

What readers are saying about Rails for PHP Developers

This is a thorough and approachable introduction to Ruby and Rails

for PHP programmers from fellow developers who are well-versed in

both Ruby and PHP.

Paul M. Jones

Lead Developer on the Solar Framework for PHP

As a PHP developer, I found the book focused well on the transition

from coding PHP to coding Ruby (and Rails) and that it gave great

examples of translating common PHP idioms to Ruby.

Matthew Weier O’Phinney

PHP Developer and Zend Framework Core Contributor

The quality of the writing is superb, the challenges and examples are

engaging, and the PHP to Ruby information is a valuable resource.

The exercises are nice, are short, and follow the topic well, giving

readers some creative time between each chapter.

Mislav Marohnić

Prototype JavaScript Framework Core Developer

This is an enjoyable book packed with great information and usable

examples. I like the organization of the book and the gentle, infor-

mal voice with which the authors cover many complex topics. It’s easy

to read, yet it has plenty of substance and depth to give the reader a

great introduction to Rails.

Bill Karwin

MySQL Guild and Former Zend Framework Project Leader

Rails for PHP Developers

Derek DeVries

Mike Naberezny

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Derek DeVries and Mike Naberezny.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-04-2

ISBN-13: 978-1-9343560-4-3

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

First printing, January 2008

http://www.pragprog.com

Contents
Acknowledgments 10

Preface 11

What Rails Offers . 11

Who Should Read This Book 12

Resources . 12

PHP and Rails: A Personal View 13

About the Code Examples . 14

About the Environment Used 14

Version Requirements . 15

How to Read This Book . 15

I From PHP to Rails 17

1 Getting Started with Rails 18

1.1 Rails as an Extension of Ruby 18

1.2 The Components of Rails 19

1.3 Opinionated Software 20

1.4 The MVC Pattern and Rails 22

1.5 Installing Ruby and Rails 24

1.6 Creating a Rails App . 25

1.7 Chapter Review . 42

1.8 Exercises . 42

2 Beginning Ruby Code 43

2.1 Seeing Ruby as a General-Purpose Language 43

2.2 Interacting with Ruby 45

2.3 Objectifying Everything 47

2.4 Accepting Ruby’s Object World 48

2.5 Assigning to Variables 50

2.6 Writing Methods and Passing Parameters 53

2.7 Controlling Program Flow 57

CONTENTS 6

2.8 Handling Errors . 59

2.9 Understanding Blocks 65

2.10 Chapter Review . 70

2.11 Exercises . 71

3 Embracing the Ruby Philosophy 72

3.1 Thinking in Objects . 72

3.2 Understanding Attributes 75

3.3 Method Visibility . 77

3.4 Understanding Typing 79

3.5 Implementing Interfaces with Mixins 84

3.6 Organizing Code with Namespaces 88

3.7 Overriding Operators . 91

3.8 Reopening Classes . 93

3.9 Chapter Review . 95

3.10 Exercises . 95

II Building a Rails Application 96

4 Modeling the Domain 97

4.1 Defining Requirements 98

4.2 Using the Database . 101

4.3 Creating the Application 104

4.4 Generating the First Model 106

4.5 Building Database Tables 108

4.6 Employing ActiveRecord 113

4.7 Chapter Review . 118

4.8 Exercises . 119

5 Working with Controllers and Views 120

5.1 Identifying Resources 120

5.2 Creating Controllers . 122

5.3 Routing Requests . 125

5.4 Retrieving Meeting Data 129

5.5 Viewing Meetings . 131

5.6 Adding Links . 132

5.7 Creating New Meetings 138

5.8 Redirection and Flash Data 143

5.9 Administrating Meetings 145

5.10 Separating Public Files 153

5.11 Adding a Layout . 155

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=6

CONTENTS 7

5.12 Chapter Review . 158

5.13 Exercises . 160

6 Validating and Testing Models 161

6.1 Validating Model Data 161

6.2 Using Rails Environments 164

6.3 Testing Our Models . 165

6.4 Chapter Review . 171

6.5 Exercises . 172

7 Authenticating Users 173

7.1 Migrating to a More Secure User 173

7.2 User Registration . 175

7.3 Viewing and Editing Users 186

7.4 Restoring Sessions . 192

7.5 Logging In . 195

7.6 Chapter Review . 200

7.7 Exercises . 200

8 Defining Associations 202

8.1 Connecting Presentations 202

8.2 Testing Associations . 205

8.3 Integrating Presentations into Meetings 207

8.4 Routing Presentations 208

8.5 The Presentation Controller 210

8.6 Spring Cleaning . 215

8.7 Chapter Review . 221

8.8 Exercises . 222

9 Preparing to Launch 223

9.1 Adding the Home Page 223

9.2 Securing Our Actions 226

9.3 Protecting from Mass Assignment 232

9.4 Caching the Pages . 234

9.5 Chapter Review . 240

9.6 Exercises . 240

10 Deploying the Application 242

10.1 Choosing a Host . 243

10.2 The Production Environment 245

10.3 Preparing Our Application 246

10.4 Preparing Our Deployment Server 248

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=7

CONTENTS 8

10.5 Launching the Application 253

10.6 Enhancing Performance 256

10.7 Scaling Your Application 260

10.8 Chapter Review . 261

10.9 Exercises . 262

III PHP to Ruby at a Glance 263

11 PHP to Ruby Basics Reference 264

11.1 Basic Syntax . 264

11.2 Basic Data Types . 266

11.3 Variables . 284

11.4 Constants . 292

11.5 Expressions . 294

11.6 Operators . 296

11.7 Control Structures . 305

12 PHP to Ruby Advanced Reference 316

12.1 Blocks . 316

12.2 Functions . 318

12.3 Classes and Objects . 326

12.4 Exceptions . 354

12.5 References . 355

12.6 External Libraries and Packages 357

12.7 Documenting Code . 359

13 PHP to Rails Reference 371

13.1 Templates . 371

13.2 $_GET/$_POST . 372

13.3 $_FILES . 373

13.4 $_SERVER . 376

13.5 Cookies . 376

13.6 Sessions . 378

13.7 Headers and Redirection 380

13.8 Security . 381

13.9 Debugging . 386

13.10 Accessing the Database 388

13.11 Email . 390

13.12 Testing Rails Code . 391

13.13 Rails Plug-Ins . 396

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=8

CONTENTS 9

Bibliography 399

Index 400

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=9

Acknowledgments
Derek would like to thank Melissa, daVinci, and his new baby girl,

Sevilla, who was born during the writing of this preface.

Mike would like to thank Kathy for her support and his parents for

buying his first computer, the Commodore 64.

We’d like to thank our reviewers: Bill Karwin, Mislav Marohnic, Tim

Fletcher, Paul M. Jones, Matthew Weier O’Phinney, Dallas DeVries,

Laura Thomson, and Chuck Hagenbuch. Their expertise, time, and

effort have been invaluable to us.

We’d like to thank the Pragmatic Programmers for giving us a great

opportunity to spread the word of Rails and our editor, Susannah, for

keeping us on track.

Thanks to everyone building open source software that we use and love,

from Rails to PHP. They truly make our working lives so much easier to

enjoy.

Preface
There is no doubt that by now you’ve heard all of the hype about Ruby

on Rails. It has been generating a lot of buzz with the promise of making

web applications fast and simple to create, and you may be wondering

what the big deal is. We know that PHP has been doing this for years

and has proven quite capable by its use in large companies such as

Yahoo. You may be wondering whether it’s worth the time investment

to learn Rails and Ruby, when you already have PHP under your belt.

What Rails Offers

Rails embraces a general development philosophy that sets a high pri-

ority on creating maintainable code. By following some simple guide-

lines, you should be able to keep a uniform pace of development and be

free to change your code with little fear of breaking existing functional-

ity. Rails achieves this by cherry-picking proven web development pat-

terns and best practices. These are two of the most important principles

Rails follows:

• Convention over configuration

• Don’t repeat yourself (DRY)

Rails defines the directory structure of your application for you and sets

a series of conventions for naming files, classes, and database tables.

It takes advantage of these conventions to tie together your applica-

tion without a lot of configuration. You may initially be resistant to the

idea of Rails telling you how to structure your application, but your

first Rails application will quickly demonstrate the efficiency that these

conventions offer you. By choosing smart defaults, Rails allows you to

focus on the functionality of your application instead of on the skeleton.

WHO SHOULD READ THIS BOOK 12

Rails developers tend to be almost religious about the DRY principle.

Functionality is written cleanly once, and only once. Rails provides an

environment that makes it easy to consolidate shared code between

different components of your application.

Rails gives first-class importance to testing. Writing code is always done

in parallel with tests to ensure the code works as intended and will

continue to work when things around it change. In PHP, the uptake of

testing culture has been slow, and the methodologies for testing entire

applications are not clear. Ruby’s dynamic and flexible object model,

along with its standard library, makes unit testing easy. The Rails stack

builds on this to provide clear, built-in support for testing all parts of a

web application from the first line of code.

Who Should Read This Book

This book is meant for PHP developers who are interested in adding

Rails to their toolsets. There are a lot of books on Rails now, but PHP

developers have a unique way of thinking about problems that are built

around the PHP mind-set. This book aims to guide your learning in

Rails based on your existing knowledge of programming in PHP. An

understanding of object-oriented programming in PHP will help but is

not entirely necessary. This should be something you start to pick up

naturally while programming in Ruby.

Through this book, you will likely learn valuable lessons from Rails

that will inform future PHP development. Rails assembles a collection

of patterns and practices that are not new in themselves. Many of the

patterns in Rails can be implemented in other languages and may help

inspire some new approaches in your PHP code. However, the greatest

feature of Rails by far is Ruby! Throughout the book, we will explore

the power and productivity of Rails together. As you read, also be open

to Ruby itself, and be sure to absorb how Ruby forms the foundation of

Rails.

Resources

All code samples are available as an archive online.1 This book is inter-

active, so make sure to download and view the sample code as you

work. Reading Ruby code is one of the best ways to learn the language.

1. http://www.pragprog.com/titles/ndphpr/source_code

http://www.pragprog.com/titles/ndphpr/source_code
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=12

PHP AND RAILS: A PERSONAL VIEW 13

We have built a companion website for this book that is also available

online.2 We will keep this website up-to-date with further code exam-

ples, resources, and answers to frequently asked questions. Be sure to

subscribe to the feed to keep up-to-date with future articles.

PHP and Rails: A Personal View

Since the introduction of PHP 5, we’ve witnessed an evolution in PHP’s

capabilities. Perhaps even more than changes in PHP itself, we’ve seen

a transformation in the way programmers use it. Object-oriented pro-

gramming has become more commonplace. As a result, professional

software engineering practices such as unit testing have become more

practical and accessible to PHP developers.

We were early adopters of PHP 5. When Rails came along, we were al-

ready sold on writing object-oriented, well-separated applications with

tests in PHP. Initially, we were a bit skeptical and didn’t have much

incentive to try Rails. We’re glad we did. We’re now excited about Rails

and enjoy building applications with it. We think you will as well, but

you’ll need to read the book and draw your own conclusions. We’ve

designed this book to be the guide that we wished we had when we

were in your shoes.

There are some software methodologies that we believe are applicable

to nearly all projects, such as the importance of object orientation and

unit testing. These opinions show in our writing. However, many other

factors determine how an application should be built and what tools

should be used. We believe that PHP, Ruby, and Rails are all just tools

you can choose from to build great applications.

It also might interest you to know that in our consulting practice, Main-

tainable Software,3 we still develop roughly half of our new applications

in PHP 5 (with the other half being mostly Rails). This should tell you

that we think PHP is a formidable platform, and it’s not about “switch-

ing” from one to the other. Learning Rails is just about having a new

tool to apply to your problems when it’s a good fit.

2. http://railsforphp.com

3. http://maintainable.com

http://railsforphp.com
http://maintainable.com
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=13

ABOUT THE CODE EXAMPLES 14

About the Code Examples

There are many different ways of building PHP applications. Many PHP

projects are developed from scratch, and an increasing number are

developed using one of the many frameworks available. In our exam-

ples, we chose a framework-agnostic approach to programming PHP so

that you can understand examples without previous knowledge of any

specific PHP framework.

To save space in the book, we usually leave off the leading <?php tag

when the example contains only PHP code. This means that if you want

to run these examples on your own, you’ll need to add this, or else PHP

will simply echo the code back to you.

We capitalize references to Ruby—the programming language—and

Rails—the framework. When you see ruby or rails in all lowercase, we

are instead referencing commands used to invoke the Ruby command-

line interpreter or the Rails framework generator, respectively.

PHP and Ruby code snippets use an icon in the sidebar to easily differ-

entiate between examples written in the two languages.

PHP Download preface/hello.php

function sayHello() {

print "Hello World!";

}

Ruby Download preface/hello.rb

def say_hello

print "Hello World!"

end

About the Environment Used

Examples and screenshots in this book were created with Mac OS X and

Safari, but the examples should run in all modern development envi-

ronments. Rails operates under the assumption that you have some

basic knowledge of command-line operations. It is well worth learning

the command-line basics of your preferred environment if you haven’t

already done so.

Command-line examples are shown running in a bash shell, so you

may find that you need to make some small adjustments based on

your environment.

http://media.pragprog.com/titles/ndphpr/code/preface/hello.php
http://media.pragprog.com/titles/ndphpr/code/preface/hello.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=14

VERSION REQUIREMENTS 15

Command-line prompts in this book display the base name of the cur-

rent working directory. The following example shows a command run

from the newsletter directory:

newsletter> ruby script/console

Version Requirements

Throughout the book, we compare code examples between PHP and

Ruby. The PHP examples will work on PHP 5.1 or newer. For those of

you who are still working primarily with PHP 4, you may occasionally

see PHP features mentioned that you haven’t used yet, such as excep-

tions. You’ll want to consult the PHP manual on these as you go.

The Ruby and Rails examples will all run on recent Ruby versions but

are especially geared toward Ruby 1.8.5 and newer. Before we give any

examples in Ruby, we talk about the installation and give you some

pointers on where to get the software you’ll need.

The Rails code is intended to work on Rails 2.0 or newer. We take full

advantage of new features and conventions in this version of Rails, so

most of the code will not work correctly on previous versions.

How to Read This Book

The goal of this book is to get you up to speed with both the Ruby

language and the Rails framework. To do this, we’ve divided the book

into three parts:

• Part I, “From PHP to Rails”

• Part II, “Building a Rails Application”

• Part III, “PHP to Ruby at a Glance”

The first part—“From PHP to Rails”—introduces the Model/View/Con-

troller pattern with the conversion of a simple PHP application to Rails.

This part then presents an introduction of Ruby to lay the foundation

for building a larger Rails application.

The second part—“Building a Rails Application”—guides you through

an in-depth application tutorial, from project conception all the way to

deployment. This part will cover the meat of building web applications

“the Rails way.”

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=15

HOW TO READ THIS BOOK 16

The third and final part—“PHP to Ruby at a Glance”—provides an in-

depth reference that maps PHP syntax and idioms to comparable Ruby

and Rails code. We provide one-to-one corresponding Ruby and PHP

code wherever possible to make the translation easy.

Both Ruby and Rails are invaluable development tools with their own

respective strengths and weaknesses. By the end of this book, you’ll

have a good understanding of both these tools and will be able to add

not only one but two new tricks to your development toolbox. Although

we’ll use PHP to drive our learning of Rails, Rails can help us learn

about PHP as well. As developers, we’re always on a quest to find faster

and more efficient ways to do our job. We hope that Rails inspires you

to do just that.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=16

Part I

From PHP to Rails

Chapter 1

Getting Started with Rails
In this chapter we’ll begin our Rails journey by focusing on the basic

concepts that drive the Rails framework. We’ll then get up and running

quickly by installing Rails and building a small test application.

The Rails framework is built using the Ruby programming language,

and a better understanding of Ruby is essential to mastering Rails.

Don’t worry if you’re not familiar with Ruby, though. Many developers

end up learning Ruby as they are learning Rails. The next few chapters

will get you up to speed with the Ruby language and how the Ruby

programming philosophy differs from PHP.

1.1 Rails as an Extension of Ruby

David Heinemeier Hansson extracted Rails from an application he wrote

for his company, 37signals. He released it as open source in 2004, and

there is now a group of developers on the core team actively apply-

ing features and patches to Rails. David’s original framework actually

began in PHP, but he later found Ruby to be a much better fit for what

he needed to do.

You’ll find the expressiveness of Ruby embraced fully in Rails to create

language conventions that are specific to Rails. The Rails core team is

concerned about creating a syntax that is friendly to humans. In lan-

guages such as C and PHP, we sometimes get lost in curly brackets and

semicolons that make us feel like programs are written for machines.

In good Ruby programs like Rails, programs always feel like they are

written for humans.

THE COMPONENTS OF RAILS 19

Rails takes advantage of numerous powerful Ruby features that allow

classes and methods to be created and modified at runtime. By using

the dynamic nature of Ruby, we can write incredibly flexible programs.

This dynamic nature can also help keep our application code as clean

and DRY as possible.

The Rails framework is composed of several different Ruby libraries.

As an introduction to Rails, let’s start by taking a look at the different

components that make up the framework.

1.2 The Components of Rails

Rails is a full stack framework, which means it contains all the tools

needed to get a basic application up and running. The Rails stack is

split into various components that we’ll often refer to by name. These

are some of the components that we’ll talk about most.

ActiveRecord

This is the heart of most Rails applications and is an object rela-

tional mapper (ORM) that maps database tables to objects in our

application. We’ll use this exclusively when interacting with the

database.

ActionPack

This part of Rails handles the request/response cycle and includes

the template and rendering part of our application.

ActiveSupport

This part of Rails provides shared code that is used to build many

of the other Rails components. It also contains additional func-

tionality ranging from multibyte character support to date and

time logic.

ActionMailer

This part will help us build and send email messages from within

our application.

Rake

This is a tool used to execute different tasks in our application.

These tasks include running tests, building documentation, and

doing much more. This is not a component of the Rails package

per se but is a Ruby tool that is tightly integrated into the Rails

workflow.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=19

OPINIONATED SOFTWARE 20

Some components such as ActiveRecord and Rake are not exclusive to

Rails and are pretty useful as independent libraries outside the frame-

work. We’ll go over each of these components in more depth later as we

interactively learn Rails. Although we’ll learn most of Rails by writing

code, making the transition from PHP to Ruby and Rails is more than

learning a new language syntax. Before we start coding, let’s go over

some of the Rails conventions that will inform the decisions we make

as we write our applications.

1.3 Opinionated Software

The Ruby and Rails culture is quite different from that in PHP, and

this is reflected in both the code and the community. Rails is consid-

ered opinionated code, and it’s important to understand where and why

Rails expects you to follow certain coding principles and conventions.

Rails code has been heavily influenced by the coding style prevalent

in Ruby, and the Rails community places a high importance on code

beauty and readability. Although Ruby often allows more than one way

to do something, only one approach is usually considered correct by

community standards. Rubyists always give priority to clear and con-

sistent code over complex or cryptic code.

Rails is built with a distinct vision of how web applications should be

written. The Rails team regularly takes the role of a benevolent dictator

by imposing opinions they think are in your best interest when writing

software. Don’t get too worried if you initially are taken back by some

of these choices. Sometimes it takes a while to get used to a different

way of working. We suggest you follow the conventional workflow for at

least your first couple Rails applications. As the adage goes, “It’s good

to learn the rules before you decide to break them.”

Embracing the 80/20 Rule

The Rails framework aims to remain simple by following the 80/20 rule.

Rails aspires to solve 80 percent of the most common issues encoun-

tered when building a web application. This means that Rails limits or

rejects features and patches that will not benefit the majority of devel-

opers using it. There is an important drive in the Rails community to

keep the framework as lightweight as possible and to avoid unnecessary

feature bloat.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=20

OPINIONATED SOFTWARE 21

This does not mean that Rails cannot handle your application’s needs.

It just means that the solution might not be in the core Rails frame-

work and is not much different from PHP in this respect. Rails makes

it quite easy to override behavior or add custom functionality to your

application using a Rails plug-in. If you’re running into a issue with

the framework, there is a good chance that someone may have already

written a Rails plug-in or Ruby library that solves your problem.

Following Conventions

Rails takes coding standards further by imposing rules and conventions

that are fairly easy to follow. Some of these decisions such as class and

database naming conventions are typically left to the developer when

creating a new application in PHP. You’ll quickly notice that not hav-

ing to make these judgments yourself actually speeds up development

time and creates a more consistent code base between different teams

members and projects.

Your first instinct may be to do things the way you’ve always been doing

them in PHP. Although old habits die hard, you’ll be rewarded for fol-

lowing the path of least resistance in Rails.

Increasing Productivity Through Beauty

It may seem like a strange statement, but one of the core ideas behind

Rails is that of maintaining a beautiful code API. One of the prime moti-

vating factors behind productive employees is that they enjoy the code

they are working with. You’ll notice that the Rails framework goes to

great lengths to provide an API that is predictable and beautiful to work

with.

A good example of this concept is in validation declarations. Ruby’s

flexible syntax enables us to call methods without parentheses. This

results in creating a naturally readable validation syntax that is obvious

to even those with no Ruby programming experience.

class Movie < ActiveRecord::Base

validates_presence_of :title, :on => :create

end

This example validates that a title is present when a movie is created.

The code is quite expressive and is easy to read and maintain.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=21

THE MVC PATTERN AND RAILS 22

1.4 The MVC Pattern and Rails

One of the most important opinions that Rails asserts is how to orga-

nize your application code. Rails uses the classic design concept of

Model/View/Controller (MVC) to do this. MVC is a pattern used to man-

age applications that apply some type of user interface. The concept

actually dates back to the 1970s but in recent years has become quite

popular in creating web applications. It is used in varying forms within

most modern web frameworks. A fairly large number of MVC-based

frameworks exist for PHP as well, and prior knowledge of any of these

will also help you grasp how MVC works in Rails.

MVC splits your code into three distinct roles of responsibility and aims

to clearly separate your domain logic from your user interface logic.

If you use a PHP template engine such as Smarty, Flexy, or Savant,

you already understand how important this is in creating maintain-

able code. The MVC pattern goes a little further than most PHP tem-

plate solutions by adding a layer between the database and templates.

The controller layer is the plumbing that connects the business and

database logic to the template logic.

Model

The model is the foundation of your application and consists of the

nonvisual aspects of “things” in your application. The model contains

all your interaction with the database as well as any behavior that

enhances or changes data in the database. This includes simple for-

matting and validation of the data as well as some data integrity.

Being nonvisual usually makes testing this type of data simple and

reliable. The main goals of the model layer is to represent your data in

a way that can be used among various interfaces without duplicating

code. When you think “model,” you should think business logic.

View

The view is the visual representation of your application, as well as sim-

ple logic specific to rendering the user interface. In web applications,

this is usually (X)HTML markup or JavaScript code. In today’s Web 2.0

world, you may also need to render XML in response to web service

requests. When you think “view,” think of your application’s front-end

logic and templates.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=22

THE MVC PATTERN AND RAILS 23

Figure 1.1: Model/View/Controller

Controller

The controller directs the traffic by handling requests sent to your

application and determining the right code to execute. It plays an im-

portant role in keeping your data loosely coupled by acting as an inter-

mediate layer between the model and the view.

The controller also maintains the state of your application using cook-

ies and session data. When you think “controller,” think of the event

handler that ties together the model and view layers.

The diagram in Figure 1.1 illustrates the three components of MVC and

shows a typical request/response cycle associated with Rails.

1. The browser sends a request to your application in the form of a

URL and GET/POST parameters.

2. The controller figures out what part of your code should deal with

this particular request. It then asks the model layer for any data

needed to perform that action.

3. The model queries the database to change or retrieve data and

hands the results back to the controller.

4. The controller passes the data to the view for use in the page

template.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=23

INSTALLING RUBY AND RAILS 24

5. The controller renders the view in a response sent back to the

browser.

Now that we have an idea of how the MVC pattern is used to organize

code in our application, we’ll put it to use by building a Rails applica-

tion using these principles. Before we build an application, however, we

need to get Rails installed.

1.5 Installing Ruby and Rails

Installation is different on various platforms, and there are some great

packages that simplify the Rails install process. You can find the most

up-to-date install process on the Rails download page.1

Although often thought of as a single unit, Ruby and Rails are two

separate packages. Rails is a framework written in the Ruby language,

not unlike frameworks such as Cake and the Zend Framework in PHP.

To get Rails working, your first step will be to get Ruby installed on

your machine. We recommend installing Ruby version 1.8.6 or newer.

You can find detailed information on installing Ruby across a variety of

platforms in the download area of the Ruby website.2

Once you have Ruby installed, we have to take a quick look at pack-

age management in Ruby. The most common method of distribution

for Ruby packages and libraries is through RubyGems. RubyGems is

a package manager similar to PEAR for PHP, and Rails is most easily

installed on your computer through a gem. We recommend installing

RubyGems 1.0.1 or newer, which you can download from the Ruby-

Forge website.3

Once you’ve downloaded the latest version of RubyGems, unpack the

contents, and run the following (as root when appropriate).

src> cd rubygems-*
rubygems-1.0.1> ruby setup.rb

install -c -m 0644 ...

...done.

No library stubs found.

1. http://rubyonrails.org/down

2. http://www.ruby-lang.org/en/downloads/

3. http://rubyforge.org/frs/?group_id=126

http://rubyonrails.org/down
http://www.ruby-lang.org/en/downloads/
http://rubyforge.org/frs/?group_id=126
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=24

CREATING A RAILS APP 25

This will install all the necessary files to get us going with RubyGems,

along with the gem command. The gem command is what we’ll use to

install Rails.

This book was written using Rails 2.0.2, and you’ll need at least this

version to run the code example in this book. If you already have a

previous version of Rails installed, you need to first remove any existing

Rails gem to make sure you’re using the version that the book is written

to work with. All gem install/uninstall commands need to be run as the

root user on *nix-based systems.

work> gem uninstall rails

Successfully uninstalled rails version 1.2.3

Remove executables and scripts for

'rails' in addition to the gem? [Yn] Y

Removing rails

Let’s now install Rails.

work> gem install rails

Successfully installed rails-2.0.2

Congratulations, you should now have Ruby and Rails up and run-

ning on your system. To make sure that we’re working with the correct

version of Rails, we can run the rails command with the -v option.

work> rails -v

Rails 2.0.2

Although Rails works with a variety of databases, the examples in this

book assume you are using MySQL. You may even have MySQL on

your system already since it is often the database of choice for PHP

developers.

Rails is an opinionated web framework, and one of the opinions is that

you will use Subversion.4 Doing so will reward you with nice features

of Rails that integrate well with Subversion. Although not necessary

to follow this book, knowledge of Subversion will come in handy while

deploying your application, installing third-party plug-ins, and submit-

ting patches to Rails itself if you decide to contribute to Rails.

1.6 Creating a Rails App

The best way to learn Rails is to actually make something, so we are

going to do just that. We will dive right into creating a small Rails

4. http://subversion.tigris.org/

http://subversion.tigris.org/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=25

CREATING A RAILS APP 26

What Is Subversion?

Subversion is a version control system that allows you to track
and manage changes in your application’s source code. We
realize that there are many different kinds of PHP developers.
Some developers work with tools such as Dreamweaver and
FTP. Others work with tools such as Vim and Subversion. Regard-
less of exactly where you fall in the spectrum, we highly rec-
ommend looking into using a source control system. Subversion
is the preferred software by most Rails developers because it is
free, easy to use, and more powerful than similar free tools such
as CVS.

application to help clarify the MVC pattern a little more and to get you

accustomed to how code is organized in Rails.

For our first Rails application, we need to create a simple form to collect

email addresses for a company newsletter. Before saving any emails, we

validate that the address is unique and formatted correctly. We then

notify users of any errors that happen during the operation.

Each Rails application is stored within its own directory. To create a

new application, move to the location where you store your work. From

here we issue the rails command along with our application name to

create a new application. As of Rails 2.0.2, Rails uses SQLite3 as the

default database. We’ll use the -d option to specify MySQL instead.

derek> cd work

work> rails -d mysql newsletter

create

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

...

create log/test.log

This creates the newsletter/ directory along with a collection of other

files and directories that are to become the skeleton of our new Rails

application. If we take a further look at the directory structure, we’ll see

something like that shown in Figure 1.2, on the next page.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=26

CREATING A RAILS APP 27

Figure 1.2: Application directory structure

We will store most of our Rails application’s code in the app/ direc-

tory within our project. If we take a look inside, we will see where the

MVC pattern fits in. We have three directories to separate each aspect

of MVC. We also have an additional helpers/ directory that we’ll cover

in more detail in Chapter 5, Working with Controllers and Views, on

page 120.

There are quite a few files and directories overall here, but we need to

focus on only a few to get started. All configuration for our new applica-

tion is done within the config/ directory. We’ll start by configuring our

database.

Configuring the Database

MySQL is the perfect place to store all the emails we’re collecting for

this application. The first step is to create and configure the database

to work with our application. The database configuration for our appli-

cation is stored in config/database.yml and is written as a YAML file.5

YAML is a simple file format that is gaining popularity lately because of

its human-friendly syntax. You’ll see Rails uses YAML as an alternative

to Ruby to define configuration in a few areas.

5. YAML stands for YAML Ain’t Markup Language and rhymes with “camel.” Learn more

at http://www.yaml.org.

http://www.yaml.org
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=27

CREATING A RAILS APP 28

Let’s open this file to take a better look. You’ll probably first notice

that there are three different database configurations in the file. Rails

uses the idea of execution environments and has three different envi-

ronments to execute code: development, test, and production. A dif-

ferent database is used in each of these environments. We’ll discuss

environments in more depth in Section 6.2, Using Rails Environments,

on page 164. For now, we’re just starting the development phase of our

application, so we need to configure only the development environment.

Download getting_started_with_rails/newsletter_1/config/database.yml

development:

adapter: mysql

encoding: utf8

database: newsletter_development

username: root

password:

socket: /tmp/mysql.sock

Rails already assumes we are using the mysql database adapter on local-

host. It has also given us a suggestion to follow in regards to the name

of the database. This section is where you’ll enter your MySQL user-

name and password so that your application can connect. The default

configuration uses a username of root with a blank password.

Once you have saved your MySQL username and password to this file,

you can create the newsletter_development database in the means you

are most comfortable with. We like using the mysqladmin command.

newsletter> mysqladmin -u root -p create newsletter_development

After we have the database connection set up, we need to create a table

to store our newsletter subscribers. This application is quite simple,

and we need only a single table to store the email addresses. We’ll name

this table using the plural form of what it is storing—subscribers. We’ll

keep the table simple with only two columns: id and email.

CREATE TABLE subscribers (

id int(11) NOT NULL auto_increment,

email varchar(255) default NULL,

PRIMARY KEY (id)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Once we’ve created this table, we’re ready to fire up a server to get our

new application working in the browser.

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter_1/config/database.yml
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=28

CREATING A RAILS APP 29

Starting Up the Server

Rails comes bundled with a server called WEBrick that works great for

development work; it will save us any additional installs at this point.

The script to start this is located in the script/ directory and has to be

run from the root directory of your application. Pop open a new console

window to do this.

work> cd newsletter

newsletter> ruby script/server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options

[2007-12-01 17:37:10] INFO WEBrick 1.3.1

[2007-12-01 17:37:10] INFO ruby 1.8.6 (2007-03-13) [i686-darwin8.9.1]

[2007-12-01 17:37:10] INFO WEBrick::HTTPServer#start: pid=13 port=3000

This message means the server has started on our machine. That’s

right—there’s no Apache web server to install and no VirtualHost direc-

tives to configure as you would for your PHP environment. All you have

to do is start script/server whenever you want a little web server to test

your Rails work. WEBrick is great for getting started quickly with devel-

opment but is not recommended for production use. We’ll discuss a

more production-ready solution in Chapter 10, Deploying the Applica-

tion, on page 242.

WEBrick will continue to log to the console as requests are made to

your application. You will need to keep the console running for the

application to remain accessible from the browser, and you can shut

down the server at any time by hitting Ctrl+C.

As a rule of thumb, we don’t need to restart our server to see changes

take effect in our application. There are a few exceptions to this rule.

You’ll need to restart the server when changing anything within the

config/ directory. If we were to change the database configuration now,

we would need to restart WEBrick so that Rails loads with the correct

settings. We also might need to restart the server if you see the error

message “Routing Error: No route matches. . . ” Restarting the server

can be done by hitting Ctrl+C on the console running the server and

then restarting it.

^C[2006-12-17 16:45:02] INFO going to shutdown ...

[2006-12-17 16:45:02] INFO WEBrick::HTTPServer#start done.

newsletter> ruby script/server

=> Booting WEBrick...

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=29

CREATING A RAILS APP 30

Figure 1.3: Rails greeting

Now that the server is going, you can access your new Rails application

by visiting http://localhost:3000 in your browser. Rails will greet you with

the welcome screen shown in Figure 1.3.

This is proof that things are up and running, and Rails will provide you

with some friendly links to various online resources.

The Newsletter App in PHP

Let’s first take a look at how our entire newsletter application would

look as a PHP script. We will then go over how this script could be split

up to use the MVC pattern in a Rails application.

http://localhost:3000
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=30

CREATING A RAILS APP 31

PHP Download getting_started_with_rails/newsletter.php

<?php

$dbh = new PDO('mysql:host=localhost;dbname=newsletter_development',

'root', '');

// Check if the email format is valid

function emailValid($email) {

$pattern = '/^[a-z0-9_.-]+@[a-z0-9-]+\.[a-z.]+$/i';

return preg_match($pattern, $email);

}

// Check if a user is already subscribed

function subscriberExists($dbh, $email) {

$sql = "SELECT COUNT(*) AS cnt FROM subscribers

WHERE email=".$dbh->quote($email);

$row = $dbh->query($sql)->fetch();

return !empty($row['cnt']);

}

// Insert a new subscriber into the list

function insertSubscriber($dbh, $email) {

$sql = "INSERT INTO subscribers (email)

VALUES (".$dbh->quote($email).")";

return $dbh->exec($sql);

}

$error = '';

$success = '';

$email = isset($_POST['email']) ? $_POST['email'] : '';

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

if (!emailValid($email)) {

$error = "Email is an invalid format. Please try again.";

} elseif (subscriberExists($dbh, $email)) {

$error = "Email already exists on our list.";

} elseif (insertSubscriber($dbh, $email)) {

$success = "Thank you, You have been subscribed.";

}

}

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head><title>Subscribe to our Mailing List</title></head>

<body>

<h2>Subscribe to our Mailing List</h2>

<div style="color: red">

<?php echo htmlentities($error, ENT_QUOTES) ?>

</div>

<div style="color: green">

<?php echo htmlentities($success, ENT_QUOTES) ?>

</div>

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=31

CREATING A RAILS APP 32

<form method="post" action="/newsletter.php">

<input type="text" name="email" size="25" />

<input type="submit" />

</form>

</body>

</html>

This is a lot of code, but don’t worry because we’ll break down each part

for you. This PHP script combines all the logic and markup in a single

file. This is not necessarily a best practice or modern programming

technique in PHP, but it should be straightforward enough for any PHP

developer to understand. This procedural style of programming is actu-

ally pretty convenient for a simple script such as this, but you would

probably find yourself repeating code as this application grows.

There are three distinct sections of this code that can be separated into

different files to facilitate reuse. With a little more knowledge on the

MVC pattern, let’s see whether we can figure out how we might split

this up to fit the pattern.

Extracting the Model Code

The PHP functions defined in this code all have to do with subscribers.

We validate the subscriber’s email format, see whether the subscriber

already exists, and finally create the subscriber record.

PHP Download getting_started_with_rails/newsletter.php

// Check if the email format is valid

function emailValid($email) {

$pattern = '/^[a-z0-9_.-]+@[a-z0-9-]+\.[a-z.]+$/i';

return preg_match($pattern, $email);

}

// Check if a user is already subscribed

function subscriberExists($dbh, $email) {

$sql = "SELECT COUNT(*) AS cnt FROM subscribers

WHERE email=".$dbh->quote($email);

$row = $dbh->query($sql)->fetch();

return !empty($row['cnt']);

}

// Insert a new subscriber into the list

function insertSubscriber($dbh, $email) {

$sql = "INSERT INTO subscribers (email)

VALUES (".$dbh->quote($email).")";

return $dbh->exec($sql);

}

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=32

CREATING A RAILS APP 33

Extracting and combining all the code that deals with subscriber infor-

mation seems to make a lot of sense. This type of code will become part

of our model layer, because it deals with the data of a “thing” (sub-

scriber) in your application. Let’s take a look at how we would create

our subscriber model in Rails.

Instead of manually creating new files to extract this code, we’ll be using

code generation to build the structure for us. The script/generate com-

mand will build the stubs of code we need to put together our appli-

cation. We use it here to create a Subscriber model. Navigate to the root

level of your application, and run the following.

newsletter> ruby script/generate model Subscriber

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/subscriber.rb

create test/unit/subscriber_test.rb

create test/fixtures/subscribers.yml

create db/migrate

create db/migrate/001_create_subscribers.rb

The script takes two arguments here: model is the type of object we

want to create, and Subscriber is the name of the model we are creating.

The script outputs a list of files created, which includes everything we

need to get going with the subscriber model. At this point we need to

focus only on the single file where we define the object that represents

a subscriber in our application. Let’s open app/models/subscriber.rb to

take a look at the Subscriber class.

Ruby Download getting_started_with_rails/newsletter_1/app/models/subscriber.rb

class Subscriber < ActiveRecord::Base

end

Taking a look at this file shows there isn’t much there. Ruby uses a sin-

gle inheritance model just like PHP. Although object inheritance in PHP

uses the extends keyword, inheritance in Ruby is defined using the less-

than symbol (<). In this case, the functionality of our Newsletter class is

slightly deceiving, because this model inherits all the functionality built

into the ActiveRecord::Base class.

Your Subscriber model controls everything that goes in and out of the

subscribers table we created. The ActiveRecord::Base class that Subscriber

inherits from is a high-level database abstraction layer. This layer is

known as an object relational mapper because it maps each model

directly to a database table using a specific naming convention. By

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter_1/app/models/subscriber.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=33

CREATING A RAILS APP 34

naming our table as the lowercase plural form of our model class, the

database table and corresponding model class are automatically linked.

Taking a look back at our PHP code, there are three things we need to

accomplish with this model code.

• Validate that the email format is correct.

• Validate that the subscriber email doesn’t already exist.

• Insert the subscriber.

Let’s start with the validation of the data for this model. Each column

in our database maps directly to an attribute on our model class. We

can validate data being inserted into the database by adding simple

declarations on our ActiveRecord model. In this case, we’ll use two

built-in validation rules to make sure that the email column is both

formatted correctly and unique. We’ll add the validates_format_of and

validates_uniqueness_of methods, respectively, to accomplish this.

Ruby Download getting_started_with_rails/newsletter_2/app/models/subscriber.rb

class Subscriber < ActiveRecord::Base

validates_uniqueness_of :email,

:message => "already exists on our list"

validates_format_of :email,

:with => /^[a-z0-9_.-]+@[a-z0-9-]+\.[a-z.]+$/i

end

Each of these rules is passed the name of the column we are validat-

ing as the first parameter. We’ve added a :message parameter to val-

idates_uniqueness_of to override the default error message given when

the validation fails.

We use the :with option to validates_format_of to specify the regular ex-

pression the email has to match in order to validate. This particular reg-

ular expression checks for the most basic of email validation by looking

for an at sign (@) and dot (.) in the address. Rails uses Perl-style regular

expressions, which means we can reuse the same pattern used in the

PHP preg_match function.

Once these validation rules have been set, Rails will intercept any inser-

tion or updates we make to the subscribers table to make sure the data

is valid. If the data fails any of the validation rules, Rails gives a list of

errors so that you know what went wrong.

Believe it or not, we don’t even need to create a function to insert the

record. This functionality is already inherited from ActiveRecord, which

we’ll see later when we save the record. Between generating the model

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter_2/app/models/subscriber.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=34

CREATING A RAILS APP 35

A Symbol of Our Friendship

You have probably noticed by now that Ruby has a data type
not present in PHP. A symbol is created by using a string of char-
acters preceded by a colon such as the following.

:my_symbol

Symbols provide a lightweight replacement for strings when
we’re naming things in Ruby, and we discuss them in further
detail in Section 11.2, Symbols, on page 271.

code and adding these validation rules, this finishes up the code needed

to implement the requirements of our PHP functions.

Extracting the Controller and View Code

The next bit of PHP code in our example is responsible for flow control.

It directs what to do when the HTML form is submitted.

PHP Download getting_started_with_rails/newsletter.php

$error = '';

$success = '';

$email = isset($_POST['email']) ? $_POST['email'] : '';

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

if (!emailValid($email)) {

$error = "Email is an invalid format. Please try again.";

} elseif (subscriberExists($dbh, $email)) {

$error = "Email already exists on our list.";

} elseif (insertSubscriber($dbh, $email)) {

$success = "Thank you, You have been subscribed.";

}

}

This code invokes the functions needed to handle the submitted data.

It then assigns variables for our template based on what happens. This

type of code is part of the controller layer because it handles the request

and passes information from the subscriber data to the template.

Creating the Controller

We can generate a controller in Rails by using the same generator script

we used to create our model. We need to name this the Subscribers con-

troller because of its role in handling actions that deal with subscribers

in our application.

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=35

CREATING A RAILS APP 36

Figure 1.4: Action missing the template

newsletter> ruby script/generate controller Subscribers

exists app/controllers/

exists app/helpers/

create app/views/subscribers

exists test/functional/

create app/controllers/subscribers_controller.rb

create test/functional/subscribers_controller_test.rb

create app/helpers/subscribers_helper.rb

Different “pages” within our application are defined by new methods

within our controller. These methods are commonly referred to as

actions because of the role they play. They handle the flow of applica-

tion logic and are often named using verbs. We’ll use an method named

create to handle the action of creating new subscribers.

We create methods in Ruby using the keyword def, followed by the name

of the method and the parameters in parentheses. The parentheses and

parameters are optional in Ruby and in this case have been left out for

brevity. The body then follows, and the method is closed using the end

keyword. We’ve also added a single-line comment using the hash (#)

character.

Ruby Download getting_started_with_rails/newsletter_2/app/controllers/subscribers_controller.rb

class SubscribersController < ApplicationController

create a new subscriber

def create

end

end

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter_2/app/controllers/subscribers_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=36

CREATING A RAILS APP 37

Each action in a Rails controller maps to a default URL based on the

name of the controller and action. To run the create action in our Sub-

scribers controller, redirect your browser to http://localhost:3000/subscribers/create.

Unfortunately at this point, we don’t have an associated template for

this action. Without this template, we are shown the error in Figure 1.4,

on the previous page.

Rails wants to render a template, but the template file is missing! Of

course, this is because we have not created a template for the page

yet. Rails helps out here by showing us exactly where it is looking for

the missing template. All template/view code belongs in the app/views

directory. This location is further split up by controller. Since we’re writ-

ing the create action within the SubscribersController, we will need to cre-

ate the corresponding template in app/views/subscribers/create.html.erb.

Creating the View

Let’s give this application a face by extracting the template code. This

should be fairly simple because it is mostly HTML with just a small

amount of PHP presentation logic sprinkled in.

PHP Download getting_started_with_rails/newsletter.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head><title>Subscribe to our Mailing List</title></head>

<body>

<h2>Subscribe to our Mailing List</h2>

<div style="color: red">

<?php echo htmlentities($error, ENT_QUOTES) ?>

</div>

<div style="color: green">

<?php echo htmlentities($success, ENT_QUOTES) ?>

</div>

<form method="post" action="/newsletter.php">

<input type="text" name="email" size="25" />

<input type="submit" />

</form>

</body>

</html>

Separating this markup into a different file gives the UI designer a clean

template to work with that is absent of business logic. It also lets you

easily swap in a different style of template if you wanted to render an

XML or JavaScript representation of the data.

http://localhost:3000/subscribers/create
http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=37

CREATING A RAILS APP 38

The most common type of view in Rails is written in Embedded Ruby

and is most often referred to as ERB. The extension on these views

is written as .html.erb, which describes the MIME type of the response

along with the rendering engine used to create it. In this case, we need

to return HTML for our response.

ERB is a template system that allows Ruby to be embedded and evalu-

ated within a text file. It works similarly to how native PHP is commonly

used within HTML markup. We can invoke the Ruby interpreter using

the <% tag and exit using %>. Outputting an expression within the tags

uses the same convention as PHP short tags by adding an equal sign in

the opening tag. <%=.

Let us now translate this code to ERB by creating app/views/subscribers/

create.html.erb. The code looks quite similar to that in the original PHP

script. There are a few important translations that we’ve made when

converting this to ERB. The Ruby variables we use are prefixed with an

at sign (@) instead of the dollar sign ($) we’re familiar with in PHP.

Ruby Download getting_started_with_rails/newsletter_2/app/views/subscribers/create.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head><title>Subscribe to our Mailing List</title></head>

<body>

<h2>Subscribe to our Mailing List</h2>

<div style="color: red"><%= h(@error) %></div>

<div style="color: green"><%= h(@success) %></div>

<% form_tag :action => "create" do %>

<input type="text" name="email" size="25" />

<input type="submit" />

<% end %>

</body>

</html>

We’ve also introduced the idea of helper methods. A helper method

is simply a function that we use within our view to help render our

markup. We’ve used the h helper method in our Ruby code to get the

equivalent functionality of htmlentities in PHP.

We’ve also used a helper method named form_for to create the form in

our view. We’ve passed a single argument to this method that speci-

fies what action the form will post to. In this case, the form will post

back to the same create action we created in our subscribers controller.

The do/end style of syntax used with this method is an example of a

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter_2/app/views/subscribers/create.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=38

CREATING A RAILS APP 39

Is It Dangerous to Put Logic in Templates?

Of course not, provided it is presentation logic. Presentation
logic is code such as simple loops of data, determining the
class of a particular HTML element, or choosing whether an ele-
ment should be displayed at all. Avoiding all logic in the tem-
plate would require writing much more code than necessary
to get around the restrictions. There is a slippery slope when
allowing PHP or Ruby to be integrated into markup, but with
the right discipline, these solutions can be quite elegant and
easy to understand.

What Is the .rhtml Extension Used For?

Before Rails 2.0, ERB views that rendered HTML had an .rhtml

extension. This was phased out in favor of a more extensible
solution that met the need to render different templates for the
same action (such as create.xml.erb). The .rhtml extension was
around for quite a while, and there is a good chance that you’ll
still see it around in older Rails applications.

Ruby block. This allows us to use a single method to build both the

opening and closing tags of this form. We’ll learn more about blocks in

Section 2.9, Understanding Blocks, on page 65.

Rails has an immediate feedback cycle just like PHP. We can view the

changes we’ve made by simply hitting Refresh in the browser. Rails now

proudly displays the newsletter submission form shown in Figure 1.5,

on the next page. All that is left is actually hooking the parts together

in the controller.

Processing the Form

If we refer to the original script, the remaining logic we need to extract

from our PHP has to do the following.

1. Get the email variable posted from the form.

2. Validate the email.

3. Insert the subscriber’s email.

4. Assign a message to notify the user of what happened.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=39

CREATING A RAILS APP 40

Figure 1.5: Create subscriber form

When the subscriber form is submitted, it will send a POST request to

the same create action we’re using to display this form. This is actually

quite similar to what we’re doing with the PHP version of the newsletter

application.

Ruby Download getting_started_with_rails/newsletter_3/app/controllers/subscribers_controller.rb

Line 1 class SubscribersController < ApplicationController
-

- # create a new subscriber
- def create
5 if request.post?
- @subscriber = Subscriber.new(:email => params[:email])
- if @subscriber.save
- @success = "Thank you, You have been subscribed."
- else

10 @error = @subscriber.errors.full_messages[0]
- end
- end
- end
-

15 end

In PHP, we checked the request method via $_SERVER[’REQUEST_METHOD’].

The Rails version does a similar check using the request.post? method

call on line 5. Our validation has been handed off to the model itself

and will be automatically be checked when we save the data. At this

point we can go ahead and create the record.

When the email is posted to Rails action, we’ll be able to access it using

the params data structure. This data structure holds any information

that would be in the $_GET or $_POST superglobals in PHP. It is accessed

in the same way as an associative array in PHP.

http://media.pragprog.com/titles/ndphpr/code/getting_started_with_rails/newsletter_3/app/controllers/subscribers_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=40

CREATING A RAILS APP 41

Instance and Local Variables

The “Ruby way,” and generally accepted rule, is to name local
variables using all lowercase letters with underscores.

my_variable = "hey there!"
_123 = "another variable..."

Instead of using $this-> to access instance variables within an
object, Ruby uses a @ prefix on variables.

@message = "six less characters to type than $this->!"

We can find more details on the difference between variables
in PHP and Ruby in Section 11.3, Variables, on page 284.

To create a new record in the database, we instantiate a new Subscriber

object using its new method. This would be similar to calling new Sub-

scriber() to construct an object in PHP.

@subscriber = Subscriber.new(:email => params[:email])

The arguments passed in are a set of key/value pairs that correspond

directly to the name of columns in that table. This will assign the email

column with the value we gathered from the form. Finally, invoking the

save method will insert this record into the subscribers table.

The save will return true if the save was successful, at which point we’ll

set the success message. If one of our validation rules is violated, the

save will return false. In this case we can retrieve an array of validation

errors by calling errors.full_messages on the @subscribers object. In this

example we need to display only the first error message found.

Instance variables assigned in this action will become available in our

view template. This means that both @error and @success will be acces-

sible in the view.

Finishing up the logic for this controller completes our conversion.

Refresh the newsletter app in your browser to test the final result. Try

saving a new email or entering invalid data.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=41

CHAPTER REVIEW 42

What Is a Question Mark Doing on a Method Name?

Adding a question mark at the end of a method name is valid
syntax and fits a certain convention in Ruby. We typically add
a question mark to the end of a method if it returns a boolean
value. It’s as if we’re asking the object a question with a yes or
no answer: “Are you a post request?”

1.7 Chapter Review

Congratulations! We have finished our first Rails application. Although

this was a simple application, we have already learned quite a few

important concepts in Rails:

• We learned some of the many conventions and opinions that Rails

makes about building web applications.

• We learned that code generation makes it easy to create our files

in an organized way.

• We learned how the MVC pattern works as well as how to identify

and separate the different aspects of our code. The benefits of

using MVC will really pay off as we work our way into a larger

application.

• We learned how Rails has much built-in functionality to take care

of things we may have created custom functions for in PHP.

1.8 Exercises

Here’s some extra exercises that you can try on your own:

• We looked at only a few of the many files created by the generators

we used. Take a look through the rest of the files created when we

built our newsletter Rails application.

• Try adding columns to the subscribers database table and the form

used to submit our subscriber data. How would you save these

additional values when they are submitted to the create action?

• We used some simple conditional logic using if/else in our con-

troller code. Try conditionally displaying the error and success

<div> tags in the view depending on the value of the @error and

@success variables.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=42

Chapter 2

Beginning Ruby Code
The previous chapter gave you a small taste of Rails, but now it’s time to

step back a bit to look at some basics—the elements of Ruby code you’ll

need to know to become a successful Rails developer. This chapter will

get you, a PHP developer, quickly started down the road to understand-

ing Ruby as a language and a little bit about the power it gives Rails.

Along the way, we’ll refer to your PHP experience to accelerate your

understanding of each topic.

Ruby is a fully object-oriented language. If you are familiar with object-

oriented programming in PHP, you have a good start. Ruby has some

powerful object-oriented features that will be an exciting addition to

what you may know in PHP. Don’t worry if you are not familiar with

object-oriented code! Starting now with Ruby is a great time to learn.

Objects in Ruby are not scary or complicated.

2.1 Seeing Ruby as a General-Purpose Language

There are some things that PHP may have deeply embedded in your

brain that work completely differently in Ruby. The first thing you might

have to unlearn is the web browser.

PHP is one of only a handful of languages that was developed specifi-

cally for writing web applications. It is so specific to the Web that it’s

sometimes difficult to separate the PHP language from all the goodies it

has bundled to support web development, such as the functions htmlen-

tities() and nl2br(). Most of us write our first PHP scripts as “Hello World”

pages—from the first experiment, we’re in the web browser.

SEEING RUBY AS A GENERAL-PURPOSE LANGUAGE 44

Back in the mid-1990s, Rasmus Lerdorf released the first version of

PHP to the public. In this early form, it was a limited set of tools

designed simply to make his tasks of developing dynamic web pages

easier. It has since grown to be much more, but its focus remains the

same—developing web applications. You can write all kinds of applica-

tions in PHP now, but for a large number of developers, programming

PHP means working with the web browser.

Close to the same time as PHP emerged, Yukihiro “Matz” Matsumoto

released Ruby to the public. Although many people outside of Japan

think that Ruby is relatively new, PHP and Ruby are in fact close to the

same age. Whereas PHP was created out of Rasmus’s need for a better

way to make dynamic web pages, Matz created Ruby out of his sheer

dissatisfaction of doing any kind of programming with the languages

available at the time.

PHP and Ruby are very different in this regard. Although they can both

be applied to many of the same problems now, their histories are rad-

ically different. PHP grew organically over time, evolving as the Web

evolved, and the language we now know as PHP was developed by many

different contributors who bolted on different features to make PHP

more suitable for solving their web problems. Ruby, especially in the

early years, remained the vision of largely one man who was architect-

ing his ideal language.

Matz created Ruby as a general-purpose language. He drew inspiration

from many different languages that were available at the time, includ-

ing Perl, Lisp, Smalltalk, and Python. For Matz, Ruby has always been

about building his ideal language rather than solving a set of specific

problems. Although Ruby has many contributors like PHP, Matz has

always remained Ruby’s architect and project leader. If you’ve ever been

frustrated with all the little inconsistencies that make PHP so colorful,

you may come to appreciate the design of Ruby that has resulted from

it largely being the focus of one man striving for perfection over years

of effort.

Since Ruby is a general-purpose language, many different kinds of

developers have taken it and applied it to their particular problems.

This was the case when David Heinemeier Hansson wanted to use Ruby

for developing web applications. His extensions to Ruby became Ruby

on Rails.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=44

INTERACTING WITH RUBY 45

Many other kinds of developers have also extended Ruby in different

ways for solving their own problems. Most of these problems don’t have

anything to do with the Web, so Ruby alone isn’t particularly optimized

for the Web out of the box like PHP.

2.2 Interacting with Ruby

A breadth of other kinds of libraries and tools are available for Ruby

that allow it to do all kinds of things unrelated to Web. For us web

developers, one of the best things to come out of this is Interactive

Ruby (IRB).1

Once you have Ruby installed on your computer, you’ll notice that the

command ruby does the same thing as php—it silently waits for a script

to be streamed in on stdin. That’s not particularly friendly or useful for

us at this point, so exit with Ctrl+C if you tried it.

Another command is installed with Ruby that starts IRB. It’s called—

you guessed it—irb. Fire up IRB with the irb command, and let’s start

interacting with Ruby.

irb>

The first thing you’ll see in IRB is the prompt. You can try pressing

Enter a few times, and you’ll be always be brought back to the prompt,

just like your shell. Let’s try our first Ruby command.

irb> print('Hello world!')

Hello world!=> nil

irb>

Ruby’s print works like its counterpart in PHP. The biggest difference is

that Ruby statements don’t always end in a semicolon as they do in

PHP. We can use the semicolon to put together multiple statements on

a line, but otherwise we won’t need it in Ruby.

Also, notice that Ruby’s print does not automatically append a newline

to the string to be printed. That’s why we see that =>nil next to the string

we printed. PHP’s print() works the same way.

Ruby also has another method, puts (“put string”), that does append the

newline. Let’s try that one.

1. In some PHP versions, you can use php -a on the command line to get an interactive

PHP interpreter.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=45

INTERACTING WITH RUBY 46

irb> puts 'Hello world!'

Hello world!

=> nil

irb>

Now the “Hello world!” string was printed on its own line. We also intro-

duced another change: the puts statement has no parentheses.

All function calls in PHP need parentheses, but there are a few excep-

tions—notably, echo, print, include, and a few others. You’re allowed to

leave off the parentheses in PHP for these few cases only because they

are not actually functions. They’re language constructs. You probably

do this already but don’t think about the distinction between constructs

and functions.

Ruby is a bit simpler inasmuch as everything you “call” will be a method

(a method is a function attached to an object). There’s no differentia-

tion between methods and constructs that matter for syntax like in

PHP. Method calls never require parentheses in Ruby, and there are no

special cases. Just like the semicolon, you can leave them off unless

you need them for a specific purpose such as grouping.

You’ve just learned two important aspects of the Ruby language. First,

Ruby is consistent, and exceptions to the rules are rare. Instead of

remembering the few places where parentheses can be left off, you can

just leave them off all the time. Second, there’s generally more than

one way of doing something. Use the parentheses or leave them off—

the decision is up to you.

Let’s continue with our IRB session.

irb> puts 'Hello world!'

Hello world!

=> nil

irb>

Since puts just prints out the string and doesn’t return anything, we get

back nil just as we would get back NULL in PHP. Each time we type an

expression into IRB, the result will be printed.

Let’s try another expression that returns something more useful.

irb> 2 + 2

=> 4

irb>

IRB is every Ruby programmer’s favorite calculator. Try some other

expressions to get comfortable with IRB.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=46

OBJECTIFYING EVERYTHING 47

When you finish using IRB, you can exit by typing exit. You can also exit

by typing quit. Finally, you can just press Ctrl+D. Like most aspects of

Ruby, there’s more than one way to do it. You can find your preference,

and Ruby lets you do what you like, even when it comes to saying

goodbye. It’s your Ruby.

As we move forward, we’ll continue to use IRB quite a bit. Interacting

with the Ruby interpreter in this way is a great way to learn and test

code. Later, we’ll even see how Rails extends IRB for interacting with

our entire web application. For now, let’s keep progressing by learning

about variable assignment in Ruby.

2.3 Objectifying Everything

Many languages such as PHP and Java support object-oriented pro-

gramming but aren’t pure object-oriented languages. One of the rea-

sons that they are not “pure” is that they have primitive types. These

languages have the notion of things that are not objects.

In PHP, we work most frequently with these types. Examples of primi-

tive types include integers, floats, strings, and booleans. We can store

data in them and pass them around, but they aren’t objects and don’t

do anything useful on their own.

Ruby is radically different from these languages because it has no

primitive types at all. Ruby is a purely object-oriented language like

Smalltalk. In Ruby, everything is a full-blown object.

As a result of being objects, everything in Ruby accepts method calls,

even nil.2 In PHP, a string isn’t smart enough to do anything on its own.

If we wanted to get the length of a string, we’d call the strlen() function

and pass the string to it. Since a string is a full-blown object in Ruby,

we can ask it directly to report its length.

irb> greeting = "Hello World!"

=> "Hello World!"

irb> greeting.length

=> 12

In PHP, variables always start with a dollar sign ($). This makes it easy

for the PHP compiler to identify variables as it reads our code. Ruby

doesn’t have this requirement.

2. In Ruby, nil is the equivalent of PHP’s NULL.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=47

ACCEPTING RUBY’S OBJECT WORLD 48

Local variables don’t need any prefix at all. The variable shown previ-

ously is simply called greeting instead of the familiar $greeting in PHP.

Matz has often been quoted as saying although many languages are

optimized for compilers, Ruby is optimized for humans. You probably

don’t enjoy typing dollar signs all day, so Matz has shifted the burden

to his compiler. The same goes for the dot. In Ruby, the dot is used to

dereference objects, where PHP uses an arrow like in $object->method().

Earlier, we assigned the string object containing “Hello World” to the

variable called greeting. We then called the method length, and IRB

reported the result. Interestingly, we don’t need the intermediate vari-

able at all.

irb> "Hello World!".length

=> 12

That probably looks bizarre right now. Since everything in Ruby is an

object, methods can be chained to everything. That’s why the .length

can be chained directly after the quotes.

With our “Hello World!” string still contained in the variable greeting,

let’s try another method.

irb> greeting.upcase

=> "HELLO WORLD!"

In PHP, we’d use strtoupper() and pass the string $greeting into it. Ruby

doesn’t have a large collection of global functions like strlen() and strtoup-

per() that operate externally on variables.

A key to understanding the differences between PHP and Ruby is grasp-

ing the concepts that everything is an object and objects internalize the

methods to perform operations on them.

2.4 Accepting Ruby’s Object World

As a PHP developer, you might read the ideas presented previously and

think that having everything be an object is code bloat or perhaps a

little too far-fetched. We’d like to assure you that this isn’t the case,

and Ruby’s world of objects can solve a very practical PHP problem in

a simple way.

One of the most common problems of learning PHP is memorizing the

order of the arguments for its frequently used functions. We’ll call this

the “needle or haystack” problem.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=48

ACCEPTING RUBY’S OBJECT WORLD 49

Even seasoned PHP veterans often have trouble remembering whether

the needle or haystack argument comes first, since they aren’t always

used consistently throughout PHP.

To illustrate the problem, let’s consider two common array functions in

PHP and look at their usage.

PHP Download beginning_ruby_code/php/needle_haystack.php

in_array($needle, $haystack);

array_push($haystack, $needle);

In PHP, nearly all the array functions take an array to operate on as the

first parameter. This is true of array_push(), as shown in the example.

However, in_array() is an exception to the rule and takes the array as the

second parameter instead. This is an inconsistency that PHP developers

just need to remember and can easily be a source of confusion.

Our memorization problem occurs because of the nature of procedural

programming. Since the PHP functions aren’t methods attached to any

particular object, we must pass everything the function needs to work

on as parameters. The more parameters a function requires, the harder

it is for us to remember them and the order. Having some inconsisten-

cies just compounds the problem.

Ruby solves this problem with object orientation. Let’s look at the Ruby

equivalents for PHP’s in_array() and array_push(). Try this in IRB.

irb> fruit = ['apple', 'orange']

=> ["apple", "orange"]

irb> fruit.include? 'banana'

=> false

irb> fruit.push 'banana'

=> ["apple", "orange", "banana"]

irb> fruit.include? 'banana'

=> true

In Ruby, an array is an object, and the common operations you need

to do on an array are methods of that object. Once we have our array

object, we just call include? or push. Each one needs only one parameter

since the methods are attached to the object on which they will operate.

Since there’s only one parameter now, there’s no source of confusion or

inconsistency! Looking at Figure 2.1, on the next page, we can see that

different objects can even implement methods of the same name. Both

String and Array implement their own reverse method.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/needle_haystack.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=49

ASSIGNING TO VARIABLES 50

Figure 2.1: Method organization

This example is an important one because it demonstrates a funda-

mental difference between Ruby and PHP. In PHP, the types we use

all the time, such as strings and arrays, have no methods. We largely

need to use procedural functions on these, which can occasionally be

confusing.

In Ruby, everything is an object, and the objects internalize their meth-

ods. Not only does this help with remembering parameters, it also

serves to organize the Ruby universe. Instead of having many procedu-

ral functions in a global space like PHP, Ruby packages all its methods

neatly into the objects that need them.

We hope you can see by this example that Ruby’s object-oriented nature

can actually make things simpler and thus make our lives easier.

2.5 Assigning to Variables

In the previous sections, we’ve already made some assignments. We’ve

assigned strings and arrays to variables. It seems simple enough, but

there are some things to learn. Let’s look at how assignments in Ruby

really work and how they differ from PHP.

There are two types of assignment in PHP. The equals operator (=) is

used for assign by value, or “making a copy.” The equals-ampersand

operator (=&) is used for assign by reference, or “making a link.”

In Ruby, there is only one assignment operator: equals (=). It behaves

quite a bit differently than its PHP counterpart, so let’s have a look at

it in IRB.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=50

ASSIGNING TO VARIABLES 51

irb> a = 'foo'

=> "foo"

irb> b = a

=> "foo"

You can see from the helpful IRB output that the variables a and b

each contain "foo". You can try also just typing the variable names to

view their values.

irb> a

=> "foo"

irb> b

=> "foo"

On the surface, it looks like the assignments worked like in PHP. How-

ever, Ruby behaves very differently, and it’s important for us to under-

stand how.

A string in Ruby is an object, and that object has methods. Calling the

a.reverse! method will cause the String object to reverse itself. Go ahead

and try it.

irb> a.reverse!

=> "oof"

irb> a

=> "oof"

As you can see, a has reversed itself. Now inspect the variable b.

irb> b

=> "oof"

It is also shown as reversed! Was that unexpected?

In Ruby, the assignment operator always assigns by reference. It does

not create copies, as we expect from PHP. Instead, it creates links. Let’s

look again at how we assigned them.

irb> a = 'foo'

=> "foo"

irb> b = a

=> "foo"

Here, the literal "foo" is an object by itself. It’s an instance of the String

class. You can even call methods on it directly like "foo".size (try it!). We

assigned a reference from this String object to the variable a. We then

assigned that reference to the variable b.

It’s important when writing Ruby code to remember that everything is

an object and assignments are always by reference. Let’s try another

one just to make it sink in. This time we’ll start with a PHP example.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=51

ASSIGNING TO VARIABLES 52

PHP Download beginning_ruby_code/php/assign_array.php

$a = array();

$b = $a;

$a['foo'] = 'bar';

var_export($a); // => array()

var_export($b); // => array('foo' => 'bar')

In the previous PHP code, we assigned $a by value to an empty array.

We then assigned $b by value to $a, which created a copy of the empty

array in $a. Thus, we have two separate, empty arrays in $a and $b.

We know that after the previous PHP code has run, $a will contain an

associative array with one element, but $b will still be an empty array.

Let’s try that in IRB.

irb> a = {}

=> {}

irb> b = a

=> {}

irb> a['foo'] = 'bar'

The {} is shorthand for Hash.new. Ruby’s Hash is similar to PHP’s asso-

ciative array. On the first line, we created a new Hash and assigned

a reference to the variable a. We then assigned that reference to the

variable b.

Inspecting both of the variables. . .

irb> a

=> {"foo"=>"bar"}

irb> b

=> {"foo"=>"bar"}

. . . we can see that even though we didn’t explicitly modify b, it was

shows the same value as a. This is exactly the opposite of what hap-

pened in the PHP example.

This is because both a and b contain a reference to the same Hash

object.

Take a few minutes to play with other strings and hashes on IRB and

observe the results before continuing. Remember that when you make

assignments in Ruby, you are really creating references.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/assign_array.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=52

WRITING METHODS AND PASSING PARAMETERS 53

Functions and Methods

If you haven’t done much object-oriented programming, you
may wonder what the difference is between a function and
a method. A method is simply a function that is bound to an
object. Every function in Ruby is indeed bound to an object, so
we’ll always refer to them as methods.

2.6 Writing Methods and Passing Parameters

The world inside the Ruby interpreter is about object interactions.

Everything is an object. Objects send methods, or messages, to other

objects. We are now approaching the point where we can write Ruby

programs beyond simplistic examples. This means we will be spending

most of our time writing methods for our objects.

We’ve written Ruby methods in earlier examples, but we’ve glossed over

the details. Ruby has some interesting rules that we must learn to write

effective methods and has some magic to discover. Understanding these

will go a long way to helping you understand what’s really happening

when you start digging into Rails programming.

Defining a Method

The basics of defining a method are the same in both Ruby and PHP.

We’ve seen them both before, but let’s look at them again quickly before

exploring deeper. Here is an example of a method with one parameter

in PHP.

PHP Download beginning_ruby_code/php/method_basic.php

class Parrot {

public function say($word) {

// say it here

}

}

Here’s that same code written the Ruby way.

Ruby Download beginning_ruby_code/ruby/method_basic.rb

class Parrot

def say(word)

say it here

end

end

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/method_basic.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/method_basic.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=53

WRITING METHODS AND PASSING PARAMETERS 54

In Ruby, the parentheses around the parameters for say are optional.

The popular Rails programming style is to always include them unless

the method has no parameters.

Let’s add a second parameter to the method and make it optional.

PHP Download beginning_ruby_code/php/method_basic_2.php

class Parrot {

public function say($word, $mocking = true) {

// say it here

}

}

If we want control over whether Parrot says the word in a particularly

mocking or funny way, we use the optional $mocking parameter. Of

course, any good parrot will make fun by default (at least on TV), so

that’s how we’ve set this up. Here’s the same code in Ruby.

Ruby Download beginning_ruby_code/ruby/method_basic_2.rb

class Parrot

def say(word, mocking = true)

say it here

end

end

As you can see from the earlier Parrot examples, your PHP knowledge

translates directly into Ruby. Basic method declaration and optional

parameters work the same way. The biggest difference for the most

common cases is just the syntax.

Now that we have reviewed the basics of writing methods in both Ruby

and PHP, let’s look at some more advanced cases.

Passing Named Parameters

If you’ve been programming PHP for a short time, you should already

know some best practices for writing methods that apply to Ruby as

well. For example, your methods should be relatively short—anything

more than twenty lines or so indicates the method is doing too much.

Your methods should also avoid having too many parameters. If your

method takes more than three parameters, that could also be a sign

that your method is doing too much. A method with too many param-

eters can be confusing. However, sometimes even a small number of

parameters can confuse as well.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/method_basic_2.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/method_basic_2.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=54

WRITING METHODS AND PASSING PARAMETERS 55

The parameters in the Parrot examples are positional parameters; that

is, their order is all that differentiates them when the method is called.

There are times when order alone can make parameters ambiguous.

Positional parameters can’t help us in these situations. Let’s consider

a Cube in PHP.

PHP Download beginning_ruby_code/php/method_params_unnamed.php

class Cube {

public function __construct($height = 10, $width = 10, $depth = 10)

{

// check and then store parameters

}

}

Somewhere later in the code base, perhaps in another file, we then

instantiate a new Cube.

