

What readers are saying about

Everyday Scripting with Ruby

What a wondrous collection of recipes, guidelines, warnings, compre-

hensive examples, metaphors, exercises, and questions! It’s a terrific

value to software testing practitioners who want to get the most from

their test automation effort.

Grigori Melnik

Lecturer, University of Calgary

A fantastic type-along-with-me introduction to a powerful scripting

language that starts in the shallows and then moves into the depths

turning the reader into an accomplished Ruby scripter, almost with-

out them noticing it!

Erik Petersen

Emprove

Finally a hands-on book that is filled with gems of wisdom for the test-

ing community. By following the book’s easy-to-read chapters, real-life

code samples, and superb coverage of complex topics like test-driven

design and inheritance, a tester will not only take her testing career to

the next level but also contribute immensely to the software develop-

ment at her organization.

Gunjan Doshi

VP of Product Development and Process Excellence,

Community Connect, Inc

Marick explains the Ruby language using a series of short, practical

examples. Watir users and other testers who want to learn Ruby will

find it very accessible.

Bret Pettichord

Lead Developer, Watir

When you’ve read this book, you will be able to automate software

tests, which will give you an edge on most of your QA workmates. You

will be able to program in Ruby, which is a joy in itself. You will have

created several very useful utilities and will know how to adapt them

to meet your particular needs. All of the above will have been achieved

briskly and pleasantly. You will become a more effective tester and,

most likely, will have a fine time in the process.

George Hawthorne

Consultant, Oblomov Consulting

The book is an excellent read, is very informative, and covers a lot of

ground in a relatively slim book. I think this is always a good idea.

I have a lot of 800+ page tech books that I’ve read about the first

half or two thirds of, because they are padded toward the end with

very esoteric information. This book held my interest throughout—I

have a full-time job and a ten-month-old son and still managed to get

through these examples in around a week! Brian’s personality comes

through (e.g., the Kennel containing Barkers) in a good way that helps

rather than hinders in understanding the material.

Paddy Healey

Enterprise Systems Engineer, Aventail Corporation

The chapters, examples, and exercises on regular expressions are

worth the cost of the book alone! Everything else is more than just

gravy—it’s every kind of dessert you didn’t know you could have.

Whether you are just beginning to script or have been scripting for

several years, this book will be an invaluable resource. The examples

and exercises, Ruby facts, step-by-step approach, and explanations

will help you kick up your automation efforts to a whole new level!

Paul Carvalho

Consultant, Software Testing and Quality Services

Everyday Scripting with Ruby
For Teams, Testers, and You

Brian Marick

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 Brian Marick.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9776166-1-4

ISBN-13: 978-0-9776166-1-9

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, December 2006

Version: 2007-1-25

http://www.pragmaticprogrammer.com

To Dawn, my Best Beloved, best friend, and role model

And to shoemakers’ children everywhere

Contents
1 Introduction 13

1.1 How the Book Works . 15

1.2 An Outline of the Book 16

1.3 Service After the Sale . 17

1.4 Supplements . 18

1.5 Acknowledgments . 18

2 Getting Started 19

2.1 Download the Practice Files 19

2.2 In the Beginning Was the Command Line 20

2.3 Do You Need to Install Ruby? 22

2.4 Installing Ruby . 22

2.5 Your Two Basic Tools . 23

2.6 Prompts, Command Lines, Prompts, and irb 24

2.7 It’s Time to Make Mistakes 26

I The Basics 29

3 A First Script: Comparing File Inventories 30

3.1 A Script in Action . 30

3.2 The Ruby Universe . 31

3.3 Objects Send and Receive Messages 31

3.4 Variables Name Objects 33

3.5 Comparing Arrays . 34

3.6 Printing to the Screen . 35

3.7 Making a Script . 36

3.8 Where Do We Stand? . 38

3.9 Exercises . 38

CONTENTS 9

4 Ruby Facts: Arrays 39

5 Three Improvements and a Bug Fix 43

5.1 Command-line Arguments 43

5.2 Ignoring Case . 45

5.3 Methods . 49

5.4 Dissecting Strings . 51

5.5 Fixing a Bug . 53

5.6 Where Do We Stand? . 55

5.7 Prelude to the Exercises 56

5.8 Exercises . 58

6 Ruby Facts: If, Equality Testing, and Unless 61

6.1 if . . . elsif . . . else . 61

6.2 When Are Objects Equal? 63

6.3 A Shorthand Version of if 63

6.4 unless . 64

6.5 The Question Mark Operator 64

II Growing a Script 66

7 The Churn Project: Writing Scripts without Fuss 67

7.1 The Project . 67

7.2 Building a Solution . 69

7.3 Where Do We Stand? . 91

7.4 Exercises . 91

8 Ruby Facts: Booleans 94

8.1 Other Boolean Operators 94

8.2 Precedence . 94

8.3 Every Object Is a Truth Value 96

8.4 Boolean Expressions Can Select Objects 96

9 Our Friend, the Regular Expression 98

9.1 Regular Expressions Match Strings 99

9.2 Dissecting Strings with Regular Expressions 101

9.3 Reordering an Array . 102

9.4 Where Do We Stand? . 104

9.5 Exercises . 104

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=9

CONTENTS 10

10 Ruby Facts: Regular Expressions 106

10.1 Special Characters . 106

10.2 Grouping and Alternatives 108

10.3 Taking Strings Apart . 108

10.4 Variables Behind the Scenes 109

10.5 Regular Expression Options 109

10.6 Wait, There’s More. 110

10.7 Exercises . 110

11 Classes Bundle Data and Methods 112

11.1 Classes Define Methods 115

11.2 Objects Contain Data . 116

11.3 Where Do We Stand? . 120

11.4 Exercises . 121

12 Ruby Facts: Classes (with a Side Order of Symbols) 126

12.1 Defining Accessors . 126

12.2 Self . 129

12.3 Class Methods . 133

12.4 Class Variables and Globals 136

12.5 Exercises . 136

III Working in a World Full of People 138

13 Scraping Web Pages with Regular Expressions 139

13.1 Treating Web Pages Like Files 140

13.2 Restricting Attention to Part of the Page 142

13.3 Plucking Out the Title and Authors 144

13.4 Hashes Store Named Data 146

13.5 Taking the Trip . 147

13.6 Exercise Yourself . 149

14 Other Ways of Working with Web Applications 152

14.1 Handling XHTML . 152

14.2 Driving the Browser . 154

14.3 Direct Access to Underlying Protocols 155

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=10

CONTENTS 11

15 Working with Comma-Separated Values 158

15.1 The CSV Library . 159

15.2 Using Blocks for Automatic Cleanup 159

15.3 More CSV Operations . 160

15.4 Applying It All to affinity-trip.rb 160

15.5 Discovering and Understanding Classes in the Standard Library161

15.6 Replacing Code with Data 163

16 Ruby Facts: Hashes 166

17 Ruby Facts: Argument Lists 169

17.1 Optional Arguments . 169

17.2 Rest Arguments . 170

17.3 Keyword Arguments . 171

18 Downloading Helper Scripts and Applications 174

18.1 Finding Packages . 174

18.2 Using setup.rb . 175

18.3 Using RubyGems . 176

18.4 Understanding What You’ve Downloaded 178

19 A Polished Script 180

19.1 The Load Path . 181

19.2 Avoiding Filename Clashes 181

19.3 Avoiding Class Name Clashes Using Modules 182

19.4 A Script to Do the Work for You 184

19.5 Working Without Stepping on Yourself 187

19.6 The rakefile . 188

19.7 Location-independent Tests 191

19.8 Exercises . 193

20 Ruby Facts: Modules 195

20.1 Nested Modules . 196

20.2 Including Modules . 197

20.3 Classes Are Modules . 199

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=11

CONTENTS 12

21 When Scripts Run into Problems 201

21.1 Use Exceptions to Report Problems 202

21.2 An Error-handling Strategy 202

21.3 Your Exception-handling Options 204

21.4 Methods That Use Blocks 208

21.5 Exercises . 210

IV The Accomplished Scripter 212

22 Frameworks: Scripting by Filling in Blanks 213

22.1 Using the watchdog Script 214

22.2 Inheritance . 217

22.3 Gathering User Choices 223

23 Discovery Is Safer Than Creation 230

23.1 The Story of Barker . 231

23.2 What Happens Where? 234

23.3 Modules Instead of Superclasses 239

24 Final Thoughts 241

V The Back of the Book 243

A Glossary 244

B Solutions to Exercises 256

B.1 Solutions for Chapter 3 256

B.2 Solutions for Chapter 5 258

B.3 Solutions for Chapter 7 261

B.4 Solutions for Chapter 9 265

B.5 Solutions for Chapter 10 269

B.6 Solutions for Chapter 11 270

B.7 Solutions for Chapter 12 281

B.8 Solutions for Chapter 21 286

C Bibliography 288

Index 289

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=12

Chapter 1

Introduction
The shoemaker’s children are running around barefoot.

People on the outside of software development projects see them spew

out a multitude of tools that shift work from people to computers. But

the view inside a project is—all too often—different. There, we see days

filled with repetitive manual chores. At one desk, a tester is entering

test data into a database by hand. At another, a programmer is sifting

through the output from a version control system, trying to find the file

she wants. At a third, a business analyst is copying data from a report

into a spreadsheet.

Why are these people doing work that computers could do perfectly

well? It’s a matter of knowledge and skill. The tester thinks program-

ming is too hard, so he never learned. The programmer knows pro-

gramming, but none of her languages makes automating this kind of

job easy, and she doesn’t have time to do it the hard way. The analyst

once wrote a script to do a similar chore, but it broke when she tried

to adapt it to this report. Getting it working would take more time than

copying the data by hand, even if she has to copy it six times over the

next month.

Joe Asks. . .

Scripting? Programming? What’s the difference?

There isn’t one. I’m using “scripting” for this book because it
sounds less imposing and more suited to everyday chores.

CHAPTER 1. INTRODUCTION 14

This book is for all those people.

• For the person who thinks programming is too hard (our tester):

it’s not as hard as all that. Programming has a bad reputation

because computers used to be too slow. To make programs run

fast enough, programmers had to use programming languages

that made them tell the computer all kinds of fiddly details. Com-

puters are now fast enough that we can use languages that make

them figure out the fiddly little details. As a result, programming

is now much easier.

• For the person who gets bogged down when writing or changing

larger scripts (our analyst): you don’t yet have the skills to master

complexity. This book teaches them. It’s a tutorial in the modern

style of programming, one that emphasizes writing tests first (test-

driven programming), borrowing other people’s work in bits and

pieces, growing programs gradually, and constantly keeping them

clean.

Many scripts will be one-shot: write it, use it, throw it away. But

for scripts you plan to keep around, these skills will let you do

it. (In truth, many professional programmers I meet haven’t yet

learned these particular skills, so they will find this book a useful

introduction.)

• For the person who knows the wrong languages well (our pro-

grammer): languages like Java, C#, C++, and C are perfectly fine

languages—in their niche. But their niche is not writing smaller

programs quickly, especially not smaller programs that manipu-

late text and files rather than numbers and internal data struc-

tures. You need to add another language to your repertoire.

In this book, you’ll learn a language—Ruby—that is well suited to each

of these three audiences. It’s easy to learn and quick to write. While

it has the features needed for simple scripts that transform or search

text, it also has all the features needed to cope with complexity. If you’re

a tester, you’ll be pleased to know that testing is considered one of

Ruby’s niches (largely due to Watir, http://wtr.rubyforge.org/, a tool for

driving web browsers). If you’re a programmer, you may already know

that Ruby has recently become explosively popular because of its “killer

app,” Rails (a framework for building web applications, http://www.rubyonrails.org/).

Despite that, it’s more than a decade old, so it’s not just some passing

fad or unstable prototype. And everyone will be pleased with the Ruby

community, which is notably friendly.

http://wtr.rubyforge.org/
http://www.rubyonrails.org/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=14

HOW THE BOOK WORKS 15

1.1 How the Book Works

This is a hands-on book. Scripting is like riding a bicycle: you don’t

learn it by reading about it; you learn it by doing it. And you get better

by doing more of it. The purpose of a book, or of a coach, is to direct

your practice so that you get better faster.

Therefore, the book is organized around four separate projects that are

similar to those you might do in real life. I build the first two projects

slowly, showing and explaining all my work. You’ll learn best if you type

along with me, building the project as we go. In the third and fourth

projects, I move faster and explain only the finished result.

The practice files that come with the book contain a series of snapshots practice files

for each of the first two projects. The snippets of Ruby code in the

book identify the file they come from. You can look at the file to see

the snippet in context, to diagnose problems by comparing what you’ve

typed to what I have, or to start your own typing in the middle of a

project instead of at the beginning.

Some of you won’t create the projects along with me. I do still urge

you to work through the exercises and compare your solutions to the

solutions I give.

The Projects

The first project is an uninstaller checker. If you uninstall your com-

pany’s product, does the uninstaller remove everything it should? Does

it remove something it shouldn’t? This script will tell you. More gen-

erally, it lets you take snapshots of any part of your hard disk and

compare them.

The second project reaches out to a version control system, retrieves

change information, and summarizes it for you. It’s a typical example

of manipulating text.

The third project visits to a website, “scrapes” data out of it, and puts

that data into a comma-separated value file for use by a spreadsheet.

The final project is a “watchdog” script. It can watch long-running pro-

grams or tests and then send you an instant message or email when

they finish.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=15

AN OUTLINE OF THE BOOK 16

A Special Note to Testers

You were the original audience for this book. It used to be
called Scripting for Testers, but people kept saying it would be
useful to a broader audience. Even programmers I expected to
be uninterested said things like “with only a few changes, this
book would be for me.” So I made the changes, but testers still
have a special place in my heart.

As a tester, I bet you came to this book hoping to learn how
to automate test execution: how to push inputs at a program
(probably through the user interface), collect the results, and
compare what the program produced to what it should have
produced. Even when this book was exclusively for testers, I
didn’t create any projects like that. I had two reasons:

• Automating test execution is not the most efficient way for
you to learn. I aim to teach you the practices, habits, and
Ruby features you’ll need in real life. You don’t need those
things to write one automated test or even ten, maybe
not even a hundred, so it would feel artificial, false, and
unconvincing for me to teach them in the context of a
small automated test suite. They’re better taught with
small projects of a different sort.

• Automating test execution may not be the most effective
thing for you to do. Is test execution the only task you
do by hand? Probably not. People overly focused on test
automation often miss opportunities for simple scripts
that yield outsized improvements.

1.2 An Outline of the Book

This is a book about both the features of Ruby and the craft of scripting.

Each part of the book teaches some of both. Ruby features are intro-

duced as they’re needed for that part’s project. Each part also intro-

duces new skills that build on earlier ones.

Part I, on page 30, teaches you the basics of Ruby and the basics of

scripting. If you’ve never programmed, work through it carefully. If you

already know a language, you can read it more casually, but do still

read it. Ruby is based on ideas you might not know and has features

you may not have seen before; if you skip them, you won’t be prepared

for the rest of the book.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=16

SERVICE AFTER THE SALE 17

At the end of Part I, all three kinds of reader will be ready to learn

how to script better. Part II, on page 67, adds more Ruby facts, but it’s

mainly about teaching you how to write scripts in a steady, controlled

way. All programmers know the feeling of hitting that wall where they

can’t make any change without breaking something. I want to show you

how to push that wall further away.

Part III, on page 139, concentrates on accomplishing more with less

effort. It shows how to save work by finding, understanding, and includ-

ing libraries written by others. It shows you how to set up your scripts

so that your co-workers can download, install, and use them easily.

While demonstrating still more features of Ruby, this part also elabo-

rates on an important topic from Part II, “regular expressions,” a pow-

erful way of searching text.

Part IV, on page 213, covers the advanced topic of inheritance. Inheri-

tance can sometimes save even more work than libraries because some-

one else designs a framework for part of your script. You need only plug

in pieces that the framework orchestrates. Part IV shows you both how

to use complicated frameworks others create and how to make simpler

ones for yourself. You may want to get experience writing scripts of your

own before learning about frameworks.

The book ends with a glossary, solutions to exercises, and an index.

What else? Throughout the book, you’ll find chapters called “Ruby

Facts.” When I introduce a Ruby feature in the process of creating a

script, I’ll describe only the bits used in the script we’re writing. But

you’ll want to know more about such features when you write your

own scripts, so I use the fact chapters to tell you more. Skip them if

you like.

Despite those chapters, this book is not a complete reference on Ruby.

Eventually you’ll want to buy one. I heartily recommend Dave Thomas

and friends’ Programming Ruby [TH01]. It’s also from the Pragmatic

Bookshelf—indeed, Dave is one of the owners of the press. But I’m not

recommending their book because they’re my publisher. They’re my

publisher because I kept recommending their book.

1.3 Service After the Sale

Everyday Scripting with Ruby has its very own Pragmatic Programmers’

web page at http://www.pragmaticprogrammer.com/titles/bmsft/. There, you

will find updates, errata, source for all the examples and more.

http://www.pragmaticprogrammer.com/titles/bmsft/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=17

SUPPLEMENTS 18

1.4 Supplements

As time and demand permit, I’ll be publishing supplements to this

book; each will be devoted to a particular topic. Please check the book’s

home page for details.

1.5 Acknowledgments

This book would not exist were it not for the prodding of Bret Pettichord.

Thank you, those who commented on drafts: Mark Axel, Tracy Beeson,

Michael Bolton, Paul Carvalho, Tom Corbett, Bob Corrick, Lisa Crispin,

Paul Czyzewski, Shailesh Dongre, Gunjan Doshi, Danny Faught, Zeljko

Filipin, Pierre Garique, George Hawthorne, Paddy Healey, Jonathan

Kohl, Bhavna Kumar, Walter Kruse, Jody Lemons, Iouri Makedonov,

Chris McMahon, Christopher Meisenzahl, Grigori Melnik, Sunil Menda,

Jack Moore, Erik Petersen, Bret Pettichord, Alan Richardson, Paul

Rogers, Tony Semana, Kevin Sheehy, Jeff Smathers, Mike Stok, Paul

Szymkowiak, Jonathan Towler, and Glenn Vanderburg.

Special thanks to Paul Carvalho for teaching me something I didn’t

know about Windows and for working through Part IV before Part III,

and to Paul Czyzewski for how thoroughly he reviewed the pages I gave

him time to review.

My editor, Daniel Steinberg, provided just the right mix of encourage-

ment, support, and pressure.

I’ll be eternally grateful to my publishers, Andy Hunt and Dave Thomas,

for not seeming to mind as their children were born, grew up, left home,

got married, and had children of their own—all during the writing of

this book.

And I’d like to thank my family. You wouldn’t believe what they’ve let

me get away with.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=18

Chapter 2

Getting Started
This chapter gets you ready for the rest of the book.

• Everyone will need to download the practice files.

• If you’re not familiar with the command line (“the DOS prompt,”

“the shell”), you’ll need to learn a bit about it.

• Ruby might be preinstalled on your system. If it isn’t, you’ll need

to install it.

• Anytime you type, you make typographical errors. Typing scripts

is no different. You need to learn to recognize the signs you’ve

made a mistake.

2.1 Download the Practice Files

This book comes with a number of Ruby scripts you can practice on.

You can download them as a zip archive from the book’s web page at

http://www.pragmaticprogrammer.com/titles/bmsft/. Download it anywhere

you please.

Your browser might “unzip” the file for you when you download it. If not,

double-clicking or right-clicking it will probably work. Failing that, on

Mac OS X and other Unix variants you can type unzip bmsft-code.zip to

the command-line interpreter.1 On Windows, download an application

like WinZip (http://winzip.com/), and set it to work.

Unzipping the file creates a folder named code. I recommend renaming

that to something more specific, like scripting-book, but I’ll use code to

refer to it throughout the book.

1. The command-line interpreter will be explained shortly.

http://www.pragmaticprogrammer.com/titles/bmsft/
http://winzip.com/

IN THE BEGINNING WAS THE COMMAND LINE 20

Within code, there is a subfolder for each of the scripts in the book. Do

your work within those subfolders. There’s also a subfolder with solu-

tions to the exercises and several subfolders with more Ruby examples.

2.2 In the Beginning Was the Command Line

When you use Ruby or any other scripting language, you’re likely to use

your computer’s command-line interpreter. The command-line2 inter- command-line interpreter

preter is a program that lets you command the compiler by typing in

text, rather than by pointing and clicking with a mouse. If you’ve never

used the command-line interpreter, here’s an introduction.

Windows

In Windows, you get to the command-line interpreter from the Start

menu. Click the Run menu item, type cmd, and then press Enter . You’ll

see something like this:

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:>

The C:\> you see is called the prompt. It’s called that because it’s sup-

posed to prompt you to type some commands for the computer to exe-

cute. Not everyone who reads this book will have the same prompt,

so I’ve arbitrarily chosen to show the prompt as prompt> from now on,

except when I’m talking about something specific to Windows. When

you see an instruction to type something like this:

prompt> irb

I want you to type i r b Enter . Don’t type the prompt. Let’s suppose

you installed the practice files in C:\unzip-place. Type this:

C:\> cd c:\unzip-place\code

(cd stands for “change directory”—“directory” is a synonym for “folder”.)

When you change to a folder, it becomes your current working folder. If a current working folder

command doesn’t name a specific folder, the command-line interpreter

assumes you mean the current working folder. For example, you can

view the contents of the current working folder like this:

C:\unzip-place\code\> dir

2. The title of this section refers to an essay by author Neal Stephenson. You can find it

at http://www.cryptonomicon.com/beginning.html.

http://www.cryptonomicon.com/beginning.html
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=20

IN THE BEGINNING WAS THE COMMAND LINE 21

If you’re working on the file-inventory project, you can now go there like

this:

C:\unzip-place\code\> cd inventory

Note that you don’t have to preface inventory with C:\unzip-place\code

because that’s your current working folder.

You can move back up to the enclosing folder like this:

C:\unzip-place\code\inventory\> cd ..

That’s all you need to know to run the examples in this book (though

you’ll want to learn more).

Mac OS X, Linux, BSD, and Other Unix Variants

The Mac command prompt is an application named Terminal. It lives in

the Utilities subfolder of the Applications folder. On other Unix variants,3

the command prompt might be named Konsole, Terminal, gnome-terminal,

or xterm. You should be able to find it in one of your window manager’s

menus.

Regardless of how you start it, the command prompt looks something

like this:

Last login: Sat Dec 16 11:45:37 on ttyp1

Welcome to Darwin!

computer-name:~ user$

The computer-name:~ user$ you see is called the prompt. Your prompt is

probably different, so from now on, I’ll show the prompt as prompt>.

When you see an instruction to type something like this:

prompt> irb

I want you to type i r b Return . Don’t type the prompt.

Let’s suppose you installed the practice files in the unzip-place folder in

your home folder. Type this:

prompt> cd ~/unzip-place/code

cd stands for “change directory”—“directory” is a synonym for “folder.”

The twiddle (~) means your home folder.

3. Mac OS X, the other systems in the title of this section, and still others I didn’t name

all have a common ancestry: the Unix operating system developed at Bell Labs in the

1970s. To a scripter, Mac OS X is just Unix with an exceptionally pretty face added. Oh,

and it has some nice applications too.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=21

DO YOU NEED TO INSTALL RUBY? 22

When you change to a folder, it becomes your current working folder. If a current working folder

command doesn’t name a specific folder, the command-line interpreter

assumes you mean the current working folder. For example, you can

view the contents of the current working folder like this:

prompt> ls

If you’re working on the file-inventory project, you can now go there like

this:

prompt> cd inventory

Note that you don’t have to preface inventory with ~/unzip-place/code

because that’s your current working folder.

You can move back up to the enclosing folder like this:

prompt> cd ..

That’s all you need to know to run the examples in this book (though

you’ll want to learn more).

2.3 Do You Need to Install Ruby?

Ruby runs on Windows 2000, Windows XP, or later; Mac OS X; and

any version of Unix you’re likely to find. You may already have Ruby

installed on your machine. To find out, type this at the command

prompt:

prompt> ruby -v

If you see a complaint like “command not found,” you’ll have to install

Ruby.

If Ruby is installed, the response will look something like this:

ruby 1.8.1 (2003-12-25) [powerpc-darwin]

The version of Ruby shown there, 1.8.1, is older than the one I used

when writing this book. I used 1.8.2. All the examples here might work

perfectly, but I wouldn’t count on it. Install the latest version.

2.4 Installing Ruby

Windows

There is a one-click Ruby installer. You can find it here: http://www.ruby-lang.org/en/downloads/.

After you download it, double-click it in Windows Explorer to run it, and

then follow the directions.

http://www.ruby-lang.org/en/downloads/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=22

YOUR TWO BASIC TOOLS 23

After installing Ruby, close any command-line windows, open a new

one, and then follow the directions in Section 2.3, Do You Need to Install

Ruby?, on the preceding page, to check that it was installed correctly.4

Mac OS X

Tiger (version 10.4) and later versions of Mac OS X come with recent

enough versions of Ruby. If you’re using an older release of OS X, see

http://www.ruby-lang.org/en/downloads/ or the book’s website for instruc-

tions.

Other Unix Variants

You may be able to find precompiled versions of Ruby (RPMs, etc.) in

the usual places and retrieve them via the usual tools (apt-get, pkg-get,

ports, etc.). Otherwise, see the book’s website for instructions.

2.5 Your Two Basic Tools

There are two basic tools: an editor and an interpreter.

Your Editor

You can use any editor that works with text files to create Ruby scripts.

On Windows, I recommend you use SciTE, which is installed with Ruby.

It’s more than just a text editor: it understands Ruby well enough to

color-code parts of a script to make it easier to read, and it lets you

run scripts without having to switch to the command line. (In the Start

menu’s Programs entry, you’ll find a Ruby entry, and SciTE is under that.)

On a Mac, I recommend TextMate (http://macromates.com/). It costs

money, but you can try a free download.

On the Mac and other Unix-like systems, you can use pico. It’s free.

Start it by typing its name at the command prompt. It shows its avail-

able editing commands at the bottom of the screen. In that help,

Control + X is denoted by ˆX.

If you use the Gnome window system on Linux, gedit is worth trying.

4. You have to close and open a new command line because the old one may not “notice”

that Ruby has been installed.

http://www.ruby-lang.org/en/downloads/
http://macromates.com/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=23

PROMPTS, COMMAND LINES, PROMPTS, AND IRB 24

irb

The second useful tool is irb. It lets you try your ideas without having to

write a whole script. You can type a little snippet of Ruby and quickly

check what it does. You’ll see many examples later in the book. For

now, check that irb is ready for use. At the command prompt, type the

following. (Remember not to include the prompt.)

prompt> irb

You’ll see something like this:

irb(main):001:0>

Most of the pieces of the prompt are unimportant. You’ll learn about

the parts that are later in this chapter.

Now type a Ruby expression, and press Enter (on Windows) or Return

(on Unix-like systems):

irb(main):001:0> 1+1

=> 2

irb(main):002:0>

irb displays the result and then prompts you to type something more.

2 is the result of evaluating the expression 1+1. In the rest of the book result

you’ll be evaluating more exciting expressions, but that’s enough for

now. Exit from irb like this:

irb(main):003:0> exit

prompt>

2.6 Prompts, Command Lines, Prompts, and irb

There are two kinds of prompts in this book, command-line prompts

and irb prompts. If you type a command meant for the command-line

interpreter to irb (or vice versa), you’ll get confusing results. If what you

see on your screen is nothing like what the book tells you to expect,

check that you’re typing at the right prompt.

If you’re typing the command line and should be typing to irb, start irb:

prompt> irb

If you’re typing to irb and should be typing at the command line, exit irb:

irb(main):001:0> exit

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=24

PROMPTS, COMMAND LINES, PROMPTS, AND IRB 25

Two Things People Often Forget at First

• Do your project work in the folder containing that
project’s practice files. For example, if you’re working on
the inventory project, type this on the Mac and Unix-like
systems before you start irb:

prompt> cd ~/unzip-place/code/inventory

On Windows, type this:

C:\> cd \unzip-place\code\inventory

• You exit from irb by typing exit at its prompt. On Windows,
you’ll sometimes then get the query “Terminate batch job
(Y/N)?”—type y .

Working with Prompts

You’ll often make typing mistakes at a prompt. On some systems, the

Up Arrow key will reinsert the previous line at the current prompt. You

can then use the Back Arrow and Forward Arrow keys to move around

in the line.

It’s often convenient to edit complicated text in an editor and then copy

and paste it to irb. It’s easier to switch back to the editor, correct the

mistake, and repaste it than it is to fool around with the arrow keys.

On the Mac and other Unix-like systems, the cut, copy, and paste

keystrokes work as you’d expect. For example, on the Mac, D V pastes

into the Terminal window. In that window, you can select a range of text,

copy it with DC, and then paste it into an editor window.

On Windows, you’ll paste to the command line with a right click rather

than the normal Ctrl + V . Alternately, you can use an Edit menu that

you get by right-clicking the title bar.

To copy from the Windows command line, select text with the mouse,

and then press Enter . If that doesn’t work, make sure you have “quick

edit” turned on. Open the Properties dialog (via the control menu you

get with Alt + Space or by right-clicking in the title bar), go to the

Options tab, and check Quick Edit Mode.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=25

IT’S TIME TO MAKE MISTAKES 26

2.7 It’s Time to Make Mistakes

In a lot of this book, I’ll be telling you to type commands to irb and see

what the result is. No matter how carefully you type, you’ll make mis-

takes. irb gives you clues about what went wrong, but those clues can

be hard for a Ruby beginner to understand. So let’s get some confusion

out of the way now by deliberately making a few mistakes.

Suppose you wanted to know the value of 100 - 43. Start irb again (if it’s

not still running), and type that calculation. You should see this:

irb(main):001:0> 100 - 43

=> 57

Swell. But on my keyboard and probably yours, the - key is right next

to the = key. Because I’m a klutz, I often hit them both at once. What

would irb do if I pressed Enter after doing that? Try it...

irb(main):002:0> 100 -= 43
Ê SyntaxError: compile error

(irb):3: syntax error

100 -= 43
Ë ^

from (irb):3

Hmm. All the detail there is hard to explain. Fortunately, you don’t need

to understand it. Whenever you see a syntax error like you did on line

Ê, just know that the previous line has something wrong with it, most

likely a typo. The caret at line Ë may point at or near the error, but

that’s not guaranteed.

Here’s another way to make a typing mistake: parentheses usually

come in matching pairs, but it’s easy to leave one off. For example:

irb(main):003:0> (1 + 3) * 2 + 1)

SyntaxError: compile error

(irb):12: syntax error

from (irb):12

Notice that irb didn’t try to guess where the opening parenthesis should

have been. You can also leave off a closing parenthesis, but that turns

out to be harmless. irb gives you a slightly different prompt and lets you

continue typing. In the following, I wanted to type (1 + 3) * (2 * 4), but I

hit Enter instead of the last parenthesis. At the next prompt, I typed

the forgotten parenthesis and hit Enter again:

irb(main):004:0> (1 + 3) * (2 * 4

irb(main):005:1>)

=> 32

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=26

IT’S TIME TO MAKE MISTAKES 27

Syntax Errors in Script Files

At this point, you’re making mistakes while typing to irb. You’ll
make the same sort of mistakes when creating script files.
When you run the broken scripts, the error messages may be
different; that’s covered in the sidebar on page 46.

The prompt gives a subtle clue that there’s more to type by changing

its last bit from :0> to :1>. That’s called a continuation prompt. The more continuation prompt

obvious clue is that irb doesn’t show any result until you add the right

parenthesis.

Ruby’s strings give you another way not to finish something you started. strings

A string is a sequence of characters enclosed by quotes, like this:

irb(main):001:0> "a string"

=> "a string"

If you leave off the closing quote, Ruby’s prompt changes. Instead of

ending with an >, it ends with " to say that you’re to continue typing in

a string. Like this:

irb(main):010:0> "an unfinished string

irb(main):011:0"

When you now add text with a closing quote, you’ll get this:

irb(main):012:0> "an unfinished string

irb(main):013:0" ... is now finished"

=> "an unfinished string\n... is now finished"

Notice that the result string has something odd in the middle. The \n

shows that an end-of-line character is treated like all the others when

it’s typed into the unclosed string: it’s included in the result. (The end-

of-line character is either Enter or Return , depending on whether you

use Windows, Mac OS X, etc.) That’s nice when you want such a char-

acter in the string. When it’s because of a mistake, you’ll need to retype

the string correctly.

Ruby actually lets you use two different characters to start and end

strings. Strings surrounded with double quotes are created a little dif-

ferently than ones you surround with a single quote. (You’ll learn about

the difference in Section 7.2, Formatting Strings, on page 78.) If you’re

anything like me, you’ll sometimes start a string one way and end it

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=27

IT’S TIME TO MAKE MISTAKES 28

the other. irb will dutifully do what you don’t want: include what you

thought was the ending character in the string and then give you a

prompt to end the string. You have two options. One is to end the string

with the appropriate character and then type the correct string at the

next noncontinuation prompt:

irb(main):014:0* 'a string "

irb(main):015:0' '

=> "a string \"\n"

irb(main):016:0> 'a string'

=> "a string"

irb(main):017:0>

Notice that the irb still prints the string surrounded by double quotes.

A string is a string is a string, no matter how you created it, and irb

always prints strings the same way. Because you’ve created a string

that contains a double quote, irb needs to show the difference between

the double quote in the string and the double quotes that it prints to

tell you that the result is a string. It does that by prefacing the internal

quote with a backslash. (In strings, a backslash always means the next

character is special somehow.)

Many times you get a continuation prompt because you mistyped some-

thing on a previous line. In that case, there’s no point in trying to tidily

close off the string or parenthesized expression or whatever it was that

you started. You just want some quick way to get back to the regular

prompt and start over. On Mac OS X and Linux, the way to do that is

to type Ctrl + C .

On Windows, Ctrl + C might also work. If it doesn’t, either nothing will

happen or you’ll be asked “Terminate batch job (Y/N)?” If nothing hap-

pens, try pressing Enter after the Ctrl + C .

Here’s an example where I started a string and didn’t finish it right.

Each try at fixing things made them worse. Ctrl + C to the rescue:

irb(main):017:0> ("irb + "irb"

irb(main):018:1" "

irb(main):019:1> "

irb(main):020:1" '

irb(main):021:1" ^C^C

irb(main):022:0>

Often I get a little, um, enthusiastic and type Ctrl + C several times,

with vigor, just to make sure irb gets the point. That’s not needed, but

it’s satisfying.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=28

Part I

The Basics

Chapter 3

A First Script:
Comparing File Inventories

In this chapter, you’ll create a simple but useful script. Along the way,

you’ll learn some basic Ruby terminology and techniques. In Chapter 5,

Three Improvements and a Bug Fix, beginning on page 43, you’ll add

more abilities to the same script.

3.1 A Script in Action

At a command prompt, go to (using cd) the inventory subfolder of your

code folder. (If you’ve forgotten how, see the sidebar on page 25.) There’s

a Ruby script, inventory.rb, there. Run it like this:

prompt> ruby inventory.rb

You’ll see this:

exercise-differences.rb

inventory.rb

old-inventory.txt

recycler

recycler/inst-39.tmp

snapshots

snapshots/differences-version-1.rb

snapshots/differences-version-2.rb

snapshots/differences-version-3.rb

snapshots/differences-version-4.rb

snapshots/differences-version-5.rb

snapshots/differences-version-6.rb

snapshots/differences-version-7.rb

snapshots/differences-version-8.rb

temp

temp/inst-39

THE RUBY UNIVERSE 31

You’ve just run a Ruby script, one that makes an inventory of everything run a Ruby script

in the current folder (including everything in all the subfolders).1 In the

course of this chapter, you’ll create another script that compares two

inventories, telling you what files have been added to or removed from

the first. If you’re a tester, these scripts can be useful to you in at least

two ways:

• Suppose you’re given a new “test build” every Friday. The test

build is supposed to come with a list of all the changes since last

week’s build. People being fallible, sometimes that list is wrong. A

list of what files have been added or deleted can help you decide

what needs testing.

• You could take an inventory of the entire filesystem (C:\, for exam-

ple), install a product, uninstall it, and compare the old snapshot

to a new one. You might find that the uninstall leaves litter behind.

3.2 The Ruby Universe

When you run the inventory.rb script, you create a little Ruby universe.

That universe, in essence, contains only three kinds of things: nouns,

verbs, and names. The nouns are usually called objects. They are the objects

“things” in the Ruby universe. Objects just sit there until they’re told to

do something. That’s where the verbs come in. All the verbs in the Ruby

universe are imperative: verbs like “sit!” and “stay!” and “roll over!” In

Ruby, these verbs are called messages, and telling an object to do some- messages

thing is called sending a message. sending a message

You don’t have direct access to the objects inside the Ruby universe. To

get at one of them, you have to use a name that refers to it. It’s similar name

in our universe: I am an object. My children refer to me as “Dad,” my

wife refers to me as “hubster” or even more embarrassing names, and a

clerk at the Philadelphia airport referred to me as “31” and “hey, you.”

All of them used names to talk about the object that is me.

3.3 Objects Send and Receive Messages

The previous section is pretty abstract, so let’s see Ruby names, objects,

and messages in action. Create an inventory file by typing the following

at the command prompt:

prompt> ruby inventory.rb > new-inventory.txt

1. The idea for this project came from tester Chris McMahon.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=31

OBJECTS SEND AND RECEIVE MESSAGES 32

The > new-inventory.txt tells the command-line interpreter to put the

script’s output into the file named new-inventory.txt. That’s not a part of

Ruby—it works with any command. (I chose the name new-inventory.txt

to suggest this is an inventory taken after installing and uninstalling a

product. You may have noticed that old-inventory.txt already exists; that’s

supposed to be the one taken before installation.)

