proc object—it’s a symbol. So when Ruby sees names.map(&:upcase),
the first thing it does is try to convert the symbol :upcase into a Proc by calling to_proc.
And, by an incredible coincidence, Ruby implements just such a method. If it was written
in Ruby, it would look something like this:

def to_proc
proc { |obj, =args| obj.send(self, =args) }
end

This method creates a Proc, which, when called on an object, sends that object the symbol
itself. So, when names.map(&:upcase) starts to iterate over the strings in names, it’ll call
the block, passing in the first name and invoking its upcase method.

It’s an incredibly elegant use of coercion and of closures. However, it comes at a price. The
use of dynamic method invocations mean that the version of our code that uses &:upcase
is about half as fast as the more explicitly coded block. This doesn’t worry me personally
unless I happen to be in a performance-critical section of my code.

Numeric Coercion

Back on page 376 we said there were three types of conversion performed by the interpreter.
We covered loose and strict conversion. The third is numeric coercion.

Here’s the problem. When you write 142, Ruby knows to call the + on the object 1 (a
Fixnum), passing it the Fixnum 2 as a parameter. However, when you write 1+2.3, the same
+ method now receives a Float parameter. How can it know what to do (particularly because
checking the classes of your parameters is against the spirit of duck typing)?

The answer lies in Ruby’s coercion protocol, based on the method coerce. The basic opera-
tion of coerce is simple. It takes two numbers (one as its receiver, the other as a parameter).
It returns a two-element array containing representations of these two numbers (but with
the parameter first, followed by the receiver). The coerce method guarantees that these two
objects will have the same class and therefore that they can be added (or multiplied, com-
pared, or whatever).

1.coerce(2) #=> [2, 1]

1.coerce(2.3) # => [2.3, 1.0]
(4.5).coerce(2.3) # => [2.3, 4.5]
(4.5).coerce(2) # => [2.0, 4.5]

The trick is that the receiver calls the coerce method of its parameter to generate this array.
This technique, called double dispatch, allows a method to change its behavior based not
only on its class but also on the class of its parameter. In this case, we’re letting the parameter
decide exactly what classes of objects should get added (or multiplied, divided, and so on).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=380

STANDARD PROTOCOLS AND COERCIONS 381

Let’s say that we’re writing a new class that’s intended to take part in arithmetic. To par-
ticipate in coercion, we need to implement a coerce method. This takes some other kind of
number as a parameter and returns an array containing two objects of the same class, whose
values are equivalent to its parameter and itself.

For our Roman number class, it’s fairly easy. Internally, each Roman number object holds
its real value as a Fixnum in an instance variable, @value. The coerce method checks to see
whether the class of its parameter is also an Integer. If so, it returns its parameter and its
internal value. If not, it first converts both to floating point.

Download samples/ducktyping_23.rb

class Roman
def initialize(value)
@value = value
end

def coerce(other)
if 1Integer === other
[other, @value]
else
[Float(other), Float(@value)]
end
end

.. other Roman stuff
end

iv = Roman.new(4)
Xi Roman.new(11)

3 % iv # => 12
1.1 »xi # = 12.1

Of course, class Roman as implemented doesn’t know how to do addition. You couldn’t have
written Xi+3 in the previous example, because Roman doesn’t have a + method. And that’s
probably as it should be. But let’s go wild and implement addition for Roman numbers:

Download samples/ducktyping_24.rb

class Roman
MAX_ROMAN = 4999
attr_reader :value
protected :value
def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX_ROMAN}"
end
@value = value
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_23.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=381

STANDARD PROTOCOLS AND COERCIONS 382

def coerce(other)

if 1Integer === other
[other, @value]
else
[Float(other), Float(@value)]
end
end
def +(other)
if Roman === other
other = other.value
end
if Fixnum === other && (other + @value) < MAX_ROMAN
Roman.new(@value + other)
else
X, Yy = other.coerce(@value)
X +y
end
end
FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 907, ["1", 501, ["x1", 40],
["x", 10], ["ix", 91, ["v", 51, ["iv", 4],
[, 111
def to_s
value = @value
roman = ""

for code, factor in FACTORS
count, value = value.divmod(factor)
roman << (code * count)
end
roman
end
end

Download samples/ducktyping_25.rb

iv = Roman.new(4)

x1i = Roman.new(11)

iv + 3 #=> vii

iv+ 3 + 4 #=> xi

iv + 3.14159 # => 7.14159
xi + 4900 # => mmmmcmxi
xi + 4990 # => 5001

Finally, be careful with coerce—try always to coerce into a more general type, or you may
end up generating coercion loops. This is a situation where A tries to coerce to B, and B
tries to coerce back to A.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_25.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=382

WALK THE WALK, TALK THE TALK 383

Walk the Walk, Talk the Talk

Duck typing can generate controversy. Every now and then a thread flares on the mailing
lists or someone blogs for or against the concept. Many of the contributors to these discus-
sions have some fairly extreme positions.

Ultimately, though, duck typing isn’t a set of rules; it’s just a style of programming. Design
your programs to balance paranoia and flexibility. If you feel the need to constrain the types
of objects that the users of a method pass in, ask yourself why. Try to determine what could
go wrong if you were expecting a String and instead get an Array. Sometimes, the difference
is crucially important. Often, though, it isn’t. Try erring on the more permissive side for
a while, and see whether bad things happen. If not, perhaps duck typing isn’t just for the
birds.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=383

Chapter 24

Metaprogramming

The Jacquard loom, invented more than 200 years ago, was the first device controlled using
punched cards—rows of holes in each card were used to control the pattern woven into the
cloth. But imagine if instead of churning out fabric, the loom could punch more cards, and
those cards could be fed back into the mechanism. The machine could be used to create new
programming that it could then execute. And that would be metaprogramming—writing
code that writes code.

Programming is all about building layers of abstractions. As you solve problems, you're
building bridges from the unrelenting and mechanical world of silicon to the more ambigu-
ous and fluid world we inhabit. Some programming languages—such as C—are close to
the machine. The distance from C code to the application domain can be large. Other
languages—Ruby, perhaps—provide higher-level abstractions and hence let you start cod-
ing closer to the target domain. For this reason, most people consider a higher-level language
to be a better starting place for application development (although they’ll argue about the
choice of language).

But when you metaprogram, you are no longer limited to the set of abstractions built in
to your programming language. Instead, you can create new abstractions that are inte-
grated into the host language. In effect, you're creating a new, domain-specific program-
ming language—one that’s designed to let you express the concepts you need to solve your
particular problem.

Ruby makes metaprogramming easy. As a result, most advanced Ruby programmers will
use metaprogramming techniques to simplify their code. This chapter shows how they do it.
It isn’t intended to be an exhaustive survey of metaprogramming techniques. Instead, we’ll
look at the underlying Ruby principles that make metaprogramming possible. From there
you’ll be able to invent your own metaprogramming idioms.

Objects and Classes

Classes and objects are obviously central to Ruby, but at first sight they can be a little con-
fusing. There seem to be a lot of concepts: classes, objects, class objects, instance methods,

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=384

OBJECTS AND CLASSES 385

class methods, singleton classes, and virtual classes. In reality, however, Ruby has just a
single underlying class and object structure.

A Ruby object has three components: a set of flags, some instance variables, and an associ-
ated class.

A Ruby class is itself an object of class Class. It contains all the things an object has plus a
set of method definitions and a reference to a superclass (which is itself another class).

And, basically, that’s it. From here, you could work out the details of metaprogramming for
yourself. But, as always, the devil lurks in the details, so let’s dig a little deeper.

self and Method Calling

Ruby has the concept of the current object. This current object is referenced by the built-in,
read-only variable self. self has two significant roles in a running Ruby program.

First, self controls how Ruby finds instance variables. We already said that every object
carries around a set of instance variables. When you access an instance variable, Ruby
looks for it in the object referenced by self.