PHP Download beginning_ruby_code/php/method_params_unnamed_usage.php

$c = new Cube(10, 20, 50);

Without seeing the signature of the constructor method, it’s easy to

forget the order. Does height go first? Does the width go second, or is

it the depth? This lack of clarity is a problem. As both PHP and Ruby

programmers, we should strive for programs that are easy to read and

understand.

When implemented, the Cube class would probably have methods like

setHeight() and setWidth(). One way to remove the ambiguity in this par-

ticular example is to take the parameters off the constructor method

entirely and just always call these methods explicitly after creating the

object. However, that’s painful. We can do better.

An alternative is to use named parameters. PHP actually doesn’t sup-

port named parameters, but you can fake them effectively. You can do

this by passing them as an associative array.

If the Cube constructor method instead took a single parameter, an

associative array of options, instantiating it would be as follows.

PHP Download beginning_ruby_code/php/method_params_array.php

$c = new Cube(array('height' => 10, 'width' => 20, 'depth' => 50));

In the earlier example, we made setting the options of Cube clearer by

simulating named parameters with an associative array. We’ve man-

aged to make the code more readable while avoiding the hassle of three

separate calls to methods like setHeight(). A fair number of PHP pro-

grams use this technique.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/method_params_unnamed.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/method_params_unnamed_usage.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/method_params_array.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=55

WRITING METHODS AND PASSING PARAMETERS 56

Now that we’ve looked at how named parameters can help some situa-

tions and can be faked in PHP, let’s look at the equivalent in Ruby.

You might be disappointed to learn that Ruby doesn’t have support for

named parameters at the language level either, although it is planned.

This helps your learning curve because we currently fake it in Ruby

just like in PHP—with a twist.

Like an associative array is passed in PHP, a hash is passed in Ruby.

Ruby Download beginning_ruby_code/ruby/method_params_naive_hash.rb

c = Cube.new({'height' => 10, 'width' => 20, 'depth' => 50})

Ruby’s hash is more convenient than PHP’s associative array in this

case because it just uses the {} braces. Losing the baggage of the array

word makes the method a little more readable.

There’s another improvement to be made. Although you can use strings

for the keys just like PHP, idiomatic Ruby uses symbols. Let’s make this

change.

Ruby Download beginning_ruby_code/ruby/method_params_symbolized_hash.rb

c = Cube.new({:height => 10, :width => 20, :depth => 50})

The hash now looks a little cleaner and is easier to type as a bonus.

Ruby has one more important trick up its sleeve. Although the previ-

ous uses are legal, they are actually the marks of a beginning Ruby

programmer. The best way is this.

Ruby Download beginning_ruby_code/ruby/method_params_idiomatic_hash.rb

c = Cube.new(:height => 10, :width => 20, :depth => 50)

When faking named parameters with a hash became a popular pattern,

Ruby added a shortcut that allows you to leave off even the {} braces!

The rule is simple: when the last parameter in a method call is a hash,

you can leave off the {}, and Ruby will know that you want to make

a hash. With this knowledge, you are better prepared to understand

Rails because this technique is used everywhere. In fact, if Cube were

an ActiveRecord model, you would instantiate it exactly as shown in

the previous example.

In the newsletter application, we introduced views and helper methods.

Most of the built-in Rails view helpers also use this technique. Here’s

an example from the views of the application we’ll build in Part II.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/method_params_naive_hash.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/method_params_symbolized_hash.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/method_params_idiomatic_hash.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=56

CONTROLLING PROGRAM FLOW 57

Ruby Download beginning_ruby_code/ruby/method_params_helper.rb

<%= submit_tag "Create", :class => "submit" %>

You should now recognize that submit_tag is a method, and it takes two

parameters. The first is a string, and the second is a hash.

You now understand that simulated named parameters work the same

in PHP and Ruby. The primary difference is that Ruby has evolved its

syntax to encourage the pattern and make it more convenient. You’re

on your way to understanding the Ruby mechanics that make Rails so

popular. Next, we’ll take a look at some of the unique idioms Rails uses

to control the program flow of our applications.

2.7 Controlling Program Flow

Ruby is designed to allow you to write programs that are closer to nat-

ural language. As such, it offers more flexibility in control structures

and more vocabulary than PHP.

Let’s pretend we are developing an application that has an administra-

tion interface. Only users who are the administrator can access certain

functions of the application, and we want to have a simple check of

whether a User model has the administrator privileges. If not, we’ll sim-

ply return.

In PHP, this might look like the following.

PHP Download beginning_ruby_code/php/control_if_not.php

public function edit() {

if (! $this->user->isAdmin()) {

return;

}

}

That’s pretty straightforward PHP code and would be a common way to

do it. Let’s translate that code directly into Ruby.

Ruby Download beginning_ruby_code/ruby/control_if_not.rb

def edit

if ! @user.admin?

return

end

...

end

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/method_params_helper.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/control_if_not.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/control_if_not.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=57

CONTROLLING PROGRAM FLOW 58

In the PHP language, if-not combinations are common. However, this is

not popular in Ruby. It works, but it’s not the best way to write this

code in Ruby.

One simple addition that Ruby has is the unless keyword. Let’s rewrite

that action to use unless.

Ruby Download beginning_ruby_code/ruby/control_unless_before.rb

def edit

unless @user.admin?

return

end

...

end

Removing the not operator has made the code easier to read. This code

is more readable than the if-not combination. As a result, most good

Ruby programs tend to favor it.

However, Ruby allows yet another improvement to be made.

Ruby Download beginning_ruby_code/ruby/control_unless_after.rb

def edit

return unless @user.admin?

...

end

The Ruby grammar permits statement modifiers, which allow the con-

dition to come after the statement, as shown earlier. You can also use if

as a statement modifier.

This is an interesting feature that does not have an equivalent in PHP.

It might look a little strange at first, but try saying it out loud. It’s much

closer to natural language to say “return unless user is admin” than “if

not user is admin return.”

When writing your Ruby programs, you should strive for clarity and

readability above all else. You can write control structures in Ruby that

look quite similar to PHP, but that’s not the best way to write Ruby.

When writing control structures, you want to try to use the expressive-

ness Ruby offers to make your code read as close to natural language

as possible.

With these thoughts in mind, most control structures are quite simi-

lar in Ruby and PHP. For many side-by-side comparisons of PHP and

Ruby control structures, check out Section 11.7, Control Structures, on

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/control_unless_before.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/control_unless_after.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=58

HANDLING ERRORS 59

page 305. We won’t repeat those examples here, but take a look at them

before moving on. The most interesting control structure that Ruby

offers is the block. We’ll explore blocks in Section 2.9, Understanding

Blocks, on page 65. Before we get there, let’s look at handling errors in

both PHP and Ruby.

2.8 Handling Errors

In this section, we’ll take a look at PHP’s dual error model and the

different approach that Ruby takes when handling errors.

PHP Error Messages

Prior to PHP version 5, PHP had only one built-in mechanism for han-

dling errors: the PHP error messages. These are the kinds of errors that

PHP itself will output most of the time.

Here’s an example of one such error that occurs when an undefined

function has been called.

PHP Download beginning_ruby_code/php/error_fatal.php

<?php

undefinedFunction();

echo '...and execution stopped';

?>

// => PHP Fatal error: Call to undefined function undefinedFunction() in

// /filename.php on line 3

In the case of this error, the function called does not exist, so PHP

clearly has no way to continue. The call to echo() is never reached, and

there is no way for the program to recover from this error.

PHP errors vary in severity. Some errors, such as the E_FATAL error

shown earlier, terminate the execution of the program immediately.

However, this is not the case for all PHP errors. Consider the follow-

ing example.

PHP Download beginning_ruby_code/php/error_warning.php

<?php

function foo($bar) {}

echo foo();

echo '...but execution has continued!';

?>

// => PHP Warning: Missing argument 1 for foo(), called in /filename.php

// on line 4 and defined in /filename.php on line 2

// ...but execution has continued!

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/error_fatal.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/error_warning.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=59

HANDLING ERRORS 60

In this code, a function is called without all its required arguments.

Clearly this is a mistake, and in almost all cases, the function will not

behave as it was intended by the author. However, interestingly, execu-

tion continues!

This example is more interesting than the first because unless the user

has explicitly set an error handler with set_error_handler(), a program can

continue along with unintended consequences.

Handling PHP Error Messages

In the previous examples, the errors generated were because of bad

code and were avoidable. However, many PHP functions generate error

messages that are simply unavoidable. In these cases, our programs

must be smart enough to anticipate the errors and silence them.

For example, when trying to connect to a database, it’s not possible to

know ahead of time whether a mysql_connect will fail because of server

conditions that are beyond the program’s control.

In the next example, the database connection fails.

PHP Download beginning_ruby_code/php/mysql_connect_naive.php

<?php

$db = mysql_connect('foo', 'user', 'password');

echo '...but execution continues!';

?>

// => PHP Warning: mysql_connect(): Can't connect to MySQL server on

// 'localhost' (4) in /code/php_pain_ruby_revelation/- on line 2

// ...but execution continues!

This is very bad PHP code but is also a common mistake. The previous

code is “naive,” or without any error checking. The mysql_connect() call

is expected to always succeed, and it does—usually.

When it doesn’t, the PHP error message is generated. Clearly, the pro-

gram does not have the connection that it is expecting to use, but exe-

cution continues anyway. Since the error was never handled, very bad

things can happen downstream in the code.

Here’s the same code but with the appropriate error handling.

PHP Download beginning_ruby_code/php/mysql_connect_error_checking.php

$db = @mysql_connect('localhost', 'user', 'password');

if (! $db) {

// hopefully more sophisticated error handling

die('database connection failed');

}

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/mysql_connect_naive.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/mysql_connect_error_checking.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=60

HANDLING ERRORS 61

This is a common idiom in PHP programming. First, we prepend the

silence operator (@) to mysql_connect() to make sure if the connection

fails that the PHP error message isn’t leaked. Second, we check whether

the result of mysql_connect() is not a resource. If not, we do something

to deal with the error. Finally, the connection was successful if we make

it all the way through.

This is all inconvenient compared to the first example where we had just

a single call to mysql_connect(). Unfortunately, it’s necessary for writing

sound PHP programs using the mysql extension (and many others). It

is an exceptional condition, but we still must deal with it and similar

ones every step of the way. This becomes very tedious, and scripting

languages are supposed to provide convenience.

PHP Exceptions

Ordinarily, we expect our programs to run through without encounter-

ing major errors, such as the database that went down in the earlier

examples. When these kinds of errors occur, they are not normal—they

are exceptional.

PHP 5 introduced a powerful construct called exceptions. Most other

languages have some variation of exceptions, including C++, Java,

Python, and Ruby. Exceptions provide a convenient way of wrapping

blocks of code and handling any exceptional conditions at the bottom.

To demonstrate exceptions, let’s take a look at some code that is sim-

ilar to the previous code but uses the pdo extension instead. PDO is

the standard data access library that was also introduced with PHP 5.

Although it is capable of raising the normal PHP error messages like the

mysql extension, it defaults to throwing exceptions instead. Let’s look at

a small piece of code using PDO to see PHP exceptions in action.

PHP Download beginning_ruby_code/php/pdo_exception.php

try {

$db = new PDO('mysql:host=localhost;dbname=test', 'user', 'pass');

$rows = $db->query('SELECT * from people');

foreach ($rows as $row) {

print_r($row);

}

} catch (PDOException $e) {

die("Error!: " . $e->getMessage());

// ... or something more sophisticated

}

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/pdo_exception.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=61

HANDLING ERRORS 62

Notice that when connecting to the database with $db = new PDO, this

code performs no error checking. It’s similar to the first (and more con-

venient) mysql_connect() example that didn’t bother to check errors.

In fact, the previous code has many places that major errors could

occur but are not explicitly checked: once in the connection, once in

retrieving the result set, and once for retrieving each row from the set.

These are all sources of errors that would otherwise have to be checked

individually with if blocks.

All of the errors are exceptional. They are expected to succeed, but we

still need to plan a rescue mission for when they don’t. This is exactly

what the try/catch block provides.

When any code inside the try fails and throws an exception, PHP will

immediately jump to the corresponding catch to handle the failure. This

removes the burden of having to check for major errors every step of the

way.

Even better, the try/catch blocks can be nested to an arbitrary depth.

Functions can be called deep into your program, and if an exception

occurs anywhere, it will bubble up to the first catch that can rescue it.

Finally, PHP exceptions are objects. Unlike the old PHP error messages

that just contain a string message and an integer code, exceptions

package up detailed information about the source of error in the back-

trace. PHP’s base Exception class can also be subclassed, such as PDOEx-

ception, as shown earlier. This makes it simple to check the source of

an exception.

Exceptions allow you to structure your code more clearly than the old

error messages and make handling major errors much more conve-

nient.

Ruby Error Messages

Ruby’s error messages are similar to those in PHP. A Ruby error mes-

sage may not necessarily stop the execution of the script.

Ruby Download beginning_ruby_code/ruby/warning.rb

MY_CONSTANT = 1

MY_CONSTANT = 2

puts "...but execution continues!"

=> -:2: warning: already initialized constant MY_CONSTANT

...but execution continues!

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/warning.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=62

HANDLING ERRORS 63

In the previous example, a constant is defined twice. Ruby warns that

the constant has already been initialized but continues along anyway

to print the message.

However, fatal errors will halt execution.

Ruby Download beginning_ruby_code/ruby/fatal.rb

foo(}

puts "...and execution stopped"

=> -:1: parse error, unexpected '}', expecting ')'

Here, a method foo is called, but the curly brace was mistakenly used

instead of the closing parenthesis. In this case, Ruby cannot parse the

file and halts execution before printing the message.

Error messages can and do occur in Ruby. However, the important dif-

ferentiation between Ruby and PHP here is that the Ruby errors are

easily found up front and can be corrected easily. They are not usually

traps to be found later in execution.

There are no situations in Ruby where error messages happen as a

result of common operations like opening files or database connections.

These are always exceptions, just like the convenient PHP exceptions

we saw in the previous section. Once your Ruby program is free from

more obvious defects like the ones shown earlier, you have to worry

only about handling errors through the exceptions!

Ruby’s Rescue Mission

Although you’ll find PHP code using both styles of error handling, Ruby

uses exceptions as the standard way of handling all errors. PHP excep-

tions occur when throw is called and are trapped in try/catch blocks.

PHP Download beginning_ruby_code/php/raise_exception.php

<?php

function demoIt() {

try {

throw new Exception('Error!');

} catch (Exception $e) {

die($e->getMessage());

}

}

demoIt();

?>

// => Error!

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/fatal.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/raise_exception.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=63

HANDLING ERRORS 64

Figure 2.2: Rescuing exceptions

Ruby exceptions are similar. An exception is raised by calling raise.

We place the code for the rescue mission in the rescue section of a

begin/end block. As shown in Figure 2.2, raising an exception can

be arbitrarily deep and will always bubble up to the nearest rescue

statement.

Ruby Download beginning_ruby_code/ruby/raise_exception.rb

def demo_it!

begin

raise 'Error!'

rescue => e

abort e.message

end

end

demo_it!

=> Error!

Notice that in rescue => e, we didn’t specify a type of exception to rescue.

This will cause all exceptions to be rescued. A specific type of excep-

tion can be rescued by naming it after rescue, such as rescue ActiveRe-

cord::RecordNotFoundError. It’s also optional to leave off the destination

variable => e if one isn’t required.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/raise_exception.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=64

UNDERSTANDING BLOCKS 65

As you can see from the previous examples, exceptions in PHP and

Ruby are similar. PHP 5 developers should feel right at home with Ruby

in this regard. PHP 4 developers will find exceptions to be a breath of

fresh air compared to the more “manual” error checking.

Ruby’s exceptions provide some additional features absent in PHP ex-

ceptions. We’ll talk more about Ruby exceptions in Section 12.4, Excep-

tions, on page 354. For now, the key idea is that Ruby’s exceptions are

as convenient as those in PHP 5, but without inconsistencies in the

error model to remember.

Unlike exceptions, our next topic doesn’t have as easy of a reference

point in PHP. Blocks are a defining part of Ruby but are one of the

more difficult concepts to grasp for PHP developers since they have no

direct translation in PHP.

2.9 Understanding Blocks

There are many aspects of the Ruby language that make it different

from other languages. From a PHP developer’s perspective, there are

really two defining characteristics of Ruby that stand out above others.

The first characteristic is that Ruby is a fully object-oriented language.

The second characteristic is a language feature known in computer

science as closures. If you have done any JavaScript programming,

you may already be familiar with closures but might not know them

by name. The Ruby language has deep support for closures, and they

are used extensively throughout the language. In Ruby, they’re simply

called blocks, so that’s how we’ll refer to them from now on.

PHP is not the only language that lacks a direct equivalent of blocks.

Many other languages, such as Java, also do not have them. Because

of this, many developers seem to think that blocks are an obscure lan-

guage feature for advanced users. Although blocks may be a new con-

cept to you, they are extremely useful. Understanding them is vital to

becoming proficient with Ruby and its libraries.

Using Your First Block

Although there is no direct translation of blocks in PHP, we can make

some analogies to PHP that will help build up an understanding toward

blocks. Let’s start with a simple loop that prints a familiar jingle.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=65

UNDERSTANDING BLOCKS 66

PHP Download beginning_ruby_code/php/blocks_99_bottles.php

function print_bottles($num) {

print "$num bottles of beer on the wall\n";

}

for ($bottles = 99; $bottles > 0; $bottles--) {

print_bottles($bottles);

}

When the code is executed, PHP evaluates the condition in the for loop.

As long as the condition is true, PHP calls our print_bottles() function on

each iteration.

The for and function keywords are built-in constructs of the PHP lan-

guage. They are built into the language, in the same way that semi-

colons and curly braces are built in.

Only a select number of control constructs that are built in to PHP allow

code to be attached to them with curly braces. It’s not possible to add

new control constructs to PHP without writing a PHP extension (in the

C language).

With the PHP example still in mind, let’s look at the idiomatic Ruby

version.

Ruby Download beginning_ruby_code/ruby/blocks_99_bottles.rb

99.downto(1) { |num| puts "#{num} bottles of beer on the wall" }

It uses some unfamiliar syntax, but it’s also quite declarative. It is

almost like we would speak or write: ninety-nine down to one, sing

the lyrics. This is an important aspect of the Ruby architecture. Ruby

is designed to encourage programs that read like a natural language.

We already know what the Ruby version will do, so now we need to

understand how it does that and why it looks the way it does.

By this time, you should recognize that 99 is an object that has a

method called downto. The extra code attached to downto, the odd-

looking bit with the curly braces and goalposts that does the printing,

is called the block.

The downto method in the Ruby example serves the same purpose as

our PHP example that counted down with the for construct. The downto

method iterates over the numbers, temporarily passing control to the

attached block on each iteration.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/blocks_99_bottles.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_99_bottles.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=66

UNDERSTANDING BLOCKS 67

The Anatomy of a Block

Compare downto’s block to our PHP function print_bottles().

Ruby Download beginning_ruby_code/ruby/blocks_99_bottles.rb

99.downto(1) { |num| puts "#{num} bottles of beer on the wall" }

PHP Download beginning_ruby_code/php/blocks_99_print_alone.php

function print_bottles($num) {

print "$num bottles of beer on the wall\n";

}

There are many similarities between the Ruby block and the PHP func-

tion. This is because the Ruby block is actually just a function in

another form. A block is a function without a name, or an anonymous

function.

A block can receive parameters, in this case just the bottle count, and

these go between the goalposts. When there are no parameters, the

goalposts can be left off. The rest of the block is executable code, just

like any other Ruby method.

As we discussed earlier, PHP has only a select number of built-in lan-

guage constructs like for that can have code blocks attached to them.

Ruby is different from PHP in this regard.

Ruby methods have a secret. Every method in Ruby, whether it be a

built-in one or one you create, has the capability of being passed a

block. If 99’s downto method was in pure Ruby, it might look like this.

Ruby Download beginning_ruby_code/ruby/blocks_downto_with_call.rb

class Integer

def downto(value, &block)

n = self

while n >= value

block.call n

n -= 1

end

return self

end

end

Notice the &block parameter at the end of the downto definition. When

a block of code is passed to a Ruby method, it can be captured into a

variable.

That’s right, the actual code in the block (our lyrics printer) is converted

into an object, an instance of the Ruby class Proc, and stored inside a

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_99_bottles.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/php/blocks_99_print_alone.php
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_downto_with_call.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=67

UNDERSTANDING BLOCKS 68

variable. The ampersand (&block) tells Ruby to store this object in the

the variable called block.

The keyword self in this example refers to the object itself, which in this

case is the integer 99. Consider our earlier sample implementation of

downto, and now look at our jingle again.

Ruby Download beginning_ruby_code/ruby/blocks_99_bottles.rb

99.downto(1) { |num| puts "#{num} bottles of beer on the wall" }

When the downto method is called, it is given two parameters: value

contains the number of bottles for the countdown, and block contains

the block to call on each iteration that prints the lyrics.

The inside of the downto method should be straightforward. In fact,

it looks a lot like our PHP example. It counts down from the Integer

object’s value (in our case, 99) to value by using a while loop.

On each iteration of that while loop, it yields control to the code in the

block by calling the block.call method. Any parameters given to block.call

are passed to the goalposts in the block.

Yielding to the Block

In the previous section, we looked at how the Integer class might imple-

ment the downto method. We developed this sample implementation

using block.call to yield control to the block for each iteration of the

countdown.

Ruby Download beginning_ruby_code/ruby/blocks_downto_with_call.rb

class Integer

def downto(value, &block)

n = self

while n >= value

block.call n

n -= 1

end

return self

end

end

The previous implementation is good for starting to understand blocks,

but it is not always necessary (or desirable) to capture the block into a

variable as shown earlier. Now that the concept has been established,

we can look at the preferred way of yielding to blocks.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_99_bottles.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_downto_with_call.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=68

UNDERSTANDING BLOCKS 69

Figure 2.3: Yielding to a block

Here is an alternate implementation of downto.

Ruby Download beginning_ruby_code/ruby/blocks_downto_with_yield.rb

class Integer

def downto(value)

n = self

while n >= value

yield n

n -= 1

end

return self

end

end

As you can see in this alternative example, the block is not captured

into a variable. The block is there but invisible. As we said earlier, every

Ruby method has a secret.

The special yield method is called that yields control to the block like

block.call did. If we take a look at Figure 2.3, we can get an idea of how

yield works.

When you start writing your own methods that use blocks, always use

yield in this way unless you need to capture a Proc into a variable for

more advanced uses.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_downto_with_yield.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=69

CHAPTER REVIEW 70

Writing Longer Blocks

In all of the prior examples, we’ve been using only one form of block.

We’ve been using curly braces to tell Ruby where to find the beginning

and end of the block.

Ruby Download beginning_ruby_code/ruby/blocks_99_bottles.rb

99.downto(1) { |num| puts "#{num} bottles of beer on the wall" }

There’s a second way of writing blocks where the keywords do and end

are used in place of the curly braces. Let’s finish the rest of the song.

Ruby Download beginning_ruby_code/ruby/blocks_99_bottles_do_end.rb

99.downto(1) do |num|

puts "#{num} bottles of beer on the wall, " +

"#{num} bottles of beer!"

puts "Take one down, pass it around!" unless num == 1

end

This form is nicer when writing blocks that span multiple lines.

Ruby doesn’t restrict how you use the curly braces or the do/end form.

You can have blocks with curly braces spanning multiple lines or blocks

with do/end on a single line.

Like many things in PHP, just because you can do it does not make

it a good idea. In the vast majority of Ruby programs and situations,

the community uses curly braces for blocks on the same line and the

do/end form for multiple lines. We suggest you follow that lead also.

Blocks are a complex but important feature to learn in Ruby. Don’t

worry if you think you don’t have a full grasp of blocks quite yet. They

should begin to make more sense as we start using them within the

context of our Rails application in Chapter 4, Modeling the Domain, on

page 97. We also discuss some additional uses and features of blocks

in Section 12.1, Blocks, on page 316.

2.10 Chapter Review

We are starting to see some of the philosophies that set Ruby apart

from PHP, and many of these ideas heavily influence how we write code

in Rails. We’ll expand upon this in the next chapter by learning more of

the specific features and language syntax that make Ruby unique.

http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_99_bottles.rb
http://media.pragprog.com/titles/ndphpr/code/beginning_ruby_code/ruby/blocks_99_bottles_do_end.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=70

EXERCISES 71

Let’s review what else we learned in this chapter:

• We learned how useful the Interactive Ruby interpreter is when

playing around with Ruby syntax. This gives us immediate feed-

back without the need for a browser.

• We learned how Ruby emulates named parameters using hashes

and how important this is to understanding common Rails method

calls.

• We got our first taste of Ruby blocks. Blocks are one of biggest

aspects of Ruby that differentiate it from PHP, and we learned

about how useful they can be.

• We saw how Ruby uses exceptions to consistently handle errors

and how this is so different from PHP’s error handling.

2.11 Exercises

Here’s some extra exercises that you can try on your own:

• In IRB, try calling the methods method on a Ruby string. This per-

forms reflection on the object to list to which messages the object

responds. Play around with calling various methods to see what

else you can do with a string.

• Try raising some exceptions in Ruby. See what happens when you

raise an error in IRB. Try enclosing your raise statement in a rescue

block to catch the exception.

• We showed a possible implementation of Integer#downto that yields

a value to a Ruby block. Try to build an implementation of Inte-

ger#upto using the same idea.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=71

Chapter 3

Embracing the Ruby Philosophy
In the previous chapter, we started using IRB and wrote our first lines

of Ruby code. Now, it’s time to look at more advanced Ruby material so

we can begin to understand the Ruby philosophy and what makes Ruby

special. Once you’re comfortable with the material in this chapter, we’ll

head back to Rails, and we will put your Ruby skills to work tackling a

more serious web application in Part II of this book.

3.1 Thinking in Objects

One of the most important steps in understanding Ruby is to learn how

to think in terms of objects. In this section, we’ll begin to reshape our

thinking by looking at some examples.

Data Is Dumb

Every PHP developer’s first program consists of mostly the same thing.

It’s usually an HTML file with PHP bits embedded. The file consists

of calls to PHP functions that do interesting things, such as echo() or

htmlentities().

Even as our PHP programming abilities grow and we begin using

classes and start to think in a more object-oriented way, we are always

using the same built-in PHP functions in the same old way.

PHP Download ruby_philosophy/php/in_and_out.php

$upcasedName = strtoupper($theName);

$commaSeparated = implode(',', $anArray);

$saferToOutput = htmlentities($myData);

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/in_and_out.php

THINKING IN OBJECTS 73

Whether we think about it or not, this kind of usage trains us that data

is dumb. We put data into variables, variables go into functions, and

new variables come out. This is the essence of procedural program-

ming. Since all PHP programs rely on the functions built into PHP, it’s

sometimes difficult to escape this thinking even as our own programs

become more advanced.

Toward Smart Objects

Variable types such as strings, numbers, and arrays are just data.

They’re dumb and can’t do anything on their own. We must call func-

tions to operate on them. If we need to reverse the string, round the

number, or sort the array, we call a function to do the work. We pass

the variable into the function and get a variable back out.

Along the same thinking, functions themselves aren’t very smart either.

A function is simply a little machine that manipulates data. It doesn’t

know much about the data it’s manipulating. For example, strrev() cares

that the first parameter is a string, but it doesn’t care whether the string

is your dog’s name.

Object orientation gives us a different way of thinking about our data.

We can create objects that have both data and functions to work on

that data, which we call methods. Instead of having dumb variables and

dumb functions, we can encapsulate everything into smart objects.

PHP Download ruby_philosophy/php/object_person.php

class Person {

private $name;

public function __construct($name) {

$this->name = $name;

}

public function setName($name) {

$this->name = ucfirst($name);

}

public function getName() {

return $this->name;

}

}

$mike = new Person('Michael');

$mike->setName('mike');

print $mike->getName();

// => Mike

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/object_person.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=73

THINKING IN OBJECTS 74

In the earlier example, we created a Person object. This Person object has

methods to set and get the person’s name.

This style of programming has many advantages, but the primary one

is encapsulation. It brings together variables and functions into some-

thing smarter—an object. The object’s methods (its functions) are now

much smarter and more specialized than anything not in an object

could be. The getName() method knows not only that the name is a

string but that it is a name of a specific person.

In the previous example, our Person is pretty smart. Our program can

assign a new name with the setName() method and can call the get-

Name() method to get back the name of each person created.

Let’s look at the same code in Ruby.

Ruby Download ruby_philosophy/ruby/object_person.rb

class Person

def initialize(name)

@name = name

end

def name=(name)

@name = name.capitalize

end

def name

@name

end

end

mike = Person.new('Michael')

mike.name = 'mike'

puts mike.name

=> Mike

Objects allow us to model our problem domain in code. This is why our

ActiveRecord classes are called models. To make our programs more

understandable, we try to model our objects as close as possible to the

real-life things that they represent. In this case, our Person class is

the code representation of a real person. Let’s take a look at some of

the differences in how we define classes in PHP and Ruby.

Although the syntax is obviously different, the Ruby version of a Person

looks similar to the PHP version. You’ve probably noticed a subtle differ-

ence in how we assign and access the data for the object. Instead of the

setName() and getName() methods, we have name= and name, respec-

tively. Setting the name value for a person is an assignment operation,

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/object_person.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=74

UNDERSTANDING ATTRIBUTES 75

and Ruby embraces this idea by using a special syntax. Although the

name= syntax seems a little unusual at first, it makes perfect sense

when assigning data to an attribute of our object.

There is another important difference in the name method of our Ruby

class. You may wonder how we ever get the value of @name since we

aren’t using a return statement. Ruby implicitly returns the last state-

ment evaluated in any method. Although we could also write this as

return @name, the accepted Ruby convention is to omit the return key-

word when it isn’t needed.

3.2 Understanding Attributes

Ruby and PHP take different approaches when it comes to sharing data

between methods of a class definition. PHP uses data members to share

data, where each data member is typically declared at the top of a class

definition. These data members can be declared with a different visibil-

ity keyword depending on their purpose.

Ruby does not use data members but instead shares data using in-

stance variables. These variables do not need to be declared anywhere

within our class and are completely encapsulated within the object.

There is no equivalent of PHP’s public data member, and adding pub-

lic accessor methods is the only way to access and modify instance

variables.

In PHP, we can declare data members as either public, private, or

protected.

PHP Download ruby_philosophy/php/member_visibility.php

class Book {

protected $title;

public $price;

public function __construct($title, $price) {

$this->title = $title;

$this->price = $price;

}

public function getTitle() {

return $this->title;

}

}

$book = new Book("Frankenstein", 9.95);

print $book->getTitle()."\n";

// => Frankenstein

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/member_visibility.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=75

UNDERSTANDING ATTRIBUTES 76

$book->price = 10.95;

print $book->price."\n";

// => 10.95

The previous PHP code declares two data members. The $title attribute

is protected, and we added a getter method named getTitle() to retrieve

it from outside of the class. We declared the $price attribute as pub-

lic. This makes it easy to access data for this attribute but difficult

to change the implementation of price. If we wanted to calculate tax

before returning the price, we would need an additional method such

as getPrice(). Now let’s take a look at the Ruby translation of this class.

Ruby Download ruby_philosophy/ruby/member_visibility.rb

class Book

def initialize(title, price)

@title, @price = title, price

end

def title

@title

end

def price

@price

end

def price=(price)

@price = price

end

end

book = Book.new("Frankenstein", 9.95)

puts book.title

=> Frankenstein

book.price = 10.95

puts book.price

=> 10.95

The @title in the Ruby code works similarly to our PHP and has a getter

method. In Ruby, we’ve named this method directly after the instance

variable it returns. We also have a @price instance variable, but since

we have no public data declarations in Ruby, we need to add both getter

and setter methods. The setter method is also named directly after the

instance variable, but this time is appended with an equals sign (=)

in the name. Because of Ruby’s flexible syntax, we can now use these

methods to access and assign the @price as if were a public attribute.

However, we still have the flexibility to change the implementation of

how we return the price data.

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/member_visibility.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=76

METHOD VISIBILITY 77

Defining getter and setter methods tends to become quite repetitive.

We can dynamically add these methods using a few special Ruby class

methods. Attribute methods allow us to declaratively assign which of

our instance variables we want to become available as attributes.

Ruby Download ruby_philosophy/ruby/attr_methods.rb

class Book

attr_reader :title

attr_accessor :price

def initialize(title, price)

@title, @price = title, price

end

end

The attr_reader :title method declaration replaces our title getter method,

and the attr_accessor :price replaces both the getter and setter methods

for @price. There is also the attr_writer method for adding a setter method

without the corresponding getter.

3.3 Method Visibility

Like PHP, Ruby methods can be declared public, private, or protected.

This makes sense, since methods are ultimately how we access any

object data in Ruby. Just as in PHP, all methods in Ruby are assumed

public unless declared otherwise. In Ruby we can declare the visibil-

ity of multiple methods at a time. Making a single protected declara-

tion will establish every method below as a protected method until we

declare a different access. This cuts down on repetition and nudges us

to group together methods with similar visibility. Typically we group

public methods at the top of a class definition to exclude the need for

any public visibility declaration.

PHP Download ruby_philosophy/php/method_visibility.php

class MyClass {

public function myPublicMethod() {}

protected function myProtectedMethod() {}

protected function anotherProtectedMethod() {}

private function myPrivateMethod() {}

public function mySecondPublicMethod() {}

}

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/attr_methods.rb
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/method_visibility.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=77

METHOD VISIBILITY 78

Ruby Download ruby_philosophy/ruby/method_visibility.rb

class MyClass

default is public

def my_public_method

end

protected

def my_protected_method

end

def another_protected_method

end

private

def my_private_method

end

public

def my_second_public_method

end

end

The difference between protected and private methods in Ruby is subtle

and has nothing to do with inheritance as it does in PHP. A protected

method in Ruby can be called from any object instance of the same

class.

Ruby Download ruby_philosophy/ruby/method_protected.rb

class Employee < User

def initialize(name)

@name = name

end

we can call the given user's protected "name"

because it is also a User class

def compare(user)

self.name == user.name

end

protected

def name

@name

end

end

joe = Employee.new('joe')

jane = Employee.new('jane')

puts joe.compare(jane)

=> false

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/method_visibility.rb
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/method_protected.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=78

UNDERSTANDING TYPING 79

puts jane.name

=> protected method `name' called for #<User:0x1eac08 @name="Jane">

Since Jane’s name method is declared as protected, we cannot call it

publicly. We can, however, call this same method in the implementation

of Joe’s compare method since Joe is also an instance of User.

A private method in Ruby can be executed only within the context of

the same object or derivative object.

Ruby Download ruby_philosophy/ruby/method_private.rb

class User

private

def format(value)

value.capitalize

end

end

class Employee < User

def initialize(name)

format can only be called by this instance

@name = format(name)

end

end

jane = Employee.new('jane')

puts jane.format

=> private method `format' called for

#<Employee:0x1edf48 @name="Jane"> (NoMethodError)

Notice that unlike PHP, the private format method is inherited into the

User subclass.

With a little better understanding of object attributes and visibility

under our belts, let’s take a look at how Ruby uses object types.

3.4 Understanding Typing

PHP and Ruby are similar in that they are both dynamically typed lan-

guages. This means that variables are assigned types as they are used

in context. You don’t need to declare the types of variables before they

are used, and variables may change types as they are used.

irb> foo = 'bar'

=> "bar"

irb> foo = 42

=> 42

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/method_private.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=79

UNDERSTANDING TYPING 80

In the previous example, the variable foo is assigned a string object

containing bar. It is then reassigned to the numeric (Fixnum) object 42.

In both cases, the type of foo was never declared. Ruby simply stores

something new inside it each time. PHP works the same way, and we

probably don’t even think of this as a feature.

Although both PHP and Ruby are dynamically typed, this is where the

similarity in their typing ends. PHP is a very loosely typed language.

If you try to add an integer to a string, it works fine. Let’s try that in

Ruby.

irb> a = 2

=> 2

irb> b = '2'

=> "2"

irb> a + b

=> "2"

TypeError: String can't be coerced into Fixnum

from (irb):7:in `+'

from (irb):7

If this were in PHP, adding $a + $b would work just fine. PHP will take

whatever types it gets and try to make the best of it. This usually works

fine and occasionally produces a result we aren’t expecting. As we see

from the earlier example, Ruby doesn’t even try. It just gives us an error

message.

Lucky for us, Ruby has a solution for this type mismatch. Most objects

implement a collection of methods that will convert the object to differ-

ent data types. In this case, we can get the result we want by using the

to_i method to convert our String into a Fixnum.

irb> a = 2

=> 2

irb> b = '2'

=> "2"

irb> a + b.to_i

=> 4

Duck Typing

You’ll often hear the term duck typing when programming in Ruby. This

concept comes from the phrase “If it walks like a duck and quacks like

a duck, then it’s probably a duck.” In Ruby this means that when we

are using objects, we are concerned about what they can do, and not

the actual type of the object. Instead of checking whether an object is

in fact a duck, we just make sure that it either quacks or walks.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=80

UNDERSTANDING TYPING 81

Since PHP is a dynamic language, we are usually not concerned about

the specific type of data being passed around. We concatenate integers

to strings and add strings to integers without a second thought. PHP 5

changed this a little by implementing object-oriented features that are

more conscious of data types. New constructs such as interfaces and

type hinting are aimed directly at enforcing that the objects we pass

around are of a specific class.

Advocates of statically typed languages argue that not enforcing types

is dangerous to the stability of a program. PHP 5 is interesting as a lan-

guage because to some extent it embraces both sides of the argument.

It is a loosely typed language for its primitive types but can be a strictly

type language for objects, depending on how the program is written.

Let’s look at how PHP can provide type safety for objects and how this

is different from Ruby’s typing philosophy. A type hint in PHP requires

that an object inherits or implements a specified type.

PHP Download ruby_philosophy/php/duck_typing.php

class Duck {

public function waddle() {

print "duck waddling...\n";

}

}

class Goose {

public function waddle() {

print "goose waddling...\n";

}

}

// only accept Duck

function go(Duck $duck) {

$duck->waddle();

}

go(new Duck);

// => duck waddling...

go(new Goose);

// => Argument 1 passed to go() must be an instance of Duck

In this case, we state that the go method accepts only Duck objects. Our

goose object also implements the waddle method but cannot go since

our function accepts only ducks. If we take a look at the Ruby version,

we’ll see that Ruby doesn’t care about the type and will make anything

waddle as long as it has a waddle method.

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/duck_typing.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=81

UNDERSTANDING TYPING 82

Ruby Download ruby_philosophy/ruby/duck_typing.rb

class Duck

def waddle

puts "duck waddling..."

end

end

class Goose

def waddle

puts "goose waddling..."

end

end

def go(duck)

duck.waddle

end

go Duck.new

=> duck waddling...

go Goose.new

=> goose waddling...

Since both ducks and geese are part of the Anatidae family of birds, we

could update our PHP example by making the Duck and Goose classes

inherit from this same parent class. Then instead of enforcing a Duck

type, we could enforce that the object was an Anatidae.

This once again begins to reach limitations if we wanted to pass a wad-

dling Walrus object to go(). Creating a Waddling object interface might be

our next step, but we may instead determine at this point that the eas-

iest solution is to copy the Ruby example and eliminate the type hint.

The code still works, and chances are that in practice we wouldn’t be

passing the wrong object to this function anyway.

PHP Download ruby_philosophy/php/duck_typing_no_hint.php

// only accept Duck

function go($duck) {

$duck->waddle();

}

go(new Duck);

// => duck waddling...

go(new Goose);

// => goose waddling...

Type hints have not been universally adopted by PHP developers, and

this updated version is how many people use PHP already. Not taking

advantage of the type hinting mechanism can promote polymorphism.

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/duck_typing.rb
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/duck_typing_no_hint.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=82

UNDERSTANDING TYPING 83

At the same time, the restrictions imposed by type hinting can have

benefits, especially with larger libraries and teams.

Generally, we don’t enforce types in many areas of our own PHP pro-

grams. Rather than lose some flexibility and depend on PHP to crash

when types collide, we write automated unit tests to ensure that our

programs behave in the expected ways. Ruby takes this same approach

when dealing with all objects.

Methods as Messages

When invoking a method on a Ruby object, we’ll often refer to this as

“passing a message to the object.” When the object receives the mes-

sage, it invokes the corresponding method with the given arguments.

In the previous example, a Duck object responds to the waddle mes-

sage. When we send this message, the duck responds with a string.

The difference in terminology is subtle but important.

We know that with duck typing, the behavior of an object is more impor-

tant than the type. Ruby follows up with this idea by letting us easily

interrogate the behavior of an object.

Ruby Download ruby_philosophy/ruby/respond_to.rb

class Duck

def waddle

puts "duck waddling..."

end

end

duck = Duck.new

puts duck.respond_to?(:waddle)

=> true

puts duck.respond_to?(:climb)

=> false

This syntax demonstrates why it is useful to view a method call as a

message. The respond_to? method is available on every object in Ruby

and is our way of asking the object “Do you respond to this message?”

We can do a similar inspection in PHP using the is_callable function.

PHP Download ruby_philosophy/php/respond_to.php

class Duck {

public function waddle() {

print "duck waddling...\n";

}

}

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/respond_to.rb
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/respond_to.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=83

IMPLEMENTING INTERFACES WITH MIXINS 84

$duck = new Duck;

$waddle = is_callable(array($duck, 'waddle'));

var_export($waddle);

// => true

is_callable(array($duck, 'climb'));

$climb = is_callable(array($duck, 'climb'));

var_export($climb);

// => false

The biggest usage difference is that new methods can be added to

classes and objects at runtime in Ruby. It’s important to have the abil-

ity to examine behavior, and Ruby makes it easy to do so.

Along with the concept of sending messages is a way of invoking behav-

ior using an explicit send method to send our message.

Ruby Download ruby_philosophy/ruby/send.rb

mike = Person.new('Mike')

mike.send(:name)

Using the syntax mike.send(:name) does the same thing as doing mike.

name but allows us to invoke a method name that we may not know

until runtime. This is similar to using the call_user_func function in PHP.

PHP Download ruby_philosophy/php/send.php

$mike = new Person('Mike');

call_user_func(array($mike, 'getName'));

The concepts of interrogating the behavior of an object and invoking a

variable method name at runtime are not unique. We can already do

these things in PHP. The need to understand method calls as messages

is most important because method names and terminology in Ruby

revolve around these ideas.

3.5 Implementing Interfaces with Mixins

Interfaces are an area of object-oriented programming where Ruby devi-

ates from the approaches used in PHP and Java programming prac-

tices. Let us start by taking a look at a common usage of an interface

in PHP.

If we were to model a dinosaur park application in PHP, one of the first

classes we might build is a TRex. This is the first of many carnivores

we’ll add to our park (because we’re asking for trouble). Since an object

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/send.rb
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/send.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=84

IMPLEMENTING INTERFACES WITH MIXINS 85

in PHP can have only a single superclass, we can’t define a TRex class

that inherits from both Dinosaur and Carnivore. The solution in PHP for

this is to make TRex inherit from the most obvious class (Dinosaur) and

have it implement a Carnivore interface.

PHP Download ruby_philosophy/php/interfaces.php

class Dinosaur {

public $vertebrate = true;

}

interface Carnivore {

public function hunt();

}

// we have to implement hunt() for this to be valid

class TRex extends Dinosaur implements Carnivore {

public function hunt() {

print get_class($this)." is hunting!\n";

}

}

// we have to implement hunt() for this to be valid

class Raptor extends Dinosaur implements Carnivore {

public function hunt() {

print get_class($this)." is hunting!\n";

}

}

Here we’ve made both the TRex and Raptor classes implement the Carni-

vore interface. We can now use a type hint to make sure that we add

only carnivores to our park.

PHP Download ruby_philosophy/php/type_hint.php

class DinosaurPark {

protected $dinosaurs = array();

public function add(Carnivore $dinosaur) {

$this->dinosaurs[] = $dinosaur;

}

public function run() {

foreach ($this->dinosaurs as $dino) {

$dino->hunt();

}

}

}

$park = new DinosaurPark;

$park->add(new TRex);

$park->add(new Raptor);

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/interfaces.php
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/type_hint.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=85

IMPLEMENTING INTERFACES WITH MIXINS 86

$park->run();

// => TRex is hunting!

// => Raptor is hunting!

You’ve probably noticed that we’ve repeated ourselves while implement-

ing the hunt method on both classes. Although it wasn’t too bad repeat-

ing a single method, you can imagine that it would get worse as we

added more. The problem with interfaces is that even if all of the car-

nivore methods are the same in every class definition that uses the

interface, we must rewrite the method implementations in each class.

Ruby takes a unique approach to implementing class interfaces by

using modules. A module can contain methods, constants, and instance

variables just like a Ruby class. Modules are very similar to classes. The

biggest difference between a class and module is that a module cannot

be instantiated.

In Ruby, we implement the hunt method for our dinosaurs in a Carnivore

module. We can then use the include keyword to add all the Carnivore

methods to our TRex and Raptor classes. We often refer to this use of

modules as mixins since the module defines a set of methods that we

mix in to our class definition. If we take a look at Figure 3.1, on the next

page, we see that mixins are not part of the normal single-inheritance

class hierarchy.

Ruby Download ruby_philosophy/ruby/interfaces.rb

class Dinosaur

def initialize

@vertebrate = true

end

end

module Carnivore

def hunt

puts "#{self.class} is hunting!"

end

end

class TRex < Dinosaur

include Carnivore

end

class Raptor < Dinosaur

include Carnivore

end

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/interfaces.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=86

IMPLEMENTING INTERFACES WITH MIXINS 87

Figure 3.1: Method organization

The Carnivore module is started using the module keyword followed by

a constant name. It finishes with the end keyword. Be aware that the

include keyword in Ruby is nothing like the include statement in PHP. In

Ruby, include pulls all the methods from the specified module into the

current scope.

Including this module essentially solves the issue we ran into with

repeated code in our PHP Carnivore implementations. Once we have

mixed in the methods from Carnivore, Ruby doesn’t care about the class

of the dinos added to the park. Ruby cares only that these objects

respond to a message named hunt.

Ruby Download ruby_philosophy/ruby/type_hint.rb

class DinosaurPark

def initialize

@dinosaurs = []

end

def add(dinosaur)

@dinosaurs << dinosaur

end

def run

@dinosaurs.each {|dino| dino.hunt }

end

end

park = DinosaurPark.new

park.add(TRex.new)

park.add(Raptor.new)

park.run

=> TRex is hunting!

Raptor is hunting!

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/type_hint.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=87

ORGANIZING CODE WITH NAMESPACES 88

You may wonder at this point what happens when we have conflicts in

method names or instance variables. Ruby simply overrides any exist-

ing methods with the last one added. It is a good idea to create unique

method names when including multiple modules in a class.

Ruby Download ruby_philosophy/ruby/module_conflicts.rb

module Ninja

def attack

puts 'throw shuriken'

end

end

module Pirate

def attack

puts 'slash sword'

end

end

class Person

include Ninja

include Pirate

end

person = Person.new

person.attack

=> slash sword

Modules are a versatile tool in Ruby and allow us to extract and share

common behavior in objects. Next we’ll take a look at a different use of

modules—code organization.

3.6 Organizing Code with Namespaces

Organizing user-defined PHP classes and functions is somewhat ad hoc

because no constructs are provided by the language to avoid clashes in

class or function names. While adding namespaces to PHP has been

a popular discussion among its developers for years, PHP 5 does not

support namespaces at the time of writing.

Some developers have worked around this by adopting a convention of

separating different class package names with underscores. This solu-

tion solves the immediate problem and also works conveniently with

autoloading in PHP. It can, however, leave us with some really long

class names.

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/module_conflicts.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=88

ORGANIZING CODE WITH NAMESPACES 89

Ruby creates namespaces using modules. A module is simply a con-

tainer for objects, methods, constants, and instance variables. Plac-

ing this data in a module allows us to create a unique identifier for

names that might otherwise conflict. Let’s say that we had two differ-

ent libraries that defined a Document class. In PHP, we would typically

prefix each class with the name of the class package.

PHP Download ruby_philosophy/php/module_namespaces.php

class XML_Document {

public function __construct() {

print "new xml document\n";

}

}

class PDF_Document {

public function __construct() {

print "new pdf document\n";

}

}

$xml = new XML_Document;

$pdf = new PDF_Document;

Ruby takes a different approach by encapsulating each Document class

in a module that defines the base package with which we are working.

Ruby Download ruby_philosophy/ruby/module_namespaces.rb

module XML

class Document

def initialize

puts 'new xml document'

end

end

end

module PDF

class Document

def initialize

puts 'new pdf document'

end

end

end

xml = XML::Document.new

pdf = PDF::Document.new

We can then differentiate between Document classes by prefixing Docu-

ment with the module name and a double colon (::). Although it may not

seem like we saved much typing when referring to the Ruby class, there

are a couple ways to benefit from this namespace. When organizing our

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/module_namespaces.php
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/module_namespaces.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=89

ORGANIZING CODE WITH NAMESPACES 90

classes using underscores in PHP, we always need to reference a class

using the full class name.

PHP Download ruby_philosophy/php/module_qualified.php

class XML_Document {

public function __construct() {

print "new xml document\n";

}

}

class XML_Parser {

public function __construct($source) {

new XML_Document($source);

}

}

Here we instantiate a new XML_Document from within XML_Parser. One of

advantages of using namespaces is implicit qualification of the names-

pace from within the module. This means that all code within the con-

text of the XML module can refer to the class as simply Document instead

of XML::Document.

Ruby Download ruby_philosophy/ruby/module_qualified.rb

module XML

class Parser(source)

def initialize

Document.new(source)

end

end

class Document

def initialize

puts 'new xml document'

end

end

end

Another approach that lets us take advantage of the namespace is to

import the objects of that namespace into the current scope. This can

be done using the include keyword. Once again this pulls all the module

objects into the current scope.

Ruby Download ruby_philosophy/ruby/module_include.rb

module XML

class Document

def initialize

puts 'new xml document'

end

end

end

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/module_qualified.php
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/module_qualified.rb
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/module_include.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=90

OVERRIDING OPERATORS 91

include XML

Document.new

The Document object no longer needs to be prefixed with XML:: when we

reference it. Most Ruby libraries and packages use a base namespace to

prevent conflicts with other libraries. This logically separates libraries

to make them much easier to manage in the context of a large project

with multiple dependencies.

3.7 Overriding Operators

Most operators are unique in Ruby because they’re actually methods on

the receiving object. Ruby uses a special syntax to make these methods

appear like the normal operators we would see in PHP.

Ruby Download ruby_philosophy/ruby/operator_syntax.rb

full method name with parentheses

1.+(2)

method without parentheses

1.+ 2

Ruby uses a syntax to make this method call look just like PHP

1 + 2

You’ll rarely see Ruby developers write an expression like 1.+(2) in real

code. The cleaner 1 + 2 syntax is the preferred syntax usage, but you

can begin to see the power of Ruby operators in this example. Each

class can implement the same operator differently. A good example of

this is how the addition sign (+) performs addition with numbers but

concatenation with strings.

Ruby Download ruby_philosophy/ruby/operator_plus.rb

puts 1 + 2 # => 3

puts 'a' + 'b' # => ab

Overriding operators is possible in PHP but requires the operator PECL

extension written by Sara Goleman.1 This plug-in is a nice addition

to PHP but is rarely included in standard configurations. Let’s take

a look at defining operators for a custom class using Sara’s operator

extension.

1. http://pecl.php.net/package/operator

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/operator_syntax.rb
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/operator_plus.rb
http://pecl.php.net/package/operator
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=91

OVERRIDING OPERATORS 92

PHP Download ruby_philosophy/php/operator_definition.php

// this syntax is only available in PHP using the operator extension

class MyClass {

public function __add($value) {

return "MyClass + $value";

}

public function __div($value) {

return "MyClass / $value";

}

}

$a = new MyClass;

print $a + 2;

// => MyClass + 2

print $a / 2;

// => MyClass / 2

We’ve used the extension to add both an addition operator (+) and a

division operator (/) to this class. We have done this using two magic

methods added by the extension. Implementing these same operators

for a Ruby class does not require any plug-in and is very straightfor-

ward. We can implement a method named directly after each operator

we wish to implement.

Ruby Download ruby_philosophy/ruby/operator_definition.rb

class MyClass

def +(value)

"MyClass + #{value}"

end

def /(value)

"MyClass / #{value}"

end

end

a = MyClass.new

puts a + 2

=> MyClass + 2

puts a / 2

=> MyClass / 2

We can override all the common arithmetic and comparison opera-

tors and even the unary + and - operators. Overriding these, however,

requires us to define methods named +@ and -@, respectively, to dif-

ferentiate from addition and subtraction operators. There are a few

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/operator_definition.php
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/operator_definition.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=92

REOPENING CLASSES 93

operators that we cannot override since they cannot be reproduced with

a method and are actually language constructs. These are as follows.

= ! not && and || or != !~ ::

Operators aren’t the only thing we can redefine. In Ruby, we can add

and change any existing method on all objects.

3.8 Reopening Classes

If you’ve ever accidentally redefined a class or function in PHP, you’ve

probably been thrown a nasty fatal error.

PHP Download ruby_philosophy/php/reopen_class.php

class Person {

public function greeting() {

return 'Hi!';

}

}

class Person {

public function greeting() {

return 'Hello there!';

}

}

// => PHP Fatal error: Cannot redeclare class Person

PHP simply doesn’t allow this, and it seems to make a lot of sense for

PHP to prevent this from happening. Ruby treats the situation much

differently and will redefine the first method with the new one defined

directly after.

Ruby Download ruby_philosophy/ruby/reopen_class.rb

class Person

def greeting

'Hi!'

end

end

class Person

def greeting

'Hello there!'

end

end

p = Person.new

puts p.greeting

=> Hello there!

http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/php/reopen_class.php
http://media.pragprog.com/titles/ndphpr/code/ruby_philosophy/ruby/reopen_class.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=93

REOPENING CLASSES 94

Although this may seem like a bug in Ruby, it is actually a feature of the

language. In Ruby this is referred to as “reopening a class” and can be

extremely useful for extending and redefining methods at runtime. Part

of Ruby’s philosophy is to give developers the power to do what they

want, trusting that they’ll use that power wisely. This type of feature

may seem like it would lead to elusive bugs and general chaos, but it is

actually quite manageable in practice.

Reopening classes gives new meaning to the Open/Closed principle,

which states that a class should be open for extension but closed for

modification. In Ruby we can extend a class by externally modifying

it, preventing the need for inheritance. This is very powerful, and it

often leads to a much more manageable code than large extension

hierarchies.

Another interesting feature of Ruby is that we are not limited to extend-

ing our own classes. We can extend any base Ruby class as well. This is

often critically referred to as monkey patching, since it’s not very wise to

be overriding base Ruby methods. It is a best practice to leave existing

Ruby base methods alone, but this doesn’t mean that we can’t extend

the base classes with bonus functionality for our application. For exam-

ple, let’s say we want a method on Integer to check whether an integer

is an odd number. Before adding this method, trying to use the odd?

method will result in a NoMethodError.

irb> 3.odd?

NoMethodError: undefined method `odd?' for 3:Fixnum

from (irb):1

We can dynamically add this method by defining the Integer class with

the odd? method implementation. This will not redefine Integer in its

entirety but will simply reopen the class to add our new method. All

previous Integer methods will continue to exist after the definition.

irb> class Integer

irb> def odd?

irb> self % 2 == 1

irb> end

irb> end

=> nil

Now we can use our new method, just as we would with any other

integer method.

irb> 3.odd?

=> true

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=94

CHAPTER REVIEW 95

Rails extends Ruby base classes substantially with a library called

ActiveSupport, which reopens String, Integer, Array, and many further

classes to add some very useful functionality. The odd? method is actu-

ally part of ActiveSupport along with a corresponding even? method.

One of the most powerful uses of reopening classes is the plug-in sys-

tem available in Rails. We can use Rails plug-ins to extend and override

nearly every part of Rails. We’ll discuss plug-ins more in Section 13.13,

Rails Plug-Ins, on page 396.

3.9 Chapter Review

In this chapter, we learned a lot about the unique language features

that differentiate Ruby from PHP. This will give you a much better

understanding of how Rails works by giving you the tools to decode

what Rails is doing under the hood.

Let’s review what else we learned in this chapter:

• We now see how objects manipulate data in a more sophisticated

way than simple functions. We also learned that Ruby is not con-

cerned with enforcing object types.

• We learned about the versatility of Ruby modules and how they

can be used to create both namespaces and mixins.

• We looked at how object operators and attributes in Ruby differ

from those in PHP and how we can use this to our advantage.

• We learned how Ruby classes can be reopened at any time to give

us some really amazing flexibility with the language at runtime.

3.10 Exercises

Here are some extra exercises that you can try on your own:

• We already reopened Fixnum to add the odd? method. Try reopening

this class again to add the even? method.

• Create a Person class that defines the == operator to compare object

instances of people by comparing their names.

• Create a module named SoftwareDeveloper to extend the function-

ality of the Person class from the previous example. Make this mod-

ule implement the debug method, and include it as a mixin to the

Person class.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=95

Part II

Building a Rails Application

Chapter 4

Modeling the Domain
Now that we have seen some high-level differences between PHP and

Rails in Part I, it’s time to put our experiences into action and get

hands-on by building a Rails application. In this part, we’ll build a

Rails app from start to finish; along the way we will see in context how

building an application in Rails is different from how we’d go about the

task using PHP.

We’ll offer an imaginary scenario here of a typical application devel-

opment situation. Our friend Joe has called us with a plea. Joe is an

experienced PHP programmer but has heard enough buzz about Rails

to finally pique his interest. He has started a new Rails user group in

his area but just doesn’t have the time to create a decent website for it.

He wants this group to be a success, and he knows that a website with

only the date and location of meetings just won’t cut it. He has asked

for our help in creating an application to help plan and organize the

group meetings. Since Joe is a good friend of ours, we’ll help him build

a killer app for his group.

The application we build will cover many of the features that Rails offers

and will help us get a good idea of how to build a typical application

using Rails. Creating a user group site will be a great introduction to

hands-on coding with Rails because it contains enough objects to exer-

cise the use of various ActiveRecord methods and associations. Giving

Joe the ability to manage the application’s data will require us to build

a simple authentication system. Finally, all of this will need to be nicely

wrapped up in a presentable public interface. When the application is

finished, you should have a solid understanding of how Rails code is

organized and have a good grasp on the practical uses of the various

Rails components. Meanwhile, we’ll continue to relate these develop-

ment practices to those typically used in PHP.

DEFINING REQUIREMENTS 98

Figure 4.1: Requirements and features

To follow along as we build the application, you’ll probably want to

download the code examples for this application. The example source

code is available online.1

4.1 Defining Requirements

We’ll start the same way we might for any application, whether it be PHP

or otherwise. We need to figure out the goals we want to accomplish and

how our application can help us achieve them. Joe is as opinionated as

any client and comes up with a solid list of requirements, as shown in

Figure 4.1. We’ve taken this a little further, and we’ve assigned a feature

to each of his requirements.

Our next step is to create some simple mock-ups of how the application

might look. The interface needs to manage meetings, presentations,

and users in our application. Joe tells us that he wants the meetings

to include a date, a location, and a short description. He also wants

to be able to add presentations to each meeting along with the person

presenting.

1. http://www.pragprog.com/titles/ndphpr/source_code

http://www.pragprog.com/titles/ndphpr/source_code
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=98

DEFINING REQUIREMENTS 99

Figure 4.2: Meetings page flow

Let’s first concentrate on how we will need to manage these resources,

and then we can begin coding them. To map out how we want this to

work, we sit down with Joe to create some page flow diagrams. The

drawing in Figure 4.2 shows a series of pages representing a typi-

cal web application. This includes the display of our meetings along

with the ability to add, edit, and delete meetings and their associated

presentations.

Our member pages (shown in Figure 4.3, on the next page) are much

simpler, consisting of the ability to view and change user profiles. These

page flow diagrams should provide us with enough material to start

writing code.

At this point, we have a fair idea about how the application will look.

If we were building this application in PHP, it would be tempting to

simply make a PHP file for each one of these pages. First, we’d spend a

bit of time working out the directory structure of our little application,

figure out how to connect the PHP files, and probably gather up our

favorite libraries from PEAR and other repositories to do tasks such as

form handling. If we had chosen some PHP framework, we’d have fewer

decisions, but we’d also have to start with the huge decision of which

of the dozens of PHP frameworks to choose.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=99

DEFINING REQUIREMENTS 100

Figure 4.3: Users page flow

We could then dip into the home page and start fleshing it out in real

PHP code and have a nonfunctioning mock-up of the home page to

show Joe a couple of hours later. Joe would probably be impressed we

threw it together so quickly. Once that was out of the way, we could

start building the other pages and some code to deal with the database.

This isn’t PHP, though; it’s Rails. One of the big wins of adopting Rails

is that it frees your mind of almost all the up-front decisions such as

where to put things or what libraries to use. For our application, we’ll do

it “the Rails way” and follow whatever methods and tools that Rails has

given us to use. By making this conscious decision to worry less about

the innards of our application, we can simply concentrate on solving

Joe’s problems and trust that Rails will have the facilities available to

let us do that efficiently.

We called this chapter Modeling the Domain instead of Building the Web-

site because a Rails application has a different focus and workflow than

a usual PHP website. Where plain PHP lets us start any place we’d like

and build whatever we’d like, Rails has a strongly defined workflow for

us to follow. That workflow starts by making us examine our problem

domain—Joe’s user group meetings—and modeling the data and inter-

actions around that.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=100

USING THE DATABASE 101

Figure 4.4: Modeling the application data

Through our interviews with Joe and creating these page flow diagrams,

we should be able to identify the basic data that our application is deal-

ing with and determine what our domain model will look like. Looking

through our diagrams, let’s create a list of the data we’ll need to rep-

resent in our application. It seems right now that we have three sets

of data to represent the resources in our application. If we take a look

at Figure 4.4, we see that each meeting needs an association with one

or more presentations, and each presentation will be associated with

a user. Before we actually model this data into Ruby classes in our

application, it’s important to learn a little more about Rails’ opinion of

databases.

4.2 Using the Database

Rails rejects the idea of putting business logic in the database in the

form of in-database constraints, referential integrity, or stored proce-

dures. While the database is seen as a way to store relational data,

all business logic for that data belongs in the domain model of our

application.

If you’ve primarily worked with MySQL in the past, this is a pretty stan-

dard approach. Although MySQL supports many these features, they

are not terribly commonplace in PHP applications that use MySQL.

If you’re accustomed to using things such as referential integrity and

stored procedures in your databases, this approach may seem ignorant

or controversial at the very least. There have been many discussions

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=101

USING THE DATABASE 102

about this topic in the past, and Rails’ rejection of these concepts is

not likely to change. Rails focuses on using the database as an “appli-

cation database” and not as an “integration database.” It expects your

application to be the single point of interaction with the database.

Referential Integrity

Referential integrity in the form of database-defined foreign keys is a

hot topic. There are still many developers in the Ruby community who

think this is an oversight and that these constraints should have bet-

ter native support in Rails. One of the great aspects of Rails is the

plug-in environment that allows us to disagree with the Rails core by

simply installing a plug-in to add the features we want. Although using

database foreign keys is unconventional and discouraged in a typical

Rails application, there is a plug-in to help make them less painful to

use; it’s available on the Red Hill Consulting website.2

You can find more information about installing Rails plug-ins within

your application in Section 13.13, Rails Plug-Ins, on page 396.

Using a Single Primary Key

Another intensely debated opinion in Rails is the rejection of composite

keys in favor of all tables using a single primary key named id. The

core team believes the cost of supporting composite keys outweighs the

benefits. The cost in this case is the immense and ugly increase in the

complexity of the Rails code. The ripple effect of supporting composite

keys would have too many implications in the simplicity and beauty of

Rails code.

Another reason is that there is usually not a tangible benefit to using

composite keys over a single unique key. This is even truer when we’re

using a simplified Rails syntax for performing much of our database

interactions. Like support for foreign key constraints, there is a Rails

plug-in to add composite key support if your application requires them.

The composite keys plug-in was written by Dr. Nic Williams; you can

find it in RubyForge.3

Stored Procedures

Stored procedures are another database feature that is not recom-

mended in Rails applications. Rails is attached to the idea of having a

2. http://www.redhillonrails.org/

3. http://compositekeys.rubyforge.org/

http://www.redhillonrails.org/
http://compositekeys.rubyforge.org/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=102

USING THE DATABASE 103

single layer of domain logic and complexity and having that logic written

in Ruby. The typical need for stored procedures is in heavy “integration

database–style” environments where multiple applications and people

need to interact with a single database. Rails favors using web services

to talk to the integration database through the Rails application itself.

Avoiding stored procedures generally makes it easier to keep revision

history on your domain logic and makes application code easier to unit

test. We realize that not all organizations have a choice of avoiding

stored procedures, especially in an Oracle or SQL Server environment.

There is a page that further details working with stored procedures on

the Rails wiki.4

Model and Database Naming Conventions

Coming from PHP, we know that different developers have vastly differ-

ent PHP coding styles. Some developers like to use CamelCase names

like getFoo(), while others prefer underscore names like get_foo(). PHP

itself is a big mix of different styles, so it provides little guidance on how

our code should look. Ruby, on the other hand, provides a solid foun-

dation of standards. Features of the Ruby language even help enforce

these standards. As a result, most Ruby code looks quite similar. This

is great for us because it keeps code readable, and mixing code from

different sources doesn’t end up looking like a hodgepodge of different

coding styles.

In every way, Rails is an extension of Ruby. Although Ruby provides

guidance for how to name our classes and methods, Rails takes this

further and even gives us conventions for naming database tables and

columns. In PHP, there are no such rules, and many developers like it

this way. This may require a little shift in thinking.

As we said earlier, Rails is largely about removing the burden of deci-

sion about how to structure all the little details of our applications. This

allows us to focus more on our application itself and less on its gritty

implementation details. By following the Rails conventions for naming

things in the database, Rails will implicitly connect the database tables

to their corresponding model objects without us needing to do any con-

figuration to map them together. These conventions also help keep Rails

applications easily readable.

4. http://wiki.rubyonrails.org/rails/pages/StoredProcedures

http://wiki.rubyonrails.org/rails/pages/StoredProcedures
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=103

CREATING THE APPLICATION 104

Figure 4.5: Model naming conventions

While Ruby’s well-defined conventions keep classes and methods in

check, Rails’ conventions keep application structure in check. This is

a big help for application maintenance as well. If the next developer

who maintains the application understands Rails and our application

is built with all the Rails standards, then that developer will come in

already having some understanding of the application.

By taking a look at Figure 4.5, we can see that database tables are

expected to be named using a plural form of whatever we are storing,

formatted with underscores. Each database table in our application will

have an associated model, which is named using the singular form of

the table name formatted using CamelCase. Finally, the filename will

be based on the name of the model but in an underscore format.

This might seem like quite a few rules to follow when creating files

and classes, but Rails does most of the work for you. When you run

the generate script, Rails will automatically create the correct files and

filenames according to conventions.

4.3 Creating the Application

Before we create our models, we need to set up a new Rails application.

This means creating a new Rails project along with the MySQL database

needed for development. We’ll name this application user_group, and

once again use MySQL for our database.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=104

CREATING THE APPLICATION 105

Joe Asks. . .

What’s This “rake” Command?

We briefly mentioned Rake in Section 1.2, The Components of

Rails, on page 19, and we’ll use this tool often as part of our
development process. Rake is “Ruby Make,” a great system for
gluing together all of your Ruby command-line tasks. Rails uses
Rake extensively and even supports making your own special
automation tasks!

There is also a somewhat similar system for PHP called Phing,
but it has had limited adoption by PHP developers. By contrast,
almost all Rails developers use and love Rake.

derek> cd work

work> rails -d mysql user_group

The development database for this project will be named, by Rails con-

ventions, user_group_development. We’ll use a Ruby tool called Rake to

create this database for our application. Navigate to your application’s

root directory to run db:create.

work> cd user_group

user_group> rake db:create

(in /Users/derek/work/user_group)

If we want to change the username and password used to connect to

this database, we need to edit our config/database.yml configuration, as

discussed in Section 1.6, Configuring the Database, on page 27. Other

than that, we should now have a new Rails application ready to go. Let’s

start WEBrick to get the application running on localhost.

user_group> ruby script/server

At this point in a typical PHP application, we would most likely cre-

ate a relational database schema using a tool such as phpMyAdmin

or even straight SQL create statements. Although we created our table

with plain old SQL for our newsletter application in Chapter 1, Getting

Started with Rails, on page 18, we’ll take a different approach this time.

Rails migrations are a higher-level way of creating and modifying data-

base tables using Ruby code instead of SQL. In this application, we’ll

create and modify all of our tables using migrations. A migration file

will be created automatically for each model we generate.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=105

GENERATING THE FIRST MODEL 106

4.4 Generating the First Model

We’ll start constructing our application by creating a model to represent

a user in our application. Our conventions state that for a table named

users, we’ll create a model named User. Let’s use script/generate to create

this.

user_group> ruby script/generate model User

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/user.rb

create test/unit/user_test.rb

create test/fixtures/users.yml

create db/migrate

create db/migrate/001_create_users.rb

We can now see all our naming conventions fall into place. The gen-

erate script has already created our model and test file. It has even

created the migration file we’ll be using to create the database table.

If we open the model file app/model/user.rb, we can see that the class

has correctly been named User. Likewise, opening the migration file

db/migrate/001_create_users.rb shows us that we’ll execute create_table

:users, which is the plural underscore version of our model name.

You might be wondering how Rails determines the plural version of a

word. Rails includes an inflection component to convert words to their

plural or singular forms. To see this in action, we’ll use another utility

script that comes with Rails. This script starts an IRB session but also

loads our Rails environment and code. This lets us interactively play

with our application through the command line.

user_group> ruby script/console

Loading development environment

>> 'user'.pluralize

=> "users"

>> 'users'.singularize

=> "user"

We can see that the pluralize and singularize methods are added to all

strings and that our user string is converting as expected. Most of the

time, Rails’ default inflection engine will handle our models as expected.