Start irb, and type the following. Note that File begins with a capital let-

ter. Ruby is a case-sensitive language, meaning that the names File and case-sensitive

file are completely different. If you use file, you’ll get an error message.

irb(main):001:0> File.open('new-inventory.txt')

=> #<File:new-inventory.txt>

I’m going to step through what just happened in great detail: don’t

worry, it’ll soon become second nature.

File names a particular object in the Ruby universe. It’s the object that

knows how to open files and prepare them for use. The open message

commands it to do so. Since File needs to know which file to open, open

takes an argument, which is the string 'new-inventory.txt'. argument

Upon receipt of the message, File does the work to open a file. That

involves creating another object that is the open file (as far as Ruby

is concerned). File then returns that newly created object to whatever returns

object sent the message (usually called the sender). In this case, the sender

sender happens to be irb. (Since irb is a Ruby script, it lives as an object

in the Ruby universe.) When irb gets the return value, it prints to the

screen in a form intended to be useful to people writing scripts. Here,

#<File:new-inventory.txt> says the object was created by File to give access

to the filesystem’s file new-inventory.txt. Other objects print out in differ-

ent ways; in fact, each object can choose how it wants to be printed.

But there are more things to do with that open file than print a descrip-

tion of it. We can ask it for all the lines in the file, like this:

irb(main):002:0> File.open('new-inventory.txt').readlines

=> ["exercise-differences.rb\n", "inventory.rb\n", "new-inventory.txt\n", ←֓

"old-inventory.txt\n", "recycler\n", "recycler/inst-39.tmp\n", "snapshots ←֓

\n", "snapshots/differences-version-1.rb\n", "snapshots/differences-versi ←֓

on-2.rb\n", "snapshots/differences-version-3.rb\n", "snapshots/difference ←֓

s-version-4.rb\n", "snapshots/differences-version-5.rb\n", "snapshots/dif ←֓

ferences-version-6.rb\n", "snapshots/differences-version-7.rb\n", "snapsh ←֓

ots/differences-version-8.rb\n", "temp\n", "temp/inst-39\n"]

As before, we’ve told irb to send File the open message. File responds

with an open file object. But irb doesn’t print the result because we’ve

told it to send that result another message, readlines. readlines converts

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=32

VARIABLES NAME OBJECTS 33

every line in the file into a string. “String” is the name Ruby gives to string

a sequence of alphabetic characters. readlines then returns all those

strings in an array. You can think of an array as a bunch of objects array

arranged in a row. In this case, they’re in the same order they appeared

in the file. irb prints strings surrounded by double quotes, and it prints

arrays as a comma-separated list enclosed in square brackets. You’ll be

seeing a lot more about strings and arrays throughout the book.

If you look at the file new-inventory.txt, you’ll see that it indeed does con-

tain the same lines in the same order. The only differences are the

quotes irb puts around strings to tell you they’re strings and the pecu-

liar \n at the end of the Ruby strings. That’s the way irb indicates the

separator between the lines.2

You may also have noticed that in typing the string ’new-inventory.txt’, I

used single quotes, but irb used double quotes to print the strings out. If

you like, use double quotes when typing strings. It makes no difference

in this part of the book.

3.4 Variables Name Objects

Having gotten an array with the file’s contents, let’s give it a name,

new_inventory. (Notice that the name uses an underscore, not a dash.)

That’s done like this:

irb(main):003:0> new_inventory = File.open('new-inventory.txt').readlines

=> ["exercise-differences.rb\n", "inventory.rb\n", "new-inventory.txt\n", ←֓

"old-inventory.txt\n", "recycler\n", "recycler/inst-39.tmp\n", "snapshots ←֓

\n", "snapshots/differences-version-1.rb\n", "snapshots/differences-versi ←֓

on-2.rb\n", "snapshots/differences-version-3.rb\n", "snapshots/difference ←֓

s-version-4.rb\n", "snapshots/differences-version-5.rb\n", "snapshots/dif ←֓

ferences-version-6.rb\n", "snapshots/differences-version-7.rb\n", "snapsh ←֓

ots/differences-version-8.rb\n", "temp\n", "temp/inst-39\n"]

In keeping with historical terminology, Ruby calls new_inventory a vari-

able. (That made more sense when computers were all about doing variable

mathematics.)

2. On Windows, the separator is a carriage return followed by a line feed; on Linux/Unix,

it’s just a line feed; on the Mac, it’s just a carriage return. There’s no more meaning to

those differences than there is to the fact that Germans drive on the other side of the road

than the English do. It’s completely arbitrary; accidents would be avoided if everyone did

it the same way, but it’s too late to change now. Ruby tries hard to let you not care which

choice the builders of your operating system made: \n means “whatever’s correct on this

machine.”

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=33

COMPARING ARRAYS 34

The inventory project holds a file named old-inventory.txt. It contains an

inventory supposedly taken before the one in new-inventory.txt. Read it

in like this:

irb(main):004:0> old_inventory = File.open('old-inventory.txt').readlines

=> ["exercise-differences.rb\n", "inventory.rb\n", "old-inventory.txt\n", ←֓

"financial-records.xls\n", "snapshots\n", "snapshots/differences-version- ←֓

1.rb\n", "snapshots/differences-version-2.rb\n", "snapshots/differences-v ←֓

ersion-3.rb\n", "snapshots/differences-version-4.rb\n", "snapshots/differ ←֓

ences-version-5.rb\n", "snapshots/differences-version-6.rb\n", "snapshots ←֓

/differences-version-7.rb\n", "snapshots/differences-version-8.rb\n", "te ←֓

mp\n", "temp/junk\n"]

Now we can compare arrays.

3.5 Comparing Arrays

The way to find the difference between two arrays is to “subtract” one

from the other, like this:

irb(main):005:0> new_inventory - old_inventory

=> ["new-inventory.txt\n", "recycler\n", "recycler/inst-39.tmp\n", "temp/ ←֓

inst-39\n"]

These strings are in the newer inventory but not in the older. To find

what files have been deleted since the old inventory was taken, subtract

in the other direction:3

irb(main):006:0> old_inventory - new_inventory

=> ["financial-records.xls\n", "temp/junk\n"]

If you check the contents of the files, you’ll see that the results are

correct.

Notice that the subtraction doesn’t change either array. Subtracting

old_inventory from new_inventory doesn’t affect new_inventory’s array. It

doesn’t remove strings from it; instead, it produces a completely new

array with those strings found only in new_inventory’s array.

Names Follow Certain Rules

A Ruby name may contain letters, numbers, and the underscore char-

acter (not a hyphen). Names can’t begin with a number, nor may they

include spaces. Case matters: my_ship is not the same name as my_Ship.

3. If everything in Ruby is objects, messages, and names, where’s the message send

here? You can read the line as “send the array named old_inventory the message named

‘-’ with the argument being the array named by new_inventory.” But Ruby would be less

popular if it prevented you from writing subtraction (be it of numbers or arrays) in the

way you learned as a child.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=34

PRINTING TO THE SCREEN 35

When a name begins with a capital letter, you’re telling Ruby that you

expect it always to refer to the same object. Ruby will complain if you

try to use the same name for a different object:

irb(main):007:0> MyShip = "a cutter"

=> "a cutter"

irb(main):008:0> MyShip = "a bark"

(irb):4: warning: already initialized constant MyShip

=> "a bark"

(Ruby complains but still obeys.)

When a multiword name begins with a lowercase letter, it’s conventional

to separate the words with underscores, like my_fine_name. When one

begins with a capital letter, the convention is to capitalize each word:

MyFineName. I don’t know the rationale behind the difference.

As a special case, message names can end with a question mark or an

exclamation point. When one ends in a question mark, it’s a signal that

the message asks a true/false question of its receiver. An exclamation

point is a signal to the reader that the message does something special

and perhaps unexpected.

3.6 Printing to the Screen

We have nearly all the information needed to report on changes between

inventories. All we need to do is make a script that prints it. The main

tool here is a message named puts (short for “put string”). Here’s how to

generate part of a report:

Ê irb(main):009:0> puts "The following files have been added:"
Ë The following files have been added:
Ì => nil

Let’s look at the lines in order.

Ê Although it doesn’t look like it, puts is just another message. A

message to what? Unlike before, there’s no dot separating the

object receiving the message and the message name. In Ruby, you

don’t need to name the message receiver if it’s clear (to Ruby) from receiver

context. In this case, you can think of the object that receives the

message as irb itself. When you run a Ruby script from the com-

mand line, it would be the script itself.

Another reason puts looks odd is that there are no parentheses

around its single argument. You can leave parentheses off if Ruby

knows where you would have put them.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=35

MAKING A SCRIPT 36

Ë The string is printed to the screen. This printing has nothing to

do with the way irb prints results. puts does its work before irb has

any results to print.

Although puts is printing a string, it doesn’t put quotes around

it like irb does. irb’s output is formatted for you, a scripter. puts

formats its output for end-user consumption. If you want the irb-

style output, use the inspect message: inspect

irb(main):010:0> puts "I'd like some quotes, please".inspect

"I'd like some quotes, please"

=> nil

Ì This line is puts’s return value. Every Ruby message must return

something, and nil is a common choice when there’s actually noth-

ing interesting to say. (The word “nil” means “nothing.”)

irb is written to print the return value from the last message it

sends. If you run a script from the command line, that doesn’t

happen. The result of each script line vanishes—only what puts

prints goes to the screen.

puts also works with arrays:

irb(main):011:0> puts old_inventory

exercise-differences.rb

inventory.rb

old-inventory.txt

financial-records.xls

snapshots

snapshots/differences-version-1.rb

snapshots/differences-version-2.rb

snapshots/differences-version-3.rb

snapshots/differences-version-4.rb

snapshots/differences-version-5.rb

snapshots/differences-version-6.rb

snapshots/differences-version-7.rb

snapshots/differences-version-8.rb

temp

temp/junk

=> nil

Notice how array elements are conveniently printed one per line. (That

has nothing to do with the fact that the strings end with an end-of-line

character, \n; puts would do the same for strings without them.)

3.7 Making a Script

We have all the steps needed to create an inventory-comparison script.

Name it differences.rb, and add the lines that follow this paragraph.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=36

MAKING A SCRIPT 37

(If you don’t want to type the lines, you can copy them from the file

named in the gray box. I bet you’ll understand them better if you type

them.) Section 2.5, Your Editor, on page 23, lists editors you might use.

Whichever one you pick, be sure to save the file in the inventory folder.

Download inventory/snapshots/differences-version-1.rb

old_inventory = File.open('old-inventory.txt').readlines

new_inventory = File.open('new-inventory.txt').readlines

puts "The following files have been added:"

puts new_inventory - old_inventory

puts ""

puts "The following files have been deleted:"

puts old_inventory - new_inventory

Make sure you’ve exited from irb, and then run that script4 like this:

prompt> ruby differences.rb

The following files have been added:

new-inventory.txt

recycler

recycler/inst-39.tmp

temp/inst-39

The following files have been deleted:

financial-records.xls

temp/junk

Some editors make it easier to run scripts. If you press F5 while editing

a script in SciTE, it will run it and display the output in one half of a

split screen. If you press D R in TextMate, it will run the script and

display the output in a new window.

This script has some definite weaknesses. For example, it insists you

put your inventories in files named new-inventory.txt and old-inventory.txt.

But it’s a good start. Let’s take stock.

4. If you didn’t create a script but instead want to run the version in the snapshots folder,

you need to copy it from there into differences.rb in the inventory folder. On Windows, do

this:

C:>copy snapshots\differences-version-1.rb differences.rb

On Unix-like systems, do this:

prompt>cp snapshots/differences-version-1.rb differences.rb

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=37

WHERE DO WE STAND? 38

3.8 Where Do We Stand?

We have a useful script. If you don’t already compare inventories, or if

you’ve always done it manually, there’s something new in your bag of

tricks.

You’ve learned a little bit about the simplicity underlying Ruby: every-

thing is done by sending messages to objects. More important, you’ve

seen the first of a variety of useful data types, the array. The combi- data types

nation of underlying simplicity and lots of built-in tools is what makes

good scripting languages so powerful.

3.9 Exercises

When working on the exercises, continue to use the inventory subfolder

of your code folder.

1. The message length asks an array how long it is:

irb(main):001:0> [1,2,3].length

=> 3

Suppose you added this to your script:

x = (new_inventory - old_inventory).length

What would be the value of x for the inventories new-inventory.txt

and old-inventory.txt? What information does x give you? What

would be a better name than x?

2. What happens if you change the line in the previous exercise to

this:

x = new_inventory - old_inventory.length

Why?

3. Change the script so that it prints three additional pieces of infor-

mation: the number of files added in old-inventory.txt, the number

removed, and (the trickiest one) how many files were unchanged.

4. Notice that both old-inventory.txt and new-inventory.txt are in alpha-

betical order, so the arrays named by them are too. Does the script

depend on that? Would it work if the inventories were scrambled?

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=38

Chapter 4

Ruby Facts: Arrays
Because arrays are such a useful general-purpose container, Ruby lets

you do many, many things with them. The following is just a sample.

Each row of the table below has three parts: an expression you could

type to irb, the result irb would produce, and a commentary on the right.

a = ['zero', 'un',

'dos', 'tre']

→֒ ["zero", "un", "dos", "tre"]

A literal array is created by putting square

brackets around a comma-separated list of ele-

ments. I’ve named this particular four-element

array a so that I can refer to it in the following

examples.

a.length

→֒ 4

You can ask for the length of an array. . .

a.size

→֒ 4

. . . in two different ways. (This shows one of the

reasons I like Ruby so much. In some languages,

the way to ask for the length of an array is a size

message. In others, the way to ask for the size

of an array is the length message. The authors of

those languages typically insist that you remem-

ber which one they chose. Ruby’s author wanted

to be friendly, so he lets you use either.)

[].size

→֒ 0

The length (or size) of an empty array is 0.

a[0]

→֒ "zero"

You refer to the first element of an array with

index 0. The second element is selected with

index 1, and so on. That’s called zero-based

indexing. (There have been vicious battles over

whether indexing should be zero-based or one-

based. I think the general consensus is that

zero-based indexing works better in practice,

once you get used to it.)

CHAPTER 4. RUBY FACTS: ARRAYS 40

a[3]

→֒ 'tre'

This is one way to select the last element of this

four-element array.

a[-1]

→֒ "tre"

This is another way.

a[-2]

→֒ "dos"

Negative indices march backward through the

array.

a[200]

→֒ nil

Indices that are out of bounds return the value

nil. You’ll see a use for that in the next chapter.

a[0,3]

→֒ ["zero", "un", "dos"]

You can select more than one element. Here,

we’ve selected a slice of three elements, starting

with a’s 0th element.

a[1..3]

→֒ ["un", "dos", "tre"]

This selects a slice containing elements 1

through 3 (an inclusive range).

a[1...3]

→֒ ["un", "dos"]

This selects elements 1 up to but not including 3

(an exclusive range). More dots select fewer ele-

ments. (That doesn’t make sense to me either.)

a[3] = 'z'

→֒ "z"

You can change an element of an array.

a

→֒ ["zero", "un", "dos", "z"]

See?

a[1..2] = ['x', 'y']

→֒ ["x", "y"]

You can change a range of elements.

a

→֒ ["zero", "x", "y", "z"]

a.delete_at(0)

→֒ "zero"

Deleting an element at an index returns that

element. . .

a

→֒ ["x", "y", "z"]

. . . and also changes the array. Notice that

delete_at’s argument is surrounded by parenthe-

ses, not square brackets. (It’s a message name,

and message arguments are always in parenthe-

ses.)

a.delete("y")

→֒ "y"

You can also delete an element because of its

value, not where it’s found in the array.

a

→֒ ["x", "z"]

a.slice!(0..1)

→֒ ["x", "z"]

You can remove a slice from an array. The slice

is returned. . .

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=40

CHAPTER 4. RUBY FACTS: ARRAYS 41

a

→֒ []

. . . and the array is changed. (The exclama-

tion point is often used to signal methods that

change the receiver when—as with arrays—most

messages leave their receiver unchanged.)

a.empty?

→֒ true

You can ask whether an array has any elements.

a.push(7)

→֒ [7]

You can push elements onto the end of the

array. . .

a

→֒ [7]

(Notice that an array can hold numbers as well

as strings.)

a << 8

→֒ [7, 8]

This is an alternate notation for push that some

people like.

a = [0, "un", nil]

→֒ [0, "un", nil]

You can put different kinds of objects in an

array, all at the same time.

a << [10.1, "ten.two"]

→֒ [0, "un", nil, [10.1, "ten.two"]]

You can even put arrays inside arrays.

a.length

→֒ 4

An array within an array is just like any other

element, so adding an array adds only one to

the length.

a[-1]

→֒ [10.1, "ten.two"]

And arrays within arrays are indexed in the

usual way.

a[-1][0]

→֒ 10.1

If you want an element of an array within an

array, you need to index twice.

a.pop

→֒ [10.1, "ten.two"]

You can pop elements off the end of the

array. . .

a

→֒ [0, "un", nil]

. . . and that changes the array.

a.shift

→֒ 0

You can shift things off the front of the

array. . .

a

→֒ ["un", nil]

. . . and that again changes the array.

a.unshift(0)

→֒ [0, "un", nil]

You can put something on the front of the

array with unshift or. . .

a[0,0] = ['new element']

→֒ ["new element"]

. . . replace a zero-length slice before the 0th ele-

ment. That returns the new element and. . .

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=41

CHAPTER 4. RUBY FACTS: ARRAYS 42

a

→֒ ["new element", 0, "un", nil]

. . . changes the array.

a[1..2] = [19600219]

→֒ [19600219]

The slices you replace can be of any size, and

the arrays you replace them with can be larger

or smaller.

a

→֒ ["new element", 19600219, nil]

Here, we’ve replaced two elements with one.

I encourage you to play around with these methods. If you want a con-

cise list of everything an array can do, try this:

irb(main):006:0> any_old_array = []

=> []

irb(main):007:0> puts any_old_array.methods

You’ll get quite a list. There’ll be no documentation, but sometimes it’s

fun just to experiment.

If you do want documentation for sort, say, you can use ri (think of it as ri

short for “Ruby information”): type this to the command line:

prompt> ri Array.sort

On some systems, you’ll need to type q to exit from ri. See the sidebar on

page 119 for more.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=42

Chapter 5

Three Improvements
and a Bug Fix

The script in Chapter 3, A First Script: Comparing File Inventories, begin-

ning on page 30, has three problems:

• The inventories always have to be in files named old-inventory.txt

and new-inventory.txt. We should be able to specify them on the

command line:
prompt> ruby differences.rb old-file new-file

old-file and new-file are called differences.rb’s command-line argu-

ments. command-line

arguments
• On Windows, case is irrelevant in filenames. At least one user

(Chris McMahon) doesn’t want to be told that a file named bibtex

has been deleted and a file named Bibtex has been added.

• When inventorying an entire filesystem (like C:\), Chris doesn’t

want to know about files in the temp directory or in the recycling

bin.

In this chapter, we’ll fix these problems. Along the way, you’ll learn

about Ruby control structures, how to define your own messages, and

a bit more about arrays and strings.

5.1 Command-line Arguments

Command-line arguments are available as strings in the array named

ARGV. For example, consider this command line:

prompt> ruby differences.rb old-inventory.txt new-inventory.txt

COMMAND-LINE ARGUMENTS 44

Within differences.rb, ARGV[0] will name (that is, provide a way to refer to)

the string "old-inventory.txt", and ARGV[1] will name "new-inventory.txt".

Instead of “hard-coding” the two files’ names into the script, we can

require the user to give them on the command line. The code to do that

would look like this:

old_inventory = File.open(ARGV[0]).readlines

new_inventory = File.open(ARGV[1]).readlines

Replace your script’s two File.open lines with these two, and give it a try:

prompt> ruby differences.rb old-inventory.txt new-inventory.txt

You should get the same results as before.

I’m always forgetting to give required arguments to scripts. Let’s see

what this script does in that case:

prompt> ruby differences.rb

differences.rb:1:in ‘initialize': cannot convert nil into String (TypeError)

from differences.rb:1:in ‘open'

from differences.rb:1

Not a friendly error message. I encourage you to try to figure out what

happened before reading on.

If you give no arguments to a script, ARGV still names an array, but it’s

empty. You can see that using irb. irb is just a Ruby script, and you start

it without any arguments, so. . .

prompt> irb

irb(main):001:0> ARGV

=> []

irb(main):002:0>

Since there’s nothing in the array, every array index is out of bounds

and will return nil:1

irb(main):003:0> ARGV[0]

=> nil

irb(main):004:0> ARGV[1]

=> nil

Because ARGV[0] is nil, the script has a problem when it hits this line:

old_inventory = File.open(ARGV[0]).readlines

open expects a string that names a file. The error message is the result

of giving it nil instead. open tries its best to interpret nil as a string but

1. See Chapter 4, Ruby Facts: Arrays.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=44

IGNORING CASE 45

fails. I’d prefer that our script produce a more graceful error message

when the user doesn’t give both required arguments. That can be done

by putting the following code at the beginning of the script (before ARGV

is used):

Download inventory/snapshots/differences-version-2.rb

unless ARGV.length == 2

puts "Usage: differences.rb old-inventory new-inventory"

exit

end

Ruby’s unless construct begins with unless and ends with end. The body body

is the text between the two. Unless the expression following the unless

is true, the body is executed. Otherwise, it’s skipped. In this case, the

body is executed unless the number of elements in the array is equal

to 2 (meaning that both arguments were given).2

The body of an unless is just like any other Ruby code; it executes one

line at a time. In this case, it prints a message. Then it uses the exit

message to stop the script; otherwise, Ruby would continue to try (and

fail) to open a file. You don’t have to indent the body, but it makes the

code easier to read. I usually indent two spaces.

Chapter 6, Ruby Facts: If, Equality Testing, and Unless, beginning on

page 61, will tell you more about Ruby’s unless construct, as well as the

more common if.

5.2 Ignoring Case

Case is irrelevant to Windows filenames, but it’s not irrelevant when

strings are compared. So a switch from manifest.txt to Manifest.txt will

look like an addition and a deletion. An easy way to avoid that is to

make all the strings lowercase before comparing them.

When sent the downcase message, a string responds with another string

that is its lowercase version. (The original string is not changed.) Like

this:

irb(main):005:0> "STRING".downcase

=> "string"

irb(main):006:0> "string".downcase

=> "string"

2. Ruby uses == to mean “is equal to” because a single equal sign is already used to

make variables name objects.

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=45

IGNORING CASE 46

An Annoying Mistake to Make

You used your first end on the previous page. As you write
more complicated scripts, you’ll find that you sometimes leave
off the end. That can lead to an annoying error message:

prompt> ruby differences.rb
differences.rb:20: syntax error

(Try it, and see for yourself.)

The error message is jargon for “the structure of the script is
wrong—some word was in the wrong place, missing, or some-
thing.”

The reason the message is annoying is that line 20 is the very
end of the file. Ruby is saying “something went wrong between
the beginning and end of the file.” Gee, thanks. That narrows
it down.

It would be nice if Ruby would give the exact line number
where the end should be, but it can’t. The end could appear
on any line up to the end of the file. You’ll have to search for
where it belongs.

There are other ways to cause a syntax error, but usually
they’re caught before the end of the file. For example, consider
this line, which is missing the closing parenthesis:

old_inventory = File.open(ARGV[0].readlines

Here’s the resulting error message:

prompt> ruby differences.rb
differences.rb:13: syntax error
new_inventory = File.open(ARGV[1]).readlines

^

That’s a little closer to the actual problem, but the line shown
is still the one after the one with the problem. Ruby couldn’t
complain on that line because everything there is valid, pro-
vided the parenthesis is closed on some later line. It’s only at
the next line that Ruby can tell that the script is irretrievably
broken, so that’s the line it shows.

The general rule for syntax errors is that the source of the
problem isn’t necessarily on the line where it’s noticed. Look
backward.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=46

IGNORING CASE 47

All we need to do is downcase each string in both old_inventory and

new_inventory. That’s easily done with one of Ruby’s most powerful fea-

tures, iterators. An iterator lets you work with each element of an array iterators

in turn. Here’s a simple example:

irb(main):007:0> [1, 2, 3].each do | element |

irb(main):008:1* puts element

irb(main):009:1> end

1

2

3

=> [1, 2, 3]

The each message tells the array to do something to each of its ele-

ments. You tell the array what to do by giving it a block delimited by block

do. . . end. The block contains Ruby code of your choosing, and the array

hands it each element, one after the other. The block will want to do

something to the element, so it needs to give the element a name. That’s

the variable, element, within the vertical bars.

The block is executed three times. The first time, element is 1, the sec-

ond it’s 2, and the third it’s 3. Finally, each returns the original array.

each is the most basic iterator. There are a host of others, such as

collect. It’s like each, but it doesn’t return the original array. Instead, it

gathers the value of each execution of the block into a new array, which

it returns. Like this:

irb(main):010:0> [1, 2, 3].collect do | element |

irb(main):011:1* element * 1000 + element

irb(main):012:1> end

=> [1001, 2002, 3003]

collect doesn’t care what’s in the array. The elements can be strings, like

the strings in old_inventory, and those strings can be sent the downcase

message:

irb(main):013:0> ['ab', 'AB', 'aB'].collect do | string |

irb(main):014:1* string.downcase

irb(main):015:1> end

=> ["ab", "ab", "ab"]

We can do the same sort of iteration to strings read from the inventory:

old_inventory = File.open(ARGV[0]).readlines.collect do | line |

line.downcase

end

Here, open returns an open file that receives the readlines message. read-

lines returns an array, which immediately receives the collect method.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=47

IGNORING CASE 48

collect gathers up the downcased strings and returns them in an array,

which finally is named with the variable old_inventory.

I didn’t see a point in naming the intermediate values because we’re

never going to use them again. You might think that using some inter-

mediate names might make it easier to understand the code:

file_lines = File.open(ARGV[1]).readlines

new_inventory = file_lines.collect do | line |

line.downcase

end

I might agree with that, but perhaps there’s a better solution. Consider

what’s happening here. Our code first asks the open file for an array.

Then it downcases each element. Wouldn’t it be better to skip the inter-

mediate array and just ask the open file to downcase everything and

return the results? That would look like this:

new_inventory = File.open(ARGV[1]).collect do | line |

line.downcase

end

It works. That’s because collect and each are examples of polymorphic polymorphic

messages. That means different kinds of objects accept them, and each

kind does something appropriate with the block. Open files apply the

block to each of their lines, and arrays apply it to each of their elements.

Polymorphic iterators reduce the size of the vocabulary you need to

know: whenever an object can be seen as composed of pieces, you can

be pretty sure it responds to each and friends. Because of that, you’ll

spend less time flipping through manuals.3

Here’s what we now have in the script:

Download inventory/snapshots/differences-version-4.rb

old_inventory = File.open(ARGV[0]).collect do | line |

line.downcase

end

new_inventory = File.open(ARGV[1]).collect do | line |

line.downcase

end

That can still be improved. Here’s how I made the second three lines:

I copied the first three, pasted them, changed ARGV[0] to ARGV[1], and

changed old_inventory to new_inventory. . . (except I almost forgot to make

3. each wasn’t our first example of a polymorphic message. We earlier used the poly-

morphic message -, which works for both arrays and numbers. I just didn’t make a big

deal about it then.

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-4.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=48

METHODS 49

do_something

def do_something:
 [n[n[
 [n[n[

A SENDER sends...

...a MESSAGE to...

...a RECEIVER

It can be hard to remember the difference between messages and meth-

ods. A message is a request sent from some sender object. When the

receiver object receives the message, it looks to see whether it has a

method with the same name. If so, the Ruby code within the method

is run, and the results are returned to the sender. The message is the

request; the method fulfills it.

Figure 5.1: Messages and Methods

the second change). In the future, whenever I change the first lines, I’ll

have to remember to change the second three as well. There’s a good

chance I’ll forget. Duplicate code is a major cause of unmaintainable

scripts. If you do not keep firm control of duplication, you’ll spend too

much time fixing bugs in your scripts. And other people won’t use your

scripts because they’re buggy or too fragile to build upon.

Let’s fix the duplication.

5.3 Methods

Ruby methods let you create new verbs (messages) in the Ruby lan- methods

guage. It’s a bit confusing that two closely related ideas—messages and

methods—have such similar names. See Figure 5.1, for a picture show-

ing how they work together.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=49

METHODS 50

Delimiting Blocks

Blocks can start with a do and end with end, or they can start
with { and end with }. The following two snippets of code mean
the same thing:

array.each do | element |
puts element

end

array.each { | element |
puts element

}

My sense is that Rubyists prefer the first except for short
blocks, especially those that can fit on one line:

array.each { | element | puts element }

In this book, I’ll use the first form almost exclusively.

Here is our first example of a method and its message.

Download inventory/snapshots/differences-version-5.rb

Ê def inventory_from(filename)

File.open(filename).collect do | line |

line.downcase

end

end

Ë old_inventory = inventory_from(ARGV[0])
Ì new_inventory = inventory_from(ARGV[1])

The new message is defined at Ê. It looks something like a block—it’s

a chunk of ordinary Ruby code that works on named objects handed

to it. There are minor syntactic differences—it starts with def instead of

do, and arguments are enclosed in parentheses like (filename) instead

of vertical bars like | line |—but the most important difference is that

methods have names and blocks don’t. You won’t go far wrong if you

think of a method as a named block.

Once a method is defined, there’s a new message in the Ruby universe.

Lines Ë and Ì show it being sent. Each of those lines replaces three.

Clumping lines of code into methods may seem silly in such a small

script, but you’ll soon be modifying inventory_from. I think you’ll appre-

ciate not having to make the changes twice.

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-5.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=50

DISSECTING STRINGS 51

5.4 Dissecting Strings

Recall that Chris doesn’t want to see temporary files or files in the Recy-

cle bin. A simple solution is to reject the entire contents of any folder

named temp or recycler.

Let’s start by figuring out how to reject a single filename. Here’s a list

of examples that should be filtered out. (All the examples are lowercase

because the script already uses downcase on each line in the inventory.)

• c:/temp/file4

• c:/temp

• d:/temp

• temp

• /temp

• /wretched/temp/file

• /recycler

• /temp/recycler

• h:/recycler

Here are some we don’t want to filter out:

• c:/temp2

• c:/tmp/file

• /recycle

• /trash

• /program files/temp-file

My first thought was that we want to reject a file from the inven-

tory if it includes the string /temp or /recycler. But it turns out that

that won’t work—consider temp, which wouldn’t match, and c:/temp2,

which would. It seems we want to reject a file if its name contains

“temp,” possibly after a slash but after no other character and possibly

followed by a slash but by no other character. And the same rules apply

to “recycler.”

Yuck. That could be expressed in Ruby, but it seems way too com-

plicated. What I’ve found as I’ve aged is that if my solution looks too

4. You may have noticed that Ruby’s folder separator character is the forward slash

(/). If you’re working on Unix or Mac OS X, that’s unsurprising—it’s what the operating

system uses too. On Windows, it looks odd, since Windows uses the backward slash

(\). Ruby takes care of the translation, just as Windows web servers do for URLs like

http://www.example.com/folder1/folder2/file1.html.

http://www.example.com/folder1/folder2/file1.html
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=51

DISSECTING STRINGS 52

complicated, it’s probably because I’m not looking at the problem from

the right angle. The right angle here is that the line in question isn’t

just a string—we can also think of it as a series of strings separated

by slashes. Instead of simultaneously looking for “temp” and worrying

about slashes, why don’t we treat them as separate issues?

So: worrying about slashes. It turns out that Ruby has a way to split a

string wherever there’s a separator. It’s the split method. Here are some

examples:

irb(main):016:0> "c:/temp/file".split('/')

=> ["c:", "temp", "file"]

irb(main):017:0> "c:/temp".split('/')

=> ["c:", "temp"]

irb(main):018:0> 'temp'.split('/')

=> ["temp"]

irb(main):019:0> '/temp'.split('/')

=> ["", "temp"]

Once the original line is split up, it’s easy to look for temp because of

another handy message, include?:

irb(main):020:0> ["c:", "temp"].include?('temp')

=> true

irb(main):021:0> ["c:", "temp"].include?('recycler')

=> false

Armed with include?, we can write a method to detect the kind of boring

files Chris doesn’t want to hear about:

Download inventory/snapshots/differences-version-6.rb

def boring?(line)

line.split('/').include?('temp') or

line.split('/').include?('recycler')

end

Now that we can identify one boring line, we want to reject (exclude,

ignore, delete) every boring line in an inventory array. Fortunately,

Ruby’s arrays respond to the reject method. Like each and collect, it

takes a block. Like collect, it returns a new array that depends on what

the block returns. Unlike collect, though, reject filters out all the ele-

ments for which the block is true. In other words, assuming the inven-

tory is in inventory, the following code would produce an array with

boring lines stripped out:

inventory.reject do | line |

boring?(line)

end

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-6.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=52

FIXING A BUG 53

That code can be plugged into the script’s inventory_from method, which

would look like this:

Download inventory/snapshots/differences-version-6.rb

def inventory_from(filename)
Ê inventory = File.open(filename)
Ë downcased = inventory.collect do | line |

line.downcase

end
Ì downcased.reject do | line |

boring?(line)

end

end

For clarity, I rearranged it into three parts:

Ê First, it reads the file into an array named inventory.
Ë Next, it downcases all the lines, naming the new array downcased.
Ì Finally, it rejects the lines that name boring files, returning the

result.

Here’s how the new method works:

prompt> ruby differences.rb old-inventory.txt new-inventory.txt

The following files have been added:

new-inventory.txt

recycler

The following files have been deleted:

financial-records.xls

Wait a minute—what’s recycler doing there in the list of added files?

5.5 Fixing a Bug

If you look at new-inventory.txt, you’ll see that it has four files that ought

to be filtered out:

recycler

recycler/inst-39.tmp

temp

temp/inst-39

But only three of them seem to be. Can you figure out the bug from the

information you have now? (I couldn’t.)

Since I couldn’t see the bug, I did something quick ’n’ dirty to learn

more: I put a puts at Ê in the following. Each time boring? is invoked,

the puts will tell me what string it’s working with.

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-6.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=53

FIXING A BUG 54

Note that + concatenates two strings to produce a new string. I use

inspect for debugging because it gives a more exact representation of

objects. (See inspect’s description on page 36.)

Download inventory/snapshots/differences-version-7.rb

def boring?(line)
Ê puts "boring? " + line.inspect

line.split('/').include?('temp') or

line.split('/').include?('recycler')

end

Running that tweaked script, I see this:

prompt> ruby differences.rb old-inventory.txt new-inventory.txt

boring? "exercise-differences.rb\n"

boring? "inventory.rb\n"

boring? "old-inventory.txt\n"

...

boring? "recycler\n"

boring? "recycler/inst-39.tmp\n"

...

The following files have been added:

...

Aha! I forgot about the trailing \n.5 It’s easy to check whether that

makes a difference:6

irb(main):022:0> "recycler\n".split('/')

=> ["recycler\n"]

split leaves the \n on. Will that affect the inclusion check? Let’s see:

irb(main):023:0> ["recycler\n"].include?('recycler')

=> false

It does. That makes sense, since a string with a trailing \n really is a

different one than one without. Now, thousands of scripts have had to

deal with trailing \n characters; in fact, one helps build this book. So

it’s not surprising there’s a message just for getting rid of them: chomp.

It works like this:

irb(main):024:0> "recycler\n".chomp

=> "recycler"

5. This is the same \n we encountered on page 32 when executing a bit of this script in

irb. If you’ve forgotten what \n is all about, see that page.
6. The string "recycler\n" has to be typed with double quotes for the \n to mean “put a

line separator here\.” If you type it within single quotes, it means “a backslash followed

by an ‘n’.” See the sidebar on page 80 for more on the differences between single and

double quotes.

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-7.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=54

WHERE DO WE STAND? 55

We could chomp the line in either boring? or inventory_from. I arbitrarily

chose to do it at Ê in inventory_from:

Download inventory/snapshots/differences-version-8.rb

def inventory_from(filename)

inventory = File.open(filename)

downcased = inventory.collect do | line |
Ê line.chomp.downcase

end

downcased.reject do | line |

boring?(line)

end

end

Does it work? Yup:

prompt> ruby differences.rb old-inventory.txt new-inventory.txt

The following files have been added:

new-inventory.txt

The following files have been deleted:

financial-records.xls

As a tester, I know better than to say “I fixed the last bug,” so I’ll just

say that I see no further reason to change this script right now.

5.6 Where Do We Stand?

Scripting is about stringing messages and objects together in some

coherent way. Methods let you define new messages to use. Without

that ability, it’d be as if you couldn’t tell someone “go to the store”;

instead, you’d have to provide every little detail of the journey. (“Go out

the front door to the sidewalk. Turn left. Proceed until you reach the

cross-street. Look both ways. If no car is coming, cross the street. . . .”)

By the time you’d finished giving the instructions, you’d have forgotten

what you wanted. To accomplish any substantial task without getting

hopelessly confused, you have to use a specialized vocabulary. Methods

let you define that vocabulary’s verbs.

Blocks are essentially unnamed methods. The methods can remain

unnamed because you’re using them only once. You give a block to

collect to tell it what to do and then forget about it.

Every time we needed some behavior—transforming each element of an

array, rejecting elements of an array, splitting a string, downcasing a

string—it turned out to be built in to Ruby. That’s important: it’s all too

http://media.pragprog.com/titles/bmsft/code/inventory/snapshots/differences-version-8.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=55

PRELUDE TO THE EXERCISES 56

Joe Asks. . .

Why Didn’t temp Also Incorrectly Appear in the Out-
put?

The folder temp appeared identically in both the old and new
inventories. Although it wasn’t correctly chomped, that didn’t
matter because there was no change to show anyway.

Files like temp/junk were correctly filtered out because they
were split into ["temp", "junk\n"]. The line separator only “pol-
luted” the last part of the name.

common for beginning scripters to learn a small set of messages and

not to get into the habit of looking beyond them. Get into the habit of

looking—not just at the Ruby documentation but also on the internet.