Second, self plays a vital role in method calling. In Ruby, each method call is made on some
object. This object is called the receiver of the call. When you make a method call such as
items.size, the object referenced by the variable items is the receiver and size is the method
to invoke.

If you make a method call such as puts "hi", there’s no explicit receiver. In this case, Ruby
uses the current object, self, as the receiver. It goes to self’s class and looks up the method
(in this case, puts). If it can’t find the method in the class, it looks in the class’s superclass
and then in that class’s superclass, stopping when it runs out of superclasses (which will
happen after it has looked in BasicObject).'

When you make a method call with an explicit receiver (for example, invoking items.size),
the process is surprisingly similar. The only change—but it’s a vitally important one—is
the fact that self is changed for the duration of the call. Before starting the method lookup
process, Ruby sets self to the receiver (the object referenced by items in this case). Then,
after the call returns, Ruby restores the value that self had before the call.

Let’s see how this works in practice. Here’s a simple program:

Download samples/classes_1.rb

class Test
def one
@var = 99
two
end

1. If it can’t find the method after exhausting the object’s class hierarchy, Ruby looks for a method called
method_missing on the original receiver, starting back at the class of self and then looking up the superclass chain.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=385

OBJECTS AND CLASSES 386

def two
puts @var
end
end
t = Test.new
t.one

produces:
99

The call to Test.new on the second-to-last line creates a new object of class Test, assigning
that object to the variable t. Then, on the next line, we call the method t.one. To execute this
call, Ruby sets self to t and then looks in t’s class for the method one. Ruby finds the method
defined on line 2 and calls it.

Inside the method, we set the instance variable @var to 99. This instance variable will be
associated with the current object. What is that object? Well, the call to t.one set self to t, so
within the one method, self will be that particular instance of class Test.

On the next line, the one calls the two. Because there’s no explicit receiver, self is not
changed. When Ruby looks for the method two, it looks in Test, the class of t.

The method two references an instance variable @var. Again, Ruby looks for this variable
in the current object and finds the same variable that was set by the method one.

The call to puts at the end of two works the same way. Again, because there’s no explicit
receiver, self will be unchanged. Ruby looks for the puts method in the class of the current
object but can’t find it. It then looks in Test’s superclass, class Object. Again, it doesn’t find
puts. However, Object mixes in the module Kernel. We’ll talk more about this later, for now
we can say that mixed-in modules act as if they were superclasses. The kernel module does
define puts, so the method is found and executed.

After two and one return, Ruby resets self to the value it had before the original call to t.one.

This explanation may seem labored, but understanding it is vital to mastering metaprogram-
ming in Ruby.

self and Class Definitions

We’ve seen that calling a method with an explicit receiver changes self. Perhaps surpris-
ingly, self is also changed by a class definition. This is a consequence of the fact that class
definitions are actually executable code in Ruby—if we can execute code, we need to have
a current object. A simple test shows what this object is:

class Test
puts "In the definition of class Test"
puts "self = #{self}"
puts "Class of self = #{self.class}"
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=386

SINGLETONS 387

™\
Figure 24.1. Object Model for a Basic Class
]
super
class
methods:
- clone()
- dup()
class
—
animal > value: "cat" super
class class
\ / methods:
- downcase()
- upcase()
\. J/

produces:

In the definition of class Test
self = Test
Class of self = Class

Inside a class definition, self is set to the class object of the class being defined. This means
that instance variables set in a class definition will be available to class methods (because
self will be the same when the variables are defined and when the methods execute):

Download samples/classes_3.rb

class Test
@var = 99
def self.value_of_var
@var
end
end

puts Test.value_of_var
produces:
99

The fact that self is set to the class during a class definition turns out to be a dramatically
elegant decision, but to see why, we’ll first need to have a look at singletons.

Singletons

Ruby lets you define methods that are specific to a particular object. These are called sin-
gleton methods. For example, let’s start with a simple string object:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=387

SINGLETONS 388

animal = "cat"
puts animal.upcase

produces:
CAT

This results in the object structure shown in Figure 24.1 on the previous page. The animal
variable points to an object containing (among other things) the value of the string ("cat")
and a pointer to the object’s class, String.

When we call animal.upcase, Ruby goes to the object referenced by the animal variable and
then looks up the method upcase in the class object referenced from the animal object. Our
animal is a string and so has the methods of class String available.

Now let’s make it more interesting by defining a singleton method on the string referenced
from animal:

def animal.speak
puts "The #{self} says miaow"
end

animal.speak
puts animal.upcase

produces:

The cat says miaow
CAT

We’ve already seen how the call to animal.speak works when we looked at how methods are
invoked. Ruby sets self to the string object “cat” referenced by animal and then looks for a
method speak in that object’s class. Surprisingly, it finds it. It’s initially surprising because
the class of "cat" is String, and String doesn’t have a speak method. So, does Ruby have
some kind of special-case magic for these methods that are defined on individual objects?

Thankfully, the answer is “no.” Ruby’s object model is remarkably consistent. When we
defined the singleton method for the "cat" object, Ruby created a new anonymous class
and defined the speak method in that class. This anonymous class is sometimes called a
singleton class and other times an eigenclass. 1 prefer the former, because it ties in to the
idea of singleton methods.

Ruby makes this singleton class the class of the "cat" object and makes String (which was
the original class of "cat") the superclass of the singleton class. This is shown in Figure 24.2
on the following page.

Now let’s follow the call to animal.speak. Ruby goes to the object referenced by animal and
then looks in its class for the method speak. The class of the animal object is the newly
created singleton class, and it contains the method we need.

What happens if we instead call animal.upcase? The processing starts the same way: Ruby
looks for the method upcase in the singleton class but fails to find it there. It then follows
the normal processing rules and starts looking up the chain of superclasses. The superclass
of the singleton is String, and Ruby finds the upcase method there. Notice that there is no
special-case processing here—Ruby method calls always work the same way.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=388

SINGLETONS 389

()
Figure 24.2. Object Model for a Singleton Class
class, -—
super
class
methods:
- clone()
- dup()
~
—
super 7
class
methods:
- downcase()
- upcase()
AT oo
T\ anon
animal > value: "cat" super
class class
methods:
-speak()
H
\. J/

Singletons and Classes

Earlier, we said that inside a class definition, self is set to the class object being defined. It
turns out that this is the basis for one of the more elegant aspects of Ruby’s object model.

Recall that we can define class methods in Ruby using either of the forms def self.xxx or
def ClassName.xxx:

Download samples/classes_6.rb

class Dave
def self.class_method_one
puts "Class method one"
end
def Dave.class_method_two
puts "Class method two"
end
end
Dave.class_method_one
Dave.class_method_two

produces:

Class method one
Class method two

Now we know why the two forms are identical: inside the class definition, self is set to Dave.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=389

SINGLETONS 390

But now that we’ve looked at singleton methods, we also know that, in reality, there are
no such thing as class methods in Ruby. Both of the previous definitions define singleton
methods on the class object. As with all other singleton methods, we can then call them via
the object (in this case, the class Dave).

Before we created the two singleton methods in class Dave, the class pointer in the class
object pointed to class Class. (That’s a confusing sentence. Another way of saying it is
“Dave is a class, so the class of Dave is class Class,” but that’s pretty confusing, too.) The
situation looks like Figure 24.3 on the next page.

The object diagram for class Dave after the methods are defined is shown in Figure 24.4
on page 392. Do you see how the singleton class is created, just as it was for the animal
example? The class is inserted as the class of Dave, and the original class of Dave is made
this new class’s parent.

We can now tie together the two uses of self, the current object. We talked about how
instance variables are looked up in self, and we talked about how singleton methods defined
on self become class methods. Let’s use these facts to access instance variables for class
objects:

Download samples/classes_7.rb

class Test
@var = 99
def self.var
@var
end
def self.var=(value)
@var = value
end
end
puts "Original value = #{Test.var}"
Test.var = "cat"
puts "New value = #{Test.var}"

produces:
Original value = 99

New value = cat

Newcomers to Ruby commonly make the mistake of setting instance variables inline in the
class definition (as we did with @var in the previous code) and then attempting to access
these variables from instance methods. As the code illustrates, this won’t work, because
instance variables defined in the class body are associated with the class object, not with
instances of the class.