Rails will successfully convert most irregular words as well but doesn’t

catch absolutely everything. Let’s try something a little less expected.

>> 'bacon'.pluralize

=> "bacons"

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=106

GENERATING THE FIRST MODEL 107

Joe Asks. . .

Is Pluralization Worth the Hassle?

There have been many heated discussions over the pluraliza-
tion conventions in Rails. The reason pluralization was added to
Rails was to make the language more natural when referring
to data and classes. A database table contains plural users,
while a User class represents a single user. This follows in line with
the principle of least surprise. It is possible to turn off pluraliza-
tion by adding the following to your configuration block in con-

fig/environment.rb.

config.active_record.pluralize_table_names = false

This option is most useful for legacy database schemas that
can’t be changed to use Rails conventions. We highly suggest
you stick with the conventional approach for all new projects.

If we were building a meaty application that needed a bacon table, we

would want to refer to our bacon in plural as simply bacon. Rails seems

to be adding a trailing s where it isn’t warranted. We can fix this by

adding custom inflection rules to an initializer that runs as Rails starts.

Open the file config/initializes/inflections.rb, and at the bottom we’ll see

some sample code on how to modify inflections. Below the sample code,

we’ll add bacon as an uncountable word similar to fish and sheep, since

the word remains the same in both singular and plural form.

Inflector.inflections do |inflect|

inflect.uncountable %w(fish sheep bacon)

end

Now if we exit and reload our interactive console to reinitialize the Rails

environment, the pluralization of bacon will behave as expected.

>> exit

user_group> ruby script/console

Loading development environment

>> 'bacon'.pluralize

=> "bacon"

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=107

BUILDING DATABASE TABLES 108

4.5 Building Database Tables

When we generated our User model, the generator also created our users

migration file. All migrations are stored within the db/migrate/ direc-

tory of our application and keep a version history of database changes

within the source tree. We’ll see that the migration file for our users table

has a numbered prefix of 001, which designates it as version 1 of our

database history.

This gives us a powerful tool for applying and rolling back any changes

we make to the database. This is especially useful for teams that need to

keep in sync with each other’s database changes. Migrations are written

in Ruby, which lets you easily make applications that are more platform

and database independent. It requires you to know some Ruby, but that

is what we are here for, right?

To get a better idea of how this works, let’s fill in our users migra-

tion. If we open the db/migrate/001_create_users.rb file, we can see the

up and down methods. These will instruct our migration what to do

when migrating up to revision number 1 of our database or reverting

back down to revision number 0.

Ruby Download building_a_rails_app/user_group_1/db/migrate/001_create_users.rb

def self.up

create_table :users do |t|

t.string :email

t.string :password, :limit => 40

t.string :name

t.text :profile, :text

t.boolean :admin, :default => false

t.timestamps

end

end

When we migrate up in this migration, we’ll be creating the users table.

We determined earlier that this table needs to store the email, pass-

word, name, profile information, and whether the user has admin priv-

ileges. We’ll also add a couple special columns to store the date and

time of when the user record was created or updated. The t.timestamps

method does this by adding columns named created_at and updated_at.

ActiveRecord will automatically insert the current time into these col-

umns when we insert or update user records. We’ll typically add these

columns to all tables that have data being modified by the application.

Each line within the create_table :users block specifies a column for the

table we are creating. Taking a look at Figure 4.6, on the following page,

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_1/db/migrate/001_create_users.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=108

BUILDING DATABASE TABLES 109

Figure 4.6: Adding migration columns

Joe Asks. . .

Isn’t PDO Database Independent?

In PHP, PDO provides database access independence to your
applications. This is great because it allows you to perform
queries across different database platforms with a single, con-
sistent interface. However, the problem still exists that creating
and modifying tables requires different SQL syntax for different
databases. This typically results in PHP applications having dif-
ferent SQL load files for each database on which they run.
Migrations simplify this by using a single database definition writ-
ten in Ruby to abstract out platform-specific differences.

we see that the first argument is the name of the column. The data

type of the column is determined by the method name we use. Since

column type keywords vary across different database platforms, Rails

uses a database-independent syntax to specify the type of column we

are creating. The valid types are binary, boolean, date, datetime, decimal,

float, integer, string, text, time, and timestamp.

The second argument to the column creation method is a hash of

options for the column. This is where we can specify whether this col-

umn uses a null constraint, default value, or character limit. We’ve

taken advantage of these options to limit our password column to 40

characters and add a default value of false to the admin column.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=109

BUILDING DATABASE TABLES 110

Rails will automatically create a primary key column named id for us,

and the drop_table :users code in the down method is sufficient for rolling

back these migration changes by dropping this table. This completes

our User model migration file, and when we migrate up to version 1, it

will create a table equivalent to the following.

CREATE TABLE `users` (

`id` int(11) NOT NULL auto_increment,

`email` varchar(255) default NULL,

`password` varchar(40) default NULL,

`name` varchar(255) default NULL,

`profile` text,

`admin` tinyint(1) default '0',

`created_at` datetime default NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Now we’ll use rake again to run our migration. Navigate to your appli-

cation’s root directory to run db:migrate.

user_group> rake db:migrate

(in /Users/derek/work/user_group)

== 1 CreateUsers: migrating ==

-- create_table(:users)

-> 0.0043s

== 1 CreateUsers: migrated (0.0045s) ===================================

Running this task will migrate to the newest version of your database

schema, which in our case has successfully updated us to version 1.

It will determine the newest version by scanning the filenames of the

files in db/migrate/ to find the highest sequentially numbered migration.

To instruct the task to migrate to a specific version, we can add the

VERSION= argument to the task.

user_group> rake db:migrate VERSION=0

(in /Users/derek/work/user_group)

== 1 CreateUsers: reverting ==

-- drop_table(:users)

-> 0.0388s

== 1 CreateUsers: reverted (0.0391s) ===================================

Here we have specified in the migrate command to revert to VERSION=0.

When executed, the migration drops the user table we had specified in

the down method of this migration. Rails keeps track of the migration

version we are on by automatically creating a table named schema_info

the first time we run a migration. This table use a single column named

version to remember the version number.

mysql> use user_group_development;

Database changed

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=110

BUILDING DATABASE TABLES 111

mysql> select * from schema_info;

+---------+

| version |

+---------+

| 0 |

+---------+

1 row in set (0.00 sec)

We can check the current migration version at any time using the

db:version Rake task.

rake db:version

(in /Users/derek/work/user_group)

Current version: 0

Now that we know how to write migrations, let’s create them for each of

the other database tables we need in this application. To do this, we’ll

use script/generate again to create the Meeting and Presentation models.

user_group> ruby script/generate model Meeting

...

create app/models/meeting.rb

create test/unit/meeting_test.rb

create test/fixtures/meetings.yml

create db/migrate/002_create_meetings.rb

user_group> ruby script/generate model Presentation

...

create app/models/presentation.rb

create test/unit/presentation_test.rb

create test/fixtures/presentations.yml

create db/migrate/003_create_presentations.rb

Things are pretty straightforward for our meeting migration. Joe tells

us that all meetings need to start at 7 p.m. This means we don’t need

to store a separate time for each meeting and can stick with a date

column. We’ll then add a string column for the location and a text column

for our meeting’s description.

Ruby Download building_a_rails_app/user_group_1/db/migrate/002_create_meetings.rb

def self.up

create_table :meetings do |t|

t.date :meets_on

t.string :location

t.text :description

t.timestamps

end

end

The Presentation migration presents a new problem. We know that a

presentation should be associated with both a meeting and a user. This

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_1/db/migrate/002_create_meetings.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=111

BUILDING DATABASE TABLES 112

Figure 4.7: Foreign key conventions

means we need to create a foreign key to each of those tables. Rails has

a convention it uses when creating foreign keys to associated tables.

The foreign key is named using a singular version of the associated

table name with an _id suffix. Taking a look at Figure 4.7, we see that for

this situation we’ll be using foreign keys named meeting_id and user_id.

A column used as a foreign key will most likely need an index to prevent

a full table scan during queries. Adding an index can also be done in

our migration using the add_index method. Looking at Figure 4.8, on

the following page, we see two different approaches. The first example

demonstrates a unique index on a single column named url. The second

shows us how we would go about adding an index on multiple columns.

Ruby Download building_a_rails_app/user_group_1/db/migrate/003_create_presentations.rb

def self.up

create_table :presentations do |t|

t.integer :meeting_id

t.integer :user_id

t.string :title

t.text :description

t.timestamps

end

add index to columns used in joins

add_index :presentations, :meeting_id

add_index :presentations, :user_id

end

We’ve used the simplest form of add_index to create an index on the

necessary columns. This finishes up the migrations for our models.

Let’s now use rake to create our schema.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_1/db/migrate/003_create_presentations.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=112

EMPLOYING ACTIVERECORD 113

Figure 4.8: Adding an index using migrations

user_group> rake db:migrate

(in /Users/derek/work/user_group)

== 1 CreateUsers: migrating ==

-- create_table(:users)

-> 0.0039s

== 1 CreateUsers: migrated (0.0040s) ===================================

== 2 CreateMeetings: migrating ===

-- create_table(:meetings)

-> 0.0524s

== 2 CreateMeetings: migrated (0.0526s) ================================

== 3 CreatePresentations: migrating ====================================

-- create_table(:presentations)

-> 0.0039s

-- add_index(:presentations, :meeting_id)

-> 0.0083s

-- add_index(:presentations, :user_id)

-> 0.0077s

== 3 CreatePresentations: migrated (0.0208s) ===========================

We told you that following conventions would pay off, but the proof

is in the pudding. Now that we have our database tables and models

created, we can take a closer look at the power ActiveRecord gives us

for manipulating data in these tables.

4.6 Employing ActiveRecord

Rails is a high-level development framework focused on programmer

productivity. Rails applications are heavily focused on data, and that

data is stored in relational databases.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=113

EMPLOYING ACTIVERECORD 114

The most common way to deal with databases, and the way you would

typically do it in PHP, is to write SQL. However, writing SQL statements

is not nearly as fun, convenient, or productive as writing Ruby code.

The Rails answer to this, and the core of the Rails framework itself,

is a sophisticated database abstraction layer called ActiveRecord. It is

intended to provide a high-level, Ruby way of dealing with the database

for the most common, mind-numbing SQL tasks we do daily such as

SELECT or UPDATE statements.

In ActiveRecord, a class is a representation of a table, and properties of

that class translate to columns in that table. To get an idea of how this

works, let’s create a new meeting record using our Meeting class. We’ll

once again use the console script to perform this.

user_group> ruby script/console

Loading development environment

>> meeting = Meeting.new(:meets_on => '2007-12-06',

:location => 'The Library',

:description => 'Rails Hackfest')

=> #<Meeting:...>

Here we have created a new meeting object by passing a hash of the

data we want to insert into the constructor method of the Meeting class.

You’ll notice that the keys for the hash are based directly on the name

of the columns for this table. ActiveRecord inspects the database struc-

ture for the meetings table and dynamically adds new properties to the

Meeting class based on the table’s column names. This stores the record

in memory only, and to insert this data to the database, we’ll use the

save method.

>> meeting.save

=> true

>> meeting.id

=> 1

ActiveRecord automatically fills in the primary key for the inserted

record, and we can verify the newly inserted ID by reading the id

method. There is not a verbatim copy of ActiveRecord in PHP yet. To

get an idea of what the equivalent PHP for this code would look like,

here’s a hypothetical PHP implementation of the previous syntax.

PHP Download building_a_rails_app/php/active_record/new_object.php

$meeting = new Meeting(array('meets_on' => '2007-12-06',

'location' => 'The Library',

'description' => 'Rails Hackfest'));

$meeting->save();

$meeting->id();

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/active_record/new_object.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=114

EMPLOYING ACTIVERECORD 115

Joe Asks. . .

Is ActiveRecord Slow?

Some PHP developers seem to think that using a high-level way
of accessing the database (ActiveRecord) instead of raw SQL
means that it has to be slow or the purpose is to hide away the
underlying SQL. This is misinformed.

ActiveRecord always allows you to drop down to straight SQL
whenever you need it. Most Rails applications will end up using
some handwritten SQL, so the MySQL skills that using PHP taught
you will carry over well.

In the early stages of our application, we should worry much
more about the application’s functionality and less about any
micro-optimizations we could gain by hand-tuning our SQL for
every SELECT or UPDATE. We can always do that later—if we find
some place where we actually have a performance issue.

A more likely scenario in PHP is that we would perform this operation

by creating a SQL INSERT statement. We would execute the SQL using

PDO’s exec method, getting the inserted ID with lastInsertId.

PHP Download building_a_rails_app/php/active_record/new_meeting.php

$dbh = new PDO('mysql:host=localhost;dbname=user_group_development',

'root', '');

$sql = "INSERT INTO meetings (

meets_on, location, description

) VALUES (

'2007-12-06', 'The Library', 'Rails Hackfest'

)";

$dbh->exec($sql);

print $dbh->lastInsertId();

Retrieving records from the database in Rails is done using the Meet-

ing.find method:

>> meeting = Meeting.find(:first)

=> #<Meeting:...>

>> meeting.location

=> "The Library"

This usage of the find method performs a query for the first record in

the meetings table and returns a Meeting object loaded up with the

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/active_record/new_meeting.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=115

EMPLOYING ACTIVERECORD 116

data from that row. We can now access the values for the row using the

properties of this object. The equivalent PHP code would execute a SQL

statement that limited the results to one record.

PHP Download building_a_rails_app/php/active_record/find_first_meeting.php

$dbh = new PDO('mysql:host=localhost;dbname=user_group_development',

'root', '');

$sql = 'SELECT * FROM meetings LIMIT 1';

$result = $dbh->query($sql);

$row = $result->fetch();

print $row['location']."\n";

Often we will want to find a record by its primary key in the database. In

this case, we can simply replace :first with the specific ID of the record

we want to find. Let’s try this by using the primary key we obtained

earlier by calling the id method.

>> meeting = Meeting.find(1)

=> #<Meeting:...>

Here we have retrieved the record with a primary key value of 1. To do

the same thing in PHP, we would once again write SQL to select the

data using a WHERE condition to restrict the ID to a specific value.

PHP Download building_a_rails_app/php/active_record/find_pk_meeting.php

$dbh = new PDO('mysql:host=localhost;dbname=user_group_development',

'root', '');

$sql = "SELECT * FROM meetings WHERE id='1'";

$result = $dbh->query($sql);

$row = $result->fetch();

The find method is versatile and has enough options to replace most of

the SELECT operations you’ll need to do in your application. We’ll discuss

them more in depth as we get further along in our application.

Taking a look back at our meeting data, we realize that we should

probably be more specific about our meeting location. Let’s update this

detail by setting the location column data directly through our object.

>> meeting.location = 'University Library'

=> "University Library"

>> meeting.save

=> true

Here we see that we can also assign values directly to the ActiveRecord

attributes.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/active_record/find_first_meeting.php
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/active_record/find_pk_meeting.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=116

EMPLOYING ACTIVERECORD 117

Joe Asks. . .

Couldn’t We Just Write ActiveRecord in PHP?

It is certainly possible to write an object relational mapper in
PHP, and many of the newer PHP frameworks have done this in
response to Rails. You’ll however find that some of the features,
and much of the elegance of ActiveRecord, cannot be repro-
duced in PHP because of some technical limitations. But PHP is
gaining ground, and we might yet see something emerge. It is
worth playing around with if you have the time; you’ll probably
learn a new thing or two about both Rails and PHP doing so.

In this case, updating the location does not save to the database until

we call the save method. The update performed would be similar to

what the following PHP code executes.

PHP Download building_a_rails_app/php/active_record/update_meeting.php

$dbh = new PDO('mysql:host=localhost;dbname=user_group_development',

'root', '');

$sql = "UPDATE meetings

SET location='University Library'

WHERE id='1'";

$dbh->exec($sql);

As you can see, this way of dealing with data through a proxy object is

straightforward, and it’s a whole lot nicer than writing SQL statements.

There are quite a few more features and benefits that we’ll discuss while

building our application. For now, we’ll add one more meeting to the

database for the November meeting we had. This time we’ll use the

create method, which is nearly identical to the new method used earlier.

It will however perform the save method behind the scenes so that we

can avoid that additional step.

>> Meeting.create(:meets_on => '2007-11-08',

:location => 'University Library',

:description => 'Lightning Talks')

=> #<Meeting:...>

At this point we have our database schema figured out and all of our

model files up and running. We also have a few records inserted so that

we have some sample data to work with. This allows us to move on to

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/active_record/update_meeting.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=117

CHAPTER REVIEW 118

the next step, which is creating an interface for our application data

through the use of Rails controllers and views.

4.7 Chapter Review

Congratulations! We made it through, and we laid a foundation of mod-

els for us to build a real application on. We’ve come a long way in a

short time, and things are starting to take shape. Joe’s user group will

be online in no time.

The concepts presented in this chapter are important to every Rails

project we will undertake. The model layer is the center of a Rails appli-

cation. All the business logic is encapsulated in the models. The rest of

the application—controllers and views—are built around the models.

It’s important to have a firm understanding of the concepts presented

in this chapter. If you didn’t fully grasp some of the examples, take

some time to go back through now. In the next chapter, we’ll continue

building up our application with the controllers and views.

We’ve learned some important concepts about Rails in this chapter:

• We started off by learning a domain-centered workflow to follow.

This begins by working closely with the client to define the initial

requirements and then working iteratively to model our domain

objects (models) around them.

• We discovered that by simply accepting the Rails conventions for

developing our application, we can free our minds from many of

the little implementation details that often distract us from solving

our client’s actual problems.

• We learned that the heart of a Rails application are its models. In

Rails, form generally follows function. Although we sketched out

our user interface early on to get a grasp on the initial require-

ments, putting the user interface to code isn’t where we start in a

Rails application.

• Finally, we got our first taste of interacting with our domain via the

models we created, instead of poking directly inside the database.

We learned that ActiveRecord’s place isn’t to hide SQL. Its purpose

is to give us a higher-level way of thinking about and interacting

with the data while always dropping back down to the SQL when

we need it.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=118

EXERCISES 119

4.8 Exercises

Here are some extra exercises that you can try on your own:

• Take another look inside the migrations we created and how our

data will fit together. Compare the migrations to the generated

model files. Review the model naming conventions.

• Explore some of the new Ruby syntax we showed in this chapter.

For example, type %w(fish sheep bacon) on its own line in the Ruby

console, and see what it really does.

• While you’re in the Ruby console, play with the models we’ve cre-

ated. Instead of a Meeting, create a new Presentation. Change its

attributes, and save it again.

• Try using the MySQL console or a tool such as phpMyAdmin to

get another view of what you’ve done to the database through the

migrations and interacting with models.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=119

Chapter 5

Working with
Controllers and Views

In this chapter we’ll learn the conventions Rails uses to help orga-

nize our controllers and views. We’ll cover how Rails uses the idea of

resources on the Web to organize our applications and how to map a

URL to a resource in our application. Once we get these basics down,

we can begin to create all the pages to display and modify the meetings

in our application.

5.1 Identifying Resources

One of the most important concepts to grasp when dealing with Rails

controllers is the idea of resources. Once you have a grasp on how

to identify resources and actions in your application, you’ll have a lot

better idea of how to build your controllers.

A common view of the Web is that we are navigating through a series

of pages. We type in a URL or follow a link to a location where the

browser requests a page and renders HTML as a response. This docu-

ment or page-centric view of the Web remains from the days in which

the Web consisted nearly entirely of documents. A document was the

primary resource on the Web, and HTTP was a way of requesting those

documents.

The Web has evolved significantly, but this page-centric view of the

Web remains popular because many tools used to build websites and

applications still revolve around the idea of a page.

IDENTIFYING RESOURCES 121

Figure 5.1: Pages and resources

PHP applications often consist of a single PHP file to represent each

page. Rails takes a different perspective on this primarily because of its

embrace of the MVC pattern and the object-oriented nature of Ruby.

Instead of seeing pages, we should identify objects in our application

and build around those objects. We’ve already identified the objects in

our own application as meetings, presentations, and users. By taking a

look at some other applications, we can start to identify objects in other

people’s domains as well. The objects found at http://flickr.com are pho-

tographs, comments, photo sets, and contacts. Even a site as simple as

http://google.com has websites as its primary objects.

Objects are the resources in our application, and we typically want to

perform some type of action on them. We want to create, edit, delete,

and show them to the users of our application. The diagram in Fig-

ure 5.1 shows how in a typical PHP application we might create three

different pages to create, show, and edit a user. On the other side, Rails

controllers help organize our actions by combining all the actions that

relate to users into a single UsersController. If objects such as User are

the nouns in our application, the controllers will handle all the verbs

associated with that noun.

http://flickr.com
http://google.com
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=121

CREATING CONTROLLERS 122

Each action in our controller will return some type of response to the

browser when it has completed, just as our PHP page would. Most of

the time this will be a 200 OK HTTP response along with some HTML,

while other actions may redirect to a different action. In public websites

and applications, the primary actions performed are usually to list or

show a resource to the end user.

Although the browser prefers to receive information about these re-

sources in HTML, there are various reasons why you might want to

retrieve the resource in a variety of different formats. Flickr’s primary

display of its resources is in HTML, but you can also request to view the

same resources represented in REST, XML-RPC, SOAP, JSON, or PHP.

They provide a multitude of formats to retrieve and modify their data

because they know that browsers aren’t the only device being used to

request or modify their resources.

In reality, organizing our application around resources won’t necessar-

ily change the way our application looks to the end user. It should,

however, get you thinking a little differently about code organization

and help you understand the importance of controllers in MVC.

5.2 Creating Controllers

Similar to that with models and databases, Rails enforces a series of

conventions for controllers and views. These rules help Rails map URLs

to an action in our application and determine which templates to render

for that action.

By looking at Figure 5.2, on the following page, we can see that con-

troller class names are suffixed with Controller. Each controller has

an associated subdirectory in app/views/ to store related template files.

View template names are derived from their corresponding action in the

controller. Rails will handle most of these details for us when we use

the generate script to create a controller.

The big question now is what to name the controllers needed for this

application. The first resource we are dealing with is meetings. Usually

when building an interface around a resource such as this, we run

into a similar set of actions. The most common actions are shown in

Figure 5.3, on page 124.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=122

CREATING CONTROLLERS 123

Figure 5.2: Controller naming conventions

There are of course additional operations we may need to perform on

meetings, but these seven actions tend to show up as a reoccurring

pattern in applications. Taking a look at our initial page flow diagrams,

we see that we indeed want to perform each of these actions on our

meetings. To group all the actions that we’ll be performing on meetings,

we’ll use a MeetingsController. You will often name your controllers after

the model they are managing, such as Meeting in this case. Controllers

can also exist that aren’t directly associated with a model. We’ll get

into an example of this when we write the authentication part of our

application in Chapter 7, Authenticating Users, on page 173.

We’ll use the generate script to create our new controller. This will help

make sure everything is named correctly and is in the correct location.

We can view documentation for this generator by running it without a

controller name specified.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=123

CREATING CONTROLLERS 124

Figure 5.3: Common actions

user_group> ruby script/generate controller

...

Example:

./script/generate controller CreditCard open debit credit close

...

In the middle of all the output is an example of how to use the controller

generator. It gives us an example of creating a CreditCard controller and

has four additional arguments. These are names of actions added to

the generated controller. Adding a list of actions is not required, and

we can always add more later. In this case, we’ll take advantage of

the feature. Since our first order of business is to create a listing of

meetings, we’ll add an additional index argument after the name of our

Meetings controller.

user_group> ruby script/generate controller Meetings index

exists app/controllers/

exists app/helpers/

create app/views/meetings

exists test/functional/

create app/controllers/meetings_controller.rb

create test/functional/meetings_controller_test.rb

create app/helpers/meetings_helper.rb

create app/views/meetings/index.html.erb

This has successfully created all our controller-related files, along with

the index template for our first view. To see what we have going, let’s

fire up the server to check out how this looks in the browser.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=124

ROUTING REQUESTS 125

Joe Asks. . .

Are All Methods Considered Actions?

A controller is a class, and an action is simply a method defined
in that class. We refer to these methods as actions to distinguish
that these methods are executed as part of the MVC cycle.
Usually, this means that a URL points to them.

Most actions will either render a template or redirect to a dif-
ferent action. Controllers can have other methods that are
not actions—and these are good. Organizing larger sections
of code into smaller methods of singular responsibility promotes
better readability and less repetition. This is especially encour-
aged in object-oriented programming.

Make sure that your WEBrick server is still running in the background,

and point your browser to http://localhost:3000/meetings/index. When you

request this page, an HTTP request gets sent through Rails to our appli-

cation. Rails knows from a default convention that you want to run

code in the index action of the MeetingsController. This action will look

for a view template of the same base name and will find and render the

view template in app/views/meetings/index.html.erb.

The resulting page (shown in Figure 5.4, on the next page) doesn’t do

much yet but is helpful in showing us the power of conventions in

Rails. We didn’t have to map which code to run when we visited the

URL, and we didn’t need to tell the controller which view to render.

Rails ties all of this together to work seamlessly based on the default

naming conventions we have used. URLs will inevitably become more

complex than the current scenario depending on the type of data we

are working with. To remain flexible, Rails allows the customization of

the URL parsing rules using a component called Routing.

5.3 Routing Requests

A typical usage of PHP is to request a script or page directly from the

server by name. The best indication of this practice is seeing the ex-

tension of your PHP file directly in the URL such as http://example.com/list_meetings.php.

Although this is an extremely simple approach to executing scripts

http://localhost:3000/meetings/index
http://example.com/list_meetings.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=125

ROUTING REQUESTS 126

Figure 5.4: The meetings index page

on the server, it also has its drawbacks. The first of which is that

your URL is tied directly to your file structure. Let’s say you had an

impulse to organize your application a little and wanted to logically

separate your scripts by putting them in subdirectories such as /meet-

ings/list.php. Making this change would make the URL for this page

change to http://example.com/meetings/list.php. This would require you

to go through and fix any links to this page in your own application

and would still break any outside links that pointed to this page. After

building up inbound links for a page over a period of time, you might

determine that organizing your code was not worth users following the

old URL to a 404 page.

More advanced PHP techniques exist to solve this problem using

Apache rewrite rules and other similar measures. If you are familiar

with this idea, then the idea of routing in Rails will make a lot of sense

to you.

Rails completely separates the filesystem from the URL through its

routing component. Routing adds a configurable mapping layer that

defines how a URL is parsed and determines what code in our Rails

application will execute for that particular URL. The configuration to

set up these mappings for your application is in config/routes.rb. Ignor-

ing all of the comments for now, let’s take a look at the default routes

defined near the bottom of this file. There are two routes defined here,

and for now we’ll focus on the first.

http://example.com/meetings/list.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=126

ROUTING REQUESTS 127

Figure 5.5: The default routing rule

Ruby Download building_a_rails_app/user_group_1/config/routes.rb

ActionController::Routing::Routes.draw do |map|

Install the default routes as the lowest priority.

map.connect ':controller/:action/:id'

map.connect ':controller/:action/:id.:format'

end

New routes are set up in this file in a few different ways. The most

basic way to define a route is done using the map.connect method we

see used here. The first argument is a pattern that we’ll use to match

the incoming URL. The pattern is composed of a number of components

(three in this case) separated by forward slashes.

When a request gets sent to our application for a resource, the path

section of the URL is compared against each pattern from the top of

the list down until it matches a route. As you can see in Figure 5.5,

the URL http://example.com/meetings/show/10 matches our route pattern

since it is composed of three different components: meetings, show, and

10. These components match up with :controller, :action, and :id in our

route.

When the URL is matched to a specific route, Rails creates a hash by

pairing the URL components with the values supplied in the URL. In

this case, it would result in the following.

params = { :controller => "meetings",

:action => "show",

:id => "10" }

Each component of a route can be described in one of three ways:

• :name

• *name

• name

If the component name is in the style of :name as in the default route

example, it will match the associated component of the URL.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_1/config/routes.rb
http://example.com/meetings/show/10
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=127

ROUTING REQUESTS 128

If the component is in the style of *name, it will match all the remaining

components in the URL. It will collect this list of matched components

into an array in the params hash.

match all requests

map.connect '*all', :controller => "errors", :action => "show"

http://example.com/test/this/route

params = { :all => ['test', 'this', 'route'] }

The *all component of this route matched all three segments of the

URL and combined them into an array that can be referenced using

params[:all]. Since each route requires a :controller and :action, we’ve

included additional arguments to explicitly identify them in this route.

This is necessary since they were not interpreted from the URL as they

were in the default route.

Finally, if a component is in the style of name, it will need to match

literally the corresponding component of the URL to be considered a

match.

Only match URL if the path begins with 'photos'

map.connect 'photos/:action/:slug', :controller => "photos"

http://example.com/photos/edit/a1e32fa4

params = { :slug => 'a1e32fa4' }

In this example, the route will match only if the URL begins with the

string photos. Once again we need to explicitly identify the controller

since it is not inferred from the URL.

The :controller and :action parameters are special in that Rails uses these

to determine the controller and action executed for this request. These

components are required to be in every route in one way or another.

In this example, Rails will execute the show action in MeetingsController

based on the values gathered. All of these parameter values become

accessible within our controller action so that we can use them just as

we would with GET or POST variables.

At this point, you may be wondering how the URL http://localhost:3000/meetings/index

matched any route. It has only two components and does not have a

corresponding component for the :id component in our defined route.

The answer is that the :action and :id components of routes are a little

special in that they have implicit default values. The default value of

:action is index, and the default for :id is nil. This makes sense when you

think that most servers will use a file such as index.html or index.php as

the default. Rails does the same by assuming the default action is to

http://localhost:3000/meetings/index
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=128

RETRIEVING MEETING DATA 129

Figure 5.6: Routing error

index the data. With this in mind, you could visit http://localhost:3000/meetings

and see that it does indeed still display the index action.

Rails will throw an error (such as that shown in Figure 5.6) when an

incoming URL does not match a route pattern or Rails cannot find

an adequate match for the given :controller or :action parameters of the

route.

This error, and other exception pages you see in Rails, aren’t very

pretty. However, they do serve their purpose in helping you identify

problems with your code. Lucky for us, these errors display only in

the development environment in our application. We’ll typically display

a nicer-looking page to the user when an error occurs in a produc-

tion environment. We’ll talk more about this when we learn how to

deploy our application in Section 10.2, The Production Environment, on

page 245.

Routing is a quite complex topic, and this is only a cursory look at how

routing works. At the moment, the default routes work for us. We’ll

revisit routes as we encounter situations that require more complex

routes.

5.4 Retrieving Meeting Data

Now that we have an idea of how http://localhost:3000/meetings/index

maps to execute the MeetingsController#index method, let’s get back to

our application. To display the list of meetings in app/views/meetings/

http://localhost:3000/meetings
http://localhost:3000/meetings/index
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=129

RETRIEVING MEETING DATA 130

index.html.erb, we need to query the database for meeting data. We’d

also like to be able to display a user-friendly name for each meeting

based on its date.

Looking back at our diagrams shows us that Joe wants to have two dif-

ferent sections for this page, separating past and upcoming meetings.

This means we need the data in two different sets. We don’t want to

maintain this application for Joe forever, so we’ll do our best to make

it maintainable for Joe. To do this, we’ve decided to add a few new

methods in our Meetings class. We’ll add two new class methods named

upcoming_meetings and past_meetings to retrieve our meeting data. While

we’re in here, we’ll also create an additional name method to give our

meetings a nicer-looking version of the meeting date.

Ruby Download building_a_rails_app/user_group_1/app/models/meeting.rb

Line 1 class Meeting < ActiveRecord::Base
- # class methods
- def self.upcoming_meetings
- find(:all, :conditions => "meets_on > CURRENT_TIMESTAMP()",
5 :order => "meets_on")
- end
-

- def self.past_meetings
- find(:all, :conditions => "meets_on <= CURRENT_TIMESTAMP()",

10 :order => "meets_on")
- end
-

- # formatted name based on date
- def name

15 meets_on.to_s(:long)
- end
- end

To implement the name method, we’ve converted the date on line 15 to

a nicely formatted string using to_s. This allows us to convert the date

to a string using either a :short option or a :long option. Let’s take a look

at the result of this new method using the console script.

user_group> ruby script/console

Loading development environment

>> meeting = Meeting.find(1)

=> #<Meeting:...>

>> meeting.name

=> "December 6, 2007"

This looks much nicer than the default date and works well for our

purposes. The two class methods we added will be used as custom

finder methods that separate our past and upcoming meetings. We’ve

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_1/app/models/meeting.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=130

VIEWING MEETINGS 131

Joe Asks. . .

Aren’t We Avoiding SQL?

Rails tries hard to steer away from complexity in favor of simplic-
ity. Most of Rails ActiveRecord methods reflect this in that they
make queries to the database much easier than writing straight
SQL. They continue to embrace SQL when it is the most concise
way to find or modify our data. This is apparent in things such
as the :order and :conditions options to find. By adding an option
such as :order => "name DESC, id ASC", we can clearly order our
results without resorting to a complex abstraction where SQL
works just fine.

used the familiar find method to retrieve the data. This time we’d like to

query for more than a single meeting. By changing the first argument

to :all, ActiveRecord will retrieve the entire collection of meetings that

matches our criteria. It will return these as an array of Meeting objects

instead of a single object.

The second argument to find is a hash of options to use when finding

our data. We’ll order the results using the :order string value. This will

compose the ORDER BY fragment of our SQL statement. Likewise, we will

filter our results by implementing the :conditions option to append to the

WHERE clause of the SQL statement.

5.5 Viewing Meetings

We can now use our new Meeting class methods within our controller’s

index action to retrieve the lists of meetings we want.

Ruby Download building_a_rails_app/user_group_1/app/controllers/meetings_controller.rb

class MeetingsController < ApplicationController

def index

@upcoming_meetings = Meeting.upcoming_meetings

@past_meetings = Meeting.past_meetings

end

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_1/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=131

ADDING LINKS 132

You’ll notice that we’ve used Ruby instance variables here. All data sets

in this type of variable get passed into our views. We can now open our

associated view at app/views/meetings/index.html.erb and use this data to

iterate through our meetings.

Ruby Download building_a_rails_app/user_group_1/app/views/meetings/index.html.erb

Line 1 <h1>Meetings</h1>
-

- <div class="meeting_list">
- <h2>Upcoming Meetings</h2>
5
- <% for meeting in @upcoming_meetings %>
- <%=h meeting.name %>
- <% end %>
-

10 </div>
-

- <div class="meeting_list">
- <h2>Past Meetings</h2>
-

15 <% for meeting in @past_meetings %>
- <%=h meeting.name %>
- <% end %>
-
- </div>

On line 7 we’ve used the built-in h helper method used to escape HTML

entities in our output. As a shortcut, we’ll often leave the parenthe-

ses off this method and write it in a more readable fashion like this:

<%=h @variable %>.

We’re making a little progress now, so let’s take a look at our view’s

progress so far by refreshing our browser pointed to http://localhost:3000/meetings/index.

This will give us a page that looks like Figure 5.7, on the next page,

where we can see that our meetings have been split up into upcoming

and past dates. Our next step is to add links to a detailed view of each

meeting.

5.6 Adding Links

Rails has a unique way of adding hyperlinks that is different from how

we’d typically do it in PHP. Similar to what we discussed earlier with

routes, hard-coding our own hyperlink would make a coupling between

a certain URL in the HTML and the controller and action. This might

be a headache later if we decide to restructure the links, forcing us

to go back and change the hyperlink manually. To use a more agile

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_1/app/views/meetings/index.html.erb
http://localhost:3000/meetings/index
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=132

ADDING LINKS 133

Figure 5.7: Past and upcoming meetings

approach, Rails generates URLs for us based on our routing rules. This

helps us create less fragile links to other resources or pages.

Generating URLs

URL generation is essentially routing in reverse. We start with a hash

of parameters that Rails uses to build the original URL based on our

defined routes in config/routes.rb.

When working in our views, the url_for method will perform the most

basic URL generation. In this case, we can build the desired URL string

by specifying the :controller, :action, and :id parameters.

url_for(:controller => "meetings",

:action => "show",

:id => "10")

This will produce the following string.

"/meetings/show/10"

Rails will do its best to build the shortest URL possible to link to the

resource and will append any additional arguments as GET parameters

on the link. In this example, we’ll add a page option.

url_for(:controller => "meetings",

:action => "index",

:page => "2")

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=133

ADDING LINKS 134

Rails adds page as a GET variable since our routing rule does not

include this option. It also will drop the index value since it is implicitly

defined as the default action. This is the final result.

"/meetings?page=2"

Using Rails Helpers

View templates in Rails allow our HTML to be intermixed with display

logic. Although this is convenient in most cases, we usually want to

keep the amount of logic in our templates to a bare minimum. This

means simple conditional statements or loops for the most part. Rails

uses the idea of helper methods to handle more complex view logic.

If you are familiar with the Smarty templating library for PHP, this is

similar to using variable modifiers.

Helper methods are defined in a separate file to aid in the creation and

display of your view code. This makes our templates easier to read and

our complex view logic easier to test. Rails comes with a large set of

built-in helpers as part of the framework and makes creating your own

custom helpers easy.

While url_for generates the basic URL for us, the link_to built-in helper

will create the actual anchor tag for us as well.

link_to(meeting.name, :controller => "meetings",

:action => "show",

:id => meeting.id)

This code produces a string such as the following:

December 6, 2007

The first argument in link_to determines the content or clickable text of

the link. In this case, we’ve used the name of the meeting as the hyper-

link. The second argument defines the link URL using a hash. This

hash is usually composed of at least a :controller and :action component

to specify where we want the link to lead us. When we’re linking to an

action in the same controller, we can omit the :controller option. Rails

will assume that when the :controller value is missing, we’re linking to

an action in the current controller.

Let’s use the link_to helper method to add hyperlinks from each of our

meetings to the show action for that specific meeting. We’ll also add a

link to the new action that we’ll use to create new meetings.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=134

ADDING LINKS 135

Ruby Download building_a_rails_app/user_group_2/app/views/meetings/index.html.erb

Line 1 <h1>Meetings</h1>
-

- <div class="meeting_list">
- <h2>Upcoming Meetings</h2>
5
- <% for meeting in @upcoming_meetings %>
-
- <%= link_to h(meeting.name), :controller => "meetings",
- :action => "show",

10 :id => meeting.id %>
-
- <% end %>
-
- <p class="add">

15 <%= link_to "add meeting", :controller => "meetings",
- :action => "new" %>
- </p>
- </div>
-

20 <div class="meeting_list">
- <h2>Past Meetings</h2>
-
- <% for meeting in @past_meetings %>
-

25 <%= link_to h(meeting.name), :controller => "meetings",
- :action => "show",
- :id => meeting.id %>
-
- <% end %>

30
- </div>

Factoring out the hard-coded hyperlink with link_to is good. We can do

even better, though, with the aid of some new routes in our application.

This time we’ll take a look at a new way of defining routes using named

routes.

Named Routes

Named routes are a way of creating a label to specific links in our appli-

cation. We create explicit routes to locations within our application to

give us shortcut methods to use when referring to these locations. Let’s

open our config/routes.rb file again to add two named routes.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_2/app/views/meetings/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=135

ADDING LINKS 136

Joe Asks. . .

What Is map.resources?

You may notice instructions about using map.resources within
the comments of your route’s source file. This is an advanced
type of routing that automatically maps a resource in our appli-
cation to the most common actions we’ll perform on that
resource. This also maps a named route to each of these
actions. This style of routing can be powerful, but we’ll stick with
explicit named routes while still learning.

Ruby Download building_a_rails_app/user_group_2/config/routes.rb

ActionController::Routing::Routes.draw do |map|

meetings routes

map.meeting '/meetings/show/:id', :controller => "meetings",

:action => "show"

map.new_meeting '/meetings/new', :controller => "meetings",

:action => "new"

Install the default route as the lowest priority.

map.connect ':controller/:action/:id'

map.connect ':controller/:action/:id.:format'

end

Instead of calling map.connect in these routes, we’ve replaced the con-

nect method with a custom name for the route. In this case we’ve used

meeting to link to a single meeting and new_meeting to link to an action

for creating a new meeting.

Rails uses these new routing rules to dynamically add helper methods

for generating links to these actions. We can use *route_name*_url to gen-

erate the URL of the link, or we can use *route_name*_path to generate

the path:

meeting_path(:id => meeting.id)

=> /meetings/show/6

meeting_url(:id => meeting.id)

=> http://localhost:3000/meetings/show/6

We no longer have to specify the :controller and :action components of

this URL, since they are explicitly defined in the named route. We do,

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_2/config/routes.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=136

ADDING LINKS 137

however, need to specify the :id component to link to a specific meeting.

When generating a URL for a new meeting, we don’t need to specify any

of the components.

new_meeting_path

=> /meetings/new

new_meeting_url

=> http://localhost:3000/meetings/new

We can see how using these helpers could clean up our code a bit. Let’s

swap out our previous hashes to use the new helpers generated by our

named routes. This will help us clean up some of the duplication that is

happening here. We typically stick with using the generated _path when

employing these methods in our views.

Ruby Download building_a_rails_app/user_group_3/app/views/meetings/index.html.erb

<h1>Meetings</h1>

<div class="meeting_list">

<h2>Upcoming Meetings</h2>

<% for meeting in @upcoming_meetings %>

<%= link_to h(meeting.name), meeting_path(:id => meeting.id) %>

<% end %>

<p class="add"><%= link_to "add meeting", new_meeting_path %></p>

</div>

<div class="meeting_list">

<h2>Past Meetings</h2>

<% for meeting in @past_meetings %>

<%= link_to h(meeting.name), meeting_path(:id => meeting.id) %>

<% end %>

</div>

Writing Custom Helper Methods

There is one last thing we’d like to do with this view before we con-

tinue. When either the upcoming or past meetings list is empty, the

interface just displays a blank area. It would be much nicer to display

a short message that says “No Meetings” when none are available. We’ll

go ahead and create a custom helper to do this so that we can share

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/views/meetings/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=137

CREATING NEW MEETINGS 138

the same logic between upcoming and past meetings. Let’s open the file

helpers/meetings_helper.rb. This is where we’ll write custom helper meth-

ods that are shared between all of the views for our MeetingsController.

Ruby Download building_a_rails_app/user_group_4/app/helpers/meetings_helper.rb

module MeetingsHelper

def no_meetings(meetings)

content_tag('li', "No Meetings") if meetings.empty?

end

end

To display our message, we’ve used the content_tag standard Rails

helper method. In this case we’ve specified that we want to return an

HTML li tag, with “New Meeting” as the tag content. This completes our

small but helpful method. We can now add it into our view to make

empty lists a little nicer.

Ruby Download building_a_rails_app/user_group_4/app/views/meetings/index.html.erb

<% for meeting in @upcoming_meetings %>

<%= link_to h(meeting.name), meeting_path(:id => meeting.id) %>

<% end %>

<%= no_meetings(@upcoming_meetings) %>

We can use custom helpers whenever we need to share snippets of logic

between different areas of the template. Although this type of refactor-

ing may seem unnecessarily small, it is a good way to keep our code

clean and readable. Templates can quickly become unwieldy when too

much repetition creeps in.

With these links in, our meetings index view should look like Figure 5.8,

on the following page. It is starting to shape up into something! We

now need a way to create new meetings in our application. We already

created a hyperlink to add a new meeting. It’s about time we implement

the new action.

5.7 Creating New Meetings

To start creating new meetings, we need to create an HTML form to

submit the meeting details. We’ll create this in an action named new in

our MeetingsController. Let’s add this method, along with an associated

view named app/views/meetings/new.html.erb.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/helpers/meetings_helper.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/views/meetings/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=138

CREATING NEW MEETINGS 139

Figure 5.8: Past and upcoming meetings

Ruby Download building_a_rails_app/user_group_3/app/controllers/meetings_controller.rb

def new

@meeting = Meeting.new

end

In this action, we have created a Meeting instance variable that we’ll use

to help build our form in the view. Rails comes with a group of built-in

helper methods designed to make building HTML forms easier. There is

one to create the form and an additional collection of helpers used to

build each form element tag we need.

Ruby Download building_a_rails_app/user_group_3/app/views/meetings/new.html.erb

Line 1 <h1>Create a New Meeting</h1>
-

- <div class="form">
- <%= error_messages_for :meeting -%>
5

- <fieldset>
- <legend>Enter Meeting Details</legend>
- <% form_for :meeting, :url => { :action => "create" } do |form| %>
- <div>

10 <%= form.label :meets_on %>:

- <%= form.date_select :meets_on %>
- </div>
- <div>
- <%= form.label :location %>:

15 <%= form.text_field :location, :size => 35, :class => "text" %>
- </div>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/controllers/meetings_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/views/meetings/new.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=139

CREATING NEW MEETINGS 140

- <div>
- <%= form.label :description %>:

- <%= form.text_area :description, :rows => 4, :class => "text" %>

20 </div>
-

- <%= submit_tag "Create", :class => "submit" %>
- <%= link_to "cancel", { :action => "index" }, :class => "cancel" %>
- <% end %>

25 </fieldset>
- </div>

There is a lot of markup packed in here, so we’ll take it step by step.

The form_for helper on line 8 creates our form tag. Taking a look at

Figure 5.9, on the next page, we see that the first argument to form_for

is a symbol based on the name of the instance variable we assigned in

our controller. In this case, the @meeting variable translates to :meeting.

In the second argument, we’ve specified the :url option to generate our

action attribute based on our routes.

We discussed blocks back in Section 2.9, Understanding Blocks, on

page 65, and this is a perfect example of their usefulness. The form_for

helper uses a block that yields a form builder. We use the block argu-

ment named form to create the content of our form. Let’s take a closer

look at how we create an individual input element.

Ruby Download building_a_rails_app/user_group_3/app/views/meetings/new.html.erb

<div>

<%= form.label :location %>:

<%= form.text_field :location, :size => 35, :class => "text" %>

</div>

Here we’ve created a text input tag for the meeting location using the

text_field method. We’ve paired this with a label tag for the input. The

first argument of each method is the name of a meeting attribute. We

can add more attributes to our form elements using the optional second

argument. If you view the source of the generated HTML, you’ll get an

idea of what the helpers are building here.

Download building_a_rails_app/html/form_helper.html

<div>

<label for="meeting_location">Location</label>:

<input class="text" id="meeting_location" name="meeting[location]"

size="35" type="text" />

</div>

The date_select helper handles the rather tedious task of creating three

different select boxes to fill in our meets_on date attribute.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/views/meetings/new.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/html/form_helper.html
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=140

CREATING NEW MEETINGS 141

Figure 5.9: Using the form_for helper

Ruby Download building_a_rails_app/user_group_3/app/views/meetings/new.html.erb

<div>

<%= form.label :meets_on %>:

<%= form.date_select :meets_on %>

</div>

The markup generated by this helper is a little more complex than other

attributes since the single date value needs to be split into three sep-

arate components to fill the form. These different elements are later

reassembled to a single date to save to the database.

The good news is that Rails handles these details behind the scenes,

and all we have to remember is the simple helper syntax. If we visit

http://localhost:3000/meetings/new, we should now have the complete meet-

ing form displayed in Figure 5.10, on the next page.

On line 8, we’ve set our form to post to the create action. This action

won’t need a template file, because it will be processing form sub-

mission only, not actually rendering any new HTML. Let’s add a new

method in our controller for this action.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/views/meetings/new.html.erb
http://localhost:3000/meetings/new
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=141

CREATING NEW MEETINGS 142

Figure 5.10: The form to create a meeting

Ruby Download building_a_rails_app/user_group_3/app/controllers/meetings_controller.rb

def create

@meeting = Meeting.new(params[:meeting])

if @meeting.save

flash[:notice] = 'Meeting successfully created.'

redirect_to :action => "index"

else

render :action => "new"

end

end

In PHP, we access submitted form data by using the $_GET and $_POST

superglobals. Rails makes this same data available within the Rails

controllers in a single hash named params containing both GET and

POST data similar to the $_REQUEST array in PHP. In PHP, the data sub-

mitted from this HTML form would be structured similar to this.

PHP Download building_a_rails_app/php/post/post_data.php

$_POST = array(

'meeting' => array(

'location' => 'University Library',

'description' => 'Rails Hackfest',

)

);

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/controllers/meetings_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/post/post_data.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=142

REDIRECTION AND FLASH DATA 143

In a similar way, when the form is submitted to the create action in

Rails, it will pass along all the POST variables for our meeting data in a

hash named :meeting nested within params. In Ruby we could think of

the params data like this:

Ruby Download building_a_rails_app/ruby/post/post_data.rb

params = {

:meeting => {

:location => "University Library",

:description => "Rails Hackfest"

}

}

With the data in a hash like this, we can pass the meeting data from the

params hash to a new instance of Meeting. This will assign the values

from the form submission to create a new meeting.

Ruby Download building_a_rails_app/ruby/post/post_data_assignment.rb

Meeting.new(params[:meeting])

This has the same effect as when we created our meetings earlier from

the console and is synonymous with doing this:

Ruby Download building_a_rails_app/ruby/post/post_data_new.rb

Meeting.new(:location => "University Library",

:description => "Rails Hackfest")

Once we have assigned the values, we place the @meeting.save state-

ment within a conditional. The save method will return false if the meet-

ing doesn’t save for some reason. The most common reason this might

happen is from a violation of validation rules that the meeting must

pass in order to properly save. We’ll cover validations in more depth in

Chapter 6, Validating and Testing Models, on page 161.

5.8 Redirection and Flash Data

When a new meeting inserts correctly in our create action, we’ll redirect

the user to the meetings index page.

Ruby Download building_a_rails_app/user_group_3/app/controllers/meetings_controller.rb

if @meeting.save

flash[:notice] = 'Meeting successfully created.'

redirect_to :action => "index"

else

render :action => "new"

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/post/post_data.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/post/post_data_assignment.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/post/post_data_new.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=143

REDIRECTION AND FLASH DATA 144

Joe Asks. . .

Does Flash Have Anything to Do with Adobe Flash?

Although it confusingly shares the same name, flash data in
Rails has no relation to Adobe Flash or Adobe Flex. Flash in Rails
is a way of temporarily storing a message in a session so that
we can “flash” this message to the user on the next request.

Although in PHP we use header("Location:...") to perform redirects, Rails

performs a redirect from the controller using the redirect_to method.

We’ll once again use URL generation to create a location string based

on a hash of parameters.

Here we redirect to the index action. The redirect_to method also accepts

a string as the redirection location, but passing a hash is preferred

when linking to other actions within our application.

In this particular action, we are redirecting to a completely new HTTP

request. Rails uses the same “shared nothing” architecture as PHP,

which means any variables set in the create method will be gone once

this request is over. Before our redirection, however, we set a flash

message to notify the user of the success of our operation.

The flash method is accessed like a hash, but it is special in how it

persists in our application. Any data that we set using this method

remains available in the next request. This allows us to pass messages

from one request to the next using session storage to keep this message

persistent. Remember, however, that this data will be available only on

the next immediate request for this user and will be gone thereafter.

Now that we’re passing this flash notice to the index action, we need to

render the message it contains in that action’s view. We’ll add a simple

div tag at the top of this page to display the message when there is

flash data available. We access the flash data from our view using the

flash method. We’ll use this to get the :notice message assigned in the

previous request.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=144

ADMINISTRATING MEETINGS 145

Figure 5.11: Flash message on index page

Ruby Download building_a_rails_app/user_group_4/app/views/meetings/index.html.erb

<h1>Meetings</h1>

<% if flash[:notice] %>

<div id="flash_notice"><%=h flash[:notice] %></div>

<% end %>

<div class="meeting_list">

Let’s now add another meeting with our form to make sure it works as

we expect. We’ll add the next upcoming meeting as the first Thursday

of next month at the usual location. When we submit it, we’ll be redi-

rected to the index page. Here we’ll see a message (such as the one in

Figure 5.11) that tells us that the creation was successful. Remember

that this message is available for only a single request and will vanish

when you hit your browser’s Refresh button.

5.9 Administrating Meetings

We can now create and view the list of meetings, but Joe tells us he

wants the ability to edit and delete these meetings from the application

as well. At this point we’ll go ahead and implement a more detailed

view of each meeting. This is typically done using a show action in our

controller.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/views/meetings/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=145

ADMINISTRATING MEETINGS 146

Viewing Meeting Details

We’ve already added a link to the show action from our index page, but

at this point the link leads nowhere. It’s about time to create a show

method for this action in our controller.

Ruby Download building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb

def show

@meeting = Meeting.find(params[:id])

end

When we follow a link from our meetings index to a specific meeting,

we’ll end up at a location such as http://localhost:3000/meetings/show/1.

When this URL gets parsed through our default route, the 1 will match

up with :id route component to become available in our controller as

params[:id]. We’ll use this primary key to retrieve this page’s meeting

using the find method. Next we’ll use this object in our view to dis-

play the meeting details. We’ll create this view in a template named

app/views/meetings/show.html.erb.

Ruby Download building_a_rails_app/user_group_4/app/views/meetings/show.html.erb

Line 1 <h1><%= link_to "Meetings", :action => "index" %>
- → <%=h @meeting.name %>
- </h1>
-

5 <div class="details">
- <dl>
- <dt>When:</dt><dd><%=h @meeting.name %> @ 7:00pm</dd>
- <dt>Where:</dt><dd><%=h @meeting.location %></dd>
- <dt>Agenda:</dt><dd><%=h @meeting.description %></dd>

10 </dl>
-

- <h2>Presentations</h2>
- <ul id="presentations">
-

15 <p class="modify">
- <%= link_to "edit", :action => "edit", :id => @meeting.id %> |
- <%= link_to "destroy", { :action => "destroy", :id => @meeting.id },
- :confirm => 'Are you sure?',
- :method => :delete %>

20 </p>
- </div>

In our view, we use the @meeting variable to show all the details for this

meeting. We’ve also added a placeholder for where we’ll add presenta-

tions for the meeting later. On lines 16 and 17, we’ve placed links to

edit and destroy this meeting. Our link to destroy the meeting is par-

ticularly unique. In addition to the hash specifying the URL of where

this link goes, we’ve also added a third argument with the :confirm and

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb
http://localhost:3000/meetings/show/1
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/views/meetings/show.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=146

ADMINISTRATING MEETINGS 147

Figure 5.12: Showing a meeting

:method options. The :confirm option will add a JavaScript dialog box

that prompts us with “Are you sure?” before deleting a meeting. This

should provide a nice little safeguard to prevent the accidental deletion

of meetings. The end result of this view should be the page shown in

Figure 5.12.

Generally we don’t want to link to a destructive action in our views,

and these type of actions are best put behind a form that submits a

POST request. This is so that crawlers and tools that prefetch web pages

do not unintentionally delete our data by following these links. Plus,

putting this type of operation behind a POST request follows closer

with the idea of how HTTP should work in general. Rails is all about

convenience, and it provides us with the quite simple :method option

that we can add to our link_to helper. When we add :method => :delete,

Rails will generate JavaScript that will dynamically build a form and

submit it using a POST request instead of following the actual link.

Reusing Code with Partials

Now we have a nice listing of the meeting details, but Joe wants to edit

these meetings as well. Let’s add the edit action to our controller. We

will once again use the params[:id] value to fetch our meeting object by

its primary key.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=147

ADMINISTRATING MEETINGS 148

Ruby Download building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb

def edit

@meeting = Meeting.find(params[:id])

end

The form in our view will have a significant amount in markup in com-

mon with our new view. As always, we’ll try to reduce the duplication

in our code. Rails provides a nifty way for us to extract our common

form elements to a different template so that we can share it between

our two different views.

Partials in Rails are snippets of HTML code that you can share between

different views. They are stored in your views/ directory just like normal

view templates, but they are prefixed with an underscore. This helps

us easily recognize which view files aren’t associated directly with an

action. For this partial, we want to extract the form markup shared

between the new and edit views. Since we’re extracting common code

for our form, we’ll name this partial app/views/meetings/_form.html.erb.

Ruby Download building_a_rails_app/user_group_4/app/views/meetings/_form.html.erb

<div>

<%= form.label :meets_on %>:

<%= form.date_select :meets_on %>

</div>

<div>

<%= form.label :location %>:

<%= form.text_field :location, :size => 35, :class => "text" %>

</div>

<div>

<%= form.label :description %>:

<%= form.text_area :description, :rows => 4, :class => "text" %>

</div>

We’ve separated only the parts that are common to each view, which

are the individual inputs for the form. We can now remove this code

from our new.html.erb view and replace it with a call to render our

_form.html.erb partial template.

Ruby Download building_a_rails_app/user_group_4/app/views/meetings/new.html.erb

<% form_for :meeting, :url => { :action => "create" } do |form| %>

<%= render :partial => 'form', :locals => { :form => form } %>

<%= submit_tag "Create", :class => "submit" %>

<%= link_to "cancel", { :action => "index" }, :class => "cancel" %>

<% end %>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/views/meetings/_form.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/views/meetings/new.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=148

ADMINISTRATING MEETINGS 149

The render method takes the name of the partial file without the leading

underscore or extension. So in this case we’ll use :partial => ’form’ to

render the _form.html.erb file. This is actually quite similar to performing

an include on a file in PHP.

One of the trickier parts of using partials is variable scope. Our form

variable in new.html.erb is not a global variable and is available only in

the scope of the new.html.erb template. Since the partial template is in

a separate file, we need to pass our local variable into the partial file

using the :locals option. Here we pass our form builder object into the

partial to be used by the same name. Although local variables need to be

passed into partials using :locals, instance variables such as @meeting

will automatically be shared. Since we’re passing only a single object to

the partial, we can refactor this partial to use a nice shortcut. Instead

of using the :locals hash to pass the variable into our partial, we’ll use

the :object option to pass the form builder object into our partial.

Ruby Download building_a_rails_app/user_group_5/app/views/meetings/new.html.erb

<%= render :partial => 'form', :object => form %>

The object will become accessible in the partial by the same name as

the partial file (without the underscore). In this example, the variable

name will be form since the partial name is _form. Remember that this

will work only for a single variable. It is most appropriately used when

the data in this variable is the object represented by the partial, as the

form is in this case.

Editing Meetings

With our form partially created, the edit view is quite simple now. This

will be similar to the new template, but with a few small changes. When

we submit an edit, we’ll want the form to submit to the update action

instead of create. The cancel link will also change slightly to lead us

back to the show action.

Ruby Download building_a_rails_app/user_group_4/app/views/meetings/edit.html.erb

Line 1 <h1>Edit Meeting</h1>
-

- <div class="form">
- <%= error_messages_for :meeting -%>
5

- <fieldset>
- <legend>Enter Meeting Details</legend>
- <% form_for :meeting, :url => { :action => "update",
- :id => @meeting.id } do |form| %>

10

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/views/meetings/new.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/views/meetings/edit.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=149

ADMINISTRATING MEETINGS 150

- <%= render :partial => 'form', :object => form %>
-

- <%= submit_tag "Save", :class => "submit" %>
- <%= link_to "cancel", { :action => "show", :id => @meeting.id },

15 :class => "cancel" %>
- <% end %>
- </fieldset>
- </div>

The edit page (shown in Figure 5.13, on the next page) takes full advan-

tage of our form helpers to prepopulate the data for the form based on

the @meeting object.

To actually update data in the database, we need to build an update

action in our controller. This is similar to the create action and will not

render anything new. Instead, it will either redirect or render the edit

template.

Ruby Download building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb

Line 1 def update
- @meeting = Meeting.find(params[:id])
-

- if @meeting.update_attributes(params[:meeting])
5 flash[:notice] = 'Meeting successfully updated.'
- redirect_to :action => "show", :id => params[:id]
- else
- render :action => "edit"
- end

10 end

The update_attributes method shown on line 4 assigns all the values for

our object using the submitted form values in params[:meeting]. It will

then attempt to save the resulting object to the database. Just like the

create action, it will set a flash message and redirect us when it suc-

ceeds. If it fails, it will redisplay the edit form along with the associated

errors.

Once again, we need to display flash data in the next request. This is

the second, and probably not the last, time we need to display a flash

message on a page. Instead of copying and pasting the same code in our

show view, let’s extract this flash code to a custom helper method. The

helper will likely be used in other controllers within our application,

so we’ll define it in app/helpers/application_helper.rb. Any custom helpers

we add to this module will immediately become available in all views

within our application instead of being limited to a specific controller.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=150

ADMINISTRATING MEETINGS 151

Figure 5.13: Editing a meeting

Ruby Download building_a_rails_app/user_group_5/app/helpers/application_helper.rb

module ApplicationHelper

def flash_notice

if flash[:notice]

content_tag('div', h(flash[:notice]), {:id => "flash_notice"})

end

end

end

To display our flash notice from the custom helper, we’ve used the con-

tent_tag helper again. In this case we’ve created a div tag, with our flash

data as the tag content. We’ve also used an additional hash of attributes

to add an id="flash_notice" attribute to this div. Now we can replace the

flash code usage in both our index and show views with this new helper.

Ruby Download building_a_rails_app/user_group_5/app/views/meetings/index.html.erb

<h1>Meetings</h1>

<%= flash_notice %>

Ruby Download building_a_rails_app/user_group_5/app/views/meetings/show.html.erb

<h1><%= link_to "Meetings", :action => "index" %>

→ <%=h @meeting.name %>

</h1>

<%= flash_notice %>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/helpers/application_helper.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/views/meetings/index.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/views/meetings/show.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=151

ADMINISTRATING MEETINGS 152

Destroying Meetings

The last action we’ll add to our MeetingsController will implement the

destroy action we linked to while showing the meeting details. This

action is simple, and once again instantiates our meeting from the pri-

mary key given. It then uses the destroy method on the object to delete

the meeting record from the database.

Ruby Download building_a_rails_app/user_group_5/app/controllers/meetings_controller.rb

def destroy

@meeting = Meeting.find(params[:id])

@meeting.destroy

flash[:notice] = 'Meeting successfully destroyed.'

redirect_to :action => "index"

end

Taking a step back to look at our controllers, we can see that we’ve

definitely been repeating ourselves through our actions. Four of our

actions start by finding the Meeting object for the given primary key.

Let’s add a new method to our MeetingsController to handle this opera-

tion in a single location. We’ll put this at the bottom of our controller

class in app/controllers/meetings_controller.rb, and we’ll make it private so

it doesn’t get confused with our action methods. Making this method

private prevents it from being accessed as an action in the controller.

To see the important differences in method visibility between PHP and

Ruby, check out Section 12.3, Visibility, on page 333.

Ruby Download building_a_rails_app/user_group_5/app/controllers/meetings_controller.rb

private

def find_meeting

@meeting = Meeting.find(params[:id])

end

We could go and replace all these finds with our new method find_

meeting, but Rails has an even better way of doing this. We can add

this method as a filter to be executed before actions in our controller.

Ruby Download building_a_rails_app/user_group_5/app/controllers/meetings_controller.rb

class MeetingsController < ApplicationController

before_filter :find_meeting, :except => [:index, :new, :create]

Adding this before_filter using the name of our new method will instruct

the controller to execute find_meeting before every action in this con-

troller. We of course want to do this only for the actions that have an

:id parameter passed in. The method allows for an additional :except

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/controllers/meetings_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/controllers/meetings_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=152

SEPARATING PUBLIC FILES 153

Joe Asks. . .

Should My Action Method Be Empty?

If an action method is empty, we technically don’t even need
to define it in our controller. Rails will render the associated view
automatically even when the action is not explicitly defined in
the controller. It is a better practice, however, to keep these
empty methods around so that we can easily glance at our
controller and get a better idea of what is happening.

option to instruct Rails that it should perform the method before all

except the given list of actions. Now we can go and remove the repeat

code we’ve used in our actions to find our meetings.

This finishes up all the methods we need for our first controller, and

we finally have the application doing something useful. By now you

should have a good understanding of the conventions Rails uses to

glue together the controller with its associated views. Our remaining

controllers will build on this knowledge and will also expand upon the

idea of using controllers to access and modify resources within your

application.

Joe plays around with our administration interface and is impressed.

It didn’t take us long at all to get this up and running, and he’s excited

to see more. He points out that the pages lack flair, and of course he’s

right. We haven’t gotten around to adding any images or styles, and

these aren’t even valid HTML pages yet. It’s time to get cracking on a

design and some images for our application.

5.10 Separating Public Files

Rails is different from PHP in how it serves files on the server. As men-

tioned earlier, PHP files are often requested directly by their filename

on the server. We would even speculate that most PHP applications

are fully accessible from the web server so that you could point your

browser’s URL directly at any file in that application.

The directory structure example in Figure 5.14, on the next page shows

us a typical PHP setup where the my_application/ is completely accessi-

ble from the Web.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=153

SEPARATING PUBLIC FILES 154

Figure 5.14: Web-accessible areas of PHP

Figure 5.15: Web-accessible areas of Rails

Notice that we go to pages in our application by navigating our browser

directly to the PHP files. Here we have a potential security hole, because

any file put in this application’s structure can be navigated to from

a browser. If we were to store database credentials in a format other

than PHP such as the YAML file shown, users could download this file

directly from the server by just pointing to its location.

If we take a look at Figure 5.15, we can see that Rails uses a single

directory named public to store all web-accessible files. When we send

a request to our Rails application, it will first look for the resource in

this public directory and return it if found. When we request some-

thing such as http://example.com/meetings/, Rails will first look for that

resource in user_group/public/meetings/. When it doesn’t find anything,

the URL will then be parsed and routed through our Rails application

code. We will likely never put any actual Ruby code into the public/

directory.

http://example.com/meetings/
user_group/public/meetings/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=154

ADDING A LAYOUT 155

We can, of course, structure our PHP code in a similar way using some-

thing such as Apache’s mod_rewrite module. Many of the modern PHP

frameworks do this to address the same security concerns. However,

this is not the norm in PHP applications because it is not nearly as

simple as the previously mentioned approach to serving PHP files.

So, what do we put in the Rails public directory? For starters, this is

where we’ll put our images, JavaScript, and CSS files. We can also cre-

ate custom 404 (page not found) or 500 (server error) pages to display

to the user when things go wrong.

To put a face on our application, we need some of the sample code

from online.1 Copy the stylesheet2 and images3 to the public/stylesheeets/

and public/images/ directories, respectively. Having these files in our

public directory gets us ready to add a layout and user interface to our

application to make it look a little nicer.

5.11 Adding a Layout

Most of the time when creating an application, we’ll want a similar look

and feel to our application along with some standard header and footer

markup. In our PHP scripts we might thus have included a header and

footer file that we could share between different pages.

PHP Download building_a_rails_app/php/layout/index.php

<?php

require_once 'header.php';

?>

<h1>Meetings</h1>

<h2>Upcoming Meetings</h2>

...

<?php

require_once 'footer.php';

?>

1. http://www.pragprog.com/titles/ndphpr/source_code

2. http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/public/stylesheets/

3. http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/public/images

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/layout/index.php
http://www.pragprog.com/titles/ndphpr/source_code
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/public/stylesheets/
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/public/images
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=155

ADDING A LAYOUT 156

Figure 5.16: Layout template parsing

Rails has a similar way of doing this using something called layout

templates. We’ll use a single layout for all the pages in our application.

This layout will include both the header and footer and will insert the

markup from our individual actions into the layout at a specific point,

as displayed in Figure 5.16.

Layout files are stored in the app/views/layouts/ directory of our applica-

tion and are written using ERB just like our other view templates. By

naming this file application.html.erb, Rails knows to automatically wrap

it around every action’s output in our application. If we take a look at

our layout file, we’ll see we have a few new things going on here.

Ruby Download building_a_rails_app/user_group_6/app/views/layouts/application.html.erb

Line 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html>
- <head>
5 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
- <title>TucsonRails <%= ": #{@title} " if @title %></title>
- <%= stylesheet_link_tag "screen", :media => "screen" %>
- </head>
-

10 <body class="<%= controller.controller_name %>">
- <div id="wrapper">
- <div id="logo">
-
- </div>

15

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=156

ADDING A LAYOUT 157

- <div id="nav">
-
- <li id="nav_meetings">
- <%= link_to "Meetings", :controller => "meetings" %>

20
- <li id="nav_users">
- <%= link_to "Members", :controller => "users" %>
-
-

25 </div>
-

- <div id="content">
- <%= yield :layout %>
- </div>

30

- <div id="footer"> </div>
- </div>
- </body>
- </html>

Let’s break this down to see what parts of this are noteworthy outside of

regular HTML markup. The first thing we may notice is a couple things

we’ve done in the header.

Ruby Download building_a_rails_app/user_group_7/app/views/layouts/application.html.erb

Line 1 <title>TucsonRails <%= ": #{@title} " if @title %></title>
- <%= stylesheet_link_tag "screen", :media => "screen" %>

We’ve set a default title for our page but have also added some logic to

add a subtitle if the @title instance variable is set. Instance variables we

set in our specific actions or templates are also available in our layout

file. This allows us to change sections of the header or footer through

variables in the action we’re dealing with. In this case, we can set the

@title variable in any one of our specific action views to create a title

specific to that page.

We have also used a built-in helper to include our style sheet. The

stylesheet_link_tag helper method will generate the markup to include

our CSS file in the layout when passed the name of our external CSS

file. We’ll see some the benefits of using this helper when we deploy the

application in Chapter 10, Deploying the Application, on page 242.

Ruby Download building_a_rails_app/user_group_6/app/views/layouts/application.html.erb

<body class="<%= controller.controller_name %>">

In the body we’ve added a little snippet to add a class name to our body

tag based on the name of the current controller.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=157

CHAPTER REVIEW 158

We’ve done this by accessing an instance of the controller and call-

ing the controller_name method. This technique helps us highlight the

correct navigation link in our CSS by setting a unique class for every

controller in our application.

