UNDERSTANDING THE
4 RULES OF SIMPLE DESIGN

And other lessons from watching 1000's of pairs work on Conway's Game of Life

by Corey Haines

Understanding the Four Rules of
Simple Design
and other lessons from watching

thousands of pairs work on Conway’s
Game of Life

Corey Haines
This book is for sale at http://leanpub.com/4rulesofsimpledesign

This version was published on 2014-06-04

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©2014 Corey Haines

http://leanpub.com/4rulesofsimpledesign
http://leanpub.com
http://leanpub.com/manifesto

http://twitter.com
https://twitter.com/search?q=%234rulesbook
https://twitter.com/search?q=%234rulesbook

This book is dedicated to the thousands of people who have both
attended and facilitated coderetreats around the world. Without
you, the lessons in this book would have been much more difficult
to convey.

I’d also like to dedicate this to Sarah Gray, who laughed when I
came back from India and said “Huh, I think I'm writing a book.”
She’s an amazing companion.

And, of course, to Zak the Cat for being awesome! MEW!!!!

Contents

Foreword:KentBeck i
Foreword: Joe Rainsberger iii
Acknowledgements L. vi
Introduction viii
ThisBook X
WholtIsFor X
What It Is (And Isn’t) About xi
Format xii
Why Ruby? xii
Where do these thoughts come from? 1
Good Design? L 1
Coderetreatso 4
Conway’s Gameof Life 7
4 Rules of Simple Design 10
Examples 14
Test Names Should Influence Object’s APT 15
Duplication of Knowledge about Topology 19
Behavior Attractors 23

Testing State vs Testing Behavior 26

CONTENTS

Don’t Have Tests Depend on Previous Tests 29
Breaking Abstraction Level 31
Naive Duplication. 34
Procedural Polymorphism 37
Making Assumptions About Usage 42
Unwrapping an Object 45
Inverted Composition as a Replacement for Inheritance . 51
Other Good Stuff 56
Other Design Guidelines 57
Example constraints 0L 62
Some Thoughts On Pair-Programming Styles 64
Driver-Navigator 64
Ping-Pong Pairing 65
Which Style Should You Choose? 66
FurtherReading 68
4 Rules of Simple Design 68
General Design 68
Testing oo 70

Other Things You Probably Should Most Definitely Read 70

Foreword: Kent Beck

Here’s why I wrote the rules, near as I can remember.

As I was coming up as an engineer, the advice I always heard
was, ‘Design for the future. Change is expensive. Make it cheap by
anticipating it” What I noticed in practice was that the more change
I anticipated, the harder it got to make changes. My incorrect
speculations interfered with changes I actually ended up making.
Then I would have to choose between working around speculative
cruft or ripping it out, both of which delayed progress on what I
was trying to accomplish.

I wasn’t alone. Lots of folks noticed the cost of speculation. The
prevailing response seemed to be that we just weren’t good enough
at speculation. If we were better speculative designers, we would
end up with better designs. This looked like a positive feedback loop
to me: more speculation -> worse design -> more speculation.

The good news about disastrous positive feedback loops is that
you can generally drive them backwards. I first experimented by
ignoring any changes that seemed like they would happen longer
than six month in the future. My designs were simpler, I started
making progress sooner, and I stressed less about the unknowable
future. I shortened the time horizon to three months. More better.
One month. More. A week. A day. Oh, hell, what happens if I don’t
add any design elements not demanded by the current code and
tests? Still more better.

Now I had an ethos of software design, but I stupidly labelled it
“simple”. Talk about a vague, loaded word that everyone will use
to justify exactly what they are doing now. I soon tired of debating
what “simple” “really” meant. I needed a clear explanation.

Foreword: Kent Beck ii

My approach to communicating complex ideas at the time was to
formulate a simple set of rules, the emergent property of which
was the complex outcome I was aiming at (cf patterns). (I have
since become disenchanted with this strategy.) I thought about how
I recognized simplicity, turned those criteria into actions, sorted
them by priority (it’s no coincidence that human communication
is number two), and posted them on Ward’s Wiki'. And that’s why
(and how) I wrote the rules.

— Kent Beck / @kentbeck
April 2014

'http://c2.com/cgi/wiki?XpSimplicityRules

http://c2.com/cgi/wiki?XpSimplicityRules
http://c2.com/cgi/wiki?XpSimplicityRules

Foreword: Joe Rainsberger

I can trace my interest in Code Retreat back to 2004, although of
course, nobody had given it that name yet. Around that time, many
of my friends and colleagues had become fascinated with the idea of
intentional practice. We all looked at each other wondering how we
could ever convince a group of already-overworked people to prac-
tise. We assumed that most employers would object to practising
during work hours. We also assumed that people wouldn’t want to
fail and learn in front of their peers. At most, we figured that small
bands of crazy people might find each other and practise together
from time to time, but that it would never really go anywhere.
Even as Coding Dojos became more popular, I didn’t see intentional
practice becoming any more significant than a fun way to pass
time at conferences and a curiosity at only the most experimental
workplaces. By 2007 I mostly forgot the whole thing.

Imagine my surprise when I received an invitation in January 2009
to come down to Ann Arbor, Michigan to attend the first-ever
Code Retreat. I didn’t intend to go. I didn’t think that I could
justify the expense of flying down to participate in a free event. But
someone had recently burgled our house, and that left me feeling
disconnected from the place. One morning I simply decided that,
expensive or not, I wanted to go. I wanted to see my friends, and
I figured I’d never get to see so many of them in one place for an
event smaller than a conference.

I found myself in a room with about 40 eager programmers, some
of which had traveled through snowy conditions from two hours’
drive away. I didn’t know what to expect. Conway’s Game of Life?
Over and over again? All day? It sounded strange. It sounded like
it wouldn’t work. Wow, does it ever work!

Foreword: Joe Rainsberger iv

And now, five years and hundreds of Code Retreats later, Corey
has distilled tens of thousands of hours of collective learning into
this powerful little book. I intend to recommend it as a guidebook
to anyone who wants to learn the fundamentals of maintainable,
cost-effective software design. I've been saying for years that if you
simply follow Kent Beck’s rules of simple design, then you’ll see
how every good design principle you’ve ever heard of reduces to
some combination of “remove duplication” and “improve names”.
Of course, waving my hands like this requires relatively little effort.

With this book, Corey demonstrates the Implementers Rule: im-
plementers rule. 've wanted to see a book like this for years, but
never had the energy to write it. Corey has literally spent years and
traveled thousands of kilometers making it happen. That makes me

happy.

In five short years, I have attended and helped facilitate perhaps a
dozen Code Retreats in almost as many countries. I've participated
in the Global Day of Code Retreat in Gent, Stockholm, and a five-
minute walk from my house in Atlantic Canada. I've helped launch
Legacy Code Retreat’, a member of the Code Retreat family, which
has taken root in Europe and already helped hundreds of program-
mers practise rescuing legacy code in a safe environment. Code
Retreat seems intent on staying with us for years to come. Those
facts and this book form a significant part of Corey’s professional
legacy to us. I get to say, “I knew him when...” That makes me happy,
too.

As you practise test-driven development and use the four elements
of simple design to guide your decisions, you're going to notice
patterns. You’'ll recognise that when you see duplication over here,
that means that some code over here wants to become a brand new
module. You’ll notice a recurring pattern in names that nudges you
gradually-but-firmly towards moving this code over there. You’ll
find some of those patterns in this book, but more importantly,

*http://www.legacycoderetreat.org

http://www.legacycoderetreat.org
http://www.legacycoderetreat.org

Foreword: Joe Rainsberger A

you’ll notice patterns that you won’t find in this book. New pat-
terns. Patterns that we know, but that nobody has taken the time
to write down before. Perhaps even patterns that nobody has ever
noticed before. When that happens, I hope that you’ll think back to
this book and recognise how it and Code Retreat have helped you
reach that wonderful learning moment.

That would make me really happy.

- J. B. Rainsberger / @jbrains
Summerside, PEI, Canada

March 2014

Acknowledgements

First and foremost, this book benefits from the thousands of de-
velopers who gave up a day of their lives to spend time with me
throwing away their code. They came, wrote code and shared their
learnings with each other. It has been a huge honor to see the
coderetreat family grow to a level beyond my wildest dreams. There
are a lot of people who had a significant influence, but I want to
highlight a few in particular.

Coderetreat would have not found such an effective format without
the early contributions of two people who believed it could work.
Alex Bolboaca and Maria Diaconu, from Mozaic Works in Romania,
heard the idea when I was there for the Open Agile conference in
2009. Through that year, while I was running coderetreats in the
United States, Maria and Alex ran and actively experimented with
coderetreat format in Romania. When we regrouped in 2010, the
stable format that we know today came out of our conversations
and shared experiences. As one of many examples, I think one of
the most powerful aspects of the format is the closing circle and the
3 questions: Alex and Maria are to thank for these.

The past couple years have seen an explosive growth in the number
of coderetreats and the influence it has had on our industry. While
my travels and talks have contributed, Erik Talboom and Adrian
(Adi) Bolboaca’s influence in Europe has played a significant role.
Adi and Erik have not only been spreading the classic form of
coderetreat, but also helped spread another important style, legacy
coderetreat, based on the ideas of Joe Rainsberger and others.

In 2013, the third annual Global Day of Coderetreat (GDCR) spanned
a record number of timezones, countries, cities and developers
participating. This is very much due to the organizing work of Adi

Acknowledgements vii

Bolboaca, Jim Hurne, Martin Klose and Alissa Conaty. With their
guidance and hard work, the coderetreat and the GDCR continues
to grow, and I look forward to seeing what they do in 2014.

And, of course, the original idea of coderetreat came from conver-
sations with Gary Bernhardt, Nayan Hajratwala and Patrick Welsh
at the 2009 Codemash conference.

The 4 Rules of Simple Design, of course, aren’t my original thoughts;
they were coined by Kent Beck in the late 90s and continue to show
us how following simple rules, we can make our designs flexible and
clear. My understanding and application of the 4 rules come from
conversations with and learnings from a lot of people over the years.
Joe Rainsberger, Bob Martin, Michael Feathers, David Chelimsky
and Cory Foy are just a few of the people that have been influential
over the years.

I'd also like to thank James Rosen for his detailed editing of this
book. He found a lot of typos, grammatical issues and just things
that just didn’t make sense. Mike Gehard and his gSchool cohort
provided feedback on whether the book was at all understandable to
beginners. Jacky Sum swooped in and gave me some great feedback
from a beginner’s perspective, as well.

And, of course, if you love the cover as much as I do, Zach Walsh is
to thank for that. I came to him with an idea of combining people
and Conway’s Game of Life, and he exceeded all my expectations.
Thanks, Zach!