Another Way to Access the Singleton Class

We’ve seen how you can create methods in an object’s singleton class by adding the object
reference to the method definition using something like def animal.speak.

You can do the same using Ruby’s class < < an_object notation:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_7.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=390

SINGLETONS

391

-~
Figure 24.3. Basic Class Definition
| 1
"otject|— *]
super super
class class
methods: methods:
- clone() - clone()
- dup() - dup()
| 1
—
Dave @&—a
super super
class class
methods: methods:
- new()
\ J
Download samples/classes_8.rb
animal = "dog"
class << animal
def speak
puts "The #{self} says WOOF!"
end
end
animal.speak
produces:

The dog says WOOF!

Inside this kind of class definition, self is set to the singleton class for the given object
(animal in this case). Because class definitions return the value of the last statement executed
in the class body, we can use this fact to get the singleton class object:

Download samples/classes_9.rb

animal = "dog"
def animal.speak
puts "The #{self} says WOOF!"

end
singleton = class << animal
def lie
puts "The #{self} lies down"
end
self # << return singleton class object
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_8.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=391

SINGLETONS

r
Figure 24.4. Class with So-Called Class Methods

Dave o—a

class
Object

super

class

methods:

- clone()
- dup()

|

class
Dave

super

class

methods:

class

super
class
methods:

- clone()
- dup()

class
Class

super
class
methods:

- new()

| —

class
——
anon

super
class
methods:

-class_method_one()
-class_method_two()

| —

|

animal.speak

animal.lie

puts "Singleton class object is #{singleton}"

puts "It defines methods #{singleton.instance_methods - 'cat'.methods}"

produces:

The dog says WOOF!

The dog lies down

Singleton class object is #<Class:#<String:0x0a36d8>>
It defines methods [:speak, :lie]

Note the notation that Ruby uses to denote a singleton class: #<Class:#<String:...> >.

Ruby goes to some trouble to stop you from using singleton classes outside the context of
their original object. For example, you can’t create a new instance of a singleton class:

Download samples/classes_10.rb

singleton = class << "cat"; self; end

singleton.new

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=392

INHERITANCE AND VISIBILITY 393

produces:

prog.rb:2:in ‘new': can't create instance of singleton class (TypeError)
from /tmp/prog.rb:2:in “<main>'

Let’s tie together what we know about instance variables, self, and singleton classes. Back
on page 390, we wrote class-level accessor methods to let us get and set the value of an
instance variable defined in a class object. But Ruby already has attr_accessor, which
defines getter and setter methods. Normally, though, these are defined as instance meth-
ods and hence will access values stored in instances of a class. To make them work with
class-level instance variables, we have to invoke attr_accessor in the singleton class:

Download samples/classes_11.rb

class Test

@var = 99

class << self

attr_accessor :var

end
end
puts "Original value = #{Test.var}"
Test.var = "cat"
puts "New value = #{Test.var}"

produces:

Original value = 99
New value = cat

Inheritance and Visibility

There’s a wrinkle to when it comes to method definition and class inheritance, but it’s fairly
obscure. Within a class definition, you can change the visibility of a method in an ancestor
class.

For example, you can do something like this:

Download samples/classes_12.rb

class Base
def a_method
puts "Got here"
end
private :a_method
end
class Derivedl < Base
public :a_method
end
class Derived2 < Base
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_11.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=393

MODULES AND MIXINS 394

In this example, you would be able to invoke a_method in instances of class Derived1 but
not via instances of Base or Derived2.

So, how does Ruby pull off this feat of having one method with two different visibilities?
Simply put, it cheats.

If a subclass changes the visibility of a method in a parent, Ruby effectively inserts a hidden
proxy method in the subclass that invokes the original method using super. It then sets the
visibility of that proxy to whatever you requested. This means that the following code:

class Derivedl < Base
public :a_method
end

is effectively the same as this:

class Derivedl < Base
def a_method(*)
super
end
public :a_method
end

The call to super can access the parent’s method regardless of its visibility, so the rewrite
allows the subclass to override its parent’s visibility rules. Pretty scary, eh?

Modules and Mixins

You know that when you include a module into a Ruby class, the instance methods in that
module become available as instance methods of the class.

Download samples/classes_15.rb

module Logger

def log(msg)
STDERR.puts Time.now.strftime("%¥H:%M:%S: ") + "#{self} (#{msg})"

end

end

class Song
include Logger

end

class Album
include Logger

end

s = Song.new

s.log("created")

produces:

13:26:13: #<Song:0x0a323c> (created)

Ruby implements include very simply: the module that you include is effectively added as
a superclass of the class being defined. It’s as if the module was the parent of the class that

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=394

MODULES AND MIXINS 395

it is mixed in to. And that would be the end of the description except for one small wrinkle.
Because the module is injected into the chain of superclasses, it must itself hold a link to
the original parent class. If it didn’t, there’d be no way of traversing the superclass chain to
look up methods. However, you can mix the same module into many different classes, and
those classes could potentially have totally different superclass chains. If there were just one
module object that we mixed in to all these classes, there’d be no way of keeping track of
the different superclasses for each.

To get around this, Ruby uses a clever trick. When you include a module in class Example,
Ruby constructs a new class object, makes it the superclass of Example, and then sets the
superclass of the new class to be the original superclass of Example. It then references the
module from this new class object in such a way that when you look a method up in this
class, it actually looks it up in the module, as shown in Figure 24.5 on the following page.

A nice side effect of this arrangement is that if you change a module after including it in a
class, those changes are reflected in the class (and the class’s objects). In this way, modules
behave just like classes.

Download samples/classes_16.rb

module Mod
def greeting
"Hello"
end
end
class Example
include Mod
end
ex = Example.new
puts "Before change, greeting is #{ex.greeting}"
module Mod
def greeting
LM
end
end

puts "After change, greeting is #{ex.greeting}"
produces:

Before change, greeting is Hello
After change, greeting is Hi

If a module itself includes other modules, a chain of proxy classes will be added to any class
that includes that module, one proxy for each module that is directly or indirectly included.

Finally, Ruby will include a module only once in an inheritance chain—including a module
that is already included by one of your superclasses is a no-op.

extend

The include method effectively adds a module as a superclass of self. It is used inside a class
definition to make the instance methods in the module available to instances of the class.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_16.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=395

MODULES AND MIXINS

s
Figure 24.5. How Modules Are Included

class
Object

super

class

methods:

- clone()
- dup()

class
anoni

super

class

methods:

class

super

class
methods:

S

module
Logger

class

methods:

- log()

|

class
Object

super
class
methods:

- clone()
- dup()

class
anon2

super
class

——< methods:

class

super

class
methods:

|

However, it is sometimes useful to add the instance methods to a particular object. You do
this using Object#extend. For example:

Download samples/classes_17.rb

module Humor
def tickle
"#{self} says hee, hee!"
end
end
obj = "Grouchy"
obj.extend Humor
puts obj.tickle
produces:

Grouchy says hee, hee!

Stop for a second to think about how this might be implemented....

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=396

METAPROGRAMMING CLASS-LEVEL MACROS 397

When Ruby executes obj.tickle in this code example, it does the usual trick of looking in
the class of obj for a method called tickle. For extend to work, it has to add the instance
methods in the Humor module into the superclass chain for the class of obj. So, just as with
singleton method definitions, Ruby creates a singleton class for obj and then includes the
module Humor in that class. In fact, just to prove that this is all that happens, here’s the C
implementation of extend in the current Ruby 1.9 interpreter:

void

rb_extend_object (VALUE obj, VALUE module)

{

rb_include_module(rb_singleton_class(obj), module);

}

There is an interesting trick with extend. If you use it within a class definition, the module’s
methods become class methods. This is because calling extend is equivalent to self.extend,
so the methods are added to self, which in a class definition is the class itself.