Ruby Download building_a_rails_app/user_group_6/app/views/layouts/application.html.erb

<div id="content">

<%= yield :layout %>

</div>

The last bit of new stuff here is where we see the yield :layout statement.

This statement will instruct the layout to render the contents of our

action’s view. Rails will render and insert our action’s output into this

area to create our final combined HTML. This statement can also be

written as simply yield, omitting the :layout parameter. You will often see

it written as such, but we prefer to pass in :layout to make it easier for

us to read what the code is doing.

If we now refresh our meetings index page, we’ll be presented with Fig-

ure 5.17, on the next page. Now our application is starting to look a

little nicer than the plain-Jane layout we previously had.

At this point, we’re pretty excited to show Joe our progress. We take

him aside and show him how we can view and add new meetings to the

application. He seems pretty excited but is a little worried about how

reliable our code is. He asks to take a look at our tests, and we smile

embarrassingly. There is obviously a lot more to do. It’s about time to

start validating the data being entered and get a few tests written to

make sure things are working as expected.

5.12 Chapter Review

This chapter was intense, but we managed to build a functioning con-

troller with Rails! We’re moving along quickly, and we even have a face

and layout to our application. And we’ve met some of the major require-

ments we defined earlier with Joe.

Let’s review the highlights of what we’ve learned:

• We can now think in terms of “resources.” We saw that most Rails

controllers look similar and share a convention of common actions

such as create, edit, update, and destroy. We structured our appli-

cation’s resources the same way.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=158

CHAPTER REVIEW 159

Figure 5.17: Styled meetings

• We learned how Rails routes requests and the flow through con-

troller actions. We wrote actions to show views, redirect to other

actions, and even pass data to the next request with flashing.

• We wrote our first views, and they looked a lot like PHP! The main

difference was that Ruby saved us some typing with its built-in

helper methods. We used these helpers to save us from the repet-

itive tasks of linking and building forms. We also learned to write

our own custom helpers.

• We started building a simple administration interface that we’ll

expand on in upcoming chapters.

Before moving on to the next chapter, you might want to spend some

time reviewing this one. We covered a lot of material, and as an aspiring

Rails developer, you’ll want to have a good handle on all of it.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=159

EXERCISES 160

5.13 Exercises

Here’s some exercises for you to try on your own:

• Look inside the Meeting model and the custom finder methods we

created such as upcoming_meetings that help decouple our con-

trollers from the insides of our models. Play around with these,

and see the effects. For bonus points, write your own custom

finder.

• Go back to the Ruby console, and interact with the Meeting model.

Use the custom finders to find meetings. Practice creating, edit-

ing, and destroying models from the console. Interact with your

domain model outside of the user interface.

• Write named routes to link to the meeting index and edit actions.

Try using the new *_url method to generate the URL for our redi-

rect_to method instead of using a hash.

• Poke around inside the views. Get comfortable with their syntax

and the Rails helpers. If you’re using a Rails-friendly editor such

as TextMate, now is a great time to learn the keyboard shortcuts

for working with Rails views.

Good luck with the exercises. If you decide to modify the views, back

up your work, and restore the originals before continuing. In the next

chapter, we’ll dive back into our models to validate the data coming in

and test that everything works correctly.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=160

Chapter 6

Validating and Testing Models
After poking around our application, Joe tries to create a new meeting

without any data entered. Unfortunately, our application isn’t smart

enough to stop him at this point. Validating data in our application

is also part of the domain logic. Validations help describe our model

requirements and behavior.

In this chapter, we’ll see how to add simple validation rules to our meet-

ings to prevent the end user from entering invalid data. We’ll also start

testing our Rails code to verify that existing functionality doesn’t break

as we add features. We’ll learn how we can use execution environments

in Rails to help us set up our test environment.

6.1 Validating Model Data

Talking with Joe a little more, he comes up with some simple rules that

he would like our application to enforce before the meeting data can

be saved. He wants to require that the meeting date be assigned and

require that the meeting location is a minimum of four characters long.

Fortunately for us, Rails has an easy way of declaring validation rules

on our Meeting class. Placing these rules in the model class ensures that

they are enforced regardless of where we create or modify a meeting in

our application.

We will use two different validation rules to enforce these validations. To

require that the meeting date is present, we need to use the

validates_presence_of method. To ensure that the location is a certain

length, we’ll use the validates_length_of method.

VALIDATING MODEL DATA 162

Ruby Download building_a_rails_app/user_group_3/app/models/meeting.rb

class Meeting < ActiveRecord::Base

validates_presence_of :meets_on

validates_length_of :location, :minimum => 4

It may seem strange that we’re requiring that the meeting’s meets_on

column be present. Our HTML form doesn’t seem to even give us the

option of setting an empty date. We can, however, still change this data

from the console or future web services that don’t use the HTML form

to create meetings.

When we try to insert a record that fails one of our rules, the validation

will intercept the save operation and return false. If we take a look back

at the create method in our MeetingsController, we can see that when this

happens, we’ll instruct the controller to render the :new action’s view.

Ruby Download building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb

def create

@meeting = Meeting.new(params[:meeting])

if @meeting.save

flash[:notice] = 'Meeting successfully created.'

redirect_to :action => "index"

else

render :action => "new"

end

end

We can now see an additional benefit of using the Rails form helper

methods. If a validation error occurs and the meeting doesn’t save, the

@meeting instance variable still holds the user-submitted data from our

form. When rendering our form back to the user, the form_for and asso-

ciated helpers in the template will use this data to repopulate the form

with the values from the last submission.

When a model fails to save because of a validation error, the model is

flagged with a list of errors that occurred. The errors are contained in

our @meeting object, which makes it easy to access and display them

in our view. To see an example of this, let’s fire up the console script.

user_group> ruby script/console

Loading development environment

>> meeting = Meeting.new(:location => "")

=> #<Meeting:...>

>> meeting.valid?

=> false

>> meeting.errors.on(:location)

=> "is too short (minimum is 4 characters)"

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/models/meeting.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=162

VALIDATING MODEL DATA 163

Figure 6.1: Validation errors

ActiveRecord objects have a method named errors, which is a list of

errors encountered during validation. We usually don’t deal with this

object directly because Rails provides a convenient helper method to

take care of displaying this data for us in our application.

Ruby Download building_a_rails_app/user_group_3/app/views/meetings/new.html.erb

<div class="form">

<%= error_messages_for :meeting -%>

Using the error_messages_for method at the top of the form in app/views/

meetings/new.html.erb renders a chunk of HTML displaying the validation

errors on the :meeting object. If we now try to insert a location that is

too short, we’ll be presented with the page shown in Figure 6.1.

Joe is pretty impressed with how fast we were able to add this with only

a couple lines of code. However, he is still a little disappointed by our

lack of unit tests thus far. After all, Rails is supposed to make testing

easy, right? I guess it is time to add a few tests to verify our code is

behaving as expected, but first we’ll learn a thing or two about how

environments work in Rails.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/app/views/meetings/new.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=163

USING RAILS ENVIRONMENTS 164

6.2 Using Rails Environments

Rails embraces the idea of different execution environments. We can

use different environments to run our application with a unique set

of configuration and debugging options depending on the situation. A

good example of this from PHP is the common usage of the display_errors

setting. It is convenient to display errors during development, but this

setting should always be turned off when the application is deployed to

a production environment. Rails handles this with the idea of different

execution environments and comes preconfigured to work with three

different environments.

• Development

• Test

• Production

Rails defaults to the development environment, which is where we have

been doing all of our work thus far. The application will use the test

environment when we perform any unit tests and will use the produc-

tion environment when we finally deploy our code. We’ll learn more

about running our code in different environments when we tackle de-

ployment in Chapter 10, Deploying the Application, on page 242.

Rails loads the common config/environment.rb file for all environments.

It then loads a configuration file that is specific to the current environ-

ment from the config/environments/ directory. For example, when we’re

running in development mode, Rails loads and executes the code in

config/environments/development.rb. Rails will also connect to a different

database depending on the current environment. You probably noticed

this when we set up the database connection for our application in

config/database.yml.

Having a different configuration file for each environment is useful. A

good example of this is how Rails caches Ruby code. In a typical devel-

opment environment, you want an immediate feedback cycle. When

you change application code, you want to be able to hit Refresh in your

browser and see the changes immediately.

The problem with this is that Rails reloads the Rails framework on each

request. Once we deploy our application to a production environment,

we shouldn’t be changing the live code. In this case we can gain perfor-

mance by caching the Ruby objects in memory. If we take a look at both

config/environments/development.rb and config/environments/production.rb,

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=164

TESTING OUR MODELS 165

we can see that Rails is set up to do just this. In the development mode,

we don’t cache classes.

Ruby Download building_a_rails_app/user_group_3/config/environments/development.rb

config.cache_classes = false

While in our live application, we will cache the Ruby classes.

Ruby Download building_a_rails_app/user_group_3/config/environments/production.rb

config.cache_classes = true

Rails sets smart default configuration options so that you don’t need to

change much to get started. You can browse many of the configuration

options for our application by viewing the various configuration files

mentioned. There are comments throughout these files to explain many

of the available options. We’ll go over some of these in more detail when

we deploy our application in Chapter 10, Deploying the Application, on

page 242.

The idea of environments frees us from having to perform any changes

to our code to test or deploy our applications. It also allows us to keep

all of our data separate so that we can develop and test without fear

of affecting production data. This concept is especially important when

testing our application.

6.3 Testing Our Models

Tests are extremely important in our application, and not only to satisfy

Joe. They will keep our application maintainable as we get further along

in development. It’s likely that we’ll come back to refactor and update

our code as we learn new Rails tips and tricks. Having tests makes it

much less stressful to make these changes because we will be able to

track and easily find regression bugs that pop up.

Preparing the Test Environment

Tests in Rails are stored in three different subdirectories within test/.

unit/

Tests for our model classes.

functional/

Tests for our controller classes.

integration/

Higher-level application integration tests.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/config/environments/development.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/config/environments/production.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=165

TESTING OUR MODELS 166

Tests in Rails use the Test::Unit Ruby library, which is a member of

the xUnit-style family of testing frameworks. This style of code will look

quite familiar if you have used PHPUnit for unit testing in PHP. Tests

run in the test environment and use a completely separate database

than our current development environment. To get started, let’s create

our test database. We’ll once again use the db:create Rake task to do

this, but this time we’ll add an argument to the script. We can change

the environment in which we execute the task by adding a RAILS_ENV

argument. In this case, we want to temporarily switch to the test envi-

ronment to create the user_group_test database.

rake db:create RAILS_ENV=test

(in /Users/derek/work/user_group)

We might additionally need to open config/database.yml to modify our

credentials to the user_group_test database. Once we’ve done this, we

need to create the tables needed to perform our tests. The schema for

our test database will be identical to the current development schema.

We could use the RAILS_ENV=test argument to migrate our database from

scratch on this database, but Rails actually provides a Rake task to

make this a bit easier. The db:test:prepare task will automatically copy

our entire development structure to our test database.

user_group> rake db:test:prepare

(in /Users/derek/work/user_group)

Writing Test Methods

We should now have our database up and ready for testing. We’ll start

by adding tests for our Meeting model. Our generator has already cre-

ated an associated test file for us in test/unit/meeting_test.rb. We’ll first

verify that our custom find methods we created work as expected. Let’s

replace the test_truth method with some useful tests to verify that our

custom class methods are working as expected.

Ruby Download building_a_rails_app/user_group_3/test/unit/meeting_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class MeetingTest < Test::Unit::TestCase

def test_should_find_upcoming_meetings

meetings = Meeting.upcoming_meetings

assert meetings.size > 0

for meeting in meetings

assert meeting.meets_on > Time.now.to_date

end

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_3/test/unit/meeting_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=166

TESTING OUR MODELS 167

def test_should_find_past_meetings

meetings = Meeting.past_meetings

assert meetings.size > 0

for meeting in meetings

assert meeting.meets_on <= Time.now.to_date

end

end

end

Any method prefixed with test_ is considered a test and will be executed

when we run these tests. We often like to think of our tests as a speci-

fication of what our model should do. If we use nice descriptive method

names, this actually becomes a useful form of documentation for your

application. When Joe views our tests, he can see what the application

is expected to do. In this case, a meeting model “should find upcoming

meetings” and “should find past meetings.”

In each test we start out by using our custom method to find the list

of meetings. We then check whether the methods return a collection of

meetings and whether each meeting’s date is the expected range. We’ll

use the closest equivalent of PHPUnit’s assertTrue, which is named assert

in Ruby. This will confirm that the statements we are making return

some type of value that is not false or nil.

Running Tests

We’ll use the ruby command to run our tests from the command line.

Let’s execute this test case we’ve written so far.

user_group> ruby test/unit/meeting_test.rb

Loaded suite test/unit/meeting_test

Started

FF

Finished in 0.209111 seconds.

1) Failure:

test_should_find_past_meetings(MeetingTest)

[test/unit/meeting_test.rb:15]:

<false> is not true.

2) Failure:

test_should_find_upcoming_meetings(MeetingTest)

[test/unit/meeting_test.rb:7]:

<false> is not true.

2 tests, 2 assertions, 2 failures, 0 errors

It appears that both of our tests failed. If we take a look at the line

number from the failure message, we can see that both trip up on the

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=167

TESTING OUR MODELS 168

assertion that meetings.size > 0. This has happened because we don’t

have any data in our testing database to run against. We need to load

some sample data for these tests to work with.

Using Fixtures

Rails uses fixture files to load this data for us. Fixtures are used in unit

tests to set up a test environment into an expected state before the test

begins. To accomplish this for database-dependent tests, Rails has a

way of storing sample data in YAML format. These files are stored in

test/fixtures/ and are named based on the table in which they load their

data. In our unit test file we load this data by using the fixtures method.

Ruby Download building_a_rails_app/user_group_4/test/unit/meeting_test.rb

class MeetingTest < Test::Unit::TestCase

fixtures :meetings

This method will clear existing data from this table and load the fresh

fixture data before every test. Rails uses transactions to speed up this

process if our database supports them. To accurately perform these

tests, we need to add some fixture data for our meetings.

Download building_a_rails_app/user_group_4/test/fixtures/meetings.yml

last_months_meeting:

meets_on: <%= 1.month.ago.to_s(:db) %>

location: University Library

description: Rails Hackfest

todays_meeting:

meets_on: <%= Time.now.to_s(:db) %>

location: University Library

description: Rails Hackfest

next_months_meeting:

meets_on: <%= 1.month.from_now.to_s(:db) %>

location: University Library

description: Rails Hackfest

We’ve added a mix of meeting dates to test our methods. We have

a meeting in the past, one for today, and one in the future. Notice

that we’ve named each meeting fixture record with a label such as

todays_meeting, which is meaningful to the data it contains. This is

important because it allows us to reference these records in our tests

using a readable name instead of by using a meaningless ID. ERB can

be used here similarly to how we’ve done in view templates.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/test/unit/meeting_test.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/test/fixtures/meetings.yml
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=168

TESTING OUR MODELS 169

In this example we dynamically change the date of the meetings to be

in relation to the current date. This will allow the data remain valid as

time passes.

There are a couple really neat examples of the power of Ruby here.

Since Ruby classes are always open for modification, Rails actually

extends quite a few classes to create a suite of additional functional-

ity to Ruby’s standard library. In this example, we see how the Ruby

Numeric class has been extended to add some readable methods that

allow us to convert numbers to dates. We also see a custom to_s imple-

mentation on Ruby’s Date class that takes :db as a parameter to convert

it to a MySQL-formatted date string such as 2007-12-06.

Now that we have our meetings fixtures populated, let’s run our tests

again:

user_group> ruby test/unit/meeting_test.rb

Loaded suite test/unit/meeting_test

Started

..

Finished in 0.068613 seconds.

2 tests, 5 assertions, 0 failures, 0 errors

It appears that the YAML data is loading now and our tests pass.

Adding More Tests

Let’s now add a test to verify our name method works as expected. This

one is a little trickier since it’s hard to know exactly what to expect with

the data being dynamic. We’ve decided to use a regular expression to

assert that the format is correct.

Ruby Download building_a_rails_app/user_group_4/test/unit/meeting_test.rb

def test_should_format_date_as_name

meeting = meetings(:todays_meeting)

assert_match /\w* \d{1,2}, \d{4}/i, meeting.name

end

When a fixture is loaded for our test, we have the ability to reference

the data in that fixture using a method after the same name. Remember

how we named each fixture record with a meaningful name? Now we

can retrieve the record by calling meetings(:todays_meeting) to reference

the fixture record we named todays_meeting in meetings.yml. Rails will

use the data for this fixture to create and return a Meeting object. This

is the preferred way to reference a record in the fixture file. By naming

our fixtures after their purpose, they become much less cryptic when

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/test/unit/meeting_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=169

TESTING OUR MODELS 170

we revisit them a month from now. We’ll know exactly the nature of

the data that we’re accessing from the fixture, and we’ll have fewer

questions from Joe.

Rerunning our tests show that everything passes. This is great, but

now Joe is also hounding us about testing the validation methods we

added. Let’s take a look at the tests that we come up with.

Ruby Download building_a_rails_app/user_group_4/test/unit/meeting_test.rb

Line 1 def test_should_create_meeting
- assert_difference 'Meeting.count', 1 do
- meeting = create_meeting
- assert !meeting.new_record?
5 end
- end
-

- def test_should_require_meets_on
- m = create_meeting(:meets_on => nil)

10 assert m.errors.invalid?(:meets_on)
- end
-

- def test_should_have_a_location_with_four_char_minimum
- m = create_meeting(:location => 'boo')

15 assert m.errors.invalid?(:location)
- end
-

- protected
- def create_meeting(options = {})

20 attrs = { :meets_on => "2008-01-01",
- :location => "University Library",
- :description => "Lightning Talks" }.merge(options)
- Meeting.create(attrs)
- end

We’ve added three new tests here to our model, along with a protected

method to help us factor out common code. We use the create_meeting

method on line 19 as a way of creating a new Meeting record for our

tests. The merge method works the same as the array_merge function in

PHP and will override any attributes with those passed in to the method

using the options hash.

We start by testing that a meeting that has valid data is actually cre-

ated in test_should_create_meeting. We use a new assertion here that is

quite useful. The assert_difference assertion checks that a change takes

place in our code. In this case, we’re creating a meeting and want to

assert that the number of meetings increases by one when the code is

executed.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/test/unit/meeting_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=170

CHAPTER REVIEW 171

The first argument is an expression (Meeting.count in this case). The

second argument is the difference that we expect the argument to pro-

duce when compared before and after code execution. This is actually

a shortcut for performing something similar to the following code.

Ruby Download building_a_rails_app/ruby/assert_difference.rb

def test_should_create_meeting

before_count = Meeting.count

meeting = create_meeting

assert !meeting.new_record?

after_count = Meeting.count

assert_equal 1, after_count - before_count

end

The other two tests check that our two different validation rules are

set up correctly. In one case, we set the meets_on attribute to nil to

verify that an error is added to the model when we try to save without

a value. We then have another test to verify that the location indeed

cannot be fewer than four characters long. Testing for this invalid input

is sometimes referred to as negative testing. Let’s run these tests one

more time.

user_group> ruby test/unit/meeting_test.rb

Loaded suite test/unit/meeting_test

Started

......

Finished in 0.07934 seconds.

6 tests, 9 assertions, 0 failures, 0 errors

Now that we’ve written these tests, Joe seems a bit more at ease. He

reminds us that our application is far from done. We need to be able to

add presentations to the meetings and deal with users.

6.4 Chapter Review

In this chapter we’ve learned two important aspects of Rails. Here’s

what we’ve done:

• We added validations to our models and saw the Rails stack funnel

our validation errors all the way up to the view.

• We learned an easy way to display errors to the end user without

a whole lot of work. We also saw how nice the Rails form helpers

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/assert_difference.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=171

EXERCISES 172

can be when validation fails, because they repopulate our form

automatically!

• We wrote our first tests to verify the business logic in our models.

These tests will ensure that this functionality continues to work

as we continue making changes to the application.

• We also started to build a specification of our Meeting model func-

tionality through some strategically named test methods.

6.5 Exercises

Here are some exercises for you to try on your own:

• Try to add a validation condition that will validate the maximum

length of the meeting location.

• Practice running the unit tests we wrote. What extra tests can

you add? Try playing around with tests as a way of experimenting

with the different ActiveRecord functionality on your models. What

happens when you call Meetings.count() with a :conditions argument

similar to find’s?

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=172

Chapter 7

Authenticating Users
Users are a pretty important part of our application. In this chapter,

we’ll build a registration form for new users to register as members of

our group. We’ll also build a secure authentication system for Joe and

others to log in to the application.

We need three different roles for users in our app. There will be guest

users, members, and administrators. A guest user is restricted from

modifying any information on the site. Members will be able to edit

their own profile information. An administrator like Joe can modify any

resource in the application, including all meetings, presentations, and

users.

7.1 Migrating to a More Secure User

Before we get into creating users, we have a little problem with our

users table. We hadn’t initially thought about how we needed to store

passwords or authenticate users. This was fine at the moment, and it

allowed us to get going on the application instead of pouring over every

detail up front. We’d like to change this table a bit now to use a more

secure authentication setup for our users. Luckily, Rails is agile enough

that making these types of changes isn’t a big deal.

It’s a really bad idea to store plain-text passwords for our users. If any-

one were to gain unauthorized access to our database, they would be

able to read the stored password data. A much more secure approach

is to store the passwords using a salted hash. For each user created

in our application, we will generate a random string that is unique to

that user. This string is referred to as the salt and will be saved to

the database with that user’s record. When we encrypt the password

MIGRATING TO A MORE SECURE USER 174

for this user, we will prepend the salt to make it much harder for an

attacker to use a single cracked password to decode other passwords

in the system. This also means that two different users with the same

password will always have a different password encryption stored in

the database.

We’ll use migrations to make updates to the users table to reflect these

changes. Instead of a password column, we need to use two different

columns: one for the encrypted password and another for the random

salt string. We’ll use the versatile generate script to create a fresh migra-

tion file. This time we’ll use the migration argument along with the name

of our migration. We can also specify additional arguments in the style

of column-name:data-type to generate the method calls for adding new

columns. We’ll use this to add the salt column.

user_group> ruby script/generate migration AddSaltToUsers salt:string

exists db/migrate

create db/migrate/004_add_salt_to_users.rb

Let’s take a look at db/migrate/004_add_salt_to_users.rb to see what was

generated.

Ruby Download building_a_rails_app/user_group_5/db/migrate/004_add_salt_to_users.rb

class AddSaltToUsers < ActiveRecord::Migration

def self.up

add_column :users, :salt, :string

end

def self.down

remove_column :users, :salt

end

end

The generator gives us a great start on this migration, but we need to

add a few more things to finish it. The generated code adds the salt

column using the add_column method. We’ll also add a limit on this

column to restrict it to forty characters. We’ll use this same migra-

tion file to rename our password column to encrypted_password. In the

down method, we’ll perform the reverse by dropping the salt column

and renaming our column to password.

Ruby Download building_a_rails_app/user_group_6/db/migrate/004_add_salt_to_users.rb

class AddSaltToUsers < ActiveRecord::Migration

def self.up

rename_column :users, :password, :encrypted_password

add_column :users, :salt, :string, :limit => 40

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/db/migrate/004_add_salt_to_users.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/db/migrate/004_add_salt_to_users.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=174

USER REGISTRATION 175

def self.down

remove_column :users, :salt

rename_column :users, :encrypted_password, :password

end

end

These methods demonstrate some of the simple ways in which we can

alter database tables. Renaming the password column will retain all the

current properties of that column, including the data type and limit.

Let’s perform this new migration to get our database up-to-date.

user_group> rake db:migrate

(in /Users/derek/work/user_group)

== 4 AddSaltToUsers: migrating ===

-- rename_column(:users, :password, :encrypted_password)

-> 0.5251s

-- add_column(:users, :salt, :string, {:limit=>40})

-> 0.0268s

== 4 AddSaltToUsers: migrated (0.5525s) ================================

Now that our database is structured correctly to store secure pass-

words, we can move on to building the user registration portion of our

application.

7.2 User Registration

User registration is essentially the creation of a new user. Before we dive

too deep into the code, let’s first figure out how we’d like the authenti-

cation page flow to work.

As shown in Figure 7.1, on the next page, new members will initially be

presented with the registration form. Upon completion of registration,

a new session will be started for them, and they will be directed to their

profile page. Users with existing accounts can go directly to the login

page to create a new session. From their profile page they can edit the

details of their profile and log out to invalidate their session.

Building the Registration Form

The resource we’re dealing with now is the users in our application,

and we need a brand-spanking-new controller to deal with them. This

controller will have pretty similar actions to those used when creating

our meetings. We’ll add these action names as additional arguments to

our controller generator.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=175

USER REGISTRATION 176

Figure 7.1: Registration page flow

user_group> ruby script/generate controller Users index show new edit

exists app/controllers/

exists app/helpers/

create app/views/users

exists test/functional/

create app/controllers/users_controller.rb

create test/functional/users_controller_test.rb

create app/helpers/users_helper.rb

create app/views/users/index.html.erb

create app/views/users/show.html.erb

create app/views/users/new.html.erb

create app/views/users/edit.html.erb

If we’re doing things right, we’ll notice that the UsersController will start

to shape up like our MeetingsController. Controllers generally don’t have

a lot of unique logic in them. All domain logic should end up in the

models, and all template logic is in the views and helpers. This leaves

little left for most controllers to do except glue the two together.

We’ll start our code with the new user registration form in app/views/

users/new.html.erb. We need once again to use the form_for helper to create

our form, and this form will stylistically look pretty similar to what we’ve

previously seen when creating our meetings.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=176

USER REGISTRATION 177

Ruby Download building_a_rails_app/user_group_6/app/views/users/new.html.erb

<h1>Register To Become a Member</h1>

<div class="form">

<%= error_messages_for :user -%>

<fieldset>

<legend>Create a TucsonRails Account</legend>

<% form_for :user, :url => { :action => "create" } do |form| %>

<div>

<%= form.label :name %>:

<%= form.text_field :name, :class => "short" %>

</div>

<div>

<%= form.label :email %>:

<%= form.text_field :email, :class => "short" %>

</div>

<div>

<%= form.label :password %>:

<%= form.password_field :password, :class => "short" %>

</div>

<div>

<%= form.label :password_confirmation %>:

<%= form.password_field :password_confirmation,

:class => "short" %>

</div>

<%= submit_tag "Submit" %>

<% end %>

</fieldset>

</div>

You may have noticed that when creating a meeting, all the form fields

were based directly on attributes of the Meeting model. In this case, we

have two fields that aren’t attributes for our user model yet. We don’t

have a field in our form that corresponds directly to the encrypted_

password because the user is not typing in anything encrypted. The

user will instead submit a plain-text version of their password in the

password field. The encrypted version will be generated based on the

plain-text password submitted.

We’ve also added a field named :password_confirmation to validate that

the user hasn’t mistyped their password. This is a special attribute

that will work with our User validation when we add it later. The reg-

istration form should now look like that shown in Figure 7.2, on the

following page.

Next we need to fill in the new and create actions to our UsersController.

We’ll have to manually add the create method since it does not require a

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/users/new.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=177

USER REGISTRATION 178

Figure 7.2: The registration form for new users

view and was not generated when we initially generated this controller.

Although the new action is pretty standard, the create action has some

important differences from our previous controller.

Ruby Download building_a_rails_app/user_group_6/app/controllers/users_controller.rb

Line 1 class UsersController < ApplicationController
- before_filter :find_user, :except => [:index, :new, :create]
-

- def index
5 @users = User.find(:all, :order => "name")
- end
-

- def show
- end

10

- def new
- @user = User.new
- end
-

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/controllers/users_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=178

USER REGISTRATION 179

15 def create
- @user = User.new(params[:user])
-

- if @user.save
- @current_user = @user

20 session[:user] = @user.id
-

- flash[:notice] = "Successfully Signed up"
- redirect_to :action => "show", :id => @user.id
- else

25 render :action => "new"
- end
- end
-

- def edit
30 end

-

- def update
- if @user.update_attributes(params[:user])
- flash[:notice] = 'User successfully updated.'

35 redirect_to :action => "show", :id => @user.id
- else
- render :action => "edit"
- end
- end

40

- def destroy
- @user.destroy
- flash[:notice] = 'User successfully destroyed.'
- redirect_to :action => "index"

45 end
-

- private
-

- def find_user
50 @user = User.find(params[:id])

- end
- end

Once a user registers or logs in to our application, we need to remember

the user for future requests. We’ll do this here using sessions. The most

popular way of doing this in PHP is using the session_start function along

with the $_SESSION superglobal array. Just as in PHP, Rails has various

ways to configure sessions depending on the demands of the applica-

tion. The default storage mechanism in Rails is a cookie-based session

storage. This type of session will store our assigned session data in an

encrypted string saved to the client’s computer in a browser cookie.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=179

USER REGISTRATION 180

Joe Asks. . .

What to Store in Sessions?

Usually when creating a session, we store the minimal data
needed to retain the state for the user. In most cases this is sim-
ply a unique identifier for the user. Once we have the user’s ID,
we can reinitialize that user at the beginning of each request
and retrieve any other customizations for that user through the
relational database.

Cookie session storage is quite fast but limits the amount of data we

can store to the maximum size of a cookie (4KB). This typically isn’t a

problem when you are storing minimal session data as we are in our

application.

When a user is successfully created from the submitted form data on

line 18, we’ll set the @current_user instance variable. This variable will

help us easily identify the record for the current logged-in user in our

application. We also need to set a session variable on line 20 so that we

can remember the user’s ID on subsequent requests. Session variables

are stored in a hash-like data structure and can easily be assigned or

retrieved using the sessions method. This is similar to using the $_SESSION

array in PHP. In this case, we’ve assigned the :user session variable

to store the authenticated user’s ID. Once the session is active, we’ll

redirect the user over to what will become their member profile page

(UsersController#show).

Processing User Creation

Most of the logic for the actual creation of the user has been left out

of the controller. The password encryption logic is all in our User model

and should work behind the scenes as we call User.new(params[:user]) and

save. This enables us to create new users from different interfaces (such

as the console), knowing full well that the creation logic will remain

consistent.

Adding the Password Attribute

Our form in users/new.html.erb submitted an attribute named :password

that actually doesn’t exist in our User model. In order for our creation

to work, we need to add this attribute to our model. We’ll do this using

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=180

USER REGISTRATION 181

the attr_accessor method, which will add both password and password=

methods.

Ruby Download building_a_rails_app/user_group_4/app/models/user.rb

class User < ActiveRecord::Base

unencrypted password

attr_accessor :password

end

Now we can directly assign and retrieve the plain-text password for our

model instance (although it will never be saved to the database). We’ll

see how this comes in handy a little later.

>> u = User.find :first

=> #<User:...>

>> u.password = 'chunkybacon'

=> "chunkybacon"

>> u.password

=> "chunkybacon"

Validating User Records

Our next step in filling out this model is to add a series of validation

rules.

Ruby Download building_a_rails_app/user_group_5/app/models/user.rb

Line 1 class User < ActiveRecord::Base
- # unencrypted password
- attr_accessor :password
-

5 # validation
- validates_length_of :email, :within => 3..100
- validates_uniqueness_of :email, :case_sensitive => false
- validates_presence_of :name
- validates_length_of :password, :within => 4..40,

10 :if => :password_required?
- validates_confirmation_of :password, :if => :password_required?
-

- # no encrypted password yet OR password attribute is set
- def password_required?

15 encrypted_password.blank? || !password.blank?
- end
- end

We start by validating the email is within a given character length.

This time we’ve used a Ruby Range object to specify both a minimum

and maximum length for the email. We then verify that the email is

unique so that we don’t have members registering multiple times. The

case_sensitive option will make sure Rails does not care about case when

it compares the email to existing emails.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_4/app/models/user.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/models/user.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=181

USER REGISTRATION 182

Joe Asks. . .

How Do Ranges Work?

A Range object in Ruby is just what it sounds like—a range of
numbers or characters. This is a similar idea to using the range

function in PHP but is quite different in implementation. A range
in Ruby does not explicitly contain all the values within a set
like the array returned in PHP. It is instead defined based on the
beginning and end values but is smart enough to understand
what falls in between.

irb> numbers = 1..4
=> 1..4
irb> numbers.include?(2)
=> true
irb> numbers.each {|num| print "#{num} " }
1 2 3 4 => 1..4

Ranges are a convenient syntax for referencing a set of values
without explicitly storing the entire set.

Moving onto the password field, we verify that the length is within four

to forty characters. We have then added the validates_confirmation_of

method, which will make the model look for an additional attribute

appended with _confirmation for comparison. In our case, this is the

password_confirmation field from our form. When validation is performed,

Rails will compare our two password fields and add an error if they don’t

match.

Since the plain-text password attribute is empty for all retrieved records,

we don’t want to always run the password validation rules. We want to

run validation on these only when the user is trying to create a new

password or change an existing one. We achieve this by adding the :if to

our password validation on lines 9 and 11, along with the name of the

method that must return true in order for them to run.

The password_required? method defined on line 14 will check either

whether we don’t have an encrypted version of the password yet or

whether the password attribute isn’t blank (it was submitted from the

form). This effectively allows us to validate the password only when it’s

being changed. Let’s fire up the console to get a better look at how

this works. We’ll start by finding an existing user. We can update any

attribute, and as long as we don’t change the password, the model will

not try to validate the password.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=182

USER REGISTRATION 183

>> user = User.find(1)

=> #<User:...>

>> user.admin = true

=> true

>> user.save # don't validate the password

>> true

However, if we change the password attribute on this same user, Rails

will now validate the new password when the user is saved.

>> user = User.find(1)

=> #<User:...>

>> user.password = 'chunkybacon'

=> "chunkybacon"

>> user.save # validate the new password

=> true

Encrypting the Password

Now that we have the basic password assignment and validation work-

ing on our user, we can move on to the more complex task of actually

encrypting the user’s password.

Ruby Download building_a_rails_app/user_group_6/app/models/user.rb

Line 1 validates_confirmation_of :password, :if => :password_required?
-

- # callbacks
- before_save :encrypt_password
5

- # encrypts given password using salt
- def self.encrypt(pass, salt)
- Digest::SHA1.hexdigest("--#{salt}--#{pass}--")
- end

10

- protected
-

- # before save - create salt, encrypt password
- def encrypt_password

15 return if password.blank?
- if new_record?
- self.salt = Digest::SHA1.hexdigest("--#{Time.now}--#{email}--")
- end
- self.encrypted_password = User.encrypt(password, salt)

20 end
-

- # no encrypted password yet OR password attribute is set
- def password_required?
- encrypted_password.blank? || !password.blank?

25 end
- end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/models/user.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=183

USER REGISTRATION 184

We have added a callback hook to our model on line 4 using the method

before_save. This will intercept any save to our model and execute the

given method before the save is performed. In our case, we want to call

encrypt_password on the model before any save is done.

We’ll be using the Digest::SHA1 Ruby library to encrypt both our random

salt and password. This library allows us to generate a SHA1 hash sim-

ilar to using the sha1 function in PHP. The first thing you’ll notice in the

encrypt_password method defined on line 14 is that we don’t encrypt any-

thing if the password attribute is blank. If a user has not been assigned a

new password, we don’t need to perform any encryption. We also need

to assign a new salt value only for new users. Existing users will sim-

ply use their current salt value stored in the database. The new_record?

method is an ActiveRecord feature that will let us know whether this

user has not been saved to the database yet. Finally, in this method we

assign our encrypted_password attribute.

We’ve added a class method named encrypt specifically for encrypt-

ing the password using the salt. Although it may not seem necessary

for this to be a new method, this will help us reuse this logic during

authentication and testing.

Registering a User

This wraps up creating new users for our application. Now that the

form is ready to go, let’s navigate to http://localhost:3000/users/new and

add Joe to our application as a user.

Name:

Joe Rubenstein

Email Address:

joe@example.com

Password:

chunkybacon

Creating our user brings us to an obvious realization of what we have

to build next. We need to create the actions required to view the users

in our application. To make sure that Joe inserted correctly, let’s check

out the data using the console.

user_group> ruby script/console

Loading development environment

>> joe = User.find :first

=> #<User:...>

>> joe.name

=> "Joe Rubenstein"

http://localhost:3000/users/new
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=184

USER REGISTRATION 185

It looks like he is indeed in there. Let’s make Joe an admin in our appli-

cation through the console. This time we’ll use a new method named

update_attribute. This method will update a single attribute for a model

and automatically save the associated record.
>> joe.update_attribute(:admin, true)

=> true

This is probably a good time to add tests for our user data. We’ll first

need to add some fixture data for users like we did with meetings in

Chapter 5, Working with Controllers and Views, on page 120. When

creating fixtures, it is good practice to insert only what is necessary to

test the functionality of your application. Having small fixtures actually

helps keep the data easy to reference and keeps the tests running fast.

Our users fixture will need to use only a couple of records to accomplish

what we need to test.

Download building_a_rails_app/user_group_6/test/fixtures/users.yml

admin_user:

email: joe@example.com

name: Joe Rubenstein

admin: true

salt: test_salt

encrypted_password: <%= User.encrypt('chunkybacon', 'test_salt') %>

non_admin_user:

email: walter@example.com

name: Walter Sobchak

admin: false

salt: test_salt

encrypted_password: <%= User.encrypt('nam', 'test_salt') %>

Notice that we’ve used the encrypt method in our fixtures to generate a

sample encrypted password for our user records. We won’t go into the

actual tests here since they look similar to the unit tests we’ve already

written for our meetings. It is, however, a good idea to keep on top of

these as we progress in the application. Here are some test methods

that you might want to implement.

• test_should_assign_new_password

• test_should_not_rehash_existing_password

• test_should_create_user

• test_should_verify_email_and_password_length

• test_should_have_unique_emails

• test_should_verify_password_confirmation

• test_should_require_name_email_and_password

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/test/fixtures/users.yml
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=185

VIEWING AND EDITING USERS 186

If you are having troubles, check out the downloadable code examples

online to see the final implementation of these tests.1

7.3 Viewing and Editing Users

Creating new users was the tricky part, and the rest of the UsersController

implementation is fairly standard controller code. We’ll be implementing

all of the common actions we created in our last controller.

Listing Users

Before we continue adding actions to our controller, we’ll add a private

method named find_user at the bottom of our controller. This method

serves the same purpose as the find_meeting method we created for our

meetings controller. Again, we use a before_filter to fire off this method

before every action that needs to instantiate the user object.

Ruby Download building_a_rails_app/user_group_5/app/controllers/users_controller.rb

class UsersController < ApplicationController

before_filter :find_user, :except => [:index, :new, :create]

def new

@user = User.new

end

def create

@user = User.new(params[:user])

if @user.save

@current_user = @user

session[:user] = @user.id

flash[:notice] = "Successfully Signed up"

redirect_to :action => "show", :id => @user.id

else

render :action => "new"

end

end

private

def find_user

@user = User.find(params[:id])

end

end

1. http://www.pragprog.com/titles/ndphpr/source_code

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/controllers/users_controller.rb
http://www.pragprog.com/titles/ndphpr/source_code
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=186

VIEWING AND EDITING USERS 187

Next we’ll implement both the index and show actions in our controller.

The index action will list all the users in our application. We’ll find this

list of users and sort them alphabetically by name. The show action

doesn’t need to explicitly do anything since we’ve already found the

user record in the find_user method.

Ruby Download building_a_rails_app/user_group_6/app/controllers/users_controller.rb

def index

@users = User.find(:all, :order => "name")

end

def show

end

Let’s move on to the associated views for these actions. We already gen-

erated the view for the index action when we created the controller. Let’s

open app/views/users/index.html.erb, where we’ll use the @users instance

variable to loop through the user records.

Ruby Download building_a_rails_app/user_group_6/app/views/users/index.html.erb

Line 1 <h1>Members</h1>
-

- <%= flash_notice %>
-

5 <div class="user_list">
-
- <% for user in @users %>
- <li class="<%= cycle('shade', '') %>">
- <%= link_to h(user.name), :action => "show", :id => user.id %>

10

- <% if user.admin? %>
- <%= image_tag("star.gif", :alt => "Admin", :size => "16x16") %>
- <% end %>

-

15 <%= h(user.email) %>
-
- <% end %>
-
- </div>

We’ve introduced a couple new built-in Rails helpers here, with the first

being the cycle method on line 8. This method will alternate output of

the arguments given to it within its loop. In this case, we alternate the

shade class on each user list item. We can use this class to add zebra

stripes to the items in our list using CSS.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/controllers/users_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/users/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=187

VIEWING AND EDITING USERS 188

Figure 7.3: The list of user group members

Joe also wanted a star next to the name of the users who are admin-

istrators of the application. We think he’s a little nostalgic about his

preschool days when he needed a gold star to feel special, but we’ll

humor him anyway.

We use the image_tag method on line 12 to create the markup for this.

This method generates an img tag using the image name along with

a hash of options. You may notice that we didn’t need to specify the

full path to the image. Rails knows that we store images in the images/

directory and takes care of this for us. In this example we’ve specified

both the width and height in a single option named size. This will end up

giving us a nice-looking list of users along with their emails, as shown

in Figure 7.3.

Generating User Profiles

The show view in this controller will be the user profile page, where we

can find more details on individual users. Here we realize that to display

a gold star next to administrators on the show view, we’ll be repeating

our logic from the index view. It’s time for some more refactoring. Let’s

extract the logic for displaying the admin status into a custom helper

method named image_for_admin_status. We’ll add this method to our User-

sHelper module in app/helpers/users_helper.rb. This helper method will use

the user object to determine whether it should render the star image.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=188

VIEWING AND EDITING USERS 189

Figure 7.4: User profile page

Ruby Download building_a_rails_app/user_group_6/app/helpers/users_helper.rb

module UsersHelper

def image_for_admin_status(user)

if user.admin?

image_tag("star.gif", :alt => "Admin", :size => "16x16")

end

end

end

Once we have this custom helper defined, we can replace the image_for

helper we used in the index view with this new custom helper.

Ruby Download building_a_rails_app/user_group_7/app/views/users/index.html.erb

<li class="<%= cycle('shade', '') %>">

<%= link_to h(user.name), :action => "show", :id => user.id %>

<%= image_for_admin_status(user) %>

<%= h(user.email) %>

We’ll also use this same helper to display the star in our show view now.

We generated this view template as well when we generated the con-

troller. We just need to fill it in with the specific user’s name, email, and

profile description. Joe is going to want to manage these user records,

so we’ll also add a link to edit and destroy the user record. Let’s open

app/views/users/show.html.erb.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/helpers/users_helper.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/users/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=189

VIEWING AND EDITING USERS 190

Ruby Download building_a_rails_app/user_group_6/app/views/users/show.html.erb

Line 1 <h1><%= link_to "Users", :action => "index" %>
- → Member Profile
- </h1>
-

5 <%= flash_notice %>
-

- <div class="details">
- <%= image_tag "profile.gif", :alt => "profile", :class => "profile" %>
- <h2><%=h @user.name %> <%= image_for_admin_status(@user) %></h2>

10 <p class="email"><%= mail_to h(@user.email) %></p>
- <p><%=h @user.profile %></p>
-

- <div class="modify">
- <%= link_to "edit", :action => "edit", :id => @user.id %> |

15 <%= link_to "destroy", { :action => "destroy", :id => @user.id },
- :confirm => 'Are you sure?',
- :method => :delete %>
- </div>
- </div>

To create an email hyperlink for each user, we’ve used the built-in

mail_to helper method on line 10. Again, we use the image_tag to gener-

ate the markup for the image on this page. It may seem rather strange

to be using a helper method on something as simple as an image tag.

The plain HTML markup is actually less typing than using the helper,

so we’re not saving any time. The real reason we use this helper is

to give us options for where we choose to serve our images. By using

this helper, we can later configure our application to download images

from a different location than our application server. We’ll discuss this

strategy in more detail in Section 10.6, Serving Assets, on page 259.

After finishing our show action, the profile page should now look like

Figure 7.4, on the preceding page. The only thing left is implementing

the edit and destroy actions for the users. Let’s go back into our Users-

Controller.

Editing Users

The controller methods for editing and deleting users are nearly identi-

cal to that of our meetings.

Ruby Download building_a_rails_app/user_group_6/app/controllers/users_controller.rb

def edit

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/users/show.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/controllers/users_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=190

VIEWING AND EDITING USERS 191

def update

if @user.update_attributes(params[:user])

flash[:notice] = 'User successfully updated.'

redirect_to :action => "show", :id => @user.id

else

render :action => "edit"

end

end

def destroy

@user.destroy

flash[:notice] = 'User successfully destroyed.'

redirect_to :action => "index"

end

The edit view will once again use form helpers to help modify user data.

This time we are unable to share the form between the new and edit

views since they implement a different form.

Ruby Download building_a_rails_app/user_group_6/app/views/users/edit.html.erb

Line 1 <h1>Edit User</h1>
-

- <div class="form">
- <%= error_messages_for :user -%>
5

- <fieldset>
- <legend>Edit User Details</legend>
- <% form_for :user, :url => { :action => "update",
- :id => @user.id } do |form| %>

10 <div>
- <%= form.label :name %>:

- <%= form.text_field :name, :size => 35, :class => "text" %>
- </div>
- <div>

15 <%= form.label :email %>:

- <%= form.text_field :email, :size => 35, :class => "text" %>
- </div>
- <div>
- <%= form.label :profile %>:

20 <%= form.text_area :profile, :rows => 4, :class => "text" %>
- </div>
- <div>
- Administrator:
- <%= form.radio_button :admin, true, :class => "radio" %>

25 <label for="user_admin_true">Yes</label>
- <%= form.radio_button :admin, false, :class => "radio" %>
- <label for="user_admin_false">No</label>
- </div>
-

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/users/edit.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=191

RESTORING SESSIONS 192

30 <%= submit_tag "Save", :class => "submit" %>
- <%= link_to "cancel", :action => "index" %>
- <% end %>
- </fieldset>
- </div>

The edit form uses the built-in text_area form helper to modify the user’s

profile and uses the radio_button helper method on line 24 to implement

the boolean database column for admin.

This completes our users controller, and Joe asks us to update his

profile information. He wants to be a nice host by introducing himself

to his guests. We hit the edit link on his profile to view the edit page

shown in Figure 7.5, on the next page.

Profile:

I’ve been programming in PHP for the past four years and am

excited to be learning Rails. I organize and host the Tucson Rails

meetings and look forward to meeting up with others in the area

who are excited about Rails.

7.4 Restoring Sessions

We set a session variable to remember this user. The question now is

how to retrieve and restore that user’s session during each new request.

To accomplish this, we’ll create a before_filter to initialize the user from

the session data. This will set the @current_user instance variable if our

user has an active session. We want this filter to run before every action,

but we wouldn’t be adhering to the DRY principle if we put it at the top

of every controller. In Rails, all controllers inherit from the Application-

Controller class. This means that anything we place in this class will

apply to every subclass. Let’s open app/controllers/application.rb to take

a look at how this controller looks out of the box.

Ruby Download building_a_rails_app/user_group_5/app/controllers/application.rb

Filters added to this controller apply to all controllers in the

application. Likewise, all the methods added will be available for

all controllers.

class ApplicationController < ActionController::Base

helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details

Uncomment the :secret if you're not using the cookie session store

protect_from_forgery # :secret => 'b00ea36a03f524084b970c22f6f2ee7a'

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_5/app/controllers/application.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=192

RESTORING SESSIONS 193

Figure 7.5: Editing users

There are already a few lines of code for us in the application controller.

The first uses helper :all to load all custom helper methods to be avail-

able all of the time. Although this is a convenient way of sharing helper

methods between controllers, we prefer to leave this out unless we

indeed do need to share helpers. In this application we’ve been sharing

helpers between controllers by putting them in the application helper

module, so we’ll remove this.

The next line of code declares protect_from_forgery, which helps prevent

cross-site request forgery attacks. Rails accomplishes this by automat-

ically adding a unique token to forms that are created using built-in

form helpers such as form_for and form_tag. When a user submits a

POST request, Rails uses this token to validate that the session has not

been hijacked. As commented near this method, we don’t need to spec-

ify the :secret option unless we switch to a session storage other than

the default cookie store.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=193

RESTORING SESSIONS 194

Now we’re ready to go in and add our own shared methods to the appli-

cation controller.

Ruby Download building_a_rails_app/user_group_6/app/controllers/application.rb

Line 1 class ApplicationController < ActionController::Base
- protect_from_forgery
-

- before_filter :initialize_user
5

- # make these available as ActionView helper methods.
- helper_method :logged_in?
-

- protected
10

- # Check if the user is already logged in
- def logged_in?
- @current_user.is_a?(User)
- end

15

- # setup user info on each page
- def initialize_user
- @current_user = User.find_by_id(session[:user]) if session[:user]
- end

20 end

The logged_in? method defined on line 12 allows us to easily check

whether the current user is logged in by checking whether the @cur-

rent_user instance variable is set. We’ve also introduced a new controller

method on line 7 named helper_method.

Back in Section 5.6, Writing Custom Helper Methods, on page 137, we

introduced the idea of defining custom helpers within the modules in

app/helpers/. The helper_method call gives us an alternate way of creat-

ing helpers. We can pass in a list of method names that we would like

to make accessible in our views as custom helper methods. In this case

we have made the logged_in? method available as a helper. We took this

approach to creating the logged_in? helper because we’re going to need

the same logic for this in both the controller and the views.

Finally, we use a before_filter to execute the initialize_user method defined

on line 17 before every action in our application. This will restore the

user session when it is available. Notice here that we’ve used a new

method named find_by_id. This method is called a dynamic finder and is

defined at runtime based on the name of the attributes on our model.

Rails will recognize when a method doesn’t exist, and if it notices that

the method begins with find_by_, it will attempt to find the column given

based on the name of that method.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/controllers/application.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=194

LOGGING IN 195

Joe Asks. . .

Why Use find_by_id Instead of find?

You may wonder why we would ever use the find_by_id(id)

method instead of just using find(id). The difference comes
down to exception handling. When we perform a find(id), Rails
assumes that the ID given is a valid record and will throw an
exception if it is not. At times we want to find the object by
an ID but would rather have nil as a result if a record for the ID
isn’t found. This is exactly what find_by_id(id) will do.

user_group> ruby script/console
Loading development environment
>> User.find(100)
ActiveRecord::RecordNotFound: Couldn't find User with ID=100

>> User.find_by_id(100)
=> nil

We can even query by multiple columns by concatenating them together

using _and_ in the method name.

user_group> ruby script/console

Loading development environment

>> meeting = Meeting.find_by_meets_on "2007-12-06"

=> #<Meeting:...>

>> meeting.location

=> "University Library"

>> meeting = Meeting.find_by_id_and_location(1, "University Library")

=> #<Meeting:...>

>> meeting.id

=> 1

Now we just need to work out a system for our users to log in and out

of our application with their registered accounts.

7.5 Logging In

Our first challenge is figuring out how logging in and out of our appli-

cation fits within the idea of resources in our application. When a user

signs in to our application, we’ll create a session to remember their

state. Signing out of the application will subsequently destroy that ses-

sion. It sounds like authentication revolves around the manipulation

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=195

LOGGING IN 196

of sessions and that the resource in this scenario is the session itself.

Let’s create a new controller for sessions with a new view as our login

template.

user_group> ruby script/generate controller Sessions new

exists app/controllers/

exists app/helpers/

create app/views/sessions

exists test/functional/

create app/controllers/sessions_controller.rb

create test/functional/sessions_controller_test.rb

create app/helpers/sessions_helper.rb

create app/views/sessions/new.html.erb

There is a Rails plug-in written by Rick Olson (a Rails core member) that

implements an authentication system based on the idea of sessions as

resources. The plug-in is called Restful Authentication, and we’ll be cre-

ating a simplified spin-off version of this to implement our own authen-

tication. We can find the original plug-in in Rick’s SVN Repository.2

Our login form will be in app/views/sessions/new.html.erb and needs to use

an email and password field. This controller does not associate directly

with a model, and this form will not wrap a model as we did previously.

Instead, we’ll be using a different form helper that is around just for

this type of situation. The form_tag helper method will create a form

that doesn’t wrap an object, and we’ll pass the action location in as the

first argument. In this case we’ll be submitting to the :create action in

the SessionsController.

Ruby Download building_a_rails_app/user_group_6/app/views/sessions/new.html.erb

Line 1 <h1>Login</h1>
-

- <%= flash_notice %>
-

5 <div class="form">
- <fieldset>
- <legend>Enter email/password</legend>
- <% form_tag :action => "create" do %>
- <div>

10 <label for="email">Email: </label>

- <%= text_field_tag :email, params[:email], :class => "short" %>
- </div>
- <div>
- <label for="password">Password: </label>

15 <%= password_field_tag :password, params[:password],
- :class => "short" %>
- </div>

2. http://svn.techno-weenie.net/projects/plugins/restful_authentication/

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/views/sessions/new.html.erb
http://svn.techno-weenie.net/projects/plugins/restful_authentication/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=196

LOGGING IN 197

- <%= submit_tag "Login" %>
- <% end %>

20 </fieldset>
- </div>

The form element helpers are a little different as well. The text_field_tag

on line 11 takes the name of our field and then the value of the field.

Since we’re not wrapping an object, we’ll use the posted parameters to

explicitly repopulate the form fields if the login happens to fail.

Now our login page should look like that in Figure 7.6, on the next page.

Upon submission, the form will send our credentials to the SessionsCon-

troller#create method in app/controllers/sessions_controller.rb.

Ruby Download building_a_rails_app/user_group_7/app/controllers/sessions_controller.rb

Line 1 def new
- end
-

- def create
5 @current_user = User.authenticate(params[:email], params[:password])
- if @current_user
- session[:user] = @current_user.id
- redirect_to :controller => "users", :action => "show",
- :id => @current_user.id

10 else
- flash[:notice] = "No user was found with this email/password"
- render :action => 'new'
- end
- end

Here we’ll perform the user authentication to check whether their cre-

dentials are valid. If they authenticate, we’ll remember their application

state by setting the :user session. We’ll then redirect to the user’s profile

page.

We can see on line 5 that we’ve pushed the actual authentication logic

into a method on our User class. Let’s open app/models/user.rb to see how

this logic works.

Ruby Download building_a_rails_app/user_group_7/app/models/user.rb

encrypts given password using salt

def self.encrypt(pass, salt)

Digest::SHA1.hexdigest("--#{salt}--#{pass}--")

end

authenticate by email/password

def self.authenticate(email, pass)

user = find_by_email(email)

user && user.authenticated?(pass) ? user : nil

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/models/user.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=197

LOGGING IN 198

Figure 7.6: Login form

does the given password match the stored encrypted password

def authenticated?(pass)

encrypted_password == User.encrypt(pass, salt)

end

We have added two new methods to this class under our encryption

method. The User.authenticate method will first try to find a user with

the submitted email. If we find the user, we’ll compare their encrypted

password with a fresh encryption of the submitted password using the

authenticated? method. If the passwords match, we’ll return the suc-

cessfully authenticated user.

The final part of our session controller logic is to implement an action

to log out from the application. Since logging in was creating a session,

logging out will be the destroy action in our SessionsController. Destroying

the session consists of calling reset_session to clear out all session data

stored for this user. We will finish by redirecting the user back to the

login page.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=198

LOGGING IN 199

Figure 7.7: Adding login/logout links

Ruby Download building_a_rails_app/user_group_7/app/controllers/sessions_controller.rb

def destroy

reset_session

flash[:notice] = "Logged out successfully"

redirect_to :action => "new"

end

This completes the guts of logging in and out of the application. At this

point, however, we have no way for our users to get to these pages. It’s

about time we add some links to log in and log out of the application.

We’ll add these links to our layout view so that they’re visible at the top

of each page.

As shown in Figure 7.7, authenticated users will be shown a link to

their profile along with a link to log out. Unauthenticated users will be

presented with the login and registration links. We’ll take advantage of

the logged_in? helper that we created earlier in the application controller

to determine the authentication status of our users.

Ruby Download building_a_rails_app/user_group_7/app/views/layouts/application.html.erb

<li id="nav_meetings">

<%= link_to "Meetings", :controller => "meetings" %>

<li id="nav_users">

<%= link_to "Members", :controller => "users" %>

<div>

<% if logged_in? %>

<%= link_to "your profile", :controller => "users",

:action => "show",

:id => @current_user.id %>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/controllers/sessions_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=199

CHAPTER REVIEW 200

<%= link_to "logout", :controller => "sessions",

:action => "destroy" %>

<% else %>

<%= link_to "join us", :controller => "users", :action => "new" %>

<%= link_to "login", :controller => "sessions", :action => "new" %>

<% end %>

</div>

The application is coming along quite well at this point. We’ve even fin-

ished a fully operational user authentication system. At this point, you

should have a pretty good understanding of how controllers work and

should begin to see similar patterns between how each is implemented.

7.6 Chapter Review

In this chapter, we implemented the user functionality into our appli-

cation, and we added a great deal of functionality. Here’s what we did:

• We updated our first table with a migration. Instead of creating a

new table, we altered an existing one. In this case, we improved

the security of our system by not storing the passwords of our

users in plain text.

• We learned how to save and retrieve session data. This is an indis-

pensable part of understanding how to maintain state in our Rails

applications.

• We continued to evolve our application by building a complete user

registration system, profiles for our users, and a form to let users

log in and log out.

Joe’s user group application is looking great! In the next chapter in this

part, we’ll add the ability for users to create and edit their presenta-

tions for the meetings. We’ll see how ActiveRecord associations play an

important role in this.

7.7 Exercises

Your Rails skills have advanced to the point where you now make an

entire iteration of the application on your own. Unlike the previous

chapters, try these exercises in the order shown here. You should now

be able to add an entire feature—from the model, to its tests, to the

controller, and finishing up with the view.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=200

EXERCISES 201

• Right now, the User model collects the name, email, and profile of

the user. Create a new migration to add another column in the

table. Try favorite_color or another piece of information that Joe

might want to collect on his user group members.

• Add a validation rule for the new attribute you created on the User

model. If you get stumped for what to validate, just use

validates_presence_of.

• Write a unit test for the validation before trying it on the Ruby con-

sole or modifying the views. Make sure it performs as you expect

by testing the validation behavior fully.

• Finally, modify the views in the application to show the new User

attribute that you created. Make sure that the user can edit the

attribute and that it’s also shown on the profile page.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=201

Chapter 8

Defining Associations
Joe plays around with the application so far and is pretty happy with

our authentication system. He reminds us that we still have to list the

presentations given at each meeting. Doing this requires us to dive back

into our model code to learn a little about associations in ActiveRecord.

Associations in Rails are powerful and allow us to do some really com-

plex data manipulations without having to write any SQL or joins for

our tables. This helps tremendously in making our code clean and easy

to read.

Each one of our meetings can have several presentations associated

with it. Likewise, each user can also have multiple presentations. These

association are actually relationships that we can define right in our

models. Foreign keys in the database are usually indicative that you’ll

want to connect the two associated models’ classes for those tables.

Let’s take a look at how we’ll accomplish this.

8.1 Connecting Presentations

Associations between models are defined in a similar way to how we

declared validation rules in our model classes. Our first goal is to create

a link between our meeting and presentation objects. We’ll do this by

adding a declaration in our Meeting model using the has_many method.

Ruby Download building_a_rails_app/user_group_7/app/models/meeting.rb

class Meeting < ActiveRecord::Base

has_many :presentations

The has_many method sets up a one-to-many association between these

two objects. You’ll notice that the declaration uses a plural underscored

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/models/meeting.rb

CONNECTING PRESENTATIONS 203

version of the associated object name (:presentations) so that the code

reads naturally. When declaring this association, Rails assumes that

our database tables have used correct foreign key naming conventions.

The presentations table should (and does) have a meeting_id column. The

presentations table also has a user_id column, indicating another asso-

ciation. A user in our application has_many presentations, so we’ll add

this relationship in the user model.

Ruby Download building_a_rails_app/user_group_7/app/models/user.rb

class User < ActiveRecord::Base

unencrypted password

attr_accessor :password

associations

has_many :presentations

This doesn’t quite finish our associations, since we have yet to assign

the reverse of each association for our Presentation model. Each presen-

tation is associated with a single meeting and a single user. To declare

these associations, we need to use the belongs_to method. Notice that

this time we use the singular version of the associated object’s name

(:meeting and :user) so that the code reads naturally.

Ruby Download building_a_rails_app/user_group_7/app/models/presentation.rb

class Presentation < ActiveRecord::Base

belongs_to :meeting

belongs_to :user

validates_presence_of :title, :user

end

The belongs_to methods here declare that a presentation object has both

a parent meeting object and a parent user object. Almost all associa-

tions will be assigned in pairs like this. While in our model, we’ve also

gone ahead and added some simple validation to ensure that data is

present for presentation attributes.

Now that we’ve declared these relationships, let’s use the console to

create a few presentations. Joe tells us that he presented a talk at the

November meeting titled “Creating Rake Tasks.” We’ll start by finding

the user record for Joe.

user_group> ruby script/console

Loading development environment

>> joe = User.find_by_email "joe@example.com"

=> #<User:...>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/models/user.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/models/presentation.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=203

CONNECTING PRESENTATIONS 204

Once we have Joe’s record, we’ll create our presentation. Instead of

passing in a user_id attribute for the new presentation, we can directly

assign the Joe’s user object to the user attribute.

>> rake = Presentation.create(:title => "Creating Rake Tasks",

:user => joe)

=> #<Presentation:...>

This creates a valid presentation object, but the presentation is not

associated with any meeting yet. Let’s find the November meeting and

then add this presentation to that meeting.

>> nov = Meeting.find_by_meets_on "2007-11-08"

=> #<Meeting:...>

>> nov.presentations << rake

=> [#<Presentation:...>]

The associations we defined have dynamically added a collection of

new methods to our Meeting object to help create and access the meet-

ing’s associated presentations. One of these is the presentations method,

which returns an array of all the presentations associated with the

meeting. To add a new presentation, we used the standard << array

method to push the new presentation onto the list.

This automatically assigns the presentation’s foreign key to the primary

key for this meeting and saves the presentation record in the presen-

tations table. To retrieve and view the new array of presentations on

our meeting, we can now use the presentations method on any meeting

object.

>> nov.presentations

=> [#<Presentation:...>]

>> nov.presentations[0].title

=> "Creating Rake Tasks"

We can even directly access different elements of this array and access

the properties of that presentation object. Here we have accessed the

first presentation using the bracket syntax. We then view the title on

the presentation returned.

Joe now tells us to add the “RJS Templates” presentation he gave at

the December meeting. This time we’ll use another dynamic method

that Rails adds for our association that allows us to do the same thing

a little more succinctly.

>> dec = Meeting.find_by_meets_on "2007-12-06"

=> #<Meeting:...>

>> dec.presentations.create(:title => "RJS Templates", :user => joe)

=> #<Presentation:...>

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=204

TESTING ASSOCIATIONS 205

This allowed us to skip the building of an interim presentation object,

and we directly created the associated presentation for the December

meeting by using the presentations.create method. Now that we have

hooked up some presentations, let’s try viewing our association in re-

verse. This time we’ll use the methods that are dynamically added to

our presentation object by the belongs_to method.

>> presentation = Presentation.find(:first)

=> #<Presentation:...>

>> presentation.title

=> "Creating Rake Tasks"

>> presentation.meeting.location

=> "University Library"

Since a presentation belongs only to a single meeting, the association

method meeting is named in the singular and returns the single meeting

associated with the presentation.

8.2 Testing Associations

We know that before we show Joe anything, it’s probably a good idea

to add some more tests to make sure all our associations are working

correctly. First we need some fixture data for our presentations. We’ll

add these to the fixtures/presentations.yml file.

Download building_a_rails_app/user_group_7/test/fixtures/presentations.yml

creating_rake_tasks:

meeting: todays_meeting

user: admin_user

title: Creating Rake Tasks

description: How to automate tasks in Rails

rjs_templates:

meeting: todays_meeting

user: admin_user

title: RJS Templates

description: How to write Javascript based templates in Ruby

In these fixtures, we see yet another benefit to creating appropriately

named fixture records. In the fixture, we simply refer to the associated

fixture records by their fixture name. In this case, we’ve associated

these presentations to our todays_meeting meeting record from meet-

ings.yml and the admin_user from users.yml.

Let’s open test/unit/meeting_test.rb to add a test for an association with

presentations. To use the presentation fixture data, we need to add

:presentations to the list of fixtures we’re loading for this test case.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/test/fixtures/presentations.yml
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=205

TESTING ASSOCIATIONS 206

Ruby Download building_a_rails_app/user_group_7/test/unit/meeting_test.rb

class MeetingTest < Test::Unit::TestCase

fixtures :meetings, :presentations

Once we have both the meeting and presentation fixtures loading for

each test, we can implement the test for this association.

Ruby Download building_a_rails_app/user_group_7/test/unit/meeting_test.rb

def test_should_have_many_presentations

meeting = meetings(:todays_meeting)

assert meeting.presentations.size > 0

assert_kind_of Presentation, meeting.presentations.first

end

We first find the todays_meeting record. We then make sure our pre-

sentations data association is actually populated with presentations.

Finally, we introduce the assert_kind_of method, which ensures that the

result from the association is indeed a collection of Presentation objects.

Adding tests for our presentation association can be done in a similar

way, except this time we’re expecting only a single object returned by

the association method.

Ruby Download building_a_rails_app/user_group_7/test/unit/presentation_test.rb

def test_should_belongs_to_meeting

rjs = presentations(:rjs_templates)

assert_kind_of Meeting, rjs.meeting

end

We’ll once again assert that we get the correct object type back when we

use our association. Instead of running each unit test manually, we’ll

use a Rake task included in Rails that allows us to run all of the unit

tests at once. This task is called test:units.

user_group> rake test:units

(in /Users/derek/work/user_group)

/usr/local/bin/ruby -Ilib:test "/usr/local/bin"..."user_test.rb"

Loaded suite /usr/local/...

Started

.................

Finished in 0.1611 seconds.

17 tests, 32 assertions, 0 failures, 0 errors

This task becomes particularly helpful as the number of unit test files

increases.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/test/unit/meeting_test.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/test/unit/meeting_test.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/test/unit/presentation_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=206

INTEGRATING PRESENTATIONS INTO MEETINGS 207

At this point, it is a good idea on your own to add the additional tests

needed to make sure the other presentation and user associations are

working. Here are some test methods that you might want to implement

for presentations.

• test_should_belongs_to_user

• test_should_create_presentation

• test_should_require_title_and_user

8.3 Integrating Presentations into Meetings

Looking at our original diagrams, we know we need to be dealing with

presentations as a resource in the same way we were doing with meet-

ings and users. Let’s create a new controller for handling presentations.

According to our initial diagrams, we also need the new and edit views

for this controller.

user_group> ruby script/generate controller Presentations new edit

exists app/controllers/

exists app/helpers/

create app/views/presentations

exists test/functional/

create app/controllers/presentations_controller.rb

create test/functional/presentations_controller_test.rb

create app/helpers/presentations_helper.rb

create app/views/presentations/new.html.erb

create app/views/presentations/edit.html.erb

We want these presentations to show up alongside their respective

meetings in our application. We left a placeholder earlier for where we

need to add these to our meetings. Now that we have the associations

set up, let’s add them into our app/views/meetings/show.html.erb view.

Ruby Download building_a_rails_app/user_group_7/app/views/meetings/show.html.erb

<h2>Presentations</h2>

<ul id="presentations">

<% for presentation in @meeting.presentations %>

<li id="presentation_<%=h presentation.id %>">

<h3>

<%=h presentation.title %>

(<%= link_to "edit", :controller => "presentations",

:action => "edit",

:meeting_id => presentation.meeting.id,

:id => presentation.id %> |

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/meetings/show.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=207

ROUTING PRESENTATIONS 208

<%= link_to "destroy", { :controller => "presentations",

:action => "destroy",

:meeting_id => presentation.meeting.id,

:id => presentation.id },

:confirm => 'Are you sure?',

:method => :delete %>)

</h3>

<p class="user">By: <%=h presentation.user.name %></p>

<p class="description"><%=h presentation.description %></p>

<% end %>

We’ve put the full details for each presentation here, along with links to

edit and destroy them. Joe asks whether we can also display a message

when there are no presentations and add a link to create new presen-

tations. We’re happy to comply.

Ruby Download building_a_rails_app/user_group_7/app/views/meetings/show.html.erb

Line 1 <% if @meeting.presentations.size == 0 %>
- <p id="no_presentations">
- There are no presentations for this meeting.
- </p>
5 <% end %>
-

- <p class="add">
- <%= link_to "add presentation", :controller => "presentations",
- :action => "new",

10 :meeting_id => @meeting.id %>
- </p>

The December meeting now should look like Figure 8.1, on the next

page; it is starting to shape up rather quickly.

8.4 Routing Presentations

Presentations pose a challenge for us because when we work with them,

we want to do so in the context of a meeting. You’ve probably noticed

that we’ve added a meeting_id value to all the links to the presentation

controller. If you take a look at the URL that is now generated by the

link_to helper, you’ll see something like http://localhost:3000/presentations/edit/1?meeting_id=2.

This is definitely a little ugly, so let’s see what we can do to make this

URL look a little nicer. The default :controller/:action/:id route isn’t going

to cut it in this case, since we’ll potentially have both meeting and pre-

sentation IDs in the URL.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/meetings/show.html.erb
http://localhost:3000/presentations/edit/1?meeting_id=2
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=208

ROUTING PRESENTATIONS 209

Figure 8.1: Meetings presentations

Let’s add a route to handle this URL. Open config/routes.rb, and add the

following route directly above the default route.