When I started this journey in 2009, I never imagined the growth
that could come from sharing and learning from so many develop-
ers around the world. Without the support and interest of a world-
wide community of developers, the ideas and focus of this book
couldn’t have happened. Thank you all.

- Corey Haines

Introduction

From 2009 to 2014, I traveled the world working with software
developers, both individually and in teams, to improve their craft.
I did this primarily through a training workshop format called
coderetreat®. During these day-long events, we worked on improv-
ing our ability to make good choices around the minute-by-minute
decisions we make while writing.

Over those years, I watched thousands of pairs of programmers
work on exactly the same system, Conway’s Game of Life*. As
a facilitator of these coderetreat workshops, I had the unique
opportunity to provide feedback, both direct and through questions,
on improving the act of writing adaptable, simple code. As time
progressed, I began to see patterns arise, common techniques and
designs that spanned languages, stayed the same between compa-
nies, and crossed national borders. My job as a facilitator was to
ask the questions that would push people past these common ideas,
gently (and sometimes not so gently) prodding the participants into
opening their minds to alternate ways to approach their design.

This book contains some of those patterns, designs and my re-
sponses to them. Grouped into a series of examples against the
backdrop of Conway’s Game of Life, I've done my best not just to
write the mechanics — the What — of the refactorings, but to focus
on the ideas behind them — the Why —.

*http://coderetreat.org/
“http://en.wikipedia.org/wiki/Conway%27s_game_of_life

http://coderetreat.org/
http://en.wikipedia.org/wiki/Conway%27s_game_of_life
http://coderetreat.org/
http://en.wikipedia.org/wiki/Conway%27s_game_of_life

Introduction

ix

So, enjoy this picture of Zak, and let’s get started.

Corey Haines

March 2014

This Book

Who It Is For

This book is for developers. I know that sounds a bit vague, but 'm
not sure how better to state it. Okay, let me try.

It is for beginners.

Are you just learning to program? WELCOME! Perhaps you
are in the throes of discovering what it’s like to make, what
it’s like to wake up in the morning and create something that
wasn’t there yesterday. Exciting, right? And it’s a wonderful
career/hobby. This book is for you. You haven’t had to main-
tain a larger application, yet. You haven’t had the pleasure of
wading through reams and reams of spaghetti code, trying
to track down that one elusive place to make your change
safely. And then you find that codebase was written by
you. The ideas contained in this book are about some of the
fundamentals of software development, principles you need
to think about when writing an application to do your best
to ensure this doesn’t happen.

It is for intermediate developers.
Nice! You've been programming a while, written a few
systems, and you’re feeling pretty solid. Maybe you’ve been
coding for a handful of years, and have established “your
way” to be effective. Unfortunately, at this stage, it is easy to
hit a plateau with your skills. Once effective, it can happen
that you stop learning, either consciously or subconsciously.
After all, you know what you’re doing, right? Now is the time
to go back to the fundamentals, really analyze the “Why”

This Book xi

behind the decisions you make. By stripping your thoughts
down to the core, you can build them back up with even more
insight and understanding.

It is for advanced practitioners.

You’ve been doing this for a very long time. Over the years,
you've figured out how to build systems that can stand
the test of time, easily accepting any changes that come.
Awesome! This book is for you, too. It is easy to lose sight
of the fact that others have to maintain your code, often
without the context you have. And sometimes we forget the
fundamentals. After all, we tend not to think about them
anymore. Going back and thinking about the basics, though,
can often shed light on some of the decisions we make,
helping us continue to fine-tune our practice.

What It Is (And Isn’t) About

Throughout the building of a system, there are many levels of
design decisions, ranging from the large up-front thinking (a la
hammock-driven development) to the almost continuous decisions
made around things such as naming variables and extracting meth-

ods.

This book is focused on the latter. While there are important
considerations and thoughts to be had at all stages of the software
development lifecycle, I'm choosing, for the purposes of this book,
to assume they have happened. Instead, the examples here are low-
level, focused on decisions that are made in the minute-by-minute
rush of writing code.

This book is not about any particular technique. It’s not about any
particular language. While the examples use an object-based/object-
oriented language, most of the ideas transcend that and focus
instead on the fundamentals of writing adaptable code — code that
can accept change as it is needed.

This Book xii

And lastly, this book is not a step-by-step guide to building Con-
way’s Game of Life. In fact, we spend very little time on the actual
system itself. As with coderetreat, GoL is just a backdrop that we
use to investigate how best to apply the 4 rules of simple design,
and other design guidelines, at the micro-level when writing code.

Format

This book is built as a series of essays, a series of examples,
highlighting different ways to think about your code in the context
of the 4 rules of simple design. Rather than grouping them by the
individual rule, however, 'm celebrating the fact that the rules
feed into each other iteratively. Often, completing a refactoring
based on “Expresses Intent,” for example, will highlight a further
refactoring based on “Eliminate Duplication.” Because of this, while
the examples can stand on their own, they are best read through in
the order presented.

Why Ruby?

Most of the examples in this book are written in Ruby.

I chose Ruby because it has a readable syntax with a minimum of
ceremony. The code snippets are small, and I try to use little-to-no
ruby-specific functionality. If you have a familiarity with any type
of language, you should be able to understand the examples with
little effort.

Where do these
thoughts come from?

Good Design?

As developers, we often enjoy discussing what makes a good design.
These conversations are useful and important, but I think they are
best done after-hours, in a relaxed atmosphere. The idea of “Good
Design” can often lead to a feeling that there is a pinnacle, that there
is an Aristotelian ideal for the design of a system. Unfortunately,
this just isn’t true. That is why discussions about this ideal are best
done away from the stresses of day-to-day work, the pressures that
cause us to want to “just get it done”

If you ask a room of developers what makes a “Good Design,”
youw’ll most likely get as many answers as there are respondents.
I think this variety makes these conversations valuable. Comparing
thoughts and ideas on this topic can sometimes yield insight into
techniques for improving a codebase, especially if the discussion
centers around a concrete piece of code. However, they are ulti-
mately fruitless when trying to reach some ideal of “Good Design.”

Instead, I prefer to talk about “Better Design.” This takes us to
a more concrete footing, allowing us to entertain the idea that
perhaps there are more than one design that works, depending on
the situation. It also removes the conflict inherent in “your design
is bad, because it isn’t ‘good’” when talking. If we can look at

things from a comparison point of view, perhaps we can find some
fundamental ideas about “better” When talking about fundamental
ideas, it can be important to talk about what, if anything, we truly
know about software development.

The one constant that we know for sure in software development
is that things are going to change. Whether it is our personal
projects or a system for a multi-national corporation, the desired
functionality will change over time. And these changes to the
system require changes to the underlying codebase. If we don’t pay
attention, our code rots, calcifying into a hardened mass that resists
change, pushing back on us whenever we try to add something new.

Simple design, though, is one that is easy to change. Striving for a
simple design — one that is adaptable to changing needs — is the
key to a “better design.” Whenever we have a choice to make, look
for the choice which would be easier to change.

It is important to keep in mind that this does not mean you
should strive for huge, xml-configuration-based systems, making
everything configurable. Quite the opposite. When we plan and
build explicit extension- and configurability points, we are going
against the idea of simple design. There is a second constant that
we know to be true in software development: we don’t know
exactly what is going to need to change. Every configuration and
extensibility point you explicitly plan and build is a belief about
the evolution of the system. A concrete statement “this is going
to change in the future, so it is worth my investment right now.
But, as the old saying goes, “we’ll never be more ignorant than we
are at this moment.” Rather than planning for change points, we
build systems, by applying simple design principles, that can change
easily at ANY point.

Sandi Metz® had a tweet that captures this well.

*https://twitter.com/sandimetz

https://twitter.com/sandimetz
https://twitter.com/sandimetz

@ Sandi Metz o [‘

Don't write code that guesses the future,
arrange code so you can adapt to the future
when it arrives.

As time goes on, and we learn more about what places are candi-
dates for frequent change, we then move, based on that knowledge,
to make those parts of the system even easier to change. As more
changes are applied to a simple codebase, it often naturally exudes
the right extension mechanism.

So, what are these “simple design principles?”

As a developer learns more about design, they start to find out about
different design principles and guidelines. Things like the SOLID
principles, Law of Demeter, Design Patterns, and so forth. All of
these are important at different levels of the development lifecycle,
but they can often be a bit too abstract. They also seem to fall out
naturally when applying some basic principles. These principles are
called the “4 Rules of Simple Design.” And this is what we’ll focus
on primarily in this book: applying these principles on small sample
bits of code, but large enough to really see the thought process
during refactoring.

Coderetreats

Generally, when we are developing, we have a goal of putting code
into production. No matter if we are getting paid, or if we are
working on some side project, we generally have a feeling that we
want to get it done. Of course, this adds pressure to do things the
way in which we are most familiar and comfortable. In general, we
don’t get paid for trying new things, we get paid for building things
for production.

We might occasionally pick up a side project to learn something
new. However, even these projects tend to have a goal of “getting
it done” Also, when learning, we have to live with the mistakes we
make at the beginning, during our initial learning phase. If you ask
someone to delete the past week’s worth of learning, you’ll receive
a pretty big resistance; even though most people would agree that
the second (or third) time you write something, it is done faster and
in a better way.

What if there were a day where you were encouraged to try new
things? Not just new things, things that you’ve never even thought
of? And, you didn’t have to live with the mistakes you've made
during learning, you can just throw it away. That’s coderetreat.

Coderetreat is a day-long workshop focused on analyzing and
practicing the decisions we make when writing code. With a set
format, evolved over a couple years of learning, the exercises are
focused on practicing and studying the small minute-by-minute
decisions we make when writing code. While there is value in
larger design activities, the small steps of refactoring are equally
as important.

The format of a standard coderetreat is simple:

« Full day (5 to 6 sessions)
« Participants write code in pairs (pair programming)

« 45-minute sessions
« Conway’s Game of Life is the problem
+ Code is deleted after each session
« New pairs each session
+ At the end of the day, we do a short retrospective where
everyone answers the following questions
— What, if anything, did you learn today?
— What, if anything, surprised you today?
— What, if anything, will you do differently moving for-
ward?

For each session, a set of constraints is given. These constraints
are generally a bit extreme. They have the goal of breaking the
participants out of their usual way of thinking. Most people will
begin working on a problem in the way they are comfortable. The
constraints are there to remove the ability to code in a familiar,
comfortable way. You can find some examples of session constraints
in the appendix.