Here’s an example of adding a module’s methods at the class level:

Download samples/classes_19.rb

module Humor
def tickle
"#{self} says hee, hee!"
end
end
class Grouchy
extend Humor
end

puts Grouchy.tickle
produces:

Grouchy says hee, hee!

Later, on page 400, we’ll see how to use extend to add macro-style methods to a class.

Metaprogramming Class-Level Macros

If you’ve used Ruby for any time at all, the chances are good that you’ve used attr_accessor,
the method that defines reader and writer methods for instance variables:

class Song
attr_accessor :duration
end

If you’ve written a Ruby on Rails application, you’ve probably used has_many:

class Album < ActiveRecord: :Base
has_many :tracks
end

These are both examples of class-level methods that generate code behind the scenes.
Because of the way they expand into something bigger, folks sometimes call these kinds
of methods macros.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_19.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=397

METAPROGRAMMING CLASS-LEVEL MACROS 398

Let’s create a trivial example and then build it up into something realistic. We’ll start by
implementing a simple method that adds logging capabilities to instances of a class. We
previously did this using a module—this time we’ll do it using a class-level method. Here’s
the first iteration:

Download samples/classes_22.rb

class Example
def self.add_logging
def log(msg)
STDERR.puts Time.now.strftime("%H:%M:%S: ") + "#{self} (#{msg})"
end
end
add_logging
end
ex = Example.new
ex.log("hello")

produces:
13:26:13: #<Example:0x0a39a8> (hello)

Clearly, this is a silly piece of code. But bear with me—it’ll get better. And we can still
learn some stuff from it. First, notice that add_logging is a class-method—it is defined in
the class object’s singleton class. That means that we can call it later in the class definition
without an explicit receiver, because self is set to the class object inside a class definition.

Then, notice that the add_logging method contains a nested method definition. This inner
definition will get executed only when we call the add_logging method. The result is that
log will be defined as an instance method of class Example.

Let’s take one more step. We can define the add_logging method in one class and then use
it in a subclass. This works because the singleton class hierarchy parallels the regular class
hierarchy. As a result, class methods in a parent class are also available in the child class:

Download samples/classes_23.rb

class Logger
def self.add_logging
def log(msg)
STDERR.puts Time.now.strftime("%H:%M:%S: ") + "#{self} (#{msg})"
end
end
end
class Example < Logger
add_logging
end
ex = Example.new
ex.log("hello")

produces:
13:26:13: #<Example:0x0a34d0> (hello)

Think back to the two examples at the start of this section. Both work this way. attr_accessor
is a class method defined in class Module and so is available in all module and class defini-

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=398

METAPROGRAMMING CLASS-LEVEL MACROS 399

tions. has_many is a class method defined in the Base class within the Rails ActiveRecord
module and so is available to all classes that subclass ActiveRecord::Base.

This example is still not particularly compelling; it would still be easier to add the log
method directly as an instance method of our Logger class. But what happens if we want
to construct a different version of the log method for each class that uses it? For example,
let’s add the capability to add a short class-specific identifying string to the start of each log
message. We want to be able to say something like this:

Download samples/classes_24.rb

class Song < Logger
add_logging "Song"

end

class Album < Logger
add_logging "CD"

end

To do this, let’s define the log method on the fly. We can no longer use a straightforward
def ... end-style definition. Instead, we’ll use define_method, one of the cornerstones of
metaprogramming. define_method takes the name of a method and a block, defining a
method with the given name and with the block as the method body. Any arguments in
the block definition become parameters to the method being defined.

Download samples/classes_25.rb

class Logger
def self.add_logging(id_string)
define_method(:1log) do |msg]|
now = Time.now.strftime("%H:%M:%S")
STDERR.puts "#{now}-#{id_string}: #{self} (#{msg})"
end
end
end
class Song < Logger
add_logging "Tune"
end
class Album < Logger
add_logging "CD"
end
song = Song.new
song.log("rock on")

produces:

13:26:13-Tune: #<Song:0x0a20e4> (rock on)

There’s an important subtlety in this code. Notice that the body of the log method contains
this line:

STDERR.puts "#{now}-#{id_string}: #{self} (#{msg})"

The value now is a local variable, and msg is the parameter to the block. But id_string is
the parameter to the enclosing add_logging method. It’s accessible inside the block because

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_24.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_25.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=399

METAPROGRAMMING CLASS-LEVEL MACROS 400

block definitions create closures, allowing the context in which the block is defined to be
carried forward and used when the block is used. In this case, we’re taking a value from
a class-level method and using it in an instance method we’re defining. This is a common
pattern when creating these kinds of class-level macros.

As well as passing parameters from the class method into the body of the method being
defined, we can also use the parameter to determine the name of the method or methods to
create. Here’s an example that creates a new kind of attr_accessor that logs all assignments
to a given instance variable:

Download samples/classes_27.rb

class AttrLogger
def self.attr_logger(name)
attr_reader name
define_method("#{name}=") do |val|
puts "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)
end
end
end
class Example < AttrLogger
attr_logger :value
end
ex = Example.new
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat
puts "Value is now #{ex.value}"

produces:
Assigning 123 to value
Value is 123
Assigning "cat" to value
Value is now cat

Again, we use the fact that the block defining the method body is a closure, accessing the
name of the attribute in the log message string. Notice we also make use of the fact that
attr_reader is simply a class method—we can call it inside our class method to define the
reader method for our attribute. Note another common bit of metaprogramming—we use
instance_variable_set to set the value of an instance variable (duh). There’s a corresponding
_get method that fetches the value of a named instance variable.

Class Macros and Modules

Sometimes it is perfectly acceptable to define class macros in one class and then use these
macro methods in subclasses of this class. Other times, though, it isn’t appropriate to use
subclassing, either because we already have to subclass some other class or because our
design aesthetic rebels against making something like a song a subclass of a logger.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_27.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=400

METAPROGRAMMING CLASS-LEVEL MACROS 401

In these cases, you can use a module to hold your metaprogramming implementation. As
we’ve seen, using extend inside a class definition will add the methods in a module as class
methods to the class being defined:

Download samples/classes_28.rb

module AttrLogger
def attr_logger(name)
attr_reader name
define_method("#{name}=") do |val|
puts "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)
end
end
end
class Example
extend AttrLogger
attr_logger :value
end
ex = Example.new
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat"
puts "Value is now #{ex.value}"

produces:

Assigning 123 to value
Value is 123

Assigning "cat" to value
Value is now cat

Things get a little trickier if you want to add both class methods and instance methods
into the class being defined. Here’s one technique, used extensively in the implementation
of the Rails framework. It makes use of a Ruby hook method, included, which is called
automatically by Ruby when you include a module into a class. It is passed the class object
of the class being defined.

Download samples/classes_29.rb

module Generallogger
Instance method to be added to any class that includes us
def log(msg)
puts Time.now.strftime("%H:%M: ") + msg
end
module containing class methods to be added
module ClassMethods
def attr_logger(name)
attr_reader name
define_method("#{name}=") do |val|
log "Assigning #{val.inspect} to #{name}"
instance_variable_set ("@#{name}", val)
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_28.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_29.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=401

Two OTHER FORMS OF CLASS DEFINITION 402

end
end

extend host class with class methods when we're included
def self.included(host_class)
host_class.extend(ClassMethods)
end
end
class Example
include Generallogger
attr_logger :value
end

ex = Example.new

ex.log("New example created")
ex.value = 123

puts "Value is #{ex.value}"
ex.value = "cat"

puts "Value is #{ex.value}"

produces:

13:26: New example created
13:26: Assigning 123 to value
Value is 123

13:26: Assigning "cat" to value
Value is cat

Notice how the included callback is used to extend the host class with the methods defined
in the inner module ClassMethods.