(See Chapter 18, Downloading Helper Scripts and Applications, begin-

ning on page 174, for more.)

5.7 Prelude to the Exercises

From this point on, you’ll be working with larger and larger chunks

of Ruby code. It’s likely, though, that you’ll still want to try out meth-

ods in irb. But method definitions are awkward to type. Once you hit

Enter , you can’t correct an error without retyping the whole method.

One alternative is to edit the method in a file and then paste it into irb

(as described in Section 2.6, Working with Prompts, on page 25).

An alternative I often prefer is to make the whole Ruby script loadable.

That means the script executes normally when run from the command

line but can also be loaded into irb so that all its methods are available.

prompt> irb

irb(main):001:0> load 'exercise-differences.rb'

=> true

irb(main):002:0> boring?('/temp/foo')

=> true

A loadable script has to detect whether it’s being run from the command

line or being loaded. Figure 5.2, on the following page, shows how that’s

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=56

PRELUDE TO THE EXERCISES 57

Download inventory/exercise-differences.rb

Ê def check_usage

unless ARGV.length == 2

puts "Usage: differences.rb old-inventory new-inventory"

exit

end

end

def boring?(line)

line.split('/').include?('temp') or

line.split('/').include?('recycler')

end

def inventory_from(filename)

inventory = File.open(filename)

downcased = inventory.collect do | line |

line.chomp.downcase

end

downcased.reject do | line |

boring?(line)

end

end

Ë def compare_inventory_files(old_file, new_file)

old_inventory = inventory_from(old_file)

new_inventory = inventory_from(new_file)

puts "The following files have been added:"

puts new_inventory - old_inventory

puts ""

puts "The following files have been deleted:"

puts old_inventory - new_inventory

end

Ì if $0 == __FILE__

check_usage

compare_inventory_files(ARGV[0], ARGV[1])

end

inventory/exercise-differences.rb

Figure 5.2: A script that works inside irb

http://media.pragprog.com/titles/bmsft/code/inventory/exercise-differences.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=57

EXERCISES 58

done. (That script, exercise-differences.rb, is in the inventory folder, so you

can use it for this chapter’s exercises.)

The work of deciding how the file is being used is done at Ì. The names

on that line are rather cryptic.7 Variable $0 holds the name of the run-

ning script as it appeared on the command line. __FILE__ is the name of

the file it appears in. (Note there are two underscores before and two

after.) When differences.rb is run as a script, those are the same thing.

For irb, they’re not. The name of the running script is irb, and the value

of __FILE__ is something else. (You can type __FILE__ to irb to see what it

is.) So the if statement can be read as “if I am the script running at the

command line, check_usage and compare_inventory_files. Otherwise, I’m

being loaded, so do nothing.”

The methods at Ê and Ë simply wrap two chunks of code that originally

weren’t in methods. The first chunk was at the beginning of the file and

checked that arguments had been given. The second did the work of

comparing two inventory files. They could have simply been copied into

the if statement at Ì, but I thought the script would be easier to read if

each chunk had a name. And compare_inventory_files, at least, might be

something usefully used within irb:

irb(main):003:0> compare_inventory_files('old-inventory.txt',

'new-inventory.txt')

The following files have been added:

new-inventory.txt

The following files have been deleted:

financial-records.xls

=> nil

5.8 Exercises

1. differences-version-8.rb (in snapshots) is a version that wasn’t changed

to be loadable. What happens if you load it anyway? Can you

explain the behavior?

2. Start the next set of exercises by copying exercise-differences.rb into

differences.rb.

7. The names go back a long way and were chosen to be memorable to people who also

go back a long way, especially people familiar with the C programming language.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=58

EXERCISES 59

Now change differences.rb so that chomping off the \n is done

inside boring?. Check your work by running the script. Hint: Move

the use of chomp from inventory_from to boring?. There, instead of

splitting a line, split a chompedline.

3. boring? asks the question “does the line contain 'temp' or does

it contain 'recycler'?” The actual code that asks the question is a

little complicated; what it’s doing doesn’t just jump out at you. In

such cases, it’s often a good idea to move the code into a method

with a helpful name. So, first change boring? to look like this:

def boring?(line)

contains?(line, 'temp') or contains?(line, 'recycler')

end

(The name here is a little awkward: contains?(x, y) should be read

as “x contains y.” That kind of awkwardness is not uncommon

because the verb of the sentence has to come first. It’s something

you’ll get used to.)

Next, implement contains?. Its body should look like part of what

you deleted from the original boring?. The difference is that the

string to look for (either 'temp' or 'recycler') is handed to contains?

instead of being used explicitly. That is, the second argument to

contains? names the string to check for.

4. Another useful iterator is any?. It returns true if any of the array

elements make the attached block return true. To ask whether any

deposit is big enough to report to the authorities, you could type

this:

irb(main):004:0> deposits = [1, 0, 10000]

irb(main):005:0> deposits.any? do | deposit |

irb(main):006:1* deposit > 9999

irb(main):007:1> end

=> true

You can read that as “you are given a list of three deposits. Is

anydeposit greater than 9999?”

Write a new version of boring? that takes two arguments. The first

is the inventory entry (a string). The second is an array of boring

component names (like "temp" and "recycler"). It would be used

like this:

boring?("temp", ["temp", "recycler"])

boring?("/foo/bar", ["food", "bart", "quux"])

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=59

EXERCISES 60

The first should return true, and the second false. Here’s a skeleton

for the method to get you started:

def boring?(line, boring_words)

end

The body of that method should say, in Ruby, what this English

sentence says: “a line is boring if it contains any boring word (as

defined by the array boring_words).”

Check your new boring? by loading the new version of differences.rb

and trying the two previous examples.

Hints:

• If you’re going to ask a question about any of the words in an

array, that would look like this:

boring_words.any? do | a_boring_word |

... ask the question about that word ...

end

• The question “does the line contain a boring word?” can be

written like this:

contains?(line, a_boring_word)

5. The new version of boring? works, but the script now breaks. Run

it to see. Then fix it.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=60

Chapter 6

Ruby Facts:
If, Equality Testing, and Unless

Here are the most common ways to tell Ruby that you want something

to happen only under certain circumstances.

6.1 if . . . elsif . . . else

Here is Ruby’s if statement in all its glory, wrapped in a method:

Download if-facts/describe.rb

def describe(inhabitant)

if inhabitant == "sophie"

puts 'gender: female'

puts 'height: 145'

elsif inhabitant == "paul"

puts 'gender: male'

puts 'height: 145'

elsif inhabitant == "dawn"

puts 'gender: female'

puts 'height: 170'

elsif inhabitant == "brian"

puts 'gender: male'

puts 'height: 180'

else

puts 'species: Trachemys scripta elegans'

puts 'height: 6'

end

end

If given ’paul’, the method would work like this:

irb(main):001:0> load 'describe.rb'

=> true

http://media.pragprog.com/titles/bmsft/code/if-facts/describe.rb

IF . . . ELSIF . . . ELSE 62

irb(main):002:0> describe 'paul'

gender: male

height: 145

=> nil

The expressions on the if and elsif lines are called test expressions. Ruby test expressions

executes each of them in turn until it finds one that’s true. Then it

executes the immediately following body (in this case, the lines that body

use puts). If none of the test expressions is true, the body of the else is

executed.

Just like everything else in Ruby, if returns a value. The value of a body

is the value of its last statement (just as with method bodies), and the

value of the entire if construct is the value of the selected body. So in

the case of describe ’paul’, the value of the if is the value of puts ’height:

145’ (which happens to be nil).

You can leave out either or both of elsif and else. The if and end are

required. If there’s no else and none of the test expressions is true, the

if “falls off the end,” in which case its value is nil.

Scripters often use if to pick which of several values is returned from a

method. The following method returns a description of an inhabitant of

my house:

Download if-facts/description.rb

def description_of(inhabitant)

if inhabitant == "sophie"

['gender: female', 'height: 145']

elsif inhabitant == "paul"

['gender: male', 'height: 145']

elsif inhabitant == "dawn"

['gender: female', 'height: 170']

elsif inhabitant == "brian"

['gender: male', 'height: 180']

else

['species: Trachemys scripta elegans', 'height: 6']

end

end

I had the method return an array because puts prints each element of

an array on a separate line:

irb(main):004:0> load 'description.rb'

=> true

irb(main):005:0> puts description_of('dawn')

gender: female

height: 170

=> nil

http://media.pragprog.com/titles/bmsft/code/if-facts/description.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=62

WHEN ARE OBJECTS EQUAL? 63

Warning: elsif Is a Typo Magnet

If you’re like me, about half the time you use elsif, you’ll type it as either

else if or elseif.

6.2 When Are Objects Equal?

In the previous section, I checked whether inhabitant was a particular

first name. == is boolean-valued. That is, it returns either true or false: boolean-valued

a = 0

a == 0

→֒ true

Notice that equality is tested with == because =

has already been used up by variable assign-

ment. That’s another of those accidents of the

history of programming. It means you’ll cer-

tainly sometimes type = when you meant to test

equality.

a == 1

→֒ false

"string" == "string"

→֒ true

You can use == on anything. Each kind of object

can have its own version of what equality means.

"string" == "String"

→֒ false

For example, string equality takes case into

account.

0 == '0'

→֒ false

0 is a number; ’0’ is a string. For the most part,

different types of objects can never be equal.

1.0 == 1

→֒ true

The numeric types are an exception. Num-

bers that can have decimal points (floating-point

numbers) and numbers that can’t (integers) are,

strictly, different kinds of things, but they can

still be equal. To be absolutely sure what equal-

ity means for a data type, you need to look at

documentation.

6.3 A Shorthand Version of if

Consider this English sentence: “I’ll carry an umbrella if it’s raining.”

That could be written in Ruby like this:

if raining?(here)

carry('umbrella')

end

Three lines for such a simple idea seem a bit much. For that reason,

Ruby has a one-line form that has the same format as the English:

carry('umbrella') if raining?(here)

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=63

UNLESS 64

This form doesn’t allow an else or elsif, and it doesn’t use end. Everything

has to fit on one line.

6.4 unless

The word “unless” is in the English language for a reason. Contrast

“unless the judge is unfair, you’ll win” with “if the judge is not unfair,

you’ll win.” Negations—especially negations of already negative ideas—

can be confusing. The same is true of Ruby code:

unless unfair(judge)

winner = you

end

if not unfair(judge)

winner = you

end

You can also use unless with the one-line form:

array.pop unless array.empty?

6.5 The Question Mark Operator

You’ll often find yourself selecting between two alternative values for a

variable. That can be done like this:

if input < 0

output = 0

else

output = input

end

But it seems wrong to take up five lines for such a simple idea. You

can reduce it to two by picking one of the values and then possibly

overriding it:

output = input

output = 0 if input < 0

But it’s a little confusing for the code to do something and then imme-

diately say, “Wait! I didn’t mean that!” So there’s a compact version of if

for just this purpose:

output = (input < 0) ? 0 : input

You can read that as “if input is less than zero, then return 0, else return

whatever object input names.”

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=64

THE QUESTION MARK OPERATOR 65

This ?: construct is called either the question mark operator or, more question mark operator

often, the ternary operator. (“Ternary” because it uses three expres- ternary operator

sions, unlike operators such as +, which have two and are called binary

operators.) binary operators

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=65

Part II

Growing a Script

Chapter 7

The Churn Project: Writing
Scripts without Fuss

Scripting can be straightforward or horrible. When it’s horrible, it feels

like the script is actively fighting you and that every try at making some-

thing better makes something else worse. The way to make it straight-

forward is to proceed in tiny, tested steps. In this chapter, I’ll show you

how to do that.

“Straightforward” doesn’t mean “error-free.” Expect to make mistakes

all the time; the trick is to recover from them smoothly and quickly. This

chapter will demonstrate that by showing how I handle two blunders of

the sort that often lead to a quagmire.

One warning: in this chapter, I’m going to explain my thinking as I

write a script. It takes a lot longer to explain thoughts than to have

them. Don’t let all the words in this chapter fool you into thinking that

scripting requires agonizing over every decision. Instead, strive to make

decisions crisply. If you can’t decide which of two possibilities is better,

it probably doesn’t matter which you pick. If you’re wrong, just recover

and move on.

7.1 The Project

If you ask a programmer what she’s working on, she might say “audit-

ing” or “the persistence layer.” Systems are usually divided into named

subsystems with boundaries that are more or less clear. The source

code for different subsystems is usually stored in different folders.

THE PROJECT 68

prompt> svn log --revision 'HEAD:{2005-07-30}' svn://rubyforge.org/var/ ←֓

svn/churn-demo/inventory

--

r2 | marick | 2005-08-07 14:26:21 -0500 (Mon, 07 Aug 2005) | 1 line

added code to handle merger

--

r1 | marick | 2005-08-07 14:21:47 -0500 (Mon, 07 Aug 2005) | 1 line

first touches

No commit for revision 0.

--

Figure 7.1: Changes to a Subsystem

prompt> ruby churn.rb

Changes since 2005-08-05:

audit ********* (45)

fulfillment **** (19)

persistence *** (17)

ui *** (15)

util * (3)

inventory * (2)

Figure 7.2: Output From This Chapter’s Program

When deciding where to concentrate effort, a tester might want to know

which subsystems have changed the most. That information is avail-

able from the project’s version control system. My favorite is called

Subversion. Figure 7.1 shows one way of asking Subversion about a

fake project I’ve set up. If you have Subversion on your system and

are on the Internet, you can type the same line to get similar infor-

mation. Subversion, like the best things in life, is free. You can find

it at http://subversion.tigris.org. You don’t need it to work on this project,

though.

Subversion’s output shows that the “inventory” subsystem has changed

twice since July 30. That’s a pretty ugly way to get the information,

though, and it shows you only one subsystem at a time. In this chapter,

we’ll write a script that asks the same question of all the subsystems in

a project, producing output like that of Figure 7.2.

http://subversion.tigris.org
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=68

BUILDING A SOLUTION 69

The output isn’t fancy, but there’s nothing wrong with simple and func-

tional. Notice the script somehow knows what subsystems there are

(the six listed) and from when it should start counting changes (the date

one working month before the script is run). It might be nice to allow

those defaults to be overridden, but we won’t bother for this script. (We

will for later ones.)

7.2 Building a Solution

A technique that often works well is one I call scripting by assumption.1 scripting by assumption

The trick is to start writing the script by assuming that Ruby provides

all the methods you need. Here’s some starting code I wrote for churn,

all the while assuming that everything hard would be done for me:

Download churn/snapshots/churn.v1.rb

Ê if $0 == __FILE__
Ë subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']
Ì start_date = month_before(Time.now)

Í puts header(start_date)

subsystem_names.each do | name |
Î puts subsystem_line(name, change_count_for(name))

end

end

I’ll explain these lines over the next several pages. Unless you like flip-

ping pages back and forth, you may find it more convenient to look at

the source online. The callout symbols (like Í) are included in the file.

They’re shown as end-of-line comments like this: end-of-line comments

puts header(start_date) #(4)

When it sees the comment character #, Ruby ignores everything from

there until the end of the line.

Our script must produce two things: a header string containing not

much more than the starting date of the changes, and a series of

strings, one for each subsystem, that contains a name, a change count,

and asterisks for a simple visual representation of the change count.

The asterisks make the output look something like a histogram tipped

on its side.

1. That’s not a name I made up, but I can’t find who said it first. Abelson and Sussman

write of “programming by wishful thinking” in Structure and Interpretation of Computer

Programs [ASS84]. It’s the same idea, but I like “assumption” a bit better.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=69

BUILDING A SOLUTION 70

At Í, I assume Ruby comes with a method, header, that produces a

correctly formatted header string. When writing that line, I came to a

fork in the road. I could have the script tell header what date to print,

or I could have it figure it out (by calculating the date one month before

the moment the script runs). The choice comes down to this:

puts header(start_date)

or this:

puts header

I chose the first because the second implies that the header string is

always the same. It’s not: it varies, so it seems sensible to make the

cause of variation explicit. When I wrote that line, I didn’t know what

start_date really was. I assumed it’d become obvious later.

At Î, I assume a method, subsystem_line, that returns a string ready

to print. The contents of that string will vary depending on the sub-

system’s name and count of changes. Should the count of changes be

given to subsystem_line directly or indirectly?

• “Directly” means that the script will get a subsystem’s change

count from Subversion and hand it to subsystem_line. In that case,

subsystem_line’s definition would start like this:

def subsystem_line(name, change_count)

• “Indirectly” means subsystem_line will itself ask Subversion for the

change count. To do so, it would need to know the starting date,

so its definition would start like this:

def subsystem_line(name, start_date)

I chose the direct approach because it makes it more obvious what’s

in the string that subsystem_line will create. It also follows a guideline

called separation of concerns. In the indirect case, subsystem_line has separation of concerns

two concerns: how to format a string and how to communicate with

Subversion. In the direct case, subsystem_name is only about formatting,

and some other method is about Subversion.

Since subsystem_line has to be called for each subsystem, it makes sense

to stash all the subsystem names in an array and iterate over them

with each. The array is created and named at Ë. Since a project’s list

of subsystems will rarely change, it makes sense to “hard-code” it.

I’m assuming everyone always wants to know the number of changes

in the last working month, so start_date is defined that way at Ì. I could

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=70

BUILDING A SOLUTION 71

have defined it as an argumentless method last_month, but what I’ve

got seems to read more clearly: “the starting date is the month before

right now.” (When the Time object is sent the message now, it returns an

object that represents the current instant of time.) And, as you’ll learn

in Section 7.2, Test-driving month_before, passing in a date also makes

test-driven scripting easier.

I created a variable start_date to name the day from which to start look-

ing for changes, but when I needed a change count to give to subsys-

tem_line, I passed it along directly:

puts subsystem_line(name, change_count_for(name))

I could have written this:

change_count = change_count_for(name)

puts subsystem_line(name, change_count)

Why didn’t I? There are two reasons for adding a variable to a script.

The first is that you’re using an object more than once and you’re either

unable or unwilling to create it twice. That doesn’t apply here. The other

is that the variable helps someone understand the script. My main rea-

son for creating start_date was that I could put it next to subsystem_names

at the beginning of the script. All the data the script works with depends

on the data those two variables name, so it makes sense to draw atten-

tion to that by putting them first and together. I can’t see any way that

creating a variable change_count would help a reader.

There’s one more bit of code to mention: Ê. Because of it, the script

can both be run from the command line and also be loaded into irb.

(The trick was explained in Section 5.7, Prelude to the Exercises, on

page 56.)

Test-driving month_before

It’s increasingly common for programmers to build their code test-first: test-first

if the code doesn’t do something you want, first write a test that fails

because of that, and then write the minimal amount of code that passes

the test. If more is needed, write the next test and then the next bit

of code. Continue until the code does what you want. Along the way,

clean up code whenever it starts to get messy, making sure that the

cleaned-up code always passes all the tests. (The technical term for

such cleanup is refactoring.) refactoring

With practice, writing code with tests is faster than writing code alone

(because of the time you don’t have to spend hunting for bugs), and it’s

usually a lot more pleasant.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=71

BUILDING A SOLUTION 72

Download template-for-tests.rb

Ê require 'test/unit'
Ë require 'X'

Ì class X < Test::Unit::TestCase

Í def test_X
Î assert_equal('expected', 'actual')

end

end

template-for-tests.rb

Figure 7.3: A Test Template

Ruby comes with a package called Test::Unit that lets you set up tests Test::Unit

without having to write much support code. You can find a test template

in Figure 7.3. Parts you’ll need to fill in are marked with an X.

Ê The test file is run like any other script. require loads all the Ruby

code that makes up Test::Unit into that running script. It’s almost

the same as using load in irb.
Ë Usually, there’s one test file for each script file. This line loads the

script under test. In this case, ‘X’ will be replaced with 'churn'.

(Note that, unlike load, require doesn’t need the .rb at the end of

the filename; it can figure it out.)
Ì For the moment, let’s ignore what this line means beyond saying

that class. . . end serves to group the tests. See Chapter 11, Classes

Bundle Data and Methods, beginning on page 112, for more. ‘X’

names the file’s group or suite of tests. You can pick any name suite

you want, but it must begin with a capital letter. ChurnTests seems

reasonable.
Í When you run a test file (e.g., ruby churn-tests.rb), Test::Unit exe-

cutes each method whose name begins with test_. It ignores other

methods. The ones it ignores can be used as utilities by the ones

it does run.
Î Each assert_equal message compares its first argument (the

expected value) to the second (the actual value produced by the

code under test). If they aren’t equal, it complains. (You’ll see a

typical complaint in a minute.)

What would a test for month_before do? A working month is 28 days.

So the month before January 29 is January 1. In the script proper,

http://media.pragprog.com/titles/bmsft/code/template-for-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=72

BUILDING A SOLUTION 73

Joe Asks. . .

Why Does Ruby Have Both require and load?

require and load do almost the same thing. The important dif-
ference is that require remembers the files it’s loaded and will
load each only once. That behavior is useful when script A.rb

uses a method in B.rb and B.rb uses a method in A.rb. If A.rb

had load ’B.rb’ and B.rb had load ’A.rb’, then loading A.rb would
load B.rb, which would load A.rb, which would load B.rb. . . .

Given require, why ever use load? Suppose you’re writing some
code in a file. You require it into irb and try it. Oops, it’s wrong.
You change the file. If you require it again, you won’t get the
changed version (because Ruby knows you’ve already loaded
that file). You have to use load to get the new version.

So use require in script files and load in irb.

Time.now is used as the argument to month_before, but the test doesn’t

have to use a Time that represents the current instant. In fact, it can’t

use that. If it used Time.now, the actual value would change every time

the test ran. What would the expected value be?

Fortunately, Time provides methods that construct any arbitrary time:

local is the one that constructs Times relative to the local time zone.

That means we can ask month_before to pass this test:

Download churn/snapshots/churn-tests.v1.rb

def test_month_before_is_28_days

assert_equal(Time.local(2005, 1, 1),

month_before(Time.local(2005, 1, 29)))

end

Let’s see that test fail.2

Before you can run the test, you’ll need to copy it from the snapshots

folder. On Windows, you do that like this:

prompt> copy snapshots\churn-tests.v1.rb churn-tests.rb

2. It’s common practice to run a test even if you know it will fail. I thought that was a

silly ritual until the first time I did it and saw no failure. I had put the test in the wrong

place, so Test::Unit hadn’t run it. If I hadn’t tried the test first, I might have written bad

code, run the tests, seen no failure, and thought I’d done well. That would have been bad.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=73

BUILDING A SOLUTION 74

On Unix-like systems, it’s like this:

prompt> cp snapshots/churn-tests.v1.rb churn-tests.rb

All the tests assume they’re testing churn.rb. Unless you’ve already cre-

ated it, do that now by copying churn.v1.rb from the snapshots folder into

the current working folder. Be sure to copy it into churn.rb.

Having prepared the test, run it like this:

prompt> ruby churn-tests.rb

Loaded suite churn-tests

Started

E

Finished in 0.002627 seconds.

1) Error:

test_month_before_is_28_days(ChurnTests):

NoMethodError: undefined method ‘month_before' for #<ChurnTests:0x32f8f0>

churn-tests.rb:9:in ‘test_month_before_is_28_days'

1 tests, 0 assertions, 0 failures, 1 errors

The test correctly tells us that there’s no method named month_before

yet. Let’s define it. But where?

The test will requirechurn.rb. That means Ruby will ignore the body of

the if $0 == __FILE__ check. (See Section 5.7, Prelude to the Exercises, on

page 56.) So it should be above the if.

In order to see a more typical failure, let’s define month_before wrong:3

Download churn/snapshots/churn.v2.rb

def month_before(a_time)

end

Here’s the failure:

1) Failure:

test_month_before_is_28_days(ChurnTests) [churn-tests.rb:9]:

<Sat Jan 01 00:00:00 CST 2005> expected but was

<nil>.

1 tests, 1 assertions, 1 failures, 0 errors

An empty method returns nil, which certainly isn’t the Time expected.

Notice that the failure message identifies both the test that failed

3. I usually don’t bother running a test that fails because the method isn’t defined. I

define an empty method before running the test for the first time.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=74

BUILDING A SOLUTION 75

Joe Asks. . .

What’s the Difference Between an Error and a Failure?

A Test::Unit test can fail in two ways. Our second test run
showed a failure. A failure means that what an assertion
asserts to be true isn’t in fact true. An error means that some-
thing else went wrong before the assertion was tried. In our
first test run, Ruby stopped the script when it discovered there
was no such method as month_before and, therefore, no return
value for assert_equal to compare against January 1, 2005.

Frankly, I always have to think for a minute when I’m asked
which is which. Perhaps that’s because I treat both cases the
same. I look at the explanation of what went wrong, I go to the
line number mentioned, and I fix the problem.

(test_month_before_is_28_days) and the line it failed on (line 9). The lat-

ter is useful when there’s more than one assertion in a test.

Let’s write the right code. To get an earlier Time, you subtract some

number of seconds:

irb(main):001:0> now = Time.now

=> Mon Aug 29 11:42:19 CDT 2005

irb(main):002:0> now-1

=> Mon Aug 29 11:42:18 CDT 2005

So all we have to do is subtract 28 days of seconds:

Download churn/snapshots/churn.v3.rb

def month_before(a_time)

a_time - 28 * 24 * 60 * 60

end

And it passes:

prompt> ruby churn-tests.rb

Loaded suite churn-tests

Started

.

Finished in 0.00247 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=75

BUILDING A SOLUTION 76

It’s such a satisfying moment when that happens. Those frequent jolts

of pleasure are what makes test-driven scripting so satisfying. You

won’t believe it until you try it.

Formatting Time

Now that we believe month_before works, we also believe that start_date

will name the right object after this assignment:

start_date = month_before(Time.now)

So it makes sense to now write the method, header, that uses the

returned Time:

Download churn/snapshots/churn.v3.rb

puts header(start_date)

Here are two possible tests:

Download churn/snapshots/churn-tests.v2.rb

def test_header_format

assert_equal("Changes since 2005-08-05:",

header(Time.local(2005, 8, 5)))

end

def test_header_format

assert_equal("Changes since 2005-08-05:",

header(month_before(Time.local(2005, 9, 2))))

end

For both, I just copied the expected output from Figure 7.2, on page 68.

The difference between the two is how they generate the value given to

header. One is a direct test: it uses Time.local to make exactly the Time direct test

it needs. The other is a bootstrapping test: it uses an already-tested bootstrapping test

method from the script under test to test a new method.

The two types of tests have contrasting advantages. A direct test is

usually easier to understand. It’s also usually easier to debug if it fails.

Suppose that I later change month_before and break it. Then both the

direct test_header_format and the test_month_before_is_28_days will fail. I’ll

have to decide which one to look at. If I look at test_header_format, I

have to wonder whether the problem is in header or in month_before.

That’s hardly a big deal in this case, but it can get cumbersome when

you have 200 tests that use month_before. It’s even worse if the change

to month_before deliberately changes its behavior (maybe I want it to

return a different kind of object). Then I may have to fix all 200 tests.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v3.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=76

BUILDING A SOLUTION 77

The advantage of bootstrapping tests is that they’re more realistic and

thorough. Suppose it turns out that there’s a mismatch between what

month_before returns and what header expects. Perhaps month_before

returns a Time and header expects a string. A bootstrapping test for

header would detect that, but a direct test would not, since the test

that header is to pass will use the string it expects.

A second advantage of bootstrapping tests is that they use month_before

again. I made sure I tried a different kind of value in the test of

test_header_format than I did in the earlier test for month_before. Since,

in the previous test, both “now” and the date 28 days earlier are in the

same month, this time I picked ones in different months. I have no rea-

son to think that will find a bug, but I’ve found too many bugs through

sheer dumb luck to use the same value twice. On the other hand, fig-

uring out what date to hand to month_before to cause it to hand August

5 to header was more work than the direct test requires. Was it worth

it?

Different people have different biases. Mine is toward bootstrapping

tests, so I’ll use the second version. But if I had a lot of tests to write

for header, I’d make only a couple of them bootstrapping. I’d make the

rest of them direct so that I didn’t face the prospect of changing many

tests if I ever change my mind about what month_before should do.

Everyone finds their own balance between testing directly and testing

indirectly. You will too.

The only tricky part about implementing header is formatting dates.

Ruby’s default format (from the scripter-friendly inspect message) is

something like "Mon Aug 29 12:20:00 CDT 2005". That’s not the format we

want. Fortunately, Time objects respond to the gracefully named strftime

message. And here’s an example of the result:

irb(main):002:0> Time.now.strftime('%Y-%m-%d')

=> "2005-08-29"

Each character that follows % picks out a piece of the Time and places

the result in the string strftime returns. You can find the complete table

of format characters either in a Ruby reference like Programming Ruby

[TH01] or like this:

prompt> ri Time.strftime

(You can find information about ri in the sidebar on page 119.)

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=77

BUILDING A SOLUTION 78

header can just be a more elaborate format string:

Download churn/snapshots/churn.v3.rb

def header(a_time)

a_time.strftime("Changes since %Y-%m-%d:")

end

The test passes:

prompt> ruby churn-tests.rb

Loaded suite churn-tests

Started

..

Finished in 0.006264 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

Note that the earlier test still passes. That’s good to know.

Formatting Strings

subsystem_line is another method that is about formatting, so let’s do

that next. Here’s a test:

Download churn/snapshots/churn-tests.v3.rb

def test_normal_subsystem_line_format

assert_equal(' audit ********* (45)',

subsystem_line("audit", 45))

end

The subsystem name is right-justified in a field fourteen characters

wide, followed by a space, followed by nine asterisks and the count of

45.

What does this test tell us about the method we have to write? It will

look something like this:

def subsystem_line(subsystem_name, change_count)

code here...

end

subsystem_name’s string can be justified with Ruby’s rjust method. That

works like this:

irb(main):002:0> 'audit'.rjust(14)

=> " audit"

Next the output has the row of nine asterisks. I’ll put off figuring out

how to make that string by assuming there’s a method called asterisks_for

that converts an integer into the right number of asterisks (nine, the

number of changes divided by five). It’ll be used like this:

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v3.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=78

BUILDING A SOLUTION 79

def subsystem_line(subsystem_name, change_count)

asterisks = asterisks_for(change_count)

more code here...

end

The final bit is the change count, which is passed as an argument and

needs only to be plugged into the result.

Given variables subsystem_name, asterisks, and change_count, the return

value could be constructed using addition of strings:

subsystem_name.rjust(14) + ' ' + asterisks +

' (' + change_count.inspect + ')'

That’s ugly. Not only is it ugly, but it took me three tries to get it

right. The first try, I forgot to use inspect to convert the integer named

change_count to a string that could be added. The second try, I realized

I’d forgotten to add the space after the subsystem_name and before the

opening parenthesis.

My rule of thumb for Ruby is anything that’s ugly or awkward can

probably be done a better way. I’d make fewer mistakes if I didn’t have

to add strings together and if I could write the output as I want to see

it, leaving blanks for Ruby to fill in. Here’s what that looks like:

"#{subsystem_name.rjust(14)} #{asterisks} (#{change_count})"

This is an example of string substitution. You can place any Ruby code string substitution

within the #{} marker. Ruby will evaluate that code, convert it to a string,

and insert that string where the marker is. See the sidebar on the fol-

lowing page, for more about string substitution.

All that given, here’s subsystem_line:

Download churn/snapshots/churn.v3.rb

def subsystem_line(subsystem_name, change_count)

asterisks = asterisks_for(change_count)

"#{subsystem_name.rjust(14)} #{asterisks} (#{change_count})"

end

This method won’t pass the test because asterisks_for doesn’t work yet.

So that’s the next thing to write. Here’s a starting test:

Download churn/snapshots/churn-tests.v3.rb

def test_asterisks_for_divides_by_five

assert_equal('****', asterisks_for(20))

end

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v3.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=79

BUILDING A SOLUTION 80

String Substitution

Single-quoted and double-quoted strings handle string sub-
stitution differently. The different rules make double-quoted
strings good for constructing complicated strings in a readable
way. Single-quoted strings are good for making strings that
contain characters that would otherwise trigger string substi-
tution.

Double-quoted strings allow inline substitution of any Ruby
expression with #{}:

irb(main):018:0> "1 + 1 = #{1 + 1}"
=> "1 + 1 = 2"

Double-quoted strings also use backslash to denote single
characters. \n is the line separator character, \s is the space
character, and \t is the tab character. The latter two are use-
ful to make it clear whether " " contains five spaces, a
tab, or some combination. There are other, less important
substitutions—see a more complete Ruby reference.

Any other character that follows a backslash is inserted liter-
ally (without the backslash). That is, "\d" is the same as "d".
More important, \" lets you put a double quote in a double-
quoted string, and \\ lets you put in a backslash.

In almost all cases, a single-quoted string contains exactly and
only the characters you type. There are two exceptions:

• You can put a single quote in a single-quoted string by
preceding it with a backslash:

irb(main):001:0> 'I\'m hungry, said the weasel.'
=> "I'm hungry, said the weasel."

• Two backslashes in a row are treated as a single back-
slash. As far as I know, all that’s good for is putting a
backslash at the end of a string.

irb(main):002:0> puts 'three backslashes: \, \\, and \\'
three backslashes: \, \, and \
=> nil

If you’re like me and use single quotes because they’re easier
to type, beware of reflexively using \n in a single-quoted string.
You probably don’t really want a string with a backslash and
an “n.”

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=80

BUILDING A SOLUTION 81

But now I face an annoyance. I want to define an empty asterisks_for, run

the test, and see it fail. But if I run all the tests in the latest churn-tests.rb,

two tests will fail, like this:

1) Failure:

test_asterisks_for_divides_by_five(ChurnTests) [churn-tests.rb:26]:

<"****"> expected but was

<nil>.

2) Failure:

test_normal_subsystem_format(ChurnTests) [churn-tests.rb:19]:

<" audit ********* (45)"> expected but was

<" audit (45)">.

One failure is the test for asterisks_for. That is good, since that is the

method we’re working on. The other is the test for subsystem_line, which

can’t pass until asterisks_for is done. That’s bad, because it makes it

harder for me to see what’s happening—it’s a little bit of sand in the

gears. Fortunately, Test::Unit’s –name option lets you run one test at a

time:

prompt> ruby churn-tests.rb --name=/asterisks/

Loaded suite churn-tests

Started

F

Finished in 0.058324 seconds.

1) Failure:

test_asterisks_for_divides_by_five(ChurnTests) [churn-tests.rb:26]:

<"****"> expected but was

<nil>.

1 tests, 1 assertions, 1 failures, 0 errors

Any test matching –name’s argument will be run. Notice that you don’t

have to give the full name.4 Note also that –name starts with two dashes,

not one, despite how it might look on this page.

Here is code that passes the test:

Download churn/snapshots/churn.v4.rb

def asterisks_for(an_integer)

'*' * (an_integer / 5)

end

4. Strictly, –name’s argument is a regular expression. You’ll learn about those in Chap-

ter 9, Our Friend, the Regular Expression, beginning on page 98.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v4.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=81

BUILDING A SOLUTION 82

It takes advantage of Ruby’s string multiplication. Like multiplication of

integers, it’s just shorthand for adding the same thing multiple times.

So ’*’ * 5 is the same as ’*’ + ’*’ + ’*’ + ’*’ + ’*’ and ’*****’.

What should happen when the change count is not evenly divisible by

five? It should round:

Download churn/snapshots/churn-tests.v4.rb

def test_asterisks_for_rounds_up_and_down

assert_equal('****', asterisks_for(18))

assert_equal('***', asterisks_for(17))

That fails:

1) Failure:

test_asterisks_for_rounds_up_and_down(ChurnTests) [churn-tests.rb:27]:

<"****"> expected but was

<"***">.

It’s the first assertion (the one on line 27) that fails.5 To fix it, we have to

deal with an unfortunate fact about computers. To a pocket calculator,

it makes absolutely no difference whether you key in 4 or 4.0. That’s

the case even though the computer that runs the calculator almost

certainly makes a distinction between the integer 4 and the floating-

point number 4.0. A calculator hides that fact from you; Ruby, like most floating-point

programming languages, does not. So when asterisks_for(18) executes, it

divides the integer 18 by the integer 5. In the real world, 18/5 is 3.6. In

the computer world, it’s 3—that is, computers always round down.

We want to round up 18/5 because it’s closer to 4 than to 3. There are

two steps. First, we need to get the floating point number 3.6. Then we

need to explicitly round it up.

To get 3.6, we can’t divide 18 by 5. Arithmetic operations involving only

integers always produce integers. But if one of the numbers is floating

point, the result will also be floating point. So we divide the count, 18,

by 5.0:

irb(main):001:0> 18 / 5.0

=> 3.6

Now the floating-point number can be rounded to an integer:

irb(main):002:0> (18/5.0).round

=> 4

5. After one assertion fails, the method stops. None of the assertions following it runs.

The assumption is that they’d fail too, adding no information—just clutter—to the test

output.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v4.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=82

BUILDING A SOLUTION 83

That suggests this method:

Download churn/snapshots/churn.v5.rb

def asterisks_for(an_integer)

'*' * (an_integer / 5.0).round

end

Not only does asterisks_for pass the new test, it continues to pass the old

one:

prompt> ruby churn-tests.rb --name=/asterisks/

Loaded suite churn-tests

Started

..

Finished in 0.002288 seconds.

2 tests, 3 assertions, 0 failures, 0 errors

In fact, now that asterisks_for is complete, the test for line_format should

pass. All tests should pass, and they do:

prompt> ruby churn-tests.rb

Loaded suite churn-tests

Started

.....

Finished in 0.00460100000000005 seconds.