Ruby Download building_a_rails_app/user_group_7/config/routes.rb

map.presentation 'meetings/:meeting_id/presentations/:action/:id',

:controller => "presentations",

:action => "show",

:meeting_id => /\d+/

Install the default route as the lowest priority.

map.connect ':controller/:action/:id'

Here we’ve created another route named presentation. This route is com-

posed of five different components, and we’ve adjusted the path pattern

so that we can nest our presentations behind a meeting ID. We’ve also

introduced a few features writing this route.

We can set default values for any component of the route in one of two

ways. We can add a hash argument in the form of :name => "value", or

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/config/routes.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=209

THE PRESENTATION CONTROLLER 210

we can add a hash of default values with the :defaults option. A default

value will be assigned as the value for a component that is missing in

the URL.

:page component defaults to "1"

map.connect "users/index/:id/:page", :controller => "users",

:action => "index",

:page => "1"

:page component defaults to "1"

map.connect "users/index/:id/:page", :controller => "users",

:action => "index",

:defaults => {:page => "1"}

Each component can also have a regexp requirement it must pass

in order for the route to match. This is also done with two different

approaches just like default values. We can assign a regular expression

in the form of :name => /regexp/, or we can add a :requirements hash

option.

:page must be numeric

map.connect "users/index/:id/:page", :controller => "users",

:action => "index",

:page => /\d+/

:page must be numeric

map.connect "users/index/:id/:page", :controller => "users",

:action => "index",

:requirements => {:page => /\d+/}

With these options in mind, let’s dissect this route pattern a little more.

In this route, we’ve set the default :action as show. We’ve also added

a regular expression to the :meeting_id parameter to make sure it is

a valid number for the route to match. Save the route file, and let’s

return to the browser. If we hit Refresh to take a look at the generated

URL to edit a presentation, we’ll see something nicer looking now, such

as http://localhost:3000/meetings/2/presentations/edit/1.

8.5 The Presentation Controller

The presentation controller will look strikingly similar to the controller

for our meetings. The biggest difference is that we don’t need any show

or index actions because these views are integrated right into our meet-

ing’s page. We’ll start by writing before filters needed to find our objects

from the parameters.

http://localhost:3000/meetings/2/presentations/edit/1
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=210

THE PRESENTATION CONTROLLER 211

Ruby Download building_a_rails_app/user_group_6/app/controllers/presentations_controller.rb

Line 1 class PresentationsController < ApplicationController
- before_filter :find_meeting
- before_filter :find_presentation, :except => [:new, :create]
-

5 def new
- @presentation = Presentation.new
- end
-

- def edit
10 end

-

- private
-

- def find_meeting
15 @meeting = Meeting.find(params[:meeting_id])

- end
-

- def find_presentation
- @presentation = @meeting.presentations.find(params[:id])

20 end
- end

Since we’ve been passed in meeting_id in all methods, we’ll add a method

named find_meeting, which is defined on line 14. This method will be

used as a before filter to initialize the meeting object for every action.

In find_presentation, we want to make sure that the presentation we find

belongs to the meeting returned in find_meeting. The most appropriate

way to do this in Rails is to find our presentation through an associa-

tion proxy. In this case, we chain a find call onto the meeting object’s

presentations method. This will limit our find to only the records that are

associated with this specific meeting.

Now we can implement the create, update, and destroy actions.

Ruby Download building_a_rails_app/user_group_7/app/controllers/presentations_controller.rb

Line 1 def create
- @presentation = Presentation.new(params[:presentation])
-

- if @meeting.presentations << @presentation
5 redirect_to_meeting('Presentation successfully created.')
- else
- render :action => "new"
- end
- end

10

- def update
- if @presentation.update_attributes(params[:presentation])

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_6/app/controllers/presentations_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/controllers/presentations_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=211

THE PRESENTATION CONTROLLER 212

- redirect_to_meeting('Presentation successfully updated.')
- else

15 render :action => "edit"
- end
- end
-

- def destroy
20 @presentation.destroy

- redirect_to_meeting('Presentation successfully destroyed.')
- end
-

- private
25

- def redirect_to_meeting(notice)
- flash[:notice] = notice
- redirect_to :controller => "meetings",
- :action => "show",

30 :id => @meeting.id
- end

We see only a few other differences here from what we did in our

meetings controller, starting with the create action. On line 2, we ini-

tialize the @presentation object from form parameters as usual, but

this time instead of saving the presentation directly, we assign it to

the current meeting object using the @meeting.presentations associa-

tion method. Since we will be redirecting to MeetingController#show after

almost all these actions, we’ve extracted this logic to a separate method

named redirect_to_meeting that we’ve defined on line 26. We’ve even

moved our flash assignment to this method to cut down on repetition.

The new and edit templates are pretty familiar to us at this point. The

biggest difference in our views is that we now need to make sure that

both the form action and links include the meeting_id to ensure it gets

passed to our controller.

Ruby Download building_a_rails_app/user_group_7/app/views/presentations/new.html.erb

<h1>Create a New Presentation</h1>

<div class="form">

<%= error_messages_for :presentation -%>

<fieldset>

<legend>Enter Presentation Details</legend>

<% form_for :presentation,

:url => { :action => "create",

:meeting_id => @meeting.id } do |form| %>

<%= render :partial => 'form', :object => form %>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/presentations/new.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=212

THE PRESENTATION CONTROLLER 213

<%= submit_tag "Create", :class => "submit" %>

<%= link_to "cancel", { :controller => "meetings",

:action => "show",

:id => @meeting.id },

:class => "cancel" %>

<% end %>

</fieldset>

</div>

We’ll also make sure our cancel links point back to the meeting for

which this presentation is associated. Our edit page will end up looking

like Figure 8.2, on the following page.

Ruby Download building_a_rails_app/user_group_7/app/views/presentations/edit.html.erb

<h1>Edit Presentation</h1>

<div class="form">

<%= error_messages_for :presentation -%>

<fieldset>

<legend>Enter Presentation Details</legend>

<% form_for :presentation,

:url => { :action => "update",

:meeting_id => @meeting.id,

:id => @presentation.id } do |form| %>

<%= render :partial => 'form', :object => form %>

<%= submit_tag "Save", :class => "submit" %>

<%= link_to "cancel", { :controller => "meetings",

:action => "show",

:id => @meeting.id },

:class => "cancel" %>

<% end %>

</fieldset>

</div>

We once again need to share the common form info between the two

views by creating a partial app/views/presentations/_form.html.erb.

Ruby Download building_a_rails_app/user_group_7/app/views/presentations/_form.html.erb

Line 1 <div>
- <%= form.label :title %>:

- <%= form.text_field :title, :size => 35, :class => "text" %>
- </div>
5 <div>
- <%= form.label :description %>:

- <%= form.text_area :description, :rows => 4, :class => "text" %>
- </div>
- <div>

10 <%= form.label :user_id, "Presented by" %>:

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/presentations/edit.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/presentations/_form.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=213

THE PRESENTATION CONTROLLER 214

Figure 8.2: Editing presentations

- <%= form.collection_select(:user_id, User.find(:all), :id, :name) %>
- </div>

On line 11 of our form, we use a new form helper. The collection_select

method will build a select menu from a collection of objects. We pass in

the collection along with the columns we want to be used as the value

and label for each option. In this case, passing the :id and :name will

result in Rails building something similar to the following.

Download building_a_rails_app/html/collection_select.html

<select id="presentation_user_id" name="presentation[user_id]">

<option selected="selected" value="1">Joe Rubenstein</option>

<option value="2">A Second User's Name</option>

</select>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/html/collection_select.html
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=214

SPRING CLEANING 215

8.6 Spring Cleaning

It’s time to have a word with Joe again to make sure we’re headed

in the right direction with our progress. We can now add, edit, and

remove presentations from our meetings. Joe plays around, and to test

it a little, he goes through and adds descriptions to the presentations

we’ve added.

Creating Rake Tasks

Creating custom Rake tasks in Rails will help you automate com-

mon procedures while taking full advantage of the Rails environ-

ment and libraries.

RJS Templates

When Ajax requests come into our Rails application, RJS makes

it really easy to render JavaScript code fragments as a response

back to the browser.

Joe seems pretty satisfied but notes that our main meetings index

doesn’t tell us much about the meetings. He wants to see a simple

comma-separated list of the presentations from each meeting added

near each meeting name. Let’s open app/views/meetings/index.html.erb to

see how we can help him with this.

Render Collections with Partials

Before we start implementing Joe’s suggestion to add a list of presen-

tations, it’s time to do a little spring cleaning. We’ve ignored a couple

things up to this point, but by now some of this repetition is starting to

grate on us. We know that our application is supposed to adhere to the

DRY principle, but taking a closer look at our index view reveals that

we’re repeating ourselves in the areas in which we list the meetings.

It would probably be beneficial to extract these list items to a shared

partial file so that we don’t need to make modifications in two separate

places.

Ruby Download building_a_rails_app/user_group_7/app/views/meetings/index.html.erb

<h1>Meetings</h1>

<%= flash_notice %>

<div class="meeting_list">

<h2>Upcoming Meetings</h2>

<%= render :partial => "meeting",

:collection => @upcoming_meetings %>

<%= no_meetings(@upcoming_meetings) %>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/meetings/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=215

SPRING CLEANING 216

<p class="add"><%= link_to "add meeting", new_meeting_path %></p>

</div>

<div class="meeting_list">

<h2>Past Meetings</h2>

<%= render :partial => "meeting", :collection => @past_meetings %>

<%= no_meetings(@past_meetings) %>

</div>

If we take a look at our index view again, we’ll see that we’ve refactored

this by replacing our meeting lists with partials. We’ve used a new tech-

nique for the render => :partial method here. This time we’ve added a

:collection parameter to the second argument and assigned our array

of meetings in each instance. As illustrated in Figure 8.3, on the next

page, this approach will loop through each of our arrays and render the

partial template for each item in the collection.

We’ve extracted our meetings to the meetings/_meeting.html.erb partial

file. Now that the meeting is in a single location, we can add a call

to the presentation_list method that Joe suggested. We’ll add this new

method in a moment.

Ruby Download building_a_rails_app/user_group_7/app/views/meetings/_meeting.html.erb

<%= link_to h(meeting.name), meeting_path(:id => meeting.id) %>

<div class="presentation_list"><%= meeting.presentation_list %></div>

Each time we loop through this partial, a local variable will be assigned

for the current element in the array. The variable will be named using

the filename of the partial template we’re working with. In this case,

each loop will assign a meeting local variable since our partial is named

_meeting. If we had named our partial _foo, we would have to call

foo.presentation_list. This is Rails’ way of nudging you to name your par-

tials in a reasonable fashion.

We can refactor this even more since we’re following Rails naming con-

ventions with our partial files. Instead of passing the name of the partial

and the :collection of items, we can simply pass the @upcoming_meetings

as the partial.

Ruby Download building_a_rails_app/user_group_8/app/views/meetings/index.html.erb

<%= render :partial => @upcoming_meetings %>

Rails will perform some reflection to determine that the elements in

this array are Meeting objects. It will then assume that since these are

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/meetings/_meeting.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/meetings/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=216

SPRING CLEANING 217

Figure 8.3: Partial collections

meetings, the partial will be named _meeting (which it is). This works

the same as using the :collection option, but it takes advantage of a

convention to save us some typing.

Test-First Development

Of course our partial code in _meeting.html.erb isn’t going to work yet. We

haven’t defined any presentation_list method for our meeting model yet.

We’re going to create this in what might seem like a slightly backward

way of working. We’ll write a test for this method before we write the

actual method itself. This is often referred to as test-first development

or test-driven development. Let’s open test/unit/meeting_test.rb and add a

single test to define the interface for how we want this new method to

work.

Ruby Download building_a_rails_app/user_group_7/test/unit/meeting_test.rb

def test_should_build_comma_separated_presentations

m = meetings(:todays_meeting)

assert_equal 'Creating Rake Tasks, RJS Templates',

m.presentation_list

m = meetings(:next_months_meeting)

assert_equal 'no presentations', m.presentation_list

end

When we created our presentation fixtures, we assigned two sample

presentations to the todays_meeting record. This means the presenta-

tion_list for this meeting should return a comma-separated list of the

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/test/unit/meeting_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=217

SPRING CLEANING 218

presentation titles. We start our test by finding this meeting and using

the assert_equal method to ensure that the presentation_list method is

equal to the expected string.

When no presentations are found for a meeting, we’d like this method

to simply return “no presentations.” We’ll use the next_months_meeting

meeting to test this since we didn’t associate any presentations with

this meeting.

To run our unit test this time, we need to run only the single test

method that we’re currently working with. We can do this by using

the -n argument along with the name of the test.

user_group> ruby test/unit/meeting_test.rb -n \

test_should_build_comma_separated_presentations

Loaded suite test/unit/meeting_test

Started

E

Finished in 0.387667 seconds.

1) Error:

test_should_build_comma_separated_presentations(MeetingTest):

NoMethodError: undefined method `presentation_list' for

#<Meeting:0x241dcf8>

...

1 tests, 0 assertions, 0 failures, 1 errors

Our test acts as expected and raises an error. We obviously need to

add this method for this test to work at all. If we go in and simply

add an empty method named presentation_list to our Meeting model in

app/models/meeting.rb, we’ll get a little closer to our goal.

Ruby Download building_a_rails_app/user_group_7/app/models/meeting.rb

comma separated list of presentations

def presentation_list

end

With this method defined, let’s run our test again.

user_group> ruby test/unit/meeting_test.rb -n \

test_should_build_comma_separated_presentations

Loaded suite test/unit/meeting_test

Started

F

Finished in 0.117175 seconds.

1) Failure:

test_should_build_comma_separated_presentations(MeetingTest) \

[test/unit/meeting_test.rb:49]:

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/models/meeting.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=218

SPRING CLEANING 219

<"Creating Rake Tasks, RJS Templates"> expected but was

<nil>.

1 tests, 1 assertions, 1 failures, 0 errors

Our test fails miserably, but at least it’s not raising an error this time!

It’s pretty obvious from the failure message what is going wrong. Let’s

go in and fully implement this method now to pass our test.

Ruby Download building_a_rails_app/user_group_8/app/models/meeting.rb

comma separated list of presentations

def presentation_list

if presentations.size > 0

presentations.collect {|p| p.title }.join(', ')

else

'no presentations'

end

end

We’ve packed quite a bit of logic here into a small snippet of Ruby. If the

associated presentation has any elements, we will iterate through them

collecting the title of each presentation into a new array. We then use

the join method to combine these titles together separated by a comma

and space. The join method is similar to using the join function in PHP.

When there are no presentations, we simply return a string saying so.

This is an example of how this might look in PHP.

PHP Download building_a_rails_app/php/presentation_list.php

public function presentationList()

{

if (count($this->presentations) > 0) {

$titles = array();

foreach ($this->presentations as $presentation) {

$titles[] = $presentation->title;

}

return join(', ', $titles);

} else {

return 'no presentations';

}

}

Now that we have the method defined and fully implemented, we can

try to run our same test again.

user_group> ruby test/unit/meeting_test.rb -n \

test_should_build_comma_separated_presentations

Loaded suite test/unit/meeting_test

Started

.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/models/meeting.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/php/presentation_list.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=219

SPRING CLEANING 220

Finished in 0.059067 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

It’s a great feeling to see the test pass and know that our new method

works without ever having to refresh our browser. The Rails community

encourages this approach to development, and many developers get

addicted and won’t look back.

Reducing Queries

Using associations with Rails can sometimes be terribly inefficient. The

first time we reference an association on each object, Rails will query

the database to load the associated object. This means our meetings

page needs to query once for meetings and then again for the presenta-

tions of each meeting.

Rails logs all these queries to log/development.log during each request.

By viewing this log, we can see the queries that happen on a page. Let’s

take a look at what happens when we load the meetings index page.

Meeting Load (0.000457) ...

Meeting Load (0.000519) ...

SQL (0.000301) ...

Presentation Load (0.000311) ...

SQL (0.000493) ...

Presentation Load (0.000311) ...

SQL (0.000514) ...

Ignoring the SHOW FIELD FROM queries used to introspect our model

attributes, we have seven queries that execute for this page. Each time

we add a meeting, it looks like we’ll have at least two more. Rails uses

a feature called eager loading to help us alleviate this. When we are

expecting an association will be called, we can tell Rails to combine the

query for the presentation records into the same query we use to find

the base meetings. Rails will perform an outer join to retrieve all the

data needed and will sort the data to build the separate objects.

We can query for data this way by adding the :include option to the find

method. In our case, we want to add eager loading to the find calls we

use in both the upcoming_meetings and past_meetings methods. We’ll add

eager loading here to query for associated presentation objects as well

when we hit the database.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=220

CHAPTER REVIEW 221

Ruby Download building_a_rails_app/user_group_8/app/models/meeting.rb

def self.upcoming_meetings

find(:all, :conditions => "meets_on > CURRENT_TIMESTAMP()",

:order => "meets_on",

:include => :presentations)

end

def self.past_meetings

find(:all, :conditions => "meets_on <= CURRENT_TIMESTAMP()",

:order => "meets_on",

:include => :presentations)

end

If we now refresh watching the log, we’ll see this.

Meeting Load Including Associations (0.000565) ...

Meeting Load Including Associations (0.000338) ...

We’ve reduced the number of queries down to two: one for the list of

past meetings and presentations and one for the upcoming list. Unlike

before, the number of queries won’t increase as the number of meetings

on the page increases. Although we could probably reduce this to a

single query, we think that it is a little premature. Two queries isn’t

too bad, and we’ll come back to further optimize only if this becomes a

problem.

8.7 Chapter Review

In this chapter, we integrated presentations into our application, and

we’re starting to see some patterns emerge. Our controllers for meet-

ings, users, and presentations look strikingly similar. When you identify

the objects correctly in your application, the controllers seem to just fall

into place around them.

Let’s review what else we learned in this chapter:

• We learned how to link objects to one another using associations.

Associations are a great way of creating compositional object rela-

tionships with a simple declaration. Joe should be able to easily

figure out how our objects are related.

• We learned a little about how test-driven development works and

how it can give us an immediate feedback cycle without a browser.

This is a great way to work, and you’ll always end up with great

test coverage of your application working this way.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/models/meeting.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=221

EXERCISES 222

• We’ve learned how to add routes that nest a resource behind a par-

ent resource. This is sometimes necessary when we need access

to view and modify both of these resources in a controller.

We’re getting close to being finished but are still missing one of the most

important areas of our site. We’ll finish up our application in the next

chapter by adding a home page and securing administrative views and

actions. We’ll also learn a little about speeding up the performance of

our application using caching.

8.8 Exercises

Here are some extra exercises that you can try on your own:

• Update the member profile pages to display the list of presen-

tations done by that member. Add a presentations_list method to our

User model to return that user’s comma-separated list of

presentations.

• Create a new model for locations so that we can add, edit, and

remove new meeting locations from the application. Add an asso-

ciation that connects meeting objects to their associated location

object.

• Add unit tests for our user’s association with meetings and pre-

sentations. Are there any other tests that are missing? At this

point, our application should have pretty good coverage of all the

functionality in our models.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=222

Chapter 9

Preparing to Launch
Our application is coming along quite well, but it is missing one of

the most obvious parts. Joe says he wants the home page to display a

description of our group along with the date of the next meeting. He’d

also like to add a link to the mailing list for the user group and a way

to contact him via email.

In this chapter, we’ll finally add the home page for Joe. We’ll then work

on securing areas of the site that require authentication. As we fin-

ish up the application, we’ll look at some strategies for improving the

application’s performance.

9.1 Adding the Home Page

Our home page seems to be a collection of various data but in itself

doesn’t seem to focus on particular resource in our application. It is

actually mostly static data, and we’ve decided that the easiest way to fit

this into our application is to simply make a HomepageController. This

controller will consist of only a single index method to display our home

page.

user_group> ruby script/generate controller Homepage index

exists app/controllers/

exists app/helpers/

create app/views/homepage

exists test/functional/

create app/controllers/homepage_controller.rb

create test/functional/homepage_controller_test.rb

create app/helpers/homepage_helper.rb

create app/views/homepage/index.html.erb

ADDING THE HOME PAGE 224

The controller action for our home page simply needs to find the next

upcoming meeting to display on our page. The first method is the same

as using [0] to access the first element of the array.

Ruby Download building_a_rails_app/user_group_8/app/controllers/homepage_controller.rb

class HomepageController < ApplicationController

def index

@meeting = Meeting.upcoming_meetings.first

end

end

The view for our home page will display the next meeting and link to

the details for this meeting if it exists. Otherwise, we’ll just display the

link to our mailing list.

Ruby Download building_a_rails_app/user_group_8/app/views/homepage/index.html.erb

<h1>Who We Are</h1>

<p>

TucsonRails is a community interested in the Ruby and the

Rails framework. We welcome all experience levels, and

our goal is to promote and share our knowledge of Rails in and

around the Tucson area.

</p>

<div class="highlight">

<% if @meeting %>

<div class="next_meeting">

<h2>Up & Coming</h2>

<p>

<%= link_to h("#{@meeting.name} @ 7:00pm"),

:controller => "meetings",

:action => :show,

:id => @meeting.id %>

 : <%=h @meeting.location %>

</p>

</div>

<% end %>

<div class="join">

<h2>Join the Mailing List</h2>

<p>

Start talking about Rails now in the

tuscon-rails

Google Group.

</p>

</div>

</div>

<h3>Speakers Wanted</h3>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/homepage_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/homepage/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=224

ADDING THE HOME PAGE 225

<p>

<%= mail_to "joe@example.com", "Contact us" %> if you are

interested in speaking at a future meeting.

</p>

The next order of business is to get this home page to show up at

our base URL. Right now http://localhost:3000 still leads us to the Rails

welcome page. To prevent Rails from displaying this page, we need to

remove this page from the public directory. As we mentioned in Sec-

tion 5.10, Separating Public Files, on page 153, Rails always will look

in our public file for the resource before it routes the request through

the entire application. Let’s delete public/index.html from our application

and hit Refresh.

Now we’re confronted with the routing error shown in Figure 9.1, on the

next page. It looks like we need to dive into our routes again to forward

our base URL to our home page controller. Let’s open config/routes.rb,

where we’ll add one last route to our application. We’ll put this route at

the very top of our list.

Ruby Download building_a_rails_app/user_group_8/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.root :controller => "homepage"

This route uses a special method named map.root, which defines a route

for the base URL. In this case we’ll direct it to the HomepageController.

Since no action is specified, it will default to index. Hitting Refresh on

our browser should now display our newly created home page.

Now let’s open our application layout to add some links to our home

page from the other pages in our application. It is pretty typical to have

the logo in your application link to the home page. We would, however,

prefer not to have the logo be a link when we’re on the home page.

Rails actually has a built-in helper method named link_to_unless_current

that does exactly this for us.

Ruby Download building_a_rails_app/user_group_8/app/views/layouts/application.html.erb

<div id="logo">

<%= link_to_unless_current(

image_tag("logo.gif", :alt => "Tucson Rails"),

:controller => "homepage") %>

</div>

While we’re in our layout, let’s also add a link to our home page in the

navigation bar of our application. We’ll place this to the left of our link

to the meetings.

http://localhost:3000
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/config/routes.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=225

SECURING OUR ACTIONS 226

Figure 9.1: The home page presents a routing error.

Ruby Download building_a_rails_app/user_group_8/app/views/layouts/application.html.erb

<li id="nav_home">

<%= link_to "Home", :controller => "homepage" %>

<li id="nav_meetings">

<%= link_to "Meetings", :controller => "meetings" %>

Hitting Refresh on our home page again will result in the screen shown

in Figure 9.2, on the following page.

This is likely to be the first page most users hit and reminds us that this

will indeed be a public site. We need to start thinking about securing

the administrative parts of our application.

9.2 Securing Our Actions

Currently anyone and everyone can add, edit, and delete our data. We’d

like to restrict the access to these types of operations to administrators

in our application.

Our first step is to identify the access level of the user visiting the site.

We’ll start by adding a new methods to determine whether a user is

an administrator. Since we’ll be using this method in all controllers,

ApplicationController seems to be a good place for it.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/layouts/application.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=226

SECURING OUR ACTIONS 227

Figure 9.2: The finished home page

Ruby Download building_a_rails_app/user_group_8/app/controllers/application.rb

make these available as ActionView helper methods.

helper_method :logged_in?, :admin?

protected

Check if the user is already logged in

def logged_in?

@current_user.is_a?(User)

end

def admin?

logged_in? && @current_user.admin?

end

The admin? method checks whether the current user is both logged in

and flagged as an admin. Just like the logged_in? method, we’ve added

this method to helper_method to make it available in our views.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/application.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=227

SECURING OUR ACTIONS 228

If a user is unauthorized to view a certain page, there are a few things

that we can do. We’ve decided on a friendly approach of just redirect-

ing the user over to the login page. To handle the redirection, we’ll

add another method to ApplicationController. We’ll name this method

admin_required, and by putting it in this controller, we’ll be able to use

it as a before filter on any action in our application.

Ruby Download building_a_rails_app/user_group_7/app/controllers/application.rb

def admin_required

unless admin?

redirect_to :controller => 'sessions', :action => 'new'

end

end

This method simply redirects to the login page when a user is not an

administrator. When redirection is performed in a before filter like this,

Rails will know to not process the action any further.

We can now go into our controllers to add a before_filter using admin_

required for any actions that require administrator access. Both our

MeetingsController and PresentationsController are pretty straightforward.

If the user is not an administrator, they should have only read access.

Since our application displays presentations in the context of Meet-

ingsController#show, every method in our PresentationController should be

restricted to admin access.

Ruby Download building_a_rails_app/user_group_8/app/controllers/presentations_controller.rb

class PresentationsController < ApplicationController

before_filter :admin_required

We do, however, want to be able to list and display specific meetings to

the public. We’ll add the same before filter to meetings, except that this

time we’ll add the :except option to allow public access to the index and

show actions.

Ruby Download building_a_rails_app/user_group_8/app/controllers/meetings_controller.rb

class MeetingsController < ApplicationController

before_filter :admin_required, :except => [:index, :show]

The last resource we need to worry about is our users. Since users can

create (register) and edit their own records, we don’t want to restrict

access to those actions. We do, however, want to require the user to be

logged into the application to edit their profile.

Let’s return to our ApplicationController and add a separate method that

requires a user to be logged in to perform an action. Once again, we

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/controllers/application.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/presentations_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=228

SECURING OUR ACTIONS 229

want to redirect to the login page if the user is not logged in. Since we’re

duplicating our effort in admin_required, this is a good time to refactor

this code a little bit by adding a redirect_to_login method.

Ruby Download building_a_rails_app/user_group_8/app/controllers/application.rb

def admin_required

redirect_to_login unless admin?

end

def login_required

redirect_to_login unless logged_in?

end

def redirect_to_login

redirect_to(:controller => 'sessions', :action => 'new')

end

Now we can restrict the editing of records to logged-in users and the

deletion of users to administrators.

Ruby Download building_a_rails_app/user_group_8/app/controllers/users_controller.rb

class UsersController < ApplicationController

before_filter :admin_required, :only => [:destroy]

before_filter :login_required, :only => [:edit, :update]

Joe reminds us that giving access for any logged-in user to edit and

update user records isn’t such a great idea. What we really want to

do is give them access to edit their own user record. Once a user is

logged in, we have their information stored in the @current_user instance

variable. What we need to do is compare the id for this user with that

of the record being edited. If this doesn’t match, we’ll simply redirect

the user to edit their own record. Let’s add a new method named con-

firm_user_owns_record at the bottom of UsersController.

Ruby Download building_a_rails_app/user_group_8/app/controllers/users_controller.rb

def find_user

@user = User.find(params[:id])

end

if the user is not an admin, make sure they can't edit other users

def confirm_user_owns_record

return if admin?

if @user.id != @current_user.id

redirect_to :action => "edit", :id => @current_user.id

end

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/application.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/users_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/users_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=229

SECURING OUR ACTIONS 230

For this method to work, we need to add it as a before filter to the edit

and update actions in this controller. We’ll add this directly below our

before_filter for find_user.

Ruby Download building_a_rails_app/user_group_8/app/controllers/users_controller.rb

before_filter :find_user, :except => [:index, :new, :create]

before_filter :confirm_user_owns_record, :only => [:edit, :update]

The last step to this process will be to hide all of the add, edit, and

destroy links we made to our resources for anyone who is not an admin-

istrator. This should be easy to accomplish with some simple condi-

tional statements using our custom admin? helper. We will start on

meetings in the index view, wherein we will hide the link to create

new meetings.

Ruby Download building_a_rails_app/user_group_8/app/views/meetings/index.html.erb

<% if admin? %>

<p class="add"><%= link_to "add meeting", new_meeting_path %></p>

<% end %>

Now in our users’ show view, we need to hide the links to edit and

delete meetings. Since presentations are also edited from here, we need

to conceal the links to create and modify presentations as well.

Ruby Download building_a_rails_app/user_group_8/app/views/meetings/show.html.erb

<%=h presentation.title %>

<% if admin? %>

(<%= link_to "edit", :controller => "presentations",

:action => "edit",

:meeting_id => presentation.meeting.id,

:id => presentation.id %> |

<%= link_to "destroy", { :controller => "presentations",

:action => "destroy",

:meeting_id => presentation.meeting.id,

:id => presentation.id },

:confirm => 'Are you sure?',

:method => :delete %>)

<% end %>

Ruby Download building_a_rails_app/user_group_8/app/views/meetings/show.html.erb

<% if admin? %>

<p class="add">

<%= link_to "add presentation", :controller => "presentations",

:action => "new",

:meeting_id => @meeting.id %>

</p>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/users_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/meetings/index.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/meetings/show.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/meetings/show.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=230

SECURING OUR ACTIONS 231

<p class="modify">

<%= link_to "edit", :action => "edit", :id => @meeting.id %> |

<%= link_to "destroy", { :action => "destroy", :id => @meeting.id },

:confirm => 'Are you sure?',

:method => :delete %>

</p>

<% end %>

This will finish up both our meetings and presentations, so now we’ll

move on to the user pages. Editing users is a little trickier because we

want users to be able to edit their own records. We need to add a little

extra logic to determine whether they’re able to edit the user. Let’s open

the user’s profile page by taking a look at app/views/users/show.html.erb.

Ruby Download building_a_rails_app/user_group_7/app/views/users/show.html.erb

<% # admin can edit everyone %>

<% if admin? %>

<div class="modify admin">

<%= link_to "edit", :action => "edit", :id => @user.id %> |

<%= link_to "destroy", { :action => "destroy", :id => @user.id },

:confirm => 'Are you sure?',

:method => :delete %>

</div>

<% # user can edit himself %>

<% elsif logged_in? && @user.id == @current_user.id %>

<div class="modify user">

<%= link_to "edit your profile", :action => "edit",

:id => @user.id %>

</div>

<% end %>

Here we’ve added a simple conditional to check their authentication

status. Administrators will have links to edit and delete the user. Mean-

while, users should be able to change their own profile while logged in.

Taking a step back to look, we realize we’re getting a little too much

logic in the view, and it’s starting to get a little cryptic. To clean this

up a little, we’ll replace some of our logic with a custom helper named

user_owns_record?.

Ruby Download building_a_rails_app/user_group_8/app/views/users/show.html.erb

<% elsif user_owns_record? %>

<div class="modify user">

<%= link_to "edit your profile", :action => "edit",

:id => @user.id %>

</div>

<% end %>

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/views/users/show.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/users/show.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=231

PROTECTING FROM MASS ASSIGNMENT 232

This makes it much clearer what the conditional is doing. We can

extract this logic over to app/helpers/users_helper.rb, which is a more

appropriate place for it.

Ruby Download building_a_rails_app/user_group_8/app/helpers/users_helper.rb

def user_owns_record?

logged_in? && @user.id == @current_user.id

end

Finally, when a member is editing their profile, we obviously don’t want

them to have the ability to change their own admin status. This would

negate all the work we’ve done hiding the links from them. To start,

we’ll hide the radio button for this attribute in our form.

Ruby Download building_a_rails_app/user_group_8/app/views/users/edit.html.erb

<% if admin? %>

<div>

Administrator:

<%= form.radio_button :admin, true, :class => "radio" %>

<label for="user_admin_true">Yes</label>

<%= form.radio_button :admin, false, :class => "radio" %>

<label for="user_admin_false">No</label>

</div>

<% end %>

Hiding this field should make it so that only Joe can grant administra-

tion access, but this approach is not as secure as it may seem.

9.3 Protecting from Mass Assignment

As much as it seems secure on the surface to just hide the admin field,

if we take a look at the update action in UsersController, we blindly assign

the hash of user attributes to our User model. The hash is based on the

request parameters, so it could contain the admin attribute even if the

current user isn’t an admin.

Although bulk assignment is more convenient than assigning each

value individually, it leaves us little control over the attributes assigned

during this operation. Even if we hide the admin attribute, a savvy user

could send a request using a web tool that allows them to craft requests

manually and include admin=1 in the request. Our application doesn’t

know any better and would blindly obey. Security by obscurity is not a

good approach here.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/helpers/users_helper.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/views/users/edit.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=232

PROTECTING FROM MASS ASSIGNMENT 233

Ruby Download building_a_rails_app/user_group_7/app/controllers/users_controller.rb

def update

if @user.update_attributes(params[:user])

flash[:notice] = 'User successfully updated.'

redirect_to :action => "show", :id => @user.id

else

render :action => "edit"

end

end

The start of the solution for this problem is the attr_protected method.

We can use this to assign a list of attributes that we never want to

be updated through bulk update operations such as new, create, and

update_attributes. Let’s open our User model to add this.

Ruby Download building_a_rails_app/user_group_8/app/models/user.rb

class User < ActiveRecord::Base

unencrypted password

attr_accessor :password

Protect method from mass-update

attr_protected :admin

Adding this will force us to manually update the specific attributes of

our model that are sensitive and should be given more attention. In

this case, we’ll add logic to our update action to update this particular

attribute only if the current user is an administrator.

Ruby Download building_a_rails_app/user_group_8/app/controllers/users_controller.rb

def update

@user.admin = params[:user][:admin] if admin?

if @user.update_attributes(params[:user])

flash[:notice] = 'User successfully updated.'

redirect_to :action => "show", :id => @user.id

else

render :action => "edit"

end

end

Now if an admin attribute is posted, the application would assign the

attribute only if the logged-in user is in fact an administrator. Now that

we’ve secured all our actions, we bring Joe over to show him the appli-

cation. He is excited that his administrative privileges actually mean

something now. As he’s browsing, he asks whether there is any way to

speed things up in the application. We assure him that Rails performs

optimizations to make the application run much quicker in production.

We can, however, do some optimizations that will help it go even faster.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_7/app/controllers/users_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/models/user.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/app/controllers/users_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=233

CACHING THE PAGES 234

9.4 Caching the Pages

Caching is one of the most important things you can do with your

Rails application to increase performance. Each time a visitor hits an

action in our application, the application goes to work by evaluating the

request, querying the database, creating objects, and rendering views

back to the user. This is quite a bit of work to return the page each time

and is a lot of wasted computation when you consider that the action

is essentially producing the same result for each user.

If you’ve used a PHP caching library such as the Cache_Lite in PEAR,

you know that caching saves us this wasted computation. When a page

is evaluated, we store the result as a temporary file on the server. The

next time the same page is requested, we’ll return the cached page

instead of recomputing everything.

Rails has three different forms of caching, which are from the fastest to

slowest.

Page Caching

Caches pages as static HTML files to bypass Rails completely on

future requests.

Action Caching

Caches rendered actions templates but still loads up Rails so that

we can authenticate pages.

Fragment Caching

Caches page fragments to speed up expensive areas of the page,

while keeping other areas dynamic.

We’ll briefly explore each technique to find out what is best for our

application. Caching is disabled by default in the development envi-

ronment. During development we want to immediately view changes in

the browser without having to purge the cache files. We can, however,

test caching in development by changing a configuration setting. To do

this, update the configuration file at config/environments/development.rb

to set config.action_controller.perform_caching to true. Remember that we

need to restart the web server for this setting to take effect.

Page Caching

This is the fastest form of caching in Rails but is the most limiting. We

can use this form of caching only on actions that

• are displayed identically to all users,

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=234

CACHING THE PAGES 235

• do not require authentication, and

• do not display conditional content such as flash messages.

This type of caching is so fast because Rails uses page caching to save

our page as static HTML files in our public/ directory. The next time

the page is requested, we won’t even need to load the Rails frame-

work. The server will instead directly serve the static HTML file from

the public/ directory. We specify that an action is page cached using the

caches_page method. Let’s take a look at an example.

Ruby Download building_a_rails_app/ruby/caching/caches_page.rb

class SportsController < ApplicationController

caches_page :index

def index

@sports = Sport.find(:all)

end

end

When the index action is requested the first time, Rails will gener-

ate the cached page and save it to public/sports/index.html. Any subse-

quent request to this page will read this HTML file instead of going

through Rails. We can expire the cache when data changes by using

the expire_page method. We’ll usually want to expire the cache when

we create or edit records displayed on the cached pages.

Ruby Download building_a_rails_app/ruby/caching/expire_page.rb

class SportsController < ApplicationController

...

def create

@sport = Sport.new(params[:sport])

if @sport.save

expire_page :controller => "sports", :action => "index"

redirect_to :action => "index"

end

end

...

end

This type of caching is blazingly fast, and you should use it on any

action that fits the criteria. Applications that make good use of page

caching require less computational resources on average and can serve

a greater number of requests. Unfortunately for us, page caching will

not work with our application. We fail to meet the conditions noted

earlier for every action in our application. We authenticate users in

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/caching/caches_page.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/caching/expire_page.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=235

CACHING THE PAGES 236

this application, and most areas of our application display differently

depending on the user’s authentication status.

Action Caching

Action caching is the next fastest caching strategy behind page caching

and is similar in many respects. The biggest difference is that action

caching will always load the Rails framework for the request. Because

of this, we can use before filters for the request prior to the page cache

being loaded.

Ruby Download building_a_rails_app/ruby/caching/caches_action.rb

class ArticlesController < ApplicationController

before_filter :login_required

caches_action :show

def show

@article = Article.find(params[:id])

end

end

Unlike page caching, if we place our login_required filter before the

caches_action call, the application will be able to process authentication

for this action. Action caching saves cache files to a different location

than page caching. When we visit the URL http://localhost:3000/articles/show/1

for this example, Rails will generate a cached file at tmp/cache/

localhost.3000/articles/show/1.cache. Just like page caching, it will then

load this cache file on request instead of proceeding to process the

action.

Also like page caching, we’ll use a method to expire the cache. Since the

cache is stored in a different location, we need to use the expire_action

method this time.

Ruby Download building_a_rails_app/ruby/caching/expire_action.rb

class ArticlesController < ApplicationController

...

def update

@article = Article.find(params[:id])

if @article.update_attributes(params[:article])

expire_action :controller => "articles", :action => "show"

redirect_to :action => "show"

end

end

...

end

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/caching/caches_action.rb
http://localhost:3000/articles/show/1
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/ruby/caching/expire_action.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=236

CACHING THE PAGES 237

Although this type of caching is a little more flexible than page caching,

we still have some problems that will prevent us from using this for

our application. Our biggest problem is that on every page we display a

login link to unauthenticated users and a logout link to users who are

logged in. Both action caching and page caching require that the page

is the same for all users regardless of their state.

Fragment Caching

The final and most flexible caching strategy is fragment caching. This

type of caching is not as speedy as the other two, but it makes up for

that in versatility. We can use fragment caching to cache individual

sections or fragments of a page. This finally gives us a solution to get

past the problem of having the page change depending on the context

or status of the user.

We add fragment caching to our views by passing a block to the built-

in cache helper method. The contents of the block are what we want

to cache in the view. We’ll add some fragment caching to the listing of

members for our application. The trick is to cache as much of the page

that we can without caching anything that is dependent on the status

of the user. It is important that the flash message is not included in the

cached area, since it will change depending on the request. However,

all the rest of the data on our user page will remain the same until a

user is created, edited, or deleted.

Ruby Download building_a_rails_app/user_group_9/app/views/users/index.html.erb

<% cache do %>

<div class="user_list">

<% for user in @users %>

<li class="<%= cycle('shade', '') %>">

<%= link_to h(user.name), :action => "show", :id => user.id %>

<%= image_for_admin_status(user) %>

<%= h(user.email) %>

<% end %>

</div>

<% end %>

If we take a look at our log as we request this page, we can see when

the cache is writing and reading correctly. In the initial request we’ll

see something like this.

Cached fragment: localhost:3000/users (0.00036)

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/views/users/index.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=237

CACHING THE PAGES 238

On the next request, when the view reaches the cache block, it will

instead read the cache file.

Fragment read: localhost:3000/users (0.00010)

In this example, it writes the cache to a file named tmp/cache/localhost:

3000/users.cache. We are not finished, though. While our cache is work-

ing, the controller is still querying for the list of users. The biggest

benefit to caching is to eliminate these queries to the database. We

really want to query for users only when the cache hasn’t been built

yet. We can check this using the read_fragment method in our controller

methods.

Ruby Download building_a_rails_app/user_group_9/app/controllers/users_controller.rb

def index

unless read_fragment({})

@users = User.find(:all, :order => "name")

end

end

Our final step is to expire the cache when our list of users changes.

Whenever a record is successfully created, updated, or destroyed, we’ll

have to call the expire_fragment method in a similar way that was pre-

sented with page and action caching.

Ruby Download building_a_rails_app/user_group_9/app/controllers/users_controller.rb

def destroy

@user.destroy

expire_fragment :controller => "users", :action => "index"

flash[:notice] = 'User successfully destroyed.'

redirect_to :action => "index"

end

The first argument to the cache helper method is a name. This name

will default to the URL options for the current page, but we can build

this name any way we want to make it unique from other cache frag-

ments on the same page. As an example, we’ll add a fragment cache to

our meetings index page.

We would like to cache the list of upcoming meetings, but it turns out

to be a little trickier than we thought. The “add meeting” link should

display only for administrators. What we need to do is store two dif-

ferent versions of the cache based on the user’s administration status.

We can add the :admin option to the name of the cache to differentiate

between the two.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/controllers/users_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/controllers/users_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=238

CACHING THE PAGES 239

Ruby Download building_a_rails_app/user_group_9/app/views/meetings/index.html.erb

<% cache(:admin => admin?) do %>

<div class="meeting_list">

<h2>Upcoming Meetings</h2>

<%= render :partial => @upcoming_meetings %>

<%= no_meetings(@upcoming_meetings) %>

<% if admin? %>

<p class="add"><%= link_to "add meeting", new_meeting_path %></p>

<% end %>

</div>

<% end %>

This will now store two different versions of the cache: one as meet-

ings.cache and one as meetings.admin=true.cache. It will also read the

correct cache back depending on the admin status of the user viewing

the page. Once we’ve done this, we also need to update our controller

to check for the cache before querying for meetings. Notice that when

we read the fragment now, we make sure to specify the same name

parameters so that we check for the right cache file.

Ruby Download building_a_rails_app/user_group_9/app/controllers/meetings_controller.rb

unless read_fragment(:admin => admin?)

@upcoming_meetings = Meeting.upcoming_meetings

end

Finally, we will want to expire both these cache files when a meet-

ing is created, updated, or deleted. This starts to present a problem

since manually expiring two different cache files is a bit of a pain. The

expire_fragment method will handle this for us by accepting a regular

expression pattern for the cache file paths that we want to expire. In

this case, we want to expire all of the meeting cache.

Ruby Download building_a_rails_app/user_group_9/app/controllers/meetings_controller.rb

def destroy

@meeting.destroy

expire_fragment(/\/meetings./)

flash[:notice] = 'Meeting successfully destroyed.'

redirect_to :action => "index"

end

There are many other places that could be fragment cached in our

application, but this gives us a good start to caching views. The end

goal is to reduce the view parsing and number of database queries as

much as possible.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/views/meetings/index.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/controllers/meetings_controller.rb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=239

CHAPTER REVIEW 240

A good strategy for this is to simply turn on caching in development

and watch the log to find stray queries that could be cached.

9.5 Chapter Review

Congratulations! We’ve learned a lot about Rails by building a full appli-

cation. Joe is really grateful for our help with the application and is

excited to start building a community around Rails. After the experi-

ence of building this application, you’re well on the way to building

your own applications. You should also have some interesting ideas to

bring back to your PHP applications.

Just for fun, let’s take a look at some statistics on what we’ve just

done. Rails includes a Rake task that will show us exactly how much

code we’ve written for this application.

user_group> rake stats

(in /Users/derek/work/user_group)

+-------------------+-------+-------+---------+---------+-----+-------+

| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |

+-------------------+-------+-------+---------+---------+-----+-------+

| Controllers | 252 | 195 | 6 | 35 | 5 | 3 |

| Helpers | 29 | 28 | 0 | 4 | 0 | 5 |

| Models | 92 | 63 | 3 | 9 | 3 | 5 |

| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |

| Integration tests | 0 | 0 | 0 | 0 | 0 | 0 |

| Functional tests | 90 | 65 | 10 | 15 | 1 | 2 |

| Unit tests | 222 | 159 | 3 | 24 | 8 | 4 |

+-------------------+-------+-------+---------+---------+-----+-------+

| Total | 685 | 510 | 22 | 87 | 3 | 3 |

+-------------------+-------+-------+---------+---------+-----+-------+

Code LOC: 286 Test LOC: 224 Code to Test Ratio: 1:0.8

Your stats will be different depending on the tests you wrote, of course,

and the additional exercises you may have done. It’s always neat to see

how little code goes into building an application like this. This is also a

great place to find out whether your code-to-test ratio is up to snuff.

9.6 Exercises

If you want to play around more with this application, there are plenty

more places it can be taken:

• Try caching more of the application’s pages with fragment caching.

Try using more than one fragment cache block in a single view by

naming the fragments something different.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=240

EXERCISES 241

• Try adding a link to download a PDF of each presentation’s slides.

You can place your PDF documents in a subdirectory of public/

named documents/.

• Allow members to upload a picture for their profile. If you have

questions about figuring out file uploads, be sure to check out the

reference in Section 13.3, $_FILES, on page 373.

• Add a page to view group photographs pulled down from the Flickr

website using Flickr.rb.1 This can be installed as a RubyGem,

which is discussed in Section 12.6, External Libraries and Pack-

ages, on page 357.

1. http://redgreenblu.com/flickr/

http://redgreenblu.com/flickr/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=241

Chapter 10

Deploying the Application
Now that we’ve completed our application, the next step is to make it

live for the world to see. In PHP, we rarely even talk about deployment

because it is often dead simple. PHP is easily served using Apache with

mod_php, and hosting is ubiquitous. We know that PHP can be served

on cheap shared hosting plans or more expensive virtual private servers

and dedicated hosting.

There are many more choices to be made when deploying a Rails appli-

cation. All of the choices could, and do, fill an entire book worth of

material. For detailed instructions on deploying Rails applications from

a variety of approaches, you may want to check out Deploying Rails

Applications [ZT08] by Ezra Zygmuntowicz.

There was a time long ago when most people were running PHP as a

CGI. Running PHP back then was much slower and more complicated

than it is now. Due to these issues, years of effort were spent perfecting

PHP and its integration with various web servers. Today, deploying PHP

applications is perhaps easier than any other platform as a result.

Rails is a relatively new technology and has room for growth when it

comes to deployment. It has, however, been making great strides in

the past couple years. There are quite a few smart developers who are

working hard on simplifying deployment.

A good example of this is the Mongrel server. Although most early Rails

deployment solutions were based on a faster variation of the common

gateway interface (FCGI), Mongrel is now the preferred way of serving

Ruby code.

CHOOSING A HOST 243

Another emerging project that looks promising for deployment is

JRuby, which is a Ruby interpreter written in Java.1 This promises

to allow Rails applications to be managed by Java application servers.

In this chapter, we’ll provide a basic overview of the issues that differ-

entiate Rails from PHP in a typical deployment scenario. We’ll start by

discussing one of the most difficult decisions when deploying a Rails

application—where to host it.

10.1 Choosing a Host

We have a few choices when it comes to the type of hosting that we’ll

use to deploy our application. The biggest choice is whether we want a

shared host or whether we need to pay a little more to have full access

of a virtual private server or a dedicated server.

From a PHP perspective, Rails’ biggest strength is its maintainability

and development speed. You’ll have to weigh your choice of using PHP

or Rails depending on the application. If you want just a cheap shared

host to run a simple blog, Rails may not be the best solution. However,

when you are actively developing an application that you are respon-

sible for maintaining, you may find that it is worth using Rails at the

expense of a virtual private server.

The bottleneck on hosting Rails applications tends to be memory. An

important architectural aspect of PHP is that it completely tears down

your application’s environment at the end of every request. PHP appli-

cations can and do create large demands for memory, but the demands

on the server are only temporary while the application is under load.

This is one of the reasons that many PHP applications can coexist suc-

cessfully on a shared host as long as they are not heavily loaded.

Rails applications running under Mongrel are persistent application

processes. Unlike PHP, the memory consumed by a Rails application is

not released back to the system if there are no requests. Rails applica-

tions can require quite a bit of dedicated memory. When you put MySQL

into the mix, you are often looking at a baseline of 128MB–192MB to

get a single application running. You will probably grow quickly to more

than this depending on your traffic. With this in mind, you can see why

you can grow out of a shared hosting plan fairly quickly.

1. http://jruby.codehaus.org/

http://jruby.codehaus.org/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=243

CHOOSING A HOST 244

Hosting in a Shared Environment

Some developers have had success with Rails applications in a shared

environment, but it is not really recommended for anything that cannot

be heavily cached.

If you do choose to go the shared hosting route, you’ll want to find a

host that supports Secure Shell (SSH) access. SSH will be crucial if you

want to set up any automated deployment system for your application.

You’ll also want to get a host that supports Mongrel if at all possible.

It is faster and more reliable than FCGI-based solutions and is one of

our best weapons for Rails deployment. FCGI-based solutions can leak

memory, causing sysadmins to kill your application if it encroaches on

the resources of everyone else on the box.

After copying your code to the production server, you’ll create your pro-

duction database using the options provided by your host. Each host

does this a little differently, so you’ll need to examine the control panel

to figure out how your particular host implements this. You’ll next need

to update the production section of your config/database.yml to work

with your production database credentials.

All applications will be served with the public/ directory of your applica-

tion as the document root. You’ll need to set the document root to the

/path/to/application/public directory through your host’s control panel.

Remember that shared hosting is tough but possible for Rails applica-

tions. Support is usually not good on some of these really inexpensive

hosting plans, and getting your Rails application working could take

some patience. If your host advertises that it supports Rails applica-

tions, then it should have some online documentation on getting every-

thing running (and possibly a support forum where you can get help

from other Rails developers). These are some things you may look for

as you search for a host. Pay close attention to feedback you are hear-

ing from other developers about the service provided. The hosting land-

scape changes quickly, and a recommendation from another developer

is one of the best ways to find a reliable host.

Hosting on a Virtual Private Server or Dedicated Server

There is a good chance you’ll grow out of shared hosting rather quickly.

A virtual private server (VPS) is the preferred hosting option for most

Rails developers. A VPS is a slice of a dedicated server but operates in

an isolated environment.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=244

THE PRODUCTION ENVIRONMENT 245

This means you will receive a chunk of resources and will not have

to share this with other developers. Each VPS has its own filesystem,

so no one else has access to your files. Since you are on a dedicated

slice with your own resources, you’ll also not have to worry about a

sysadmin killing off processes to protect other customers.

Hosting on a VPS is a little more expensive than shared hosting, but

you get a lot more. You’ll have root access to your box and will have

much more freedom with what you can install and configure. Most VPS

solutions make it easy to upgrade your hosting plan with a mere reboot.

This means you can easily upgrade your resources as your application’s

demands grow.

You may need a dedicated server depending on the needs of your appli-

cation. Dedicated servers are more expensive than a VPS but will essen-

tially work in the same way. If you think you’ll need a dedicated server,

you may want to start out with a VPS and work your way up depending

on the demands of your application.

The one caveat to having a VPS or dedicated server is that you will

be doing much more sysadmin work. Everyone values their time and

wants an easy solution. We’ve certainly been spoiled in PHP, where we

can just drop an application on a shared host and forget about it. We

hope one day Rails will be the same.

Since a VPS is the preferred choice for deploying Rails applications, the

rest of this chapter will show how to get set up and deployed in this type

of environment. Let’s start by taking a look at some of the differences

Rails makes when it runs in a production environment.

10.2 The Production Environment

We learned a little bit about Rails environments in Section 6.2, Using

Rails Environments, on page 164. We kind of glossed over the pro-

duction environment at the time, but this is where this environment

becomes important. We’ll be running our applications in the produc-

tion environment when we deploy. When our application runs in this

environment, it will perform a series of changes to make the code run

faster and more efficiently.

In production, Rails stores your Ruby classes in memory. This pre-

vents your application from performing the slow process of reloading

the Ruby code on every request. This will make your application run

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=245

PREPARING OUR APPLICATION 246

quite a bit faster, but remember that any changes to the code will

require a server restart to take effect.

Rails caches the database structure so that it doesn’t need to examine

the database to build our ActiveRecord model attributes. You might also

notice that the logging level in production is more minimal than that in

the development and test environments. Remember that to view the log,

you will now want to view the log/production.log file.

Exceptions are no longer displayed to the client in production. We obvi-

ously want to see error information while we are developing the applica-

tion but would rather not have end users see this. In PHP, it is consid-

ered a best practice to set the display_errors directive to 0 on a production

application. Although this merely hides errors from the end user in a

PHP application, Rails will actually stop execution of code and redi-

rect to the public/500.html file in your application. You might want to

customize this page to fit in with the rest of your application’s design.

Exceptions will be logged, but it is often tedious to review logs for errors.

A better approach is to install the Exception Notification plug-in.2 This

plug-in will email exceptions to us so we can act quickly when errors

occur. To view more information on installing plug-ins in Rails, see Sec-

tion 13.13, Rails Plug-Ins, on page 396.

The different configuration settings that Rails uses for our application

in production are set in config/environments/production.rb. You can view

and change these settings, and later in this chapter we’ll discuss some

strategies for optimization. Let’s not get ahead of ourselves, though.

We need to get our application up and running before we start making

additional optimizations that might not be warranted. Before we deploy,

we’ll need to make some preparations to our application.

10.3 Preparing Our Application

Preparing our application involves the process of reviewing security

concerns, freezing our gems, and dumping our schema. We discussed

security in the process of creating our application, but this is a good

time to review.

2. http://svn.rubyonrails.org/rails/plugins/exception_notification

http://svn.rubyonrails.org/rails/plugins/exception_notification
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=246

PREPARING OUR APPLICATION 247

Reviewing Security

Rails makes it easy to create secure applications, but we must be mind-

ful of a few things each time we develop an application. Most of these

items are the same issues we would be concerned about in a PHP

application.

There are a few things that Rails gives us for free. The way our appli-

cation’s files are organized helps prevent our Ruby code from being

executable or downloadable through the browser. Rails also protects

against cross-site request forgery when we use the built-in Rails form

helpers to create our web forms.

Every time we display variable output in our views, we should escape

output. In our application, we did this by escaping entities with the h

method. In PHP, we would have done this using the htmlentities function.

Anytime we use a variable in a SQL fragment, we should filter the

input data to prevent SQL injection. Our application didn’t perform any

queries that needed variable interpolation, but it is likely that future

applications will. This is the same concept as using mysql_real_escape_

string in PHP to filter input given to the database. More information and

examples of doing this in Rails can be found in Section 13.8, Filter

Input, on page 382.

All sensitive data should be protected from bulk-assignment opera-

tions. In our application, we did this using the attr_protected method

on our user’s admin attribute. We should also always secure actions

that we don’t want the public to have access to. Our application uses a

before_filter to perform authentication on administrative actions.

This is a brief overview of some best Rails security practices, and many

of these should not be new to you as a web developer. You can find

more information on best security practices in Section 13.8, Security,

on page 381. Now that we’ve double-checked that our application is

secure, we need to make sure our code environment is stable for our

application.

Freezing Gems

When we installed Rails using the gem command, it was installed to

a systemwide directory on our computer. This is a directory such as

/usr/local/lib/ruby/gems/1.8/gems/, where the code is shared between all

the Ruby applications on our machine. This is similar to the way PEAR

manages libraries in PHP. When we deploy our application, it is quite

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=247

PREPARING OUR DEPLOYMENT SERVER 248

possible that server will need to have a different version of Rails than we

used on our development machine. It is also possible that the gem ver-

sion of Rails on the server could change with unintended consequences

on our application.

An important part of preparing our application for deployment is to

include a local copy of Rails within the application. This is called freez-

ing Rails. Freezing Rails will unpack the entire Rails source code into

the vendor/rails directory of our application. When the Rails source code

is present in this directory, our application will use this version of Rails

instead of the systemwide Rails gem code. We’ll initiate this process

using a Rake task. Navigate to the root directory of your application,

and run the following.

user_group> rake rails:freeze:gems

(in /Users/derek/work/user_group)

Freezing to the gems for Rails 2.0.2

Unpacked gem: ...

Doing this removes some surprises that we might encounter when we

deploy our application. Now that our application is ready, it’s time to

look at the database.

Dumping the Schema

When we deploy our application to production, we’ll need to rebuild

the database in our production environment. Although we could do

this by running all of our migrations from scratch, the preferred way

of rebuilding the database from scratch in Rails is to dump the entire

schema to a file named db/schema.rb.

Rails provides a Rake task to do just this. The db:schema:dump task cre-

ates a single file that describes our entire database structure in Ruby.

current> rake db:schema:dump

(in /Users/derek/work/user_group)

If you look at the db/schema.rb file this task generated, you’ll see that

this uses Ruby just like our migration files. We’ll use this file later to

build our database on our production server.

10.4 Preparing Our Deployment Server

We’re going to assume you’re deploying the application on a Unix-like

server. Deploying on the Windows operating system is certainly possible

but is beyond the scope of this book.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=248

PREPARING OUR DEPLOYMENT SERVER 249

In this section we’ll go over the steps involved in deploying an applica-

tion. The basic checklist is as follows.

1. Copy application source code to the server.

2. Install the necessary tools on the server.

3. Set the server environment.

4. Launch the application.

You have no doubt copied source code to a server when deploying

PHP applications, and you probably have a favorite tool for doing this

already. Some developers favor using a desktop application that sup-

ports the SSH File Transfer Protocol (SFTP), while others use Subver-

sion. Many Rails developers like to use a deployment tool called Capis-

trano.3 With Capistrano, we can deploy to multiple servers at once and

easily roll back to a previous version if something goes wrong. Capis-

trano is written in Ruby but is not exclusive to Rails. Developers have

successfully used it to deploy PHP applications as well.

Installing Tools on Your Server

You will find that deploying a Rails application takes a little more knowl-

edge about sysadmin than you may be used to in PHP. Many Rails

developers set up their own deployment environments on a virtual pri-

vate server and customize the environment to meet the needs of their

application. Some hosting companies that support Rails provide a Rails

stack that comes preinstalled with most of the tools needed to deploy

your application. If you are not comfortable with sysadmin tasks, we

recommend starting with something like this if possible. This way,

you can get your feet wet without having to compile and install every-

thing yourself. There are a few tools that we need when serving a Rails

application.

Ruby

We’ll need Ruby installed on your server. We highly recommend at

least version 1.8.6 to be compatible with the Mongrel Cluster gem

that we’ll demonstrate. Installation instructions for Ruby can be

found on the Ruby website.4

RubyGems

We’ll use the RubyGems packaging system to install both Rails

and Mongrel on our server. We’ll want to install at least version

3. http://www.capify.org/

4. http://www.ruby-lang.org/en/downloads/

http://www.capify.org/
http://www.ruby-lang.org/en/downloads/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=249

PREPARING OUR DEPLOYMENT SERVER 250

1.0.1 of RubyGems. Instructions for installation can be found on

the RubyGems website.5

Rails

We’ll use RubyGems to install Rails in the same method discussed

in Section 1.5, Installing Ruby and Rails, on page 24. We’ll want to

install at least version 2.0.2.

Mongrel

We’ll use RubyGems to install Mongrel. Mongrel is a lightweight

web server written by Zed Shaw.6 This server is written specifi-

cally to serve Ruby applications and came out of a need for a good

alternative to FCGI-based hosting solutions. We need to install the

Daemons, Mongrel, and Mongrel Cluster gems. We should install

the latest stable version of Mongrel, which at the time of this writ-

ing is version 1.1.1.

work> sudo gem install daemons mongrel mongrel_cluster

Successfully installed daemons-1.0.9

Building native extensions. This could take a while...

Successfully installed mongrel-1.1.1

Successfully installed mongrel_cluster-1.0.5

3 gems installed

...

Apache

To get a performance boost, we can use Apache to serve static con-

tent such as our images, JavaScript, and CSS. Apache is much

better suited for this than Mongrel. Apache also gives us the mod_

deflate and mod_proxy_balancer modules, which we can use for fur-

ther performance tuning. We’ll need Apache 2.2 for this configu-

ration. Apache is by far the most popular server for PHP appli-

cations, and there is a good chance you already have Apache

installed on your host. If not, you can use your favorite pack-

age manager to install it, or you can compile from source.7 Your

Apache installation will require the following modules.

• mod_proxy, mod_proxy-html, and mod_proxy_balancer

• mod_rewrite

• mod_deflate

• mod_headers

5. http://www.rubygems.org/read/chapter/3

6. http://mongrel.rubyforge.org/

7. http://httpd.apache.org/download.cgi

http://www.rubygems.org/read/chapter/3
http://mongrel.rubyforge.org/
http://httpd.apache.org/download.cgi
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=250

PREPARING OUR DEPLOYMENT SERVER 251

There is a mod_ruby module that embeds the Ruby interpreter

into the Apache web server. Using this extension is discouraged

for serving Rails applications since multiple Rails applications in

the same Apache environment will share framework classes. This

makes it unsafe to run more than one Rails application on the

server at a time.

MySQL

Our last component is the database, and we recommend MySQL

version 5.0. As a PHP developer, you may be already familiar with

installing MySQL on a server. Installation varies by platforms,

so please reference the instructions on the MySQL website as

needed.8

Once you’ve installed all these software packages, you’re much closer

to getting the application up and running. Our next step is to set up

our Rails environment.

Setting the Environment

Before we start up anything on production, we need to make sure the

database is set up correctly. Let’s take a look at the production section

of config/database.yml.

Download building_a_rails_app/user_group_8/config/database.yml

production:

adapter: mysql

encoding: utf8

database: user_group_production

username: root

password:

socket: /tmp/mysql.sock

If you choose to put your application on shared hosting, you might

need to change this to a database name provided by your host. The

biggest thing to pay attention to here is you’ll need to change the user-

name and password used to connect to your production database. You

should always have proper authentication in place in your production

environment.

The generated database.yml file assumes you’re running your database

and application on the same host and does not include a specification

for the host or port. We’ll need to add the host option if the MySQL server

8. http://dev.mysql.com/doc/refman/5.0/en/installing.html

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_8/config/database.yml
http://dev.mysql.com/doc/refman/5.0/en/installing.html
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=251

PREPARING OUR DEPLOYMENT SERVER 252

is not running on the same server as the application. We also may need

to specify the port option if the MySQL server is configured differently

than the default 3306.

Rails will create the correct socket for whatever machine we initially run

the rails command on, but it is common to deploy on a different platform

than we develop on. For example, OS X typically uses /tmp/mysql.sock,

but deployment on a Ubuntu server will need to update this to /var/run/

mysqld/mysqld.sock. Once we have this set up, we can use a Rake task

to create our database.

current> rake db:create RAILS_ENV=production

(in /var/www/tucsonrails.org/current)

Notice that we added an argument when we executed this task to set

our environment. Adding RAILS_ENV=production will execute any Rake

task in the production environment instead of the default development

environment. The next step is to build our production database. Ear-

lier when preparing our application, we dumped our database schema

using the db:schema:dump task. We’ll now use the db:schema:load task

to load our entire structure into the production environment.

current> rake db:schema:load RAILS_ENV=production

(in /var/www/tucsonrails.org/current)

We can also launch the console using production environment. This is

slightly different from the option we use with Rake tasks.

current> ruby script/console production

Loading production environment

>>

Remembering to add the environment each time is a pain. A better

strategy is to simply set our application to be in production mode at

all times when we’re on our production machine. This way we’ll never

accidentally migrate the development database or deploy the site in

development mode. We can do this in a few different ways.

The best option is to set an environment variable for your user on

the production machine. This is typically done by editing your user’s

.bash_profile or equivalent file to add the following snippet.

export RAILS_ENV="production"

Rails will use this variable to assign the environment for our appli-

cation as it starts. An alternative option is to edit your application’s

config/environment.rb file to use the production environment.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=252

LAUNCHING THE APPLICATION 253

Ruby Download building_a_rails_app/user_group_9/config/environment.rb

ENV['RAILS_ENV'] ||= 'production'

Here we’ve simply uncommented the line that assigns our application’s

environment. However, this is not an ideal solution since it requires us

to change the source code of our application.

Once we have our application, database, and environment ready to go,

all we have left is to launch the application.

10.5 Launching the Application

The server configuration we’ll use to deploy uses both Apache and Mon-

grel. The most basic usage is to deploy a single Mongrel server instance.

Starting up Mongrel to serve your application is simple and is done with

the mongrel_rails command. Switch to the root directory of your applica-

tion, and run the following.

current> mongrel_rails start -d -p 8000 -e production

This starts Mongrel as a daemon listening on port 8000. The -e produc-

tion option starts our application using the production environment.

With Mongrel running, we should now be able to access the site on port

8000. If we have a problem getting Mongrel started, we can troubleshoot

the server by viewing the mongrel log file located at log/mongrel.log.

Although Mongrel is pretty quick, mixing Apache in will give us more

options for speeding things up. Apache 2 makes it easy to organize our

configuration files into separate .conf files. We typically put them in a

directory within the main Apache install and include them from our

main httpd.conf file using Include.

Download deploying_the_application/apache_include.txt

Load config files from the config directory "conf.d".

Include conf.d/*.conf

The simplest configuration is to forward all requests to Apache over to

Mongrel on port 8000. We can do this by adding a simple virtual host

entry to Apache.

We’ll be referring to this application as tucsonrails.org, but you’ll obvi-

ously replace this with your own application’s name when the time

comes.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/config/environment.rb
http://media.pragprog.com/titles/ndphpr/code/deploying_the_application/apache_include.txt
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=253

LAUNCHING THE APPLICATION 254

Figure 10.1: Balancing requests

Download deploying_the_application/single/tucsonrails.org.conf

<VirtualHost *:80>

ServerName tucsonrails.org

ProxyPass / http://tucsonrails.org:8000/

ProxyPassReverse / http://tucsonrails.org:8000

ProxyPreserveHost on

</VirtualHost>

current> sudo apachectl restart

This gets us up and running, but there is a chance you’ll need to run

additional Mongrel servers for your application as it grows. Rails code

is not thread safe, and high-traffic websites usually need more con-

currency than is allowed by a single Mongrel. Since Mongrel uses one

thread per request, more traffic means we need to increase the number

of Mongrel servers that respond to our requests.

A great way to do this is using Apache’s mod_proxy_balancer module

as a software load balancer. With this load balancer, we can start up

multiple Mongrel instances to handle requests. We’ll then use Apache

to evenly distribute the requests between Mongrels, as shown in Fig-

ure 10.1. Apache can also help us out by serving static content such as

images, CSS, and JavaScript.

We know how to start up a single Mongrel, and we can manually start

up multiple Mongrels by simply specifying different port numbers for

each server. This is somewhat of a pain, and we thankfully have a better

way of doing this using the Mongrel Cluster gem.

http://media.pragprog.com/titles/ndphpr/code/deploying_the_application/single/tucsonrails.org.conf
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=254

LAUNCHING THE APPLICATION 255

Before we do this, let’s stop the single Mongrel server that we started.

current> mongrel_rails stop

Sending TERM to Mongrel at PID 11240...Done.

Next we’ll use cluster::configure to set up our Mongrel cluster. We’ll con-

figure this to run three Mongrels starting on port 8000. Three is an arbi-

trary number that we’ve chosen for this example, and the real number

of Mongrels you need is based on the demands of your application.

current> mongrel_rails cluster::configure -e production \

-p 8000 -a 127.0.0.1 -N 3 -c /var/www/tucsonrails.org/current

Writing configuration file to config/mongrel_cluster.yml.

As you can see, this operation spits out a configuration file that it will

use to start and stop the Mongrels. With this configuration, we can

start all of our Mongrels using cluster::start.

current> mongrel_rails cluster::start

starting port 8000

starting port 8001

starting port 8002

Now that we’re using multiple Mongrels, Apache’s proxy balancer needs

a special configuration file to know where requests should be passed.

We’ll do this by adding a proxy_cluster.conf file in our Apache configura-

tion directory. This configuration is simply a list of where the balancer

will send requests.

Download deploying_the_application/cluster/tucsonrails.org.proxy_cluster.conf

<Proxy balancer://mongrel_cluster>

BalancerMember http://127.0.0.1:8000

BalancerMember http://127.0.0.1:8001

BalancerMember http://127.0.0.1:8002

</Proxy>

We’ll also to update to a more robust virtual host configuration to use

the balancer and take advantage of Apache to serve our static content.

Download deploying_the_application/cluster/tucsonrails.org.conf

<VirtualHost *:80>

ServerName tucsonrails.org

DocumentRoot /var/www/tucsonrails.org/public

<Directory "/var/www/tucsonrails.org/public">

Options FollowSymLinks

AllowOverride None

Order allow,deny

Allow from all

</Directory>

http://media.pragprog.com/titles/ndphpr/code/deploying_the_application/cluster/tucsonrails.org.proxy_cluster.conf
http://media.pragprog.com/titles/ndphpr/code/deploying_the_application/cluster/tucsonrails.org.conf
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=255

ENHANCING PERFORMANCE 256

RewriteEngine On

Rewrite index to check for static

RewriteRule ^/$ /index.html [QSA]

Rewrite to check for Rails cached page

RewriteRule ^([^.]+)$ $1.html [QSA]

Redirect all non-static requests to cluster

RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f

RewriteRule ^/(.*)$ balancer://mongrel_cluster%{REQUEST_URI} [P,QSA,L]

ErrorLog logs/tucsonrails.org_errors_log

CustomLog logs/tucsonrails.org_log combined

</VirtualHost>

With these in place, we can restart Apache to see our application de-

ployed in all its Mongrel clustered glory. The next step is to check out

how our application performs.