Now, as an exercise, try executing the previous example in your head. For each line of
code, work out the value of self. Master this, and you’ve pretty much mastered this style of
metaprogramming in Ruby.

Two Other Forms of Class Definition

Just in case you thought we’d exhausted the ways of defining Ruby classes, let’s look at two
other options.

Subclassing Expressions

The first form is really nothing new—it’s simply a generalization of the regular class defi-
nition syntax. You know that you can write this:

class Parent

end
class Child < Parent

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=402

Two OTHER FORMS OF CLASS DEFINITION 403

‘What you might not know is that the thing to the right of the < needn’t be just a class name; it
can be any expression that returns a class object. In this code example, we have the constant
Parent. A constant is a simple form of expression, and in this case the constant Parent holds
the class object of the first class we defined.

Ruby comes with a class called Struct, which allows you to define classes that contain just
data attributes. For example, you could write this:

Download samples/classes_31.rb

Person = Struct.new(:name, :address, :likes)

dave = Person.new('Dave', 'TX'")
dave.likes = "Programming Languages"
puts dave

produces:

#<struct Person name="Dave", address="TX", likes="Programming Languages'>

The return value from Struct.new(...) is a class object. By assigning it to the constant Person,
we can thereafter use Person as if it were any other class.

But say we wanted to change the to_s method of our structure.
We could do it by opening up the class and writing the method:
Download samples/classes_32.rb

Person = Struct.new(:name, :address, :likes)
class Person
def to_s
"#{self.name} lives in #{self.address} and likes #{self.likes}"
end
end

However, we can do this more elegantly (although at the cost of an additional class object)
by writing this:

Download samples/classes_33.rb

class Person < Struct.new(:name, :address, :likes)

def to_s
"#{self.name} lives in #{self.address} and likes #{self.likes}"
end
end
dave = Person.new('Dave', 'Texas')
dave.likes = "Programming Languages"
puts dave
produces:

Dave lives in Texas and likes Programming Languages

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_31.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_32.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_33.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=403

Two OTHER FORMS OF CLASS DEFINITION 404

Creating Singleton Classes

Let’s look at some Ruby code:

class Example
end

ex = Example.new

When we call Example.new, we’re invoking the method new on the class object Example.
This is just a regular method call—Ruby looks for the method new in the class of the object
(and the class of Example is Class) and invokes it. It turns out that we can also invoke
Classi#new directly:

some_class = Class.new
puts some_class.class

produces:

Class
If you pass Class.new a block, that block is used as the body of the class:
Download samples/classes_36.rb

some_class = Class.new do
def self.class_method
puts "In class method"
end
def instance_method
puts "In instance method"
end
end
some_class.class_method
obj = some_class.new
obj.instance_method

produces:

In class method
In instance method

By default, these classes will be direct descendents of Object. You can give them a different
parent by passing the parent’s class as a parameter:

Download samples/classes_37.rb

some_class = Class.new(String) do
def vowel_movement
tr 'aeiou', '
end
end

x'

obj = some_class.new("now is the time")
puts obj.vowel_movement

produces:

n*w *s th* t+m=

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_36.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_37.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=404

Two OTHER FORMS OF CLASS DEFINITION 405

How CI Their Nam

You may have noticed that the classes created by Class.new have no
name. However, all is not lost. If you assign the class object for a class
with no name to a constant, Ruby will automatically name the class
after the constant:

some_class = Class.new

obj = some_class.new

puts "Initial name is #{some_class.name}"

SomeClass = some_class

puts "Then the name is #{some_class.name}"

puts "also works via the object: #{obj.class.name}"

produces:

Initial name is
Then the name is SomeClass
also works via the object: SomeClass

We can use these dynamically constructed classes to extend Ruby in interesting ways. For
example, here’s a simple reimplementation of the Ruby Struct class:

Download samples/classes_39.rb

def MyStruct(xkeys)
Class.new do
attr_accessor xkeys
def initialize(hash)
hash.each do |key, value|
instance_variable_set("@#{key}", value)
end
end
end
end
Person = MyStruct :name, :address, :likes
dave = Person.new(name: "dave", address: "TX", likes: "Stilton")
chad = Person.new(name: "chad", likes: "Jazz")
chad.address = "CO"
puts "Dave's name is #{dave.name}"
puts "Chad lives in #{chad.address}"

produces:

Dave's name is dave
Chad lives in CO

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_39.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=405

INSTANCE_EVAL AND CLASS_EVAL 406

instance eval and class_eval

The methods Object#instance_eval, Object#class_eval, and Object#module_eval let you set
self to be some arbitrary object, evaluate the code in a block with, and then reset self:

cat".instance_eval do

puts "Upper case = #{upcase}"
puts "Length is #{self.length}"
end

produces:

Upper case = CAT
Length is 3

Both forms also take a string (but see the sidebar on the following page for some notes on
the dangers of evaluating strings):

"cat".instance_eval('puts "Upper=#{upcase}, length=#{self.length}"')

produces:
Upper=CAT, length=3

class_eval and instance_eval both set self for the duration of the block. However, they differ
in the way they set up the environment for method definition. class_eval sets things up as
if you were in the body of a class definition, so method definitions will define instance
methods:

class MyClass
end

MyClass.class_eval do
def instance_method
puts "In an instance method"
end
end

obj = MyClass.new
obj.instance_method
produces:

In an instance method

In contrast, instance_eval acts as if you were working inside the singleton class of self.
Therefore, any methods you define will become class methods.

class MyClass
end

MyClass.instance_eval do
def class_method
puts "In a class method"
end
end

MyClass.class_method

produces:

In a class method

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=406

INSTANCE_EVAL AND CLASS_EVAL 407

eval Is Soo Last Year

You may have noticed that we’ve been doing a fair amount of
metaprogramming—accessing instance variables, defining methods,
and creating classes—and we haven'’t yet used eval. This is delib-
erate. In the old days of Ruby, the language lacked many of these
metaprogramming facilities, and eval was the only way of achieving
these effects. But eval comes with a couple of downsides.

First, it is slow—calling eval effectively compiles the code in the string
before executing it. But, even worse, eval can be dangerous. If there’s
any chance that external data—stuff that comes from outside your
application—can wind up inside the parameter to eval, then you have
a security hole, because that external data may end up containing
arbitrary code that your application will blindly execute.

eval is now considered a method of last resort.

It might be helpful to remember that, when defining methods, class_eval and instance_eval
have precisely the wrong names: class_eval defines instance methods, and instance_eval
defines class methods. Go figure.

=2 /s Ruby 1.9 introduces variants of these methods. Object#instance_exec, Module#class_exec,
and Module#module_exec behave identically to their _eval counterparts but take only a
block (that is, they do not take a string). Any arguments given to the methods are passed
in as block parameters. This is an important feature. Previously it was impossible to pass a
local or instance variable into a block given to one of the _eval methods—because self is
changed by the call, these variables go out of scope. With the _exec form, you can now pass
them in:
Download samples/classes_44.rb
animal = "cat"
"dog".instance_exec(animal) do |other|
puts "#{other} and #{self}"
end
produces:

cat and dog

instance_eval and Constants

=2 /s Ruby 1.9 has changed the way Ruby looks up constants when executing a block using
instance_eval and class_eval. Previously, constants were looked up in the lexical scope in
which there were referenced. In Ruby 1.9, they are now looked up in the scope in which
instance_eval is called. This (artificial) example shows the output produced by Ruby 1.9:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_44.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=407

INSTANCE_EVAL AND CLASS_EVAL 408

Download samples/classes_45.rb

module One
CONST = "Defined in One"
def self.eval_block(&block)
instance_eval (&block)
end
end
module Two
CONST = "Defined in Two"
def self.call_eval_block
One.eval_block do
puts CONST
end
end
end

Two.call_eval_block
produces:

Defined in One

In Ruby 1.8, this same code would print Defined in Two.

instance_eval and Domain-Specific Languages

It turns out that instance_eval has a pivotal role to play in a certain type of domain-specific
language (DSL). For example, we might be writing a simple DSL for turtle graphics.> To
draw a set of three 5x5 squares, we might write this:>
3.times do
forward(8)
pen_down
4.times do
forward(4)
left
end
pen_up
end

Clearly, pen_down, forward, left, and pen_up can be implemented as Ruby methods. How-
ever, to call them without a receiver like this, either we have to be within a class that defines
them (or is a child of such a class) or we have to make the methods global. instance_eval to
the rescue. We can define a class Turtle that defines the various methods we need as instance
methods. We’ll also define a walk method, which will execute our turtle DSL, and a draw
method to draw the resulting picture:

2. In turtle graphics systems, you imagine you have a turtle you can command to move forward n squares, turn
left, and turn right. You can also make the turtle raise and lower a pen. If the pen is lowered, a line will be drawn
tracing the turtle’s subsequent movements. Very few of these turtles exist in the wild, so we tend to simulate them
inside computers.