5 tests, 6 assertions, 0 failures, 0 errors

Using External Programs

Only one method remains: change_count_for. It has to fetch data from

Subversion and extract the change count from it. Here’s my sketch of

that method:

Download churn/snapshots/churn.v6.rb

def change_count_for(name)

extract_change_count_from(svn_log(name))

end

It’s not a massively exciting method. All I’ve done is split the work into

two parts. I’ve done that to separate what’s hard to test with Test::Unit

from what’s easy. To test extract_change_count_from, we just have to

build a string that looks like a Subversion log, pass it to the method,

and check that the answer is correct. svn_log is a different kind of beast:

it has to communicate with the outside world. An automated test would

have to set a Subversion repository to a known state, use svn_log, and

check the results. That’s a lot of work, and I don’t think it’s worthwhile.

So I’ll check that method once, manually.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v5.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v6.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=83

BUILDING A SOLUTION 84

First, let’s get extract_change_count out of the way. It will work on Sub-

version output like that which we’ve already seen. Here are its tests:6

Download churn/snapshots/churn-tests.v5.rb

def test_subversion_log_can_have_no_changes

assert_equal(0, extract_change_count_from("-------------------------\

-----------------------------\n"))

end

def test_subversion_log_with_changes

assert_equal(2, extract_change_count_from("-------------------------\

------------------------------=----------\nr2531 | bem | 2005-07-01 01:1\

1:44 -0500 (Fri, 01 Jul 2005) | 1 line\n\nrevisions up through ch 3 exer\

cises\n---------------------------------=-------------------------------\

-\nr2524 | bem | 2005-06-30 18:45:59 -0500 (Thu, 30 Jun 2005) | 1 line\n\

\nresults of read-through; including renaming mistyping to snapshots\n--\

---\n"))

end

The backslash at the end of the data lines tells Ruby to ignore the

immediately following line break, not to include it in the string. I used

it to make these lines fit inside this book’s margins.

The first test is output from a boundary case I tried: what happens

if there have been no changes in a time period? In a way, that’s the

simplest case the program will have to handle. Often (though not in

this case), it’s easiest to start by passing the simplest test and then add

code to pass harder ones. The second test is more typical output.

It seems fairly easy to calculate the change count: it’s the number of

dashed lines minus one. Here’s code that passes the test:

Download churn/snapshots/churn.v6.rb

def extract_change_count_from(log_text)
Ê lines = log_text.split("\n")
Ë dashed_lines = lines.find_all do | line |
Ì line.include?('-----')

end
Í dashed_lines.length - 1

end

At Ê, the long string is converted into an array of lines (breaking at

the end-of-line marker). Then (at Ë), a previously undescribed method,

find_all, is used. It finds all lines for which the block (at Ì) is true and

collects them into an array. In this case, the block is true when the line

6. If you’re working along with the book, you can find sample Subversion output to build

your test from in code/churn/snapshots/subversion-output.txt. And good for you!

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v5.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v6.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=84

BUILDING A SOLUTION 85

What to Test

You don’t need as many tests for code you can see as for code
you can’t. Consider the tests for asterisks_for. The first test will
cause asterisks_for to round up 3.6; the second will cause it to
round down 3.4. Numbers that end exactly in 5, like 3.5, are
trickier. Under at least some rounding rules, sometimes you
should round up, sometimes down. Yet I have no test that
exercises such numbers.

The two tests I have suffice to convince me that I’m using
rounding correctly. Further tests would be checking whether
Ruby implements rounding correctly. I already believe it does;
more to the point, nobody is paying me to test Ruby.

Black-box testing needs to be more exhaustive because you
don’t know which parts of the product’s behavior you can jus-
tifiably trust.

Similarly, I’m not worried that the only subsystem_line test I have
checks only the case where the number of changes is exactly
divisible by five. That convinces me that subsystem_lines uses
asterisks_for correctly. (For example, I now believe I haven’t left
off its argument.) Adding a test with a different number (18,
for example) would only tell me two things I already believe:
that asterisks_for works and that it’s used correctly.

in question includes dashes. (I used only a short run of dashes so that

trivial changes to the Subversion output won’t break the script.)

Now to get the Subversion data. svn_log has to execute the same com-

mand I typed manually in Figure 7.1, on page 68. That’s a longish

string, so I built it up in parts:

Download churn/snapshots/churn.v7.rb

def svn_log(subsystem, start_date)

timespan = "-revision 'HEAD:{#{start_date}}'"

root = "svn://rubyforge.org//var/svn/churn-demo"

‘svn log #{timespan} #{root}/#{subsystem}‘

end

The first lines should look familiar by now. (Notice that I just real-

ized this method needs the start date, so I added it as an argument. I

also had to fix change_count_for to use svn_log correctly.) The last line is

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v7.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=85

BUILDING A SOLUTION 86

peculiar. It appears to be a string, built up by the usual string substi-

tution, but the text is enclosed in backticks. Those tell Ruby to take the

given string, send it to the command-line interpreter, and return the

results as a string. Like this:

irb(main):012:0> svn_log('persistence', '2005-06-30')

=> "---

-----------\nr2531 | bem | 2005-07-01 01:11:44 -0500 (Fri, 01 Jul

2005) | 1 line\n\nrevisions up through ch 3 exercises\n---------

---\n

r2524 | bem | 2005-06-30 18:45:59 -0500 (Thu, 30 Jun 2005) | 1 li

ne\n\nresults of read-through; including renaming mistyping to sn

apshots\n--

----------------\n"

Blunder the First

The complete code is shown in Figure 7.4, on page 89. Having written

all that code and tested it, the program should now work. But I’m sure

you know what’s coming. . . .

prompt> ruby churn.rb

Changes since 2006-07-10:

subversion/clients/cmdline/main.c:832: (apr_err=205000)

svn: Syntax error in revision argument 'HEAD:{Mon Jul 10 23:15:47 CDT 2006}'

audit (-1)

subversion/clients/cmdline/main.c:832: (apr_err=205000)

svn: Syntax error in revision argument 'HEAD:{Mon Jul 10 23:15:47 CDT 2006}'

fulfillment (-1)

...

What went wrong? The clue is HEAD:{Wed Aug 03 12:51:38 CDT 2005}.

That comes from line Ê in svn_log:

timespan = "--revision 'HEAD:{#{start_date}}'"

I just tested svn_log by hand.7 Why does it fail now?

When I tested it, I used a string like ’2005-08-01’ for the start_date argu-

ment. But when it’s called by the program, that argument is a Time

object from month_before. #{} converts that object into a string, using

the default formatting, which is not what Subversion expects.

The problem will be easy enough to fix, but first I should think about

why I let it happen in the first case. It seems to me it’s because my

names are bad. Look at line Ë, which I show here again.

start_date = month_before(Time.now)

7. This is the only method I tested manually, but that’s not why the problem slipped

past. I would have made the same mistake with a Test::Unit test.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=86

BUILDING A SOLUTION 87

One Test or Several?

In both subsystem_line and asterisks_for, I began writing code after
writing a single test. I could have waited until I’d written more
tests that forced me to make more decisions. For example, I
might not have started asterisks_for until I’d written the round-
ing tests. And I might not have started subsystem_line until I
decided what it should do when the subsystem name is too big
to fit into the fourteen-character space allotted. (Something I
still haven’t decided.)

The argument for writing one test, then only the code that
passes it, and then the next test is that the knowledge you
learn writing the script allows you to write a better next test.
It might also let you skip a test because you have high and
justified confidence that the code would already pass that next
test.

One argument against writing just one test is that knowing too
much about how the script already works will bias you, per-
haps subtly, causing you to overlook a test you should write.
Another argument is that the fifth test might reveal that the
code you wrote to pass the first four is just wrong, so you have
to throw away that work. It would be better to know everything
a method has to do before starting it.

For a long time, I was firmly in the “many tests” camp, but I’ve
drifted away from it in the past four years. I’m not good enough
at predicting all the tests I’ll need, so I end up rewriting code
in either case. Working one test at a time encourages working
in small chunks, always making steady progress. That helps
keep me from getting overwhelmed by the task. I suspect I miss
more bugs working one test at a time, but I also suspect that
getting the script done and in use sooner makes up for that.

I do, however, jot down ideas for tests as they come to me,
because otherwise I’d forget them. I find pencil and paper the
best technology for that purpose.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=87

BUILDING A SOLUTION 88

month_before returns a Time object, but the variable’s name declares it

to be about a “date.” “Date” is an idea from Subversion—it’s a year,

a month, and a day of the month, all in a particular format. Naming

a Ruby Time with start_date was asking for trouble—and the universe

answered. Either start_date should be renamed start_time or it should

really be a date. I choose the latter. I begin by converting month_before’s

return value into a Subversion-style date string:

Download churn/snapshots/churn.v8.rb

start_date = svn_date(month_before(Time.now))

That means a test for svn_date:

Download churn/snapshots/churn-tests.v6.rb

def test_svn_date

assert_equal('2005-03-04',

svn_date(Time.local(2005, 3, 4)))

end

The implementation is simple, reminiscent of the implementation of

header:

Download churn/snapshots/churn.v8.rb

def svn_date(a_time)

a_time.strftime("%Y-%m-%d")

end

I also have to change any methods that previously correctly expected

start_date to be a Time object. Now they will incorrectly expect that, and

they have to be made to correctly expect a formatted string. Scanning

the tests is a good way to find such methods.

test_header_format reveals that header expects a Time object:

def test_header_format

assert_equal("Changes since 2005-08-05:",

header(month_before(Time.local(2005, 9, 2))))

end

When I tacked on an svn_date to do the conversion, the book’s original

formatting made the line too long to fit on a page. So I also introduced

a variable to save horizontal space:

Download churn/snapshots/churn-tests.v6.rb

def test_header_format

head = header(svn_date(month_before(Time.local(2005, 9, 2))))

assert_equal("Changes since 2005-08-05:", head)

end

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v8.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v6.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v8.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests.v6.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=88

BUILDING A SOLUTION 89

Download churn/snapshots/churn.v7copy.rb

def month_before(a_time)

a_time - 28 * 24 * 60 * 60

end

def header(a_time)

a_time.strftime("Changes since %Y-%m-%d:")

end

def subsystem_line(subsystem_name, change_count)

asterisks = asterisks_for(change_count)

"#{subsystem_name.rjust(14)} #{asterisks} (#{change_count})"

end

def asterisks_for(an_integer)

'*' * (an_integer / 5.0).round

end

def change_count_for(name, start_date)

extract_change_count_from(svn_log(name, start_date))

end

def extract_change_count_from(log_text)

lines = log_text.split("\n")

dashed_lines = lines.find_all do | line |

line.include?('-----')

end

dashed_lines.length - 1

end

def svn_log(subsystem, start_date)
Ê timespan = "-revision 'HEAD:{#{start_date}}'"

root = "svn://rubyforge.org//var/svn/churn-demo"

‘svn log #{timespan} #{root}/#{subsystem}‘

end

if $0 == __FILE__

subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']
Ë start_date = month_before(Time.now)

puts header(start_date)

subsystem_names.each do | name |
Ì puts subsystem_line(name, change_count_for(name, start_date))

end

end

churn/snapshots/churn.v7copy.rb

Figure 7.4: Churn

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v7copy.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=89

BUILDING A SOLUTION 90

Bugs in Tested Code

As I’ve mentioned, test-driven programming is becoming more
popular. People are sometimes too enthused by it, to the point
they think it’s all the testing that’s needed. But it wouldn’t
have caught Blunder the First. Test-driven programming is
good at eliminating bugs where you intend to do something
but failed. That’s because each intention is described and then
checked with a test. But it doesn’t prevent you from forgetting
to state an important intention. In churn’s tests, I never stated
my intention that the results of month_before could be used by
svn_log.

As another example, I’ve consistently “forgotten” to worry
about handling errors. What happens, for example, if no con-
nection can be made to the Subversion server? (You can see
by running churn without Subversion installed or while you’re
not connected to the Internet.) I’m doing that on purpose—
error handling is deferred to Chapter 21, When Scripts Run
into Problems, beginning on page Chapter 21, When Scripts
Run into Problems—but it’s certainly not unknown for people
to do it by accident.

The test fails. Now that it’s given a formatted string, header no longer

needs to use strftime:

Download churn/snapshots/churn.v8.rb

def header(an_svn_date)

"Changes since #{an_svn_date}:"

end

The tests pass. I wish I hadn’t made this mistake (and I really did make

it), but fixing it was an unexciting, straightforward, step-by-step pro-

cess not much different from writing the methods in the first place.

Blunder the Second

Does the program now work? Let’s see:

prompt> ruby churn.rb

Changes since 2006-07-11:

audit * (5)

fulfillment (2)

persistence * (3)

ui ** (8)

util * (4)

inventory (2)

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn.v8.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=90

WHERE DO WE STAND? 91

Oh no! I forgot to order the lines in decreasing order of change count!

Looking at Figure 7.4, on page 89, what has to be done to fix it? The

root problem is that the change count is fetched at Ì, which is too late

to affect the order in which things are printed. We’ll solve that in the

next chapter.

7.3 Where Do We Stand?

I live in a very flat part of the world. Many of the roads are straight and

level—you can almost imagine you could point a car down the road,

take your hands off the steering wheel, and the car would go exactly

where you pointed it. You can’t, of course. Even on Illinois roads, driving

is a matter of frequent, tiny corrections to your course. And even on

these roads, the novice driver will lurch wildly from one overcorrection

to its opposite.

Programming, for many, is like forever being a novice driver: periods

of calm where things go invisibly wrong, followed by bursts of fran-

tic panic and correction. I sometimes think that the only people who

become programmers are ones who can tolerate that environment and

that observing programmers struggle is the reason so many other peo-

ple think programming is too hard for them.

However, programming can be much more like driving a car: steady,

small corrections on the way to the goal. Test-driven programming is a

good way to do that. It makes scripting more accessible.8

7.4 Exercises

When working on the exercises, continue to use the churn subfolder of

your code folder.

1. Alter header so that its format output looks like “Changes between

YYYY-MM-DD and YYYY-MM-DD:” where one of the dates is a

month before now and the other is the date the script is run.

2. I’m not fond of the way the output looks in the case of zero or few

changes:

inventory (0)

fulfillment (2)

ui *** (15)

8. The driving metaphor is due to Kent Beck in Extreme Programming Explained [Bec00].

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=91

EXERCISES 92

Change the script so that a subsystem with no changes prints a

dash instead of zero asterisks. Also change it so that one or two

changes are not rounded down to zero. They should instead print

as a single asterisk. I want “changed a little” to be visually distinct

from “changed not at all.” subsystem_lines should produce lines like

this:

inventory - (0)

fulfillment * (2)

ui *** (15)

3. Change subsystem_line so that its output is like this:

prompt> ruby churn.rb

Changes between 2006-08-05 and 2006-09-02:

audit (45 changes) *********
fulfillment (19 changes) ****
persistence (17 changes) ***
ui (15 changes) ***
util (2 changes) *
data - -

Notice two things:

a) Both the subsystem name and the change count are to be

left-justified in a field of fourteen spaces.

b) When there are no changes, what used to be printed as (0

changes) is to be printed as a dash.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=92

EXERCISES 93

My Story of Shame

Even those who believe in test-driven programming face a life
filled with temptation. At the time I was finishing up this
book, I was also a web lackey for the Agile Alliance nonprofit
(www.agilealliance.org). The Agile Alliance runs an annual con-
ference, and everyone who attends gets a free membership in
the organization. Those already members get a one-year exten-
sion to their existing membership. One week, I had the task of
using conference attendee spreadsheet to update the member-
ship database and mail the affected members the good news.

That required some simple scripts, ones that I knew I’d never
use again. (We were about to switch to a completely new sys-
tem.) I remember thinking that I really ought to test-drive
those scripts into existence, because I shouldn’t write one
thing in this book and do another. But the scripts were so
simple. . . .

You can guess the rest. I made a stupid mistake that led to
a bad script. It would give existing members duplicate mem-
berships instead of extensions. I did manually test the scripts
before putting them into production; as best I can figure, the
lag between running the script and getting the confirmation
emails caused me to mistake one kind of confirmation for
another. (I was in a hurry, which is always the best time to
slow down.)

I ran the bad script in production. Shortly thereafter, I had
to send an embarrassed email to 267 people who might have
otherwise thought I know something about preventing bugs
from escaping into production.

I tell this story not because I want even more potential clients
to lose confidence in me but to drive home that you’re better
off testing first, even when you think that can’t possibly do
anything but slow you down. Many of the chapters in this book
talk only about the final scripts, not the tests that drove their
creation. Even though the exercises often have you changing
the tests, I worry that the importance of disciplined testing
won’t stick. I hope my sad story makes it stickier.

www.agilealliance.org
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=93

Chapter 8

Ruby Facts: Booleans
Ruby has two boolean values, true and false, and three boolean opera-

tors: not, and, and or. The negation of a false expression is true, and vice

versa. and and or work like this:

left right left or right left and right

true true true true

true false true false

false true true false

false false false false

8.1 Other Boolean Operators

People who come to Ruby from other programming languages are used

to a different way of writing boolean operators. Ruby supports that

alternate notation:

not x is the same as !x

a or b is the same as a || b

a and b is the same as a && b

This alternate notation is much more common than the more human-

readable one I’ve used so far, so I’m going to use it henceforth.

8.2 Precedence

Which of the following expressions always produce the same result, no

matter what the values of a and b?

a || b && c

a || (b && c)

(a || b) && c

The first and second do. In jargon, && has higher precedence than ||. precedence

PRECEDENCE 95

Which of these three expressions mean the same thing?

!a || b

(!a) || b

!(a || b)

Again, it’s the first and second. Negation has a higher precedence than

the other two boolean operators.

Except in simple cases, I recommend you use parentheses to make it

absolutely clear what you mean. Just because the computer under-

stands doesn’t mean someone else reading your script will.

Here’s something I hesitate to mention because I think it’s more con-

fusing than useful. The precedence rules are different for the two ways

of writing boolean operators. The first difference is that and does not

bind more strongly than or. That is, in the following:

a or b and c

a or (b and c)

(a or b) and c

it’s the first and the third that have the same value.

not binds more strongly than and and or, so these two expressions mean

the same thing:

not a and b

!a && b

However, not binds less strongly than && and ||. That means the follow-

ing mean the same thing:

not a && b

! (a && b)

If I ever catch you taking advantage of that, I’ll crawl out of this page

and make you suffer. If you want to risk that, here is the complete list

of precedence rules, in decreasing order of precedence:

!

&&

||

not

or and

All kidding aside, take advantage of language quirks only if they’re

widely known. For example, the idiom shown in Section 8.4, Boolean

Expressions Can Select Objects, on the next page, is hard to figure out

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=95

EVERY OBJECT IS A TRUTH VALUE 96

if you first see it without an explanation, but it’s so widely used that it

will quickly become second nature.

8.3 Every Object Is a Truth Value

In all the examples earlier in the chapter, I let you assume that the

variables must name either true or false. In fact, they may name any

Ruby object.

To see why that’s useful, recall that a Ruby array will produce nil when

asked for an element beyond the boundary of its size. That’s a pretty

common convention: if you can’t return what was desired, return “noth-

ing.” That would imply that Ruby code must be scattered with tests like

this:

if something == nil ...

It’s not, because nil counts as false. So the previous can be more conve-

niently written like this:

unless something ...

All objects other than nil and false count as true. So instead of this:

if not object == nil ...

you can write

if object ...

8.4 Boolean Expressions Can Select Objects

I’ve also let you assume that boolean expressions will return either true

or false. In fact, they can return any object.

That is useful behavior, especially because Ruby supports short-circuit-

ing evaluation. Consider a && b. Suppose a is false. Ruby need not eval- short-circuit

uate b to know that the whole expression must be false, so it doesn’t.

The same is true of a || b; Ruby won’t evaluate b if a is known to be true.

This behavior is often used to pick one of two values. Here’s a typical

example:

file = ARGV[0] || "default.txt"

If the script is given command-line arguments, ARGV[0] is the first one

(some string). Otherwise, it’s nil.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=96

BOOLEAN EXPRESSIONS CAN SELECT OBJECTS 97

Suppose ARGV[0] is a string. Any string counts as true, so Ruby doesn’t

check the right side of the ||-expression. It just returns the string, which

becomes file’s value.

Suppose ARGV[0] is nil. Then Ruby must evaluate the right side to find

the value of the whole ||-expression. Since "default.txt" counts as true, it

is that value, and file is set to "default.txt".

So file always names a string, either the one given or some default.

That’s the same result as the following, only more compact:

if ARGV[0]

file = ARGV[0]

else

file = "default.txt"

end

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=97

Chapter 9

Our Friend,
the Regular Expression

In Chapter 7, The Churn Project: Writing Scripts without Fuss, beginning

on page 67, we ended with a problem: output lines were being generated

in the wrong order. In this chapter, we’ll look at a venerable problem-

solving strategy: build the wrong thing, and then make it right by brute

force. We’ll generate churn’s output lines in no particular order and then

order them. Here’s a sketch of the code:

Download churn/snapshots/churn-re.rb

if $0 == __FILE__

subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']

start_date = svn_date(month_before(Time.now))

puts header(start_date)
Ê lines = subsystem_names.collect do | name |

subsystem_line(name, change_count_for(name, start_date))

end
Ë puts order_by_descending_change_count(lines)

end

At Ê, the original each is changed to a collect. The lines aren’t made

and printed; they’re made and saved in an array. That array will then

be put right at Ë and printed.

To make order_by_descending_change_count work, we need some way of

extracting the change count from a string. That’s where regular expres-

sions come in.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-re.rb

REGULAR EXPRESSIONS MATCH STRINGS 99

9.1 Regular Expressions Match Strings

Regular expressions, often abbreviated “regexps,” are a tool used to Regular expressions

check whether strings have the right form. Here’s an example:

irb(main):001:0> /match/ =~ "does this have a match?"

=> 17

The result, 17, marks the position where the match occurs. Like every

value in Ruby other than false and nil, 17 counts as true, allowing you

to write code like this:

irb(main):002:0> puts 'got one!' if /match/ =~ "match here?"

got one!

=> nil

Here is an example of a match that fails:

irb(main):003:0> /no match/ =~ "not match"

=> nil

You might not have noticed that those expressions use a new opera-

tor, =~. (The second character is a tilde, sometimes called “twiddle.”)

=~ looks a little like ==, but it checks for a regular expression match

instead of exact equality. If you accidentally use == instead, you’ll find

that no regular expression is equal to any string:

irb(main):004:0> /match/ == "match"

=> false

After all, they’re different kinds of objects.

Just as double-quoted strings can contain characters that are inter-

preted specially, so can regular expressions. In this chapter, I’ll explain

only the ones we need for this script. See Chapter 10, Ruby Facts: Reg-

ular Expressions, beginning on page 106, for more.

The special character + says that the preceding character must be

repeated one or more times to match:

irb(main):005:0> /ab+c/ =~ "matches 'abbc'?"

=> 9

irb(main):006:0> /ab+c/ =~ "matches 'abc'?"

=> 9

irb(main):007:0> /ab+c/ =~ "matches 'ac'?"

=> nil

The two-character sequence \d matches only digits:

irb(main):008:0> /\d time/ =~ "he was arrested 3 times"

=> 16

irb(main):009:0> /\d time/ =~ "we had some fine old times"

=> nil

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=99

REGULAR EXPRESSIONS MATCH STRINGS 100

We can put those two together to match lines that look like churn.rb

output:

irb(main):010:0> /\d+/ =~ " ui ** (13)"

=> 14

We now know that this line’s change count starts at character 14. If

we knew where it ended, we could pluck it out of the string and use

it to order the output lines. However, that regular expression is too

simple. Suppose we created another subsystem called ui2. The regular

expression would match the 2:

irb(main):011:0> /\d+/ =~ " ui2 ** (13)"

=> 9

You can tell that it matched the 2, not the 13, by counting characters.

Alternately, you can make the wrongness more obvious by pulling out

everything from the match on:

irb(main):012:0> line = " ui2 ** (13)"

=> " ui2 ** (13)"

irb(main):013:0> /\d+/ =~ line

=> 9

irb(main):014:0> line[9..-1]

=> "2 ** (13)"

Strings are indexable, like arrays, so you can use the different variants

of [] to pull out substrings.

Since we got the wrong match, we need a regular expression to match

only numbers inside parentheses.1 It seems like this should work:

irb(main):015:0> /(\d+)/ =~ " ui2 ** (13)"

=> 9

If you look closely, you’ll see that it didn’t. The return value is 9, indicat-

ing that it matched the 2 again. That’s because parentheses are special,

like \d is. You’ll see what they do in the next section. To get real paren-

theses in the regular expression, you have to escape them by preceding escape

them with a backslash:

irb(main):016:0> /\(\d+\)/ =~ " ui2 ** (13)"

=> 14

You will notice that regular expressions can get hard to read pretty

quickly. For that reason, I usually put all but the simplest inside well-

named methods like has_parenthesized_number. That also lets me easily

test them, because complicated ones are as hard to get right as they

are to read.

1. I’m going to assume there won’t be a subsystem named ui(2).

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=100

DISSECTING STRINGS WITH REGULAR EXPRESSIONS 101

9.2 Dissecting Strings with Regular Expressions

Regular expressions can also be used to pick out pieces of a string.

There’s more than one way to do that. We’ll use the match message. It

works much like =~:

irb(main):017:0> /a/.match('this is a string')

=> #<MatchData:0x326d04>

irb(main):018:0> /a/.match('not one here')

=> nil

When there is a match, match returns a MatchData object. That object

acts like an array. Its zeroth element is the first matching string. Here’s

an example:

irb(main):019:0> match = /\(\d+\)/.match(" ui2 ** (13)")

=> #<MatchData:0x326390>

irb(main):020:0> match[0]

=> "(13)"

That’s pretty close to being the change count, which is what we want.

Using the to_i (for “to integer”) method and string slicing, we could pro-

duce the count:

irb(main):021:0> "(13)"[1..-2].to_i

=> 13

Given that, here’s the whole story about extracting the change count:

irb(main):022:0> match = /\(\d+\)/.match(" ui2 ** (13)")

=> #<MatchData:0x334738>

irb(main):023:0> match[0][1..-2].to_i

=> 13

In order to explain another regexp feature, I’ll get the count a differ-

ent way. In regular expressions, parentheses that are not preceded by

backslashes surround a group. Each group identifies a part of a match, group

and each part is accessible through the MatchData object. Here’s an

example of matching a simple arithmetic equation:

irb(main):024:0> match = /(\d)+(\d)=(\d)/.match("1+1=2")

=> nil

Hold on . . . why’d that happen? (Can you see?)

It’s because I forgot to escape the plus. The previous reads “one or more

digits, followed by a digit, followed by an equal sign, followed by a digit,”

not the intended “one digit, followed by a plus sign, followed by a digit

. . . .” Here’s the right regexp:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=101

REORDERING AN ARRAY 102

irb(main):025:0> match = /(\d)\+(\d)=(\d)/.match("1+1=2")

=> #<MatchData:0x319118>

irb(main):026:0> "#{match[1]} plus #{match[2]} equals #{match[3]}"

=> "1 plus 1 equals 2"

After the zeroth element (the whole match), the rest of the elements of

a MatchData are the grouped matches, in left to right order. We can use

a group to get the number without the parentheses by putting the real

parentheses outside the parentheses that mark a group:

irb(main):027:0> match = /\((\d+)\)/.match(" ui2 ** (13)")

=> #<MatchData:0x1af280>

irb(main):028:0> match[1]

=> "13"

irb(main):029:0> match[1].to_i

=> 13

Now that we know what we’re doing, let’s write a test and its method:

Download churn/snapshots/churn-tests-re.rb

def test_churn_line_to_int_extracts_parenthesized_change_count

assert_equal(19, churn_line_to_int(" ui2 **** (19)"))

assert_equal(9, churn_line_to_int(" ui ** (9)"))

end

Download churn/snapshots/churn-re.rb

def churn_line_to_int(line)

/\((\d+)\)/.match(line)[1].to_i

end

9.3 Reordering an Array

Our goal, remember, is to reorder an array of lines according to their

embedded change counts. Now that we can extract change counts from

a line, we need to do that.

The sort method, when received by an array, produces a new array with

a new order. In order to do that, it has to be able to know when one

element should go in front of another. Some objects, like integers and

strings, have that knowledge built in. Behind the scenes, sort accesses

that knowledge with something called the spaceship operator. (It looks spaceship operator

a little like a flying saucer.) Here it is in use:

irb(main):030:0> 1 <=> 2

=> -1

irb(main):031:0> "a" <=> "b"

=> -1

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-tests-re.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-re.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=102

REORDERING AN ARRAY 103

The -1 return value means that the objects are in the correct order.

When they’re in the wrong order, the return value is 1:

irb(main):032:0> 2 <=> 1

=> 1

irb(main):033:0> 'b' <=> 'a'

=> 1

When the left and right sides are equal, the return value is 0.

Because of the spaceship operator, sort needs no extra information to

put some arrays in order:

irb(main):034:0> [3, 1, 2].sort

=> [1, 2, 3]

irb(main):035:0> ['a', 'round', 'shell', 'rolled'].sort

=> ["a", "rolled", "round", "shell"]

But we want the strings in descending order of change count, not in

alphabetical order. So we can’t implicitly use the built-in knowledge.

Instead, we have to give sort a block that uses the spaceship operator,

like this:

Download churn/snapshots/churn-re.rb

def order_by_descending_change_count(lines)

lines.sort do | one, another |
Ê one_count = churn_line_to_int(one)
Ë another_count = churn_line_to_int(another)
Ì - (one_count <=> another_count)

end

end

sort will pass pairs of lines to the block. The first two Ruby statements

in the block extract the change counts from the lines, and the last one

compares them. Since the spaceship operator assumes ascending order

and we want descending, the last line reverses its result. To be specific:

• Suppose the line named one has a change count of 3 and the line

named another has a change count of 5. We’ll want another to come

first in the sorted list, which will happen if the block returns -1.

• The value of 3 <=> 5 is 1, meaning that 5 comes after 3 in the

built-in ordering.

• If the block returned that 1, sort would interpret it as an instruc-

tion to put one in front of another—the opposite of what we want.

• So we negate the result of <=> to convert the 1 into -1, telling sort

to put the line named another first.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-re.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=103

WHERE DO WE STAND? 104

sort will use the block to compare many pairs of lines, enough for it

to determine the right order for all of them. (There are an amazing

number of ways to sort an array, but they all involve comparing pairs

of elements.)

And here’s the final output:

prompt> ruby churn-re.rb

Changes since 2006-07-11:

ui ** (8)

audit * (5)

util * (4)

persistence * (3)

fulfillment (2)

inventory (2)

The order is now correct.

9.4 Where Do We Stand?

Scripting languages are traditionally better at handling text than other

programming languages. That means two things: lots of built-in string

operations and good support for regular expressions.

9.5 Exercises

There’s a new assertion you may find useful in these exercises, which

is assert_match. It uses =~ instead of == (like assert_equal does).

1. Recall that the find_all message produces a new array containing

every element that causes the given block to be true. (It was used

in Section 7.2, Using External Programs, on page 83.) Using it,

change churn-re to show only lines that have at least one asterisk.

Use a regular expression. Ignore the possibility that the subsystem

name might contain an asterisk. (That’s pretty unlikely.)

Note: an asterisk has a special meaning in a regular expression. It

means “match zero or more repetitions.” Given strings "ac", "abc",

and "abbc", /ab*c/ matches all of them, whereas /ab+c/ matches

only the last two. Because of this, you have to escape an asterisk if

you want to search for it explicitly. For example, /**/ means “zero

or more asterisks,” whereas /**/ will only make Ruby complain that

the regular expression is invalid.

2. It turns out that the convention on your project is to end certain

subsystem names with an asterisk. Change the previous exercise’s

solution so that it’s not fooled by such names. Continue to base

your solution on asterisks, not on the change count.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=104

EXERCISES 105

You may assume that asterisks can appear only at the end of a

subsystem name.

Hint: look carefully at the differences between these two lines from

subsystem_line:

irb(main):001:0> load 'exercise-1.rb'

=> true

irb(main):002:0> subsystem_line('ui*', 0)

=> " ui* (0)"

irb(main):003:0> subsystem_line('ui*', 5)

=> " ui* * (5)"

3. Within a regular expression, \w signifies a word character, which word character

is any alphabetic character A through Z, in uppercase or lower-

case, plus the digits, plus underscore. Using it, write a method,

rearrange, that passes this test:

Download exercise-solutions/churn-regexp/exercise-3-tests.rb

def test_rearrange_with_middle_name

assert_equal("Dawn E. Marick",

rearrange("Marick, Dawn Elaine"))

end

That is, it converts a lastname, firstname middlename format into

a firstname middleinitial lastname format.

4. Extend rearrange to pass this test in addition to the previous one:

Download exercise-solutions/churn-regexp/exercise-4-tests.rb

def test_rearrange_without_middle_name

assert_equal("Paul Marick", rearrange("Marick, Paul"))

end

Now rearrange will work even if there’s no middle name.

Note: the last two tests are Anglocentric. Unless you’re vastly lucky, the

resulting code will not be suited for Adolpho de la Huerta, briefly pres-

ident of Mexico, much less the more recent President Ernesto Zedillo

Ponce de León. Worse, it’s not even properly Anglocentric: it doesn’t

handle Gordon Matthew Thomas Sumner, not even under his stage

name, Sting. But handling the immense variety of possible names

would take us far beyond a mere introduction to regular expressions.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-3-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-4-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=105

Chapter 10

Ruby Facts: Regular Expressions
/abc/ =~ "abc"

→֒ 0

Regular expressions (“regexps”) match strings.

When a match is successful, the return value

is the position of the first matching character.

puts 'match' if /abc/ =~ "abc"

→֒ match

An if construct will count a successful match as

true.

/abc/ =~ "cbaabc"

→֒ 3

The matching substring can be anywhere in the

string.

/abc/ =~ "ab!c"

→֒ nil

When the string doesn’t match, the result is nil.

/abc/ =~ "abc and abc"

→֒ 0

There may be more than one match in the string.

Matching always returns the index of the first

match.

/cow/ =~ "Cow"

→֒ nil

Case matters.

"foofarah" =~ /foo/

→֒ 0

The regular expression doesn’t have to be on the

left.

10.1 Special Characters

/^abc/ =~ "!abc"

→֒ nil

You can anchor the match to the beginning of

the string with ˆ (the caret character, sometimes

called “hat”).

/abc$/ =~ "abc!"

→֒ nil

You can also anchor the match to the end

of the string with a dollar sign character,

often abbreviated “dollar.” Special characters

like the caret and dollar are what make regular

expressions more powerful than something like

"string".include?("ing").

SPECIAL CHARACTERS 107

\d Any digit

\D Any character except a digit

\s “whitespace”: space, tab, carriage return, line feed, or newline

\S Anything except whitespace

\w A “word character”: [A-Za-z0-9_]

\W Any character except a word character

Figure 10.1: Character Classes

/a.c/ =~ "does abc match?"

→֒ 5

A period (“dot”) matches any character.

/ab*c/ =~ "does abbbbc match?"

→֒ 5

The asterisk character (“star”) matches any

number of occurrences of the character preced-

ing it.

/ab*c/ =~ "does ac match?"

→֒ 5

“Any number” includes zero.

/ab+c/ =~ "does ac match?"

→֒ nil

Frequently, you’ll want to match one or more

occurrence but not zero. That’s done with the

plus character.

/ab?c/ =~ "does ac match?"

→֒ 5

The question mark character matches zero or

one occurrences but not more than one.

/a.*b/ =~ "a ! b ! i j k b"

→֒ 0

Special characters can be combined. The com-

bination of a dot and star is used to match any

number of any kind of character.

/[0123456789]+/ =~ "number 55"

→֒ 7

To match all characters in a character class,

enclose them within square brackets.

/[0-9][a-f]/ =~ "5f"

→֒ 0

Character classes containing alphabetically

ordered runs of characters can be abbreviated

with the dash.

/[.]/ =~ "b"

→֒ nil

Within brackets, characters like the dot, plus,

and star are not special.

/\[a\]\+/ =~ "[a]+"

→֒ 0

Outside of brackets, special characters can be

stripped of their powers by “escaping” them with

a backslash.

/^[\[=\]]+$/ =~ '=]=[='

→֒ 0

To include open and close brackets inside of

brackets, escape them with a backslash. This

expression matches any sequence of one or more

characters, all of which must be either [,], or =.

(The two anchors ensure that there are no char-

acters before or after the matching characters.)

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=107

GROUPING AND ALTERNATIVES 108

/[^ab]/ =~ "z"

→֒ 0

Putting a caret at the beginning of a character

class causes the set to contain all characters

except the ones listed.

/=\d=[x\d]=/ =~ "=5=x="

→֒ 0

Some character classes are so common they’re

given abbreviations. \d is the same character

class as [0-9]. Other characters can be added

to the abbreviation, in which case brackets are

needed. See Figure 10.1, on the previous page,

for a complete list of abbreviations.

10.2 Grouping and Alternatives

/(ab)+/ =~ "ababab"

→֒ 0

Parentheses can group sequences of characters

so that special characters apply to the whole

sequence.

/(ab*)+/ =~ "aababbabbb"

→֒ 0

Special characters can appear within groups.

Here, the group containing one a and any num-

ber of b’s is repeated one or more times.

/a|b/ =~ "a"

→֒ 0

The vertical bar character is used to allow alter-

natives. Here, either a or b match.

/^Fine birds|cows ate\.$/ =~

"Fine birds ate seeds."

→֒ 0

A vertical bar divides the regular expression into

two smaller regular expressions. A match means

that either the entire left regexp matches or the

entire right one does.

This regular expression does not mean “Match

either 'Fine birds ate.' or 'Fine cows ate.'” It actu-

ally matches either a string beginning with "Fine

birds" or one ending in "cows ate."

/^Fine (birds|cows) ate\.$/ =~

"Fine birds ate seeds."