Learning proper benchmarking tools is essential in locating bottlenecks

in our application. The Railsbench library is a good place to start for

measuring application performance. This library is available for free on

the RubyForge site.9 Geoffrey Grosenbach and Zed Shaw (the author

of Mongrel) have also created a useful screencast that details using

the httperf command-line tool, along with the statistics you should be

familiar with to compare benchmarks. This screencast is for sale on the

Peepcode website.10

When we start finding slow areas of our application, it’s time to make

some performance enhancements to make things snappier.

10.6 Enhancing Performance

There are many ways to increase the performance of our Rails applica-

tion. It is always good to remember Hoare’s Dictum, which states that

“premature optimization is the root of all evil.” In this section, we won’t

cover micro-enhancements such as using single vs. double quotes. We’ll

instead focus on some broader performance enhancements that make

some differences in the real or perceived responsiveness of our applica-

tion.

One performance tip that we mentioned Section 8.6, Reducing Queries,

on page 220, is eager loading. It is a useful practice to view our

9. http://railsbench.rubyforge.org/

10. http://peepcode.com/products/benchmarking-with-httperf

http://railsbench.rubyforge.org/
http://peepcode.com/products/benchmarking-with-httperf
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=256

ENHANCING PERFORMANCE 257

development.log as we sweep through our application a final time

before deployment. By paying attention to the number of queries run on

each page, there is a good chance that we may find additional opportu-

nities to eager load data.

We also discussed caching earlier in Section 9.4, Caching the Pages, on

page 234, and it is good to remember how important a caching strategy

is. The first step to increasing performance is to aggressively cache

your pages. Caching helps both reduce the database queries that your

application performs and reduces the processing that Rails has to do

when evaluating Ruby within views.

Compress Content

One of the easiest ways to increase performance with minimal effort

is to send our content compressed. Sending content using a gzip or

deflate compression will save bandwidth and speed up content delivery

to our users.

When we use Apache, the easiest solution is to use the mod_deflate

module. We can update Apache configuration to deflate the response

by content type. Add this snippet to your application’s VirtualHost entry.

Download deploying_the_application/deflate.txt

Deflate static data

AddOutputFilterByType DEFLATE text/html

AddOutputFilterByType DEFLATE text/plain

AddOutputFilterByType DEFLATE text/xml

AddOutputFilterByType DEFLATE text/css

AddOutputFilterByType DEFLATE application/x-javascript

AddOutputFilterByType DEFLATE application/xml

AddOutputFilterByType DEFLATE application/xhtml+xml

BrowserMatch ^Mozilla/4 gzip-only-text/html

BrowserMatch ^Mozilla/4.0[678] no-gzip

BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

Another alternative is to install the Output Compression plug-in.11 In

PHP there are a few popular solutions for gzipping content by using the

gzcompress or gzdeflate function along with output buffering. This plug-

in uses a similar approach by using Ruby to send the output com-

pressed. This is better than no compression but does not compress

JavaScript and CSS files like the Apache solution.

11. http://craz8.com/svn/trunk/plugins/output_compression/

http://media.pragprog.com/titles/ndphpr/code/deploying_the_application/deflate.txt
http://craz8.com/svn/trunk/plugins/output_compression/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=257

ENHANCING PERFORMANCE 258

Reduce HTTP Requests

In modern web applications, we usually place our JavaScript and CSS

in externally referenced files. We also tend to further split these into

separate files for organizational purposes. This is especially true if you

are including external JavaScript libraries. When we are serving many

CSS and JavaScript files, each file results in another HTTP request to

the server, causing a noticeable lag for the user. We can solve much of

this by combining all external JavaScript and CSS to a single file for

each.

When we included the style sheet for our application, we used the

stylesheet_link_tag helper. In our case, we had only a single external CSS

file and linked to it explicitly by name as “screen.” To play devil’s advo-

cate, let’s say that we now want to include an additional style sheet

named more_styles.css. Adding this file would require our application to

serve up two style sheets for each request. We could explicitly add this

new style sheet in the stylesheet_link_tag tag, but Rails gives us a better

option. When we pass :all as the first parameter to this helper, Rails will

include every file within the public/stylesheets/ directory. We can then

use the :cache => true option for Rails to combine these two style sheets

into a single file named public/stylesheets/all.css.

Ruby Download building_a_rails_app/user_group_9/app/views/layouts/application.html.erb

<%= stylesheet_link_tag "screen", "more_stles",

:cache => "all" %>

By default, Rails will combine and cache these files only when in the

production environment. This helps keeps the code easy to debug in

development but zippy when we’re live. We set this option in our respec-

tive environment configuration files with the config.action_controller.

perform_caching option. We can see that in development this is set to

false.

Ruby Download building_a_rails_app/user_group_9/config/environments/development.rb

config.action_controller.perform_caching = false

We probably need this asset packaging feature more for our JavaScript

files than CSS. There are a lot of useful JavaScript libraries, and even

Rails includes the Prototype and Scriptaculous libraries with every ap-

plication. The downside is that each time we add another JavaScript

file, we get another HTTP request. We can use this same cache tech-

nique with the built-in javascript_include_tag helper.

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/config/environments/development.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=258

ENHANCING PERFORMANCE 259

Ruby Download building_a_rails_app/user_group_9/app/views/layouts/application.html.erb

<%= javascript_include_tag "prototype", "application",

:cache => "all" %>

This works the same way as stylesheet_link_tag and includes every Java-

Script file within the public/javascripts/ directory. When combined, it pro-

duces a public/javascripts/all.js file.

Serving Assets

The previous technique works wonderfully for reducing the number

of requests for CSS and JavaScript files, but we can do even better.

Although we can’t reduce the number of requests further, we can speed

up the process of pulling down resources from the server.

Most popular browsers limit the number of simultaneous connections

that we can open to a specific host. Our application is measurably

slower when we use lots of external resources, since they are not being

pulled down concurrently. This can be a real drag when we serving up

a lot of images, CSS, and JavaScript files. We can use asset hosting in

Rails to increase the number of hosts from which we are pulling these

resources. We do this by adding a simple configuration option to our

application’s config/environments/production.rb file.

Ruby Download building_a_rails_app/user_group_9/config/environments/production.rb

config.action_controller.asset_host = "http://assets%d.tucsonrails.org"

Rails will use this configuration to create four different asset hosts

for us at asset0.tucsonrails.org, asset1.tucsonrails.org, asset2.tucsonrails.org,

and asset3.tucsonrails.org. When we deploy our application to production,

Rails will alternate between these different domains when serving up

the images, CSS, and JavaScript files. The good news is that browsers

will download our resources quicker by treating each of these as a dif-

ferent host.

The last step is to add DNS aliases for each of these so that they point

to your original domain. If your server slows down from a traffic spike,

you can easily change the asset host to serve your images from a differ-

ent location. Some developers use this to host their application’s static

resources on Amazon’s S3 Service.12 This can help alleviate load on the

application server in a crunch.

12. http://www.amazon.com/gp/browse.html?node=16427261

http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/ndphpr/code/building_a_rails_app/user_group_9/config/environments/production.rb
asset0.tucsonrails.org
asset1.tucsonrails.org
asset2.tucsonrails.org
asset3.tucsonrails.org
http://www.amazon.com/gp/browse.html?node=16427261
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=259

SCALING YOUR APPLICATION 260

There is a certain point where it is more economically beneficial to scale

out the website than it is to continue spending time doing small perfor-

mance enhancements. Although performance is the speed at which our

system responds to a given request, scalability is our system’s capacity

to serve a growing number of concurrent requests gracefully.

10.7 Scaling Your Application

Despite Rails applications using persistent application processes in the

most common deployment configurations, most other aspects of Rails

embrace the same shared nothing philosophy as PHP. Like PHP, Rails

tends to always push responsibilities away from itself and onto other

parts of the system. This is usually the database.

Generally, well-written Rails applications will scale horizontally in the

same way that their PHP counterparts do. If you have ever scaled a PHP

application to handle a high volume of requests, you’ll find that scaling

a Rails application will present the same challenges. Often, the same

solutions will apply as well.

Scaling horizontally is essentially distributing our traffic to multiple

machines. Scaling MySQL will work the same as we’ve done with PHP,

and one of the first things we’ll do when scaling out is to put the

database on a dedicated machine. Connecting to multiple databases at

once can be done with the help of the Magic Multi-Connections plug-in

by Nic Williams.13

Scaling out application servers should be fairly easy if you’ve configured

your Apache server to use the proxy balancer. The great thing about our

load balancer is that we can easily configure it to work across multiple

machines. The proxy cluster configuration file we used pointed to three

Mongrels. We can add many more Mongrels to this, and any of these

can be spread across multiple servers.

Download deploying_the_application/scale_cluster/tucsonrails.org.proxy_cluster.conf

<Proxy balancer://mongrel_cluster>

cluster 1

BalancerMember http://192.168.0.1:8000

BalancerMember http://192.168.0.1:8001

BalancerMember http://192.168.0.1:8002

13. http://magicmodels.rubyforge.org/magic_multi_connections/

http://media.pragprog.com/titles/ndphpr/code/deploying_the_application/scale_cluster/tucsonrails.org.proxy_cluster.conf
http://magicmodels.rubyforge.org/magic_multi_connections/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=260

CHAPTER REVIEW 261

cluster 2

BalancerMember http://192.168.0.2:8000

BalancerMember http://192.168.0.2:8001

BalancerMember http://192.168.0.2:8002

cluster 3

BalancerMember http://192.168.0.3:8000

BalancerMember http://192.168.0.3:8001

BalancerMember http://192.168.0.3:8002

</Proxy>

This cluster configuration is spread over nine Mongrels on three differ-

ent machines, as shown in Figure 10.2, on the next page. One decision

we must be careful of when scaling out across many servers like this is

the type of session storage that we choose to use. We must make sure

the session data is not saved to a specific box where it won’t be available

to a subsequent request on a different server. The default cookie-based

session storage works fine for scaling this way, as does ActiveRecord

storage discussed in Section 13.6, Sessions, on page 378.

Manual deployment across multiple servers is not a good idea. We men-

tioned Capistrano as a deployment tool earlier, and this is where it

really shines. Capistrano makes deployment across multiple servers as

easy as typing cap deploy.

10.8 Chapter Review

We’ve learned a basic overview of how to get our application out into

the wild. Now all we need to do is start spreading the word so that we

can get some traffic!

Let’s review the highlights of what we’ve learned in this chapter:

• We figured out how to prepare our application for the deploy-

ment phase. We reviewed security concerns and learned how Rails

behaves differently when in production mode.

• We covered the fundamentals of deploying a Rails application to a

load-balanced Mongrel cluster under Apache.

• We learned strategies for improving performance in our applica-

tion and how to load balance the application to scale it out.

To learn more and keep track of all of the current deployment strate-

gies, you might want to join the Rails deployment mailing list.14 If you’re

14. http://groups.google.com/group/rubyonrails-deployment/topics?start=270\&sa=N

http://groups.google.com/group/rubyonrails-deployment/topics?start=270&sa=N
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=261

EXERCISES 262

Figure 10.2: Scaling to multiple servers

partial to Mongrel (and aren’t we all?), you might want to keep up-to-

date on the Mongrel mailing list.15

10.9 Exercises

Here are some exercises for you to try:

• View the logs for our application to see whether there is any-

where else you might add eager loading to reduce the load on the

database.

• Install and set up the Exception Notification plug-in to receive

email notifications of errors. Go ahead and raise an exception on

your production application to see whether it is working.

• Try to configure your application to run on five Mongrel instances

instead of three.

• Deploy a Rails application from your development platform to a

production server. You get extra points if the two platforms run

different operating systems.

15. http://rubyforge.org/mailman/listinfo/mongrel-users

http://rubyforge.org/mailman/listinfo/mongrel-users
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=262

Part III

PHP to Ruby at a Glance

Chapter 11

PHP to Ruby Basics Reference
The reference part of this book is meant to serve as a guide when you

need to translate your PHP skills to what might be the equivalent code

in Ruby or Rails. Although most PHP translates fairly directly to Ruby,

web-specific programming is more appropriate to show in the context

of the Rails framework. These examples are covered in Chapter 13,

PHP to Rails Reference, on page 371. In some examples, a more direct

translation is available, but we avoid it because it violates a higher

concept or philosophy of Ruby.

In this chapter, we’ll cover the difference and similarities between basic

PHP and Ruby data and operations. You’ll notice that many of the basic

ideas between the languages are shared.

11.1 Basic Syntax

We’ll start with the fundamentals of writing code in any language. This

will give us a good start for testing the rest of the examples in this

chapter.

Output a String

One of the most common operations you’ll perform in any language is

sending output to the screen or terminal. Ruby’s equivalent to PHP’s

print construct is a method by the same name. Ruby’s print method will

automatically convert nonstring objects to their equivalent string by

implicitly using their to_s method. Ruby also provides the puts method,

which will add a trailing newline to the string.

BASIC SYNTAX 265

PHP Download php_to_ruby_language/php/basic_syntax/output_string.php

print "Hello World";

print 1;

print "This string will output with a trailing newline\n";

Ruby Download php_to_ruby_language/ruby/basic_syntax/output_string.rb

print "Hello World"

print 1

puts "This string will output with a trailing newline"

Instruction Separation

Like many languages such as C and Java, PHP requires that instruc-

tions are terminated by semicolons. In most PHP programs, there is

one instruction per line, and the line ends with a semicolon.

Ruby allows instructions to be delimited by semicolons but does not

require them. Ruby will automatically recognize separate instructions

when they are placed on new lines. Most Ruby programs do not use

semicolons to delimit instructions, and it is discouraged to do so.

Occasionally, it is possible to write an instruction that spans multiple

lines and causes some ambiguity to the Ruby interpreter. When this

happens, you can use the backslash character to hint to Ruby that the

instruction continues on the next line. This is not usually required, but

it helps to be aware of the issue.

PHP Download php_to_ruby_language/php/basic_syntax/instruction_separation.php

print "An instruction";

print "Multiple instructions"; print "Another instruction";

print 1 + 2

+ 3;

Ruby Download php_to_ruby_language/ruby/basic_syntax/instruction_separation.rb

print "An instruction"

print "Multiple instructions"; print "Another instruction"

print 1 + 2 \

+ 3

Comments

A single-line comment in PHP can either start with the hash character

(#) or start with two forward slashes (//). In Ruby, you can use only the

hash character.

Comments spanning multiple lines in PHP are most commonly formed

with /* */, and it is considered poor practice to use the other syntaxes for

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/basic_syntax/output_string.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/basic_syntax/output_string.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/basic_syntax/instruction_separation.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/basic_syntax/instruction_separation.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=265

BASIC DATA TYPES 266

multiline comments. In Ruby, using the hash character (#) for multiline

comments is the most common practice and is encouraged.

Ruby also supports a syntax where you can form multiple-line com-

ments using =begin and =end markers. This style of comments cannot

be indented. It is usually reserved for embedded documentation and

even as such is uncommon in the Rails community.

PHP Download php_to_ruby_language/php/basic_syntax/comments.php

single-line comment

// another single-line comment

/* comment multiple

lines of text */

Ruby Download php_to_ruby_language/ruby/basic_syntax/comments.rb

single-line comment

=begin

comment multiple

lines of text

=end

Good PHP programs are usually heavily commented with PHPDoc, a

system of embedding tags inside comments for documentation tools to

process. Ruby programs are not typically commented by anything that

looks like Javadoc. Most Ruby programs, including Ruby on Rails, are

documented with RDoc. This is a lightweight markup system with its

own unique syntax. An in-depth comparison of PHPDoc and Rdoc is

provided in Section 12.7, Documenting Code, on page 359.

You’ll find in general that Ruby programs are written to be readable as

English and that many classes of short, concise methods are encour-

aged. As a result, most Ruby programs have substantially less com-

menting than their PHP counterparts but remain understandable.

11.2 Basic Data Types

While remembering that Ruby types are in fact objects compared to

PHP’s primitive types, we can still make a fair comparison of how simi-

lar types of data play a role in the two different languages.

Booleans

Like PHP, booleans are one of the most basic types and are either true

or false.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/basic_syntax/comments.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/basic_syntax/comments.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=266

BASIC DATA TYPES 267

Figure 11.1: Numeric hierarchy

Unlike PHP where booleans are case-insensitive, booleans in Ruby

should be all lowercase.

PHP Download php_to_ruby_language/php/types/booleans.php

$foo = true;

var_export($foo); // => true

$bar = True;

var_export($bar); // => true

Ruby Download php_to_ruby_language/ruby/types/booleans.rb

foo = true

p foo # => true

bar = True # => NameError: uninitialized constant True

Integers

Integers in both PHP and Ruby are represented by an optional sign (-

or +), optional base indicator, and one or more digits. Ruby will ignore

any underscores added to the string of digits. This convention is often

used to increase the readability of large numbers. Both languages rep-

resent hexadecimal and octal numbers (preceding 0x and 0, respec-

tively) using the same notation.

The size of an integer in both PHP and Ruby is platform dependent. In

PHP when a number exceeds the bounds of the integer type, it will be

interpreted as a floating-point number. Ruby will automatically convert

numbers to either Fixnum and Bignum object types where appropriate.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/booleans.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/booleans.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=267

BASIC DATA TYPES 268

Numbers in Ruby fall into an object hierarchy described in Figure 11.1,

on the previous page.

PHP Download php_to_ruby_language/php/types/integers.php

$positive = 4;

$negative = -4;

$hexidecimal = 0x4;

$octal = 04;

$large = 123234345456;

Ruby Download php_to_ruby_language/ruby/types/integers.rb

positive = 4

negative = -4

hexidecimal = 0x4

octal = 04

the same as 123234345456

large = 123_234_345_456

Floating-Point Numbers

Floating-point numbers are defined by a number that contains a dec-

imal point or exponent. Unlike PHP, Ruby requires a number placed

before the decimal point because the decimal point is part of the Ruby

syntax used to call methods. This means that floating-point numbers

less than zero require a leading zero.

PHP Download php_to_ruby_language/php/types/floating_point.php

$a = 2.3;

$b = .5;

$c = 2e-5;

Ruby Download php_to_ruby_language/ruby/types/floating_point.rb

a = 2.3

b = 0.5

c = 2e-5

Strings

Ruby and PHP both use a 256-value set of single-byte characters and

have multiple ways to represent a string literal. Ruby contains some

additional quoting syntax not available in PHP. Strings in both lan-

guages will contain newline characters when they span multiple lines.

Single-quote syntax is similar in the two languages. Both languages

perform minimal substitution when using single quotes. You can es-

cape a single quote character using a backslash (\’) and escape a single

backslash character using an additional backslash (\\).

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/integers.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/integers.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/floating_point.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/floating_point.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=268

BASIC DATA TYPES 269

Figure 11.2: String substitution

PHP Download php_to_ruby_language/php/types/strings.php

$a = 'hello world'; // hello world

$b = 'escaping string\'s quote'; // escaping the string's quote

$c = 'escaping a backslash (\\)'; // and escaping a backslash (\)

Ruby Download php_to_ruby_language/ruby/types/strings.rb

a = 'hello world' # hello world

b = 'escaping string\'s quote' # escaping the string's quote

c = 'escaping a backslash (\\)' # and escaping a backslash (\)

additional syntax specific to ruby

d = %q{no escape needed 'within'} # no escape needed 'within'

e = %q/using a different delimiter/ # using a different delimiter

Although the first example of the additional syntax uses a standard

convention of curly braces, we can use any other character as the

delimiter. This includes characters such as the backslash (/) shown.

Double-quoted strings will perform more substitution of characters

than single quotes when interpreted. Both languages share the most

common substitutions. The list of substitutions is displayed in Fig-

ure 11.2. The most notable difference is how the languages handle vari-

able substitution. Although PHP will evaluate simple variables within a

string, Ruby can also evaluate full expressions within the string.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/strings.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/strings.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=269

BASIC DATA TYPES 270

PHP Download php_to_ruby_language/php/types/variable_interpolation.php

$name = ucfirst('joe');

$myString = "hello $name!";

Ruby Download php_to_ruby_language/ruby/types/variable_interpolation.rb

my_string = "hello #{'joe'.capitalize}!"

Heredoc syntax is available in both languages in a similar fashion.

The heredoc syntax in PHP is <<< followed by an identifier, a string of

characters, and the closing identifier. Ruby begins with << and follows

the same rules. The closing identifier must begin at the first character

on the final line of the string and must not be indented.

PHP Download php_to_ruby_language/php/types/heredoc.php

$lines = 3;

$myString = <<<EOT

This string can span $lines

lines, and contain variables and

"quotes" without the need to escape.

EOT;

Ruby Download php_to_ruby_language/ruby/types/heredoc.rb

lines = 3

my_string = <<EOT

This string can span #{lines}

lines, and contain variables and

"quotes" without the need to escape.

EOT

Ruby provides some additional syntax that adds the ability to specify

whether the heredoc should evaluate the string using single or double

quotes. We do this by enclosing the opening identifier in the desired

quote structure. Additionally, a minus sign can prefix the identifier to

remove the restriction of the final identifier being the first character on

the line.

We can indent the final identifier for better readability when this prefix

is attached.

Ruby Download php_to_ruby_language/ruby/types/heredoc.rb

my_string = <<'EOT'

This string will be evaluated

as a single quoted string because

the identifier is enclosed in single

quotes.

EOT

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/variable_interpolation.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/variable_interpolation.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/heredoc.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/heredoc.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/heredoc.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=270

BASIC DATA TYPES 271

my_string = <<"EOT"

This string will be evaluated

as a double quoted string because

the identifier is enclosed in double

quotes.

EOT

my_string = <<-'EOT'

Adding the minus sign will allow

the ending identifier to be indented.

EOT

Symbols

Symbols are constructs that are unavailable in PHP. They are con-

structed using a leading colon followed by a string of characters. They

look similar to strings but are likely used in a different way. Symbols

are immutable and cannot be modified like a string. You can think of

them as a memory-efficient way of creating a name or identifier for

something. They are often used as the keys of items in a hash (similar

to an associative array in PHP).

Ruby Download php_to_ruby_language/ruby/types/symbols.rb

the key is a name/identifier for the data

list = { :style => "stone-washed", :color => "blue" }

spaces can be used by using quotes

example = :"hey mom"

While multiple instances of the same string are actually completely dif-

ferent objects, there will only ever be a single symbol by the same name.

We can demonstrate this by viewing the object_id for these objects.

Ruby Download php_to_ruby_language/ruby/types/symbol_ids.rb

"magazine".object_id # => 1740770

"magazine".object_id # => 1729310

:magazine.object_id # => 158498

:magazine.object_id # => 158498

Numerically Indexed Arrays

PHP uses the versatile array data type to handle both numerically

ordered collections and associative key/value pair collections. Ruby

collections work a little differently in that the functionality found in PHP

arrays is split into two different objects. Ruby uses arrays for lists, but

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/symbols.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/symbol_ids.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=271

BASIC DATA TYPES 272

this type of object does not allow for an associative-style declaration of

key/value pairs. For this Ruby uses hashes. If a PHP function is meant

to be used with an associative array, the Ruby code will most likely

use a hash to solve the problem. This section will explain more about

arrays in Ruby, while Section 11.2, Associative Arrays and Hashes, on

page 278, covers hashes.

Arrays in Ruby do not use a numbered index in the same way as

PHP. Arrays in Ruby are a simple stack of elements, and the index of an

element is determined by the position of the element in the stack. You’ll

notice that as a result, there is never a need to rebuild or renumber

arrays when removing elements.

PHP Download php_to_ruby_language/php/array/array_index.php

$fruit = array('banana', 'apple', 'orange');

unset($fruit[1]);

// notice how key #1 is skipped

var_export($fruit);

// => array (0 => 'banana', 2 => 'orange')

Ruby Download php_to_ruby_language/ruby/array/array_index.rb

fruit = ['banana', 'apple', 'orange']

fruit.delete_at(1)

p fruit

=> ["banana", "orange"]

Another notable difference is that Ruby holds no internal pointer to

the current array element. Since Ruby has no equivalent of this type

of array traversal, there is no translation to the related PHP functions

such as current, next, prev, end, and reset.

Creating Arrays

Arrays in PHP are created using the array function. Various influential

community leaders in PHP have opposed adding additional syntax for

creating arrays in an effort to prevent PHP moving down a slippery slope

that leads to multiple ways to perform every operation. Ruby has quite

a few different ways of creating arrays, but you’ll find that there are

only a couple that are used regularly.

PHP Download php_to_ruby_language/php/array/array_creation.php

$colors = array('blue', 'red', 'yellow');

$empty = array();

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_index.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_index.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_creation.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=272

BASIC DATA TYPES 273

Ruby Download php_to_ruby_language/ruby/array/array_creation.rb

the most common syntax

colors = ['blue', 'red', 'yellow']

empty = []

creating an array from a list of words

colors = %w{ blue red yellow }

creating an array with a defined size

empty = Array.new(2)

[nil, nil]

In the three different Ruby approaches shown, you will most often run

into the bracket syntax. This style contains a series of comma-sepa-

rated objects and is by far the most common method of creating arrays.

The other two methods are used less frequently but are convenient in

some situations. We can use the %w{} construct to define a list of words

as an array, and the Array.new syntax will enable us to specify an initial

size for an array during creation.

Adding Elements

In Ruby, the << method will replace PHP’s empty square-bracket syntax

for appending elements to an array. We can assign a value to a specific

numerical index using square brackets just as we would in PHP. The

result is a little different than you might expect in PHP because of how

Ruby stores array elements. To store an element at index 5, Ruby will

need to fill any gaps before that position with nil elements. In this case,

the same operation would yield a three-element array in PHP but a

six-element array in Ruby.

PHP Download php_to_ruby_language/php/array/array_add_elements.php

$fruit = array('apple');

$fruit[] = 'pear';

$fruit[5] = 'grape';

// array(0 => 'apple', 1 => 'pear', 5 => 'grape');

Ruby Download php_to_ruby_language/ruby/array/array_add_elements.rb

fruit = ['apple']

fruit << 'pear'

fruit[5] = 'grape'

["apple", "pear", nil, nil, nil, "grape"]

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_creation.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_add_elements.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_add_elements.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=273

BASIC DATA TYPES 274

Retrieving Elements

Accessing elements of an array is nearly identically in Ruby and PHP

and is done by specifying a numeric index in square brackets.

PHP Download php_to_ruby_language/php/array/array_retrieve_elements.php

$colors = array('blue', 'red', 'yellow');

print $colors[0];

// => blue

Ruby Download php_to_ruby_language/ruby/array/array_retrieve_elements.rb

colors = ['blue', 'red', 'yellow']

puts colors[0]

=> blue

The most important distinction is that Ruby requires the key to be an

integer. While PHP considers 0 and ’0’ to be the same value, Ruby will

throw an error if the key is enclosed in quotes.

PHP Download php_to_ruby_language/php/array/array_retrieve_elements_integer.php

$colors = array('blue', 'red', 'yellow');

print $colors['0'];

// => blue

Ruby Download php_to_ruby_language/ruby/array/array_retrieve_elements_integer.rb

colors = ['blue', 'red', 'yellow']

puts colors['0']

=> can't convert String into Integer (TypeError)

Another important difference is that while PHP throws a notice when

you access a nonexistent key, Ruby expects this type of behavior and

returns nil.

PHP Download php_to_ruby_language/php/array/array_retrieve_elements_nonexistent.php

$colors = array('blue', 'red', 'yellow');

var_export($colors[5]);

// PHP Notice: Undefined offset: 5

// => NULL

Ruby Download php_to_ruby_language/ruby/array/array_retrieve_elements_nonexistent.rb

colors = ['blue', 'red', 'yellow']

puts colors[5]

=> nil

Modifying Elements

Just as in PHP, we can modify elements of an array by simply redefining

them by their specific numerical index.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_retrieve_elements.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_retrieve_elements.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_retrieve_elements_integer.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_retrieve_elements_integer.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_retrieve_elements_nonexistent.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_retrieve_elements_nonexistent.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=274

BASIC DATA TYPES 275

PHP Download php_to_ruby_language/php/array/array_modify_elements.php

$colors = array('blue', 'red', 'yellow');

$colors[1] = 'orange';

// array(0 => 'blue', 1 => 'orange', 2 => 'yellow')

Ruby Download php_to_ruby_language/ruby/array/array_modify_elements.rb

colors = ['blue', 'red', 'yellow']

colors[1] = 'orange'

["blue", "orange", "yellow"]

Removing Elements

Ruby’s equivalent of using unset to remove an element from an array is

the delete_at method. This method will remove the element at the given

index.

PHP Download php_to_ruby_language/php/array/array_removing_elements.php

$colors = array('blue', 'red', 'yellow');

unset($colors[1]);

// array(0 => 'blue', 2 => 'yellow')

Ruby Download php_to_ruby_language/ruby/array/array_removing_elements.rb

colors = ['blue', 'red', 'yellow']

colors.delete_at(1)

["blue", "yellow"]

Simple Array Iteration

The most common way of iterating over an array in PHP is the foreach

control structure. To do the same thing in Ruby, we can use the each

method on our array. Each uses a Ruby block to iterate through the

values. Ruby blocks are discussed further in Section 12.1, Blocks, on

page 316.

PHP Download php_to_ruby_language/php/array/array_simple_iteration.php

$colors = array('blue', 'red', 'yellow');

foreach ($colors as $color) {

print "$color\n";

}

// => blue

// red

// yellow

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_modify_elements.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_modify_elements.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_removing_elements.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_removing_elements.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_simple_iteration.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=275

BASIC DATA TYPES 276

Ruby Download php_to_ruby_language/ruby/array/array_simple_iteration.rb

colors = ['blue', 'red', 'yellow']

colors.each {|color| puts color }

=> blue

red

yellow

Multidimensional Array Iteration

Array’s each method shines when dealing with iterating through a

multidimensional array. Here we can use three separate elements in

the argument list of the block to automatically split out each array’s

components.

PHP Download php_to_ruby_language/php/array/array_multidimensional_iteration.php

$people = array(array('Joe', 'W', 'Smith'),

array('Jane', 'M', 'Doe'));

foreach ($people as $person) {

list($first, $middle, $last) = $person;

print "$first $middle. $last\n";

}

Ruby Download php_to_ruby_language/ruby/array/array_multidimensional_iteration.rb

people = [['Joe', 'W', 'Smith'], ['Jane', 'M', 'Doe']]

people.each do |first, middle, last|

puts "#{first} #{middle}. #{last}"

end

Converting to an Array

While in PHP we cast a data type to an array using type casting, we

convert basic types to an array in Ruby by enclosing an object within

the square brackets with a leading splat (*) operator.

The splat operator will make sure that if the value is already an array,

it won’t be enclosed in an additional outer array.

PHP Download php_to_ruby_language/php/array/array_conversion.php

$stringValue = 'apple';

$converted = (array) $stringValue; // array(0 => 'apple')

$arrayValue = array('apple', 'kiwi');

$converted = (array) $arrayValue; // array(0 => 'apple', 1 => 'kiwi')

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_simple_iteration.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_multidimensional_iteration.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_multidimensional_iteration.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_conversion.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=276

BASIC DATA TYPES 277

Ruby Download php_to_ruby_language/ruby/array/array_conversion.rb

string_value = "apple"

converted = [*string_value] # ["apple"]

array_value = ['apple', 'kiwi']

converted = [*array_value] # ["apple", "kiwi"]

Type casting objects to an array in PHP works differently than basic

types. It instead returns an associative array of the object’s attributes,

with special annotation for the names of protected and private attri-

butes. Ruby has no direct equivalent of this, and the best solution is to

probably implement a custom to_hash method on your object.

PHP Download php_to_ruby_language/php/array/array_conversion_objects.php

class User {

public $name;

protected $admin;

private $age;

public function __construct($name, $admin, $age) {

$this->name = $name;

$this->admin = $admin;

$this->age = $age;

}

}

$joe = (array) new User('Joe', true, 32);

var_export($joe);

// => array ('name' => 'Joe', '*admin' => true, 'Userage' => 32)

Ruby Download php_to_ruby_language/ruby/array/array_conversion_objects.rb

class User

attr_reader :name

def initialize(name, admin, age)

@name, @admin, @age = name, admin, age

end

def to_hash

{:name => @name, :admin => @admin, :age => @age}

end

end

joe = User.new('Joe', true, 32).to_hash

p joe

{:admin=>true, :age=>32, :name=>"Joe"}

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_conversion.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/array/array_conversion_objects.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/array/array_conversion_objects.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=277

BASIC DATA TYPES 278

Associative Arrays and Hashes

A hash in Ruby is the closest we get to an associative array in PHP.

The most important difference to remember is that hashes in Ruby

are unordered collections. Ruby will store items in the most efficient

manner to prepare for quicker retrieval of elements.

PHP Download php_to_ruby_language/php/hash/hash_ordering.php

$person = array("name" => "joe", "age" => 35);

// array("name" => "joe", "age" => 35)

Ruby Download php_to_ruby_language/ruby/hash/hash_ordering.rb

person = { :name => "joe", :age => 35 }

=> { :age=>35, :name=>"joe" }

While PHP uses a string for the key name in associative arrays, Ruby

can use any object for the key. The most common object used for keys

are Ruby symbols because they provide a lighter-weight alternative to

a full Ruby string object.

Creating Hashes

We can create a new hash by creating a new instance of the Hash class,

but the far more common approach is to create hashes using the {}

syntax.

PHP Download php_to_ruby_language/php/hash/hash_creation.php

$person = array('age' => 25, 'name' => 'Joe', 'eyes' => 'blue');

$empty = array();

Ruby Download php_to_ruby_language/ruby/hash/hash_creation.rb

person = { :age => 25, :name => 'Joe', :eyes => 'blue' }

empty = {}

We’ve used the same comma-separated key/value pair idiom seen in

PHP associative arrays. A string could certainly be used as the key

value of hash items, but keys are usually just a name or label we use

to refer to the values in that hash. In this case, it makes more sense to

use more memory-efficient symbols for our keys.

Adding Elements

The most common method of adding elements to an associative array

works identically to PHP by using a square-bracket syntax to assign an

element by key.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_ordering.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_ordering.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_creation.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_creation.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=278

BASIC DATA TYPES 279

PHP Download php_to_ruby_language/php/hash/hash_add_elements.php

$person = array('age' => 25);

$person['name'] = 'Joe';

var_export($person);

// => array('age' => 25, 'name' => 'Joe')

Ruby Download php_to_ruby_language/ruby/hash/hash_add_elements.rb

person = { :age => 25 }

person[:name] = 'Joe'

p person

=> { :age => 25, :name => "Joe" }

We can use the hash’s update method as an equivalent of PHP’s +=

syntax for adding multiple keys at once.

PHP Download php_to_ruby_language/php/hash/hash_add_elements_multiple.php

$person = array('age' => 25);

$person += array('name' => 'Joe', 'eyes' => 'blue');

var_export($person);

// => array('age' => 25, 'name' => 'Joe', 'eyes' => 'blue')

Ruby Download php_to_ruby_language/ruby/hash/hash_add_elements_multiple.rb

person = { :age => 25 }

person.update(:name => 'Joe', :eyes => 'blue')

p person

=> { :age => 25, :eyes => "blue", :name => "Joe" }

Retrieving Elements

Accessing elements of an associative array and hash work similarly

in Ruby and PHP. You can use the square-bracket syntax to access

the element by its key name/object. PHP throws a notice when you

attempt to access a key that doesn’t exist, while Ruby expects this type

of behavior.

PHP Download php_to_ruby_language/php/hash/hash_retrieve_elements.php

$person = array('age' => 25, 'name' => 'Joe');

print $person['age'];

// => 25

var_export($person['hair']);

// PHP Notice: Undefined index: hair

// => NULL

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_add_elements.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_add_elements.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_add_elements_multiple.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_add_elements_multiple.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_retrieve_elements.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=279

BASIC DATA TYPES 280

Ruby Download php_to_ruby_language/ruby/hash/hash_retrieve_elements.rb

person = { :age => 25, :name => 'Joe' }

puts person[:age]

=> 25

puts person[:hair]

=> nil

Modifying Elements

Just as in PHP, we can modify elements of an array by simply redefining

them by their specific index key.

PHP Download php_to_ruby_language/php/hash/hash_modify_elements.php

$person = array('age' => 25, 'name' => 'Joe');

$person['age'] = 26;

// => array('age' => 26, 'name' => 'Joe')

Ruby Download php_to_ruby_language/ruby/hash/hash_modify_elements.rb

person = { :age => 25, :name => 'Joe' }

person[:age] = 26

=> { :name => "Joe", :age => 26 }

Removing Elements

Usually we’ll want to remove an element of a hash by either its key

or its value, and Ruby makes it easy to do both. The replacement for

PHP’s unset function to remove an element by key is the hash’s delete

method. This takes a single argument with the key name and returns

the element removed.

PHP Download php_to_ruby_language/php/hash/hash_remove_elements.php

$person = array('name' => 'Joe', 'eyes' => 'blue');

unset($person['name']);

var_export($person);

// => array('eyes' => 'blue');

Ruby Download php_to_ruby_language/ruby/hash/hash_remove_elements.rb

person = { :name => 'Joe', :eyes => 'blue' }

person.delete(:name)

p person

=> { :eyes => "blue" }

Removing an element by value in PHP requires an iteration of the array

to find the element. Ruby creates a shortcut for this type of operation

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_retrieve_elements.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_modify_elements.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_modify_elements.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_remove_elements.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_remove_elements.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=280

BASIC DATA TYPES 281

using the delete_if method. This method uses a block and deletes all

elements in the hash where the block expression evaluates to true.

PHP Download php_to_ruby_language/php/hash/hash_remove_elements_by_value.php

$person = array('name' => 'Joe', 'eyes' => 'blue');

foreach ($person as $key => $value) {

if ($value == "Joe") {

unset($person[$key]);

}

}

var_export($person);

// => array('eyes' => 'blue');

Ruby Download php_to_ruby_language/ruby/hash/hash_remove_elements_by_value.rb

person = { :name => 'Joe', :eyes => 'blue' }

person.delete_if {|key, value| value == "Joe" }

p person

=> { :eyes => "blue" }

Simple Hash Iteration

Iterating over an associative array in PHP uses foreach just like a nu-

meric array, but with a key => value given to identify both parts of the

hash element. Ruby takes a similar approach using the each method.

It passes two arguments to the block to give us both the key and value

for each element. Ruby blocks are discussed further in Section 12.1,

Blocks, on page 316.

PHP Download php_to_ruby_language/php/hash/hash_simple_iteration.php

$person = array('age' => 25, 'name' => 'Joe', 'eyes' => 'blue');

foreach ($person as $key => $value) {

print "$key = $value\n";

}

// => age = 25

// name = Joe

// eyes = blue

Ruby Download php_to_ruby_language/ruby/hash/hash_simple_iteration.rb

person = { :age => 25, :name => 'Joe', :eyes => 'blue' }

person.each {|key, value| puts "#{key} = #{value}" }

=> age = 25

name = Joe

eyes = blue

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_remove_elements_by_value.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_remove_elements_by_value.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_simple_iteration.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_simple_iteration.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=281

BASIC DATA TYPES 282

Using Objects as Hash Keys

In PHP we can use either an integer or a string as a key for an array.

Ruby, on the other hand, can use any object as a key.

It is important to remember that these keys are references to the orig-

inal object. When we change the original objects, the key name in the

hash will change as well.

Ruby Download php_to_ruby_language/ruby/hash/hash_objects_as_keys.rb

class User; end

fruit = ['apple', 'orange']

use objects/arrays as keys

hash = { User.new => 'Joe', fruit => 'yummy' }

p hash

=> { #<User:0x1eb2c0> => "Joe", ["apple", "orange"] => "yummy" }

access values using them as the key

puts hash[['apple', 'orange']]

=> "yummy"

changing the fruit array also changes the key.

fruit << 'kiwi'

puts hash[['apple', 'orange']]

=> nil

Evaluation Expressions as Keys

Just as in PHP, it is perfectly valid to add any Ruby expression as a key

in a hash when using the square-bracket syntax.

PHP Download php_to_ruby_language/php/hash/hash_expressions_as_keys.php

function myfunc($a) {

return strtoupper($a);

}

$fruit = array();

$fruit[myfunc('apple')] = 'red';

$fruit[myfunc('pear')] = 'green';

var_export($fruit);

// array('APPLE' => 'red', 'PEAR' => 'green')

Ruby Download php_to_ruby_language/ruby/hash/hash_expressions_as_keys.rb

def myfunc(a)

a.upcase

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_objects_as_keys.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/hash/hash_expressions_as_keys.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/hash/hash_expressions_as_keys.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=282

BASIC DATA TYPES 283

fruit = {}

fruit[myfunc('apple')] = 'red'

fruit[myfunc('pear')] = 'green'

p fruit

=> { "APPLE" => "red", "PEAR" => "green" }

NULL (Nil)

PHP’s NULL constant is similar to Ruby’s nil constant in that they both

represent a lack of value for a variable. Nil in Ruby is a little more

interesting because it is actually an object just like everything else; it’s

just an object that represents “no value.”

PHP Download php_to_ruby_language/php/types/null_nil.php

$car = 'red';

var_export(is_null($car));

// => false

unset($car);

var_export(is_null($car));

// PHP Notice: Undefined variable: car

// => true

// in PHP, we check the data type

if (is_string($car)) {

print strtoupper($car)."\n";

}

Ruby Download php_to_ruby_language/ruby/types/null_nil.rb

car = 'red'

p car.nil?

=> false

variables are 'unset' by assigning nil

car = nil

p car.nil?

=> true

car is nil, but can still let us know what methods it responds to

puts car.upcase if car.respond_to?(:upcase)

Although this may seem strange that nil is an object, it actually falls

right in line with how Ruby uses duck typing. We can ask a nil object

whether it responds to a message just like any other object. In the

previous PHP example, we checked whether the variable was a string

before printing an uppercase version of it. Instead of checking the vari-

able type, Ruby uses duck typing to ask the object whether it can per-

form the upcase method. In this case, the nil object returns false to

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/null_nil.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/null_nil.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=283

VARIABLES 284

responds_to(:upcase) and thus never prints the result. More information

on the idea of duck typing can be found in Section 3.4, Duck Typing, on

page 80.

Type Juggling

Ruby does not automatically convert data types in the way PHP does.

To interpret a string as an integer or float, we need to first convert it to

that data type.

PHP Download php_to_ruby_language/php/types/juggling.php

print 1.4 + 4;

// => 5.4

print 1.1 + "2";

// => 3.1

print "3" + 5;

// => 8

Ruby Download php_to_ruby_language/ruby/types/juggling.rb

puts 1.4 + 4

=> 5.4

puts 1.1 + "2"

=> String can't be coerced into Float (TypeError)

puts 1.1 + "2".to_f

=> 3.1

puts "3" + 5

=> can't convert Fixnum into String (TypeError)

puts "3".to_i + 5

=> 8

Although PHP implements type casting to convert our variables to dif-

ferent data types, Ruby takes a different approach. Ruby objects imple-

ment conversion methods such as to_s to convert to different types. The

equivalent of common type casts in PHP are shown in Figure 11.3, on

the next page.

11.3 Variables

Variables in Ruby come in a variety of styles. Like PHP, we can choose to

use a local, global, static, or instance variable depending on the context.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/types/juggling.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/types/juggling.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=284

VARIABLES 285

Figure 11.3: Type conversion

Local Variables

Local variables in Ruby start with an underscore or lowercase letter fol-

lowed by name characters. While PHP uses the dollar ($) sign to define

local variables, the dollar sign is reserved for global variables in Ruby.

It is important to remember that since invoking a method does not

require the use of parentheses, variable and method names in Ruby

can conflict. There are various ways to work around this, of which the

best is probably to simply rename your local variable to something that

does not conflict. An additional approach is to use parentheses when

invoking a method that conflicts with a variable name.

PHP Download php_to_ruby_language/php/variables/variables_local.php

$name = "Joe";

// function names never conflict with variables

function name()

{

return "Jane";

}

print $name."\n";

// => "Joe"

print name()."\n";

// => "Jane"

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/variables/variables_local.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=285

VARIABLES 286

Ruby Download php_to_ruby_language/ruby/variables/variables_local.rb

name = "Joe"

methods can have the same name as a variable

def name

"Jane"

end

puts name

=> "Joe"

we have to use the parentheses to explicitly call the method

so that it doesn't conflict with the variable

puts name()

=> "Jane"

Instance Variables

Instance variables names start with an “at” sign (@) and are shared

between all methods of a single object instance. Instance variables are

discussed in depth in Section 12.3, The Basics (class/new/extends), on

page 326.

Class Variables

Class variables in Ruby start with a double “at” sign (@@) and most

closely resemble static class members in PHP. These variables are

shared between all instances of the class. Class variables are explored

more in depth in Section 12.3, Static Keyword, on page 335.

Global Variables

Global variables in Ruby start with a leading dollar sign ($) followed by

name characters. It is important to recognize that the leading dollar

sign in Ruby is very different from PHP in this respect.

Any Ruby variable using a dollar sign will be the equivalent of a super-

global in PHP and is available anywhere and everywhere. PHP makes no

distinction in variable syntax between local and global scope, and the

global keyword is needed to declare global variables within a function

or method. Ruby global variables are similar to a PHP superglobal in

that they are available in all scopes.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/variables_local.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=286

VARIABLES 287

PHP Download php_to_ruby_language/php/variables/variables_global.php

$name = 'Joe';

function foo()

{

global $name;

print $name;

}

foo();

// => Joe

Ruby Download php_to_ruby_language/ruby/variables/variables_global.rb

$name = 'Joe'

def foo

print $name

end

foo

=> Joe

The previous example demonstrates the scope of the variable type but

is an example of horrible programming practices. In reality, you should

rarely if ever define global variables if you want your code to be

maintainable.

Predefined Variables

Ruby is a general-purpose language that is not natively built for the

Web the way PHP is. Because of this, the equivalent of PHP’s super-

globals such as $_GET, $_POST, $_COOKIE, and $_SESSION are all part of

the Rails framework and are discussed in Chapter 13, PHP to Rails Ref-

erence, on page 371.

Scope

You’ll find that the basic scoping of variables in Ruby is almost identical

to that in PHP. Top-level scoped variables are available within control

structures, but not functions or methods.

PHP Download php_to_ruby_language/php/variables/scope.php

// local to the top-level

$a = 1;

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/variables/variables_global.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/variables_global.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/variables/scope.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=287

VARIABLES 288

// also top-level scope

if (true) {

$a = 2;

print $a; // => 2

}

print $a; // => 2

Ruby Download php_to_ruby_language/ruby/variables/scope.rb

local to the top level scope

a = 1

also top-level scope

if true

a = 2

puts a # => 2

end

puts a # => 2

Functions and methods contain their own local scope in both PHP and

Ruby.

PHP Download php_to_ruby_language/php/variables/scope_functions.php

$a = 2

// local to the function

function myFunction()

{

$a = 3;

print $a; // => 3

}

print $a; // => 2

Ruby Download php_to_ruby_language/ruby/variables/scope_functions.rb

a = 2

local to the function

def my_function

a = 3

puts a # => 3

end

puts a # => 2

While in PHP we use various control structures to perform loops, Ruby

often uses a block to do the same thing. Blocks behave a little differently

than you may expect in regard to scope.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/scope.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/variables/scope_functions.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/scope_functions.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=288

VARIABLES 289

Ruby Download php_to_ruby_language/ruby/variables/scope_blocks.rb

foo = "initial value"

[true].each do |var|

foo = "changed value"

bar = "local to block scope"

end

puts foo # => changed value

puts bar # => undefined local variable or method `bar'

Local variables defined before the block is executed are available within

the context of that block but will remain local in scope. Variables de-

fined in the block that were not previously defined will remain local to

that block. This is demonstrated in the earlier example. The foo variable

is defined before the block is executed and remains in the top-level

scope even when it is modified within the block context. The bar variable

comes into existence only within the block and therefore remains local

to the block only.

Another notable difference in variable definition and scope is that we

can set local variables or execute methods within a Ruby class defini-

tion. PHP has no way for us to do such a thing, and it may seem strange

performing an operation in the scope of a class like this. This is useful

when you need to execute operations as a class is defined at runtime.

Rails uses this to do things such as defining model associations and

validations.

Ruby Download php_to_ruby_language/ruby/variables/scope_class.rb

class MyClass

a = 2

puts a # => 2

def my_method

a = 3

puts a # => 3

end

end

Variable Variables

Ruby does not implement variable variables. Although PHP does sup-

port variable variables, their use is discouraged. Using this type of vari-

able in PHP inevitably leads to confusion for anyone coming back to

read the code at a later date.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/scope_blocks.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/scope_class.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=289

VARIABLES 290

isset/empty

We’ll often use the isset function in PHP to check whether a variable

has been assigned. You need to do this type of check less often when

programming in Ruby. Since Ruby is object oriented, local variables are

often passed in as an argument to a method and are guaranteed to have

a value. Just like in PHP, it is a best practice to define local variables

before using them. Accessing an undefined local variable in Ruby will

result in a NameError.

PHP Download php_to_ruby_language/php/variables/isset.php

if (!isset($var1)) {

print "var1 not set\n";

}

// => var1 not set

$var2 = null;

if (!isset($var2)) {

print "var2 not set\n";

}

// => var2 not set

Ruby Download php_to_ruby_language/ruby/variables/isset.rb

puts "var1 not set" unless var1

=> NameError: undefined local variable or method `var1'

var2 = nil

puts "var2 not set" unless var2

=> var2 not set

We can, however, access instance variables in Ruby that have not been

defined yet. In this case, Ruby will simply return nil if the variable has

not been assigned a value. More details on instance variables can be

found in Section 12.3, The Basics (class/new/extends), on page 326.

Ruby Download php_to_ruby_language/ruby/variables/isset_instance.rb

puts "var3 not set" unless @var3

=> var3 not set

Ruby has a construct named defined? that is similar to PHP’s isset

function. This construct checks whether a variable has been defined

and returns the type of variable stored. Using this construct is usually

not necessary when you are defining your variables properly. Because

of this, you won’t find this construct used often in typical Ruby

applications.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/variables/isset.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/isset.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/isset_instance.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=290

VARIABLES 291

Figure 11.4: Empty variables and boolean handling

Ruby Download php_to_ruby_language/ruby/variables/defined.rb

puts defined? var1

=> nil

var1 = "orange"

puts defined? var1

=> local-variable

PHP and Ruby behave quite differently while evaluating empty vari-

ables and determining what is considered false in a conditional. The

diagram in Figure 11.4 illustrates some of these important differences.

While PHP uses the empty function to check whether any variable type

is empty, Ruby does not implement an empty? method on every data

type. Thankfully, Rails comes to the rescue with the addition of the

blank? method. This makes a consistent interface for checking whether

strings, numbers, arrays, hashes, nil, or boolean objects are blank.

Take note that the blank? method still doesn’t consider any form of zero

as blank, so you’ll have to continue to pay attention to the type of data

you’re passing around. This method is available only from within your

Rails project and is not a core Ruby method.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/defined.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=291

CONSTANTS 292

Another important distinction is that Ruby will evaluate anything other

than nil and false only as true in a conditional. This is quite different

from PHP, and if you want to check whether a value is blank or zero, be

sure to use the blank? or zero? methods, respectively.

11.4 Constants

While only scalar data can be contained in PHP constants, we can store

any data we want in Ruby constants. This gives us the flexibility to use

them in many situations where they would be inappropriate in PHP.

Basic Syntax

Ruby considers any name starting with a capital letter a constant.

While PHP community standards and conventions usually instruct you

to use all caps for constant names, it is not required by the language

syntax as it is in Ruby.

Ruby takes an unconventional approach to constants, allowing them

to be redefined at runtime. Both PHP and Ruby throw a warning when

you try to redefine a constant, but the value of the constant will indeed

change in Ruby. We can do many things in Ruby that aren’t great gen-

eral programming practices but are useful in certain situations. Watch

out for these types of warnings in your program because they usually

indicate problems with your code. As with PHP, Ruby also implements

class constants, which are discussed in Section 12.3, Class Constants,

on page 337.

PHP Download php_to_ruby_language/php/constants/constants.php

define("MY_CONSTANT", "a");

print MY_CONSTANT; // => a

define("MY_CONSTANT", "b");

// PHP Notice: Constant MY_CONSTANT already defined

print MY_CONSTANT; // => a

Ruby Download php_to_ruby_language/ruby/constants/constants.rb

MY_CONSTANT = "a"

puts MY_CONSTANT # => a

MY_CONSTANT = "b"

warning: already initialized constant MY_CONSTANT

puts MY_CONSTANT # => b

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/constants/constants.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/constants/constants.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=292

CONSTANTS 293

Magic Constants

PHP uses five magic constants, which are constants that change de-

pending on where they are used. These constants do things such as

obtain the current line, file, function, class, and method. Both the

__LINE__ and __FILE__ constants are also in Ruby, although __FILE__ be-

haves slightly differently in Ruby, giving the relative path of the file. We

can retrieve the entire path by using Ruby’s File#expand_path method.

PHP Download php_to_ruby_language/php/constants/constants_magic.php

print __LINE__;

// => 2

print __FILE__;

// => /Users/derek/code/php_to_ruby_language/php/constants_magic.php

Ruby Download php_to_ruby_language/ruby/constants/constants_magic.rb

puts __LINE__

=> 2

puts __FILE__

=> constants_magic.rb

puts File.expand_path(__FILE__)

=> /Users/derek/code/php_to_ruby_language/ruby/constants_magic.rb

Ruby has no equivalent of PHP’s __FUNCTION__, __METHOD__, or __CLASS__

constants, but we can access the same information using a different

approach. We can retrieve the class of any object using that object’s

class method. We must always explicitly call self.class when calling this

method since class is a reserved word in Ruby.

PHP Download php_to_ruby_language/php/constants/constants_class.php

class MyClass {

public function myMethod() {

print __CLASS__;

// => MyClass

}

}

Ruby Download php_to_ruby_language/ruby/constants/constants_class.rb

class MyClass

def my_method

puts self.class

=> MyClass

end

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/constants/constants_magic.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/constants/constants_magic.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/constants/constants_class.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/constants/constants_class.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=293

EXPRESSIONS 294

Retrieving the method name from inside an object is slightly more com-

plex and requires adding a custom method to help us.

PHP Download php_to_ruby_language/php/constants/constants_method.php

function myFunction() {

print __FUNCTION__;

// => myFunction

}

class MyClass {

public function myMethod() {

print __METHOD__;

// => MyClass::myMethod

}

}

Ruby Download php_to_ruby_language/ruby/constants/constants_method.rb

we first extend all objects to have a 'method_name' method

class Object

def method_name

"#{self.class}##{$1}" if /`(.*)'/.match(caller.first)

end

end

def top_level_method

puts method_name

=> Object#top_level_method

end

class MyClass

def my_method

puts method_name

=> MyClass#my_method

end

end

The previous example code reopens the Object class to add the method_

name method. Since every object in Ruby extends from the Object class,

we can call this method from within any object’s method to retrieve the

name of the method.

11.5 Expressions

Expressions in Ruby work pretty similarly to those in PHP with a few

exceptions. Control structures in Ruby evaluate as an expression and

return a value. This can be quite useful in cutting down repeated code.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/constants/constants_method.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/constants/constants_method.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=294

EXPRESSIONS 295

PHP Download php_to_ruby_language/php/expressions/expressions_control_structures.php

// in php, we must make an assignment for each condition

if ($day == 'saturday' || $day == 'sunday') {

$type = 'weekend';

} else {

$type = 'weekday';

}

Ruby Download php_to_ruby_language/ruby/expressions/expressions_control_structures.rb

if/else statements return the value of the last expression

we can use this to make a single assignment for 'type'

type = if day == 'saturday' || day == 'sunday'

'weekend'

else

'weekday'

end

Switch statements in Ruby evaluate and return a value as well.

PHP Download php_to_ruby_language/php/expressions/expressions_control_structures_switch.php

// switch statements also require us to make multiple assignments

switch ($sound) {

case 'meow':

$animal = 'cat';

break;

case 'bark':

$animal = 'dog';

break;

default:

$animal = 'unidentified';

}

Ruby Download php_to_ruby_language/ruby/expressions/expressions_control_structures_switch.rb

case statements also return the value of the last expression

animal = case sound

when 'meow': 'cat'

when 'bark': 'dog'

else 'unidentified'

end

Even class and method definitions evaluate as an expression in Ruby,

returning nil.

Ruby Download php_to_ruby_language/ruby/expressions/expressions_class_definition.rb

class and method declarations evaluate to nil

class MyClass; end # => nil

def my_method; end # => nil

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/expressions/expressions_control_structures.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/expressions/expressions_control_structures.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/expressions/expressions_control_structures_switch.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/expressions/expressions_control_structures_switch.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/expressions/expressions_class_definition.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=295

OPERATORS 296

11.6 Operators

Operators in Ruby are unique in that most of them are actually method

calls on an object. Ruby provides a convenient syntax for these method

calls to make them appear to work like they do in most other languages.

PHP Download php_to_ruby_language/php/operators/operators.php

print 1 + 2;

// => 3

print 'Hello, '.'World!';

// => Hello, World!

Ruby Download php_to_ruby_language/ruby/operators/operators.rb

puts 1.+(2)

=> 3

puts 'Hello, '.+('World!')

=> Hello, World!

In the Ruby examples, we have substituted the usual operators with

their method equivalents to display what happens behind the scenes

during their use. Details about overriding operators in Ruby can be

found in Section 3.7, Overriding Operators, on page 91.

Assignment, Arithmetic, and Bitwise

In Figure 11.5, on the next page, we can see that basic arithmetic,

assignment, and bitwise operators are used nearly identically in both

PHP and Ruby. Ruby provides an additional operator for exponention

(**) that provides the equivalent of PHP’s pow() function.

In Ruby we can use parallel variable assignment to assign multiple

variables on a single line. This is similar to using the list function in

combination with the array function in PHP.

PHP Download php_to_ruby_language/php/operators/operators_parallel_assignment.php

list($a, $b, $c) = array(1, 2, 3);

print $a; # => 1

print $b; # => 2

print $c; # => 3

Ruby Download php_to_ruby_language/ruby/operators/operators_parallel_assignment.rb

a, b, c = 1, 2, 3

puts a # => 1

puts b # => 2

puts c # => 3

Ruby has additional assignment operators as shorthand for assigning

variables depending on their current value.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_parallel_assignment.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_parallel_assignment.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=296

OPERATORS 297

Figure 11.5: Operators

This is similar to using a ternary operator in PHP to assign a value

depending on a variable’s existing value. The first allows us to condi-

tionally assign a value if the variable evaluates to false.

PHP Download php_to_ruby_language/php/operators/operators_conditional_assignment.php

$result = isset($result) ? $result : 'foo';

print $result; // => 'foo'

// will not assign since $result already has a value

$result = isset($result) ? $result : 'bar';

print $result; // => 'foo'

Ruby Download php_to_ruby_language/ruby/operators/operators_conditional_assignment.rb

result ||= 'foo'

print result # => 'foo'

will not assign since result already has a value

result ||= 'bar'

print result # => 'foo'

This is a popular idiom in Ruby, and you’ll likely see it used as a

convenient replacement for either the ternary operator or short-circuit

assignment logic. We can also do the opposite of the previous code and

assign a value only if the variable contains a value.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_conditional_assignment.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_conditional_assignment.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=297

OPERATORS 298

Figure 11.6: Comparison operators

Comparison

As shown in Figure 11.6, most comparison operators for basic types are

the same between PHP and Ruby. Ruby does not, however, implement

the <> operator, which is simply a synonym for != in PHP. Ruby also

does not include greater-than (>) or less-than (<) operators for arrays.

The concept of “equal” and “identical” values in Ruby is quite different

from that in PHP since Ruby is strongly typed and PHP is loosely typed.

When using an equal operator, PHP ignores variable types in value com-

parisons and thus considers values such as 1, ’1’, and true all equal. In

Ruby these values are not considered equal. Ruby does, however, con-

sider the value of 1 and 1.0 as equal and can convert most values to a

string for comparison using the to_s method.

PHP Download php_to_ruby_language/php/operators/operators_equals.php

// same value

var_export(1 == 1); // => true

var_export(1 == 1.0); // => true

var_export(1 == '1'); // => true

var_export(1 == true); // => true

casting an integer into a string

var_export((string)1 == '1'); // => true

Ruby Download php_to_ruby_language/ruby/operators/operators_equals.rb

same value

puts 1 == 1 # => true

puts 1 == 1.0 # => true

puts 1 == '1' # => false

puts 1 == true # => false

we can cast an integer to compare it with a string

puts 1.to_s == '1' # => true

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_equals.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_equals.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=298

OPERATORS 299

To perform the equivalent of PHP’s identical operator (===), Ruby imple-

ments the eql? method on every object to compare both the type and the

value of the object. The triple-equals (===) operator in Ruby is reserved

for case statement comparisons.

PHP Download php_to_ruby_language/php/operators/operators_identical.php

// same type and value

var_export(1 === 1); // => true

var_export(1 === 1.0); // => false

var_export(1 === '1'); // => false

var_export(1 === true); // => false

Ruby Download php_to_ruby_language/ruby/operators/operators_identical.rb

same type and value

puts 1.eql?(1) # => true

puts 1.eql?(1.0) # => false

puts 1.eql?('1') # => false

puts 1.eql?(true) # => false

Every time we create a new object, Ruby stores a reference to that object

using an ID. We can also use an additional comparison method in Ruby

named equal?. This method checks whether two objects have the same

object_id. Different strings composed of the same characters may have

an equal value, but they actually are full objects that are stored as a

separate ID.

Ruby symbols, on the other hand, will always use a single reference ID

for the same string of characters. This is one of the reasons why we

prefer to use symbols over strings where appropriate.

Ruby Download php_to_ruby_language/ruby/operators/operators_equals_string.rb

same object_id

puts "a".equal?("a") # => false

puts :a.equal?(:a) # => true

Error Control

The closest we can get to the error silencing operator (@) in Ruby is

changing the $VERBOSE level to nil to suppress warnings. Rails even

introduces a silence_warnings method to make this a little nicer to read.

Most of the time in Ruby, however, we will not want to ignore errors

but handle them with proper rescue statements. A detailed explanation

on differences in error handling can be found in Section 2.8, Handling

Errors, on page 59.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_identical.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_identical.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_equals_string.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=299

OPERATORS 300

PHP Download php_to_ruby_language/php/operators/operators_error_control.php

define('MY_CONSTANT', 'a');

@define('MY_CONSTANT', 'b');

Ruby Download php_to_ruby_language/ruby/operators/operators_error_control.rb

MY_CONSTANT = 'a'

using Ruby, we can change the verbosity level to

suppress warnings

$VERBOSE = nil

MY_CONSTANT = 'b'

$VERBOSE = true

Rails provides a convenient method that uses a block to do the same

silence_warnings do

MY_CONSTANT = 'c'

end

Execution

Both Ruby and PHP will interpret a string within backticks (`) as a

shell command. Ruby also gives the %x{} syntax to perform the same

operation.

PHP Download php_to_ruby_language/php/operators/operators_execution.php

print `pwd`; // => /Users/derek/code/php_to_ruby_language/php

Ruby Download php_to_ruby_language/ruby/operators/operators_execution.rb

puts `pwd` # => /Users/derek/code/php_to_ruby_language/ruby

puts %x{pwd} # => /Users/derek/code/php_to_ruby_language/ruby

Incrementing/Decrementing

Ruby does not implement pre- or post-increment and decrement oper-

ators as used in PHP. We instead use the modified assignment operator

to increment or decrement a value.

PHP Download php_to_ruby_language/php/operators/operators_inc_dec.php

$a = 1;

print ++$a; // => 2

print $a++; // => 2

print $a; // => 3

print --$a; // => 2

print $a--; // => 2

print $a; // -> 1

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_error_control.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_error_control.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_execution.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_execution.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_inc_dec.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=300

OPERATORS 301

Ruby Download php_to_ruby_language/ruby/operators/operators_inc_dec.rb

a = 1

puts a += 1 # => 2

puts a += 1 # => 3

puts a # => 3

puts a -= 1 # => 2

puts a -= 1 # => 1

puts a # -> 1

Logical

Ruby implements almost all the same logical operators as PHP. Ruby

does not implement PHP’s xor operator, but it adds the not operator.

PHP Download php_to_ruby_language/php/operators/operators_logical.php

$result = !true; // $result == false

"&&" and "||" have higher precedence than "="

$result = 'test' && false; // $result == false

$result = 'test' || false; // $result == true

"and" and "or" have lower precedence than "="

$result = 'test' and false; // $result == "test"

$result = 'test' or false; // $result == "test"

$result = ('test' and false); // $result == false

$result = ('test' or false); // $result == true

Ruby Download php_to_ruby_language/ruby/operators/operators_logical.rb

"!" has a higher precedence than "not"

result = !true # result == false

result = (not true) # result == false

"&&" and "||" have higher precedence than "="

result = 'test' && false # result == false

result = 'test' || false # result == "test"

"and" and "or" have lower precedence than "="

result = 'test' and false # result == "test"

result = 'test' or false # result == "test"

result = ('test' and false) # result == false

result = ('test' or false) # result == true

The most important change to note is that Ruby’s && and || operators

return the last value evaluated, wherein PHP they return a boolean

value. This becomes helpful when evaluating short-circuit logical oper-

ations where we want a return value.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_inc_dec.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_logical.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_logical.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=301

OPERATORS 302

PHP Download php_to_ruby_language/php/operators/operators_short_circuit.php

$myVar = "test";

$myVar = $myVar || null;

var_export($myVar); // => true

Ruby Download php_to_ruby_language/ruby/operators/operators_short_circuit.rb

my_var = "test"

my_var = my_var || nil

puts my_var # => "test"

String

Operators for strings in Ruby work similar to PHP, except Ruby uses

the plus sign (+) instead of a dot (.) for concatenation.

PHP Download php_to_ruby_language/php/operators/operators_string.php

// concatenation

$a = "Chunky";

$b = $a . " Bacon!";

print $b; // => Chunky Bacon!

// concatenation assignment

$a = "Chunky";

$a .= " Bacon!";

print $a; // => Chunky Bacon!

Ruby Download php_to_ruby_language/ruby/operators/operators_string.rb

concatenation

a = "Chunky"

b = a + " Bacon!"

puts b # => Chunky Bacon!

concatenation assignment

a = "Chunky"

a += " Bacon!"

puts a # => Chunky Bacon!

Array

The union operator for Ruby arrays works quite differently than in PHP.

Since Ruby arrays don’t have keys, there are never key conflicts, and

the values are always joined. The union operator is not defined for Ruby

hashes but can be easily added if we were to reopen the Hash class to

add a + method. We can make + an alias to Hash#update.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_short_circuit.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_short_circuit.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_string.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_string.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=302

OPERATORS 303

PHP Download php_to_ruby_language/php/operators/operators_array_union.php

// union

$fruit = array('apple') + array('kiwi', 'orange');

var_export($fruit); // => array(0 => 'apple', 1 => 'orange')

// union with associative keys

$result = array('a' => 1, 'b' => 2) + array('c' => 3);

var_export($result); // => array('a' => 1, 'b' => 2, 'c' => 3)

Ruby Download php_to_ruby_language/ruby/operators/operators_array_union.rb

array union (+ doesn't work for hashes)

fruit = [:apple] + [:kiwi, :orange]

p fruit # => [:apple, :kiwi, :orange]

add + operator to hash

class Hash; alias + update; end

result = { :a => 1, :b => 2 } + { :c => 3 }

p result # => { :b => 2, :c => 3, :a => 1 }

Array comparison works pretty similar to PHP with the PHP’s identity

operator (===) being replaced by Ruby’s eql? method.

PHP Download php_to_ruby_language/php/operators/operators_array.php

// equality

$result = array('a' => 1, 'b' => 2) == array('b' => 2, 'a' => 1);

var_export($result); // => true

// identity also checks order

$result = array('a' => 1, 'b' => 2) === array('b' => 2, 'a' => 1);

var_export($result); // => false

Ruby Download php_to_ruby_language/ruby/operators/operators_array.rb

equality

result = { :a => 1, :b => 2 } == { :b => 2, :a => 1 }

puts result # => true

identity

result = { :a => 1, :b => 2 }.eql?({ :b => 2, :a => 1 })

puts result # => false

Type

Object-oriented PHP has drawn inspiration from Java and uses inter-

faces, type hints, and the instanceof operator to check object types

before operating on them. Ruby takes quite a different approach to this

by embracing the idea of duck typing.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_array_union.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_array_union.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_array.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_array.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=303

OPERATORS 304

PHP Download php_to_ruby_language/php/operators/operators_type.php

class MyClass

{

public function myMethod()

{

return 'true';

}

}

class OtherClass {}

$a = new MyClass;

$b = new OtherClass;

if ($a instanceof MyClass) {

print $a->myMethod(); // => 'true'

}

// this won't evaluate

if ($b instanceof MyClass) {

print $b->myMethod();

}

Ruby Download php_to_ruby_language/ruby/operators/operators_type.rb

class MyClass

def my_method

'true'

end

end

class OtherClass; end

a = MyClass.new

b = OtherClass.new

In ruby we check the interface, not the class

if a.respond_to? :my_method

puts a.my_method # => true

end

this won't evaluate

if b.respond_to? :my_method

b.my_method

end

If we truly wanted to check an object type, Ruby objects all have an is_a?

method, and we could call a.is_a? MyClass. However, the more appropri-

ate approach in Ruby is to check whether the object responds to the

my_method message it wants to send instead of trying to check the

object type. If the object does indeed implement the needed method,

Ruby knows it can continue into the block. More details on typing in

Ruby are described in Section 3.4, Understanding Typing, on page 79.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/operators/operators_type.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/operators/operators_type.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=304

CONTROL STRUCTURES 305

11.7 Control Structures

Many of PHP’s native control structures for looping operations are re-

placed by a special iterator methods that use blocks. Ruby also adds

statement modifiers, which are great tools for making your code suc-

cinct and expressive.

if

Ruby uses an if/end syntax to define the opening and closing of con-

ditional statements, and parentheses around the evaluated expression

are optional.