The urge to rush to finishing is strong. One of the goals of the morn-
ing sessions is to break this feeling, allowing people to relax into the
idea of not finishing. It emphasises enjoying the feeling of explicitly
not thinking about the end, but paying attention to the minute-by-
minute coding, living for the moment-to-moment decisions when
writing and refactoring. Often the resistance comes from a feeling
of ownership: “this is my code, its existence represents me.” Or,
sometimes it is a sense of value: “this code is valuable, due to the
time I've spent on it

All these attitudes are learned habits and can be transcended by
practice. In the context of coderetreat, the practice is repeatedly
deleting the code you’ve written. Being interrupted and asked to
delete it, starting over.

Pretty rapidly, most people gain a previously unrealized perspective
about code ownership. In fact, after deleting and starting again

enough times, I've often heard people say they have a feeling of
freedom they’ve not experienced before. The separation of identity
from code frees them to experiment with new ideas. When value
isn’t tied to amount (or quality) of code, they can more readily
accept that an attempt isn’t working and discard it.

Conway'’s Game of Life

At coderetreats we traditionally work on Conway’s Game of Life.
This application is very simple and easily understandable, yet the
underlying domain and structure can hold a lot of subtle lessons
in low-level design. When we couple this problem with a time limit
and constraints to pull ourselves out of our comfort zone, it becomes
even more rich.

So, what is the game?

Conway’s Game of Life (GoL) is what is known as a zero-player
game. Sounds fun, right? It actually is a fascinating system called
a cellular automaton. We set up an initial pattern on a board, start
the program running, and the system evolves the board through a
series of generations.

The game is played on an infinite two-dimensional grid. Each cell
in this grid is considered either alive or dead.

A Beehive of Living Cells

A Block of Living Cells

When we run the game, the program goes over each cell and
calculates whether it will be alive or dead in the next generation.
The determination is based on four simple rules that take into
account the number of living neighbors. It is worth noting that there
are eight neighbors to a cell, diagonals count.

1. If a living cell has less than two living neighbors, it is dead in
the next generation, as if by underpopulation.

2. If aliving cell has two or three living neighbors, it stays alive
in the next generation.

3. If aliving cell has more than three living neighbors, it is dead
in the next generation, as if by overcrowding,.

4. If a dead cell has exactly three living neighbors, it comes to
life in the next generation.

Each tick of the game calculates the next generation based on these
four simple rules. The beauty comes out when you see some of the
fantastically complex structures that arise from such simplicity®.

An Active Breeder Pattern

This system is the backdrop for the examples in this book. I would
challenge you to spend a little bit of time thinking about how
you would build this system, how you would design it. Assume
that changes are coming, but you don’t know what they are. But,
don’t just settle with one idea, see if you can come up with several
different approaches. Take some time and think about it now. The
rest of the book can wait. Check out the wikipedia entry” for more
information. Once you are done, feel free to check out the sample
list of coderetreat session constraints and ask yourself how they
impact your proposed solution(s).

“Breeder Pattern picture by wikipedia user HyperDeath. For more information on
licensing, see the picture’s wikipedia page.
"http://en.wikipedia.org/wiki/Conway%27s_game_of_life

http://en.wikipedia.org/wiki/Conway%27s_game_of_life
http://en.wikipedia.org/wiki/User:Hyperdeath
http://en.wikipedia.org/wiki/File:Conways_game_of_life_breeder.png
http://en.wikipedia.org/wiki/Conway%27s_game_of_life

10

4 Rules of Simple Design

So, what are these 4 Rules of Simple Design?

Orig

inally codified by Kent Beck in the late 90’s, these rules outline

some fundamental concepts around software design. The two core
rules can guide us as we make our small, code-level refactorings.

Here they are in a simplified form.

BN W N =

. Tests Pass

. Expresses Intent

. No Duplication (DRY)
. Small

Let’s look at these in order and see what they mean.

1

. Tests Pass

It makes sense that this would be the first one. After all, if you
can’t verify that your system works, then it doesn’t really
matter how great your design is, does it? With the modern
tools that exist, we generally mean that these tests are auto-
mated. But, notice that the rule doesn’t say “Automated Tests
Pass,” just “Tests Pass.” It is about correctness and verification.
Looking at this from the point of view of “easier to change,”
though, you can see that the length of time it takes to make
sure your “Tests Pass” can be a significant factor in making
changes. If you can type a command and have your system
verified in a matter of seconds, or less, then you can change
your system more readily than if you have to wait hours, or
even days. So, when looking at your testing strategy, tend
towards automated, and tend towards making them fast(er).
I have a saying that I like to use:

“If you have to ask how fast your test suite should be, it should
be faster”

11

2. Expresses Intent

How often have you went looking at a piece of code and
found a method with name like process_transaction, but
after looking more closely, you realize it neither processes nor
has anything to do with transactions? This is an extreme case,
but highlights an important problem when we are writing,
and especially when you are updating, code: it is easy for the
names we give things to stray from what they represent.

One of the most important qualities of a codebase, when
it comes time to change, is how quickly you can find the
part that should be changed. The first step is identifying the
code related to the functionality we are addressing. Paying
attention to the names and how our code expresses itself is
the key to making our lives easy when we come back to it.

Also, over time, as we change the functionality of our sys-
tem, classes and methods can become filled with unrelated
behaviors. This makes it difficult to have the name effectively
express their intent. As we start to see structures getting large,
the difficulty in finding an expressive name is a red flag that
it is doing too much and should be refactored.

3. No Duplication (DRY)

This is the most subtle of the rules. We tend to think of
duplication at a code level — a mechanical “this looks like
that, so duplication!” level. However, this rule isn’t about
code duplication; it is about knowledge duplication.

A lot of people are introduced to this idea through the DRY
principle, or Don’t Repeat Yourself. This was established in
the book, The Pragmatic Programmer®, by Dave Thomas and
Andy Hunt.

The DRY principle states “Every piece of knowledge should
have one and only one representation.” This rule also has been
expressed as “Once and Only Once”

*http://pragprog.com/book/tpp/the-pragmatic- programmer

http://pragprog.com/book/tpp/the-pragmatic-programmer
http://pragprog.com/book/tpp/the-pragmatic-programmer

12

Instead of looking for code duplication, always ask yourself
whether or not the duplication you see is an example of core
knowledge in the system.

. Small

Once we've applied the above rules, it is important to look
back and make sure that you don’t have any extraneous
pieces. Some questions I like to ask myself when I take a step
back after writing some code.

Do I have any vestigial code that is no longer used?

This is an easy one. Sometimes, as we are working through
our system, we build things that aren’t used in the final
product. Maybe they seemed like a good idea at the time,
but the capability never came to fruition. If so, no questions
asked, just delete that.

Do I have any duplicate abstractions?

In the course of refactoring, we often end up extracting
abstractions, whether they be methods or new types. While
we strive to keep duplication down, per the DRY principle,
sometimes we find that we missed something. Perhaps the
duplication is far apart in the codebase. Perhaps it is was
hard to see the similarity when focused on the small. Take
a moment to see if you notice anything now. If so, combine
them.

Sometimes, though, it isn’t that the full abstractions are
duplicate, but just that they have some similar characteristics,
perhaps a behavior, or two. If so, then we might be missing
another common abstraction that they can rely on. Don’t
wait, extract it.

Have I extracted too far?

In the course of writing, we can sometimes over-extract.

A common case of this is when we extract a method for
readability, to better express our intent. However, once we

13

are done with the rest of our cleanup, we can inline the
extracted method. This is a great example of the fluidity of a
codebase’s expressiveness over time.

An important thing to realize about these rules is that they iterate
over each other. Frequently, fixing a naming issue will uncover
some duplication. Eliminating that duplication will then reveal
some expressiveness that can be improved. Joe Rainsberger wrote a
great blog post about this iterative nature of the 4 rules’.

There are many very interesting articles on the internet about the
4 rules of simple design. You can find them in the further reading
section.

*http://blog.thecodewhisperer.com/2013/12/07/putting-an-age-old-battle-to-rest/

http://blog.thecodewhisperer.com/2013/12/07/putting-an-age-old-battle-to-rest/
http://blog.thecodewhisperer.com/2013/12/07/putting-an-age-old-battle-to-rest/

Examples

While running coderetreats, I have the opportunity to see a lot of
people working on Conway’s Game of Life. As we go through the
day, I make comments about design, both in the large and in the
small. Over the years, I've seen similar patterns pop up across many
different developers.

This section contains some of these concrete examples for the 4 rules
of simple design and other lessons from coding Conway’s Game of
Life.

15

Test Names Should Influence Object’s
API

The idea of naming, and how it relates to the intent of your code,
can be seen when looking at the symmetry between test names and
the test code. When talking about test descriptions, we often say
that they can stand in for documentation. Unfortunately, it is easy
to lose sight of this when writing the code inside the test.

In Conway’s Game of Life, a common approach is to start with a
World class. Since one of the techniques we practice at coderetreat
is test-driven development, we start with a test. A common starting
point is that a living cell can be added. I see the following two tests
quite often.

def test_a_new_world_is_empty

world = World.new

assert_equal 0, world.living_cells.count
end

def test_a_cell_can_be_added_to_the_world
world = World.new
world.set_living_at(1, 1)
assert_equal 1, world.living_cells.count
end

On the surface, these seem like reasonably well-written tests. How-
ever, if we look at it from the idea that the tests should express
intent, then there is an obvious mismatch between the test names
and the code in the test.

Let’s look at the first one, since this is the simple one that we might
write first.

16

def test_a_new_world_is_empty
world = World.new
assert_equal 0, world.living_cells.count

end

The test name talks about an empty world. The test code, though,
has no concept of an empty world, no mention of an empty world.
Instead, it is brutally reaching into the object, yanking out some sort
of collection (only a lack of living cells represents that the world is
empty?) and counting it.

When we write our tests, we should be spending time on our test
names. We want them to describe both the behavior of the system
and the way we expect to use the component under test. When
starting a new component, we can use our test names to influence
and mold our API Think of the test as the first consumer of the
component, interacting with the object the same way as the rest
of the system. Do we want the rest of the system to be reaching
in and grabbing the internal collection? No, of course we don’t.
Instead, think about letting the code in the test be a mirror of the
test description. How about something like this.

def test_a_new_world_is_empty
world = World.new
assert_true world.empty?

end

This hides the internals of the object, while building up a usable
API for the rest of the system to consume.

Now, let’s look at the second test.

17

def test_a_cell_can_be_added_to_the_world
world = World.new
world.set_living_at(1, 1)
assert_equal 1, world.living_cells.count
end

After the discussion around the first test, we can see the lack of
symmetry here. The test name talks about adding to the world, but
the verification step isn’t looking for the cell that was added. It is
simply looking to see if a counter was incremented on some internal
collection. Let’s apply the symmetry again and have the test code
actually reflect what we say is being tested.

def test_a_cell_can_be_added_to_the_world
world = World.new
world.set_living_at(1, 1)
assert_true world.alive_at?(1, 1)

end

This now adds to our APIL. Additional tests, of course, will flesh out
the behavior of these methods, but we now have begun to build up
the usage pattern for this object.