3. Yes, the forward(4) is correct in this code. The initial point is always drawn.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_45.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=408

INSTANCE_EVAL AND CLASS_EVAL 409

class Turtle

def left; ... end

def right; ... end

def forward(n); ... end
def pen_up; .. end

def pen_down; ... end
def walk(...); end

def draw; ... end

end

If we implement walk correctly, we can then write this:
turtle = Turtle.new
turtle.walk do

3.times do
forward(8)
pen_down
4.times do
forward(4)
left
end
pen_up
end
end
turtle.draw

So, what is the correct implementation of walk? Well, we clearly have to use instance_eval,
because we want the DSL commands in the block to call the methods in the turtle object.
We also have to arrange to pass the block given to the walk method to be evaluated by that
instance_eval call. Our implementation looks like this:

def walk(&block)
instance_eval (&block)
end

Notice how we captured the block into a variable and then expanded that variable back into
a block in the call to instance_eval.

A complete listing of the turtle program starts on page 418.

Is this a good use of instance_eval? It depends on the circumstances. The benefit is that the
code inside the block looks simple—you don’t have to make the receiver explicit:

4.times do
turtle.forward(4)
turtle.left

end

There’s a drawback, though. Inside the block, scope isn’t what you think it is, so this code
wouldn’t work:

@size = 4
turtle.walk do
4.times do
turtle.forward(@size)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=409

HoOOK METHODS 410

turtle.left
end
end

Instance variables are looked up in self, and self in the block isn’t the same as self in the
code that sets the instance variable @size. Because of this, most people are moving away
from this style of CFinstance_evaled block.

Hook Methods

In the section starting on page 400, we defined a method called included in our General-
Logger module. When this module was included in a class, Ruby automatically invoked this
included method, allowing our module to add class methods to the host class.

included is an example of a hook method (sometimes called a callback). A hook method is a
method that you write but that Ruby calls from within the interpreter when some particular
event occurs. The interpreter looks for these methods by name—if you define a method in
the right context with an appropriate name, Ruby will call it when the corresponding event
happens.

The methods that can be invoked from within the interpreter are shown in Table 24.1 on
the next page. We won’t discuss all of them in this chapter—instead, we’ll show just a few
examples of use. The reference section of this book describes the individual methods, and
the Duck Typing chapter on page 370 discusses the coercion methods in more detail.

The inherited Hook

If a class defines a class method called inherited, Ruby will call it whenever that class is
subclassed (that is, whenever any class inherits from the original).

This hook is often used in situations where a base class needs to keep track of its children.
For example, an online store might offer a variety of shipping options. Each might be repre-
sented by a separate class, and each of these classes could be a subclass of a single Shipping
class. This parent class could keep track of all the various shipping options by recording
every class that subclasses it. When it comes time to display the shipping options to the
user, the application could call the base class, asking it for a list of its children:

Download samples/classes_52.rb

class Shipping # Base class
@children = [] # this variable is in the class, not instances
def self.inherited(child)
@children << child
end
def self.shipping_options(weight, international)
@children.select {|child| child.can_ship(weight, international)}
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_52.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=410

HoOOK METHODS 411

Table 24.1. Ruby Hook Methods
Method-related hooks
method_added, method_missing, method_removed, method_undefined, single-
ton_method_added, singleton_method_removed, singleton_method_undefined
Class and module-related hooks
append_features, const_missing, extend_object, extended, included, inherited, initial-
ize_copy
Object marshaling hooks
marshal_dump, marshal_load
Coercion hooks
coerce, induced_from, to_xxx

class MediaMail < Shipping
def self.can_ship(weight, international)
linternational
end
end
class FlatRatePriorityEnvelope < Shipping
def self.can_ship(weight, international)
weight < 64 && !international
end
end
class InternationalFlatRateBox < Shipping
def self.can_ship(weight, international)
weight < 9%16 && international
end
end
puts "Shipping 160z domestic"
puts Shipping.shipping_options(16, false)
puts "\nShipping 900z domestic"
puts Shipping.shipping_options(90, false)
puts "\nShipping 160z international"
puts Shipping.shipping_options(16, true)

produces:

Shipping 160z domestic
MediaMail
FlatRatePriorityEnvelope

Shipping 900z domestic
MediaMail

Shipping 160z international
InternationalFlatRateBox

Command interpreters are another common user of this pattern: the base class keeps a track
of available commands, each of which is implemented in a subclass.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=411

HoOOK METHODS 412

The method_missing Hook

Earlier, we saw how Ruby executes a method call by looking for the method, first in the
object’s class, then in its superclass, then in that class’s superclass, and so on. If the method
call has an explicit receiver, then private methods are skipped in this search. If the method is
not found by the time we run out of superclasses (because BasicObject has no superclass),
then Ruby tries to invoke the hook method method_missing on the original object. Again,
the same process is followed—Ruby first looks in the object’s class, then in its superclass,
and so on. However, Ruby predefines its own version of method_missing in class BasicOb-
ject, so typically the search stops there. The built-in method_missing basically raises an
exception (either a NoMethodError or a NameError depending on the circumstances).

The key here is that method_missing is simply a Ruby method. We can override it in our
own classes to handle calls to otherwise undefined methods in an application-specific way.

method_missing has a simple signature, but many people get it wrong:
def method_missing(name, xargs, &block) # ...

The name argument receives the name of the method that couldn’t be found. It is passed as a
symbol. The args argument is an array of the arguments that were passed in the original call.
And the oft-forgotten block argument will receive any block passed to the original method.

Download samples/classes_54.rb

def method_missing(name, *args, &block)
puts "Called #{name} with #{args.inspect} and #{block}"
end
wibble
wobble 1, 2
wurble(3, 4) { stuff }

produces:
Called wibble with [] and

Called wobble with [1, 2] and
Called wurble with [3, 4] and #<Proc:0x0a3d68@/tmp/prog.rb:7>

Before we get too deep into the details, I'll offer a tip about etiquette. There are two main
ways that people use method_missing. The first intercepts every use of an undefined method
and handles it. The second is more subtle; it intercepts all calls but handles only some of
them. In the latter case, it is important to forward on the call to a superclass if you decide
not to handle it in your method_missing implementation:

Download samples/classes_55.rb

class MyClass < OtherClass
def method_missing(name, *args, &block)
if <some condition>
handle call
else
super # otherwise pass it on
end
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_54.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_55.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=412

HoOOK METHODS 413

If you fail to pass on calls that you don’t handle, your application will silently ignore calls
to unknown methods in your class.