PHP Download php_to_ruby_language/php/control/control_if.php

$value = 10;

// mutiple line if

if ($value > 5) {

print "value is \n";

print "greater than 5\n";

}

Ruby Download php_to_ruby_language/ruby/control/control_if.rb

value = 10

mutiple line if

if value > 5

puts 'value is '

puts 'greater than 5'

end

We can also write single-line conditionals using the if and unless state-

ment modifiers.

PHP Download php_to_ruby_language/php/control/control_if_modifiers.php

$value = 10;

// single line if

if ($value > 5)

print "value is greater than 5\n";

// negated if

if (! $value > 5)

print "value is NOT greater than 5\n";

Ruby Download php_to_ruby_language/ruby/control/control_if_modifiers.rb

value = 10

single line if

puts 'value is greater than 5' if value > 5

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_if.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_if.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_if_modifiers.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_if_modifiers.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=305

CONTROL STRUCTURES 306

negated if in ruby uses unless

puts 'value is NOT greater than 5' unless value > 5

else

Using else in Ruby is similar to that in PHP, and the ternary operator

works the same in both languages.

PHP Download php_to_ruby_language/php/control/control_else.php

$value = 10;

if ($value > 5) {

print 'value is greater than 5';

} else {

print 'value is NOT greater than 5';

}

// ternary operator

$color = $value == 1 ? 'red' : 'blue';

Ruby Download php_to_ruby_language/ruby/control/control_else.rb

value = 10

if value > 5

puts 'value is greater than 5'

else

puts 'value is NOT greater than 5'

end

ternary operator

color = value == 1 ? 'red' : 'blue'

elseif/elsif

PHP’s elseif keyword loses the middle e to become elsif in Ruby. If we

want to put our statements on the same line as the conditional expres-

sion in Ruby, we can use either a colon (:) or the then keyword.

PHP Download php_to_ruby_language/php/control/control_ifelse.php

$value = 7;

if ($value > 8) {

print 'value is greater than 8';

} elseif ($value > 5) {

print 'value is greater than 5'

} else {

print 'value is NOT greater than 5';

}

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_else.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_else.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_ifelse.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=306

CONTROL STRUCTURES 307

Ruby Download php_to_ruby_language/ruby/control/control_ifelse.rb

value = 7

if value > 8

puts 'value is greater than 8'

elsif value > 5

puts 'value is greater than 5'

else

puts 'value is NOT greater than 5'

end

variation using ":"

if value > 8: puts 'value is greater than 8'

elsif value > 5: puts 'value is greater than 5'

else puts 'value is NOT greater than 5'

end

variation using "then"

if value > 8 then puts 'value is greater than 8'

elsif value > 5 then puts 'value is greater than 5'

else puts 'value is NOT greater than 5'

end

while

Ruby uses a while/end style syntax to define the opening and closing of

while loops.

PHP Download php_to_ruby_language/php/control/control_while.php

// multiple line while

$page = 1;

while ($page < 5) {

print "$page\n";

$page++;

}

Ruby Download php_to_ruby_language/ruby/control/control_while.rb

multiple line while

page = 1

while page < 5

puts page

page += 1

end

Ruby adds the while and until statement modifiers so that we can write

simple while statements in a single line of code.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_ifelse.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_while.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_while.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=307

CONTROL STRUCTURES 308

PHP Download php_to_ruby_language/php/control/control_while_modifiers.php

// single line while

$page = 1;

while ($page < 5)

$page++;

// negated while

$page = 1;

while (! $page >= 5)

$page++;

Ruby Download php_to_ruby_language/ruby/control/control_while_modifiers.rb

single line while

page = 1

page += 1 while page < 5

negated while

page = 1

page += 1 until page >= 5

do while

Ruby has no support for do/while but has an equivalent syntax that

uses a while or until statement modifier on a begin/end block expression.

PHP Download php_to_ruby_language/php/control/control_dowhile.php

$page = 1;

do {

print "$page\n";

$page++;

} while ($page < 10);

Ruby Download php_to_ruby_language/ruby/control/control_dowhile.rb

page = 1

begin

puts page

page += 1

end while < 10

for

Ruby takes a little bit of a different approach than PHP when it comes to

loops. It does this in an effort to cut down on pesky “fence-post” or “one-

off” errors. There is no for construct in Ruby, and most approaches to

loops take advantage of iterators methods on an integer object. We can

write a loop with an incrementor using either the times or upto method.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_while_modifiers.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_while_modifiers.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_dowhile.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_dowhile.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=308

CONTROL STRUCTURES 309

PHP Download php_to_ruby_language/php/control/control_for.php

// incremented by 1

for ($i = 0; $i < 5; $i++) {

print "$i ";

}

// => 0 1 2 3 4

Ruby Download php_to_ruby_language/ruby/control/control_for.rb

incremented by 1

5.times do |i|

print "#{i} "

end

=> 0 1 2 3 4

incremented by 1

0.upto(4) do |i|

print "#{i} "

end

=> 0 1 2 3 4

Likewise, we can create a loop with a decrementor by using the downto

method.

PHP Download php_to_ruby_language/php/control/control_for_decrement.php

// decremented by 1

for ($i = 4; $i >= 0; $i--) {

print "$i ";

}

// => 4 3 2 1 0

Ruby Download php_to_ruby_language/ruby/control/control_for_decrement.rb

decremented

4.downto(0) do |i|

print "#{i} "

end

=> 4 3 2 1 0

To create an interval other than 1 when incrementing or decrementing,

we can use Ruby’s step method to perform a loop. The first argument

to this method is the final value we’re counting up to, and the second

argument is the interval.

PHP Download php_to_ruby_language/php/control/control_for_interval.php

// by an interval

for ($i = 0; $i < 5; $i += 2) {

print "$i ";

}

// => 0 2 4

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_for.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_for.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_for_decrement.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_for_decrement.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_for_interval.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=309

CONTROL STRUCTURES 310

Ruby Download php_to_ruby_language/ruby/control/control_for_interval.rb

by an interval

0.step(5, 2) do |i|

print "#{i} "

end

=> 0 2 4

foreach

The foreach construct on arrays can be done with one of two iterator

methods in Ruby. We’ll use each only when we need to loop through

the value in an array.

PHP Download php_to_ruby_language/php/control/control_foreach.php

array

$colors = array('blue', 'orange', 'red');

foreach ($colors as $color) {

print "$color ";

}

// => blue orange red

Ruby Download php_to_ruby_language/ruby/control/control_foreach.rb

array

colors = ['blue', 'orange', 'red']

colors.each do |color|

print "#{color} "

end

=> blue orange red

When we also need the numeric index of an array, we can iterate over

the results using the each_with_index method, which will pass us two

block arguments.

PHP Download php_to_ruby_language/php/control/control_foreach_index.php

array with index

foreach ($colors as $key => $color) {

print "$key=$color ";

}

// => 0=blue 1=orange 2=red

Ruby Download php_to_ruby_language/ruby/control/control_foreach_index.rb

array with index

colors.each_with_index do |color, i|

print "#{i}=#{color} "

end

=> 0=blue 1=orange 2=red

When we use the each method on a hash, it will pass both the key and

value of the current element to the block.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_for_interval.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_foreach.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_foreach.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_foreach_index.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_foreach_index.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=310

CONTROL STRUCTURES 311

PHP Download php_to_ruby_language/php/control/control_foreach_assoc.php

// associative array

$person = array('name' => 'Joe', 'eyes' => 'blue');

foreach ($person as $key => $value) {

print "$key=$value ";

}

// => name=Joe eyes=blue

Ruby Download php_to_ruby_language/ruby/control/control_foreach_assoc.rb

hash

person = {:name => 'Joe', :eyes => 'blue'}

person.each do |key, value|

print "#{key}=#{value} "

end

=> eyes=blue name=Joe

break

Stopping the execution in both PHP and Ruby is done using the break

statement, but the argument to break works differently in the two

languages.

While PHP uses the argument to determine how many enclosing state-

ments to break out of, Ruby treats this as a return value for the

statement.

PHP Download php_to_ruby_language/php/control/control_break.php

$i = 0;

while (true) {

if ($i == 5) break;

print "$i ";

$i++;

}

// => 0 1 2 3 4

// argument determines how many levels to break

$i = 1;

while ($i < 100) {

while ($i < 10) {

if ($i == 5) break 2; // skip out of both while loops

$i++;

}

$i++;

}

print $i;

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_foreach_assoc.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_foreach_assoc.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_break.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=311

CONTROL STRUCTURES 312

Ruby Download php_to_ruby_language/ruby/control/control_break.rb

i = 0

while true

break if i == 5

puts "#{i} "

i += 1

end

=> 0 1 2 3 4

argument to break is a return value

i = 1

result = while i < 100

break "test" if i == 5

i += 1

end

puts result # => test

continue/next

PHP’s continue keyword is replaced by next in Ruby. Unlike PHP, Ruby

does not allow an additional argument to specify how many loops to

skip.

PHP Download php_to_ruby_language/php/control/control_continue.php

// only print even numbers

$i = 0;

while ($i <= 10) {

$i++;

if ($i%2 == 1) continue;

print "$i ";

}

// => 2 4 6 8 10

Ruby Download php_to_ruby_language/ruby/control/control_continue.rb

only print even numbers

i = 0

while i <= 10

i += 1

next if i%2 == 1

puts "#{i} "

end

=> 2 4 6 8 10

switch

Ruby implements a case expression as a replacement for PHP’s switch.

Although case achieves the same goal, it works quite differently. The

expression will not continue to evaluate statements once it finds a

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_break.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_continue.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_continue.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=312

CONTROL STRUCTURES 313

matching value, and thus it doesn’t need a break statement to stop

execution.

PHP Download php_to_ruby_language/php/control/control_switch.php

// without a break, PHP keeps evaluating

switch (1) {

case 0:

print "equals 0\n";

case 1:

print "equals 1\n";

case 2:

print "equals 2\n";

}

// => equals 1

// equals 2

Ruby Download php_to_ruby_language/ruby/control/control_switch.rb

there is no need for a break

case 1

when 0: puts "equals 0"

when 1: puts "equals 1"

when 2: puts "equals 2"

end

=> equals 1

We can check multiple values for a statement by using comma-separa-

ted values, and we can take advantage of a case’s return value to

shorten our code.

PHP Download php_to_ruby_language/php/control/control_switch_multiple.php

// multiple values are on additional lines

$color = 'blue';

switch ($color) {

case 'red':

case 'yellow':

$type = "Warm";

break;

case 'blue':

case 'green':

$type = "Cool";

break;

default:

$type = "Invalid";

}

print "$type color\n";

// => Cool color

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_switch.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_switch.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/control_switch_multiple.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=313

CONTROL STRUCTURES 314

Ruby Download php_to_ruby_language/ruby/control/control_switch_multiple.rb

multiple values are comma separated

color = 'blue'

case color

when 'red', 'yellow':

type = "Warm"

when 'blue', 'green':

type = "Cool"

else

type = "Invalid"

end

puts "#{type} color"

We can use case's return value to shorten the statement

type = case color

when 'red', 'yellow': "Warm"

when 'blue', 'green': "Cool"

else "Invalid"

end

puts "#{type} color"

return

The return statement in both PHP and Ruby will interrupt the normal

flow of code to return a value from a block of code. Return values are

discussed further in Section 12.2, Return Values, on page 323.

Require and Include

The require method in Ruby loads an external file a single time in the

same form as PHP’s require_once construct. The .rb extension on the

filename is optional in Ruby and is often left off.

We can load the same external file more than once using Ruby’s load

method. This is just like PHP’s require construct. This method differs

from the Ruby’s require method in that it does require the file extension

of the loaded file.

Ruby does not implement the equivalent of PHP’s include and include_

once, because they are simply a difference in error handling to Ruby.

If we don’t want the program execution to stop when a file cannot be

loaded, we can simply enclose Ruby’s require or load method calls within

a rescue block to catch the raised exception.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/control_switch_multiple.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=314

CONTROL STRUCTURES 315

PHP Download php_to_ruby_language/php/control/require.php

require_once 'lib/sample_file.php';

// => in the sample file

require_once 'lib/sample_file.php';

require 'lib/sample_file.php';

// => in the sample file

require 'lib/sample_file.php';

// => in the sample file

Ruby Download php_to_ruby_language/ruby/control/require.rb

require 'lib/sample_file'

=> in the sample file

require 'lib/sample_file'

load 'lib/sample_file.rb'

=> in the sample file

load 'lib/sample_file.rb'

=> in the sample file

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/control/require.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/control/require.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=315

Chapter 12

PHP to Ruby Advanced Reference
In this chapter, we’ll go over some of the more complex language con-

structs, and we’ll start to see some more radical differences in PHP and

Ruby. Ruby has a different approach to using objects than PHP. Since

the Ruby world consists nearly entirely of objects and methods, Ruby

puts more focus on making them easier to create and use.

12.1 Blocks

Quite a few control structures from PHP are implemented using blocks

in Ruby. Blocks are a feature in Ruby that are not available in PHP and

serve as a method of passing an enclosure of code into a method. We

can pass a block two different ways: using either curly braces ({}) or a

do/end-style syntax. Rubyists generally agree on using the curly brace

syntax when the block is on a single line and using the do/end-style

block when the code spans multiple lines.

Ruby Download php_to_ruby_language/ruby/blocks/basics.rb

single line block

['a', 'b', 'c'].each {|letter| puts letter }

multiple line block

['a', 'b', 'c'].each do |letter|

puts letter

puts letter.upcase

end

It’s obvious why we would pass values as arguments to a method, but

you are probably wondering why we would need to pass in a block of

code. The answer is that the method can then execute that block of

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/blocks/basics.rb

BLOCKS 317

code an arbitrary amount of times and can also pass arguments to the

block of code to use just as we would with a method call.

One practical use of blocks is performing transactional operations.

Using a block enables us to ensure that certain code always gets exe-

cuted before and after an operation. We use the yield keyword to execute

the block that was passed in.

Ruby Download php_to_ruby_language/ruby/blocks/transactions.rb

def dinner

puts "prepare meal"

yield

puts "wash dishes"

end

dinner { puts "eat lasagna" }

=> prepare meal

eat lasagna

wash dishes

In this case, we’ve made the dinner method accept a block. When we

use this method, we’ll make sure we always “prepare meal” before we

eat and “wash dishes” afterward. We’ll use this same concept in Ruby

when we perform operations such as reading files. We can use this style

of transaction to open the file before we read it and later close the file

when we’re finished.

We can also pass arguments to the yield keyword, which will be passed

into the block for use. Let’s create a method that will yield three vari-

ations on the word given. Each time we execute the block with yield,

we will pass in the name and value of the variation. In the block we

accept these arguments in a comma-separated list enclosed with pipe

(|) characters.

Ruby Download php_to_ruby_language/ruby/blocks/arguments.rb

def variations(name)

yield("upcase", name.upcase)

yield("downcase", name.downcase)

yield("capitalize", name.capitalize)

end

variations('joe') {|name, value| puts "#{name} = #{value}" }

=> upcase = JOE

downcase = joe

capitalize = Joe

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/blocks/transactions.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/blocks/arguments.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=317

FUNCTIONS 318

We can check whether a block was passed into a method by calling

block_given?.

Ruby Download php_to_ruby_language/ruby/blocks/block_given.rb

def my_method

if block_given?

puts "block passed in"

else

puts "no block"

end

end

my_method

=> no block

my_method {}

=> block passed in

It’s also possible to pass the code block into the method and execute

it directly in our method using call. When we add a final parameter to

a method definition that is prefixed with an ampersand (&), Ruby will

store the block of code in that variable.

Ruby Download php_to_ruby_language/ruby/blocks/as_proc.rb

the block code is stored in arg2

def my_method(arg1, &arg2)

arg2.call('block argument')

end

my_method('test') {|arg1| puts "Some data with #{arg1}" }

=> Some data with block argument

12.2 Functions

There are actually no functions in Ruby in the way we think of them in

PHP. In Ruby every function is actually a method defined on a class or

object. Any methods defined in the global scope are actually methods of

the Object class. Since every Ruby object inherits from Object, methods

defined in this scope are available everywhere unless overridden in a

subclass.

Ruby Download php_to_ruby_language/ruby/functions/functions_global.rb

this gets added to the Object class

def my_global_method

puts "I'm available everywhere!"

end

o = Object.new

o.my_global_method

=> I'm available everywhere!

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/blocks/block_given.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/blocks/as_proc.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_global.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=318

FUNCTIONS 319

every new object inherits from object

class Car; end

c = Car.new

c.my_global_method

=> I'm available everywhere!

Defining and invoking methods in Ruby don’t require us to use paren-

theses, and they are often left off when there are no arguments to the

method.

A good rule of thumb is to use parentheses when calling a method with

multiple arguments or when you need to chain additional methods calls

to the result.

Ruby Download php_to_ruby_language/ruby/functions/functions_invocation.rb

parentheses left out of method definition

def drink_water

puts "Gulp, Gulp"

end

stylisticly, parentheses would often be left off here as well

drink_water

we need parentheses when we have arguments to pass in

def drink_beverage(type, size)

puts "Gulping down #{size} of #{type}"

end

we can invoke like this

drink_beverage "Gatorade", "gallon jug"

but it is more stylisticly appropriate to use parentheses

drink_beverage("Gatorade", "gallon jug")

User-Defined

Methods are defined using a def/end syntax instead of PHP’s curly

braces. Unlike PHP, method names in Ruby are case sensitive.

PHP Download php_to_ruby_language/php/functions/functions_user_defined.php

// user defined function

function myFunction($arg1, $arg2, $arg3) {

return "return value \n";

}

print myFunction('a', 'b', 'c');

// => return value

print mYfunCtion('a', 'b', 'c');

// => return value

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_invocation.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_user_defined.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=319

FUNCTIONS 320

Ruby Download php_to_ruby_language/ruby/functions/functions_user_defined.rb

user defined function

def my_function(arg1, arg2, arg3)

"return value"

end

puts my_function('a', 'b', 'c')

=> return value

puts mY_funCtion('a', 'b', 'c')

=> undefined method `mY_funCtion' for main:Object

Ruby names can optionally end with a question mark (?), exclamation

mark (!), or equals sign (=). The question mark is typically used on meth-

ods that return a boolean, as if we’re asking a question. The equals sign

is reserved for methods that act as a left-hand attribute assignment

method.

Ruby Download php_to_ruby_language/ruby/functions/functions_naming.rb

class User

def admin=(admin)

@admin = admin

end

def admin?

@admin || false

end

end

joe = User.new

joe.admin = true

puts joe.admin?

=> true

The exclamation point is often used to symbolize that the method per-

forms an operation that is destructive or changes the receiving object.

You’ll probably notice that many built-in Ruby methods have a corre-

sponding method that ends in an exclamation point.

Ruby Download php_to_ruby_language/ruby/functions/functions_bang.rb

foo = [2, 1, 3]

"sort" returns the sorted result, but "foo" remains the same

p foo.sort

=> [1, 2, 3]

p foo

=> [2, 1, 3]

"sort!" actually changes the value of "foo"

p foo.sort!

=> [1, 2, 3]

p foo

=> [1, 2, 3]

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_user_defined.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_naming.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_bang.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=320

FUNCTIONS 321

Ruby allows nested methods. Just as with nested functions in PHP,

they are not callable until the outer method has executed.

PHP Download php_to_ruby_language/php/functions/functions_nested.php

// nested functions

function myFunction() {

function myInnerFunction() {

print "inner value\n";

}

}

myFunction();

myInnerFunction();

// => inner value

Ruby Download php_to_ruby_language/ruby/functions/functions_nested.rb

nested functions

def my_function

def my_inner_function

print "inner value"

end

end

my_function

my_inner_function

=> inner value

Arguments

Like in PHP, we can use default values to arguments by assigning

values to the method parameters in the definition. While PHP cannot

assign a new object as a default value, Ruby can assign any data type

as a default value.

PHP Download php_to_ruby_language/php/functions/functions_arguments.php

// passing default values

function myFunction($arg1='default', $arg2=array('a', 'b')) {

print "$arg1 $arg2[0]\n";

}

myFunction();

// => default a

Ruby Download php_to_ruby_language/ruby/functions/functions_arguments.rb

passing default values

def my_function(arg1='default', arg2=['a', 'b'], arg3=Object.new)

puts "#{arg1} #{arg2[0]}"

end

my_function

=> default a

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_nested.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_nested.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_arguments.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_arguments.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=321

FUNCTIONS 322

Hashes can be passed into a method without the enclosed curly braces,

which allows for a syntax that simulates named arguments. This idiom

is used quite often in Rails to make the code more readable when there

are many options to pass into a method.

Ruby Download php_to_ruby_language/ruby/functions/functions_arguments_hash.rb

def format(text, options = {})

text.reverse! if options[:reverse]

text.upcase! if options[:upcase]

text

end

puts format('Live not on evil.', :reverse => true, :upcase => true)

=> .LIVE NO TON EVIL

We can pass an optional block to a method using either a single-line

curly brace block or a multiline do/end-style block. We can reference

the block with a final parameter in the method definition that is prefixed

with an ampersand (&).

When we call this method, Ruby will convert the block to a Proc object

and assign it to this argument.

Ruby Download php_to_ruby_language/ruby/functions/functions_arguments_blocks.rb

when we use a block, it's passed in as an argument

def checker(value, &block)

value << block.call if block

value

end

not passing a block

puts checker('test')

=> 'test'

passing in a single-line block

puts checker('test') { " with a block" }

=> "test with a block"

Ruby has a nice way of dealing with variable arguments. Instead of

using a function to get the arguments as in PHP, we can add an array

argument to the end of our argument list by prepending the name of

the argument with an asterisk (*).

This is called the splat operator and will collect all remaining elements

into this argument as an array.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_arguments_hash.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_arguments_blocks.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=322

FUNCTIONS 323

PHP Download php_to_ruby_language/php/functions/functions_variable_args.php

function myFunction() {

$argNum = func_num_args();

$args = func_get_args();

$first = array_shift($args);

$second = array_shift($args);

print "($argNum) total, first: $first\n";

}

myFunction('red', 'green', 'blue');

// => (2) total, first: red

Ruby Download php_to_ruby_language/ruby/functions/functions_variable_args.rb

def my_function(*args)

arg_num = args.size

first = args.shift

second = args.shift

puts "(#{arg_num}) total, first: #{first}"

end

my_function('red', 'green', 'blue')

=> (3) total, first: red

We can also require a specified number of requirements and collect the

rest using the splat operator on the last argument.

PHP Download php_to_ruby_language/php/functions/functions_variable_args_req.php

function anotherFunction($first, $second) {

$args = func_get_args();

$third = $args[2];

print "first: $first, third: $third\n";

}

anotherFunction('red', 'green', 'blue');

// => first: red, third: blue

Ruby Download php_to_ruby_language/ruby/functions/functions_variable_args_req.rb

we can require some args, and collect all the rest

def another_function(first, second, *more)

third = more.first

puts "first: #{first}, third: #{third}"

end

another_function('red', 'green', 'blue')

=> first: red, third: blue

Return Values

Like PHP, Ruby uses the return keyword to return a value from a

method. However, unlike PHP, Ruby will implicitly return the last ex-

pression evaluated in any method. Although it may take some getting

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_variable_args.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_variable_args.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_variable_args_req.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_variable_args_req.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=323

FUNCTIONS 324

used to, it is a common Ruby convention to not use the return keyword

when not needed.

PHP Download php_to_ruby_language/php/functions/functions_return_values.php

// single value

function sayHi($name) {

return "hello, $name\n";

}

print sayHi('Joe');

// => hello, Joe

Ruby Download php_to_ruby_language/ruby/functions/functions_return_values.rb

single value

def say_hi(name)

"hello, #{name}"

end

puts say_hi('Joe')

=> hello, Joe

As in PHP, we can return any value from a method, and it is normal to

return an array that is then split into multiple variables. Ruby does not

require the use of a function such as list to assign the variables and can

simply use a comma-separated list of names.

PHP Download php_to_ruby_language/php/functions/functions_return_values_array.php

// array of values

function myColors() {

return array('red', 'green', 'blue');

}

list($color1, $color2, $color3) = myColors();

print "$color1\n";

// => red

Ruby Download php_to_ruby_language/ruby/functions/functions_return_values_array.rb

array of values

def my_colors

%w{red green blue}

end

color1, color2, color3 = my_colors

puts color1

=> red

Variable Functions

Variables storing a method name can be used to invoke that method

just as in PHP. In Ruby we pass the name of the method and an array

of arguments to the send method to invoke it.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_return_values.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_return_values.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_return_values_array.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_return_values_array.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=324

FUNCTIONS 325

PHP Download php_to_ruby_language/php/functions/functions_variable_functions.php

function myFunction($arg1) {

print "$arg1 in my function!\n";

}

$a = 'myFunction';

$a('value');

// => value in my function!

Ruby Download php_to_ruby_language/ruby/functions/functions_variable_functions.rb

def my_method(arg1)

puts "#{arg1} in my method!"

end

a = "my_method"

send(a, ["value"])

=> "value in my method!"

Internal (Built-In) Functions

Although PHP has a wide selection of built-in functions that all exist

within the global scope, Ruby takes quite a different approach. Ruby

methods are built around the objects that they modify. This means

that each data type we’re dealing with has its methods. To reverse an

array in PHP, we would pass it to the array_reverse function. In Ruby,

we instead send a message to the array to reverse itself with the reverse

method.

PHP Download php_to_ruby_language/php/functions/functions_array_reverse.php

$colors = array('blue', 'red');

$reversed = array_reverse($colors);

var_export($reversed); // => array(0 => 'red', 1 => 'blue');

Ruby Download php_to_ruby_language/ruby/functions/functions_array_reverse.rb

colors = [:blue, :red]

reversed = colors.reverse

p reversed # => [:red, :blue]

This difference is important because it allows us to logically separate

the functionality out of the global namespace. This makes remembering

functions much easier, since there is no need to have arbitrary prefixes

grouping related functions. PHP uses array_reverse to reverse an array

and strrev to reverse a string. Ruby method names don’t conflict since

they’re not in the global namespace. This means we can use the reverse

method name to reverse both array and string objects.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_variable_functions.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_variable_functions.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_array_reverse.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_array_reverse.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=325

CLASSES AND OBJECTS 326

PHP Download php_to_ruby_language/php/functions/functions_reverse.php

$reversed = array_reverse(array('car', 'truck'));

$reversed = strrev('van');

Ruby Download php_to_ruby_language/ruby/functions/functions_reverse.rb

reversed = [:car, :truck].reverse

reversed = 'van'.reverse

Another advantage to this is that we can perform reflection on an object

to ask the object what methods it implements. This is a nice way of

quickly referencing available methods that we might want to use. We do

this using the methods method on our object. To make this list easier

to parse through, we’ll often sort the results of that output with the sort

method.

Ruby Download php_to_ruby_language/ruby/functions/functions_reflection.rb

'water'.methods

=> ["%", "select", "[]=", "inspect", "<<", "each_byte", "clone",

...

"max", "chop!", "is_a?", "capitalize!", "scan", "[]"]

'water'.methods.sort

=> ["%", "*", "+", "<", "<<", "<=", "<=>", "==", "===", "=~", ">"

...

"type", "unpack", "untaint", "upcase", "upcase!", "upto", "zip"]

12.3 Classes and Objects

The difference between classes and objects in PHP and Ruby is a com-

plex topic. Some of the important differences in object philosophy are

explained in Section 3.1, Thinking in Objects, on page 72.

The Basics (class/new/extends)

In Ruby, we declare basic class definitions using the class keyword just

as in PHP. Ruby once again rejects curly braces in favor of the end

keyword to signify the end of our class. We define each method in our

class as discussed in Section 12.2, Functions, on page 318.

Ruby does not declare data members in the class definition. It instead

shares data using instance variables. Instance variable names start

with an “at” (@) sign and are shared between all methods of a single

object instance. While PHP has the idea of private, public, and protected

members, Ruby approaches this quite differently. All instance variables

in a Ruby class are assigned at runtime and are available only within

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/functions/functions_reverse.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_reverse.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/functions/functions_reflection.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=326

CLASSES AND OBJECTS 327

the object. There is no way to access these outside of the object without

getter and setter methods.

PHP Download php_to_ruby_language/php/variables/variables_instance.php

class Car

{

// we declare instance variables first in PHP

public $color;

private $doors;

public function __construct($color, $doors)

{

$this->color = $color;

$this->doors = $doors;

}

public function getDoors()

{

return $this->doors;

}

}

$car = new Car('blue', 4);

print $car->color."\n";

// => blue

print $car->getDoors()."\n";

// => 4

Ruby Download php_to_ruby_language/ruby/variables/variables_instance.rb

class Car

we can make this attribute public using attr_accessor

attr_accessor :color

def initialize(color, doors)

@color = color

@doors = doors

end

def doors

@doors

end

end

car = Car.new('blue', 4)

puts car.color

=> blue

puts car.doors

=> 4

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/variables/variables_instance.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/variables/variables_instance.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=327

CLASSES AND OBJECTS 328

In the PHP example we declared the color and doors members to our

class, which we can access within our class using $this->. Although we

can directly access the color from outside of the class because of its

public declaration, we had to define a getter method to access the data

stored in the protected doors attribute. Our corresponding Ruby code

has used attr_accessor for our color instance variable. This dynamically

adds getter and setter methods for this attribute to essentially make it

public.

Ruby uses self. as a comparable syntax to PHP’s $this-> to access the cur-

rent instance of the object. The main difference is that self. is implied

in Ruby and can usually be left out. It is generally used only to disam-

biguate code that may be interpreted otherwise.

PHP Download php_to_ruby_language/php/objects/class.php

class User {

// members

public $name;

// methods

public function info() {

return "Name: $this->name\n";

}

public function printer() {

print $this->info();

}

}

$u = new User;

$u->name = "Joe";

$u->printer();

// => Name: Joe

Ruby Download php_to_ruby_language/ruby/objects/class.rb

class User

def name

@name

end

def name=(name)

@name = name

end

methods

def info

"Name: #{@name}"

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/class.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/class.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=328

CLASSES AND OBJECTS 329

def printer

"self." is implied, and would generally be left out here

puts self.info

end

end

u = User.new

u.name = "Joe"

u.printer

=> Name: Joe

Since we don’t declare data members in the class definition, Ruby must

assign any default values for the instance variables within the construc-

tor method named initialize. A good strategy for doing this is to assign

the default values to class constants. We can then assign incoming

parameters to these values in the constructor.

PHP Download php_to_ruby_language/php/objects/member_defaults.php

class Document {

public $orientation = 'portrait';

public function info() {

print "Orientation: $this->orientation\n";

}

}

$d = new Document;

$d->info();

Ruby Download php_to_ruby_language/ruby/objects/member_defaults.rb

class Document

DEFAULT_ORIENTATION = 'portrait'

def initialize(orientation = DEFAULT_ORIENTATION)

@orientation = orientation

end

def info

puts "Orientation: #{@orientation}"

end

end

d = Document.new

d.info

Creating an instance of an object in Ruby flips PHP’s new User syntax to

read as User.new. The new keyword is now a method definition on our

User class instead of a language construct.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/member_defaults.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/member_defaults.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=329

CLASSES AND OBJECTS 330

PHP Download php_to_ruby_language/php/objects/new.php

class User {}

$user = new User;

Ruby Download php_to_ruby_language/ruby/objects/new.rb

def User; end

user = User.new

Ruby uses the less-than (<) character to denote inheritance and as

an equivalent of the extends keyword in PHP. We can call the parent

method within a method by using the super keyword instead of PHP’s

parent:: syntax. Calling super without any parameters or parentheses

will automatically pass all parameters from the child method call. We

can optionally pass a specific set of parameters to the parent method

such as super(arg1, arg2).

PHP Download php_to_ruby_language/php/objects/extends.php

class Media {

public function title() {

return "Media";

}

}

class Book extends Media {

public function title() {

$parentTitle = parent::title();

return "$parentTitle: Book Title";

}

}

$book = new Book;

print $book->title()."\n";

Ruby Download php_to_ruby_language/ruby/objects/extends.rb

class Media

def title

"Media"

end

end

class Book < Media

def title

parent_title = super

"#{parent_title}: Book Title"

end

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/new.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/new.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/extends.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/extends.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=330

CLASSES AND OBJECTS 331

book = Book.new

puts book.title

Autoloading Objects

There is no magic method in Ruby that is the equivalent of PHP’s

__autoload function. It is, however, easy enough to use Ruby’s const_

missing class method to accomplish the same thing.

Notice that we’ve gone through an extra step to convert the class name

to an underscore version. It is generally accepted in the Ruby/Rails

community that we name all source files using an underscore format.

Rails has its own autoloading implementation, which makes this some-

thing you can mostly ignore when working within the context of the

Rails framework.

PHP Download php_to_ruby_language/php/objects/autoloading.php

function __autoload($name) {

require_once "lib/$name.php";

}

// load up SampleClass.php

$sample = new SampleClass;

print "loaded: ".get_class($sample)."\n";

Ruby Download php_to_ruby_language/ruby/objects/autoloading.rb

def Object.const_missing(name)

convert camel name to underscore

require "lib/#{name.to_s.gsub(/([a-z])([A-Z])/,'\1_\2').downcase}"

return const_get(name)

end

load up lib/sample_class.rb

sample = SampleClass.new

puts "loaded: #{sample.class}"

Constructors/Destructors

Ruby’s constructor is named initialize and is called during the creation

of any new object instance just as in PHP. We can call the constructor

of a parent class by using the super method.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/autoloading.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/autoloading.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=331

CLASSES AND OBJECTS 332

PHP Download php_to_ruby_language/php/objects/construct.php

class Media {

public $title;

public function __construct($title) {

$this->title = $title;

}

}

class Book extends Media {

public $author;

public function __construct($title, $author) {

parent::__construct($title);

$this->author = $author;

}

}

$book = new Book('Dracula', 'Bram Stoker');

print "$book->title by $book->author\n";

Ruby Download php_to_ruby_language/ruby/objects/construct.rb

class Media

def initialize(title)

@title = title

end

def title

@title

end

end

class Book < Media

def initialize(title, author)

super(title)

@author = author

end

def author

@author

end

end

book = Book.new('Dracula', 'Bram Stoker')

puts "#{book.title} by #{book.author}"

There are no destructors in Ruby that are equivalent to those in PHP.

Ruby’s best alternative is to encapsulate your object usage within a

block. Doing this gives us the option of performing some destruction or

teardown code before we finish with the object.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/construct.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/construct.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=332

CLASSES AND OBJECTS 333

PHP Download php_to_ruby_language/php/objects/destruct.php

class MyClass {

public $name;

public function __construct($name) {

$this->name = $name;

print "constructing\n";

}

public function __destruct() {

print "destructing\n";

}

}

$obj = new MyClass('test class');

// => constructing

print $obj->name."\n";

// => test class

unset($obj);

// => destructing

Ruby Download php_to_ruby_language/ruby/objects/destruct.rb

class MyClass

attr_accessor :name

def initialize(name)

@name = name

puts "constructing"

yield self

puts "destructing"

end

end

MyClass.new('test class') do |obj|

=> constructing

puts obj.name

=> test class

end

=> destructing

Visibility

PHP uses public, private, or protected data members to share data of

an object instance. Ruby instead uses special instance variables to

share data. Instance variables all have the same visibility, which is

that they are completely encapsulated within the object. They cannot

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/destruct.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/destruct.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=333

CLASSES AND OBJECTS 334

be directly accessed from outside the class without a public method.

Since instance variables are inherited in subclasses, they most closely

resemble data members with a protected visibility in PHP.

Although we have no option to set the visibility of data members, we

can set visibility for Ruby methods as public, private, or protected. Like

in PHP, all Ruby methods are public unless otherwise stated. We define

visibility for multiple methods at once with a single keyword. All

methods below that keyword will be assigned that visibility until either

another visibility is defined or the class ends.

PHP Download php_to_ruby_language/php/objects/method_visibility.php

class MyClass {

public function myPublicMethod() {}

protected function myProtectedMethod() {}

protected function anotherProtectedMethod() {}

private function myPrivateMethod() {}

public function mySecondPublicMethod() {}

}

Ruby Download php_to_ruby_language/ruby/objects/method_visibility.rb

class MyClass

default is public

def my_public_method

end

protected

def my_protected_method

end

def another_protected_method

end

private

def my_private_method

end

public

def my_second_public_method

end

end

More subtle differences in visibility and object attributes can be found

in Section 3.2, Understanding Attributes, on page 75.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/method_visibility.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/method_visibility.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=334

CLASSES AND OBJECTS 335

Static Keyword

The closest we get to PHP’s static data members in Ruby are class vari-

ables. These variables are accessed and assigned within the object or

class by using the double “at” symbol variable name convention. Just

like instance variables, there is no way to make these public, and we

must define a class method to provide access to the data.

PHP Download php_to_ruby_language/php/objects/static_members.php

class MyClass {

public static $myStaticVar = 'static value';

public function myMethod() {

return self::$myStaticVar;

}

}

print MyClass::$myStaticVar."\n";

// => static value

$obj = new MyClass;

print $obj->myMethod();

// => static value

Ruby Download php_to_ruby_language/ruby/objects/static_members.rb

class MyClass

@@my_class_var = 'class value'

def self.my_class_var

@@my_class_var

end

def self.my_method

self.my_class_var

end

end

puts MyClass.my_class_var

=> class value

puts MyClass.my_method

=> class value

Ruby class methods are the closest construct we have to PHP’s static

methods for performing class-specific operations. The most common

way of defining class methods is to prefix the method name with self..

While in PHP we call static methods using the double colon (::) syntax,

Ruby invokes class methods with a dot (.) as used for any other Ruby

method call. The reason for this is that classes in Ruby are actually full

object instances in themselves with methods and properties.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/static_members.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/static_members.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=335

CLASSES AND OBJECTS 336

PHP Download php_to_ruby_language/php/objects/static_methods.php

class MyClass {

public static function staticMethod() {

return 'a static method';

}

public function instanceMethod() {

return $this->staticMethod();

}

}

print MyClass::staticMethod()."\n";

// => a static method

$obj = new MyClass;

print $obj->instanceMethod()."\n";

// => a static method

Ruby Download php_to_ruby_language/ruby/objects/static_methods.rb

class MyClass

def self.class_method

'a class method'

end

def instance_method

self.class.class_method

end

end

puts MyClass.class_method

=> a class method

obj = MyClass.new

puts obj.instance_method

=> a class method

Although PHP can call a static method using $this-> while in the context

of an object instance, Ruby cannot do this. Ruby must first reference

the class of the current object before calling the method.

There are some addition variations on syntax for defining class meth-

ods. It is important to be able to recognize any of these styles when

reading another developer’s code.

Ruby Download php_to_ruby_language/ruby/objects/static_variations.rb

class MyClass

def self.class_method

'a class method'

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/static_methods.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/static_methods.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/static_variations.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=336

CLASSES AND OBJECTS 337

this is the same as using def self.another_class_method,

but not as stylish in the Ruby community

def MyClass.another_class_method

'another class method'

end

all methods defined within this block are class methods

class << self

def yet_another

'yet another'

end

def and_another

'and another'

end

end

end

puts MyClass.class_method # => a class method

puts MyClass.another_class_method # => another class method

puts MyClass.yet_another # => yet another

puts MyClass.and_another # => and another

Class Constants

Class constants are similar between Ruby and PHP, and both are de-

clared within the class body. Ruby imposes no restrictions on the data

type used for a constant and does not require any keyword to signify

that we’re declaring a constant. Any variable beginning with a capital

letter is always assumed to be a constant in Ruby. While PHP uses self::

to scope the constant from within an object, Ruby needs no such prefix.

Both languages have a similar syntax when accessing the constant from

outside of the class.

PHP Download php_to_ruby_language/php/objects/constants.php

class MyClass {

const MY_CONSTANT = 'constant value';

public function myMethod() {

print self::MY_CONSTANT; // => constant value

}

}

print MyClass::MY_CONSTANT; // => constant value

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/constants.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=337

CLASSES AND OBJECTS 338

Ruby Download php_to_ruby_language/ruby/objects/constants.rb

class MyClass

MY_CONSTANT = 'constant value'

def my_method

puts MY_CONSTANT # => constant value

end

end

print MyClass::MY_CONSTANT # => constant value

Class Abstraction

Ruby does not implement abstract classes because of its inherent object

philosophy of not enforcing types. It is possible to write a type of ab-

straction by declaring the new method of the parent as private and raise

exceptions when specific methods are not implemented in the concrete

subclass.

PHP Download php_to_ruby_language/php/objects/abstraction.php

abstract class MyAbstractClass {

abstract public function getMyValue();

}

class MyConcreteClass extends MyAbstractClass {

public function __construct($value) {

$this->value = $value;

}

public function getMyValue() {

return $this->value;

}

}

$obj = new MyConcreteClass('test value');

print $obj->getMyValue()."\n";

// => test value

$obj = new MyAbstractClass;

// => Cannot instantiate abstract class MyAbstractClass

Ruby Download php_to_ruby_language/ruby/objects/abstraction.rb

class MyAbstractClass

private_class_method :new

def get_my_value

raise "Cannot call abstract method"

end

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/constants.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/abstraction.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/abstraction.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=338

CLASSES AND OBJECTS 339

class MyConcreteClass < MyAbstractClass

public_class_method :new

def initialize(value)

@value = value

end

def get_my_value

@value

end

end

obj = MyConcreteClass.new('test value')

puts obj.get_my_value

=> test value

obj = MyAbstractClass.new

=> private method `new' called for MyAbstractClass:Class

In PHP we often use abstract classes to create an interface for an object

that includes concrete methods implementations. In Ruby we can use

an alternate strategy to achieve the same result.

We can mixin concrete method implementations using modules. More

details on how this works are discussed in Section 3.5, Implementing

Interfaces with Mixins, on page 84.

Object Interfaces

Interfaces are not implemented in Ruby because of a basic difference

in object philosophy. Ruby instead uses mixins to add both interface

and implementation to a class. Mixins are described in more detail in

Section 3.5, Implementing Interfaces with Mixins, on page 84.

Overloading

Ruby replaces the functionality of PHP’s __get, __set, and __call magic

methods with a single method named method_missing. Since Ruby has

no public attributes, we can handle all situations with a single method

for catching any missing methods.

A common usage of overloading is to delegate method calls to a different

object. In this example, any methods missing on a Boss get delegated to

the Assistant instance.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=339

CLASSES AND OBJECTS 340

PHP Download php_to_ruby_language/php/objects/overloading.php

class Assistant {

public $answeredCalls = 0;

public function writeReport() {

return 'assistant writing report...';

}

}

class Boss {

protected $assistant;

// delegate undefined member/methods to assistant

public function __construct($assistant) {

$this->assistant = $assistant;

}

public function __set($name, $value) {

$this->assistant->$name = $value;

}

public function __get($name) {

return $this->assistant->$name;

}

public function __call($name, $args) {

return call_user_func_array(

array($this->assistant, $name), $args);

}

}

$assistant = new Assistant;

$boss = new Boss($assistant);

$boss->answeredCalls = 5;

print $assistant->answeredCalls."\n";

// => 5

print $boss->writeReport()."\n";

// => assistant writing report...

Ruby Download php_to_ruby_language/ruby/objects/overloading.rb

class Assistant

attr_accessor :answered_calls

def initialize

@answered_calls = 0

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/overloading.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/overloading.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=340

CLASSES AND OBJECTS 341

def write_report

'assistant writing report...'

end

end

class Boss

proxy undefined member/methods to assistant

def initialize(assistant)

@assistant = assistant

end

def method_missing(name, *args)

@assistant.send(name, *args)

end

end

assistant = Assistant.new

boss = Boss.new(assistant)

boss.answered_calls = 5

puts assistant.answered_calls

=> 5

puts boss.write_report

=> assistant writing report

PHP’s __isset can also be implemented by method_missing by returning

nil for methods that are not set. The equivalent of PHP’s __unset is best

achieved by adding a custom delete method to the Ruby object.

PHP Download php_to_ruby_language/php/objects/__isset.php

class MyClass {

protected $values = array('first' => 'value one',

'second' => 'value two');

public function __isset($name) {

return isset($this->values[$name]);

}

public function __unset($name) {

unset($this->values[$name]);

}

public function __get($name) {

return $this->values[$name];

}

}

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/__isset.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=341

CLASSES AND OBJECTS 342

$obj = new MyClass;

if (isset($obj->first)) {

print $obj->first."\n";

// => value one

unset($obj->first);

var_export(isset($obj->first));

// => false

}

Ruby Download php_to_ruby_language/ruby/objects/__isset.rb

class MyClass

def initialize

@values = { :first => 'value one', :second => 'value two' }

end

def delete(name)

@values.delete(name)

end

def method_missing(name, *args)

if name.to_s.include?('=')

@values[name] = *args

else

@values[name]

end

end

end

obj = MyClass.new

if obj.first

puts obj.first

=> value one

obj.delete(:first)

puts obj.first

=> nil

end

Object Iteration

Since there are no public attributes in Ruby, there is no native way to

loop through the public attributes as we could in PHP. To do this, we

would need to add a method that returns the list of attributes we want

to loop through.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/__isset.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=342

CLASSES AND OBJECTS 343

PHP Download php_to_ruby_language/php/objects/iteration_simple.php

class Book {

public $title;

public $author;

protected $price;

public function __construct($title, $author, $price) {

$this->title = $title;

$this->author = $author;

$this->price = $price;

}

}

$book = new Book('Dracula', 'Bram Stoker', 9.95);

foreach ($book as $key => $value) {

print "$key : $value\n";

}

// => title : Dracula

// author : Bram Stoker

Ruby Download php_to_ruby_language/ruby/objects/iteration_simple.rb

class Book

attr_accessor :title, :author

def initialize(title, author, price)

@title, @author, @price = title, author, price

end

def publics

[:title, :author]

end

end

book = Book.new('Dracula', 'Bram Stoker', 9.95)

book.publics.each do |name|

puts "#{name} : #{book.send(name)}"

end

=> title : Dracula

author : Bram Stoker

Oftentimes we want to iterate over a collection within an object using

the language’s native iteration syntax such as PHP’s foreach. PHP pro-

vides a way for us to do this by implementing an interface such as

IteratorAggregate on our class.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/iteration_simple.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/iteration_simple.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=343

CLASSES AND OBJECTS 344

The native iteration in Ruby is typically done with a call to the each

method of that object, and thus customizing it entails redefining the

each method to do our bidding.

PHP Download php_to_ruby_language/php/objects/iteration_iterator.php

class Errors implements IteratorAggregate {

protected $errors;

public function __construct() {

$this->errors = array();

}

public function add($name, $message) {

$this->errors[$name][] = $message;

}

public function getIterator() {

$errors = array();

foreach ($this->errors as $name => $msgs) {

foreach ($msgs as $msg) {

$errors[] = ucfirst($name)." ".$msg;

}

}

return new ArrayIterator($errors);

}

}

$errors = new Errors;

$errors->add('title', 'has invalid characters');

$errors->add('title', 'is too short');

$errors->add('author', "can't be empty");

foreach ($errors as $error) {

print "$error\n";

}

// => Title has invalid characters

// Title is too short

// Author can't be empty

Ruby Download php_to_ruby_language/ruby/objects/iteration_iterator.rb

class Errors

def initialize

@errors = {}

end

def add(name, message)

@errors[name] ||= []

@errors[name] << message

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/iteration_iterator.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/iteration_iterator.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=344

CLASSES AND OBJECTS 345

each is the

def each

@errors.each do |name, msgs|

msgs.each {|msg| yield name.capitalize + " " + msg }

end

end

end

errors = Errors.new

errors.add('title', 'has invalid characters')

errors.add('title', 'is too short')

errors.add('author', "can't be empty")

errors.each {|error| puts error }

=> Title has invalid characters

Title is too short

Author can't be empty

In these examples, we have a collection of errors that are added and

stored in a nested data structure. The PHP example loops through each

error and compiles a flat list of errors that we can pass into an ArrayIt-

erator. The Ruby uses a similar approach but takes advantage of Ruby

blocks to pass each error to the block as it builds them. The end result

is the same, and we are able to iterate over our object’s data structure

as if it were a normal array.

Patterns

Ruby objects can implement design patterns just like PHP objects and

are often even better suited to doing so because of Ruby’s inherent

object-oriented nature. The Singleton pattern in Ruby is quite simple

and takes advantage of few unique Ruby idioms. We can use a class

variable to store the instance of the object. Assigning this class variable

in the get_instance method is simplified by using Ruby’s conditional

assignment operator (||=). We’re able to make the original construc-

tor private by using the private_class_method declaration for the :new

method at the top of our class definition.

PHP Download php_to_ruby_language/php/objects/singleton.php

// implements the singleton pattern

class Log {

private static $instance;

private function __construct() {

print "constructed\n";

}

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/singleton.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=345

CLASSES AND OBJECTS 346

public static function getInstance() {

if (!isset(self::$instance)) {

$className = __CLASS__;

self::$instance = new $className;

}

return self::$instance;

}

}

$log1 = Log::getInstance();

// => constructed

$log2 = Log::getInstance();

var_export($log1 === $log2);

// => true

Ruby Download php_to_ruby_language/ruby/objects/singleton.rb

implements the singleton pattern

class Log

private_class_method :new

@@instance = nil

def initialize

puts "constructed"

end

def self.get_instance

@@instance ||= new

end

end

log1 = Log.get_instance

=> constructed

log2 = Log.get_instance

puts log1.equal?(log2)

=> true

Magic Methods

Ruby’s equivalent of PHP’s serialize and unserialize functions are the Mar-

shal.dump and Marshal.load methods, respectively. Just as in PHP, we

can perform custom operations before and after an object is serialized.

Ruby’s equivalent of __sleep is the _dump method, and the replacement

for __wakeup is the _load class method.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/singleton.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=346

CLASSES AND OBJECTS 347

PHP Download php_to_ruby_language/php/objects/__sleep.php

class MyClass {

protected $name;

public function __construct($name) {

$this->name = $name;

}

public function __sleep() {

print "calling sleep\n";

return array('name');

}

public function __wakeup() {

print "calling wakeup\n";

}

}

$obj = new MyClass('my_var');

$serialized = serialize($obj);

// => calling sleep

print $serialized."\n";

// => O:7:"MyClass":1:{s:7:"*name";s:6:"my_var";}

unserialize($serialized);

// => calling wakeup

Ruby Download php_to_ruby_language/ruby/objects/__sleep.rb

class MyClass

def initialize(name)

@name = name

end

def _dump(depth)

puts "calling sleep"

@name

end

def MyClass._load(str)

puts "calling wakeup"

MyClass.new(str)

end

end

obj = MyClass.new('my_var')

serialized = Marshal.dump(obj)

=> calling sleep

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/__sleep.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/__sleep.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=347

CLASSES AND OBJECTS 348

p serialized

=> "\004\bu:\fMyClass\vmy_var"

obj = Marshal.load(serialized)

=> calling wakeup

All objects in Ruby have a to_s method implementation, which is the

equivalent of PHP’s __toString magic method. Adding a custom imple-

mentation of a string conversion is as easy as redefining the to_s method

for that class.

PHP Download php_to_ruby_language/php/objects/__to_string.php

class User {

protected $first;

protected $last;

public function __construct($first, $last) {

$this->first = $first;

$this->last = $last;

}

public function __toString() {

return "First: $this->first, Last: $this->last";

}

}

$user = new User("Clark", "Kent");

print $user;

// => First: Clark, Last: Kent

Ruby Download php_to_ruby_language/ruby/objects/__to_string.rb

class User

def initialize(first, last)

@first, @last = first, last

end

def to_s

"First: #{@first}, Last: #{@last}"

end

end

user = User.new("Clark", "Kent")

print user

=> First: Clark, Last: Kent

Final Keyword

Ruby does not implement any equivalent of PHP’s final keyword for

methods or classes. This is a general difference in programming phi-

losophy between the two languages.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/__to_string.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/__to_string.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=348

CLASSES AND OBJECTS 349

Ruby embraces the idea of keeping things open for modification while

trusting the developer to not override something they shouldn’t.

Object Cloning

When directly assigned to a new variable name, objects in both PHP

and Ruby will perform a copy by reference. All Ruby objects have a dup

method that returns a shallow copy of the object just like using the

clone keyword in PHP. Ruby also provides the initialize_copy method as

an equivalent of PHP’s __clone magic method.

PHP Download php_to_ruby_language/php/objects/cloning.php

class MyClass {

public $name;

public function __construct($name) {

$this->name = $name;

}

public function __clone() {

print "cloning object...\n";

}

}

$obj1 = new MyClass("first name");

// perform copy by reference

$obj2 = $obj1;

// perform shallow copy

$obj3 = clone $obj1;

// => cloning object

Ruby Download php_to_ruby_language/ruby/objects/cloning.rb

class MyClass

attr_accessor :name

def initialize(name)

@name = name

end

def initialize_copy(other)

puts "duping object..."

end

end

obj1 = MyClass.new("first name")

perform copy by reference

obj2 = obj1

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/cloning.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/cloning.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=349

CLASSES AND OBJECTS 350

perform shallow copy

obj3 = obj1.dup

=> duping object

Comparing Objects

By default, Ruby will consider two objects equal using the equality

operator (==) only if both objects are the same object instance. This

isn’t always useful, and we’ll often want to redefine the equality opera-

tor method on our object.

PHP Download php_to_ruby_language/php/objects/comparing.php

class User {

protected $first;

protected $last;

public function __construct($first, $last) {

$this->first = $first;

$this->last = $last;

}

}

var_export(new User('john', 'doe') == new User('john', 'doe'));

// => true

var_export(new User('john', 'doe') == new User('jane', 'doe'));

// => false

$user = new User('jean', 'dupont');

var_export($user === $user);

// => true

Ruby Download php_to_ruby_language/ruby/objects/comparing.rb

class User

attr_accessor :first, :last

def initialize(first, last)

@first, @last = first, last

end

custom comparison method compares instance values

def ==(other)

[:first, :last].each do |attr|

return false unless self.send(attr) == other.send(attr)

end

true

end

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/comparing.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/comparing.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=350

CLASSES AND OBJECTS 351

puts User.new('john', 'doe') == User.new('john', 'doe')

=> true

puts User.new('john', 'doe') == User.new('jane', 'doe')

=> false

user = User.new('jean', 'dupont')

puts user.equal?(user)

=> true

In this example we have redefined the == method to make the equality

operator behave more like PHP’s. We consider the two objects equal if

the attribute values match. The equal? method on our object will still

check whether the objects are of the same instance and is similar to

the identity operator (===) in PHP.

Reflection

Reflection of objects in Ruby is an integral part of the language and

is built into each class and object instance. Instead of instantiating a

reflection object, we can simply call the reflection-related methods on

plain Ruby objects.

In PHP we can get a list of methods objects for a class and deter-

mine their visibility using a getter such as isPublic() or isPrivate(). Ruby’s

approach is different and instead filters each method into smaller sub-

sets that can be accessed using methods such as public_instance_

methods and private_instance_methods.

PHP Download php_to_ruby_language/php/objects/reflection_class.php

class User {}

class Employee extends User {

public $first;

protected $last;

public static $userCnt;

public function __construct($first=null, $last=null) {

$this->first = $first;

$this->last = $last;

self::$userCnt++;

}

public function getFirst() {

return $this->first;

}

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/reflection_class.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=351

CLASSES AND OBJECTS 352

public function getLast() {

return $this->last;

}

}

$class = new ReflectionClass('Employee');

print $class->getName()." descends from ".

$class->getParentClass()->getName()."\n";

// => Employee descends from User

foreach ($class->getMethods() as $method) {

$methods[] = $method->getName();

}

print join(', ', $methods)."\n";

// => __construct, getFirst, getLast

foreach ($class->getProperties() as $property) {

$properties[] = $property->getName();

}

print join(', ', $properties)."\n";

// => first, last, userCnt

Ruby Download php_to_ruby_language/ruby/objects/reflection_class.rb

class User; end

class Employee < User

@@user_cnt = 0

def initialize(first=nil, last=nil)

@first, @last = first, last

@@user_cnt += 1

end

def first

@first

end

def last

@last

end

end

puts "#{Employee.name} descends from #{Employee.superclass}"

=> Employee descends from User

puts Employee.instance_methods(false).join(', ')

=> last, first

puts Employee.private_methods(false).join(', ')

=> initialize, initialize_copy, inherited

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/reflection_class.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=352

CLASSES AND OBJECTS 353

we need to create an instance to reflect on instance variables

puts Employee.new.instance_variables.join(', ')

=> @last, @first

puts Employee.class_variables.join(', ')

=> @@user_cnt

You’ll notice in our example that we passed false to many of the Ruby

reflection methods. Leaving this parameter out would bring back all

methods inherited from parent classes as well.

Type Hinting

PHP has adopted a lot of its object model from Java, including the idea

of interfaces and type hinting. Ruby takes a different approach to this

by using the idea of duck typing. Instead of enforcing a specific object

type or interface, Ruby will continue execution as long as the object

responds to the messages thrown at it.

PHP Download php_to_ruby_language/php/objects/type_hinting.php

class Duck {

public function waddle() {

print "duck waddling...\n";

}

}

class Goose {

public function waddle() {

print "goose waddling...\n";

}

}

class Kangaroo {

public function hop() {

print "kangaroo hopping...\n";

}

}

// only accept Duck

function go(Duck $duck)

{

$duck->waddle();

}

go(new Duck);

// => duck waddling...

go(new Goose);

// => Argument 1 passed to go() must be an instance of Duck

go(new Kangaroo);

// => Argument 1 passed to go() must be an instance of Duck

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/objects/type_hinting.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=353

EXCEPTIONS 354

Ruby Download php_to_ruby_language/ruby/objects/type_hinting.rb

class Duck

def waddle

puts "duck waddling..."

end

end

class Goose

def waddle

puts "goose waddling..."

end

end

class Kangaroo

def hop

puts "kangaroo hopping..."

end

end

def go(duck)

duck.waddle

end

go Duck.new

=> duck waddling...

go Goose.new

=> goose waddling...

go Kangaroo.new

=> undefined method `waddle' for #<Kangaroo:0x1eaca8>

12.4 Exceptions

Ruby’s error model is completely built on exceptions and is much more

straightforward than the dual error model in PHP. Actual exception

handling in Ruby is quite similar to how PHP handles exceptions aside

from syntactical differences. When handling exceptions in Ruby, we

start with a begin statement instead of PHP’s try. In Ruby we define a

rescue block instead of the catch block and raise errors instead of throw-

ing them.

PHP Download php_to_ruby_language/php/exceptions/throwing.php

try {

throw new Exception('Something bad happened');

print "this should never print...";

} catch (Exception $e) {

print "caught it! ".$e->getMessage()."\n";

// => caught it! Something bad happened

}

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/objects/type_hinting.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/exceptions/throwing.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=354

REFERENCES 355

// continue code

print "after exception\n";

// => after exception

Ruby Download php_to_ruby_language/ruby/exceptions/throwing.rb

begin

raise Exception, "Something bad happened"

puts "this should never print..."

rescue Exception => e

puts "caught it! #{e.message}"

=> caught it! Something bad happened

end

continue code

print "after exception"

=> after exception

Ruby provides additional syntax for cleaning up the state of our appli-

cation after handling an exception. The else block will execute when no

error is rescued, and the ensure block will execute regardless of whether

an error has happened. PHP has no equivalent of these features.

Ruby Download php_to_ruby_language/ruby/exceptions/additional.rb

begin

raise "Something bad happened"

rescue

puts "caught an error!"

else

puts "no errors, yay!"

ensure

puts "ensure this always gets run."

end

12.5 References

There is no Ruby equivalent to PHP’s assign-by-reference equals-am-

persand operator (&=). Since all data is stored as objects in Ruby, nearly

all data is assigned by-reference. This includes strings, arrays, and

hashes. The exception is with numbers, booleans, and nil, which are

not stored by reference. Because these data types cannot be directly

modified, there is not usually any visible effect of this during their use.

PHP Download php_to_ruby_language/php/references/assign_by_reference.php

$colors1 = array('red', 'blue');

$colors2 =& $colors1;

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/exceptions/throwing.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/exceptions/additional.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/references/assign_by_reference.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=355

REFERENCES 356

// adding to $colors2 doesn't change $colors1

$colors2[] = 'green';

var_export($colors1);

// => array(0 => 'red', 1 => 'blue', 2 => 'green')

var_export($colors2);

// => array(0 => 'red', 1 => 'blue', 2 => 'green')

Ruby Download php_to_ruby_language/ruby/references/assign_by_reference.rb

colors1 = ['red', 'blue']

colors2 = colors1

adding to colors2 changes colors1

colors2 << 'green'

p colors1

=> ["red", "blue", "green"]

p colors2

=> ["red", "blue", "green"]

To get a shallow copy of the data within a variable, you need to assign

the variable while calling the dup method.

PHP Download php_to_ruby_language/php/references/assign_by_value.php

$colors1 = array('red', 'blue');

$colors2 = $colors1;

// adding to $colors2 doesn't change $colors1

$colors2[] = 'green';

var_export($colors1);

// => array(0 => 'red', 1 => 'blue')

var_export($colors2);

// => array(0 => 'red', 1 => 'blue', 2 => 'green')

Ruby Download php_to_ruby_language/ruby/references/assign_by_value.rb

colors1 = ['red', 'blue']

colors2 = colors1.dup

adding to colors2 doesn't change colors1

colors2 << 'green'

p colors1

=> ["red", "blue"]

p colors2

=> ["red", "blue", "green"]

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/references/assign_by_reference.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/references/assign_by_value.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/references/assign_by_value.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=356

EXTERNAL LIBRARIES AND PACKAGES 357

A step-by-step introduction of variable assignment and references can

be found in Section 2.5, Assigning to Variables, on page 50.

12.6 External Libraries and Packages

RubyGems is a package distribution system not unlike PEAR in PHP.

RubyGems makes it easy to find, install, and update Ruby libraries on

your computer. Instead of a PEAR package, we have a gem that includes

the source code for the Ruby library, along with metadata about pack-

age dependencies. All RubyGem actions are performed using the gem

command.

Finding Packages

We can find gem packages by using the gem search command. A great

package for parsing HTML in Ruby is the Hpricot library. To find the

specific package we want, we can search the remote gem server for this

package. This is similar to performing a pear search command.

work> gem search -r hpricot

*** REMOTE GEMS ***

hpricot (0.6, 0.5, 0.4)

a swift, liberal HTML parser with a fantastic library

hpricot-scrub (0.2.0)

Scrub HTML with Hpricot

...

Packages will displayed with the available versions and a short descrip-

tion of what the package does.

Installing Packages

Once we find a package we want to install, we can install using the

gem install command, equivalent to performing a pear install. All gem

install/uninstall commands need to be run as the root user on *nix-based

systems.

work> gem install hpricot

Successfully installed hpricot-0.6

1 gem installed

Installing ri documentation for hpricot-0.6...

Installing RDoc documentation for hpricot-0.6...

Just like with PEAR, this command installs the package in a system-

wide shared directory so that we can include it in all our applications.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=357

EXTERNAL LIBRARIES AND PACKAGES 358

Installing gems will not incur any additional overhead in your Rails

applications unless they are used within the application. We can view

the location in which gems are installed with another gem command.

work> gem environment gemdir

/usr/local/lib/ruby/gems/1.8

Generating Package Documentation

To use a library, we need to have to figure out how it works. When we

install a gem, it automatically generates the docs for us. We can view

documentation for all of our installed gems by starting the gem server

using the gem server command.

work> gem server

[2007-08-07 11:34:32] INFO WEBrick 1.3.1

[2007-08-07 11:34:32] INFO ruby 1.8.6 (2007-03-13) [i686-darwin8.9.1]

[2007-08-07 11:34:32] INFO WEBrick::HTTPServer#start: pid=13 port=8808

This started an instance of the WEBrick server to view our docs on port

8808. When we go to http://localhost:8808, we can see a page like that

displayed in Figure 12.1, on the following page. From here we can click

the syntax library’s rdoc link to view the API for the library.

Including Packages

Like in PHP, we need to require a library before we can use it in our

code. When we install packages as gems, we’ll first need to require the

RubyGems library. We’ll fire up IRB to perform a quick example of the

Hpricot library in use.

work> irb

>> require 'rubygems'

=> true

>> require 'hpricot'

=> true

Now that we’ve required the library, we can browse through the docs

to view some example code. Here we’ve found how to pass an HTML-

formatted string to Hpricot and be able to parse through the elements.

>> doc = Hpricot("<p>Simple test</p>")

=> #<Hpricot::Doc {elem <p> "Simple " {elem "test" } </p>}>

>> doc.search("b").inner_html

=> "test"

http://localhost:8808
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=358

DOCUMENTING CODE 359

Figure 12.1: Gem server page

When browsing around for additional gems, the source for many gem

packages can be found on the RubyForge website.1 RubyForge is an

application repository of open source Ruby projects. This is the most

popular location for developers looking to host their code.

12.7 Documenting Code

Ruby takes a more minimal approach to documenting code than PHP,

relying heavily on the code itself being self-documenting. This is impor-

tant to note since it puts a responsibility on the developer to write

readable code. Don’t be afraid to make long variable or method names.

You will regularly see Rubyists use unambiguous method names such

as replace_named_bind_variables in order to diminish the need for addi-

tional documentation.

1. http://rubyforge.org

http://rubyforge.org
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=359

DOCUMENTING CODE 360

Figure 12.2: Generated RDoc documentation

Comparing PHPDoc and RDoc

Documentation in Ruby is done using an embedded documentation

style similar to PHP’s PHPDoc-style comments. Ruby’s RDoc takes a dif-

ferent approach to code documentation and often has a much smaller

footprint when compared to PHPDoc comments. There is no extra step

needed to install RDoc, because it is part of the Ruby standard library.

PHPDoc comments are usually composed of a short description, a

longer description, and a series of tags. RDoc has no concept of tags

and instead favors simple inline formatting for much of the documen-

tation. An example of RDoc’s HTML-generated output for a Ruby class

is shown in Figure 12.2.

Ruby inline documentation is written using Ruby comments above the

class or method signature just as in PHP. Ruby has no special sequence

of characters to denote documentation, and all comments are consid-

ered documentation unless specified otherwise.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=360

DOCUMENTING CODE 361

PHP Download php_to_ruby_language/php/docs/basics.php

class Cart {

protected $items;

/**

* Create new cart

*/

public function __construct() {

$this->items = array();

}

/**

* Add an item to the cart by id

*

* @param string $item

*/

function addItem($item) {

$this->items[] = $item;

}

}

Ruby Download php_to_ruby_language/ruby/docs/basics.rb

class Cart

Create new cart

def initialize

@items = []

end

Add an item to the cart by id

def add_item(item)

@items << item

end

end

Let’s take a look at how can use RDoc to document the other various

aspects of our code.

Identifying Code Author, Version, and License

The @author, @version, @copyright, and @license tag equivalents of Ruby

code are not included in the source files like they are in PHPDoc.

This information for your Rails application is typically stored in a text

file named doc/README_FOR_APP, which is used by RDoc as the top-level

page for the generated documentation.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/basics.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/basics.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=361

DOCUMENTING CODE 362

PHP Download php_to_ruby_language/php/docs/author.php

/**

* Movie Sharing Application

*

* LICENSE

*

* This source file is subject to the proprietary

* Maintainable license available at:

* http://maintainable.com/license.txt

*

* @author Joe <joe@example.com>

* @copyright Copyright (c) 2007 Maintainable Software

* @license http://maintainable.com/license.txt

*/

/**

* This object represents an application User

*/

class User {

}

Download php_to_rails/ruby/demo_1/doc/README_FOR_APP

Movie Sharing Application

=====================

written by Joe <joe@example.com>

License

=====================

Copyright (c) 2007 Maintainable Software

This application is subject to the proprietary

Maintainable license available at:

http://maintainable.com/license.txt

This file will used as the top-level page of our generated documentation

for the Rails application.

Denoting Packages

RDoc organizes packages automatically based on modules’ name-

spaces. Because of this, we don’t need to worry about specifying the

@package or @subpackage tags for a class as we would in PHPDoc.

PHP Download php_to_ruby_language/php/docs/package.php

/**

* @package Amazon

*/

class Amazon_Category extends ActiveRecord_Base {

}

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/author.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/doc/README_FOR_APP
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/package.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=362

DOCUMENTING CODE 363

Ruby Download php_to_rails/ruby/demo_1/app/models/amazon/category.rb

class Amazon::Category < ActiveRecord::Base

end

Namespaces are discussed in further detail in Section 3.6, Organizing

Code with Namespaces, on page 88.

Specifying Parameter and Return Values

Much of the time writing PHPDoc documentation involves identifying

the @param and @return values of methods. Ruby documentation does

not have an equivalent for specifying this type of information and does

not really concern itself with object types in method signatures.

PHP Download php_to_ruby_language/php/docs/param.php

class MyClass {

/**

* Log a message at a priority

*

* @param string $message Message to log

* @param integer $priority Priority of message

* @return void

*/

function log($message, $priority) {

// ...