→֒ nil

This regular expression matches only the two

alternate sentences, not the infinite number of

possibilities the previous example’s regexp does.

10.3 Taking Strings Apart

re = /(\w+), (\w+), or (\w+)/

s = 'Without a Bob, ox, or bin!'

match = re.match(s)

→֒ #<MatchData:0x323c44>

Like the =~ operator, match returns nil if there’s

no match. If there is, it returns a MatchData

object. You can pull information out of that

object.

match[0]

→֒ "Bob, ox, or bin"

A MatchData is indexable. Its zeroth element is

the entire match.

match[1]

→֒ "Bob"

Each following element stores the result of what

a group matched, counting from left to right.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=108

VARIABLES BEHIND THE SCENES 109

"#{match[3]} and #{match[1]}"

→֒ "bin and Bob"

Groups are often used to pull apart strings and

construct new ones.

match.pre_match

→֒ "Without a "

pre_match returns any portion of the string

before the part that matched.

match.post_match

→֒ "!"

post_match returns any portion of the string

after the part that matched. match.pre_match,

match[0], and match.post_match can be added

together to reconstruct the original string.

str = "a bee in my bonnet"

/a.*b/.match(str)[0]

→֒ "a bee in my b"

The plus and star special characters are greedy:

they match as many characters as they can.

Expect that to catch you by surprise sometimes.

/a.*?b/.match(str)[0]

→֒ "a b"

You can make plus and star match as few char-

acters as they can by suffixing them with a ques-

tion mark.

"has 5 and 3"[/\d+/]

→֒ "5"

You can use a regular expression to slice a

string. The result is the first substring that

matches the regular expression.

10.4 Variables Behind the Scenes

re = /(\w+), (\w+), or (\w+)/

s = 'Without a Bob, ox, or bin!'

re =~ s

[$1, $2, $3]

→֒ ["Bob", "ox", "bin"]

Both =~ and match set some variables. All begin

with $. Each parenthesized group gets its own

number, from $1 up through $9. You might

expect $0 to name the entire string that matched,

but it’s already used for something else: the

name of the program being executed.

$&

→֒ "Bob, ox, or bin"

$& is the equivalent of match[0].

$‘ + $'

→֒ "Without a !"

These two variables are used to store the string

before the match and the string after the match.

(The first is a backward quote / backtick; the

second a normal quote.)

These variables are probably most often used to immediately do some-

thing with a string that’s “equal enough” to some pattern. Like this:

if name =~ /(.+), (.+)/

name = "#{$2} #{$1}"

end

10.5 Regular Expression Options

/a.*b/ =~ "az\nzb"

→֒ nil

Normally, the period in a regular expression

does not match the end-of-line character. There-

fore, .* or .+ matches won’t span lines.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=109

WAIT, THERE’S MORE. . . 110

/a.*b/m =~ "az\nzb"

→֒ 0

Adding the m (multiline) option makes a period

match end-of-line characters, so the regular

expression match can span lines.

/[cC][aA][tT]/ =~ "Cat"

→֒ 0

This is a far too annoying way to do a case-

insensitive match.

/cat/i =~ "Cat"

→֒ 0

The i (insensitive) option is a better way.

10.6 Wait, There’s More. . .

There’s even more you can do with regular expressions. Please consult

a complete Ruby reference such as Programming Ruby [TH01] or a book

on regular expressions such as Mastering Regular Expressions [Fri97].

10.7 Exercises

1. Return to exercise 2 in Section 9.5, Exercises, on page 104. Assume

that the subsystem name can contain anything. In particular, it

might be like the bizarre subsystem name of this test:

Download exercise-solutions/regexp/exercise-1-tests.rb

def test_interesting_lines_subsystem_can_have_asterisk_anywhere

weird_but_boring = subsystem_line('+ and *** (3) and -', 0)

original = [weird_but_boring]

expected = []

assert_equal(expected, interesting(original))

end

Make this test (and previous tests) pass. The presence of asterisks

continues to be what makes a line interesting. (Don’t extract the

change count and check its value.)

Hint: you now know about anchors.

2. Return to exercises 2, 3, and 4 in Section 9.5, Exercises

on page 104. Using what you now know, solve the problem using

only a single regular expression.

Hint: the person’s middle name has to occur zero or one times.

Hint: You can have a group in a regular expression that doesn’t

participate in the match. In that case, its entry in the MatchData

object is nil:

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/regexp/exercise-1-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=110

EXERCISES 111

irb(main):001:0> match = /(.)(.)?/.match('a')

=> #<MatchData:0x5e6d9c>

irb(main):002:0> match[2]

=> nil

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=111

Chapter 11

Classes Bundle Data
and Methods

As it stands, our churn script is just a pile of methods without any par-

ticular organization. That’s great for a small script, but it would get out

of hand if we kept adding features. If churn kept growing, we’d at some

point feel the need to group related methods. One way would be to put

them in a file of their own. All the methods responsible for communi-

cating with a Subversion repository could be in repository.rb, and all the

ones responsible for formatting output could be in formatting.rb. churn.rb

could require those files.

A fine solution, but there’s an alternative. A Subversion repository has

a cohesive identity. It’s a unique thing out there on the network, so it

might make sense to make it a unique thing—an object—in the Ruby

universe. Then all the methods that work on Subversion repositories

would be reached by messages sent to such objects.

Ruby classes let you gather methods that have related responsibilities. classes

Let’s create the simplest possible Subversion repository class:

irb(main):001:0> class SubversionRepository

irb(main):002:1> end

=> nil

Later, we’ll put methods within it. But there are a few things we can do

with it even now.

CHAPTER 11. CLASSES BUNDLE DATA AND METHODS 113

We can create an instance of SubversionRepository: instance

irb(main):003:0> repository = SubversionRepository.new

=> #<SubversionRepository:0x326548>

new is a common way of asking a class to create a new instance. You

haven’t seen it before now because many of the built-in classes have

easier ways of creating instances. You could create an array using

something like this. . .

irb(main):004:0> a = Array.new

=> []

irb(main):005:0> a.push(1)

=> [1]

irb(main):006:0> a.push(2)

=> [1, 2]

irb(main):007:0> a.push(3)

=> [1, 2, 3]

. . . but it’s an awful lot easier to type this:

irb(main):008:0> a = [1, 2, 3]

=> [1, 2, 3]

Behind the scenes, Ruby does the Array.new for you.

Classes are objects. So what happened in irb previously is that the new

message was being sent to an object named SubversionRepository. That

object constructed a new object, which we say is a SubversionRepository

or an instance of SubversionRepository. That instance responds to all mes-

sages that SubversionRepository defines, which seems to be no messages

at all.

Not quite. Every object, just by virtue of being an object, responds to

some messages. One of them is class, which asks the object to return

the class that created it and describes it:

irb(main):009:0> repository.class

=> SubversionRepository

Another predefined method is respond_to?, which asks whether an ob-

ject responds to a particular method:

irb(main):010:0> repository.respond_to?("class")

=> true

irb(main):011:0> repository.respond_to?("new")

=> false

repository does not respond to new because it’s not itself a class. Only

classes respond to new.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=113

CHAPTER 11. CLASSES BUNDLE DATA AND METHODS 114

Talking About Classes and Instances

Ideally, everyone would be precise about classes and instances
in both speech and writing. People would refer to “the Time

class” and “a Time instance.”

But people aren’t precise; they use shorthand. “Let’s use Time”
refers to the Time class, whereas “We need a Time” refers to a
Time instance. (It’s the “a” that gives it away.) People will also
say “We need a Time object” despite the fact that both classes
and instances are objects.

Again, the “a” distinguishes between the two possibilities.

How does a class define a method? The same way as always, except the

def. . . end appears within the class. . . end:

irb(main):012:0> class SubversionRepository

irb(main):013:1> def hello

irb(main):014:2> 'hi!'

irb(main):015:2> end

irb(main):016:1> end

=> nil

irb(main):017:0> repository.hello

=> "hi!"

irb(main):018:0> repository.respond_to?('hello')

=> true

What we just did shows two Ruby conveniences:

• When you add to a class, the new method is immediately available

to existing instances of that class.

• We added on to SubversionRepository by naming it again in a class. . .

end construct. You can always add to a Ruby class. You can even

add to a predefined class. Try it: add the hello method to class

String. After you do that, you should be able to tell any string to

“hello itself”:

irb(main):030:0> "a string".hello

=> "hi!"

Enough background. Let’s change churn.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=114

CLASSES DEFINE METHODS 115

11.1 Classes Define Methods

Take a look at your latest version of churn. Which methods do you think

are concerned with details about Subversion?

My answer is svn_date, change_count_for, extract_change_count_from, and

svn_log. That means my class definition should look something like this:

class SubversionRepository

def svn_date(a_time)...

def change_count_for(name, start_date)...

def extract_change_count_from(log_text) ...

def svn_log(subsystem, start_date) ...

end

The two names prefixed with “svn” are kind of silly, though. Given that

svn_date is a SubversionRepository method, do I really need to say that it

returns a “svn” date? What other kind would it return? I’ll remove the

prefixes. Other than that, the methods are completely unchanged, just

moved inside the class. See Figure 11.1, on the following page. How

would these moved methods be used?

irb(main):037:0> require 'churn-classes.v1'

=> true

irb(main):038:0> repository = SubversionRepository.new

=> #<SubversionRepository:0x325d14>

irb(main):039:0> repository.date(Time.now)

=> "2005-11-17"

The bottom of the script needs to be changed to use the class. That

means changing only three lines, numbered here:

Download churn/snapshots/churn-classes.v1.rb

if $0 == __FILE__

subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']
Ê repository = SubversionRepository.new
Ë start_date = repository.date(month_before(Time.now))

puts header(start_date)

lines = subsystem_names.collect do | name |

subsystem_line(name,
Ì repository.change_count_for(name, start_date))

end

puts order_by_descending_change_count(lines)

end

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-classes.v1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=115

OBJECTS CONTAIN DATA 116

Download churn/snapshots/churn-classes.v1.rb

class SubversionRepository

def date(a_time)

a_time.strftime("%Y-%m-%d")

end

def change_count_for(name, start_date)

extract_change_count_from(log(name, start_date))

end

def extract_change_count_from(log_text)

lines = log_text.split("\n")

dashed_lines = lines.find_all do | line |

line.include?('-----')

end

dashed_lines.length - 1

end

def log(subsystem, start_date)

timespan = "-revision 'HEAD:{#{start_date}}'"

root = "svn://rubyforge.org//var/svn/churn-demo"

‘svn log #{timespan} #{root}/#{subsystem}‘

end

end

churn/snapshots/churn-classes.v1.rb

Figure 11.1: Bundling Related Methods Into a Class

11.2 Objects Contain Data

Right now, SubversionRepository can be used for exactly one repository

because log always uses a hard-coded URL. (See Figure 11.1.) That’s

a little like being able to open only the file named old-inventory.txt: not

awfully flexible. Let’s pull the URL out of SubversionRepository and have

it be given to the instance when it’s created with new. Here’s how the

new version of new would be used:

Download churn/snapshots/churn-classes.v2.rb

root="svn://rubyforge.org//var/svn/churn-demo"

repository = SubversionRepository.new(root)

start_date = repository.date(month_before(Time.now))

When the class object named SubversionRepository receives new, what

happens? The first thing that new does is create a new SubversionRepos-

itory instance. It then sends the newborn method the initialize message,

handing over whatever arguments were given to new. To see that hap-

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-classes.v1.rb
http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-classes.v2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=116

OBJECTS CONTAIN DATA 117

pening, let’s make initialize just print its argument:

irb(main):040:0> class SubversionRepository

irb(main):041:1> def initialize(root)

irb(main):042:2> puts "The root is '#{root}'."

irb(main):043:2> end

irb(main):044:1> end

=> nil

irb(main):045:0> SubversionRepository.new(svn://blah.blah.blah')

The root is 'svn://blah.blah.blah'.

=> #<SubversionRepository:0x33285c>

The repository root is given to method new and hence to initialize, but it’s

log that needs it. Something needs to hang onto the root until log uses

it. The way we’ve always held onto objects for later use is by naming

them with variables. We’ll continue to do that, but we can’t use the

same kind of variables as in earlier chapters. Those are local variables. local variables

They are not visible outside of their method. Here’s an example:

irb(main):001:0> class SubversionRepository

irb(main):002:1> def initialize(root)

irb(main):003:2> saved_root = root

irb(main):004:2> end

irb(main):005:1>

irb(main):006:1* def log

irb(main):007:2> puts saved_root

irb(main):008:2> end

irb(main):009:1> end

=> nil

irb(main):010:0> repository = SubversionRepository.new('the root')

=> #<SubversionRepository:0x31a57c>

irb(main):011:0> repository.log

NameError: undefined local variable or method ‘saved_root' for

#<SubversionRepository:0x31a57c>

from (irb):7:in ‘log'

from (irb):11

The variable saved_root in log is a completely different one than the one

in initialize, just as the word “Dawn” in my house refers to a different per-

son than it would in Dawn Baker’s house in California. Local variables

won’t work, but instance variables will. Those are variables that can be instance variables

seen by each of an object’s methods and so are used for communication

between them. Here’s an example:

irb(main):017:0> class SubversionRepository

irb(main):018:1> def initialize(root)

irb(main):019:2> @root = root

irb(main):020:2> end

irb(main):021:1>

irb(main):022:1* def log

irb(main):023:2> puts @root

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=117

OBJECTS CONTAIN DATA 118

irb(main):024:2> end

irb(main):025:1> end

=> nil

irb(main):026:0> repository = SubversionRepository.new('the root')

=> #<SubversionRepository:0x329ea0 @root="the root">

irb(main):027:0> repository.log

the root

=> nil

Instance variables always begin with @; local variables never do.

Instance variables cannot be seen outside of their object:

irb(main):028:0> repository.@root

SyntaxError: compile error

(irb):28: syntax error

from (irb):28

irb(main):029:0> repository.root

NoMethodError: undefined method ‘root' for

#<SubversionRepository:0x329ea0 @root="the root">

from (irb):29

If you want the outside to have access to the object named by an

instance variable, you can define a method that returns it:

irb(main):030:0> class SubversionRepository

irb(main):031:1> def root

irb(main):032:2> @root

irb(main):033:2> end

irb(main):034:1> end

=> nil

irb(main):035:0> repository.root

=> "the root"

If you have two objects of the same class, their instance variables are

completely distinct. In the following, creating a new SubversionRepository

with a different root has no effect on the old one:

irb(main):036:0> different = SubversionRepository.new('different')

=> #<SubversionRepository:0x30d4a8 @root="different">

irb(main):037:0> different.root

=> "different"

irb(main):038:0> repository.root

=> "the root"

In short, objects share methods, but they do not share variables. One

way to think of an object is as a bundle of private variables surrounded

by methods that work with them. Figure 11.2, on page 120, shows a

finished SubversionRepository that uses an instance variable, created at

Ê and used at Ë.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=118

OBJECTS CONTAIN DATA 119

Ruby Documentation: ri

String and the other “core” Ruby classes have documenta-
tion available through the command line. Suppose you know
there’s some String message that does exactly what you want,
but you’ve forgotten its name. You can remind yourself with
this:

prompt> ri String
...
Instance methods:

%, *, +, <<, <=>, ==, =~, [], []=, capitalize, capitalize!,
casecmp, center, chomp, chomp!, chop, chop!, concat, count,
crypt, delete, delete!, downcase, downcase!, dump, each,
each_byte, each_line, empty?, eql?, gsub, gsub!, hash, hex,
include?, index, initialize_copy, insert, inspect, intern,
length, ljust, lstrip, lstrip!, match, next, next!, oct,
replace, reverse, reverse!, rindex, rjust, rstrip, rstrip!,
scan, size, slice, slice!, split, squeeze, squeeze!, strip,
strip!, sub, sub!, succ, succ!, sum, swapcase, swapcase!,
to_f, to_i, to_s, to_str, to_sym, tr, tr!, tr_s, tr_s!,
unpack, upcase, upcase!, upto

ri displays its information a page at a time. When you hit the
end, you may need to quit with q . (On some systems, it exits
automatically.)

If you’ve forgotten what a method’s arguments are, you can get
more detail:

prompt> ri String.center
-- String#center

str.center(integer) => new_str
--

If _integer_ is greater than the length of _str_, returns
a new +String+ of length _integer_ with _str_ centered
between spaces; otherwise, returns _str_.

"hello".center(4) #=> "hello"
"hello".center(20) #=> " hello "

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=119

WHERE DO WE STAND? 120

Download churn/snapshots/churn-classes.v2.rb

class SubversionRepository

def initialize(root)
Ê @root = root

end

def date(a_time)

a_time.strftime("%Y-%m-%d")

end

def change_count_for(name, start_date)

extract_change_count_from(log(name, start_date))

end

def extract_change_count_from(log_text)

lines = log_text.split("\n")

dashed_lines = lines.find_all do | line |

line.include?('-----')

end

dashed_lines.length - 1

end

def log(subsystem, start_date)

timespan = "-revision 'HEAD:{#{start_date}}'"

Ë ‘svn log #{timespan} #{@root}/#{subsystem}‘

end

end

churn/snapshots/churn-classes.v2.rb

Figure 11.2: The Finished SubversionRepository Class

11.3 Where Do We Stand?

Classes are a way of organizing chunks of code by grouping related

data with methods that manipulate it. Classes aren’t the only organiz-

ing principle. Modules are another. You’ll learn about modules in Sec-

tion 19.3, Avoiding Class Name Clashes Using Modules, on page 182;

Chapter 20, Ruby Facts: Modules; and Section 23.3, Modules Instead of

Superclasses, on page 239.

http://media.pragprog.com/titles/bmsft/code/churn/snapshots/churn-classes.v2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=120

EXERCISES 121

11.4 Exercises

When writing the tests in this chapter, you may find assert_equal and

assert_match limiting. Test::Unit has other assertions; see Figure 11.3,

on page 123.

1. Suppose you wanted to gather all of churn’s methods that for-

mat output into a Formatter class. Which would you choose to put

there? Which would you choose to leave out of the class? Why?

2. How will the tests have to change to make use of your new class?

(Use churn-tests-classes.rb as a guide.)

3. Make a Formatter class that passes the tests.

4. The following code shows how churn would be changed to make

use of the new Formatter class.

Download exercise-solutions/churn-classes/exercise-3.rb

if $0 == __FILE__

subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']

root="svn://rubyforge.org//var/svn/churn-demo"

repository = SubversionRepository.new(root)

start_date = repository.date(month_before(Time.now))

formatter = Formatter.new

puts formatter.header(start_date)
Ê lines = subsystem_names.collect do | name |

formatter.subsystem_line(name,

repository.change_count_for(name, start_date))

end

puts formatter.order_by_descending_change_count(lines)

end

That’s really rather horrible, though. At Ê, the Formatter’s client client

(the code that sends it messages) is having to hold onto all the

lines the Formatter creates. Shouldn’t that be the Formatter’s job?

Absolutely, it should. Let’s change Formatter so that churn can be

written as shown here:

Download exercise-solutions/churn-classes/exercise-5.rb

if $0 == __FILE__

subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']

root="svn://rubyforge.org//var/svn/churn-demo"

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-3.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-5.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=121

EXERCISES 122

Joe Asks. . .

What About Local Variables That Aren’t in a
Method?

The rule is that local variables are visible only in their
method. But we’ve seen local variables outside a method
in irb sessions or in the lines at the end of churn.rb. What
about them? Consider them to be inside an unnamed,
invisible method, and then the same rule applies:

irb(main):012:0> local = 5
=> 5
irb(main):013:0> def print_local
irb(main):014:1> puts local
irb(main):015:1> end
=> nil
irb(main):016:0> print_local
NameError: undefined local variable or method ‘local' for

main:Object
from (irb):14:in ‘print_local'
from (irb):16

repository = SubversionRepository.new(root)

start_date = repository.date(month_before(Time.now))

formatter = Formatter.new
Ê formatter.use_date(start_date)

subsystem_names.each do | name |
Ë formatter.use_subsystem_with_change_count(

name, repository.change_count_for(name, start_date))

end
Ì puts formatter.output

end

The theme of the change is that we hand the formatter data to

hang onto. It gets the date at Ê and a subsystem’s name and

change count at Ë. Notice that I’ve changed the names to be

more exact about what responsibilities I want the methods to take

on. I changed header to use_date and subsystem_line to use_

subsystem_with_change_count. By sending the previous names,

clients were proclaiming decisions about formatting: there will

be a header (but no footer) that contains a date, and each sub-

system will be on its own line. The new names isolate decisions

about what the output looks like where it belongs, in the Formatter.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=122

EXERCISES 123

assert(value)

claims that value is logically true. The test will fail if it’s either false

or nil. Values like 5 or "hello" don’t cause a failure because they’re

logically true.

assert_not_equal(disallowed,actual)

claims that actual is not equal to disallowed.

assert_match(/regexp/,actual)

claims that the regular expression regexp matches actual.

assert_no_match(/regexp/,actual)

claims that the regular expression regexp does not match actual.

Notes:

• All Test::Unit assertions can take an extra argument, a string that’s

to be printed if the assertion fails.

• This is not a complete list of assertions. See [TFH05] for more.

Figure 11.3: More Test::Unit Assertions

The client gives the Formatter the data it needs, and the Formatter

decides what to do with it.

Once we’ve given the Formatter all the data, we ask it for the com-

plete output, which we print (Ì).

For this exercise, write tests for the three new methods (use_date,

use_subsystem_with_change_count, and output). Hints:

• The new methods use some other methods in the class, meth-

ods that already have tests. Don’t repeat yourself in the new

tests. Say only what the new methods add to the methods

they use.

• The output is printed with puts. puts prints an array like [’line1’,

’line2’] exactly like it prints "line1\nline2", so when you write

output’s tests, you get to choose whether output should return

an array of strings or a string with embedded line separators.

Which is more convenient? Which is more flexible? (I suggest

you try it both ways.)

Here’s how to convert a string with embedded line separators

into an array:

irb(main):005:0> "123\n124\n".split("\n")

=> ["123", "124"]

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=123

EXERCISES 124

irb(main):006:0> "123\n124".split("\n")

=> ["123", "124"]

Notice that split allows you not to care about whether the last

line ends with a line separator.

5. Write the code for use_date. Hint: you’ll probably want an instance

variable.

6. Write the code for use_subsystem_with_change_count. Hint: what will

you add the change count to?

7. Write output. If you chose to have output’s return value be a string

(rather than an array of strings), you’ll want to know about join,

which converts arrays of strings into single strings:

irb(main):001:0> ["line1", "line2"].join("\n")

=> "line1\nline2"

join concatenates all the strings, separating them with its argu-

ment.

8. Some silliness has crept into the code. You can see it here:

Download exercise-solutions/churn-classes/exercise-7.rb

start_date = repository.date(month_before(Time.now))

formatter = Formatter.new

formatter.use_date(start_date)

We get the current Time from Ruby and then calculate the Time

that’s a month before. We turn it into the format that Subversion-

Repository likes and then hand that off to the Formatter. Why should

the Formatter care about SubversionRepository’s date format?

In the jargon, there’s coupling between SubversionRepository and For- coupling

matter. To use a Formatter, you have to have a SubversionRepository,

even if you’re formatting information that comes from some com-

pletely different version control system.

There’s also a form of duplication. The main script knows two ways

of talking about instants of time: as Times and as SubversionRepos-

itory.dates. There’s no gain from that kind of duplication. Worse:

as we saw in Section 7.2, Blunder the First, on page 86, it causes

bugs. Back then, we had no way of isolating knowledge. Now, with

classes, we do.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-7.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=124

EXERCISES 125

Change the script so that its main code looks like the following.

(Changed lines are numbered.) Change the tests accordingly, and

make them work.

Download exercise-solutions/churn-classes/exercise-8.rb

if $0 == __FILE__

subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']

root="svn://rubyforge.org//var/svn/churn-demo"

repository = SubversionRepository.new(root)
Ê last_month = month_before(Time.now)

formatter = Formatter.new
Ë formatter.report_range(last_month, Time.now)

subsystem_names.each do | name |

formatter.use_subsystem_with_change_count(
Ì name, repository.change_count_for(name, last_month))

end

puts formatter.output

end

Notice that I changed use_date to report_range at line Ë. Two times

are relevant to gathering the change data—right now and a month

before now. Giving both to the Formatter gives it the responsibility

of deciding whether or how to use them. You’ll make the decision

when you write the tests. Right now, the Formatter uses only the

starting date (header’s original format). You could leave that as is,

have the header say something like “changes in the month before

01-03-2006,” or have it use both dates. You could even have both

a header and a footer. Go wild.

9. Formatting is still coupled to SubversionRepository: since they’re both

in the same file, they can’t be used independently. Put both of

them in their own file, and have churn.rb require it.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-8.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=125

Chapter 12

Ruby Facts: Classes
(with a Side Order of Symbols)

This chapter describes facts about classes that didn’t come up during

the previous chapter’s changes to churn. I describe an alternative to

strings and two more types of variables.

12.1 Defining Accessors

Classes are bundles of named objects manipulated through methods.

A method that returns one of the objects without changing it is called

a reader. The second method shown here is an example of a reader: reader

class MyClass

def initialize(name)

@name = name

end

def name

@name

end

end

It’s used like this:

irb(main):001:0> fred = MyClass.new('fred')

=> #<MyClass:0x3146a4 @name="fred">

irb(main):002:0> fred.name

=> "fred"

A method that changes which object an instance variable refers to is

called a writer. For convenience, Ruby makes writers look like any old writer

assignment to a variable:

DEFINING ACCESSORS 127

irb(main):003:0> fred.name = 'Fredrick'

=> "Fredrick"

irb(main):004:0> fred.name

=> "Fredrick"

The first line is actually sending the name= message with the single

argument 'Fredrick' to fred. name=’s definition shows there’s really a

method behind the scenes:

class MyClass

def name=(new_name)

@name=new_name

end

end

Readers and writers are collectively called accessors. It’s a crashing accessors

bore to have to define accessors explicitly, so Ruby provides shorthand:

irb(main):005:0> class MyOtherClass

irb(main):006:1> attr_accessor :name

irb(main):007:1>

irb(main):008:1* def initialize(name)

irb(main):009:2> @name = name

irb(main):010:2> end

irb(main):011:1> end

=> nil

irb(main):012:0> dawn = MyOtherClass.new('Dawn')

=> #<MyOtherClass:0x32542c @name="Dawn">

irb(main):013:0> dawn.name

=> "Dawn"

irb(main):014:0> dawn.name = 'Dr. Morin'

=> "Dr. Morin"

irb(main):015:0> dawn.name

=> "Dr. Morin"

“attr” in attr_accessor is short for “attribute.” It’s common to speak of ob-

jects as having fundamental properties or attributes. Those attributes

would be named by instance variables and accessed by accessors. For

example, one attribute of a Person might be her name, represented by

the variable @name and accessed by name and name=.

Notice attr_accessor’s attribute is named oddly: :name. Text beginning

with a colon is a symbol. You can think of symbols as a simplified kind symbol

of string. In fact, in most places you can use strings in place of symbols.

Defining accessors is one of those places:

irb(main):016:0> class MyOtherClass

irb(main):017:1> attr_accessor 'credentials'

irb(main):018:1> end

=> nil

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=127

DEFINING ACCESSORS 128

Joe Asks. . .

What’s the Difference Between a String and a Symbol?

The easiest way to think of a symbol is as a string that you
can’t do anything interesting with:

irb(main):021:0> :symbol.upcase
NoMethodError: undefined method ‘upcase' for :symbol:Symbol

from (irb):28
irb(main):022:0> :symbol.include?('sym')
NoMethodError: undefined method ‘include?' for :symbol:Symbol

from (irb):33

Using a symbol in your code signals a reader something about
your intentions. You’re just using it to stand in for something
else (like the name of an accessor you want Ruby to create).

irb(main):019:0> dawn.credentials = ['DVM', 'MS', 'DACVIM']

=> ["DVM", "MS", "DACVIM"]

irb(main):020:0> dawn.credentials

=> ["DVM", "MS", "DACVIM"]

Notice that I didn’t have to create the instance variable @credentials in

initialize. It will be created the first time credentials= is used. That raises

a question: what happens if you try to use an instance variable before

ever pointing it at an object?

irb(main):023:0* paul = MyOtherClass.new('paul')

=> #<MyOtherClass:0x33c99c @name="paul">

irb(main):024:0> paul.credentials

=> nil

Unassigned instance variables have the value nil. That’s different from

unassigned local variables, which produce an error:

irb(main):025:0> def negate(value)

irb(main):026:1> -valu

irb(main):027:1> end

=> nil

irb(main):028:0> negate 5

NameError: undefined local variable or method ‘valu' for main:Object

from (irb):10:in ‘negate'

from (irb):12

from :0

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=128

SELF 129

Mistyping a local variable produces an immediate failure, one that’s

easy to find. Mistyping an instance variable tends to produce more sub-

tle problems:

irb(main):030:1> def reverse_credentials

irb(main):031:2> @credentials = @credentals.reverse

irb(main):032:2> end

irb(main):033:1> end

=> nil

irb(main):034:0> dawn.reverse_credentials

NoMethodError: undefined method ‘reverse' for nil:NilClass

from (irb):27:in ‘reverse_credentials'

from (irb):30

from :0

The mistyped @credentals produces a nil, instead of the expected array.

Reversing a nil fails as shown. You’ll spend part of your Ruby life won-

dering how a particular variable could have gotten the value nil when

the problem is actually that it’s a mistyping of the variable you meant.

Sometimes you don’t want both a reader and a writer. You can define

one without the other:

irb(main):035:0> class MyOtherClass

irb(main):036:1> attr_reader :schedule

irb(main):037:1> attr_writer :weight

irb(main):038:1> end

irb(main):039:0> dawn.schedule

=> nil

irb(main):040:0> dawn.schedule = 'overfull'

NoMethodError: undefined method ‘schedule=' for #<MyOtherClass:0x3361f0>

from (irb):20

irb(main):041:0> dawn.weight = 127

=> 127

irb(main):042:0> dawn.weight

NoMethodError: undefined method ‘weight' for #<MyOtherClass:0x3361f0 @weight=127>

from (irb):22

You can define more than one attribute at a time by separating them

with commas:

irb(main):043:0> class MyOtherClass

irb(main):044:1> attr_reader :schedule, :salary

irb(main):045:1> end

12.2 Self

An object can send a message in three ways:

• It can send a message to another object:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=129

SELF 130

irb(main):046:0> class Upcaser

irb(main):047:1> def some_behavior_on(a_string)

irb(main):048:2> a_string.upcase

irb(main):049:2> end

irb(main):050:1> end

irb(main):051:0> Upcaser.new.some_behavior_on("foo")

=> "FOO"

• It can send a message to no object, which implicitly sends the

message to itself:

irb(main):052:0> class Bouncer

irb(main):053:1>

irb(main):054:1> def some_behavior

irb(main):055:2> another_behavior

irb(main):056:2> end

irb(main):057:1>

irb(main):058:1> def another_behavior

irb(main):059:2> "another_behavior used"

irb(main):060:2> end

irb(main):061:1> end

irb(main):062:0> Bouncer.new.some_behavior

=> "another_behavior used"

• It can send a message explicitly to itself, as shown at Ê:

irb(main):063:0> class AnotherBouncer

irb(main):064:1>

irb(main):065:1> def some_behavior
Ê irb(main):066:2> self.another_behavior

irb(main):067:2> end

irb(main):068:1>

irb(main):069:1> def another_behavior

irb(main):070:2> "another_behavior used"

irb(main):071:2> end

irb(main):072:1> end

irb(main):073:0> AnotherBouncer.new.some_behavior

=> "another_behavior used"

self is a variable that always names the object itself. It’s not wildly com-

mon in scripts, but it does have important uses:

• Suppose you have a class that stores an integer and can do noth-

ing but add one to it:

irb(main):074:0> class Adder

irb(main):075:1> attr_reader :value

irb(main):076:1>

irb(main):077:1> def initialize

irb(main):078:2> @value = 0

irb(main):079:2> end

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=130

SELF 131

irb(main):080:1>

irb(main):081:1> def add1

irb(main):082:2> @value += 1

irb(main):083:2> end

irb(main):084:1> end

(@value += 1 is a shorthand way of writing @value = @value + 1.)

Further suppose you wanted to add three to one of these objects.

You’d have to do this:

irb(main):085:0> a = Adder.new

=> #<Adder:0x32b23c @value=0>

irb(main):086:0> a.add1

=> 1

irb(main):087:0> a.add1

=> 2

irb(main):088:0> a.add1

=> 3

That’s rather verbose. But suppose add1 returned self instead of

the result of the addition:

irb(main):089:0> class Adder

irb(main):090:1> def add1

irb(main):091:2> @value += 1

irb(main):092:2> self

irb(main):093:2> end

irb(main):094:1> end

That allows this more succinct form:

irb(main):095:0> Adder.new.add1.add1.add1.value

=> 3

• Some method names are also special words in the Ruby language.

For example, when Ruby sees class, how does it know whether you

are sending the class message to self or starting to define a new

class? The answer is that it doesn’t:

irb(main):120:0> class Informer

irb(main):121:1> def return_your_class

irb(main):122:2> class

irb(main):123:2> end

irb(main):124:1> end

SyntaxError: compile error

(irb):123: syntax error

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=131

SELF 132

You can prevent the error with self:

irb(main):125:0> class Informer

irb(main):126:1> def return_your_class

irb(main):127:2> self.class

irb(main):128:2> end

irb(main):129:1> end

=> nil

irb(main):130:0> Informer.new.return_your_class

=> Informer

• When you leave parentheses off messages with no arguments,

what you have looks just like a local variable. Consider the fol-

lowing:

irb(main):131:0> class M

irb(main):132:1> def start

irb(main):133:2> 1

irb(main):134:2> end

irb(main):135:1>

irb(main):136:1> def multiplier
Ê irb(main):137:2> start = start

irb(main):138:2> start * 30

irb(main):139:2> end

irb(main):140:1> end

At Ê, is the start to the right of the equal sign the local variable

created on the left, or does it represent sending the message start

to self? Let’s find out:

irb(main):141:0> M.new.multiplier

NoMethodError: undefined method ‘*' for nil:NilClass

from (irb):156:in ‘multiplier'

from (irb):161

from :0

Both uses of the word “start” refer to a variable, though the exact

sequence of events is a little hard to figure out:

1. Ruby encounters the line at Ê. It’s an assignment to a name

never been seen before. Ruby creates the new local variable

and gives it the value nil.

2. Ruby now looks at the right side of the assignment. There’s a

reference to. . . what? Ruby guesses it’s the local variable start.

So Ruby assigns start the value it already has, nil.

3. The next line multiplies nil by 30.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=132

CLASS METHODS 133

The problem can be avoided by sending the message to self. . .

start = self.start

. . . or by using parentheses:

start = start()

It’s a good idea to get in the habit of doing one or the other. I favor

using self, for no good reason.

12.3 Class Methods

Classes are objects. Like all objects, they have methods that respond to

messages. One such message is new:

irb(main):142:0> fred = MyClass.new('fred')

=> #<MyClass:0x3146a4 @name="fred">

irb(main):143:0> fred.name

=> "fred"

It’s useful to distinguish between the methods belonging to a class and

the methods belonging to its instances. So, in the case of MyClass, we

say that new is a class method and name is an instance method. You class method

instance methodcan define your own class methods like this:

irb(main):144:0> class AnyOldClass

irb(main):145:1> def self.class_method

irb(main):146:2> "I am a class method."

irb(main):147:2> end

irb(main):148:1> end

The self indicates that the method is to be defined for the class itself,

not for instances. Here’s how that new class method would be used:

irb(main):149:0> AnyOldClass.class_method

=> "I am a class method."

The class method is not available to instances:

irb(main):150:0> AnyOldClass.new.class_method

NoMethodError: undefined method ‘class_method' for #<AnyOldClass:0x31f248>

from (irb):11

One common use for class methods is to provide more descriptive

names than new. For example, both Time.now and Time.new create an

object representing the current instance, but the former is clearer about

exactly what Time will be created.

Here’s how to create such a synonym. I’ll use right_now since now is

already taken. It will be used like this:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=133

CLASS METHODS 134

irb(main):151:0> require 'class-facts/more-time'

=> true

irb(main):152:0> Time.right_now

=> Thu Sep 14 12:33:14 CDT 2006

Here’s the method:

Download class-facts/more-time.rb

class Time

def self.right_now

new

end

end

For the first time in this book, new wasn’t explicitly sent to a class

object. Instead, it was implicitly sent to self, which names the same

class object that Time does. That is, within right_now, all three of these

lines are interchangeable:

new

self.new

Time.new

Time.right_now is just a synonym (a more convenient name) for Time.new.

You can also write class methods that do more than new does. For

example, suppose you often want to create Time objects representing

yesterday (exactly twenty-four hours ago). Following scripting by as-

sumption, you’d write the script as if Ruby already had the appropriate

message. Where would you expect to find it? I’d expect it to be a class

method of Time. So let’s create it there:

Download class-facts/more-time.rb

class Time

def self.yesterday

right_now - 24 * 60 * 60

end

end

irb(main):153:0> # Reload because I just added a new method.

irb(main):154:0* load 'class-facts/more-time.rb'

=> true

irb(main):155:0> Time.now

=> Thu Sep 14 12:36:28 CDT 2006

irb(main):156:0> Time.yesterday

=> Wed Sep 13 12:36:31 CDT 2006

Note that yesterday uses new indirectly, via right_now. It could also use

new or now, since they all mean the same thing. (Try it and see.)

http://media.pragprog.com/titles/bmsft/code/class-facts/more-time.rb
http://media.pragprog.com/titles/bmsft/code/class-facts/more-time.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=134

CLASS METHODS 135

Class methods don’t have to use new at all. Consider the predefined

method Symbol.all_symbols:

irb(main):200:0> Symbol.all_symbols

=> [:floor, :HISTORY, :TkMOD,: @input, :ARGV, :rjust, :size,

...