We also could add a test around the empty? method using set_-

living_at.

def test_after_adding_a_cell_the_world_is_not_empty
world = World.new
world.set_living_at(1, 1)
assert_false world.empty?

end

This is another way of slowly building up the API, especially the
beginnings of the set_living_at behavior.

18

Focusing on the symmetry between a good test name and the code
under tests is a subtle design technique. It is definitely not the only
design influence that our tests can have on our code, but it can be
an important one. So, next time you are flying through your TDD
cycle, take a moment to make sure that you are actually testing what
you say you are testing.

19

Duplication of Knowledge about
Topology

Given that we are building with a cell abstraction, we can start to
think about their locations. A common next step is to set certain
cells to be alive at a given location, check for living cells at a
location, etc.

A common, and pretty reasonable, implementation is to have
something like a Wor1d class that contains these behaviors. A naive
implementation might look at our 2-d grid and build the methods
directly.

class World
def set_living_at(x, y)
#...
end
def alive_at?(x, vy)
#...
end

end

And, of course, we might decide to add the coordinates to our Cell
classes. After all, the cells are placed at a certain location.

class LivingCell
attr_reader :x, :y

end

class DeadCell
attr_reader :x, :y

end

On the surface, this seems okay. But, there is a subtle, not always
obvious duplication of knowledge here: knowledge of our topology.

20

A good way to detect knowledge duplication is to ask what happens
if we want to change something. What effort is required? How
many places will we need to look at and change? For example, what
if we want to change our topology to 3 dimensions? In our design,
we would have quite a few places to change. This is duplication
of knowledge; we have spread the knowledge of our topology —
the fact that we are working on a 2-dimensional grid — all over
the codebase. Eliminating this duplication relies on a strategy of
reification. This is the act of taking a concept and making it real by
extraction. So, let’s extract the x, y to create a Location abstraction.

class Location
attr_reader :x, :y

end
Now, doing this gives us a way to eliminate our duplication.

class World
def set_living_at(location)
#...
end
def alive_at?(location)
#...
end
end
class LivingCell
attr_reader :location
end
class DeadCell
attr_reader :location

end

By isolating this knowledge, we have made it easier to handle any
change in our topology. Our code becomes more adaptable, along
with making it much more clear.

21

While we looked at this refactoring from the perspective of dupli-
cation, we can also approach this as a naming problem: a lack of
effectively expressing our intent.

To start with, the parameters x and y have horrible names. The
fact that we “know” what they mean is a convention, rather than a
result of being explicit. When encountering poor names, we often
can find a missing abstraction by thinking about what the poorly-
named variables represent.

class World
def set_living_at(x, y)
#...
end
end

In our case, as a pair, the x and y represent a location in our system.
A better way to represent it, to be explicit, is to name the pair.

class World

def set_living_at(location)
#. ..

end
end

This then tells us that this parameter represents a single object, an
instance of something.

Of course, we could take a small, interim step by making this a tuple
on the caller side.

world.set_living_at([x, y])

A good step, but this does not solve the naming issue, it really
just pushes it elsewhere in the code. That can be good as a small

22

step solution, but we’ll want to clean it up there, too. Applying
some judicious name fixing at that level could push us closer to
aLocation object.

23

Behavior Attractors

A common and reasonable starting point for building Game of Life
is to set living cells at locations. As per the rules, cells can be either
living or dead. Here’s an example of how this could be implemented.

class World
def set_living_at(x, vy)
#...
end
def alive_at?(x, y)
#...
end
end
class Cell
attr_reader :x, :y
def alive_in_next_generation?
run rules
end
end

Imagine that we are happily moving along with this design when
we find ourselves in need of asking for the neighbor locations for a
given x, y. Perhaps we want something like the following method.

def neighbors_of(x, y)
calculate the coordinates of neighbors
end

Whenever we have a new method — a new behavior —an important
question is “where do we put it?” What type does this belong to?
Unfortunately it isn’t always immediately clear where to put it.
Determining the right place for a new behavior can often be very

challenging.

24

Should this go on the Cell class? It could make sense to ask a cell for
its neighbors’ coordinates. After all, the cell does have knowledge
about where it is positioned on the grid. Of course, it is also focused
on implementing the rules for evolving to the next generation. That
feels like we are starting to put unrelated responsibilities onto the
Cell class.

Perhaps a better place would be the World class? After all, this
represents the larger world, where we can set living cells and query
whether certain locations are alive. It clearly has knowledge of the
grid. But, just thinking about the name “World,” we can kind of get
a sense that it has the makings of a God Class'’. Perhaps we should
stay away from putting more things there.

How many times have you run into this problem? You know you
need a behavior, but there is a bit of confusion around its proper
place. Too often, our solution is to punt on really analyzing the
problem. Instead, we just put it in whatever file is open at the time.
After all, we can always justify it later. Or, we tell ourselves we’ll
move it later, once we have more information. Once it starts getting
used, though, moving it becomes less and less likely.

However, there could be a much more natural place. In an earlier
example, we eliminated the knowledge duplication around the
location, reifying a Location concept. Had we done this here, we
might find that we already have a place that is just right.

class Location
attr_reader :x, :y
end

Our other classes reference this, the Location, and rely on it to
be entirely focused on the topology. What better place to put
a behavior than the type that is concerned about the topology?
Our behavior is really about asking for what locations constitute

http://c2.com/cgi/wiki?GodClass

http://c2.com/cgi/wiki?GodClass
http://c2.com/cgi/wiki?GodClass

25

the neighborhood around a given location. Sounds like a natural
behavior for the Location class.

class Location
attr_reader :x, :y
def neighbors
calculate a list of locations
that are considered neighbors
end
end

This is an example of what I call a Behavior Attractor.

By aggressively eliminating knowledge duplication through reifica-
tion, we often find that we have built classes that naturally accept
new behaviors that arise. They not only accept, but attract them;
by the time we are looking to implement a new behavior, there is
already a type that is an obvious place to put it.

As a corollary to this, we can use this idea to notice potentially
missing abstractions. If we are working on a new behavior, but are
not sure where to place it — what object it belongs to — this might
be an indication that we have a concept that isn’t expressed well in
our system.

26

Testing State vs Testing Behavior

When starting a problem, especially when we are taking an outside-
in approach, it is common to begin with the outermost object. We
might start with some form of coordinator object for the use case we
are writing. In Conway’s Game of Life, we might think of a Wor1ld
class; an object that might coordinate the grid, the changing state
of the cells, etc.

In our case, a great first test might be to see whether a Wor1d starts
empty.

def test_a_world_starts_out_empty
world = World.new
assert_true world.empty?

end

This is reasonable. It is simple. It establishes that we have a world.
And, it establishes that there are no living cells in a new one.

The next test, of course, continues down this path. The previous test
was looking at the idea of emptiness, so it seems natural to continue
in that vein. How about placing a living cell? After all, that is how
we start the game: placing cells. Since we’ve established an empty?
method, we might make a simple test that the world isn’t empty
after placing a living cell.

def test_world_is_not_empty_after_setting_a_living_cell
world = World.new
location = Location.random
world.set_living_at(location)
assert_false world.empty?

end

Nice and simple tests, for sure. They seem to follow naturally. You
probably can see the path forward now. “Nice and simple” is true.

27

It is worth noting, though, that they are leading to a very state-
focused test suite. We are doing something, then checking what, if
any, state change occurred.

An alternate way to develop a system is to focus on the behavior
rather than the state of the objects. Think about what behaviors
you expect and have our tests center around those. The idea of
“focusing on behavior” is a common topic in software development
conversations, but it isn’t always that clear how to do it.

Building our system in a behavior-focused way is about only
building the things that are absolutely needed and only at the time
they are needed. This way, we end up with a system that has just
enough code to support our use cases. When doing this, there is a
handy tool I use to keep myself building only what is needed.

When 1 think there is something I want to build, I ask myself a
simple question: “What behaviour of my system requires this?”
Once I answer that question, I move to building that behavior.

In our case above, this formula generates two questions:

« How do we know that we want to set an individual cell?
« How do we know that we want to check that the world is
empty?

Once we answer these questions — usually with a statement that
“this behaviour will need it” — we can take a step back and build
our tests around that behaviour.

Why do we need to set an individual cell? Above, we said that this
might be how we set up the initial pattern. This leads to another
question.

Why do we need the initial pattern? The point of the game is to
calculate the next generation.

And there is where we have identified a fundamental behavior:
calculating the next generation.

28

In our system, this fundamental behaviour happens with the tick,
moving to the next generation. This is what triggers everything. So,
let’s start testing that. Then, as it needs behaviors, we can build
those.

So, what is a very simple thing we say about a tick? The empty
world should tick into another empty world.

def test_an_empty_world_stays_empty_after_a_tick
end

Now a question has come up. We just had a question about having
our first test be about checking that a new world was empty. And,
it seems like we’ve moved ourselves into a position where we need
to do this. Since the test dictates that we start with an empty world,
we probably should postpone this test and make sure that a new
world is empty, so we can write the original test.

def test_a_new_world_is_empty
assert_true World.new.empty?
end

After this, we can move to our original test. We know that a new
world is empty. So, we can fill our behavior-focused test with that

knowledge.

def test_an_empty_world_stays_empty_after_a_tick
world = World.new
next_world = world.tick
assert_true next_world.empty?

end

Huzzah! We’re now a little more behavior-focused!

29

Don’t Have Tests Depend on Previous
Tests

Let’s look at our previous example’s “behavior-based” test.

def test_an_empty_world_stays_empty_after_a_tick
world = World.new
next_world = world.tick
assert_true next_world.empty?

end

Unfortunately, there is a subtle problem here.

How do we know that a newly-initialized Wor1d is empty? The test
name indicates we are starting with an empty world, but the test
code does not specify this explicitly. We talked about having our
test names correspond to the test code in a previous example. Is this
a problem here, though? We do have another test verifying this.

And there is our problem.

This test implicitly depends on the validity of a different, previous
test: there is an assumption here that new worlds are empty. This
causes a subtle, but important, problem; that lack of explicitness,
combined with the coupling to the previous test, makes this test
contribute to a fragile test suite. What happens if we change the
parameters around a new world? What if we decide to make it not
empty, but rather start with a stable structure, such as the block? In
that case, our original “new world is empty” test fails, as it should.
However, we’ll get another failure “an empty world stays empty
after a tick”. We'll look at that test and wonder why it is failing.
That’s not good. We want test failures to be explicit, quickly and
effectively pointing us to the problem. How should we resolve this?