Let’s show a couple of uses of method_missing.

method_missing to Simulate Accessors

The OpenStruct class is distributed with Ruby. It allows you to write objects with attributes
that are created dynamically by assignment. (We describe it in more detail on page 787.)
For example, you could write this:

Download samples/classes_56.rb

require 'ostruct'

obj = OpenStruct.new(name: "Dave")

obj.address = "Texas"

obj.likes = "Programming"

puts "#{obj.name} lives in #{obj.address} and likes #{obj.likes}"
produces:

Dave lives in Texas and likes Programming
Let’s use method_missing to write our own version of OpenStruct:

Download samples/classes_57.rb

class MyOpenStruct < BasicObject
def initialize(initial_values = {})
@values = initial_values
end

def _singleton_class
class << self
self
end
end

def method_missing(name, *args, &block)
if name[-1] == "="
base_name = name[0..-2].intern
_singleton_class.instance_exec(name) do |name|
define_method(name) do |value]
@values[base_name] = value
end
end
@values[base_name] = args[0]
else
_singleton_class.instance_exec(name) do |name|
define_method(name) do
@values[name]
end
end
@values[name]
end
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_56.rb
http://media.pragprog.com/titles/ruby3/code/samples/classes_57.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=413

HoOOK METHODS

obj = MyOpenStruct.new(name: "Dave")

obj.address = "Texas"

obj.likes = "Programming"

puts "#{obj.name} lives in #{obj.address} and likes #{obj.likes}"

produces:

Dave lives in Texas and likes Programming

=2 /s Notice how we base our class on BasicObject, a class introduced in Ruby 1.9. BasicObject
is the root of Ruby’s object hierarchy and contains only a minimal number of methods:

p BasicObject.instance_methods

produces:

:==, :equal?, :!, :!=, :instance_eval, :instance_exec, :__send__]

This is good, because it means that our MyOpenStruct class will be able to have attributes
such as display or class. If instead we’d based MyOpenStruct on class Object, then these
names, along with 47 others, would have been predefined and hence wouldn’t trigger
method_missing.

Notice also another common pattern inside method_missing. The first time we reference or
assign to an attribute of our object, we access or update the @values hash appropriately.
But we also define the method that the caller was trying to access. This means that the next
time this attribute is used, it will use the method and not invoke method_missing. This may
or may no be worth the trouble, depending on the access patterns to your object.

Also notice how we had to jump through some hoops to define the method. We want to
define the method only for the current object. This means we have to put the method into
the object’s singleton class. We can do that using instance_exec and define_method. But that
means we have to use the class << self trick to get the object’s singleton class. Through an
interesting implementation subtlety, define_method will always define an instance method,
independent of whether it is invoked via instance_exec or class_exec.

However, this code reveals a dark underbelly of using method_missing and BasicObject.
Consider this:

obj = MyOpenStruct.new(name: "Dave")
obj.address = "Texas"

ol = obj.dup

ol.name = "Mike"

ol.address = "Colorado"

produces:

prog.rb:5:in ‘<main>': undefined method “name=' for nil:NilClass (NoMethodError)
The dup method is not defined by BasicObject; it appears in class Object. So when we called
dup, it was picked up by our method_missing handler, and we just returned nil (because we

don’t have yet have an attribute called dup). We could fix this so that it at least reports an
error:

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=414

ONE LAST EXAMPLE 415

def method_missing(name, *args, &block)
if name[-1] == "="
as before...
else
super unless @values.has_key? name
as before...
end
end

This class now reports an error if we call dup (or any other method) on it. However, we still
can’t dup or clone it (or inspect, convert to a string, and so on). Although BasicObject seems
like a natural fit for method_missing, you may find it to be more trouble than it’s worth.

method_missing as a Filter

As the previous example showed, method_missing has some drawbacks if you use it to
intercept all calls. It is probably better to use it to recognize certain patterns of call, passing
on those it doesn’t recognize to its parent class to handle.

An example of this is the dynamic finder facility in the Ruby on Rails ActiveRecord module.
Active Record is the object-relational library in Rails—it allows you to access relational
databases as if they were object stores. One particular feature allows you to find rows that
match the criteria of having given values in certain columns. For example, if an Active
Record class called Book was mapping a relational table called books and the books table
included columns called title and author, you could write this:

pickaxe = Book.find_by_title("Programming Ruby")
daves_books = Book.find_all_by_author("Dave Thomas")

Active Record does not predefine all these potential finder methods. Instead, it uses our
old friend method_missing. Inside that method, it looks for calls to undefined methods that
match the pattern /*ind_(all_)?by_(.*)/. 4 If the method being invoked does not match this
pattern or if the field(s) in the method name don’t correspond to columns in the database
table, Active Record calls super so that a genuine method_missing report will be generated.

One Last Example

Let’s bring together all of the metaprogramming topics we’ve discussed in a final example
by writing a module that allows us to trace the execution of methods in any class that mixes
the module in. This would let us write:

require 'code/trace_calls'
class Example
def one(arg)
puts "One called with #{arg}"
end
end

4. It also looks for /AMind_or_(initialize|create)_by_(.*)/.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=415

ONE LAST EXAMPLE 416

ex1l = Example.new
exl.one("Hello") # no tracing from this call
class Example

include TraceCalls

def two(argl, arg2)

argl + arg2

end

end

ex1.one("Goodbye") # but we see tracing from these two
puts exl.two(4, 5)

produces:

One called with Hello

==> calling one with ["Goodbye"]
One called with Goodbye

<== one returned nil

==> calling two with [4, 5]

<== two returned 9

9

We can see immediately that there’s a subtlety here. When we mix the TraceCalls module
into a class, it has to add tracing to any existing instance methods in that class. It also has to
arrange to add tracing to any methods we subsequently add.

Let’s start with the full listing of the TraceCalls module:

Download samples/trace_calls.rb

module TraceCalls

def self.included(klass)
klass.instance_methods(false).each do |existing_method]|
wrap(klass, existing_method)
end
def klass.method_added(method) # note: nested definition
unless @trace_calls_internal
@trace_calls_internal = true
TraceCalls.wrap(self, method)
@trace_calls_internal = false
end
end
end
def self.wrap(klass, method)
klass.instance_eval do
method_object = instance_method(method)
define_method(method) do |=*args, &block]|
puts "==> calling #{method} with #{args.inspect}"
result = method_object.bind(self).call(*args, &block)
puts "<== #{method} returned #{result.inspect}"
result
end
end
end
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/trace_calls.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=416

TOP-LEVEL EXECUTION ENVIRONMENT 417

When we include this module in a class, the included hook method gets invoked. It first
uses the instance_methods reflection method to find all the existing instance methods in
the host class (the false parameter limits the list to methods in the class itself, and not in
its superclasses). For each existing method, the module calls a helper method, wrap, to add
some tracing code to it. We’ll talk about wrap shortly.

Next, the included method uses another hook, method_added. This is called by Ruby when-
ever a method is defined in the receiver. Note that we define this method in the class passed
to the included method. This means that the method will be called when methods are added
to this host class and not to the module. This is what allows us to include TraceCalls at
the top of a class and then add methods to that class—all those method definitions will be
handled by method_added.

Now look at the code inside the method_added method. We have to deal with a potential
problem here. As you’ll see when we look at the wrap method, we add tracing to a method
by creating a new version of the method that calls the old. Inside method_added, we call
the wrap function to add this tracing. But inside wrap, we’ll define a new method to handle
this wrapping, and that definition will invoke method_added again, and then we’d call wrap
again, and so on, until the stack gets exhausted. To prevent this, we use an instance variable
and do the wrapping only if we’re not already doing it.

The wrap method takes a class object and the name of a method to wrap. It finds the original
definition of that method (using instance_method) and saves it. It then redefines this method.
This new method outputs some tracing and then calls the original, passing in the parameters
and block from the wrapper.> Note how we call the method by binding the method object to
the current instance and then invoking that bound method.

The key to understanding this code, and most metaprogramming code, is to follow the basic
principles we worked out at the start of this chapter—how self changes as methods are called
and classes are defined and how methods are called by looking for them in the class of the
receiver. If you get stuck, do what I do and draw little boxes and arrows. I find it useful to
stick with the convention I used in this chapter: class links go to the right, and superclass
links go up. Given an object, a method call is then a question of finding the receiver object,
going right once, and then following the superclass chain up as far as you need to go.