:Context, :keys, :delete, :gsub, :bind, :update]

This doesn’t create any new symbols, but it does list all the symbols

Ruby knows about. Because of what it does, it’s appropriate to asso-

ciate all_symbols with the object Symbol.

Since classes are objects, they have instance variables that can be used

in class methods. Consider a class that records how many instances it

has created in the method counted_new. It can use an instance variable

to hold the count:

Download exercise-solutions/classes/exercise-1.v1.rb

class Counter

def self.counted_new

@count = 0 if @count.nil?

@count += 1

new

end

def self.count

@count

end

end

The first line of Counter.counted_new sets the count to 0 the first time

the message is received. (Remember that instance variables start out as

nil.) The second line increases the count by one. The third line creates

and returns the instance.

Notice that a reader named Counter.count is defined explicitly instead of

with attr_reader. attr_reader defines a method for all Counter instances,

not for Counter itself.

Here’s the result:

irb(main):220:0> Counter.counted_new

=> #<Counter:0x30aa00>

irb(main):221:0> Counter.count

=> 1

irb(main):222:0> Counter.counted_new

=> #<Counter:0x1ba974>

irb(main):223:0> Counter.count

=> 2

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-1.v1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=135

CLASS VARIABLES AND GLOBALS 136

12.4 Class Variables and Globals

In addition to local and instance variables, Ruby also has class and

global variables.Class variables begin with @@. They’re not much used, Class variables

so I’ll describe them only briefly. A class variable is visible in all meth-

ods of all objects of a class, as well as in class methods. (Contrast this to

a class’s instance variables—as on the previous page—which are visible

only in class methods, not visible to an instance at all.) Many consider

class variables a bad idea. I wouldn’t go that far, but I think you can

live a rich and fulfilling life without ever using one.

Global variables don’t have anything in particular to do with classes, Global variables

but they’re the last kind of variable left, and I have to describe them

somewhere. Globals begin with $. A global variable is visible every-

where, in every method of every object of every class. Globals have more

legitimate uses than class variables, but they can get out of control.

When you have a larger script with many globals, any change might

affect anything anywhere. If you restrict yourself to local and instance

variables, you don’t need to look at as much code to figure out what’s

going on and what’s safe to change.

12.5 Exercises

1. Write a test that demonstrates Counter’s behavior. If you find any

bugs, fix them.

2. There’s going to be a problem when we add another test. You can

see it by duplicating your existing test (but with a new name).

Now run both tests. I bet one of them fails. The reason is that the

first one that ran left the count set to some value, and the second

started the count with that value rather than 0.

You could change the second test so it starts where the first left

off, but there are two problems with that:

a) That way lies madness. Innocent rearrangements of the tests

will break things all over the place. No, tests should be inde-

pendent of each other.

b) It won’t work, anyway. Tests aren’t guaranteed to run in any

particular order. Even if you get the tests ordered just so

today, that might be the wrong order tomorrow.

Can you think of a workable solution to the problem?

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=136

EXERCISES 137

3. Let’s have each instance of Counter know whether it was the first

one created, the second one, etc. To start, add accessors for an

instance variable called @birth_order.

Remember, the accessors are for the instance, not Counter itself.

Here’s a sample usage:

Counter.counted_new.birth_order

At this point, Counter doesn’t tell its instance what its order is, so

birth_order will return nil. (Why?)

4. Change Counter.counted_new to tell each new instance its birth

order. (Don’t forget to start with tests.)

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=137

Part III

Working in a World Full of

People

Chapter 13

Scraping Web Pages
with Regular Expressions

Here’s what happens when you use a web application: you poke at a

browser to make it send an HTTP command to a server. That server

is full of nice tidy arrays, strings, and other objects—just the sort of

things a script would like to work with. In response to the command,

the server converts some of that data into vast masses of HTML. If you

want your script to work with the results, you have to unconvert the

HTML into nice tidy arrays, strings, and other objects.

It’s enough to drive one mad.

Mad or sane, you’ll spend some of your scripting life “scraping” infor-

mation out of the HTML that web applications deliver to your computer.

In this chapter, we’ll build a script that scrapes information from a page

and prints it to a screen in a human-friendly form. In Chapter 15, Work-

ing with Comma-Separated Values, beginning on page 158, the script

will be made more useful by having it create a comma-separated value

(CSV) file for import into a spreadsheet.

For this part’s example, I need to use a web interface that’s universally

available, that’s from a company that won’t go out of business soon,

and that contains information that’s likely to still be available in version

834 of the interface. I chose Amazon book listings. To make the problem

more interesting, I’ll have the app print an affinity trip. Amazon’s page affinity trip

about a book tells you about other books purchased by people who

bought it. An affinity trip follows the first such link, finds the same

links on the next book’s page, follows that. . . , printing what it finds

TREATING WEB PAGES LIKE FILES 140

prompt> ruby affinity-trip.rb 0974514055

Programming Ruby: The Pragmatic Programmers' Guide, Second Edition

Agile Web Development with Rails : A Pragmatic Guide (The Facets of ←֓

Ruby Series)

Ajax in Action

Foundations of Ajax (Foundation)

DHTML Utopia Modern Web Design Using JavaScript & DOM

The CSS Anthology : 101 Essential Tips, Tricks, and Hacks

The Zen of CSS Design : Visual Enlightenment for the Web (Voices Th ←֓

at Matter)

Web Standards Solutions: The Markup and Style Handbook (Pioneering ←֓

Series)

Bulletproof Web Design : Improving flexibility and protecting again ←֓

st worst-case scenarios with XHTML and CSS

DOM Scripting: Web Design with JavaScript and the Document Object M ←֓

odel

Figure 13.1: An Affinity Trip for a Book

along the way. Figure 13.1 shows the trip that starts with the ISBN1 of

Programming Ruby.

We’re going to cover a lot of ground in this chapter, so here’s how the

trip is organized:

1. We first have to know how to fetch a web page into a string.

2. An important tactic for dealing with vast amounts of text is to use

regular expressions to restrict the focus to part of the page.

3. Extracting the title and authors requires further use of regular

expressions.

4. That different information needs to be bundled together for future

use. A new kind of object, the hash, is handy for that. hash

5. Finally, it all has to be orchestrated with a method that takes the

affinity trip.

13.1 Treating Web Pages Like Files

Copy this into the address bar of your browser: http://www.amazon.com/gp/product/0974514055.

After you go to that page, view the page source (that option is probably

1. Each book has a unique ISBN.

http://www.amazon.com/gp/product/0974514055
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=140

TREATING WEB PAGES LIKE FILES 141

Mysterious Failures

There are several reasons the examples in this chapter might
fail when you try them:

• You might be behind a proxy server. Until you tell Ruby
about it, connections will be blocked.

• You might have a firewall that will let only an officially
blessed browser use HTTP.

• Amazon is constantly changing the format of its book
pages. I’ve tried to make the regular expressions used in
this chapter resilient in the face of change, but an Ama-
zon change may still break them.

When you see a mysterious failure, go to
http://www.pragmaticprogrammer.com/titles/bmsft/ for help.

in your browser’s View menu). I just did that, and the page was 6,692

lines of HTML source. Somewhere in there is the information we need.

One way we could get at it with Ruby is to save the text to a file, open

the file, read it in, and use string searches or regular expressions to

find what we need.

The open-uri library, written by Tanaka Akira, does the first part of that

for us. After requiring it, an open message that’s available everywhere

can open both local files and URLs.2 Here’s an example:

irb(main):001:0> require 'open-uri'

=> true

irb(main):002:0> url = 'http://www.amazon.com/gp/product/0974514055'

=> "http://www.amazon.com/gp/product/0974514055"

irb(main):003:0> page = open(url)

=> #<File:/tmp/open-uri2897.0>

Once the page is opened, its contents can be read:

irb(main):004:0> text = page.read; nil

=> nil

The ; nil at the end is a trick to prevent irb from shoving all 6,692 lines

in your face. Normally, Ruby statements are on separate lines, but you

2. It works with URLs by fetching a page, putting it in a temporary file, and opening that

file. It also arranges for the temporary file to be deleted when irb or the script finishes.

http://www.pragmaticprogrammer.com/titles/bmsft/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=141

RESTRICTING ATTENTION TO PART OF THE PAGE 142

<div class="buying"><b class="sans">Programming Ruby: The Pragmatic P ←֓

rogrammers' Guide, Second Edition (Paperback)
by ←֓

<a href="/exec/obidos/search-handle-url/index=books&field-author-exac ←֓

t=Dave Thomas&rank=-relevance,+availability,-daterank/002-4184610-544 ←֓

0038">Dave Thomas, <a href="/exec/obidos/search-handle-url/index= ←֓

books&field-author-exact=Chad Fowler&rank=-relevance,+availability,-d ←֓

aterank/002-4184610-5440038">Chad Fowler, <a href="/exec/obidos/s ←֓

earch-handle-url/index=books&field-author-exact=Andy Hunt&rank=-relev ←֓

ance,+availability,-daterank/002-4184610-5440038">Andy Hunt ←֓

</div>

Figure 13.2: Book Information Inside HTML

can put several on one line if you separate them with semicolons. Given

multiple statements, irb will print the value of only the last one (nil, in

this case).

I’ll search for something interesting in the text, just to check that it

looks like an Amazon page:

irb(main):016:0> text.scan(/Customers.*also/)

=> ["Customers who bought this also", "Customers interested in this

title may also", "Customers who viewed this also"]

scan is a handy method that returns all substrings that match a regu-

lar expression. Notice that two of these strings contain more than one

space between adjacent words. That’s extremely common in HTML doc-

uments, so beware of putting spaces in regular expressions. Instead,

you should write them like this: /Programming\s+Ruby/.

13.2 Restricting Attention to Part of the Page

Somewhere inside those 6,692 lines is the author and title information

for the book. It in fact appears in several places. I want to pick a place

that’s easy to locate with a regular expression and also not likely to

change soon. (Having to change scripts to keep pace with page changes

is the bane of screen scraping.) I’ll choose the first visible use of the

information on the page, which looks something like Figure 13.2.

When faced with searches through huge strings, the first step I take is

to restrict the text I’m working with to a small chunk containing the

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=142

RESTRICTING ATTENTION TO PART OF THE PAGE 143

data I want. That way, I don’t risk having a regular expression match

something that happens to be earlier in the file. I also avoid the problem

of “greedy” regular expressions accidentally matching huge swaths of

text that extend far beyond my expected end. That happens when you

have a regular expression like /BEGIN.*END/. If there are three copies

of END in the text, it will match all the way through the third. You

can make it match only through the first by using the question mark:

/BEGIN.*?END/. That causes the match to stop at the first END. That’s

fine, but what if you want to match through the second, stopping at

neither the third (greedy) nor the first (nongreedy)? Then you have to

restrict the regular expression’s attention by chopping off the third END

and using a greedy match.

In this case, I want to restrict attention to the block of text that looks

like this:

<div class="buying"><b

...

</div>

I have to include the start of the tag because there are earlier

blocks of text that begin with <div class="buying">, and I don’t want to

match them.

Here is a regular expression that matches the beginning of that text:

/<div class="buying"><b/,

That’s fragile, though. Because HTML is relaxed about where its author

can put whitespace, it’s quite plausible that someone someday will

decide to put a space between the <div> tag and the tag. I want

my script to be robust against such changes, so I’ll allow whitespace

anywhere it’s legal. Here’s a regular expression that does that:

/<div\s+class\s*=\s*"buying"\s*>\s*<b/

That does make the regular expression harder to read, which is a

shame.

To match the end of the block, we can use this:

%r{</div\s*>}

That’s odd looking—where are the beginning and ending slashes? In-

stead of slashes, you can surround a regular expression with %r{}. That’s

useful when the regular expression will have to contain slashes itself,

which is often the case with HTML. In this case, there’s only one slash,

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=143

PLUCKING OUT THE TITLE AND AUTHORS 144

so I could have just put a backslash in front of it, but I think this vari-

ant is clearer.

I can write a general-purpose method to pull out an area defined by the

beginning and ending regular expressions:

Download affinity-trip/affinity-trip.rb

def restrict(html, starting_regexp, stopping_regexp)

start = html.index(starting_regexp)

stop = html.index(stopping_regexp, start)

html[start..stop]

end

index returns the number of the first character of the first match of

the regular expression. That’s the same number returned by =~. The

advantage of index is that it takes a second argument that says where

the search should start. That way, we can look for the first <div> after

starting_regexp, not one of the many that appear before it. After we have

the starting and stopping regular indices, we can just pull out the sub-

string with an indexing message (brackets).

13.3 Plucking Out the Title and Authors

Once the script’s attention is focused on part of the page, finding the

title and author is a straightforward use of regular expressions. Here’s

the HTML for another book’s title:

<div class="buying"><b class="sans">Cell: A Novel (Hardcover)

by

Why, in this case, is the closing of the tag on a different line?

(On Programming Ruby’s page, it wasn’t.) And why all the blank lines?

I don’t know. That kind of variation in the data is what makes scraping

with regular expressions annoying. Just after you think you’ve gotten

the expression right, you see an example that shows that it’s wrong.

These kinds of programs tend to take a while to get good at their job. (I

expect this one isn’t yet.)

Here’s code that handles that HTML:

Download affinity-trip/affinity-trip.rb

def scrape_title(html)

%r{<b.*?>(.*?)</b\s*>}m =~ html

clean_title($1)

end

http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=144

PLUCKING OUT THE TITLE AND AUTHORS 145

Notice the m at the end of the expression. That tells Ruby to match

across multiple lines. My first try at this regular expression didn’t have

it, but the Cell: A Novel page taught me I needed it.

The actual title is between the bold markers. The regular expression’s

first group (denoted $1) contains it. clean_title strips off the trailing

(Paperback) or (Hardcover) that Amazon puts on book titles. It uses—

once again—regular expressions to do the work.

The code that scrapes out the author names is a bit more complicated

because it must return an array of authors:

Download affinity-trip/affinity-trip.rb

def scrape_authors(html)

author_anchor = %r{<a.*?href=".*?field-author-exact.*?".*?>(.+?)</a\s*>}m

html.scan(author_anchor).flatten.collect do | author |

clean_author(author)

end

end

• Each author is stored within an HTML anchor (<a>) tag. (See Fig-

ure 13.2, on page 142, for an example.) The regular expression

on the first line is the best one I found to pluck the author out

without accidentally matching nonauthor anchors.

• scan, first seen on page 142, returns an array of matches. In our

earlier example, the matches were just strings, but scan behaves

specially when the regular expression has groups in it, as this

example shows:

irb(main):008:0> "1a b2 3c ".scan(/(\d)(\S)/)

=> [["1", "a"], ["3", "c"]]

That regular expression matches a digit followed by a nonspace

character. In this particular string, 1a and 3c match. Because the

regular expression contains groups, scan doesn’t return an array

of matching strings. It still returns an array, but each element of

the array is itself an array containing each group’s matches.

In scrape_authors’s regular expression (the first line), there’s one

group, intended to match one author’s name. So the result will be

something like this:

[["Dave Thomas"], ["Chad Fowler"], ["Andy Hunt"]]

http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=145

HASHES STORE NAMED DATA 146

In order to convert that into a simple array of author names, there

are two issues to solve:

– First we have to get rid of the nested arrays. The flatten method

does that:

irb(main):001:0> [["Dave Thomas"], ["Chad"], ["Andy Hunt"]].flatten

=> ["Dave Thomas", "Chad", "Andy Hunt"]

– Next we have to deal with possible spurious blanks (as in

"Andy Hunt"). clean_author does that; all we have to do is

collect the results of applying it to each author.

13.4 Hashes Store Named Data

We’re now able to retrieve a book title and author list from an Amazon

page. Later we’ll need to pull out titles and associated URLs from the

page’s affinity list. Usually such pairs—or larger clumpings—of values

are gotten at the same time and always used together, so they should

travel through the script together from the moment of creation to the

moment of use. How to do that? We could refer to them with distinct

variables:

title = find_title(html)

url = find_url(html)

next_step(title, url)

...

That’s a good way to confuse yourself: the variables that ought to go

together get separated, one gets changed without updating the other,

and so on. No, variables that are used together should be bundled into

a composite object. But how? One way is to put them into an array: composite object

info_array = find_book_info(html)

next_step(info_array)

...

The problem is that now you have to remember whether the title is

info_array[0] or info_array[1]. It would be better if you could name the ele-

ments of an array so that you could refer to info[:title] or info[:url]. Unsur-

prisingly, you can. Not with arrays, but with hashes.3 You create a hash hashes

like you create an array, just using different brackets:

irb(main):002:0> hash = {}

=> {}

3. The word “hash” is meaningless. It’s derived from “hash table,” an implementation

technique. Other languages call them “dictionaries” or “associative arrays.” You’ll occa-

sionally hear Rubyists use those terms.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=146

TAKING THE TRIP 147

You put something into a hash much like you put it into an array,

except that instead of using an integer as a index, you can use any

object as a hash key: hash key

irb(main):003:0> hash[:title] = "book"

=> "book"

You can probably guess how to extract a hash value: hash value

irb(main):004:0> hash[:title]

=> "book"

Like an array (again), you can create a hash already filled with values:

irb(main):005:0> hash = {:title => 'title', :url => 'www.book.com' }

=> {:url=>"www.book.com", :title=>"title"}

The following shows a typical use of hashes. scrape_book_info should

return both a title and an author. It creates an empty hash, finds the

author and title in turn, puts them into a hash, and returns it.

Download affinity-trip/affinity-trip.rb

def scrape_book_info(html)

retval = {}

html = restrict(html,

/<div.+class\s*=\s*"buying".*?>\s*<b/,

%r{</div\s*>})

retval[:title] = scrape_title(html)

retval[:authors] = scrape_authors(html)

retval

end

For more about hashes, see Chapter 16, Ruby Facts: Hashes, beginning

on page 166.

13.5 Taking the Trip

The following is a first draft of the method that actually takes the trip:

Download affinity-trip/affinity-trip.rb

Ê def trip(url, steps=10)

Ë steps.times do

page = fetch(url)

book_info = scrape_book_info(page)

puts format_output(book_info)

next_book = scrape_affinity_list(page)[0]

url = next_book[:url]

end

end

http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=147

TAKING THE TRIP 148

The first interesting fact about that method is the argument list (Ê). The

second argument is defined with a default value. If the method is not

given enough values to fill out the argument list, it uses the defaults.

For example:

irb(main):039:0> def flip(url, steps=10, another=[])

irb(main):040:1> "#{url}/#{steps}/#{another.inspect}"

irb(main):041:1> end

=> nil

irb(main):042:0> flip('url')

=> "url/10/[]"

irb(main):043:0> flip('url', 1)

=> "url/1/[]"

irb(main):044:0> flip('url', 8, [33])

=> "url/8/[33]"

These kind of arguments are optional arguments. They’re useful when optional arguments

almost all of a method’s clients will want to use the same value. Rather

than force each of them to give it, the duplication is removed by putting

the value in one place: the method’s argument list.

You can learn more about optional and other special kinds of argu-

ments in Chapter 17, Ruby Facts: Argument Lists, starting on page 169.

The second interesting fact is the times method (Ë). It’s sent to an integer

to repeat a block that number of times. The block fetches the URL,

scrapes the information out, prints it, scrapes out the affinity list, and

repeats it all with the url updated to be the first book in the affinity list.

If you’re having trouble following what the different messages trip sends

actually do, I suggest you require affinity-list.rb and try the individual

methods yourself. Judiciously placed puts statements can also help.

A Better Trip

As I write, the first title in Programming Ruby’s affinity list is Agile Web

Development with Rails. As it happens, Programming Ruby is in Agile

Web Development with Rails’s affinity list. In fact, it’s first. The version

of trip shown previously will show only those two books, alternating.

It would be better if trip remembered what books it has already visited.

If the top of an affinity list is somewhere it has already been, it should

instead go to the second book in the list. Here’s a version to do that:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=148

EXERCISE YOURSELF 149

Download affinity-trip/affinity-trip.rb

def trip(url, steps=10)
Ê so_far = []

steps.times do

page = fetch(url)

book_info = scrape_book_info(page)

so_far << book_info[:title]

puts format_output(book_info)

Ë next_book = scrape_affinity_list(page).find do | possible |

not so_far.include?(possible[:title])

end

url = next_book[:url]

end

end

Variable so_far (Ê) names an array that stores URLs visited so far. At Ë

the entire affinity list is searched for a book that hasn’t already been

used.

13.6 Exercise Yourself

It takes practice to get good at regular expressions. One way to practice

is to extend the script to pluck out different information from Ama-

zon pages. For example, an Amazon page also has a “what do cus-

tomers ultimately buy after viewing items like this?” affinity list. Can

you scrape that list instead? Or perhaps it would be useful to include

the price in the output. A fun one would be to include the average star

ranking. (In that case, you’d have to pull out an tag and convert

names like stars-4-5.gif into appropriate numbers.)

Rather than work with affinity-trip.rb, which runs slowly because it con-

tacts Amazon five times, you may want to model your scripts after isbn-

to-affinity-list and isbn-to-title.rb. Each of those pulls out one bit of infor-

mation about one book.

Alternately, you could look at pages that surprised me when I was

developing affinity-trip.rb. For example, the original version of the

scrape_authors regular expression didn’t use href=".*?field-author-exact.*?"

in it. What is it about professional-ajax-amazon-page.html that requires

it? Can you find a better way to pluck out the author? (I wouldn’t be

surprised.)

http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=149

EXERCISE YOURSELF 150

There’s at least one bug in trip: what happens if it can’t find a next

book? If you want to fix this bug, you’ll find the return keyword useful.

It’s described on page 237. You’ll probably also want to pull the search

for a next book out into its own (testable) method.

Tests

As you exercise yourself, you’ll want to write and run tests. You’re

starting with two kinds of tests. affinity-trip-tests.rb are tests that work

on local data files like professional-ajax-amazon-page.html. On my rather

slow computer, they run in 0.11 seconds. affinity-trip-slowtests.rb are tests

that reach out over the network and actually take affinity trips. They

take 151 seconds.

When you work on the code, you’ll want to run the fast tests frequently.

You’ll add a fast test, run it to see it fail, change code, run it and other

fast tests until the code passes, add another fast test, run it. . . . Test-

driven programming thrives on that fast feedback loop.

It’s important to keep fast tests fast. If you start adding slower tests to

them, you’ll run them less often, which will allow confusion and broken

code to build up before a test tells you of it. But it’s also important

for fast tests to be complete enough that you can make changes with

confidence that the fast tests will tell you when you err. Part of the skill

of test-driven programming is knowing how to break your script into

pieces that can be tested quickly, isolating the inherently slow bits like

network access. (We saw an example of that with churn, where the code

that spoke to Subversion was in a method that did nothing else.)

What’s the role of slow tests? They test some script behavior that simply

can’t be tested fast (like communication with a Subversion server). They

also act as a safety net: even if each piece of a script has been tested

individually, it’s nice to see a test of the whole thing, end to end.

In this particular case, the slow tests have the advantage that they

work with the real pages that Amazon delivers today, not the pages it

delivered sometime in 2005. I guarantee the Amazon page format has

changed since then; the slow tests check whether it has changed in a

way that breaks affinity-trip.rb.

You may end up with several files of fast tests and several of slow tests.

A Ruby script named test-all.rb makes it a bit easier to run different sets

of tests. Here are the three ways to use it:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=150

EXERCISE YOURSELF 151

prompt> ruby test-all.rb fast

affinity-trip-tests.rb

Loaded suite test-all

Started

.........

Finished in 0.096975 seconds.

9 tests, 18 assertions, 0 failures, 0 errors

prompt> ruby test-all.rb slow

affinity-trip-slowtests.rb

Loaded suite test-all

Started

....

Finished in 140.487732 seconds.

4 tests, 6 assertions, 0 failures, 0 errors

prompt> ruby test-all.rb

affinity-trip-slowtests.rb

affinity-trip-tests.rb

Loaded suite test-all

Started

.............

Finished in 148.029845 seconds.

13 tests, 24 assertions, 0 failures, 0 errors

You might want to peek inside test-all.rb to see how it works. ri File.glob

will help you understand it.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=151

Chapter 14

Other Ways of Working
with Web Applications

In the previous chapter, I showed you how to use open-uri and regular

expressions to scrape a web page. That approach has some disadvan-

tages:

• open-uri can only get to pages that have a fixed URL. It will have

problems with applications that use cookies or certain kinds of

forms. It’s also no help when testing JavaScript within web pages,

something that is becoming increasingly important.

• It’s hard to write regular expressions that will survive changes to

the page structure.

In this chapter, I’ll sketch some other approaches you can use when

working with web applications. I give only a brief sketch, just enough

for you to know what’s available and how it works.

14.1 Handling XHTML

The more structure text has, the easier it is for a script to pick it apart.

When text is less structured, you need pages and pages of code to do

better than regular expressions.

HTML is only semistructured. Worse, browsers have traditionally con-

tained pages and pages and pages and pages of code that let them

successfully display even web pages that violate HTML’s rules. There’s

a lot of lousy HTML out there, and you should expect to have to scrape

it. That’s why the previous chapter relies on regular expressions.

HANDLING XHTML 153

XHTML is an increasingly popular variant of HTML with a stricter struc-

ture that’s more often enforced. Even better, XHTML is a specialized

dialect of the general-purpose “markup language” XML, so most every

language—including Ruby—comes with a lot of built-in support.

Amazon’s web pages don’t use XHTML, but the organization responsible

for web standards does. (It’s the World Wide Web Consortium, or W3C.)

I’ve saved a snapshot of its front page in code/scraping-alternatives/

www.w3.org.html. If you browse it, you’ll see there are a large number

of links to technologies the W3C works with. Each of them has this

format (which I’ve indented for clarity):

<abbr title="Extensible Markup Language">

XML

</abbr>

Suppose I wanted to check that XML was one of the technologies cov-

ered. With regular expressions, I’d have to worry about the /XML/ in

the <a> tag. That might lead to contorted regular expressions. Instead,

though, I can use Ruby’s built-in XML parser, REXML.1 A parser con- parser

verts structured text into a collection of interlinked objects. In the case

of an XHTML document, each tag and block of text becomes an object.

The previous snippet of XHTML would become this structure:

<a>

<abbr>

"

 XML

 "

The gray boxes represent Element objects, and the white one is a Text

object. An object below another is contained within it. Notice that the

1. REXML was written by Sean Russell.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=153

DRIVING THE BROWSER 154

text looks odd—that’s because it contains all the characters from the

opening of the <abbr> tag to its close, which includes whitespace and

line breaks.

Suppose I told you to check manually whether XML was a technology

the W3C covers. You might conceive of the task as finding all the lines

with an <abbr> inside an <a> inside an . When you find one, you’d

look at the text. Is it XML, possibly surrounded by whitespace? If so,

the answer is yes.

The following test follows almost the same steps, except that I find all

the matching tags before I check for XML:

Download scraping-alternatives/xhtml.rb

def test_xhtml_included_in_document
Ê page_text = IO.read("www.w3.org.html")
Ë document = Document.new(page_text)
Ì topics = XPath.match(document, '//li/a/abbr')
Í assert(topics.find { | topic | topic.text.strip == "XML" })

end

Ê IO.read is the shortest way to convert an entire file into a single

string.

Ë The Document object is the gateway to the entire collection of

objects resulting from parsing the page.

Ì This line produces an array of all the <abbr> tags that are nested

as desired. The second argument to match is an XPath expres-

sion. XPath is a standardized way of referring to parts of XML

documents. It’s complicated and powerful.

Í Each <abbr> tag contains a Text object. This line finds the first one

that contains XML (and possibly whitespace). Notice that find and

its associated block are all inside the parentheses that surround

assert’s single argument. It’s not unusual to see that in Ruby when

the block is small enough (in which case you surround the block

with { and } instead of do and end).

There’s a good deal more information on XML in the forthcoming Work-

ing with XML and XPath supplement.

14.2 Driving the Browser

Rather than driving the server directly, testers who are doing end-to-

end tests often write scripts that ask a browser to do the work. At this

http://media.pragprog.com/titles/bmsft/code/scraping-alternatives/xhtml.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=154

DIRECT ACCESS TO UNDERLYING PROTOCOLS 155

writing, the two most popular tools among Ruby scripters are Watir

(http://wtr.rubyforge.org/) and Selenium (http://www.openqa.org/selenium/).

Both are open source and have enthusiastic user communities. Both

allow you to test the JavaScript within web pages, and that’s impossible

to do without driving the browser.

Here is an example of driving Internet Explorer with Watir:

Download scraping-alternatives/watir.rb

def test_marick_vanity

ie = IE.new # Launch Internet Explorer

ie.goto('http://www.google.com')

If you view the HTML source, you can see that Google

names the search field 'q'.

ie.text_field(:name, "q").set("scripting for testers")

'btnI' is the name of the "I'm Feeling Lucky" button.

ie.button(:name, "btnI").click

Case-insensitive search for my name.

assert(ie.contains_text(/marick/i))

end

As you write tests that drive the browser, be especially vigilant about

duplicate code. Suppose you have 1,000 tests that start like this:

ie.goto(START_PAGE)

ie.text_field(:name, "login").set("marick")

ie.text_field(:name, "password").set("not the real one")

ie.button(:name, "login").click

You’re in big trouble when the names of fields change, the authen-

tication rules change to require that all passwords contain numbers

and capital letters, or two-factor authentication is added. For your

own sake, create utility methods such as standard_login to contain what

would otherwise be duplicated.

14.3 Direct Access to Underlying Protocols

open-uri is built on top of classes that give more direct access to the

network. You can avoid its restrictions by working directly with those

classes. I’ll show that by testing this exciting web application:

http://wtr.rubyforge.org/
http://www.openqa.org/selenium/
http://media.pragprog.com/titles/bmsft/code/scraping-alternatives/watir.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=155

DIRECT ACCESS TO UNDERLYING PROTOCOLS 156

It accepts two parameters, name and count, and echoes them back. You

can see those parameters in the address bar’s URL.

Putting parameters in a URL is called an HTTP GET request, and open-uri

would have no problem “opening” that URL. However, parameters can

also be sent separately in what’s called an HTTP POST request. Forms

that change an application’s state often use POST requests, reserving

GET for requests that read—but don’t modify—data.

open-uri cannot send POST requests, so it cannot generate the request

produced by clicking the lower button. To do that, we’d need lower-level

code like this:

Download scraping-alternatives/http.rb

def test_echoing
Ê HTTP.start('www.testing.com') do |server|
Ë name = CGI.escape("Brian Marick")

count = CGI.escape("3")
Ì params = "name=#{name}&count=#{count}"
Í response = server.post('/cgi-bin/post-example', params)
Î assert_match(/Brian Marick/, response.body)

assert_match(/count is 3/, response.body)

end

end

http://media.pragprog.com/titles/bmsft/code/scraping-alternatives/http.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=156

DIRECT ACCESS TO UNDERLYING PROTOCOLS 157

Ê start opens a connection to the web server. Within the block, server

names that connection. You can learn more about this style of

using blocks in Section 15.2, Using Blocks for Automatic Cleanup,

on page 159.

Ë In your life using the Web, you may have noticed that URLs never

have spaces. Where you’d expect spaces, they have plus signs. You

might have also noticed oddities like &21 in URLs. That’s because

characters like spaces and exclamation points aren’t allowed in

POST or GET data, so they have to be converted (in this case, to

plus signs and &21). CGI.escape does that conversion.

CGI.escape isn’t needed on the next line, since 3 is a perfectly valid

character, but it can’t hurt.

Ì The ampersand-separated format is the way parameters are sent

to a web server, regardless of whether the request is a GET or

POST. The difference is whether the parameters are put into the

URL or sent along via a different route.

Í The opened server connection and the two post arguments together

make up the URL you’re used to seeing in a browser’s address bar.

The only part that’s missing is the question mark that normally

precedes the options (as you can see in the previous picture of the

browser).

Î An HTTP response contains a whole pile of information. The body

is the HTML that a browser would normally display.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=157

Chapter 15

Working with
Comma-Separated Values

In Chapter 13, Scraping Web Pages with Regular Expressions, beginning

on page 139, the output was ordinary human-readable text. In this

chapter, I’ll describe how affinity-trip can also produce comma-separated

values. Here’s what that looks like:

prompt> ruby affinity-trip.rb --csv

"Programming Ruby: The Pragmatic Programmers' Guide, Second Edition", ←֓

"Dave Thomas, Chad Fowler, Andy Hunt"

Agile Web Development with Rails : A Pragmatic Guide (The Facets of R ←֓

uby Series),"Dave Thomas, David Hansson, Leon Breedt, Mike Clark, Tho ←֓

mas Fuchs, Andrea Schwarz"

Ajax Patterns and Best Practices (Expert's Voice),Christian Gross

...

Each line has two fields, separated by a comma. The first is the title; the

second is a comma-separated list of authors. Notice that the CSV output

surrounds a field with quotes when the content contains a comma.

This chapter also covers three other topics:

• Finding packages like CSV and their documentation.

• A better way of working with files than the File.open you’re familiar

with.

• How to use messages as nouns as well as verbs. You can do more

than just send messages; you can grab hold of them with variables

and decide what to do with them later.

THE CSV LIBRARY 159

15.1 The CSV Library

To use the CSV library, you have to require it:

irb#1(main):001:0> require 'csv'

=> true

Once you’ve done that, you can write CSV files, read them into arrays,

or generate individual CSV structures for use by your script. We’ll start

with writing. Here’s one way to do it:

irb(main):001:0> writer = CSV.open('test.csv', 'w')

=> #<CSV::BasicWriter:0x8cfa4 @rs=nil, ...>

irb(main):002:0> writer << [1, 5.3, 'dawn']

=> #<CSV::BasicWriter:0x8cfa4 @rs=nil, ...>

irb(main):003:0> writer << [2, 5.5, 'paul']

=> #<CSV::BasicWriter:0x8cfa4 @rs=nil, ...>

irb(main):004:0> writer.close

=> nil

That should look familiar. Opening a CSV file looks like opening any

other file: you give open the filename and, if the file is to be written, 'w'.

The values to write are given by arrays. They’re “pushed” onto the out-

put with <<, which should remind you of pushing values onto arrays or

strings.

The last line fixes some sloppiness I’ve indulged in. An open file con-

sumes some operating system resources. close frees them. If a script

keeps opening files and not closing them, eventually the operating sys-

tem will get fed up and stop letting it open files. However, since all of

the scripts we’ve been using open only one or two files, I’ve just been

letting the operating system close them for us when the script exits.

15.2 Using Blocks for Automatic Cleanup

The close method is annoying because you have to remember to call it.

For that reason, the following is more idiomatic Ruby:

CSV.open("test.csv", 'w') do | writer |

writer << ['sophie', 9, 75.0]

writer << ['brian', 46, 175.4]

end

The file is automatically closed when the block finishes. As far as I

know, all the classes that have an open method support either version.

More generally, most any method that lets you do something you later

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=159

MORE CSV OPERATIONS 160

have to undo has such a variant. You’ll see how to write one in Chap-

ter 21, When Scripts Run into Problems, beginning on page 201.

The result of either of the previous snippets is a file containing some-

thing like this:

sophie,9,75.0

brian,46,175.4

15.3 More CSV Operations

A CSV object’s << performs two tasks:

1. It converts an array into a string: converting all nonstring elements

into strings and surrounding strings with commas in them with

quotes.

2. It writes the resulting line to an open file.

If you want to do only the first of those tasks, you do it like this:

irb(main):006:0> CSV.generate_line(['title', 'author, author', 34.95])

=> "title,\"author, author\",34.95"

A CSV file can be read in like this:

irb(main):026:0> s = CSV.readlines('test.csv')

=> [["sophie", "9", "75.0"], ["brian", "46", "175.4"]]

Notice that all the values are strings. You have to convert them to other

classes yourself. Here’s a way to do that for integers and floating-point

numbers using the built-in conversion methods to_i and to_f:

irb(main):028:0> s.collect do | row |

irb(main):029:1* [row[0], row[1].to_i, row[2].to_f]

irb(main):030:1> end

=> [["sophie", 9, 75.0], ["brian", 46, 175.4]]

15.4 Applying It All to affinity-trip.rb

With all that given, here’s the method in affinity-trip.rb that produces CSV

output:

Download affinity-trip/affinity-trip.rb

def csv_string(book_info)

title = book_info[:title]

authors = book_info[:authors].join(', ')

CSV.generate_line([title, authors])

end

http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=160

DISCOVERING AND UNDERSTANDING CLASSES IN THE STANDARD LIBRARY 161

Rather than printing the line itself, it just creates a string for its caller

to print. All those strings are printed with puts.

That output goes to the screen, but you can redirect it into a file like redirect

this:

prompt> ruby affinity-trip.rb --csv > file.csv

If you then start Excel (or some other spreadsheet) and open that file,

you’ll see the titles in one column and the authors in another. (Warning:

in at least some versions of Excel, asking the open dialog to show you

“All Readable Documents” won’t allow you to select file.csv. Ask it to

show you “All Documents.”)

It’s polite to let the user of the script decide whether to read it on the

screen or redirect into a file.

15.5 Discovering and Understanding Classes in the

Standard Library

How did I even know that Ruby had a CSV class? You can buy both a

hard copy and PDF copy of Programming Ruby [TH01]. When I’m work-

ing in Ruby, I always have the PDF copy a couple of keystrokes away.

When I’m wondering whether Ruby can do something, I scan down the

list of classes in the PDF’s table of contents to see what catches my eye.

If that fails, I search the Web for something like “ruby csv files.”

The next step is to move from knowledge that something exists to

knowledge of what it does. The classes delivered with Ruby fall into two

classes: the core and the standard library. The core are those classes core

standard libraryyou can use without requiring them. The standard library classes have

to be required. There’s another important difference, though: Program-

ming Ruby is only 800 pages long. That’s enough to describe every

method of the core classes but only to devote a page or two to each

of the standard library classes.