Let’s look back at the idea of letting the test name influence the test
code and use that to make the test code a bit more explicit. Rather

30

than riding with the assumption that a new world is empty, let’s
explicitly ask for an empty world.

def test_an_empty_world_stays_empty_after_a_tick
world = World.empty
next_world = world.tick
assert_true next_world.empty?

end

Now, if we change the default constructor to return something other
than an empty world, this test will continue to pass. Only if we
change what we mean by an empty world, created by Wor1d.empty,
will this test fail. And, if we do that in such a way that the next
world isn’t empty, then this test will fail. And it should, because the
statement we are verifying will no longer be true.

In fact, over time I've developed a guideline for myself that external
callers can’t actually use the base constructor for an object. Put
another way: the outside world can’t use new to instantiate an object
with an expectation of a specific state. Instead, there must be an
explicitly named builder method'* on the class to create an object
in a specific, valid state.

"I had originally used the term factory method here. Thanks to lan Whitney for pointing
out that it could be confusing, as this is really closer to the builder pattern.

31

Breaking Abstraction Level

Automated unit test suites can have a tendency towards fragility,
breaking for reasons not related to what the test is testing. This
can be a source of pain when maintaining or making changes to a
system. Some people have even gone to the extreme of moving away
from unit- or micro-tests and only writing full-stack integration
tests. Of course, this is the wrong reaction. Instead, we should
investigate the source of the fragility and react with changes to our
design.

It isn’t always a problem with our system design, though. Some-
times fragility can come about because of problems in our tests.
Let’s take a look at a test we had in an earlier example. It is fairly
small, and the assertion matches the test description.

def test_world_is_not_empty_after_adding_a_cell
world = World.empty
world.set_living_at(Location.new(1,1))
assert_false world.empty?

end

But, there is a problem. Can you see it?

Our test talks about the world being empty and adding cells.
However, looking at the test code, we can see details about the
topology: the (1,1) tuple. We want to strive to have our tests be
concise and clear about the behavior we are describing. However,
in this case, our test code is implying that the empty? method is
somehow dependent on the coordinates, themselves.

This is an example of breaking the level of abstraction. We are
testing the behavior of the world, but we are including details
that it isn’t concerned with. If the actual topology knowledge is
encapsulated in the location object, then the world should be relying
on that object to manage those particulars. By tying this test to

32

concrete implementation of 2 dimensions, via the (1,1) tuple,
rather than the Location abstraction, we are laying the groundwork
for fragile tests: change the topology and tons of tests fail that are
not related to the coordinate system. This coupling can be seen as
another example of duplication: spreading the knowledge of the
topology not just throughout the code, but also throughout the test
suite.

To improve this, we work to hide the details of the topology from
the world object. One way to do this is to use a stand-in, a test
double for the location object. This can be as simple as creating a
new, plain object.

def test_world_is_not_empty_after_adding_a_cell
world = World.empty
world.set_living_at(Object.new)
assert_false world.empty?

end

Or, if you don’t like the use of test doubles, you can use a builder
method that provides a location without exposing implementation
details.

def test_world_is_not_empty_after_adding_a_cell
world = World.empty
world.set_living_at(Location.random)
assert_false world.empty?

end

Note: We could have used a more concrete location, like Location.center,
but we aren’t guaranteed that our grid has a center, especially if it
is infinite.

By isolating ourselves from changes to the topology, the internals
of the Location, we help ensure that this test won’t break if we

33

change something about the underlying coordinate system. We also
emphasize that the actual coordinates of the location are irrelevant
in this test.

Personally, I like to use a test double in this case, as it highlights that
we aren’t using any specific attributes of the location object. And,
if we find that we need some interaction with the location, we can
specify it as constraints on the double. The result is that our test
clearly expresses what behaviors of the location object we depend
on. If we want to be even more explicit, we can give the test double
a name. This can increase the readability of the test.

def test_world_is_not_empty_after_adding_a_cell
world = World.empty
world.set_living_at(double(:location_of_cell))
assert_false world.empty?

end

By using a test double, we gain feedback that can help minimize the
coupling of the behavior under test: we must be explicit about every
interation. Because we have to specify the coupling points, we can
be clear and confident about how many touch points our objects
have with each other. This helps identify any abstraction problems;
for example, if this test needs 3 methods stubbed on the location
double, then that is a potential indication that we are missing an
abstraction, or perhaps set_living_at is doing too much.

34

Naive Duplication

Let’s look at encoding the actual rules of a cell’s evolution, how
it transforms from generation to generation. A common design is
to have a cell class with some sort of state to specify being alive
or dead. We give it some sort of method to calculate its next state
according to the evolution rules.

class Cell
attr_reader :alive # true | false

def alive_in_next_generation?
if alive
number_of_neighbors == |

number_of_neighbors == 3
else
number_of_neighbors == 3
end
end

end

Let’s start refactoring this. Any noticeable duplication?

Aha! That check around whether number of neighbors is 3 looks
suspicious. Let’s get rid of the duplication.

class Cell
#
def alive_in_next_generation?
(alive && number_of_neighbors == 2) ||
number_of_neighbors == 3
end
end

35

We definitely got rid of the two instances of the number 3, but
we have introduced new issues. This is due to what I consider
naive, mechanical elimination of duplication: a refactoring that
stems from a fundamental misunderstanding of the idea of DRY.

Let’s review the idea of duplication. The Don’t Repeat Yourself, or
DRY, principle states:

Every piece of knowledge has one and only one repre-
sentation

Notice that it doesn’t say anything about code. In fact, it has very
little to do with code. Just looking at code that appears similar and
combining them misses the point of the DRY principle.

With this clarity in hand, let’s analyze our example a bit more
closely.

These 3s are not the same. Thinking they are is a result of seeing a
magic number without some sense of what it represents in terms of
our domain. When thinking about duplication, it can help to expand
the scope of our view, in this case to include the equality check, and
to think about what it represents. In our alive case, the 3 is more
closely linked to the 2 in the concept of a “stable neighborhood,”
while in the dead case, it is linked to something like a “genetically
fertile neighborhood”

One good technique to keep from mistaking similar-looking code
as actual knowledge duplication is to explicitly name the concepts
before you try to eliminate the duplication. In our case, we would
end up with something like this.

36

class Cell
#
def alive_in_next_generation?
if alive
stable_neighborhood?
else
genetically_fertile_neighborhood?
end
end
end

After this small refactoring, we can see clearly that the 3s represent
different things. This is the power of paying close attention to
the expressiveness of our code before blindly trying to eliminate
duplication.

37

Procedural Polymorphism

Take a look at the code that we have around the cell’s evolution.

class Cell
#
def alive_in_next_generation?
if alive
stable_neighborhood?
else
genetically_fertile_neighborhood?
end
end

end

Notice that it contains a bit too much implementation detail. The
method name alive_in_next_generation? is more about imple-
mentation, the move from generation to generation, rather than a
description of the behavior we want. It is more of a state-oriented
statement “alive in next generation?” rather than a question about
behavior.

When we find these very generic names, we are looking at an
expressiveness problem. Why is “alive” the state we are interested
in? What if we add another state?

However, if we think about a better name, we have a hard time. In
the case of a living cell, this is really whether it stays alive. In the
case of a dead cell, though, it is about the cell coming to life. How
can we reconcile this inconsistency?

Before diving straight into tackling the reconciliation, let’s start at
alower level, inside the method, and see if we can gain any insight.

Starting at the top, let’s look at the branching variable, alive; there
are a few different questions we could ask ourselves about it.

38

The name of this variable captures a default, or preferred, state:
alive. Why is this the thing we highlight? Each cell is really in
one of two states; why not highlight dead? What if we change the
concept of living? What if it isn’t binary? Changing this means we
have to change code also related to the other two states. We also are
spreading the concept in several places: alive has to do with both
the variable and the method that uses it.

A seemingly quick solution would be to make it something like
state, but that masks our intention a bit. What are the possible
states?

class Cell
#
def alive_in_next_generation?
if state == ALIVE
stable_neighborhood?
elsif state == DEAD
genetically_fertile_neighborhood?
end
end
end

This isn’t much better; We now have even more of an expressiveness
problem with this branching: do we really know these are the
only ones? I also feel a bit uncomfortable when I see an i f-elsif
sequence without a raw else.

Variables named state are also a huge red flag for expressiveness.
Does a cell really change state? Do dead cells change state into
living cells? Or are living cells created? To be honest, too often
state variables are usually just an indiciation that we’ve given up
on really understanding and encoding our intention.

Resolving this requires us to talk a bit about polymorphism in
general. Polymorphism is about being able to call a method/send

39

a message to an object and have more than one possible behavior.
This can be one of the most powerful techniques in programming.

In our case, we are providing a form of polymorphism with this
method. When this method is called, the caller can expect one of two
different behaviors: either the ruleset for living cells or the ruleset
for dead cells. Which ruleset gets run is based on an internal state,
hidden from the outside world. In a way, this is good; the caller
shouldn’t have to care. But it is worth looking at the method we
use to achieve the goal.

When we use a branching construct inside a method like this, we
run into several problems. We’ve talked about the expressiveness
problem, but we also have issues with changing this code. If we are
going to add a state, or change rules around the states, we will find
ourselves modifying existing code. Not just existing code, but code
that is unrelated to the change we are making. If we add a state,
why would we force ourselves to modify the code related to the
other states? When we begin to overload concepts in our system,
especially method names, we run into this “everything goes here”
situation.

In general, if statements (or other branching constructs) are im-
perative, procedural mechanisms. While they do provide a form
of polymorphism, they provide a form that I call Procedural
Polymorphism. It satisfies our needs for selecting a behavior, but
their procedural background leads to tightly-coupled code, joining
these often unrelated behaviors together.

Luckily, object-based and object-oriented languages provide a pre-
ferred method for polymorphism, what I call Type-Based Poly-
morphism. The idea is one central to object-oriented design: use
different types for the different branches. The general approach is
to analyze what the branching condition is, identify the concepts,
and reify them into first-class concepts in our system.

In our example, we can take our state and raise it to types:
LivingCell and DeadCell.

40

class LivingCell
def alive_in_next_generation?
neighbor_count == 2 || neighbor_count == 3
stable_neighborhood?
end
end
class DeadCell
def alive_in_next_generation?
neighbor_count == 3
genetically_fertile_neighborhood?
end
end

At this point we have separated out the concepts. And, if we choose
to, we can also inline the business rule methods without sacrificing
too much.

class LivingCell
def alive_in_next_generation?
neighbor_count == 2 || neighbor_count == 3
end
end
class DeadCell
def alive_in_next_generation?
neighbor_count == 3
end
end

We also have higher-level names for our concepts, which makes it
easier to find where changes need to occur.