}

}

Ruby Download php_to_ruby_language/ruby/docs/param.rb

class MyClass

Log a +message+ at a given +priority+

def log(message, priority)

...

end

end

RDoc uses inline text to explain the purpose of various parameters.

References to the parameter names are usually enclosed in plus signs

to (+) to style them using a monospace font.

Formatting Headings and Text

Ruby allows for headings in our documentation to help organize dif-

ferent sections. Different level headings are denoted by the number of

equal signs preceding the heading text.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/amazon/category.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/param.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/param.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=363

DOCUMENTING CODE 364

Figure 12.3: Generated headings

Ruby Download php_to_ruby_language/ruby/docs/headers.rb

==This is an H2 style heading

#

An additional paragraph of text

#

===This is an H3 style heading

def my_method

end

The resulting headings generated are displayed in Figure 12.3.

RDoc allows for simple formatting of documentation text similar to PHP-

Doc but uses a slightly different syntax for doing so. A single word can

be enclosed in underscores (_) to italicize, stars (*) to embolden, and

plus signs (+) to make monospace styled text. There are tag equivalents

of these types of formatting as well for situations where you need to

format a series of words or text.

PHP Download php_to_ruby_language/php/docs/formatting.php

class MyClass {

/**

* This is some bold text, some <i>italic</i>

* text, and some <kbd>monospaced font</kbd> text

*/

function myMethod() {}

}

Ruby Download php_to_ruby_language/ruby/docs/formatting.rb

class MyClass

This is some bold text, some emphasized

text, and some <tt>monospaced font</tt> text

#

This is some *bold* text, some _emphasized_

text, and some +monospaced+ text

def my_method

end

end

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/headers.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/formatting.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/formatting.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=364

DOCUMENTING CODE 365

Figure 12.4: Formatted text

The formatted text can be seen in Figure 12.4.

Creating Lists

Ordered and unordered lists are created pretty similarly in RDoc as

they are in PHPDoc syntax. RDoc uses stars (*) to denote unordered list

items as opposed to the hyphen (-) used in PHPDoc. RDoc does not have

support for ol and ul tags as seen in PHPDoc-style comments.

PHP Download php_to_ruby_language/php/docs/lists.php

class MyClass {

/**

* Sample list

* - item a

* - item b

*

* Ordered list

* 1. item 1

* 2. item 2

*/

function myMethod() {}

}

Ruby Download php_to_ruby_language/ruby/docs/lists.rb

class MyClass

Sample list

* item a

* item b

#

Ordered list

1. item 1

2. item 2

def my_method

end

end

The resulting lists are shown in Figure 12.5, on the next page.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/lists.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/lists.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=365

DOCUMENTING CODE 366

Figure 12.5: Generated lists

Adding Inline Links

Inline links in the documentation text will automatically be converted

to hyperlinks. We can add a label for the hyperlink by appending a word

with the URL in square brackets. There is no need for anything such as

PHPDoc’s @link tag.

PHP Download php_to_ruby_language/php/docs/links.php

class MyClass {

/**

* see more at {@link http://example.com}

*

* see more at {@link http://example.com Example}

*

* see more at {@link http://example.com Example Page}

*/

function myMethod() {}

}

Ruby Download php_to_ruby_language/ruby/docs/links.rb

class MyClass

see more at http://example.com

#

see more at Example[http://example.com]

#

see more at {Example Page}[http://example.com]

def my_method

end

end

Any references to a class, module, or method will be automatically con-

verted to a link to the documentation for that resource. The hash char-

acter (#) is used in Ruby to reference a method as opposed to the double

colon (::) in PHP.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/links.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/links.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=366

DOCUMENTING CODE 367

Figure 12.6: Links to resources

PHP Download php_to_ruby_language/php/docs/see.php

class MyClass {

/**

* @see remove()

* @see AnotherClass

* @see AnotherClass::delete()

*/

function add() {}

function remove() {}

}

class AnotherClass {

function delete() {}

}

Ruby Download php_to_ruby_language/ruby/docs/see.rb

class MyClass

see the #remove method

#

see AnotherClass

#

see the AnotherClass#delete method

def add

end

def remove

end

end

class AnotherClass

def delete

end

end

The resulting generated resource links can be seen in Figure 12.6.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/see.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/see.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=367

DOCUMENTING CODE 368

Figure 12.7: Formatted code

Displaying Code Examples

Code examples can be displayed in RDoc by indenting text. Any text

that is indented will be displayed verbatim in a monospaced text. Unfor-

tunately, RDoc does not do any syntax highlighting or numbering for

this type of text as PHPDoc does.

PHP Download php_to_ruby_language/php/docs/code.php

class MyClass {

/**

* Example:

* <code>

* if ($a == 1) {

* $foo = 'bar';

* }

* </code>

*/

function myMethod() {}

}

Ruby Download php_to_ruby_language/ruby/docs/code.rb

class MyClass

Example:

if a == 1

foo = 'bar'

end

def my_method

end

end

This example produces the generated documentation shown in Fig-

ure 12.7.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/code.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/code.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=368

DOCUMENTING CODE 369

Ignoring Documentation

While PHP uses the @ignore tag to notify PHPDoc to ignore certain docs,

this is done in RDoc-style comments using the :nodoc: documentation

modifier. We can alternately use the :doc: modifier to instruct RDoc to

document private methods.

PHP Download php_to_ruby_language/php/docs/ignore.php

class MyClass {

/**

* @ignore

*/

public function myMethod() {}

}

Ruby Download php_to_ruby_language/ruby/docs/ignore.rb

class MyClass

def my_method # :nodoc:

end

private

def private_method # :doc:

end

end

You might want to use the :nodoc: option when you have a method that

is not necessary in the public API but is required to be public for object

interoperability.

Generating Documentation

Generating HTML-formatted documentation for Ruby projects is gen-

erally done using a Rake task, and Rails includes quite a few ways to

build documentation for your application. The most common is to gen-

erate the docs for all your application-specific files. This is done with

the doc:app task and will place the generated documentation in the

doc/app directory of your Rails application.

work> cd rails_app/

rails_app> rake doc:app

(in /Users/derek/work/rails_app)

README_FOR_APP:

application.rb: c

...

Elapsed: 0.134s

To see options for generating documentation on other areas of your

Rails code, you can view the list of available Rake tasks using rake -T

doc.

http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/php/docs/ignore.php
http://media.pragprog.com/titles/ndphpr/code/php_to_ruby_language/ruby/docs/ignore.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=369

DOCUMENTING CODE 370

work> cd rails_app

rails_app> rake -T doc

(in /Users/derek/work/rails_app)

rake doc:app # Build the app HTML Files

...

rake doc:rerails # Force a rebuild of the RDOC files

Like PHP’s phpdoc command, you can also generate documentation

from the command-line prompt using the rdoc command.

work> cd php_app

php_app> phpdoc -s on -d lib/ -t docs/

Parsing configuration file phpDocumentor.ini...

...

Total Documentation Time: 0 seconds

work> cd ruby_app

ruby_app> rdoc -S -i lib/ -o docs/

cart.rb: c.....

my_class.rb: c.

Generating HTML...

...

Elapsed: 0.286s

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=370

Chapter 13

PHP to Rails Reference
PHP was primarily written to be used for web development and tightly

integrates web programming concepts and practices into the core lan-

guage. Most web-specific functionality used in Ruby is not in the core

Ruby library but added by Rails. Instead of using superglobals and

functions of the language, Rails adds features such as sessions and

cookies as methods available in the Rails controllers and views.

13.1 Templates

PHP has a variety of template systems used to separate domain and

presentation logic in applications. The most popular solutions tend to

use a library such as Smarty, Flexy, Savant, or the PHP language. The

view system that Rails implements can be fitted with various template

solutions but comes packaged with a popular system that uses ERB.

ERB works in a similar way to how PHP natively embeds in HTML.

PHP Download php_to_rails/php/templates/templates.php

<h1>Meetings</h1>

<? if (!empty($flash['notice'])): ?>

<div id="flash_notice"><?= htmlentities($flash['notice']) ?></div>

<? endif ?>

<div class="meeting_list">

<h2>Meetings</h2>

<? foreach ($meetings as $meeting): ?>

<a href="/meetings/show/<?= htmlentities($meeting->id) ?>">

<?= htmlentities($meeting->name) ?>

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/templates/templates.php

$_GET/$_POST 372

<? endforeach ?>

<p class="add">add meeting</p>

</div>

Ruby Download php_to_rails/ruby/demo_1/app/views/meetings/index.html.erb

<h1>Meetings</h1>

<% if flash[:notice] %>

<div id="flash_notice"><%=h flash[:notice] %></div>

<% end %>

<div class="meeting_list">

<h2>Meetings</h2>

<% @meetings.each do |meeting| %>

<%= link_to h(meeting.name), :action => "show",

:id => meeting.id %>

<% end %>

<p class="add">

<%= link_to "add meeting", :action => "new" %>

</p>

</div>

ERB uses the <% and %> start and end tags to invoke and end the Ruby

interpreter within our template. We can alternately start the Ruby code

with <%= to output the result of the expression in the same way that

PHP uses <?= when short tags are enabled.

13.2 $_GET/$_POST

Rails takes a quite different approach to HTTP GET and POST variables

than PHP. While PHP makes this data available via the $_GET and $_POST

superglobals, Rails provides a single access to this data using the

params hash. The params hash can be accessed from both controller

methods and view templates.

PHP Download php_to_rails/php/params/get_post.php

$name = $_POST['name'];

$title = $_POST['title'];

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

name = params[:name]

title = params[:title]

end

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/views/meetings/index.html.erb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/params/get_post.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=372

$_FILES 373

Instead of differentiating between HTTP GET and POST methods using the

superglobal array name, Rails controllers reference an object that rep-

resents the current request. The request method will return an object

that contains all the properties of the current HTTP request. Two of

the methods that are helpful for determining the type of request we’re

processing are get? and post?.

This is similar to using the $_SERVER[’REQUEST_METHOD’] value in PHP to

determine the request method.

PHP Download php_to_rails/php/params/request_method.php

if ($_SERVER['REQUEST_METHOD'] == 'GET') {

header("Location: /meetings/show");

} elseif ($_SERVER['REQUEST_METHOD'] == 'POST') {

$meeting = new Meeting($_POST['meeting']);

}

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

if request.get?

redirect_to :show

elsif request.post?

meeting = Meeting.new(params[:meeting])

end

end

13.3 $_FILES

When performing file uploads in Rails, we typically have a model that

corresponds to the files being uploaded. For this example, we’ll use a

Document model that has three attributes: filename, filesize, and con-

tent_type. When we upload a file, we’ll create an associated record in

the database for that file. The database migration used to create this

table would look like this.

Ruby Download php_to_rails/ruby/demo_1/db/migrate/002_create_documents.rb

def self.up

create_table :documents do |t|

t.string :filename

t.integer :filesize

t.string :content_type

t.timestamps

end

end

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/params/request_method.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/db/migrate/002_create_documents.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=373

$_FILES 374

def self.down

drop_table :documents

end

end

We’ll create a controller named DocumentsController to handle all actions

associated with creating and displaying the uploaded document. Our

upload form will be the new action in this controller. This action will

instantiate a new Document object that we’ll use to build our form using

the form_for helper.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/documents_controller.rb

def new

@document = Document.new

end

The HTML form itself in Rails will work similarly to the form we would

make in PHP. The biggest difference is that we’ll use some form helpers

in our Rails view. Our Rails form will submit to the create action to

upload/create the document. Forms that submit a file upload require

the :multipart => true value to be included in the :html option of form_for.

This will add the appropriate enctype attribute for the form.

PHP Download php_to_rails/php/files/file_upload_form.php

<!-- PHP upload form -->

<h1>Upload Document</h1>

<form action="file_upload.php" method="post"

enctype="multipart/form-data">

<label for="uploaded_file">File:</label>

<input type="file" name="uploaded_file" id="uploaded_file" />

<input type="submit" name="submit" value="Upload" />

</form>

Ruby Download php_to_rails/ruby/demo_1/app/views/documents/new.html.erb

<h1>Upload Document</h1>

<% form_for :document, :url => { :action => "create" },

:html => { :multipart => true } do |form| -%>

<label for="document_uploaded_file">File:</label>

<%= form.file_field :uploaded_file %>

<input type="submit" name="submit" value="Upload" />

<% end -%>

While we use the $_FILES superglobal in PHP to access the uploaded file

information, Rails packages this data into an object that is sent along

with the posted parameters from the form. This object contains all the

information we need about the file just like the $_FILES array.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/documents_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/files/file_upload_form.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/views/documents/new.html.erb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=374

$_FILES 375

Ruby Download php_to_rails/ruby/files.rb

params hash submitted

{ "submit" => "Upload",

"document" => { "uploaded_file" => #<File:/tmp/CGI.5112.0> } }

The create action for the documents controller will look like that for any

other controller. Most of the code that we use to upload the file will end

up in our documents controller. We set the attributes for the Document

object directly from the data in params[:document].

Ruby Download php_to_rails/ruby/demo_1/app/controllers/documents_controller.rb

def create

@document = Document.new(params[:document])

if @document.save

flash[:success] = "File uploaded successfully."

end

redirect_to :action => "index"

end

This assigns the value of uploaded_file to the document object. This

means we need to create an assignment method to handle this data.

The uploaded_file= method uses the uploaded file object sent with the

request. We’ll first get the content of the file using the read method and

store it in an instance variable. We’ll then use the file object to get the

attributes of the file, similarly to how we’d extract this data from the

$_FILES array.

PHP Download php_to_rails/php/files/upload_attributes.php

$filename = $_FILES['uploaded_file']['name'];

$filesize = $_FILES['uploaded_file']['size'];

$contentType = $_FILES['uploaded_file']['type'];

Ruby Download php_to_rails/ruby/demo_1/app/models/document.rb

def uploaded_file=(file)

contents of uploaded file

@contents = file.read

self.filename = file.original_filename

self.filesize = file.length

self.content_type = file.content_type

end

At this point in our PHP, we’d use the move_uploaded_file function to

write our file to disk. In Rails, we need to create a before_save callback

for our model so that it writes our file to disk before the document

record is saved. We’ll add a new method named write_file_upload to use

with this callback that will write the file content to disk. In this case,

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/files.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/documents_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/files/upload_attributes.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/document.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=375

$_SERVER 376

we’ve created an uploads directory to hold all the file uploads in our

application.

PHP Download php_to_rails/php/files/file_upload.php

// destination for file

$destDir = dirname(__FILE__)."/uploads/";

$dest = $destDir.basename($_FILES['uploaded_file']['name']);

if (move_uploaded_file($_FILES['uploaded_file']['tmp_name'], $dest)) {

echo "File uploaded successfully.";

}

Ruby Download php_to_rails/ruby/demo_1/app/models/document.rb

before_save :write_file_upload

def write_file_upload

dest = "#{RAILS_ROOT}/uploads/#{self.filename}"

File.open(dest, 'w') {|f| f << @contents }

end

You’ll obviously want to perform some validation and error checking for

your file uploads just as you would in PHP. You would typically check

that the file size isn’t zero and that the uploaded file doesn’t already

exist on disk. Rick Olson has written a useful Rails plug-in that deals

with a lot of the issues you may run into while dealing with file uploads.

This plug-in is named attachment_fu and can be found in Rick’s SVN

Repository.1

13.4 $_SERVER

Most of the common environment variables you would get through the

$_SERVER superglobal array or getenv() function in PHP are set as meth-

ods on the request object in Rails. As shown in Figure 13.1, on the

following page, we can access these by referencing these methods from

within a controller action.

13.5 Cookies

Setting cookies in Rails is done by assigning a value to the cookies hash

within a controller action. We can also assign a hash of parameters to

the cookie if we need to specify the expiration date or path constraint.

1. http://svn.techno-weenie.net/projects/plugins/attachment_fu/

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/files/file_upload.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/document.rb
http://svn.techno-weenie.net/projects/plugins/attachment_fu/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=376

COOKIES 377

Figure 13.1: Server variables

PHP Download php_to_rails/php/cookies/set_cookies.php

// expire at the finish of the current session

setcookie('tabState', 'open');

// set additional info for the cookie

setcookie("tabState", 'open', time()+3600*24*14, "/~foo/");

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

expire at the finish of the current session

cookies[:tab_state] = 'open'

set additional info for the cookie

cookies[:tab_state] = { :value => 'open',

:expires => 14.days.from_now,

:path => "/~foo/" }

end

We can retrieve cookies within a Rails controller by simply accessing the

value for the cookie from the cookies hash. Remember that this method

is not a superglobal such as the $_COOKIE array in PHP and is available

only when working in an action or view.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/cookies/set_cookies.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=377

SESSIONS 378

PHP Download php_to_rails/php/cookies/get_cookies.php

$state = isset($_COOKIE['tabState']) ? $_COOKIE['tabState'] : null;

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

state = cookies[:tab_state]

end

We delete cookies in PHP by setting an expiration date that has already

passed. In Rails, we delete a cookie using the delete method to our cook-

ies proxy object. Simply call this method with the name of the cookie you

want to wipe out.

PHP Download php_to_rails/php/cookies/delete_cookies.php

// one hour ago

setcookie("tabState", "", time() - 3600);

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

cookies.delete(:tab_state)

end

13.6 Sessions

Session data is set within controller methods by assigning values to the

session hash. There is no need for any equivalent of PHP’s session_start

function.

PHP Download php_to_rails/php/sessions/set_session.php

session_start();

$_SESSION['user'] = $user->id;

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

session[:user] = @user.id

end

We retrieve session data in Rails by accessing values of the session hash

by key name. This method is not a superglobal such as the $_SESSION

array in PHP and is available only when working in an action or view.

PHP Download php_to_rails/php/sessions/get_session.php

session_start();

$userId = isset($_SESSION['user']) ? $_SESSION['user'] : null;

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/cookies/get_cookies.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/cookies/delete_cookies.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/sessions/set_session.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/sessions/get_session.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=378

SESSIONS 379

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

user_id = session[:user]

end

We can clear all existing session data using the reset_session method,

which works similarly to PHP’s session_destroy function.

PHP Download php_to_rails/php/sessions/reset_session.php

session_destroy();

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

reset_session

end

There are various session storage options in Rails that can be changed

to suit your needs. The default session storage mechanism uses cook-

ies and is suitable for most needs. However, in some cases, you may

need to store more session data than allowed in a cookie (4KB). You

might also at times want to store sensitive information that you would

rather not have stored in a cookie. In these scenarios, you may want

to use ActiveRecord to store your sessions in the database. Turning

on :active_record_store can be done by uncommenting the session_store

assignment in the initializer block in config/environment.rb.

Ruby Download php_to_rails/ruby/demo_1/config/environment.rb

config.action_controller.session_store = :active_record_store

If we want to use Rails’ built-in cross-site request forgery protection, we

need to perform an additional step when switching the session store.

Any session store other than the default cookies storage requires us

to provide a :secret token to the protect_from_forgery method in app/

controllers/application.rb. This token is already generated in your source

code and just needs to be commented out to work with our active record

session storage.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/application.rb

protect_from_forgery :secret => 'ef992b27ee422f2e5b5e44bab9e6f7e0'

Once we’ve done this, we need to create the sessions migration to create

the database table needed to store our data. We can do this using a

Rake task bundled with Rails.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/sessions/reset_session.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/config/environment.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/application.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=379

HEADERS AND REDIRECTION 380

From your application’s root directory, run the following:

demo> rake db:sessions:create

(in /Users/derek/work/demo)

exists db/migrate

create db/migrate/003_create_sessions.rb

Now we can use the new session migration to add this table to our

database:

demo> rake db:migrate

(in /Users/derek/work/demo)

== 3 CreateSessions: migrating ===

-- create_table(:sessions)

-> 0.0503s

-- add_index(:sessions, :session_id)

-> 0.0086s

-- add_index(:sessions, :updated_at)

-> 0.0559s

== 3 CreateSessions: migrated (0.1157s) ================================

Once we’ve restarted the server, sessions will now be stored in the ses-

sions table instead of the default cookie storage. If we ever want to clear

our active record session data, there is another Rake task to handle

this.

demo> rake db:sessions:clear

13.7 Headers and Redirection

We can send arbitrary headers in a controller method by assigning

header values on the response object. This works similarly to PHP’s

header function.

PHP Download php_to_rails/php/headers/headers.php

header('Cache-Control: no-cache, must-revalidate');

header('Content-Type: application/pdf');

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

response.headers['Cache-Control'] = 'no-cache, must-revalidate'

response.headers['Content-Type'] = 'application/pdf'

end

Rails provides a method in our controllers to set proper redirect headers

in our application. The redirect_to method uses a hash of parameters

that compose the redirection URL.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/headers/headers.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=380

SECURITY 381

PHP Download php_to_rails/php/headers/redirection.php

header("Location: /documents/new");

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

redirect_to(:controller => "documents", :action => "new")

end

This redirect_to method can also be given a string if the redirection URL

is outside the domain of the current application.

PHP Download php_to_rails/php/headers/redirection_external.php

header("Location: http://maintainable.com");

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

redirect_to('http://maintainable.com');

end

13.8 Security

There are various security concerns when developing Rails applica-

tions. Many of these you’ll be familiar with from encountering the same

issues in PHP. Others are unique to the conventions used in Rails.

Escape Output

You should always escape variables for output. This eliminates bugs

because of improperly escaped entities but more importantly alleviates

security concerns such as cross-site scripting attacks. The equivalent

of PHP’s htmlentities function in Rails is the h helper method. We can use

this method just like any other helper method, and a common usage

pattern is to leave off the parentheses when outputting a single variable

within the Ruby interpreter. In this case, the h method is placed at the

beginning of the tags used to open the Ruby interpreter such as <%=h.

PHP Download php_to_rails/php/security/escape_output.php

<div>

<a href="/documents/show/<?= $document->id ?>">

<?= htmlentities($document->filename, ENT_QUOTES) ?>

</div>

<div>

<?= htmlentities($document->contentType, ENT_QUOTES) ?>

</div>

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/headers/redirection.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/headers/redirection_external.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/security/escape_output.php
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=381

SECURITY 382

Ruby Download php_to_rails/ruby/demo_1/app/views/examples/escape_output.html.erb

<div>

<%= link_to h(@document.filename), :controller => "documents",

:action => "show",

:id => @document.id %>

</div>

<div><%=h @document.content_type %></div>

Filter Input

To avoid SQL Injection attacks in PHP, we always use a function such as

mysql_real_escape_string to escape quotes and other potentially danger-

ous characters within a SQL statement. Rails accomplishes the same

thing using replacement variables.

Any SQL fragment in our find statements can be stated as an array

instead of a string. The first element is a SQL string with question

marks as value placeholders. The rest of the array elements are val-

ues to be substituted into the string.

PHP Download php_to_rails/php/security/replacement_variables.php

mysql_connect('localhost', 'root', '');

$id = isset($_POST['id']) ? $_POST['id'] : null;

$name = isset($_POST['name']) ? $_POST['name'] : null;

$type = isset($_POST['type']) ? $_POST['type'] : null;

$query = sprintf("SELECT * FROM documents WHERE id='%s' LIMIT 1",

mysql_real_escape_string($id));

$query = sprintf("SELECT *
FROM documents

WHERE filename LIKE '%s'

AND content_type = '%s'",

mysql_real_escape_string("%$name%"),

mysql_real_escape_string($type));

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

id, name, type = params[:id], params[:name], params[:type]

condition fragment

doc = Document.find(:first,

:conditions => ["id = ?", id])

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/views/examples/escape_output.html.erb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/security/replacement_variables.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=382

SECURITY 383

sql query

docs = Document.find_by_sql(["SELECT *
FROM documents

WHERE filename LIKE ?

AND content_type = ?",

"%#{name}%", type])

end

def my_action

begin

@document = Document.find(params[:id])

rescue ActiveRecord::RecordNotFound

flash[:notice] = "Invalid document"

redirect_to :action => :index

end

end

def my_action

@document = Document.find_by_id(params[:id])

end

def my_action

deliver the message

NotificationMailer.deliver_confirm(@user)

end

def my_action

create, and deliver later

email = NotificationMailer.create_confirm(@user)

NotificationMailer.deliver(email)

end

def my_action

render

end

protected

def my_protected

this cannot be executed as an action

end

end

Protect Attributes from Bulk Assignment

A common pattern used in Rails during form submission is to group

together data for a particular object so that we can perform a bulk

assignment in our controller. For example, we might have a Comment

model such as the code on the next page.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=383

SECURITY 384

Ruby Download php_to_rails/ruby/demo_1/db/migrate/004_create_comments.rb

class CreateComments < ActiveRecord::Migration

def self.up

create_table :comments do |t|

t.string :email

t.text :content

t.boolean :verified

t.timestamps

end

end

def self.down

drop_table :comments

end

end

Then the interface for a public form to create a comment might include

only the email and content attributes, while displaying only the verified

attribute for site administrators.

Ruby Download php_to_rails/ruby/demo_1/app/views/comments/new.html.erb

<form method="post" action="/comments/create">

<input type="text" name="comment[email]" />

<input type="text" name="comment[content]" />

<% if @user.admin? %>

<input type="text" name="comment[verified]" value="1" />

<% end %>

</form>

When the data for this is submitted, it will combine the data into a sin-

gle hash that we can assign in the controller when creating our object.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb

def create

@comment = Comment.new(params[:comment])

if @comment.save

flash[:notice] = 'Created successfully.'

redirect_to :action => "index"

else

render :action => "new"

end

end

The problem is that the verified attribute isn’t actually secured for the

model and is merely hidden from the view. There is nothing stopping

a user from submitting this attribute through some other means such

as curl, in which it would mark the comment as verified regardless of

whether the user is an administrator.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/db/migrate/004_create_comments.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/views/comments/new.html.erb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=384

SECURITY 385

Download php_to_rails/ruby/attr_protected.sh

curl -d "comment[verified]=1" http://localhost:3000/comments/create

The solution for this is to mark this attribute as protected from bulk

assignment using the attr_protected method in our model.

Ruby Download php_to_rails/ruby/demo_1/app/models/comment.rb

class Comment < ActiveRecord::Base

attr_protected :verified

end

We can also use a white-list approach, instead using attr_accessible to

define the only attributes that are allowed during bulk assignment.

Ruby Download php_to_rails/ruby/demo_1/app/models/comment.rb

class Comment < ActiveRecord::Base

attr_accessible :email, :content

end

Once we’ve secured our models this way, we need to remember that we

now need to explicitly assign these attributes in our controller when

they are applicable.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb

@comment = Comment.new(params[:comment])

@comment.verified = params[:comment][:verified] if @user.admin?

Handle Missing Records

When we use the find method to load a record by primary key, it expects

that the ID given is valid. When the ID given cannot be found, an

ActiveRecord::RecordNotFound exception is raised. It is important to not

trust that IDs given in the application are valid. Many times it is as easy

as changing a number in a URL to throw an invalid ID into your action.

There are two ways of handling missing IDs. The first is to put your find

within a begin/rescue block. How you deal with an invalid ID depends

on the situation. Most of the time it is sufficient to simply redirect back

to the index view with a polite message.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

begin

@document = Document.find(params[:id])

rescue ActiveRecord::RecordNotFound

flash[:notice] = "Invalid document"

redirect_to :action => :index

end

end

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/attr_protected.sh
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/comment.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/comment.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=385

DEBUGGING 386

If you’d rather the object simply be Nil when the record is not found,

you can use find_by_id instead of find. This usage is appropriate when

you expect that the ID could not exist, and the code can continue to

execute properly when the record is Nil.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

@document = Document.find_by_id(params[:id])

end

Nonaction Controller Methods

All methods in a controller are assumed to be public actions unless

stated otherwise. This means methods that were not intended to be

accessed can be typed in the URL and cause errors in your application.

The simplest way to prevent this is to give a protected visibility to any

methods not intended to be actions within the controller.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

render

end

protected

def my_protected

this cannot be executed as an action

end

13.9 Debugging

The most popular debugging strategy in PHP is done using strategically

placed print statements. Although there are certainly more sophisticated

debugging solution for PHP, simply printing variables to the screen is

usually pretty quick and efficient.

If you’ve tried to place print statements within your Rails controllers or

models, you’ve probably noticed that they don’t have any effect on the

output sent to the browser. This is because any output generated in

your Rails code has nothing to do with the data that Rails eventually

renders to the browser. We do, however, have a few alternate strategies

for debugging in Rails.

Logging Data

We’ll usually use the logger in Rails to do simple debugging. Log files

are written to the log/ directory in our application and are named based

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=386

DEBUGGING 387

on the current environment we are using. We discuss environments

in more detail in Section 6.2, Using Rails Environments, on page 164.

When you are working in the development environment, a lot of use-

ful information is sent to the log automatically. This includes all the

SQL executed and the list of parameters sent with each request. Sim-

ply viewing the log might give you enough information without further

debugging.

Often you’ll need to send further data to the log to inspect the contents

of a variable. We can send data to the log using the logger.info method.

This will work in models, controllers, and views. When you are logging

objects, you’ll probably want to use their inspect method to get a more

useful output of their contents.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/meetings_controller.rb

def create

@meeting = Meeting.new(params[:meeting])

logger.info(@meeting.inspect)

...

end

When we run this code, something similar to the following will be sent

to our log.

#<Meeting id: nil, meets_on: "2007-11-30", location: "The Library",

description: "Using OpenID", created_at: nil, updated_at: nil>

Interactive Debugging

Rails also has a sophisticated debugger based on the ruby-debug gem.

To use this debugger, first install ruby-debug using gem install:

my_app> gem install ruby-debug

Building native extensions. This could take a while...

Successfully installed ruby-debug-base-0.9.3

Successfully installed ruby-debug-0.9.3

2 gems installed

...

Once we’ve installed this required gem, we need to restart the server for

our application using the - -debugger option:

my_app> ruby script/server --debugger

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

=> Debugger enabled

...

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/meetings_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=387

ACCESSING THE DATABASE 388

Now in our application, we can initialize the debugger by placing debug-

ger somewhere in our application.

Ruby Download php_to_rails/ruby/demo_1/app/models/meeting.rb

formatted name based on date

def name

debugger

meets_on.to_s(:long)

end

When the application reaches this point, it will invoke the interactive

debugger.

/user_group/app/models/meeting.rb:23 meets_on.to_s(:long)

(rdb:5)

From here we can walk through the call stack and inspect our environ-

ment using various commands. To see a list of available commands,

type help.

(rdb:5) help

ruby-debug help v0.9.3

Type 'help "command-name"' for help on a specific command

Available commands:

backtrace break catch cont delete display down eval exit finish frame

help irb list method next p pp quit reload restart save script set

step thread tmate trace undisplay up var where

Follow the guidelines here for using the help command to get additional

information on the various commands. More detailed usage instruc-

tions can also be found on the Ruby-Debug website.2

13.10 Accessing the Database

We are quite familiar with writing SQL in PHP. While you are learn-

ing Rails, you may wonder how to query the database directly without

using ActiveRecord objects. The short answer is that it’s possible but

not a good idea. ActiveRecord uses callbacks hooks and validations

to ensure that the data entering the database adheres to the rules

assigned in our model classes. Accessing and querying the database

directly will circumvent all the logic we’ve added to the model layer of

our application.

2. http://www.datanoise.com/ruby-debug/

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/meeting.rb
http://www.datanoise.com/ruby-debug/
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=388

ACCESSING THE DATABASE 389

With this in mind, there are sometimes performance reasons to bypass

validations and callbacks. To perform mass updates, we can use the

update_all method. The first argument is a SQL fragment with the up-

dates to apply, and the second argument is the conditions.

def update_admin_for_nyc

self.update_all("admin = 1", "location = 'NYC'")

end

We can perform a similar operation for mass deletions using the delete_

all method. This method takes a single argument with the conditions on

which to delete records.

def delete_from_tulsa

self.delete_all("location = 'Tulsa'")

end

Most SELECT-based query operations can (and should) be done using

the versatile find method. This method supports options such as :select,

:from, :group, :limit, :offset, and :conditions.

def find_archives

self.find(:all, :select => "id, name",

:from => "user_archives",

:conditions => "admin = 1",

:limit => 10,

:offset => 10)

end

If the find method is not capable of performing the query you need, you

can drop down to using the find_by_sql method to query. This method

works just like find(:all) but uses a complete SQL string.

def find_including_archives

sql = "SELECT * FROM users UNION SELECT * FROM user_archives"

self.find_by_sql(sql)

end

If you absolutely need to drop down to execute straight SQL, you can

do this within your models using the connection.execute method.

def swap_to_archive

connection.execute("INSERT INTO user_archives SELECT * from users")

end

Remember that using execute is usually a last resort. Do some research

first to find whether there is a better way to accomplish what you are

trying to do.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=389

EMAIL 390

13.11 Email

We can send email in Rails through a component called ActionMailer.

This component of Rails enables us to send email from our application

using a mailer model and views.

Instead of the usual ActiveRecord model, we’ll use a special mailer

model to send email messages in our application. We can generate a

mailer model using the generate script. This generator optionally takes

the name of the mailer actions we want to create such as confirm in this

case.

demo> ruby script/generate mailer NotificationMailer confirm

exists app/models/

create app/views/notification_mailer

exists test/unit/

create test/fixtures/notification_mailer

create app/models/notification_mailer.rb

create test/unit/notification_mailer_test.rb

create app/views/notification_mailer/confirm.html.erb

create test/fixtures/notification_mailer/confirm

Each method in our mailer model contains the data for a message that

we’ll create and send. The method can take an arbitrary number of

arguments to be used when composing the message. In this case, we’ve

passed a user object into the confirm method to help fill out the recipient

details.

Ruby Download php_to_rails/ruby/demo_1/app/models/notification_mailer.rb

class NotificationMailer < ActionMailer::Base

def confirm(user)

@subject = 'Membership Confirmation'

@body = { "user" => user }

@recipients = user.email

@from = 'confirm@example.com'

@sent_on = Time.now

@headers = {}

end

end

We’ve set a series of instance variables that are used to compose the

email headers. Data assigned to the @body hash will become instance

variables in the view template used to compose the body of this mes-

sage. In this example, we’ve assigned the user object to the “user” key

of the hash to obtain the @user variable in the view. Our view template

is stored in a view directory based on the name of the mailer model,

and the template is named after the method we’ve defined.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/notification_mailer.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=390

TESTING RAILS CODE 391

Ruby Download php_to_rails/ruby/demo_1/app/views/notification_mailer/confirm.html.erb

Dear <%= @user.username %>,

Thank you for signing up for our newsletter at example.com.

You can change your subscription settings at any time by visiting:

http://example.com/newsletter/<%= @user.unsubscribe_code %>

Thanks,

The Example Team

This completes the code needed to set up our confirm email message.

To actually send this message, we need to invoke the deliver method on

the message. This is a class method on NotificationMailer, with a name

starting with deliver_ followed by the name of the mailer method we just

created. In this example it will be named deliver_confirm.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

deliver the message

NotificationMailer.deliver_confirm(@user)

end

Alternately, we can use a similar approach to create the method for

later delivery. This time the method name is prefixed with create_ and

becomes create_confirm. This method will return the email where it can

then be delivered using the NotificationMailer.deliver method.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

create, and deliver later

email = NotificationMailer.create_confirm(@user)

NotificationMailer.deliver(email)

end

13.12 Testing Rails Code

Testing is given much more focus in the Ruby community than in PHP.

Nearly all Rubyists regularly write extensive unit tests, and this influ-

ence is evident in Rails. Tests stubs are created in parallel with all code

stubs generated in Rails, and you’ll find that most open source libraries

and packages you find will have a solid suite of tests.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/views/notification_mailer/confirm.html.erb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=391

TESTING RAILS CODE 392

Comparing PHPUnit and Test::Unit

The most popular unit testing framework in Ruby, and the one that is

included in Rails, is the Test::Unit library. This library is based on the

popular xUnit-style testing library and is similar to the PHPUnit library

written by Sebastian Bergmann.

Just as when we write tests with PHPUnit, test classes generally are

stored in their own separate test directory. Test class names are suffixed

with Test just as in PHP, so the unit tests for the User class are written in

the UserTest class. Instead of inheriting from PHPUnit_Framework_TestCase,

Ruby test classes inherit from Test::Unit::TestCase.

PHP Download php_to_rails/php/tests/test/UserTest.php

require_once 'PHPUnit/Framework.php';

require_once dirname(dirname(__FILE__)).'/lib/User.php';

class UserTest extends PHPUnit_Framework_TestCase {

function setUp() {

// set up test state

}

function tearDown() {

// tear down test state

}

function testGetFullNameConcatenatesFirstAndLastName() {

$user = new User('Derek', 'DeVries');

$this->assertEquals('Derek DeVries', $user->getFullName());

}

function testIsAdminFlagDefaultsToFalse() {

$user = new User('Derek', 'DeVries');

$this->assertFalse($user->getIsAdmin());

$user = new User('Derek', 'DeVries', true);

$this->assertTrue($user->getIsAdmin());

}

}

Ruby Download php_to_rails/ruby/tests/test/user_test.rb

require 'test/unit'

require File.dirname(__FILE__) + '/../lib/user'

class UserTest < Test::Unit::TestCase

def setup

set up test state

end

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/tests/test/UserTest.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/tests/test/user_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=392

TESTING RAILS CODE 393

def teardown

tear down test state

end

def test_full_name_concatenates_first_and_last_name

user = User.new('Derek', 'DeVries')

assert_equal 'Derek DeVries', user.full_name

end

def test_admin_flag_defaults_to_false

user = User.new('Derek', 'DeVries')

assert !user.admin?

user = User.new('Derek', 'DeVries', true)

assert user.admin?

end

end

There is no extra step needed to install the Test::Unit library, because it

is part of the Ruby standard library. In these examples, both PHPUnit

and Test::Unit perform a require on the testing library files along with

the class we are testing (User). Test::Unit uses setup and teardown meth-

ods to include code to execute before and after each test. These work

identically to PHPUnit’s setUp and tearDown methods.

There are fairly equivalent assertion methods for many of those found in

PHPUnit. The most common are the assert_equal and assert methods. We

can execute these tests from the command line using the ruby command

just like we use the phpunit command-line runner.

work> cd php_app

php_app> phpunit UserTest test/UserTest.php

PHPUnit 3.1.2 by Sebastian Bergmann.

..

Time: 0 seconds

OK (2 tests)

The previous PHP command can be done in Ruby as follows.

work> cd ruby_app

ruby_app> ruby test/user_test.rb

Loaded suite test/user_test

Started

..

Finished in 0.000601 seconds.

2 tests, 3 assertions, 0 failures, 0 errors

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=393

TESTING RAILS CODE 394

Testing in Rails

Rails makes testing convenient by generating your test class stubs

whenever you create new classes. Rails includes three different types of

testing.

Unit Tests

Unit tests are written in parallel with our model classes. These tests

should extensively cover the functionality of the domain logic in your

application.

Ruby Download php_to_rails/ruby/demo_1/test/unit/presentation_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class PresentationTest < Test::Unit::TestCase

fixtures :meetings, :presentations, :users

def test_should_belongs_to_meeting

rjs = presentations(:rjs_templates)

assert_kind_of Meeting, rjs.meeting

end

def test_should_require_title

attrs = { :title => nil,

:description => "Render Javascript Snippets",

:user => users(:admin_user) }

p = Presentation.create(attrs)

assert p.errors.invalid?(:title)

end

end

We discuss more details of unit testing within the context of our appli-

cation in Section 6.3, Testing Our Models, on page 165.

Functional Tests

Functional tests are paired with Rails controller classes and verify that

individual controllers and the logic they employ is working correctly.

They provide a simple way of simulating HTTP requests to our applica-

tion. We can then perform assertions on the results of the request to

make sure the correct response and HTML markup is rendered.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/test/unit/presentation_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=394

TESTING RAILS CODE 395

Ruby Download php_to_rails/ruby/demo_1/test/functional/homepage_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class HomepageControllerTest < ActionController::TestCase

fixtures :meetings

make sure that homepage displays login link

def test_should_show_login_link_when_logged_out

get :index, {}, :user => nil

assert_select '#nav a', 'login'

end

end

The get method simulates a GET request for us, with the first argument

(:index) being the requested action. The second argument is a list of

parameters we’d like to send to the action, which in this case is empty.

In the third argument we’ve specified that the :user session variable is

empty by assigning it to nil.

When this method executes, it performs a request cycle and stores

the response text in memory. We can then perform assertions on the

response that we’re expecting. In this case we’ve used the assert_select

method. This method accepts a CSS-style selector syntax to assert that

HTML content was returned correctly. We assert that an HTML tag with

an id of nav has a nested anchor (a) tag. The second argument specifies

the text we expect to be within the anchor tag, which in this case is

“login.”

Integration Tests

Integration tests are done at a broader level and allow us to test applica-

tion interaction across many different controllers. These tests are often

a series of use cases for the application that are done in the test to

ensure that a series of actions behaves correctly in succession.

Ruby Download php_to_rails/ruby/demo_1/test/integration/user_stories_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class UserStoriesTest < ActionController::IntegrationTest

fixtures :users, :presentations, :meetings

def test_should_create_new_user

home page

get "/"

assert_template "homepage/index"

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/test/functional/homepage_controller_test.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=395

RAILS PLUG-INS 396

new user page

get "/signup"

assert_template "users/new"

post new user creation attempt

user_params = { :name => "Bob",

:email => "bob@example.com",

:password => "chunkybacon",

:password_confirmation => "chunkybacon" }

post "/users/create", :user => user_params

assert_response :redirect

end

end

We can use integration tests to build stories for our application. In this

test, we’ve simulated a path that a user might follow in the application:

• The user starts at the home page.

• He then visits the sign-up page.

• He submits the form to register an account.

The test reenacts this by performing a series of GET and POST requests.

We then assert that the application reacts as expected.

13.13 Rails Plug-Ins

Rails plug-ins are a way of adding additional functionality to Rails in a

format that can be easily shared. You will find that some features have

been deliberately left out of Rails to keep the framework as lightweight

as possible. In many cases, developers create a plug-in to add this

functionality to share between their own projects and the with the com-

munity.

Finding Plug-Ins

There are quite a few places to find Rails plug-ins. To view a rather long

list of plug-in repositories, we can use the script/plugin discover command

from within the root directory of our Rails application. This will find and

list locations that have been added as source repositories. The -l option

will tell Rails to simply list the plug-in sources.

demo> cd rails_app

rails_app> ruby script/plugin discover -l

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=396

RAILS PLUG-INS 397

http://svn.techno-weenie.net/projects/plugins/

http://topfunky.net/svn/plugins/

svn://errtheblog.com/svn/plugins

...

We can choose to add these plug-in sources by using the same com-

mand without the -l option. It will ask you whether you’d like to ask

each source and will add each accepted location to a file in your home

directory named .rails-plugin-sources.

Each source is a Subversion repository of plug-ins. To list the plug-ins

within a specific repository, we can use the list - -source options along

with the repository we are searching. In this case, we’ll take a further

look into the plug-ins found in the Err repository.

rails_app> ruby script/plugin \

list --source=svn://errtheblog.com/svn/plugins

acts_as_cached svn://errtheblog.com/svn/plugins/acts_as_cached/

cache_fu svn://errtheblog.com/svn/plugins/cache_fu/

will_paginate svn://errtheblog.com/svn/plugins/will_paginate/

...

This will list quite a few plug-ins that are available in this repository

along with the direct location to the plug-in.

Installing Plug-Ins

The Will Paginate plug-in has quickly become one the most popular

approaches to pagination in Rails applications. We can install this plug-

in using the install option of our script. This will copy and install this

plug-in into the vendor/plugins directory of our application. Unlike Ruby-

Gems, which are available systemwide, plug-ins are installed and avail-

able only within a specific application.

rails_app> ruby script/plugin \

install svn://errtheblog.com/svn/plugins/will_paginate/

A /Users/derek/work/rails_app/vendor/plugins/will_paginate

A /Users/derek/work/rails_app/vendor/plugins/will_paginate/test

...

A /Users/derek/work/rails_app/vendor/plugins/will_paginate/README

Exported revision 321.

Once we’ve installed the plug-in, we’ll have to restart our web server for

it to become active.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=397

RAILS PLUG-INS 398

We can generate RDoc documentation for it using a Rake task:

rails_app> rake doc:plugins

(in /Users/derek/work/rails_app)

...

Generating HTML...

Files: 5

Classes: 2

Modules: 6

Methods: 19

Elapsed: 0.380s

The documentation for all plug-ins will be generated and stored within

the doc/plugins directory for your Rails application.

http://books.pragprog.com/titles/ndphpr/errata/add?pdf_page=398

Bibliography

[ZT08] Ezra Zygmuntowicz and Bruce Tate. Deploying Rails Appli-

cations: A Step-by-Step Guide. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2008.

Index
Symbols
! operator, 320

character, 366

$ symbol, 285, 286

$_SERVER, 377

%w{}, 273

%x{}, 300

&& operator, 301

& operator, 318

* operator, 276, 322

**, 296

+ sign, 302, 363

// characters, 265

<> operator, 298

<<, 273

< symbol, 330

= operator, 320

== operator, 350

=== operator, 299, 351

@ symbol, 286

@@ symbol, 286, 335

character, 265

isset, 290–292

\\ characters, 268

< symbol, 33

{} syntax, 316

| character, 317

A
Abstract classes, 338–339

Action caching, 236–237

Action methods, 153

ActionMailer

defined, 19

using, 390–391

ActionPack

defined, 19

Actions, 124f, 125

securing, 226–232

ActiveRecord, 114–118

associations in, 202–222

exercises for, 222

integration, 207–208, 209f

presentation controller, 214f,

210–214

presentations, connecting,

202–205

queries in, 220–221

rendering collections with partials,

217f, 215–217

routing presentations, 208–210

test-first development, 217–220

testing, 205–207

attributes, assigning values to, 117

defined, 19

error messages, 163

new methods in, 184

and PHP, 117

speed of, 115

tables in, 114

vs. SQL, 131

ActiveSupport

defined, 19

Administrators, 226

Adobe Flash, 144

Amazon’s S3 Service, 259

Ampersand, 67, 318

Anonymous functions, 67

Apache, 250, 253, 254f, 262f

Apache rewrite rules, 126

Application

basic tutorial, 26–41

controller, creation of, 36f, 35–37

database configuration, 27–28

directory structure, 27f

form processing, 39–41

view, creation of, 37–39, 40f

WEBrick server, 30f, 29–30

APPLICATIONS 401 CONTROLLERS

basic tutorial

as PHP script, 30–35

Applications, see Domain modeling;

Deployment

Arguments, 321–323

Arithmetic operators, 296–297

Array functions example, 49

Arrays, 272–282

adding elements, 273

associative and hashes, 278–282

conversion to, 276

creation of, 272

foreach, 310

iteration, 275

modifying elements, 274

multidimensional iteration, 276

numerically indexed, 272–277

operators, 302

removing elements, 275

retrieving elements, 274

Assignment operators, 50, 51, 296–297

Associations, 202–222

exercises for, 222

integration and, 207–208, 209f

presentation controller, 214f,

210–214

between presentations, 202–205

queries, reducing, 220–221

rendering collections with partials,

217f, 215–217

routing presentations and, 208–210

test-first development, 217–220

testing, 205–207

attachment_fu plug-in, 376

attr_accessor, 328

Attributes

bulk assigmment and, 383–385

password, 180–181

understanding, 75–77

Authenticating, see Users

Authentication, see Security

B
Backslash, 268

Bitwise operators, 296–297

Blocks, 65–70

defined, 67

overview of, 65–66, 67

in PHP vs. Rails, 316–318

Ruby support for, 65

syntax of, 67

usefulness of, 140

writing long, 70

yielding to, 69f, 68–69

Booleans, 267

break, 311

Built-in functions, 325

Bulk assignment, 383–385

C
Caching, 257

Caching database structure, 246

Caching pages, 234–240

Callback hook, 184

Capistrano, 249, 261

Class abstraction, 338–339

Class constants, 337

Class variables, 286, 335–336

Classes

vs. objects, 326–353

Classes, reopening, 93–95

Cloning objects, 349

Closures, see Blocks

Comments, 265–266

Comparison operators, 298f, 298–299

Composite keys, 102

Compression of content, 257

Conditional assignment operator, 345

Constants, 292–294

Constructors, 331–332

Content compression, 257

Control structures, 305–314

break, 311

else, 306

elsif, 306

for, 308–309

foreach, 310

if, 305

next, 312

require, 314

return, 314

switch, 313

while, 307, 308

Controller

creating in Rails, 36f, 35–37

defined, 23

extracting in PHP, 35

Controllers

adding home page, 226f, 223–226,

227f

ApplicationController class, 192

caching pages, 234–240

CONVENTIONS 402 DOCUMENTATION

common actions and, 124f

creating, 122–125, 126f

data retrieving, 130–131

defined, 125

layouts, adding, 156f, 155–158, 159f

links, adding, 133–138

logic and, 176

mass assignment protection,

232–233

meetings, creating new, 141f, 142f,

138–143

meetings, destroying, 152–153

meetings, editing, 151f, 147–151

meetings, viewing, 131–132, 133f

naming conventions for, 123f

presentation, 214f, 210–214

redirection and flash data, 145f,

143–145

request routing, 127f, 129f, 125–129

resources and, 121f, 120–122

securing actions, 226–232

see also Users

Conventions

for controller names, 123f

foreign key, 112f

method creation in Ruby, 36

for method visibility, 77

model naming, 104f, 103–104

in namespaces, 90

pluralization, 106, 107

question marks on methods, 42

for Rails, 21

route components, 127

source file naming, 331

for statements, 45

symbol creation, 35

variable names, 216

for variables, 47

variables in Ruby, 38

of variables in Ruby, 41

Cookies, 179, 180, 193, 376–378

Custom helper methods, 138, 139f

cycle, 187

D
Data

logging, 387

in object-oriented programming, 73

in PHP vs. Ruby, 72

in sessions, 180

sharing between methods, 75

validation of, 163f, 161–163

Data members, 75, 329

Data types, 266–284

arrays, 272–282

booleans, 267

floating-point numbers, 268

integers, 267f, 267

NULL and nil, 283–284

strings, 269f, 268–270

symbols, 271

type juggling, 284, 285f

Databases

ActiveRecord and, 114–118

business logic in, 101

caching structure of, 246

configuration of, 27–28

environment for, 251–253

indexing, 113f

naming conventions for, 103–104

passwords, storing in, 173

and PDO, 109

pluralization of, 107

referential integrity and, 102

single primary key and, 102

stored procedures in, 103

table building, 109f, 112f, 108–113

using, 104f, 101–104

see also Testing

Debugging, 386–388

Decrementing/incrementing, 300

Dedicated servers, 245

def/end syntax, 319

Default routing rule, 127f

delete_if, 281

Deploying Rails Applications

(Zygmuntowicz), 242

Deployment, 242–262

exercises, 262

gems, freezing, 248

hosting, 243–245

launching application, 254f,

253–256

performance and, 256–260

production environment, 245–246

scaling the application, 260–261,

262f

schema, dumping of, 248

security review, 247

server preparation for, 249–253

Destructors, 331–332

Documentation, 359–370

DOLLAR SIGN 403 GOLEMAN

of author, version, license, 361

generation of, 369–370

of headings and text, 363, 364, 365f

ignoring, 369

links, 366, 367f

lists, 365, 366f

of parameter and return values, 363

PHPDoc vs. RDoc, 360f, 360–369

Dollar sign, 47, 285, 286

Domain modeling, 97–119

ActiveRecord and, 114–118

application, creation of, 104–105

database, 104f, 101–104

database tables, 109f, 112f, 113f,

108–113

exercises for, 119

model generation, 106–107

requirements, defining, 98f, 99f,

100f, 101f, 98–101

Double colon, 90

downto, 68

Duck typing, 80–83, 284, 303, 353

_dump, 346

E
each, 344

80/20 rule, 20–21

else, 306, 355

elsif, 306

Email, 390–391

Email hyperlinks, 190

Empty variables, 291f

Encryption, passwords, 183–184

ensure, 355

Environment variable, 252

Environments in Rails, 164–165

eql method, 299

Equality operator, 350

Equals, 50, 51

ERB, 38, 39, 371

Errors

exceptions, 64f, 354–355

handling of, in PHP, 59–61

handling of, in Ruby, 59–65

monkey patching, 94

operators and, 299

and redefining classes, 93

routing, 129f, 225, 226f

testing, 219

for type mismatch, 80

validation, 162, 163f

Escape output, 381

Exception Notification plug-in, 246

Exceptions, 64f, 354–355

in PHP, 61–62

in Ruby, 63–65

Exercises

for associations, 222

basic Rails, 42

for deployment, 262

for domain modeling, 119

for model testing and validating, 172

for Ruby, 71, 95

for user authentication, 200

Expressions, 294–295

F
FCGI, 242, 244

File uploads, 373–376

Filter input, 382

Final keyword, 349

find, 116

find_by_id(id), 195

Fixtures, 168–169

Flash data, 145f, 143–145, 150

Floating point numbers, 268

for, 308–309

foreach, 310

Foreign keys, 112f, 112, 204

Form processing, 39–41

form_for, 139, 162

form_for, 141, 142

Formatted code, 368f, 368

Formatted text, 365f

Forms, 138–143

helpers for, 374

user registration, 178f, 175–180

Fragment caching, 237–239

Functional tests, 394–395

Functions, 318–326

arguments, 321–323

blocks as, 67

internal, 325

return values, 324

user-defined, 319

variable, 324

Functions vs. methods, 53

G
Getter methods, 77

Global variables, 286

Goleman, Sara, 91

GROSENBACH 404 METHOD

Grosenbach, Geoffrey, 256

Group meeting application, see Domain

modeling

H
Hansson, David Heinemeier, 18, 44

Hash iterations, 281

Hash keys, 282

Hashes, 52, 114, 278

Headers and redirection, 380–381

Headings, 363, 364f

Helper methods, 39, 132, 134–135,

139, 187, 225

Heredoc syntax, 270

Hoare’s Dictum, 256

Home page, 226f, 223–226, 227f

Horizontal scaling, 260

Hosting, 243–245

shared environments, 244

virtual private or dedicated servers,

245

Hpricot library, 358

HTTP requests, 258–259

Hyperlinks, 366, 367f

I
if, 305

image_tag, 188, 190

Images, 188

Incrementing/decrementing, 300

Index, 113f, 126f

Inheritance, 33, 330

initialize, 329, 331

initialize_copy, 349

Inline links, 366, 367f

Installation, 24–25

of packages, 357

of plug-ins, 397

of tools on server, 249–251

Instance variables, 75, 132, 286, 334

Instruction separation, 265

Integers, 267

Integration tests, 395–396

Interactive debugging, 387–388

Interactive Ruby (IRB), 45–47

exiting from, 47

Interfaces

with mixins, 87f, 84–88

Internal functions, 325

J
JRuby, 242

K
Keys, 282

L
Language constructs, 93

Launching, 254f, 253–256

Layouts, adding, 156f, 155–158, 159f

Lerdorf, Rasmus, 44

Libraries, 359f, 357–359

Line comments, 36

link_to, 134

link_to_unless_current, 225

Links, adding, 133–138

Lists, 365, 366f

_load, 346

Local variables, 285

Logging data, 387

Logging in, 198f, 199f, 196–200

Logic, 39

Logical operators, 301

Loops, 308

M
Magic constants, 293

Magic methods, 346–348

Magic Multi-Connection plug-in, 260

map.resources, 136

Mass assignment protection, 232–233

Matsumoto, Yukihiro “Matz”, 44

Meetings

administration of, 145–153

creating new, 141f, 142f, 138–143

custom helpers and, 139f

data validation, 163f, 161–163

destroying, 152–153

details, viewing, 146–147

editing of, 151f, 149–151

integation with presentations,

207–208, 209f

routing presentations and, 208–210

showing of, 147f

styled, 159f

viewing, 131–132, 133f

see also Associations

Meetings example, see Controllers

Memory, 243

Method, defined, 46

METHOD_MISSING 405 PARTIALS

method_missing, 339

Methods

action, 153

actions and, 125

vs. functions, 53

getter and setter, 77

magic, 346–348

as messages, 83–84

nesting, 321

organization of, 87f

test, 185

testing, 166–167

visibility of, 77–79

writing, 53–57

see also Helper methods

Migration columns, 108, 109f

Migration version, 111

Missing IDs, 385

Mixins, 87f, 84–88, 339

Model

defined, 22

extracting in PHP, 32–34

Model, View, Controller, 23f, 22–24

Modeling, see Domain modeling

Models

generating, 106–107

testing and validating, 161–172

exercises for, 172

meeting data, 163f, 161–163

Rails environments, 164–165

tests, 165–171

see also Associations

Modules, 86, 89

Mongrel, 242, 243, 250, 253

Mongrel Cluster gem, 255

Monkey patching, 94

MySQL, 243, 251

business logic and, 101

and Rails, 28

N
Named routes, 135–137

Namespaces, 88–91

Naming conventions, see Conventions

Nesting, 321

next, 312

nil, 47

Nonaction controller methods, 386

not operator, 301

NULL and nil, 283–284

Numeric hierarachy, 267f

O
Object interfaces, 339

Object types, 81

Object-oriented programming (OOP),

47–48

Objects

autoloading, 331

vs. classes, 326–353

cloning, 349

comparing, 350–351

as hash keys, 282

inheritance, 33

iteration, 342–345

range, 182

reflection, 351–353

as resources, 121

smart, 73

thinking in, 72–75

Olson, Rick, 196, 376

Operators, 297f, 296–304

array, 302

assignment, arithmetic and bitwise,

296–297

comparison, 298f, 298–299

error control, 299

execution, 300

incrementing/decrementing, 300

logical, 301

strings, 302

type, 303–304

Operators, overriding, 91–93

Optional block, 322

Organization with namespaces, 88–91

Output, 264

Output Compression plug-in, 257

Overloading, 339–341

P
Packages

documentation for, 358

finding, 357

including, 358

installation of, 357

and RDoc, 362

Page caching, 234–236

Parameters

passing, 54–57

Ruby support for, 56

params, 372–373

Parentheses, 46

Partials, 147–149

PARTIALS 406 RAISE

Partials, rendering collections with,

217f, 215–220

Passwords, 173, 177, 180–181

Patterns, 345

PDO, 109

PECL extension, 91

Peepcode, 256

Performance and speed, 234–240, 253,

256–260

Philosophy, of Ruby, 72–95

final keyword and, 349

attributes, 75–77

classes, reopening, 93–95

exercises for, 95

interfaces with mixins, 87f, 84–88

method visibility, 77–79

namespaces, 88–91

object thinking, 72–75

operators, overriding, 91–93

resources, 121f, 120–122

typing, 79–84

Phing, 105

PHP

ActiveRecord and, 117

data members in, 75

data, relationship to, 72

difficulties in, 48

domain modeling in, 99

error messages in, 59–61

exceptions in, 61–62

form data, 142

newsletter application in, 30–35

object inheritance and, 33

operators, overriding, 91

pages in, 121f

redefining classes in, 93

routing requests in, 125

vs. Ruby language, 43–45

statements in, vs. Ruby, 45

strings in, 47

web-accessible areas of, 154f

PHPDoc, 360–369

phpdoc, 266

Plug-ins, 396–398

Pluralization, 106, 107

pluralize, 106

POST requests, 147

pow(), 296

Predefined variables, 287

Presentation controller, 214f, 210–214

Presentation logic, 39

presentations, 204

Primary key column, 110

Primary keys, 114, 116, 147, 204

Production environment, 245–246

Program flow, 57–59

protected vs. private methods, 78

Protection, see Security

Public attributes, 342

Public files, separating, 154f, 153–155

Q
Queries, reducing, 220–221

Question marks, 42, 320

R
radio_button, 192

Rails

advantages of, 100, 243

application code, storing, 27

application tutorial, 26–41

controller, creation of, 36f, 35–37

database configuration, 27–28

directory structure, 27f

form processing, 39–41

view, creation of, 37–39, 40f

WEBrick server, 30f, 29–30

beauty of code in, 21

components of, 19–20

80/20 rule, 20–21

environments in, 164–165

exercises for, 42

as extension of Ruby, 18–19

images, storage of, 188

installation of, 24–25

layout templates, 156

MVC pattern in, 23f, 22–24

and MySQL, 28

as opinionated code, 20–21

application tutorial

as PHP script, 30–35

plug-ins for, 396–398

public directory, 155

queries in, 220–221

resources in, 121f, 120–122

and Subversion, 25, 26

testing in, 165–171

web-accessible areas of, 154f

see also Controllers; Domain

modeling

Railsbench library, 256

raise, 64

RAKE 407 SINGULARIZE

Rake

defined, 19

rake command, 105

Ranges, 182

RDoc, 266, 360–369

Red Hill consulting, 102

Redirection, 143–145

Redirection headers, 380–381

References, 355–357

Referential integrity, 102

Reflection, 351–353

Registration of users, 176f, 175–185

Request balancing, 254f

Request routing, 125–129

components of, 127, 128

default rule, 127f

errors, 129f

map.resources and, 136

require, 314

Resources, 121f, 120–122

Restful Authentication, 196

return, 314

Return values, 324

reverse, 325

.rhtml extension, 39

Routes, named, 135–137

Ruby

advantages of, 169

advantages of objects in, 50f, 48–50

attributes in, 75–77

blocks, 69f, 65–70

classes, reopening, 93–95

error handling in, 64f, 59–65

exceptions in, 63–65

exercises for, 71, 95

as general-purpose language, 43–45

getter and setter methods in, 77

interactive (IRB), 45–47

interfaces with mixins, 87f, 84–88

interpreter, 38

libraries for, 359f, 357–359

line comments in, 36

method creation in, 36

methods in, 46

methods visibility in, 77–79

methods, writing, 53–57

modules in, 86, 89

named parameters, faking, 56

namespaces in, 88–91

nil, 47

object inheritance in, 33

objects in, 47–48

operators in, 91–93

parameters, passing, 54–57

program flow, 57–59

question marks in, 42

ranges in, 182

statement modifiers in, 58

symbols in, 35

thinking in objects, 72–75

typing in, 79–84

variables in, 38, 41

variables, assigning to, 50–52

ruby, 167

ruby-debug gem, 387

RubyForge, 359

RubyGems, 24, 248–249, 357, 359f

S
Salted hash, 173

Scaling, 260–261, 262f

Scoping of variables, 287–289

Secure Shell (SSH) access, 244

Security

of actions, 226–232

cookies and, 379

forgery attacks and, 193

mass assignment protection and,

232–233

password encryption, 183–184

in PHP vs. Rails, 381–386

record validation, 181–183

review of, 247

users and, 173–175

see also Users

Semicolon, 45

Semicolons, 265

Servers

assets, 259

preparing for deployment, 249–253

tools for, 249–251

Sessions, 179, 180

controller for, 196

destroying (logging out), 198

in PHP vs. Rails, 378–380

restoring, 192–195

storing, 379

Setter methods, 77

Shaw, Zed, 250, 256

Single primary keys, 102

Singleton pattern, 345

singularize, 106

SPLAT OPERATOR 408 VIEWS

Splat operator, 276

SQL injection attacks, 382

SSH File Transfer Protocol (SFTP), 249

Statement modifiers, 58

Statements, 45

Static keyword, 335–336

Stored procedures, 103

Strings, 264, 269f, 268–270, 302

Subversion, 26, 249

switch, 313

Symbols, 35, 271

Syntax, 264–266, 292

see also Conventions

T
Tables

in ActiveRecord, 114

building, 108–113

foreign keys, 112f

index, adding, 113f

migration columns, 109f

Templates, 371–372

layout, 156f

logic in, 39

Test methods, 185

Test-driven development, 217–220

Test::Unit library, 392

Testing

associations, 205–207

models, 161–172

exercises for, 172

meeting data, 163f, 161–163

Rails environments and, 164–165

running, 167–168

writing, 166–167

in PHP vs. Rails, 391–396

user data, 185

text_area, 192

to_s, 348

Tokens, 193

try/catch block, 62

Type hinting, 353

Type juggling, 284, 285f

Type mismatch error, 80

Typing, 79–84, 303–304

U
Union operator, 302

Unit tests, 394

unless keyword, 58

URL generation, 133

Users, 173–201

editing, 190–192, 193f

exercises for, 200

listing, 188f, 186–188

logging in, 198f, 199f, 196–200

profiles, generating, 189f, 188–190

registration, 176f, 175–185

form building, 178f, 175–180

password attribute, 180–181

password encryption, 183–184

record validation, 181–183

user creation, 180

securing actions of, 231

security concerns, 173–175

sessions, restoring, 192–195

V
Validation

of user passwords, 177

of user records, 181–183

Validation of models, 161–172

exercises for, 172

meeting data, 163f, 161–163

Variable functions, 324

Variables, 38, 41, 47, 284–292

assigning to, 50–52

class, 286

environment, 252

global, 286

instance, 286

isset/empty, 290–292

isset/empty, 291f

local, 285

predefined, 287

scope, 287–289

server, 377f

variable, 289

Version control systems, 26

View

creating in Rails, 37–39

defined, 22

extracting in PHP, 35

of home page, 224

Views

layouts, adding, 156f, 155–158, 159f

meeting administration and, 147f,

151f, 145–153

presentation, 210–214

public files, separating, 154f,

153–155

VIRTUAL PRIVATE SERVERS (VPS) 409 ZYGMUNTOWICZ

redirection and flash data, 145f,

143–145

Virtual private servers (VPS), 245

Visibility, 334

W
WEBrick

running, 105

WEBrick server

starting, 30f, 29–30

Website building, see Domain modeling

Websites

for Amazon’s S3 Service, 259n

for Apache, 250n

for attachment_fu plug-in, 376n

for Capistrano, 249n

for composite keys plugin, 102n

for Exception Notification plug-in,

246n

for httperf screencast, 256n

JRuby, 243n

for Magic Multi-Connection plug-in,

260n

for Mongrel, 250n

for Mongrel mailing list, 262n

for MySQL, 251n

for Output Compression plug-in,

257n

for PECL extension, 91n

for Rails deployment mailing list,

261n

for Rails downloads, 24n

for Railsbench library, 256n

for Red Hill consulting, 102n

for Restful Authentication, 196n

for Ruby downloads, 24n

for Ruby installation, 249n

for Ruby-Debug, 388n

for RubyForge, 359n

for RubyGems, 24n, 250n

for source code (domain modeling),

98n

for stored procedures information,

103n

for stylesheets sample code, 155n

for Subversion, 25n

for tests source code, 186n

for YAML, 27n

while, 307, 308

Williams, Nic, 102, 260

Y
YAML, 27

Yielding to blocks, 69f, 68–69

Z
Zygmuntowicz, Ezra, 242

	Contents
	Acknowledgments
	Preface
	What Rails Offers
	Who Should Read This Book
	Resources
	PHP and Rails: A Personal View
	About the Code Examples
	About the Environment Used
	Version Requirements
	How to Read This Book

	From PHP to Rails
	Getting Started with Rails
	Rails as an Extension of Ruby
	The Components of Rails
	Opinionated Software
	The MVC Pattern and Rails
	Installing Ruby and Rails
	Creating a Rails App
	Chapter Review
	Exercises

	Beginning Ruby Code
	Seeing Ruby as a General-Purpose Language
	Interacting with Ruby
	Objectifying Everything
	Accepting Ruby's Object World
	Assigning to Variables
	Writing Methods and Passing Parameters
	Controlling Program Flow
	Handling Errors
	Understanding Blocks
	Chapter Review
	Exercises

	Embracing the Ruby Philosophy
	Thinking in Objects
	Understanding Attributes
	Method Visibility
	Understanding Typing
	Implementing Interfaces with Mixins
	Organizing Code with Namespaces
	Overriding Operators
	Reopening Classes
	Chapter Review
	Exercises

	Building a Rails Application
	Modeling the Domain
	Defining Requirements
	Using the Database
	Creating the Application
	Generating the First Model
	Building Database Tables
	Employing ActiveRecord
	Chapter Review
	Exercises

	Working with Controllers and Views
	Identifying Resources
	Creating Controllers
	Routing Requests
	Retrieving Meeting Data
	Viewing Meetings
	Adding Links
	Creating New Meetings
	Redirection and Flash Data
	Administrating Meetings
	Separating Public Files
	Adding a Layout
	Chapter Review
	Exercises

	Validating and Testing Models
	Validating Model Data
	Using Rails Environments
	Testing Our Models
	Chapter Review
	Exercises

	Authenticating Users
	Migrating to a More Secure User
	User Registration
	Viewing and Editing Users
	Restoring Sessions
	Logging In
	Chapter Review
	Exercises

	Defining Associations
	Connecting Presentations
	Testing Associations
	Integrating Presentations into Meetings
	Routing Presentations
	The Presentation Controller
	Spring Cleaning
	Chapter Review
	Exercises

	Preparing to Launch
	Adding the Home Page
	Securing Our Actions
	Protecting from Mass Assignment
	Caching the Pages
	Chapter Review
	Exercises

	Deploying the Application
	Choosing a Host
	The Production Environment
	Preparing Our Application
	Preparing Our Deployment Server
	Launching the Application
	Enhancing Performance
	Scaling Your Application
	Chapter Review
	Exercises

	PHP to Ruby at a Glance
	PHP to Ruby Basics Reference
	Basic Syntax
	Basic Data Types
	Variables
	Constants
	Expressions
	Operators
	Control Structures

	PHP to Ruby Advanced Reference
	Blocks
	Functions
	Classes and Objects
	Exceptions
	References
	External Libraries and Packages
	Documenting Code

	PHP to Rails Reference
	Templates
	$_GET/$_POST
	$_FILES
	$_SERVER
	Cookies
	Sessions
	Headers and Redirection
	Security
	Debugging
	Accessing the Database
	Email
	Testing Rails Code
	Rails Plug-Ins

	*-.5Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