To find more documentation on standard library classes, go to http://www.ruby-doc.org/stdlib/.

All of CSV’s methods are described there in the format shown in Fig-

ure 15.1, on the next page. Along the top, the leftmost pane describes

files in the package. If you click a filename, documentation for it appears

in the bottom pane. Often, there’s only one file, and its documentation

often contains an overview and examples. The center top pane lists

classes. When you click on one, the lower pane fills with an alphabet-

ical list of its methods (and a clickable table of contents at the top).

http://www.ruby-doc.org/stdlib/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=161

DISCOVERING AND UNDERSTANDING CLASSES IN THE STANDARD LIBRARY 162

Figure 15.1: Comma-separated Values

The right-top pane is an alphabetical list of all the methods in all the

classes.

ri doesn’t contain documentation for much of the standard library. How-

ever, it’s a convention that the documentation be part of the source as

comments that can be turned into the files ri displays. Figure 15.2, on

the following page, shows how you could create such a file for CSV,

assuming that Ruby is installed at /usr/local/lib/ruby/1.8. (You’ll learn

more about where Ruby source is stored in the “Joe Asks” sidebar on

page 176.) Note that there are two dashes in front of ri.

You can also create a local copy of the HTML view of the package docu-

mentation:

prompt> rdoc --op csv --fmt html /usr/lib/ruby/1.8/csv.rb

...

prompt> ls csv

classes/ fr_class_index.html index.html

created.rid fr_file_index.html rdoc-style.css

files/ fr_method_index.html

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=162

REPLACING CODE WITH DATA 163

prompt> ri CSV

Nothing known about CSV

prompt> rdoc --ri /usr/local/lib/ruby/1.8/csv.rb

csv.rb: ccc..c..........c.....c........c..c....

c......c...c..........c....

Generating RI...

Files: 1

Classes: 12

Modules: 0

Methods: 54

Elapsed: 8.832s

prompt> ri CSV

--- Class: CSV

This program is copyrighted free software by NAKAMURA, Hiroshi. You

can redistribute it and/or modify it under the same terms of Ruby's

license; either the dual license version in 2003, or any later

version.

--

Class methods:

foreach, generate, generate_line, generate_row, open, parse,

parse_line, parse_row, read, readlines

...

Figure 15.2: Making Your Own Standard Library Documentation

That command produced HTML and put it in the csv subfolder. Point

your browser at the index.html file to see the documentation.

You can also look at the Ruby source itself. The comments that rdoc

works from are pretty easy to read directly. That’s what I usually do.

15.6 Replacing Code with Data

affinity-trip.rb produces two different kinds of output—comma-separated

values or plain titles—depending on the presence or absence of the –csv

command-line option. That option is processed here:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=163

REPLACING CODE WITH DATA 164

Download affinity-trip/affinity-trip.rb

if $0 == __FILE__

if ARGV[0] == '-csv'

FORMAT_STYLE = :csv_string

ARGV.shift

else

FORMAT_STYLE = :normal_string

end

starting_isbn = ARGV[0] || '0974514055'

trip(url_for(starting_isbn))

end

FORMAT_STYLE records what kind of output is desired. Since it begins

with a capital letter, it’s a constant. A constant is really just a variable

except that Ruby will complain if you try to change it after you’ve set it

the first time.

That constant could be used in code like this:

def format_output(book_info)

if FORMAT_STYLE == :csv_string

csv_string(book_info)

else

normal_string(book_info)

end

end

That’s annoying, though. We already used an if to decide which kind

of formatting the user wanted (when we set FORMAT_STYLE), and now we

have to do it again. Making the same decision twice is duplication, and

duplication is bad. How do we get rid of it?

By a remarkable coincidence, the formatting methods have the same

name as the two possible values of FORMAT_STYLE. What’s this code doing

in terms of objects and messages? If FORMAT_STYLE names :csv_string,

send the message csv_string to self. Otherwise, send normal_string to self. If

a symbol could somehow represent a message, we could simplify that

rule to send the message named by FORMAT_STYLE to self. As it happens,

both symbols and strings can name messages, and they can be sent

using the send message. Like this:

Download affinity-trip/affinity-trip.rb

def format_output(book_info)

self.send(FORMAT_STYLE, book_info)

end

http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://media.pragprog.com/titles/bmsft/code/affinity-trip/affinity-trip.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=164

REPLACING CODE WITH DATA 165

The first argument to send is the name of the message to send; whatever

comes after is sent along as the message’s arguments. Pretty slick, eh?

One standard programming trick is to replace decision-making code

with correctly initialized data. The more advanced the language, the

more kinds of code you can “grab” and turn into something that can

be named by a variable. In this case, we grabbed the idea of a message

being sent. It’s also possible to grab the idea of the execution of a block,

a method, and even the entire rest of the script’s execution at any point.

You’ll see only the first of these in this book (Chapter 21, When Scripts

Run into Problems, beginning on page 201).

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=165

Chapter 16

Ruby Facts: Hashes
Hashes are collections of named data. Here’s a hash that stores infor-

mation about a product in a store:

{ :name=>"Suse Cereal",

:price=>233,

:code=>"1234211234",

:type=>"food",

:quantity=>10 }

h = {}

→֒ {}

Curly brackets are used to create empty hashes.

h = { :one => 1, :two => 2 }

→֒ {:two=>2, :one=>1}

They can also be started with a set of key/value

pairs. Notice that the order in which pairs are

printed is unpredictable.

h[:three] = 4

→֒ 4

New pairs can be added using an array-like

notation.

h[:three] = 3

→֒ 3

You can change an existing value.

h[:three]

→֒ 3

Values are fetched using the same notation.

h['four'] = 'four'

→֒ "four"

Hash keys can be any object, and the values can

be as well. Symbols are the most common class

of key.

h

→֒
{:two=>2, :one=>1, :three=>3,

"four"=>"four"}

Hashes don’t care if some keys are strings and

some are symbols, and they don’t care whether

all the values are of the same class. Mix and

match however you like.

h[1000]

→֒ nil

nil is returned if there’s no matching key in the

hash. It’s the default hash value.

CHAPTER 16. RUBY FACTS: HASHES 167

h.fetch(1000, 'not found')

→֒ "not found"

fetch lets you tell the hash to use a different

value than the default if the key is not found.

h.default = 'forever not found'

h[1000]

→֒ "forever not found"

You can also tell the hash to use a particular

default from now on.

h.delete(:three)

→֒ 3

You can delete a key/value pair from a hash.

h.empty?

→֒ false

You can ask whether a hash is empty. . .

h.clear

→֒ {}

. . . and you can make sure it’s empty.

h = {:one => 1, :two => 2 }

h.has_key?(:one)

→֒ true

You can ask whether a hash contains a particu-

lar key. . .

h.has_value?(1)

→֒ true

. . . or a particular value.

h.keys

→֒ [:two, :one]

You can ask for an array of all the keys a hash

contains. . .

h.values

→֒ [2, 1]

. . . or an array of all its values.

h.size

→֒ 2

You can ask how many pairs a hash has.

merge_me = { 'key' => 'value' }

h.merge(merge_me)

→֒
{:two=>2, :one=>1,

"key"=>"value"}

You can merge two hashes to make a third. The

original two are left unchanged.

merge_me[:one] = 'another one'

h.merge(merge_me)

→֒ {:two=>2, :one=>"another one", "key"=>"value"}

If both hashes contain the same key, the value

from the second is used.

h.each_pair do | key, value |

h[value] = key # reverse key and value

end

h

→֒ {:two=>2, 1=>:one, 2=>:two, :one=>1}

You can apply a block to each key/value pair.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=167

CHAPTER 16. RUBY FACTS: HASHES 168

h.each do | key, value |

h.delete(key) if value==1

end

h

→֒ {:two=>2, 1=>:one, 2=>:two}

each is a synonym for each_pair. . .

h.collect do | key, value |

[key, value]

end

→֒ [[:two, 2], [1, :one], [2, :two]]

. . . which is useful because collect and similar

methods work whenever each does.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=168

Chapter 17

Ruby Facts: Argument Lists
17.1 Optional Arguments

Here’s how you center a string in a field of 20 spaces:

irb(main):001:0> "center me".center(20)

=> " center me "

And here’s how you center a string in a field of 20 dashes:

irb(main):002:0> "center me".center(20, '-')

=> "-----center me------"

center takes an optional argument that tells it what character to use optional argument

when centering. If no second argument is given, it uses a space. How

does center accomplish that? By being defined something like this:

Download arglist-facts/center.rb

class String

def center(field_width, padding=" ")

Notice on the def line that padding is assigned a value. That value is

used if none is provided. (The code that implements center is a bit

tricky because it has to handle several special cases. If you want to

understand it, start with the tests in arglist-facts/center-test.rb.)

A method can have many optional arguments. All of them must follow

all of the required arguments (field_width, in the case of center). Here’s

an example:

irb(main):001:0> def echo(a, b=1, c=2)

irb(main):002:1> puts "a=#{a}, b=#{b}, c=#{c}"

irb(main):003:1> end

=> nil

irb(main):004:0> echo('hi')

a=hi, b=1, c=2

=> nil

http://media.pragprog.com/titles/bmsft/code/arglist-facts/center.rb

REST ARGUMENTS 170

irb(main):005:0> echo('hi', 'there')

a=hi, b=there, c=2

=> nil

irb(main):006:0> echo('hi', 'there', 'dawn')

a=hi, b=there, c=dawn

=> nil

There’s no way to give an explicit value to c without giving one to b.

17.2 Rest Arguments

puts can take any number of arguments:

irb(main):008:0> puts 1

1

=> nil

irb(main):009:0> puts 1, 2

1

2

=> nil

Here’s what the definition of puts might look like:

def puts(*args)

args.each do | arg |

something to print the argument

end

end

The asterisk in front of args means that it will name all of the argu-

ments, gathered up into an array. Here’s an easy way to see that in

action:

irb(main):014:0> def arrayish(*args)

irb(main):015:1> args

irb(main):016:1> end

=> nil

irb(main):017:0> arrayish(1, 2, 3)

=> [1, 2, 3]

There can be only one rest argument. It must appear at the end of the

argument list, after any required and optional arguments. Here’s an

example:

irb(main):032:0> def all(required, optional='opt', *rest)

irb(main):033:1> [required, optional, rest]

irb(main):034:1> end

=> nil

irb(main):035:0> all(1)

=> [1, "opt", []]

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=170

KEYWORD ARGUMENTS 171

irb(main):036:0> all(1, 2)

=> [1, 2, []]

irb(main):037:0> all(1, 2, 3)

=> [1, 2, [3]]

The Opposite of Rest Arguments

Rest arguments let you combine multiple arguments into a single array.

You can also expand a single array into multiple arguments. Recall that

the echo defined on page 169 prints one required argument and two

optional arguments. If we have a three-argument array, we can prefix

it with an asterisk to give values to each argument:

irb(main):043:0> array = ['one', 'two', 'three']

=> ["one", "two", "three"]

irb(main):044:0> echo(*array)

a=one, b=two, c=three

=> nil

The asterisk doesn’t have to be in front of a variable. What matters is

the array, not how you refer to it. Here’s an example:

irb(main):050:0> echo(*[1, 2, 3].reverse)

a=3, b=2, c=1

=> nil

17.3 Keyword Arguments

Section 17.1, Optional Arguments, on page 169, justified optional argu-

ments in terms of String’s center method. Since you’ll almost always

want to center in a field of spaces, you want to write "s".center(20),

not "s".center(20, ’ ’). You want to give the second argument only in the

uncommon case of centering in a field of something else.

But suppose a small but vocal group of users wanted to both center

and “spread” strings. If you spread a string by 1 unit, "foo" would turn

into something like " f o o ". A spread of 4 would turn into something

like " f o o". Now you have a dilemma. Do you define center like this?

def center(field_width, padding=' ', spread=0)

That would annoy the “spreaders” because they have to give the irrel-

evant padding string when they always want it to be a blank. In turn,

you could reverse the optional arguments:

def center(field_width, spread=0, padding=' ')

But now the “padders” would be outraged, and they’re just as vocal as

the spreaders.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=171

KEYWORD ARGUMENTS 172

Keyword arguments are a way to satisfy both. Here is what the spread- Keyword arguments

ers and padders, respectively, could type:

"string".center(20, :spread => 2)

"string".center(20, :padding => '-')

Ruby’s support for keyword arguments is not as convenient as in some

languages. What you want is, oh, something like this:

def center(field_width, spread => 0, padding => ' ')

The arrows define spread and padding as keyword arguments and also

point to their default values. Instead of that, Ruby bundles all the key-

word arguments into a hash that’s assigned to the last argument in the

argument list. That looks like this:

def center(field_width, keys={})

(The default value for keys is to handle the case where no keyword argu-

ments are given.)

Given the hash, the method can assign its values to local variables and

give default values for variables not mentioned:

Download arglist-facts/keyword-example.rb

def center(field_width, keys={})

spread = keys.fetch(:spread, 0)

padding = keys.fetch(:padding, ' ')

...

Consequences

The way Ruby handles keyword arguments is simple and consistent:

when sending a message, arguments of the form key=>value have to

come at the end of the argument list. All of them are bundled up and

treated as if they’d been in a single hash argument all along. The fol-

lowing two lines of Ruby mean exactly the same thing:

center(20, :spread => 1, :padding => "-")

center(20, {:spread => 1, :padding => "-"})

That behavior lets you interpret any method that takes a hash as its

last argument as having keyword arguments, which is sometimes con-

venient, but it means that keyword arguments don’t work well with

other optional arguments or rest arguments. Experiment with the two

following methods—you’ll probably find the behavior surprising.

http://media.pragprog.com/titles/bmsft/code/arglist-facts/keyword-example.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=172

KEYWORD ARGUMENTS 173

def receiver(req, opt=2, keys={})

Is the second argument really optional?

puts "#{req}/#{opt.inspect}/#{keys.inspect}"

end

def receiver(req, keys={}, *rest)

Can you give both keywords and extra arguments?

puts "#{req}/#{keys.inspect}/#{rest.inspect}"

end

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=173

Chapter 18

Downloading Helper Scripts
and Applications

Hundreds of Rubyists in the world are busily working on software

packages to make your life easier. Most such packages are libraries of

classes and methods you can require into your scripts. Others contain

entire applications. To use packages, you need to find them, download

them, install them, and understand them. That’s what this chapter is

about.

18.1 Finding Packages

Commonly called “the RAA,” the Ruby Application Archive is the largest

index of Ruby software. You can find it at http://raa.ruby-lang.org/. In

early 2006, it contained nearly 1,400 different packages. Almost 900 of

them were libraries, and more than 400 were complete applications.

The RAA lets you search for packages by keyword (such as “XML”).

Once you’ve found a listing, you can follow links to its home page or a

download page.

Many Ruby projects are hosted at http://www.rubyforge.org. News about

changes to those projects is available via an RSS feed. If you sub-

scribe to that feed and glance over the changes each day, you’ll learn

what’s available. Part of being a good scripter is being able to say, “oh,

I remember someone has a package that does something like what I

need. . . ” and then find it through the RAA or a search engine.

http://raa.ruby-lang.org/
http://www.rubyforge.org

USING SETUP.RB 175

One warning about RubyForge: the page layout is misleading. Toward

the top, there’s a tab that says “Docs.” There’s almost always nothing

there. The real description of, and documentation for, a project is prob-

ably further down the page, under “Project Home Page.” You’ll have to

scroll to see it.

18.2 Using setup.rb

The simplest way for you to install packages is through a tool named

RubyGems. That’s not the easiest way for a package author to distri-

bute the package, though, so many have their own installation scripts.

One of these is RubyGems itself (since you can’t install RubyGems with

RubyGems until you have RubyGems). It uses setup.rb, as do many

many Ruby packages.

Since you’ll want RubyGems, install it now unless you already have it.

(More and more Ruby distributions are starting to include it.) Do that

like this:

prompt> $ gem --version

0.8.11

If you see a version number like the previous one, rather than an error

message, finish reading this section—you’ll still want to know how to

use setup.rb—but don’t bother typing the commands to your computer.

You can find RubyGems through the RAA, or you can use the version

in the code folder.

Your search for RubyGems might have landed you on one of several

RubyForge pages. No matter where you are, look for a link named down-

load. You’ll be given a choice of three types of files: a zip file (ending in

.zip), an archive compressed in a different way (.tgz), or a gem file (.gem).

Download one of the first two, and unzip it.

Once you have a RubyGems folder, look inside. Every distributed pack-

age should have a file named README, INSTALL, or something similar. It

should tell you how to install the package. As is common, RubyGems is

installed with a script named setup.rb. If you are logged in with admin-

istrator privileges (common on Windows), you install it like this:

prompt> ruby setup.rb all

On Unix-like systems, it’s unusual to run with installation privileges

turned on. To get them, type this:

prompt> sudo ruby setup.rb all

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=175

USING RUBYGEMS 176

Joe Asks. . .

Where Are Packages Installed?

Windows: Unless you installed Ruby in a nonstandard loca-
tion, its “root” is C:\ruby\lib\ruby. Ruby’s own libraries are in
1.8 beneath that. setup.rb will install libraries into site_local\1.8.
Gems will be installed into gems\1.8.

Executable scripts go in C:\ruby\bin.

Unix: Ruby will typically be in either /usr/lib/ruby (if it came
with the operating system) or /usr/local/lib/ruby (if you installed
it). Ruby’s own libraries are in the 1.8 folder below that. setup.rb

will install libraries into site_local/1.8. Gems will be installed
into gems/1.8.

Executable scripts go in /usr/bin or /usr/local/bin.

If you can’t get administrator privileges, you’ll have to install RubyGems

in your home folder. For instructions, see this book’s support site,

http://www.pragmaticprogrammer.com/titles/bmsft/, or the RubyGems doc-

umentation site, http://docs.rubygems.org.

18.3 Using RubyGems

To practice using gems, install a tool named rake (which will be eluci-

dated in Section 19.6, The rakefile, on page 188). Go somewhere other

than your code folder.1 Type the following (prefixing it with sudo on

Unix):

prompt> gem install rake

Attempting local installation of 'rake'

Local gem file not found: rake*.gem

Attempting remote installation of 'rake'

Successfully installed rake-0.7.1

Installing RDoc documentation for rake-0.7.1...

This example doesn’t show a handy feature of RubyGems. If rake had

depended on packages X, Y, and Z, RubyGems would have downloaded

and installed them first.

1. Why?—because that file contains rake-0.7.1.gem. gem would prefer that file to one

found on the network. I want to show you automatic downloading.

http://www.pragmaticprogrammer.com/titles/bmsft/
http://docs.rubygems.org
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=176

USING RUBYGEMS 177

You can also download a local copy and install that. For example, you

can type this in your downloaded code folder:

prompt> gem install xml-simple-1.0.8.gem

Attempting local installation of 'xml-simple-1.0.8.gem'

Successfully installed xml-simple, version 1.0.8

If you’ve installed a package, you can uninstall it:

prompt> gem uninstall xml-simple

Attempting to uninstall gem 'xml-simple'

Successfully uninstalled xml-simple version 1.0.8

Notice that both the install and uninstall commands report a version num-

ber. When you install a newer version of a package, it doesn’t wipe out

the old one; they both stay around until explicitly uninstalled. That

means it’s always safe to install a newer version of a package. If it

breaks a script that used to work, just uninstall it; Ruby will revert to

the older version.

Helping Ruby Find Gems

You have to tell Ruby that you’re using RubyGems in order to have

require and load find gems automatically. Do that by setting the RUBY-

OPT environment variable to rubygems. (An environment variable is a environment variable

name/value pair that’s available to every program.)

Setting Environment Variables on Windows

Type this:

prompt> echo %RUBYOPT%

If you see rubygems, there’s no need to do anything more. Otherwise:

1. In the Control Panel, open System.

2. On the Advanced tab, click Environment Variables.

3. Add a new environment variable RUBYOPT with the value rubygems.

Changes to environment variables don’t immediately become available

everywhere. irb won’t see them until you restart it. If you use SciTE to

run scripts with F5 , you’ll need to restart it before those scripts will see

the change.

Setting Environment Variables on the Mac and Other Unix

Derivatives

Type this:

prompt> echo $RUBYOPT

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=177

UNDERSTANDING WHAT YOU’VE DOWNLOADED 178

If you see rubygems, there’s no need to do anything more. Otherwise:

1. At a command prompt, type cd. That guarantees you’re in your

home folder.

2. Type echo $SHELL. If you see one of /bin/bash, /bin/sh, or /bin/ksh,

edit a file named .profile. If you see /bin/tcsh or /bin/csh, edit .cshrc.

(Note that each of those filenames begins with a period; that makes

it invisible to casual viewers.)

3. If you’re editing .profile, add a line like this to the end:

export RUBYOPT=rubygems

If you’re editing .cshrc, add a line like this to the end:

setenv RUBYLIB rubygems

4. For the change to take effect, you need to start a new command

line. If you’re using an editor that can run scripts with a keypress,

you’ll need to restart the editor before those scripts will see the

change.

18.4 Understanding What You’ve Downloaded

Most packages contain documentation, often in a subfolder named doc.

(It’s often the same as what’s available on the project’s home page.)

There may also be a folder full of examples. Failing that, the pack-

age’s tests (most likely in test) can often serve as examples. For pack-

ages installed with setup.rb, you can find those subfolders wherever you

unzipped the package.

For gems, look where gems are installed. (See the “Joe Asks” sidebar on

page 176.) RubyGems puts the documentation in the doc folder under

that. Each separate package has its own folder of documentation.

What you’re most likely to see is class and method information, most

often in HTML form. You can navigate your browser to the package’s

folder and find an index.html file. For example, see the rake documenta-

tion in gems/1.8/doc/rake-0.7.1/rdoc/index.html.

Packages installed with gems have an easier path to documentation.

You can create a web documentation server like this:

prompt> gem_server

[2006-04-26 14:44:58] INFO WEBrick 1.3.1

[2006-04-26 14:44:58] INFO ruby 1.8.2 (2004-12-25) [powerpc-darwin8.0]

[2006-04-26 14:44:59] INFO WEBrick::HTTPServer#start: pid=1307 port=8808

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=178

UNDERSTANDING WHAT YOU’VE DOWNLOADED 179

Thereafter, you can use your browser to visit http://localhost:8808/. That

page will show you all the gems installed on the machine, a link to

the local class and method documentation (if any), and a link to where

the gem came from (which sometimes contains links to documentation

that’s not part of the downloaded package).

You may need to do some digging for documentation. If there’s no class

and method information, that doesn’t mean you might not find some

documentation in the package’s gem folder. If there’s no documentation

there, there might be some on the package’s website. If there’s none

there, your favorite search engine may be able to find some somewhere

else.

If you have done a dutiful search and still failed to find the answer

you need, you can ask on the Ruby mailing list, which you can find

on the page at http://www.ruby-lang.org/en/20020104.html. The mailing list

has high traffic, but it’s friendly and people will answer well-formulated

questions quickly.

http://localhost:8808/
http://www.ruby-lang.org/en/20020104.html
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=179

Chapter 19

A Polished Script
Up to this point, to run programs like churn.rb or affinity-trip.rb, you’ve

had to know which folder they’re in. That’s annoying. It would be better

if you installed your projects or packages (the terms are synonymous)

using setup.rb. After you do, you can execute your scripts like this:

prompt> ruby -S my-script.rb

The -S tells Ruby to look for the script in all the places the command

line usually looks for programs.

In most installations, there’s an even simpler alternative:

prompt> my-script.rb

The system figures out that the file is a Ruby script and uses Ruby to

run it.

In addition to making your life easier, using setup.rb lets co-workers

install your packages on their machines without you having to give

them any special instructions.

Accomplishing all this requires a bit of extra work because setup.rb

expects your project to have a particular folder structure. This chap-

ter extends that structure to minimize the chance that your work will

clash with someone else’s. Because it would be silly to make you create

the structure yourself, it also provides a script to do it for you. It further

shows you how you can have one version of the package installed on

your machine, be working on an improved version in your own “sand-

box,” and not have the two versions interfere with each other.

THE LOAD PATH 181

19.1 The Load Path

You can arrange for ruby -S to find your scripts without knowing any-

thing about the mechanism. That’s not all you want, though. You also

want your scripts to be able to require files you’ve written without know-

ing where, exactly, those files are. To make that work right, it helps to

know about Ruby’s load path. It’s an array of strings that looks some- load path

thing like this:

["/usr/local/lib/ruby/site_ruby/1.8",

...

"/usr/local/lib/ruby/1.8",

"/usr/local/lib/ruby/1.8/powerpc-darwin7.8.0"

...

"."]

Each of those entries is a folder. The first is where libraries not part of

the Ruby distribution should be stored, the second is where the Ruby

distribution’s Ruby files are stored, the third is where the Ruby distri-

bution’s machine- and operating system-specific files are stored, and

the last is the current working folder.

That first folder is where libraries you install go. I’ll call it “the site_ruby

folder” from now on.

Both require and load search for the file they’re loading in the load path’s

folders, starting with the first one and continuing until the file is found.

Note that means that a library you install takes precedence over any

with the same name in the standard Ruby distribution.

Subfolders are not searched, so if you want to load a file named

site_ruby/subfolder/myfile.rb, the argument to load or require will have to

be "subfolder/myfile.rb". (You’ve seen examples of this in tests that

requiredtest/unit.)

The global variable $: always points to the load path. You can change

the path at will, but it’s unlikely you’ll need to do so. Instead, I’ll provide

templates for your scripts that do the work for you.

19.2 Avoiding Filename Clashes

Suppose the product you’re working on is the Coaxial Straightener. You

might have a library full of Ruby methods and classes that are useful

in testing it. Even though you’re in the Coaxial Straightener Validation

team, it would be unwise to name your library csv.rb. As we’ve seen,

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=181

AVOIDING CLASS NAME CLASHES USING MODULES 182

there’s already such a name in the Ruby distribution, but it deals with

comma-separated values. Although it’s true that the ordering of load

path entries means that require ’csv’ would pick up your library, not

Ruby’s, you’ve now lost the ability to use comma-separated values in

any of your testing. A name like cs-valid.rb would be better.

To avoid accidental name clashes, you can use a little script I wrote,

called clash-check.rb. It’s in the code/clash-check folder, and you can

install it with setup.rb. It works like this:

prompt> ruby -S clash-check.rb csv cs-valid

DANGER: A library named csv already exists.

Notice that clash-check.rb prints nothing about names that are safe, only

about names that clash. No news is good news.

clash-check.rb is a simple script, but it uses a Ruby feature not explained

until Chapter 21, When Scripts Run into Problems, starting on page 201.

Even with clash-check.rb, you don’t want to put too many files where

they could clash—it will keep getting harder and harder to find clash-

free names. The usual solution is for your library to be installed as a

single file and a folder. The folder would be named cs-valid. It would

contain all the Ruby files that do the work. Suppose one of those files

were tension.rb. A script that required it would contain this:

require 'cs-valid/tension'

For convenience, the Ruby file cs-valid.rb in the site_local folder requires

all the subfolder files:

require 'cs-valid/tension'

require 'cs-valid/torsion'

require 'cs-valid/traction'

...

A program that wanted the entire cs-valid library would simply say this:

require 'cs-valid'

19.3 Avoiding Class Name Clashes Using Modules

Avoiding clashing filenames is not enough. Suppose that your library

contains a class Reader. What if you require another class that also has

a class named Reader? There needs to be a way to distinguish yours

from that one.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=182

AVOIDING CLASS NAME CLASHES USING MODULES 183

One way would be to give all of your classes a prefix. For example, your

reader could be named CsValidReader. But it would be boring to have

to type that all the time.

Ruby offers a better solution, which is to include all your package’s

classes in a module. That would look like this: module

module CsValid

class Reader...

class Writer...

end

Now no code outside the CsValid module can see any of the classes

inside it unless it uses a fully qualified name, like this: fully qualified

reader = CsValid::Reader.new

However, code within the module can use unqualified names: unqualified names

reader = Reader.new

Including Modules

If you’re writing a script that uses a module heavily, you may want to

use unqualified names. You do that by including the module. A script including

that used your CsValid library would include it like this:

include CsValid

Note that include uses the actual module, not a string (as require and

load do).

The effects of inclusion depend upon where it happens. For now, I’ll

explain only the two cases that are by far the most common. See Chap-

ter 20, Ruby Facts: Modules, beginning on page 195, for the third,

uncommon, case.

If you include a module outside any module, any place in the script

can refer to classes using unqualified names. That would look like Fig-

ure 19.1, on the next page. Run it to see that it works.

“Any place in the script” means within any class within any module

within any file you require. If some library you use has a class with a

clashing name, you may have problems.

The safe alternative is to include a module only within a class. In that

case, only an “including” class can use unqualified names to refer to the

module’s classes. Figure 19.2, on page 185, shows a class in someone

else’s package using CsValid in this conservative way.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=183

A SCRIPT TO DO THE WORK FOR YOU 184

Download module-facts/top-level-include.rb

require 'cs-valid'

include CsValid # A top-level inclusion

CsValid's Reader class can be seen everywhere:

puts Reader.new.hello

module MyModule

class Viewer

def hello

"I can see Reader too: " + Reader.new.hello

end

end

end

puts MyModule::Viewer.new.hello

module-facts/top-level-include.rb

Figure 19.1: Making Module Contents Available Everywhere

Which alternative should you use? I suspect it doesn’t much matter.

My experience has been that class name clashes don’t happen often,

especially once you learn the names within modules you use often.

When clashes do happen, good testing discipline should catch them: if

you have a set of tests that work, you run all of them (or a big subset)

frequently, you include a new module for some purpose, and old tests

fail mysteriously in the next test run. . . it shouldn’t be too hard to work

backward to the cause.

19.4 A Script to Do the Work for You

In a book about using scripting to make your life easier, it would be

absurd to stop now and expect you to set up the right folder and module

structure. It should be done for you.

Change to your downloaded code workspace, and type the following,

answering each question with Enter :

prompt> ruby s4t-utils/bin/make-s4t-project.rb

In what folder do you want the project?

(By default, it's the current one.)

[.] =>

What name will a client require to load the project library?

(The name of a Ruby file without the ending '.rb'.)

[default-project] =>

http://media.pragprog.com/titles/bmsft/code/module-facts/top-level-include.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=184

A SCRIPT TO DO THE WORK FOR YOU 185

Download module-facts/class-include.rb

require 'cs-valid'

module MyModule

class Viewer

include CsValid # A class-level inclusion

def hello

"I can see Reader: " + Reader.new.hello

end

end

class Oblivious

"This class does not include CsValid."

"So the following method, if used, will fail:"

def hello

"I can see Reader too... or can I?" + Reader.new.hello

end

end

end

puts "Reader can be seen within Viewer:"

puts MyModule::Viewer::new.hello

puts "Reader can't be seen outside the class..."

puts "...so the following will fail if uncommented:"

puts Reader.new.hello

puts "So will this class that didn't include CsValid:"

puts MyModule::Oblivious.new.hello

module-facts/class-include.rb

Figure 19.2: Making Module Contents Available Everywhere

If a client wants to include the library, what module name will she use?

[DefaultProject] =>

=> You will need to edit README.txt.

=> You will need to edit lib/default-project.rb.

=> You can use test/test-skeleton as a template.

=> You can use bin/bin-skeleton as a template.

=> You can use lib/default-project/lib-skeleton as a template.

Now would be a good time to put the project under version control.

You now have a default-project folder with lots of files and folders in it.

See Figure 19.3, on the next page.

http://media.pragprog.com/titles/bmsft/code/module-facts/class-include.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=185

A SCRIPT TO DO THE WORK FOR YOU 186

bin-skeleton

setup.rb

bin/

Rakefile

README.txt

default-project.rb

default-project/

lib/

s4t-utils.rb

s4t-utils/

third-party

test/

test-skeleton

lib-skeleton

Figure 19.3: The Standard Script Folder Structure

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=186

WORKING WITHOUT STEPPING ON YOURSELF 187

README.txt is where you describe your package. (Instructions for instal-

ling it with setup.rb are already included.) The rakefile makes it easier to

do tasks like run tests. See Section 19.6, The rakefile, on the following

page, for more.

bin is where to put complete scripts that you run from the command

line. test is for tests, and lib is for all the other Ruby files in your project

(ones that are required by a bin script or other Ruby file).

lib contains a file and a folder. setup.rb will install both of them in the

site_ruby folder. To load all of the files in the project, use require ’default-

project’. To load any particular file, use require ’default-project/file’.

Within lib, you’ll find another folder third-party. Use it when you’re about

to distribute your script to others. Suppose your package requires three

libraries that don’t come with Ruby. You could say to your users, “before

you can use my wonderful package, you have to install this, and that,

and the other.” They’ll find it more convenient if you put those libraries

into the third-party folder. They’ll only have to install your package to

be ready to use it. Your scripts will automatically change the load path

to automatically pick up the third-party libraries—and pick them up

in preference to any in the user’s site_ruby folder. That way, your script

won’t break because they’re using a different version of the same utility

library.

Each third-party folder starts out with s4t-utils, which are some methods

and classes I’ve found useful when working on this book. You use it

with require "s4t-utils". Don’t delete that library even if you use nothing in

it: the behind-the-scenes load-path–setting code needs it.

19.5 Working Without Stepping on Yourself

Suppose you’re spending part of your time working with a stable version

of your package and part of the time making a new version. If you’re

running tests on the new version, you don’t want require to find the old

version’s files. The same is true if you run one of the scripts in the bin

folder. “Skeleton” files in the test and bin folders are set up to avoid that.

Copy them to create your own files.

bin-skeleton ensures that a script you run finds the correct versions of

its files, no matter where you run it from. The test-skeleton requires you

to run the tests in the test folder. rake relaxes that requirement.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=187

THE RAKEFILE 188

Installing Into a Package’s Third-party Folder

If your package is to be self-contained, you need to install
everything it uses into the lib/third-party folder. How do you do
that?

• If you’re using a gem, install it like this:

prompt> gem install extensions --remote --install-dir gems

If you’re in the third-party folder of your package, that
installs the extensions gem into the gems subfolder. It will
now automatically be found by require.

• If you’re using a package also created with make-s4t-

project.rb, I assume that both packages (the one you’re
creating now and the one you’re using) are contained in
the same folder. In that case, go to the package you want
to use and type this:

prompt> rake install-into peer='s4t-inform'

• If the library you want is normally installed with setup.rb,
you’ll find that installer is rather insistent about the
folder structure it creates. The easiest thing to do is have
it create its structure in a temporary folder:

prompt> ruby setup.rb install --prefix=/temp

Then navigate down to the location where the
actual files are, which will be something like
/temp/opt/local/lib/ruby/site_ruby/1.8, and copy the files
from there into your package.

19.6 The rakefile

rake, written by Jim Weirich, is a Ruby tool that lets you describe sim-

ple tasks in a file, the rakefile. You can also describe dependencies rakefile

between tasks so that, for example, the task to install a new version

of your package won’t start unless the task to run the tests finishes

successfully.

You installed rake in Section 18.3, Using RubyGems, on page 176. To

see what the rakefile can do for you, type the following in your new

default-project folder. Take care to type two dashes in front of “tasks”.

prompt> rake --tasks

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=188

THE RAKEFILE 189

Your Own Utility Library

One of the annoying things about the universe is that a net
long-term benefit often has a net short-term costs. One of the
annoying things about me—and probably you—is that it’s hard
to work up the energy to pay the short-term cost when I have
so much else to do.

You will be a much better scripter if, whenever you find your-
self writing similar code for the second time, you put it in a
separate utilities library. Over time, many scripting tasks that
are hard now will be easy—just reach in your toolbox and pull
out what you need. But there’s a short-term cost to that.

The way I convince myself to pay that cost is to make a rule
that I must spend around twenty minutes at the end of every
two-hour, half-day, or full-day task making myself more pro-
ductive in some way. That might be adding a class to my own
private library, cleaning up a script and learning from mis-
takes I fix, reading some documentation, or seeing what some
package on the Net does.

If you’re lucky, you can avoid adding something to your
utility library because you never needed to write it in
the first place. Instead, you found it in someone else’s
library and used that. So if it seems that someone must
have already written code like what you want, check for
it in the Extensions (http://rubyforge.org/projects/extensions/)
and Facets (http://facets.rubyforge.org/) projects. Currently, the
Facets library is much larger but has more items without doc-
umentation (and the volume can make it hard to find what you
want).

http://rubyforge.org/projects/extensions/
http://facets.rubyforge.org/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=189

THE RAKEFILE 190

Here are descriptions of some of what you’ll see.

rake test

This runs both the fast and slow tests. Fast tests must end in

"-tests.rb" and slow tests in "slowtests.rb". Tests must be in the

test folder or in its subfolders.

This is the default task, so you can omit the “test” from the com-

mand line.

You can run the tests (and any other rake task) from anywhere in

your project, not just in the test directory. The rakefile arranges the

load path appropriately.

rake fast

This runs only the fast tests.

rake install

This is the safe way to install. It runs the tests first and then runs

setup.rb.

rake increment-version

When someone finds a problem in your package, almost the first

question you’ll want to ask is “what version are you using?” This

book has the convention of putting version numbers in a

lib/package/version.rb file. They look like this:

Download s4t-utils/lib/s4t-utils/version.rb

module S4tUtils

Version = '0.2.0'

end

A 00 in the first slot conventionally means “I don’t think I’m done

with this yet,” while a 1 or greater means “it’s a complete package.”

(Note: it has been widely noted that Rubyists often take forever to

declare their packages ready to be version 1.)

The number in the second slot changes when you announce the

availability of a significant new zip file or gem to others. It’s com-

mon for even numbers to be considered stable and odd numbers

experimental. For a long time, the stable version of Ruby was 1.6

and the adventurous people used 1.7. At some point, 1.7 was sta-

ble enough to be declared 1.8.