A huge benefit of this is that we also have provided ourself a safer
method for adjusting the different states a cell can be in. If we need

41

to add a new one, we add a new class. We extend our system, rather
than modify it. This is an example of the open-closed principle®.

class ZombieCell
def alive_in_next_generation?
new, possibly more complex rules
end

end

It also provides a clear method for fixing the names of our methods
to match the actual concepts in our system, focusing on specific be-
haviors, rather than a generic idea of alive_in_next_generation.

class LivingCell
def stays_alive?
neighbor_count == 2 || neighbor_count == 3
end
end
class DeadCell
def comes_to_life?
neighbor_count == 3
end
end

At this point, we now have very explicit statements of the intent
of the types and their behaviors. But, changing these names takes
away the polymorphism! We no longer can call a single method and
have the appropriate rules applied. This is true. This could be an in-
dication that the idea of having the initially-desired polymorphism
isn’t a good design. Naturally it depends on how we end up using
the cells, but focusing heavily on explicitness in this fashion can
raise flags about desired or “planned” designs.

"Components should be open for extension, but closed for modification. See the Other
Design Guidelines section in the back of this book.

42

Making Assumptions About Usage
Let’s look at the Cell classes.

class LivingCell
def stays_alive?(number_of_neighbors)
number_of_neighbors == 2 ||
number_of_neighbors ==
end
end
class DeadCell
def comes_to_life?(number_of_neighbors)
number_of_neighbors == 3
end
end

It seems reasonable that those methods would be there. After all,
the following reads okay. Or, at least, it feels familiar.

cell.stays_alive?(number_of_neighbors)

But, there are a couple possible flags here.

First, notice that we are talking about entity classes here. That is,
we have objects representing concrete abstractions: Cells. Classes of
this nature tend to encapsulate and provide behavior around state.
Methods on them are generally involved in working with that state.
For example, query methods provide a way to access the state. In
this case, though, the methods are not accessing internal state, at
all. In fact, they are primarily using the passed-in value, number_-
of_neighbors.

It is true that we could say that the rules, themselves, the compar-
isons are related to the cell and constitute cell-focused knowledge.
While cell-focused, they really represent the rules. But why is Cell

43

our abstraction around executing the rules? Why don’t we reify the
idea of a rule? One of the key parts of being easier to change (i.e. a
better design) is being able to more easily find where the changes
need to occur; this is what good naming contributes to. So, if we
were to come to a large system, and we wanted to change the rules
for evolution, you might look at a Cell class. But imagine if there
was a Rule class. That could probably be an even larger signpost.
Let’s play with this a bit by just adding Rules to the class names.

class LivingCellRules
def stays_alive?(number_of_neighbors)
number_of_neighbors == 2 ||
number_of_neighbors == 3
end
end
class DeadCellRules
def comes_to_life?(number_of_neighbors)
number_of_neighbors == 3
end

end

This looks interesting. Of course, we've now lost an abstraction,
the Cell. This will influence our location objects. Are the locations
linked to the current rules depending on the state, or is there still
some placeholder idea of a cell? Do we even need a reified cell
abstraction? What is causing us to have it? In fact, if we think
about it, the concept of a DeadCell has a potential trap in it. We
are working with an infinite grid. So, which dead cells are we
keeping track of? Which locations are we tracking? How do we
know that we should instantiate a location object for a given (x,y)
pair? We can’t keep track of all of them. Perhaps it does make sense
to question the concept of a concrete cell class.

A lot of questions that arise have a “do we need this abstraction”
flavor. This happens quite frequently when following an inside-
out development style. We start somewhere in our domain, making

44

a very large assumption that the abstractions we are building
will be needed sometime. As we’ve seen, new abstractions can be
developed and investigated through refactorings, but it can be easy
to work yourself into a corner. The fundamental thought that is
hidden in “do we need this abstraction” is “use influences structure.”
So, should we have LivingCellRules and get rid of LivingCell?
Should location objects keep a link to the rule, rather than the
cell? Perhaps the location object doesn’t actually contain this link
at all. Perhaps the existence of an instantiated location object
implies LivingCellRules. So many answers not just disappear but
never come up when building abstractions and behaviors through
actual usage. This is often what happens when using an outside-in
development method.

45

Unwrapping an Object

A common (and perhaps one of my favorite) constraints in codere-
treat is writing your code with “no return values” Most of the
time, in our daily lives, we build in a very imperative style, asking
several objects for their data, perhaps some calculations, then we
enact an algorithm and stuff the results back into other objects. By
eliminating the ability to return values from our functions, we force
ourselves to rely instead on telling objects to enact behaviors.

Another side effect of this constraint is that you no longer can
have properties on your objects — no methods for querying the
internal state. By eliminating the ability to query for data, we begin
to build objects that are very tightly encapsulated. We can rely on
the objects alone to manage their internal state.

Whenever this constraint comes up, there is an inevitable question:
“How do you test for equality?” As people work on the problem,
they notice that they need a way to compare whether two location
objects represent the same place on the grid.

As an example, imagine we have the following two location objects.

class Location
attr_reader :x, :y
end

location1 = Location.new(1, 1)

location2 = Location.new(1, 2)
if locationi.equals?(location2)

Do something interesting

end

Ordinarily, you’d write something like this.

46

class Location
attr_reader :x, :y
def equals?(other_location)
self.x == other_location.x &&
self.y == other_location.y
end
end

locationi.equals?(location2)

Of course, equals? as a method name here is a bit poor. This
isn’t really looking to see if the locations are equal, as much as
representing the same place in space. But, for our purposes here,
this is good enough.

But, this equals? method doesn’t conform to our constraint: it is
asking other_location to return its x and y. This isn’t allowed.

This can be a very common sticking point. Most of us have been
trained to use properties to access internal state of an object. We
pretend, of course, that we are using properties to encapsulate state,
but really it is just a way to allow the outside world to reach inside
us and do what they want. In a world where you can’t return
anything, though, how do you get around this?

The key idea is in a technique that I call unwrapping. Take a look
at the following alternate form of equals.

47

class Location
attr_reader :x, :y
def equals?(other_location)
other_location.equals_coordinate?(self.x,
self.y)
end
def equals_coordinate?(other_x, other_y)
self.x == other_x && self.y == other_y
end
end

Look what this is doing. Inside the first object (location1), we have
access to our own internals. Rather than taking the approach of
asking the other object (location2) for its internals, let’s just pass
our own to it. So, we are comparing internals without having to
reach inside the other object.

Of course, in a language with signature-based overloading, you
wouldn’t have to have two methods.

public class Location
{
private int x;
private int y;
public boolean Equals(Location otherLocation) {
return otherlLocation.Equals(this.x, this.y);
}
public boolean Equals(int otherX, int otherY) {
return this.x == otherX && this.y == otherY

But, wait, you say. Doesn’t equals? return a boolean? The con-
straint is that we can’t return anything. So, we are violating that.

48

This is true. Now that we have a way to do the comparison without
querying for an object’s state, we can tackle this aspect.

Let’s take a step back and look at this from a behavioral point of
view, returning to the fundamental question “why do we need this
behavior?” Or, “why do we care if they are equal?” In general, we
look for equality in order to react in a certain way. So, if they are
equal, we’ll do something. As a simple example, let’s increment a
counter.

Since we can’t return the boolean, let’s rewrite our code to remove
that. In Ruby, every method returns something, so we have to be
explicit to get rid of the boolean return.

class Location
attr_reader :x, :y
def equals?(other_location)
other_location.equals_coordinate?(self.x, self.y)
nil
end
def equals_coordinate?(other_x, other_y)
self.x == other_x && self.y == other_y
nil
end
end

So, now we can’t get access to it. That satisfies the constraint, but
it doesn’t do us much good. We want to do something if they are
equal. Since we are can’t react to the comparison outside the objects,
we need to move the behavior inward closer to where the action is
happening. Notice that equals_coordinate? does the comparison.
So, this is where we need to do the behavior.

Ordinarily, we would write something with a simple i f statement.

49

count_of_locations = 0

if locationi.equals?(location2)
count_of_locations++

end

Instead, let’s take the behavior, wrap it in a lambda, and move it to
where the comparison is happening.

count_of_locations = 0
locationi.equals?(location2, -> { count_of_locations++ \

D)

In this code, we expect the lambda to be called if the locations turn
out to be equal. Let’s fix our code to support this.

class Location
attr_reader :x, :y
def equals?(other_location, if_equal)
other_location.equals_coordinate?(self.x, self.y, i\
f_equal)
nil
end
def equals_coordinate?(other_x, other_y, if_equal)
if self.x == other_x && self.y == other_y
if_equal.()
end
nil
end
end

Now, we have a situation where we are telling a location object
(location1) “Here is another location object (location2). If you are
equal to it, do this (if_equal)”

50

Note: In most languages, there is some form of first-class function
which makes this technique fairly straight-forward. Sadly, Java
only recently got these. So, you have to solve this using some form
of a command object. Is this bad? Not necessarily, although it can
be a bit cumbersome.

51

Inverted Composition as a Replacement
for Inheritance

Take a look at these cell classes.

class LivingCell
attr_reader :location

end

class DeadCell
attr_reader :location

end

We’ve extracted the location object. One benefit of this, of course,
is that gives us a centralized place for our topology knowledge. This
is very nice, but we can see another duplication here, as well. Both
the living cell and the dead cell have a location attribute.

Is this knowledge duplication? What is the knowledge we are
duplicating? Since these are two different objects, and this is “just”
an attribute, we can be tempted to say it isn’t. As we look at this
code in light of the 4 rules, we want to make sure that what we
have is actual knowledge duplication, rather than just incidental,
implementation similarity. After all, extracting the location object
was about taking the “actual” knowledge and representing it in one
place.

We can look at this as knowledge duplication, since this location
attribute represents the fact that our cells are linked to a specific
position on the grid. It is an interesting case here, where eliminating
a specific duplication didn’t eliminate all the duplication, just part
of it.

So, let’s look at ways to eliminate this duplication.

A common attempt at a solution to this is to jump to inheritance.
We could do something like the following.

52

class Cell

attr_reader :location
end
class LivingCell < Cell
end
class DeadCell < Cell
end

Wait, though, let’s look at this code a minute.