Top-Level Execution Environment

Finally, there’s one small detail we have to cover to complete the metaprogramming envi-
ronment. Many times in this book we’ve claimed that everything in Ruby is an object.
However, we’ve used one thing time and time again that appears to contradict this—the
top-level Ruby execution environment:

puts "Hello, World"

5. The ability of a block to take a block parameter was added in Ruby 1.9.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=417

THE TURTLE GRAPHICS PROGRAM 418

Not an object in sight. We may as well be writing some variant of Fortran or BASIC. But
dig deeper, and you’ll come across objects and classes lurking in even the simplest code.

‘We know that the literal "Hello, World" generates a Ruby String, so that’s one object. We also
know that the bare method call to puts is effectively the same as self.puts. But what is self?

self.class # => Object

At the top level, we’re executing code in the context of some predefined object. When we
define methods, we’re actually creating (private) instance methods for class Object. This
is fairly subtle; as they are in class Object, these methods are available everywhere. And
because we’re in the context of Object, we can use all of Object’s methods (including those
mixed in from Kernel) in function form. This explains why we can call Kernel methods such
as puts at the top level (and indeed throughout Ruby); it’s because these methods are part of
every object. Top-level instance variables also belong to this top-level object.

Metaprogramming is one of Ruby’s sharpest tools. Don’t be afraid to use it to raise up the
level at which you program. But, at the same time, use it only when necessary—overly
metaprogrammed applications can become pretty obscure pretty quickly.

The Turtle Graphics Program

Download samples/classes_66.rb

class Turtle
directions: 0 = E, 1 =S, 2 =W, 3 =N
axis: 0 =x, 1 =y
def initialize
@board = Hash.new(" ")

@x = @y =0
@direction = 0
pen_up

end

def pen_up
@pen_down = false

end

def pen_down
@pen_down = true
mark_current_location
end
def forward(n=1)
n.times { move }
end
def left
@direction -= 1
@direction = 3 if @direction < 0
end
def right
@direction += 1
@direction = 0 if @direction > 3
end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/classes_66.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=418

THE TURTLE GRAPHICS PROGRAM

def walk(&block)
instance_eval (&block)
end
def draw
min_x, max_xX = @board.keys.map{|x,y| x}.minmax
min_y, max_y = @board.keys.map{|x,y| v}.minmax
min_y.upto(max_y) do |yl
min_x.upto(max_x) do |x|
print @board[[x,y]]
end
puts
end
end
private
def move
increment = @direction > 1 ? -1 : 1
if @direction.even?
@x += increment

else
@y += increment
end
mark_current_location
end

def mark_current_location
@board[[@x,@y]] = "#" if @pen_down
end
end

turtle = Turtle.new
turtle.walk do
3.times do
forward(8)
pen_down
4.times do
forward(4)
left
end
pen_up
end
end
turtle.draw

produces:

0# # # #
#
0# # # #

ITRTRTET ITRTRTETm ITRTRTETm
HHHHH HHHHH HHHHH

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=419

Chapter 25

Reflection,
ObjectSpace, and
Distributed Ruby

One of the advantages of dynamic languages such as Ruby is the ability to introspect—to
examine aspects of a program from within the program itself. This process is also called
reflection.

When you introspect, you think about your thoughts and feelings. This is interesting, be-
cause you’re using thought to analyze thought. It’s the same when programs use introspec-
tion—a program can discover the following information about itself:

* What objects it contains

* Its class hierarchy

* The attributes and methods of objects
* Information on methods

Armed with this information, we can look at particular objects and decide which of their
methods to call at runtime—even if the class of the object didn’t exist when we first wrote
the code. We can also start doing clever things, perhaps modifying the program while it’s
running. Later in this chapter we’ll look at distributed Ruby and marshaling, two reflection-
based technologies that let us send objects around the world and through time.

Looking at Objects

Have you ever craved the ability to traverse all the living objects in your program? We have!
Ruby lets you perform this trick with ObjectSpace.each_object. We can use it to do all sorts
of neat tricks.

For example, to iterate over all objects of type Float, you’d write the following:

a = 102.7
b = 95.1
ObjectSpace.each_object(Float) {|x| p x }

< 420 P Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=420

LOOKING AT OBJECTS 421

produces:
95.1
102.7
2.71828182845905
3.14159265358979
2.22044604925031e-16
1.79769313486232e+308
2.2250738585072e-308

Hey, where did all those extra numbers come from? We didn’t define them in our program.
Well, the Math module defines constants for e and 7, and if you look on pages 528 and
588, you’ll see that the Float class defines constants for the maximum and minimum float,
as well as epsilon, the smallest distinguishable difference between two floats. Since we are
examining all living objects in the system, these turn up as well.

Let’s try the same example with different values. This time, they’re objects of type Fixnum:

a = 102
b = 95
ObjectSpace.each_object(Fixnum) {|x| p x }

(Produces no output.)

Neither of the Fixnum objects we created showed up. That’s because ObjectSpace doesn’t
know about objects with immediate values: Fixnum, Symbol, true, false, and nil.

Looking Inside Objects

Once you’ve found an interesting object, you may be tempted to find out just what it can do.
Unlike static languages, where a variable’s type determines its class, and hence the methods
it supports, Ruby supports liberated objects. You really cannot tell exactly what an object
can do until you look under its hood.! We talk about this in the Duck Typing chapter starting
on page 370.

For instance, we can get a list of all the methods to which an object will respond (these
include methods in an object’s class and that class’s ancestors):

r = 1..10 # Create a Range object

list = r.methods

list.length # => 101

1ist[0..3] # => :==, :===, :eql?, :hash]

We can check to see whether an object responds to a particular method:

r.respond_to?("frozen?") # => true
r.respond_to?(:has_key?) # => false
"me" .respond_to?("==") # => true

1. Or under its bonnet, for objects created to the east of the Atlantic.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=421

LOOKING AT CLASSES 422

We can determine our object’s class and its unique object ID and test its relationship to other

classes:
num = 1
num.object_id #=> 3
num.class # => Fixnum
num.kind_of? Fixnum # => true
num.kind_of? Numeric # => true
num.instance_of? Fixnum # => true
num.instance_of? Numeric # => false

Looking at Classes

Knowing about objects is one part of reflection, but to get the whole picture, you also need
to be able to look at classes—the methods and constants that they contain.

Looking at the class hierarchy is easy. You can get the parent of any particular class using
Classt#tsuperclass. For classes and modules, Module#ancestors lists both superclasses and
mixed-in modules:

klass = Fixnum

begin
print klass
klass = klass.superclass
print " < " if klass

end while klass

puts

p Fixnum.ancestors

produces:
Fixnum < Integer < Numeric < Object < BasicObject

[Fixnum, Integer, Numeric, Comparable, Object, Kernel, BasicObject]

If you want to build a complete class hierarchy, just run that code for every class in the
system. We can use ObjectSpace to iterate over all Class objects:

ObjectSpace.each_object(Class) do |klass]|
...
end

Looking Inside Classes

We can find out a bit more about the methods and constants in a particular object. Instead of
just checking to see whether the object responds to a given message, we can ask for methods
by access level, and we can ask for just singleton methods.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=422

CALLING METHODS DYNAMICALLY 423

&/ We can also take a look at the object’s constants, local, and instance variables:

class Demo
@@var = 99
CONST = 1.23

private
def private_method
end
protected
def protected_method
end
public
def public_method
@inst = 1
i=1
j=2
local_variables
end

def Demo.class_method

end
end
Demo.private_instance_methods(false) # => [:private_method]
Demo.protected_instance_methods(false) # => [:protected_method]
Demo.public_instance_methods(false) # => [:public_method]
Demo.singleton_methods(false) # => [:class_method]
Demo.class_variables # => [:@@var]
Demo.constants(false) # => [:CONST]

demo = Demo.new
demo.instance_variables #=> []
Get 'public_met