Now, it does seem to simplify our code a bit if we think in terms
of lines of code. But, is it really simpler? It does add another
type after all. I often say having more classes isn’t bad, as long
as they are the correct abstractions. But, unlike the extraction of
the Location class, this extraction doesn’t introduce a new domain
concept; this abstraction increases the complexity without adding
additional information about our domain. This feels like a violation
of the fourth rule, “small”

Inheritance is often used as way of creating “reuse” rather than
eliminating duplication. We are assuming that both the LivingCell
and DeadCell need to have access to their location (do they?), so
we provide access through the base class. Even if we support our
assumption, however, the objects don’t need access to their location
necessarily, they really would need access to the behaviors that the
location object exposes. And, of course, at this point, we haven’t
even talked about whether they truly do.

So, let’s ask again: is it really eliminating the duplication? The
location attribute is still there on the objects. Our two different types
still contain the same knowledge.

Base classes of this nature, extracted entirely to eliminate apparent
duplication can have a tendency to hide actual duplication. Also,
it is very common for these base classes to become buckets of
unrelated behavior.

53

So, if inheritance isn’t really eliminating the knowledge, what other
options do we have?

In Ruby, we do have modules. This might be a good use for them.

class LivingCell
include HaslLocation

end

class DeadCell
include HaslLocation

end

And the HasLocation module adds attr_reader :location to the
including class. Modules, when used this way, though, are just a
way to implement multiple inheritance. The same arguments arise
as in the above discussion of straight subclassing.

I do believe this is slightly better than using a base class, Ce11. Mod-
ules are often used as a way of grouping aspects of different classes,
and this can be useful for code organization. But this technique
should be used very judiciously. Primarily, I use modules in this
way as a step in the path towards a better design. Separating out
aspects of a class into modules can help find hidden dependencies,
as well as highlight all the different responsibilities a class has. But
they are rarely the place to stop.

So, with that option off the table, how do we eliminate the dupli-
cation? Let’s look at what we are trying to accomplish. Our goal
is to have a link between the Cell and the Location it is at. Or,
rather, our system needs to know this link. We haven’t actually seen
anything to indicate the Cel1 classes, themselves, need the link. Our
assumption here is that something needs to see the link.

When having two types containing a link to the same type (Living|Dead)Cell
and Location, a useful technique is to reverse the dependency.

54

class Location
attr_reader :x, :y
attr_reader :cell
end
class LivingCell
def stays_alive?(number_of_neighbors)
number_of_neighbors == 2 ||
number_of_neighbors == 3
end
end
class DeadCell
def comes_to_life?(number_of_neighbors)
number_of_neighbors ==
end
end

At this point, our cell classes are indeed just focused on information
related to the cell (for example, rules). The topology is also further
abstracted from the rules of the game. We can start to see that
the Location class is taking on a structural role, providing the link
between the topology and the cell that exists there. The cell classes
are now focused on rules around evolution.

While the refactoring is good, it highlights a potential naming issue.
IsLocation the correct name for this class? From a reading point of
view, it seems like a Ce11 should have a Location, not the other way
around. This is arguable, of course, but it seems like potentially we
chose the wrong name for the Location class. Perhaps it is better as
a Coordinate.

class Coordinate
attr_reader :x, :y
attr_reader :cell
end

55

I’'m not saying it is, or not, at this point. I only wanted to mention it
is interesting how eliminating the duplication highlighted a possible
naming issue. This is a good example of how applying these rules
can often lead to other refactoring opportunities and insight into
our design.

Other Good Stuff

This section contains material either not directly related to the focus
of the book, or is supplementary to the content outlined in the book.

« Other Design Guidelines

« Examples of Session Constraints

+ Some Thoughts on Pair-Programming Styles
« Further Reading

Other Design Guidelines

While the 4 rules of simple design are fundamental concepts in
building an adaptable codebase, there are a lot of other design
guidelines out there. It is worth studying these, as well.

Just like Design Patterns are best used as descriptions of designs,
rather than prescriptions of how to build systems, design guidelines,
especially higher-level ideas like SOLID, can be best used when
describing where you are, and why it is appropriate. Along with
that, looking back at a design, it can be useful to explain why a piece
of code does NOT abide by this or that design guideline. It can be
difficult, though, at the time of writing, to really apply most of these
principles. In the end, most design guidelines are best internalized
and applied subconsciously. Once this happens, these guidelines can
move into the realm of descriptive usage.

The 4 rules, on the other hand, are simple enough to apply con-
sciously. Thinking about good naming to express intent and looking
for duplication of knowledge are two techniques that can have real
effects on the code you write at the time of writing.

Over the years, I've come to see the 4 rules of simple design as the
most useful concrete, coding-time principles to keep in mind. While
the examples in this book primarily use the 4 rules to guide the code,
let’s look at how they lead us naturally to code that satisfies these
other principles.

The SOLID Principles

The SOLID principles*® were originally codified by Robert “Uncle
Bob” Martin, bringing a set of existing design principles together in

Phttp://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Other Design Guidelines 58

a more easily-understandable format. Like the 4 rules, they focus on
making systems flexible and adaptable when changes are required.
As we’ll see, focusing on the 4 rules of simple design can lead us to
satisfying these principles. Let’s look at these principles, and how
they can relate to flexible designs.

Single Responsibility (SRP)
“A class (component) should have one, and only one, reason
to change”

The Single Responsibility Principle is by far one of the most
popular, while simultaneously one of the least understood.
Because of the name, discussions around this consist of
defining what is meant by “responsibility” of a component,
while the definition talks only about change. “Change” makes
it a bit more concrete, but still leaves a lot open for discussion:
what level of change do we look at?

Systems that satisfy the SRP are flexible with isolated be-
haviors contained in small, cohesive packages. This allows
us to safely make changes to functionality. At its core, SRP
is another way of maximizing cohesion. After vigorously
eliminating duplication and making sure that our pieces are
named appropriately and expressively, we generally find that
our code satisfies the SRP.

Open-Closed (OCP)
“A system should be open for extension, but closed for
modification”

Changing code is dangerous; once we have it written and
tested, we want to minimize the chance for bugs to be
introduced. By introducing or altering behavior only through
extension, we benefit from the stability of small, stable core
pieces that won’t change out from under us.

There is a danger when focusing too much on the OCP. If
we plan for extensibility, our systems become riddled with

Other Design Guidelines 59

unnecessary and unwieldy extension points and extensibility
mechanisms. To counter this, we should focus on isolating
knowledge, naturally building only the extension points that
truly represent the pieces of our system that will change.

Liskov Substitution (LSP)
“Derived types should be substitutable for their base types”

Polymorphism is a key part of a flexible design. Being able
to substitute a more specific type when a general type is
expected allows us to provide different behaviors without
having complex branching. There is a danger, though, if the
specialized type significantly changes fundamental expec-
tations of the more general type’s behavior. Derived types
should enhance any base behaviors, rather than change it.

A healthy focus on the names we give our types can help in
abiding by LSP. A specialized type’s name should reflect that
it is an enhancement of the base, not a change.

Interface Segregation
“Interfaces should be small, focused on a specific use case”

The surface area of a class has a direct influence on how easy
itis to use. Although a class might have several different ways
to use it, any specific client should see only those behaviors
specific to its needs.

When we focus on effectively grouping and naming the
behaviors of our class, we naturally build small interfaces
that provide a clear, cohesive view of what our class does. If
it is difficult to name, that is feedback that our class is getting
too large.

Dependency Inversion
“Depend on abstractions, rather than concrete implementa-
tions”

One of the most dangerous parts when changing a system is
having your changes unexpectedly influence other, unrelated

Other Design Guidelines 60

parts of your system. We want to guard against the situation
where a change ripples through the whole system, causing
waves and possible bugs throughout. By depending on ab-
stractions, decoupling ourselves from concrete implementa-
tions, we can set up walls between behaviors. Abstractions
better move us into standardized communication methods
between components, making it easier to independently re-
place or change things.

Law of Demeter

Contrary to popular belief, the Law of Demeter (Lod) was not origi-
nally described by a person named Demeter. Nor was it a reference
to the ancient Greek god, Demeter (patron god of measurement, of
course). Instead, it was developed during the Demeter project as a
simple guideline for the code there.

The original statement can sound a bit cryptic to ears raised on
current languages, but in a simple form, you can think of it as:

A method can access either locally-instantiated variables, parame-
ters passed in, or instance variables.

A much simpler way to think about it is:
Only one dot per statement.

At its heart, the LoD is about encapsulation. We don’t want to reach
inside an object and manipulate its insides; that’s just mean. Instead,
we want to ask objects to perform some action for us. Let the object
deal with its collaborators.

The LoD can also be thought of in terms of knowledge duplication.
By exposing the internals of an object, we are spreading structural
knowledge through our code. Both the object and the outside
collaborator know about its internals.

Personally, I find the LoD to be an extremely simple, incredibly
powerful mechanism for helping ensure proper encapsulation and

Other Design Guidelines 61

decoupling of behaviors across an object graph. The best way, of
course, to get a sense of its power is to read the Original Paper*.

“http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopslags-law-of-
demeter.pdf

http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf

Example constraints

Some constraints that I've used:

Lines of code per method <=3
We all have seen methods we consider too large. But what
size is reasonable for a method? Let’s go to the extreme and
say three lines is the maximum.

No in-method branching statements
Branching statements, such as the notorious if, are a form
of procedural polymorphism. Let’s work on improving our
object skills by finding other mechanisms to get the same
effect. Prefer type-based polymorphism or lookup tables.

No primitives across method boundaries (input or output)
The only types that can be passed across method boundaries
(inputs and outputs) are ones that we have defined. No data
primitives, such as booleans, integers or strings. You also are
not allowed to use primitive data structures such as Lists, Ar-
rays or Enumerables. Focus instead on understanding what
the types represent and building types for those concepts.

Mute ping-pong pairing
One member of the pair writes the unit tests, the other mem-
ber writes the code to turn those tests green. You can think of
the roles as “test redder” and “test greener.” This is standard.
However, the only communication allowed between partners
is through the tests and the code. And no cheating by putting
a bunch of comments!

Find the loophole
Generally coupled with ping-pong pairing, one pair writes

Example constraints 63

the tests, the other pair tries to get those tests passing. The
catch is that the pair working to get the tests passing writes
the wrong code. How long can you go before the tests force
you into a “correct” algorithm. Here’s the catch, though: you
must write production-level code, think of it as code you
would show a prospective employer.

No return values
Similar to the principle of “tell, don’t ask” this constraint takes
away your ability to return values from a function. Focus
entirely on sending messages to objects.

Program like it’s 1969
Compilation is expensive and not real-time. You can only
run your code twice during the session: first at the 30-minute
mark, the second at the 44-minute mark. Better pay attention
to syntax!

Object Calisthenics
Practicing different aspects of object-oriented design is great,
but what happens when you put everything together in an
extreme situation? Object Calisthenics™ provides a set of
rules that really work out your OO understanding.

Phttp://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf

http://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf
http://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf

Some Thoughts On
Pair-Programming Styles

Coderetreat workshops encourage pair-programming as a form of
sharing and learning together. While the majority of this book con-
sists of concrete examples of code-level design decisions, this sec-
tion addresses some patterns I’ve seen around pair-programming.

Driver-Navigator

Traditionally, pair-programming has been introduced via the Driver-
Navigator form. In this form, one member has the keyboard and
control of the input. Their job is to type and focus on the minute-
to-minute coding. The other member is the navigator. Their job is to
pay attention to the code being written, but keep the larger picture
in mind, guiding the driver in the right direction.The pair should
swap roles frequently.

Unfortunately, too often this form of pair-programming leads to
what I call the “Driver-Twitterer” style of collaboration. In this
mode, the person with the keyboard is writing code while the other
person watches intently for a short time. Then, after a bit, the
navigator starts to lose interest. Perhaps the driver isn’t talking,
perhaps the navigator doesn’t want to disturb them. Sometimes I've
seen where the driver says “just a second, I've got an idea,” and then
proceeds to code in silence for minutes on end. This can have the
effect of boring the navigator. So, what do they do? Naturally, they
check twitter. Or email. Or some other non-code-focused task.

As with every aspect of development, communication is key here.
But, without practice, driver-navigator level of communication is

Some Thoughts On Pair-Programming Styles 65

lacking. In order for this style to work, the pair needs to have
good communication habits, constantly keeping the other abreast
of what thoughts are going through their head. Unfortunately, this
level of communication isn’t necessarily built-in to a new pair.
Because of this intense communication requirement, I generally
consider the driver-navigator style of pair-programming to be a
more intermediate level style.

It is quite common for a coderetreat workshop to be a person’s first
time pair-programming, their introduction to the practice of writing
code as a team. Because of this, I like to introduce a style that has
the necessary level of communication built-in to the practice. The
style I introduce is called “Ping-Pong Pairing.”

Ping-Pong Pairing

There are two basic forms of ping-pong, but they both share on
very important aspect: both members are writing code frequently.
Because of this, I stress the importance of having two sets of live
input devices, one for each participant. So, there would be two
keyboards and two mouses, all live. I find that having this setup
minimizes the context shift when switching who is typing. Having
two live input devices isn’t a requirement, of course, but it definitely
smooths over some inherent friction in having to pass the keyboard

back and forth.

The first style of ping-pong is where one member takes on the role
of test writer, and the other takes on the role of getting the tests to
pass. I like to call the test writer the “test redder” and the one getting
them to pass the “test greener” The table below illustrates the flow
of writing.

Some Thoughts On Pair-Programming Styles 66

Ping-Pong Form 1

member 1 member 2

write test

make test green
write test

make test green

The second style of ping-pong is where the role of “test redder”
passes between participants. This is done by having the first mem-
ber write a test, then control is passed to the other member. That
person gets the test to pass, to turn green, then they are responsible
for writing the next test. The table below illustrates the flow of
writing.

Ping-Pong Form 2

member 1 member 2

write test
make test green
write next test
make test green
write next test
make test green
write next test

The primary difference between these two is that in the first form,
the role is stable, but control is passed. In the second, the role is
passed along with control. Both are effective and great ways to
introduce people to pair-programming.

Which Style Should You Choose?

If you are an experienced pair, or at least both members are
experienced at this style of collaborative code writing, then it

Some Thoughts On Pair-Programming Styles 67

doesn’t matter which style you use. In fact, it is common to see all
styles used through a pairing session. With experience, participants
generally have developed the level of communication necessary for
working in whatever form is useful at the moment.

As I mentioned above, though, I consider driver-navigator a more
intermediate style. So, if one, or both, of the participants are new
to pair-programming, then ping-pong can be a fantastic way to
introduce the concepts. I generally recommend a specific ping-pong
style based on the level of testing experience of the members.

Only one member has experience writing tests: Form 1
Having the experienced person writing most of the tests is
the most effective. Over time, the less-experienced person
can start picking up test writing. By watching the tests being
written, though, they can learn the thought process behind
test-driven development.

Both members have experience writing tests: Form 2
Since the tests guide the design, it can be useful to have both
members influencing that aspect. Passing the test-writing
role back and forth can help keep both members interested.

Pairing is a fantastic way to develop software. I've written some
of my best code, my best systems, when two people’s hands were
on the keyboard. At the end of a coderetreat, it is very common to
get the feedback from first-timers that they didn’t expect working
in a pair to be so productive. Pair-programming is listed frequently
in the closing questions as both surprising and what they will take
with them going forward.

Further Reading

4 Rules of Simple Design

Here are some significant places to read more about the 4 rules of
simple design.

There is some interesting discussion on the c2 wiki page for XP
Simplicity Rules'®. And, of course the c2 wiki will have links to a
plethora of discussions around related principles.

For example, there is also information and discussion on the c2 wiki
about the DRY Principle'’.

Conversations with Joe Rainsberger have had a significant impact
on my thoughts around applying the 4 rules. He has a blog post
titled “The Four Elements of Simple Design”*®. He also has a won-
derful post that explains the apparent discrepancy in how different
people order rules 2 and 3, titled “Putting an Age-Old Battle to
Rest™"’.

And, of course, these are just a start. I highly recommend that you
do a search for more®.

General Design

Here are some suggestions for books and papers to read on the
general topic of design.

*“http://c2.com/cgi/wiki?XpSimplicityRules
"http://c2.com/cgi/wiki?DontRepeatYourself
*http://www.jbrains.ca/permalink/the-four-elements-of-simple-design
“http://blog.thecodewhisperer.com/2013/12/07/putting-an-age-old-battle-to-rest/
**https://www.google.com/#q=4+rules+of+simple+design

http://c2.com/cgi/wiki?XpSimplicityRules
http://c2.com/cgi/wiki?XpSimplicityRules
http://c2.com/cgi/wiki?DontRepeatYourself
http://www.jbrains.ca/permalink/the-four-elements-of-simple-design
http://blog.thecodewhisperer.com/2013/12/07/putting-an-age-old-battle-to-rest/
http://blog.thecodewhisperer.com/2013/12/07/putting-an-age-old-battle-to-rest/
https://www.google.com/#q=4+rules+of+simple+design
http://c2.com/cgi/wiki?XpSimplicityRules
http://c2.com/cgi/wiki?DontRepeatYourself
http://www.jbrains.ca/permalink/the-four-elements-of-simple-design
http://blog.thecodewhisperer.com/2013/12/07/putting-an-age-old-battle-to-rest/
https://www.google.com/#q=4+rules+of+simple+design

Further Reading 69

Practical Object-Oriented Design in Ruby®' by Sandi Metz

This is a fantastic book that covers ideas and guidelines
for building maintainable systems. Sandi is an experienced
developer with tons of object-oriented design experience.
She definitely knows her stuff and how to explain it in an
understandable fashion. Although this book has Ruby in the
title, most of the lessons in it are applicable across all object
languages.

On the criteria to be used in decomposing systems into mod-
ules®” by David Parnas
Wow, what can I say about this paper? It is from 1971. It
covers an investigation into two types of modularization
and the effect they have on maintainability. You know it is
going to be good by the first line of the abstract, “This paper
discusses modularization as a mechanism for improving the
flexibility and comprehensibility of a system while allowing
the shortening of its development time” Read it!

Law of Demeter?
There is a whole section on this in the other design guidelines
section, so I won’t say too much. Go read this paper, though.
You won’t be sorry.

Clean Code** by Robert Martin
This book lays out in fine detail some general rules around
how to write robust, maintainable code. Through concrete
examples and guidelines, the book is a wonderful tour through
techniques that can make a codebase stand the test of time.

*'http://www.poodr.com/

**http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci

*http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopslags-law-of-
demeter.pdf

**http://www.amazon.com/Clean-Code-Handbook-Software- Craftsmanship/dp/
0132350882/

http://www.poodr.com/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci
http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/
http://www.poodr.com/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci
http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/

Further Reading 70

Testing

Growing Object-Oriented Software Guided By Tests** by Nat
Pryce and Steve Freeman
Walk through building a system using “London-style” test-
driven development by the guys who literally invented the
style of heavy isolation through mocks. The examples are in
Java, but the techniques can easily be translated over to other
languages.

Mock Roles, not Objects** by Steve Freeman, Nat Pryce, Tim
Mackinnon, Joe Walnes
A classic paper about effective use of test doubles when doing
unit testing.

Test-Driven Development Screencast®” by Kent Beck
This is a fabulous short screencast series where Kent Beck
goes through building a component using TDD. All the
while, he outlines his thought process. Rare chance to watch
and listen to the father of test-driven development use the
technique.

Other Things You Probably Should Most
Definitely Read

The Pragmatic Programmer?® by Dave Thomas and Andy Hunt
This book literally changed my life. Filled with tips and ideas
about how to be effective as a software developer, including
a section on the DRY principle.

*http://www.growing-object-oriented-software.com/
*http://jmock.org/oopsla2004.pdf
*"http://pragprog.com/screencasts/v-kbtdd/test-driven-development
**http://pragprog.com/book/tpp/the- pragmatic-programmer

http://www.growing-object-oriented-software.com/
http://jmock.org/oopsla2004.pdf
http://pragprog.com/screencasts/v-kbtdd/test-driven-development
http://pragprog.com/book/tpp/the-pragmatic-programmer
http://www.growing-object-oriented-software.com/
http://jmock.org/oopsla2004.pdf
http://pragprog.com/screencasts/v-kbtdd/test-driven-development
http://pragprog.com/book/tpp/the-pragmatic-programmer

	Table of Contents
	Foreword: Kent Beck
	Foreword: Joe Rainsberger
	Acknowledgements
	Introduction
	This Book
	Who It Is For
	What It Is (And Isn't) About
	Format
	Why Ruby?

	Where do these thoughts come from?
	Good Design?
	Coderetreats
	Conway's Game of Life
	4 Rules of Simple Design

	Examples
	Test Names Should Influence Object's API
	Duplication of Knowledge about Topology
	Behavior Attractors
	Testing State vs Testing Behavior
	Don't Have Tests Depend on Previous Tests
	Breaking Abstraction Level
	Naive Duplication
	Procedural Polymorphism
	Making Assumptions About Usage
	Unwrapping an Object
	Inverted Composition as a Replacement for Inheritance

	Other Good Stuff
	Other Design Guidelines
	Example constraints
	Some Thoughts On Pair-Programming Styles
	Driver-Navigator
	Ping-Pong Pairing
	Which Style Should You Choose?

	Further Reading
	4 Rules of Simple Design
	General Design
	Testing
	Other Things You Probably Should Most Definitely Read