The final number changes much more frequently whenever you

have reached some personal milestone and are ready to move

http://media.pragprog.com/titles/bmsft/code/s4t-utils/lib/s4t-utils/version.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=190

LOCATION-INDEPENDENT TESTS 191

on to something else. It’s this number that rake increment-version

changes.

rake commit

Commits or checks in changed files to your version management

system. Right now, it works only with Subversion, which is the

one I use and recommend. If the files aren’t under version control,

this does nothing.

rake install-into peer=NAME

If you want to use one package as a third-party library in another,

you use this command. The NAME is expected to be in the same

folder as your project. For example, to install the user-choices libra-

ry into default-project, you’d do this:

prompt> cd user-choices

prompt> rake install-into peer=default-project

If you’re using Subversion, the installed files will be put under

version control.

rake update-peers

Inevitably, just after you install a package into thirty-seven other

packages, you’ll find a bug. After you fix it, you have to update

all thirty-seven packages. Use this command. For example, when

I update-peers in the s4t-utils folder, rake looks through all other

packages in the code folder that use s4t-utils.

When it finds them, it adds new files or folders, replaces changed

ones, and deletes files or folders no longer used. It also tells Sub-

version of the changes if a peer is under version control.

rake rdoc

This will process the Ruby files and turn comments into HTML

with class and method definitions.

rake move-on

I use this when I’ve finished a task and am ready to move on to

something else. It runs the tests, increments the version, commits

(if the project is using Subversion), and updates peers.

19.7 Location-independent Tests

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=191

LOCATION-INDEPENDENT TESTS 192

Distributing with Gems

RubyGems is a superior distribution method, built on top of
setup.rb. The big advantage of RubyGems is that each gem
knows its dependencies. When you install it, all the depen-
dencies will be fetched too. There’s no need for a third-party

folder.

I’ve chosen not to use RubyGems in this book’s template
project because I expect that most of your packages will
depend on at least one in-house library. RubyGems can auto-
matically install dependencies only if it can find them. That
means you’d have to run a gems server on a machine in your
company or put your gems on the http://rubyforge.org site. The
first might be more work than you want to do, and the second
is probably prohibited by your company.

If you do want to distribute with gems, see
http://docs.rubygems.org.

Before running its tasks, rake changes the current working folder to the

one containing the rakefile. That means that’s the current working folder

when running rake test. But if you’re running an individual test with ruby

some-test.rb, you’re likely running it in the test subfolder. Normally, you

don’t care about that difference because tests based on the test-skeleton

arrange the load path so that the location doesn’t matter.

However, if your test opens a file or uses a script in the bin folder, the

location does matter. For example, consider test code like this:

IO.read('programming-ruby-amazon-page.html')

That code assumes the test that contains it is running in the folder that

contains the data. That can’t always be true when the rakefile is outside

that folder. Therefore, the S4TUtils module contains some utility methods

to make tests location independent. They are as follows:

test(name)

The correct name of file name in the test folder. It’s typically used

like this:

IO.read(test('datafile'))

test_data(name)

The correct name of file name in a data folder within the test folder.

http://rubyforge.org
http://docs.rubygems.org
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=192

EXERCISES 193

I like to separate the data from the tests, and putting them in a

subfolder is a simple way to do it.

script(name)

The correct name of file name in the bin folder. It’s often used like

this:

title = ‘ruby #{script('isbn-to-title.rb')} 0743292332‘

Since these utilities have such common names, I worried that including

them whenever you includedS4tUtils would lead to name clashes. So I put

them in a nested module S4tUtils::TestUtil.1 You can use its methods in

three ways:

include S4tUtils::TestUtil

... script('name') ...

include S4tUtils

... TestUtil.script('name') ...

... S4tUtils::TestUtil.script('name') ...

The utilities work wherever you use them because they depend on the

constant PACKAGE_ROOT. It always names the folder that contains the

rakefile (and the test folder). You can use that constant to write your own

utilities.

19.8 Exercises

1. Add some Ruby files to default-project.

a) Create a test file by copying test-skeleton. Remember that fast

tests are expected to end in “tests.rb” and slow tests should

end in “slowtests.rb”. You’ll need to decide whether your test

should require only the file it’s testing (a file within lib/default-

project) or all the files (by requiring lib/default-project.rb). You’ll

also need to decide whether to include your module in the

test class or spell out names fully (as DefaultProject::Thing). The

skeleton shows you where to make those decisions.

b) Type rake, and watch the test fail.

c) Create a file in lib/default-project that will pass the test. You

can use lib-skeleton as a model.

1. You can find out about nested modules in Section 20.1, Nested Modules, on page 196.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=193

EXERCISES 194

d) If you want that file available to those who require the whole

library, add the new file’s name to lib/default-project.rb.

e) Type rake again. (Note that you can type it in the lib folder; rake

will still find the tests.) If the test doesn’t pass, fix the code.

f) In the bin folder, make a command-line script. You can use

bin-skeleton as a template. As with the tests, you’ll have to

decide whether you want to include your module.

g) Does the script work?

h) Try typing this:

prompt> rake install

prompt> cd ..

prompt> ruby -S your-command.rb

The cd is so that Ruby can’t find the command by looking in

the current folder. It has to search for the installed version.

i) Add a few lines of comment just before your new code in

your new lib/default-project file. Type rake rdoc. Then, with your

browser open doc/html/index.html. How does it look?

2. Convert the existing affinity-trip project into this new format. The

easiest way to do that is to create a fresh project and start moving

files into the appropriate places. My solution is in the s4t-affinity-trip

folder in your workspace.

As usual, it’s probably easiest to start with tests.

Put the new library code within an AffinityTrip module. Don’t forget

that you’ll need to modify the test files to use that module.

In the implementation you’re copying from, all the methods are

inside the executable affinity-trip.rb script. You should move those

out into the lib folder.

The old implementation has comments in it like these:

Fetching Amazon book pages

Scraping information out of Amazon book pages

How to print

Making a note that the next group of methods are all related is one

of the weaker grouping mechanisms. It’s easy to put new methods

in the wrong group. Putting the groups in separate files is stronger.

Putting them all in a class is stronger still. Consider whether you

want to split the single library file into two or more.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=194

Chapter 20

Ruby Facts: Modules
Names refer to Ruby objects. For example, ARGV names an array, String

names a class, and puts names a method. A namespace is a collection namespace

of names. The global namespace is the one that contains all the usual global namespace

Ruby names like ARGV, String, and puts.

You can create another namespace within the global namespace with

a module. The module in Figure 20.1, on the next page, contains four

new names. They are the name of a class, the name of a string, the

name of a module method, and the name of a mixin method. Module and module method

mixin methodmixin methods should remind you of the class and instance methods of

Section 12.3, Class Methods, on page 133. (You’ll find out about their

connection, and why mixin methods are so named, in Section 23.3,

Modules Instead of Superclasses, on page 239.)

When the four new names are created, they’re not placed inside the

global namespace. The name of the module is, though, and most of its

interior names can be reached through its name.

To use a name within the module, you must qualify it with the name of qualify

the module:

irb(main):001:0> require 'some-module' # run irb in code/module-facts

=> true

irb(main):002:0> SomeModule::Constant

=> "I am a constant."

irb(main):003:0> SomeModule::SomeClass.new.hello

=> "hi"

You can qualify the names of module methods in the same way:

irb(main):004:0> SomeModule::speak

=> "I am a module method."

NESTED MODULES 196

Download module-facts/some-module.rb

module SomeModule

class SomeClass

def hello

"hi"

end

end

Constant = "I am a constant."

def self.speak

"I am a module method."

end

def speak

"I am a mixin method."

end

end

module-facts/some-module.rb

Figure 20.1: Four Kinds of Names Within a Module

Because that looks a bit odd, you can also use the dot notation to say,

in effect, “send the speak message to SomeModule”:

irb(main):005:0> SomeModule.speak

=> "I am a module method."

You cannot use the dot notation with constants or class names because

a dot always means sending a message. So SomeModule.Constant would

mean “send the message Constant to module SomeModule.” That will fail

because there’s no method named Constant to receive the message.

The name of the mixin method cannot be reached from outside the

module.

20.1 Nested Modules

You can place modules inside other modules, as in Figure 20.2, on the

following page. (Note that, as with classes, the second definition of a

module just adds onto the first, so we’re still working with the same

SomeModule as before.)

http://media.pragprog.com/titles/bmsft/code/module-facts/some-module.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=196

INCLUDING MODULES 197

Download module-facts/some-module.rb

module SomeModule

module InnerModule

Constant = "I am an inner constant."

def self.speak

"I am an inner module method."

end

def speak

"I am an inner mixin method."

end

def SomeClass

def hello

"an inner hello"

end

end

end

end

module-facts/some-module.rb

Figure 20.2: Nesting Modules

InnerModule makes no change to the global namespace. However, it does

add itself to SomeModule’s namespace. Objects inside it can be reached

with doubly qualified names:

irb(main):006:0> SomeModule::InnerModule::Constant

=> "I am an inner constant."

20.2 Including Modules

When you include a module, you make some of its names available in

the current namespace:

irb(main):007:0> include SomeModule

=> Object

irb(main):008:0> Constant

=> "I am a constant."

irb(main):009:0> speak

=> "I am a mixin method."

irb(main):010:0> SomeClass.new.hello

=> "hi"

irb(main):011:0> InnerModule

=> SomeModule::InnerModule

http://media.pragprog.com/titles/bmsft/code/module-facts/some-module.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=197

INCLUDING MODULES 198

Notice that speak now refers to the mixin method, not the module

method. You continue to get to the module method in the old way:

irb(main):012:0> SomeModule.speak

=> "I am a module method."

Although InnerModule is now in the namespace, its names are not. They

need to be qualified with its name (but not with SomeModule):

irb(main):013:0> InnerModule::Constant

=> "I am an inner constant."

Name Clashes

Having included SomeModule, we can include another one, such as

SomeModule::InnerModule. But notice that they share names. What hap-

pens?

irb(main):014:0> include InnerModule

=> Object

irb(main):015:0> Constant

=> "I am an inner constant."

irb(main):016:0> speak

=> "I am an inner mixin method."

The new names silently override the old ones. That could cause consid-

erable confusion. Having a thorough test suite helps. If you run your

tests frequently, they pass consistently, and then you add an include

to some file and old tests suddenly fail, chances are you’ve overridden

something.

In that case, stick to qualified names.

Nesting Is Different From Inclusion

An internal module has access to all the names in its “parent” module.

Here’s an example:

irb(main):017:0> module NewModule

irb(main):018:1> Slithy = 'slithy'

irb(main):019:1> module NewInnerModule

irb(main):020:2> puts Slithy

irb(main):021:2> end

irb(main):022:1> end

slithy

=> nil

However, a nested module does not have access to names included in

its parent:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=198

CLASSES ARE MODULES 199

irb(main):023:0> module IncludedModule

irb(main):024:1> IncludedConstant = 'hi'

irb(main):025:1> end

=> "hi"

irb(main):026:0> module NewModule

irb(main):027:1> include IncludedModule # include into outer module

irb(main):028:1> module NewInnerModule

irb(main):029:2> puts IncludedConstant # This won't work.

irb(main):030:2> end

irb(main):031:1> end

NameError: uninitialized constant NewModule::NewInnerModule::IncludedConstant

from (irb):15

There’s one exception. Names included in the global namespace are

available everywhere:

irb(main):032:0> include IncludedModule # include globally

=> Object

irb(main):033:0> module NewModule

irb(main):034:1> module NewInnerModule

irb(main):035:2> puts IncludedConstant # This will now work

irb(main):036:2> end

irb(main):037:1> end

hi

=> nil

20.3 Classes Are Modules

Classes are a kind of module. There are two key differences between

them: modules do not respond to new (so you can’t make instances),

and you cannot include a class. However, the rules about qualifying

names apply in the same way:

irb(main):038:0> class MyClass

irb(main):039:1> Constant = "constant in class"

irb(main):040:1>

irb(main):041:1* def self.reveal_constant

irb(main):042:2> Constant

irb(main):043:2> end

irb(main):044:1> end

=> nil

irb(main):045:0> MyClass::Constant

=> "constant in class"

irb(main):046:0> MyClass.reveal_constant

=> "constant in class"

irb(main):047:0> MyClass::reveal_constant

=> "constant in class"

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=199

CLASSES ARE MODULES 200

One consequence of this similarity is potential confusion when you fol-

low the rules of Chapter 19, A Polished Script, beginning on page 180,

and put all of your package’s code within a module. There’s a tempta-

tion to suppose this would work:

module MyFinePackage

include SomeOtherModule

class FirstClass...

class SecondClass...

end

Since classes are modules, what you learned in Section 20.2, Nesting Is

Different From Inclusion, on page 198, applies. You cannot use unqual-

ified names within FirstClass and SecondClass to refer to constants and

methods named within SomeOtherModule.

You can use a qualified name. Suppose SomeOtherModule has a con-

stant Constant. Because all the names in SomeOtherModule have been

included in MyFinePackage, code within FirstClass or SecondClass can refer

to it as MyFinePackage::Constant. The more common alternative is to

include SomeOtherModule in each of the two classes.

The file code/module-facts/inclusion-locations.rb is a compact example of

how different inclusion locations affect different naming locations.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=200

Chapter 21

When Scripts Run into Problems
In Section 19.8, Exercises, on page 193, you created an executable

script from the bin-template. At the end of the script, you might have

seen this peculiar code:

Download error-handling/bin/bin-skeleton

with_pleasant_exceptions do

Your program here.

end

What’s that about? To see, run this script:

Download error-handling/bin/test-with.rb

with_pleasant_exceptions do

File.open("no-such-file")

end

You should see this:

prompt> ruby test-with.rb

No such file or directory - no-such-file

That’s a reasonable error message. Now delete with_pleasant_exceptions,

do, and end, leaving only the line that tries to openno-such-file. Run it

again to see this:

prompt> ruby test-with.rb

test-with.rb:26:in ‘initialize': No such file or directory - no-such-file ←֓

(Errno::ENOENT)

from test-with.rb:26:in ‘open'

from test-with.rb:26

The method with_pleasant_exceptions somehow reduces a spew of error

messages down to just the message about what went wrong. This chap-

ter is about how that happens and why it’s a sensible thing to do.

http://media.pragprog.com/titles/bmsft/code/error-handling/bin/bin-skeleton
http://media.pragprog.com/titles/bmsft/code/error-handling/bin/test-with.rb

USE EXCEPTIONS TO REPORT PROBLEMS 202

In order to understand the “how,” you’ll need to learn about exceptions exceptions

and learn more about blocks. That material is somewhat advanced; you

may want to put it off until you’re more familiar with Ruby. Even if you

do, you should still read the next two sections, which will tell you how

to make good use of with_pleasant_exceptions.

21.1 Use Exceptions to Report Problems

After you changed test-with.rb, you saw what’s often called a stack trace. stack trace

It shows what methods were in progress at the moment the problem

was detected. Figure 21.1, on the following page, shows the same thing

in a picture. Some method somewhere in Ruby sends the open message

to the class File, causing the method of the same name to run. That

method creates a File instance and sends it the initialize message.

Normally, the initialize method would open the file named by the initialize

message’s argument list and then return to File.open, which would then

return to Ruby. But in this case, the file doesn’t exist, so initialize raises raises

an exception. That’s like one of those peculiarities of quantum physics exception

where an electron moves from one place to another without ever being

in the space between. The exception goes straight from initialize back to

Ruby, not stopping in open. So if open were going to do something after

initialize returned, well, tough—that code will never run.

Like an electron (sort of), an exception is an object. In this case, it’s an

instance of Errno::ENOENT. (You won’t be surprised, I bet, to read that the

name has been traditional since before Ruby.) It contains two items: a

message describing the problem and an array of lines describing the

methods on the route to the point of the problem (that is, the stack

trace). Ruby prints all that out and exits.

with_pleasant_exceptions interposes itself between Ruby and File.open as

shown in Figure 21.2, on page 204. It handles the exception by printing

only the message, not the stack trace. Then it returns to Ruby, which

never knows an exception happened.

21.2 An Error-handling Strategy

Testers know that error handling is a good place to find bugs. It’s hard

to write good error-handling code. One difficulty is that the place in the

code that raises the exception knows precisely what went wrong, but

it doesn’t know anything about the context—about why it was doing

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=202

AN ERROR-HANDLING STRATEGY 203

a File

instance

File open

initialize

Ruby

itself

?

o
p
e
n

i
n
i
t
i
a
l
i
z
e

E
r
r
n
o
:
:
E
N
O
E
N
T

Figure 21.1: An Exception Being Raised

what it did. It usually doesn’t have the information to put things right.

It often can’t even produce an error message that makes sense to a

user.

The code that rescues the exception might know the context, but it

lacks details about what went wrong. Without the details, it might not

be able to put things right. It often can’t produce a helpful error mes-

sage. Oh, it can say what went wrong in user terms, “sorry, I couldn’t

print that document,” but it can’t tell the user why not or what to do

about it.

Experience tells us it’s extremely hard to get the balance between detail

and context right, so I propose you simply wrap the whole program in

with_pleasant_exceptions. Don’t try to help your user—it’s too hard.

There is the matter of helping yourself, though. When you’re trying to

understand the cause of a problem, the stack trace can be a big help.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=203

YOUR EXCEPTION-HANDLING OPTIONS 204

a File

instance

File open

initialize

Ruby

itself

with_pleasant_

exceptions

o
p
e
n

i
n
i
t
i
a
l
i
z
e

?

Figure 21.2: An Exception Being Handled

If you change the “with” in with_pleasant_exceptions to a “without”, you’ll

get this output:

prompt> ruby test-without.rb

Note: exception handling turned off.

test-without.rb:27:in ‘initialize': No such file or directory - ←֓

no-such-file (Errno::ENOENT)

from test-without.rb:27:in ‘open'

from test-without.rb:27

from test-without.rb:26:in ‘without_pleasant_exceptions'

from test-without.rb:26

21.3 Your Exception-handling Options

To understand how with_pleasant_exceptions works, you first need to

know how exception handling works. Look at this code:

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=204

YOUR EXCEPTION-HANDLING OPTIONS 205

Download error-handling/bin/begin-end.rb

begin

File.open("no-such-file")

puts "You will never see me."

rescue Exception => ex

puts ex.message

end

puts "End of script"

The output looks like that from with_pleasant_exceptions:

prompt> ruby begin-end.rb

No such file or directory - no-such-file

End of script

Any code between the begin and rescue markers that raises an exception

will have that exception rescued by the rescue statement. It makes the rescued

local variable ex name the Exception object, and then the body of the

rescue prints the error message. After that, the script continues after

the end.

The Scope of an Exception Handler

Just now, I referred to “any code between the begin and rescue mark-

ers. . . .” Just what “between” means is a little subtle. It means not only

the lines you see between the two markers; it also includes any meth-

ods used by those lines, any methods used in turn by those, and so on.

Here’s an example:

Download error-handling/bin/nesting.rb

def level3

File.open("no-such-file")

end

def level2

level3

end

begin # line 11

level2

rescue Exception => ex # line 13

puts ex.message

end

That produces the same error message, even though the File.open does

not physically appear between line 11 and line 13. It doesn’t even have

http://media.pragprog.com/titles/bmsft/code/error-handling/bin/begin-end.rb
http://media.pragprog.com/titles/bmsft/code/error-handling/bin/nesting.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=205

YOUR EXCEPTION-HANDLING OPTIONS 206

to be in the same file. The net result of this so-called dynamic scoping

is that any exception raised anywhere in this script will be rescued by

line 13.

Raising Exceptions

Here’s the simplest way to raise an exception in your own code:

Download error-handling/bin/raising.rb

def convert_to_integer(string)

unless /^-?\d+$/ =~ string
Ê raise "'#{string}' is not an integer."

end

string.to_i

end

begin
Ë raise "An argument is required." unless ARGV[0]

puts convert_to_integer(ARGV[0])

rescue Exception => ex

puts ex.message

end

Exceptions are raised at Ê and Ë. The string argument to raise is what

message will return.

If you want, you can name the exception to be raised:

Download error-handling/bin/raising2.rb

def convert_to_integer(string)

unless /^-?\d+$/ =~ string
Ê raise RuntimeError.new("'#{string}' is not an integer.")

end

string.to_i

end

You might notice that we’re raising RuntimeError but rescuing Exception.

RuntimeError is a particular kind of Exception. There are other kinds. For

example, File.open raised Errno::ENOENT. The rescue Exception statement

rescues all kinds of exceptions.1

1. I’m being deliberately a bit vague in the terminology here. You’ll learn about super-

classes and subclasses in Chapter 22, Frameworks: Scripting by Filling in Blanks, begin-

ning on page 213. Once you’ve understood that, you’ll understand this more exact

description: Exception is the superclass for all exceptions. A rescue clause that mentions

SomeExceptionClass will rescue any exception object that’s an instance of that class or

any of its subclasses.

http://media.pragprog.com/titles/bmsft/code/error-handling/bin/raising.rb
http://media.pragprog.com/titles/bmsft/code/error-handling/bin/raising2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=206

YOUR EXCEPTION-HANDLING OPTIONS 207

some

other

object

some

object

method that rescues

and raises

method that raises

Ruby

itself
?

Figure 21.3: An Exception Being Reraised

Reraising Exceptions

A rescue clause can raise the exception again, or it can raise another

exception. That looks like Figure 21.3.

One reason to reraise an exception is when a method somewhere in

the middle can do something useful in response to the exception but

cannot handle it completely. So it does what it can do and reraises to

let some other method handle the rest. For example:

Download error-handling/bin/logger.rb

def owned_open(owner, name)

File.open(name)

rescue Errno::ENOENT => ex

log(owner, ex)

raise

end

http://media.pragprog.com/titles/bmsft/code/error-handling/bin/logger.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=207

METHODS THAT USE BLOCKS 208

Ensuring Actions

Suppose you were writing a reservation system for test machines. A bit

of that code might look like this:

machine = reserver.reserve(machine_name)

test_runner.download(tests, machine)

test_runner.run

reserver.release(machine)

It would be bad if an exception in the download process caused the

program to exit without releasing a reserved machine. You can avoid

that like this:

begin

reserver.reserve(machine)

test_runner.download(tests, machine)

test_runner.run

ensure

reserver.release(machine)

end

The code between ensure and end will be executed whether or not an

exception was raised.

21.4 Methods That Use Blocks

We keep seeing a pattern:

array.each do | element |

...

end

File.open(name) do | open_file |

...

end

with_pleasant_exceptions do

...

end

In all cases, we have a method that uses both its arguments (if any)

and a block. The block contains code that does some work. The method

doesn’t know what the work is—it just executes the block, possibly

passing in arguments.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=208

METHODS THAT USE BLOCKS 209

Here’s the simplest possible example of such a method:

Download error-handling/bin/block-examples.rb

def simple

yield

puts 'block done.'

end

yield simply gives over control to the block. Control returns to simple

once the block is done. For, example:

irb(main):001:0> require 'block-examples'

=> true

irb(main):002:0> simple do

irb(main):003:1* puts "In block"

irb(main):004:1> end

In block

block done.

=> nil

If yield is given an argument, it’s passed along to the block, like this:

Download error-handling/bin/block-examples.rb

def with_arg(arg)

yield arg

end

irb(main):010:0> with_arg(5) do | given |

irb(main):011:1* given * given

irb(main):012:1> end

=> 25

Notice that yield returns whatever the block returns. (In this case, what

yield returns is then immediately returned by with_arg.)

With what you now know of exceptions and blocks, you’re ready to

understand the implementation of with_pleasant_exceptions:

Download error-handling/bin/with-pleasant-exceptions.rb

def with_pleasant_exceptions

begin

yield
Ê rescue SystemExit

raise
Ë rescue Exception => ex
Ì $stderr.puts(ex.message)

end

end

http://media.pragprog.com/titles/bmsft/code/error-handling/bin/block-examples.rb
http://media.pragprog.com/titles/bmsft/code/error-handling/bin/block-examples.rb
http://media.pragprog.com/titles/bmsft/code/error-handling/bin/with-pleasant-exceptions.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=209

EXERCISES 210

There are two new bits behind the scenes. Ruby implements the exit

method by raising an exception of class SystemExit. The rescue statement

at Ê catches that exception before the one at Ë gets it. It then reraises it.

That has the effect of bypassing the code that prints an error message.

Otherwise, the program would print an “error message” about exiting,

which would not be useful.

The other new bit is $stderr at Ì. Programs have two types of output:

error output and ordinary output. When people speak of them, they

refer to “standard err” and “standard out”; they’re often written stderr stderr

and stdout. In Ruby, $stderr refers to the default destination for stan- stdout

dard error; $stdout does the same for standard output. By using $stderr,

we print exception output to standard error. Normally, stderr and std-

out appear mixed together, but it’s possible to send them to different

places.

21.5 Exercises

Solutions to these exercises are in folder exercise-solutions/error-handling.

1. raising.rb (shown in Section 21.3, Raising Exceptions, on page 206)

complains when no arguments are given, but not when there are

too many. Change it so it complains about both, and consolidate

all the error checking in a single method, check_args.

The method you write should pass the tests in exercise-1-tests.rb.

That file will show you how to test whether exceptions are raised.

2. Here’s an example of Ruby’s while method:

irb(main):020:0> while count > 0 do

irb(main):021:1* puts count

irb(main):022:1> count -= 1

irb(main):023:1> end

5

4

3

2

1

=> nil

Using while, add a method my_each to the Array class. It is to dupli-

cate the behavior of each well enough to pass the tests in exercise-

solutions/error-handling/exercise-2-tests.rb.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=210

EXERCISES 211

3. In this exercise, you’ll change a script that pretends to reserve a

machine for testing. Here’s the output from a test failure:

prompt> ruby exercise-3-start.rb

Reserved Mycroft.

Downloading test1 to Mycroft...

Downloading test2 to Mycroft...

Downloading test3 to Mycroft...

Running test1...

Running test2...

Running test3...

Test failure: network down

Released Mycroft.

Here’s a failure to reserve the machine:

prompt> ruby exercise-3-start.rb any-old-arg-will-do

Test failure: Could not reserve Mycroft.

Here is the current script:

Download exercise-solutions/error-handling/exercise-3-start.rb

begin

machine = reserver.reserve('Mycroft')

test_runner.download(tests, machine)

test_runner.run

rescue Exception => ex

puts "Test failure: #{ex.message}"

ensure
Ê reserver.release(machine) if machine

end

That should look familiar except for the trailing if on line Ê. If

an exception is raised in reserver.reserve, machine will be nil. If so,

there’s nothing to release.

For this exercise, convert that code so that the following works

when executed with the same command-line commands as previ-

ously.

Download exercise-solutions/error-handling/exercise-3.rb

reserver.reserve('Mycroft') do | machine |

test_runner.download(tests, machine)

test_runner.run

end

In other words, move the exception handling and use of release

into reserve.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/error-handling/exercise-3-start.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/error-handling/exercise-3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=211

Part IV

The Accomplished Scripter

Chapter 22

Frameworks:
Scripting by Filling in Blanks

In this chapter, we’ll look at a watchdog script that tells you about the

results of long-running tests and programs. It’s named watchdog.rb.

Figure 22.1, on the next page, shows you an instant message from it,

and Figure 22.2, on page 215, shows a mail message.

It happens that the heart of watchdog—the sending of alerts via various

routes—is pretty simple. We create instances of classes other people

wrote, we send them the right messages with the right arguments, and

they do all the work. There’s not much new there.

There’s another way to reuse people’s work, though: frameworks. A frameworks

framework is usually a collection of partially completed classes. You

make your script by defining methods to complete the classes. Since

most of the work is done already, frameworks let you easily write scripts

that you’d otherwise not attempt. This chapter is mostly about the Ruby

mechanisms that let you use frameworks.

Frameworks are not without their problems. They can be hard to learn.

They force you to look at a solution in a certain way, which may not be

appropriate for your task. They can make understanding the program

harder, because so much happens behind the scenes—the actual script

is a collection of snippets without any obvious connective tissue linking

them together.

Fortunately, the same Ruby mechanisms frameworks rely on are also

useful when you want to make small extensions to your old scripts, so

they’re well worth learning on their own.

USING THE WATCHDOG SCRIPT 214

Figure 22.1: A watchdog Instant Message

22.1 Using the watchdog Script

You install watchdog in the usual way: ruby setup.rb all. You’ll notice that

watchdog comes with a vast array of third-party files. They do almost

all the actual work.

By default, watchdog is configured to print its results to the terminal,

mail them, and send them to a Jabber instant message service.1 As

delivered, it’s not configured for your Jabber or email server, so only

the first will work. If you try watchdog, you’ll see results like those

in Figure 22.3, on page 217. (The actual error messages will probably

differ.)

1. Jabber is one of several instant message services. It’s a good one to use for software

development because you can run a Jabber server within your corporate network. A vari-

ety of free Jabber servers are available. I use Wildfire (http://www.jivesoftware.org/wildfire/)

because it has a nice administrative interface and is extremely easy to set up, provided

you already have Java on your machine.

http://www.jivesoftware.org/wildfire/
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=214

USING THE WATCHDOG SCRIPT 215

Figure 22.2: A Watchdog Mail Message

Configuring watchdog

To get use out of watchdog, you’ll need to configure it to match your

environment. One (silly) way to do that would be use command-line

arguments:

prompt> ruby -S watchdog.rb --no-mail --no-terminal ←֓

--jabber-account watchdog@mobile-marick.local/bark ←֓

--jabber-to marick@mobile-marick.local/iChat ←֓

--jabber-password password rake test

That instructs watchdog to use only Jabber, and it tells watchdog every-

thing it needs for communication with the Jabber server. Even more

command-line options are needed before watchdog can send email.

You can find a complete list of options with the --help option. (You’ll find

that many Ruby scripts respond to --help.)

prompt> ruby -S watchdog.rb --help

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=215

USING THE WATCHDOG SCRIPT 216

Command-line options usually override defaults set elsewhere. One

place to set defaults is in a configuration file in your home folder.2 On

Windows, the configuration file is named watchdog.xml. On Unix-like

systems, it’s named .watchdog.xml, with a leading period. That hides

the file so that it doesn’t clutter up your normal folder view. The config-

uration file equivalent of the previous command-line arguments would

be this:3

Download watchdog/share/jabber-only.watchdog.xml

<watchdog>

<command-line>false</command-line>

<jabber>true</jabber>

<mail>false</mail>

<jabber-account>watchdog@mobile-marick.local/bark</jabber-account>

<jabber-to>marick@mobile-marick.local/iChat</jabber-to>

<jabber-password>password</jabber-password>

</watchdog>

Given that, the previous command-line invocation can be written as:

prompt> ruby -S watchdog.rb rake test

That’s rather more convenient. Again, there are more configuration file

options. You can find all of them in code/watchdog/share/all-config-file-

choices.xml. If you have a team of people who’ll be using watchdog, it

may be more convenient still to set up the configuration once and for

all, rather than have each person use her own configuration file. You

can do that by editing watchdog/lib/watchdog/site-defaults.rb.4

2. Your home folder is usually named by the HOME or USERPROFILE environment variable.

On Unix and Mac OS X, one of those will almost always be set for you. On Windows, the

home folder might be identified by two environment variables: HOMEDRIVE and HOMEPATH.

If not, set HOME yourself. If watchdog can’t find HOME any of those ways, it will guess that

it’s in / (C:\ on Windows). ruby watchdog.rb -c will tell you where watchdog is looking.
3. The configuration file is written in XML. XML is rather unfashionable in the Ruby

world because it’s too verbose and cluttered to be easy to read. Ruby scripts are often

configured with YAML, an easier-to-read alternative, or in Ruby itself (so that configuring

a script is merely a matter of requiring the configuration file). I chose to use XML so I could

use the code that reads the configuration file as an example in the Testing with XML and

XPath supplement.
4. Note that I make no particular attempt to hide passwords from prying eyes. That’s

because I assume (1) that you’re using shared team or company servers, so everyone

should know the password anyway, and (2) watchdog will be run from other scripts (like

build scripts) where there is no user interaction. If you want to make watchdog ask for a

password (and not echo what you type), feel free. You’ll want to use the Readline library.

That library isn’t installed on all systems, though.

http://media.pragprog.com/titles/bmsft/code/watchdog/share/jabber-only.watchdog.xml
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=216

INHERITANCE 217

prompt> ruby -S watchdog.rb rake test

Program rake finished.

Duration: 4.072555 seconds.

Command: rake test

Output:

(in /Users/marick/writing/BMSFT/Book/code/watchdog)

barker-tests.rb

choices-tests.rb

multi-exception-tests.rb

timer-tests.rb

watchdog-tests.rb

Loaded suite /opt/local/bin/rake

Started

.............

Finished in 2.327612 seconds.

13 tests, 54 assertions, 0 failures, 0 errors

Complaint from jabber: Client authentication failed

(Jabber::AuthenticationFailure)

Complaint from mail: execution expired (Timeout::Error)

Figure 22.3: Using watchdog

The UserChoices Framework

watchdog uses a framework that I’ll call UserChoices, after its main class.

By filling in that framework’s blanks, you can let users of your scripts

make choices on the command line, make choices in configuration files,

or set environment variables. It’s that framework that we’ll be exploring

in this chapter.

But first, you need some background.

22.2 Inheritance

We’ve actually been using a framework since Chapter 7, The Churn

Project: Writing Scripts without Fuss, beginning on page 67: Test::Unit.

We never wrote any Ruby code to choose tests to run, to run them,

to run setup and teardown5 before and after each of them, or to collect

results. It all just happened. All we had to do was fill in Test::Unit’s

blanks with test methods.

5. See Section B.6, Exercise 2, on page 271, for a description of setup and teardown.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=217

INHERITANCE 218

This all works because of inheritance. Inheritance lets us point at a inheritance

class and say, “this class is just like that one, except. . . .” Every one of

our tests is in a class defined like this:

Download inheritance/inheritance.rb

require 'test/unit'

class Inheritor < Test::Unit::TestCase

def test_announcer

puts "This class inherits TestCase's behavior."

end

end

It’s the less-than sign in the class line that tells Ruby Inheritor is just

like TestCase except for explicitly specified differences. In this case, the

difference is that Inheritor has one test method while TestCase has none.

People say that one class “inherits from” another, “subclasses” it, “ex-

tends” it, or “descends” from it. You can extend any class you want;

there’s nothing special about how you define the superclass (or “par- superclass

ent,” or “base class,” or. . .). You can even inherit from Ruby classes. If

you want a class that’s just like a Hash except. . . , just type this:

irb(main):001:0> class MyHash < Hash

irb(main):002:1> def zorch # I like this better...

irb(main):003:2> self.clear

irb(main):004:2> end

irb(main):005:1> end

=> nil

irb(main):006:0> m = MyHash.new

=> {}

irb(main):007:0> m[1] = 2

=> 2

irb(main):008:0> m

=> {1=>2}

irb(main):009:0> m.zorch

=> {}

irb(main):010:0> m

=> {}

In fact, every class inherits from the Ruby class Object. That’s where a

lot of default behavior is defined. Type this:

irb(main):012:0> puts Object.instance_methods

http://media.pragprog.com/titles/bmsft/code/inheritance/inheritance.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=218

INHERITANCE 219

You’ll see a long list of methods, including ones you recognize, such as

send, inspect, and ==. Those are all methods that no class need define;

it will inherit them.

Overriding Methods

So far, we’ve only added new behavior. A subclass can also change old

behavior by overriding a method it would otherwise inherit. It does that overriding

by defining a method with the same name.

For example, TestCase defines a run method that runs all the test meth-

ods in the class. We can override it to do something else:

Download inheritance/override.rb

require 'test/unit'

class MyNonTest < Test::Unit::TestCase

def run(*ignore_all_arguments)

puts "Nothing will be run because I override my ancestor."

end

def test_not

puts "I will not be run."

end

end

Notice that run uses a rest argument. That’s because I don’t care if it

has an argument or how many arguments it has. We’ve now overridden

the whole point of Test::Unit:

prompt> ruby override.rb

Loaded suite override

Started

Nothing will be run because I override my ancestor.

Finished in 0.001085 seconds.

0 tests, 0 assertions, 0 failures, 0 errors

Augmenting a Superclass

Quite often, you do not want to completely override a superclass’s

method; you just want to add a little to it. You do that with the super

sort-of-message. super makes Ruby send the same message to the

superclass as it sent to this class.

http://media.pragprog.com/titles/bmsft/code/inheritance/override.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=219

INHERITANCE 220

So here’s how to augment run:

Download inheritance/extend.rb

require 'test/unit'

class MyExtendedTest < Test::Unit::TestCase

def run(*args)

puts "About to run."

super

puts "Done running."

end

def test_extension

puts "I will be run verbosely."

end

end

It happens that the superclass’s run method takes a single argument,

the object that collects test results. When used like this, with no argu-

ments, super will hand the superclass version of the method the same

arguments as were given to the subclass version.

(That happens no matter how the arguments are defined; the rest argu-

ment has nothing to do with it.)

Sometimes, the subclass method will have a different argument list. In

that case, super should be given an explicit argument list, like Ê in the

following:

Download inheritance/super-with-arg.rb

class Parent

def arglist_taker(one_arg)

puts "Parent: I was given #{one_arg}."

end

end

class Child < Parent

def arglist_taker(one_arg, another)

puts "Child: I have two arguments: #{one_arg} and #{another}."
Ê super(one_arg)

end

end

If the subclass method wants to provide no arguments to the superclass

version, it can’t simply use super with nothing after it (since that passes

on all the arguments).

Instead, it has to follow super with an empty pair of parentheses.

http://media.pragprog.com/titles/bmsft/code/inheritance/extend.rb
http://media.pragprog.com/titles/bmsft/code/inheritance/super-with-arg.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=220

INHERITANCE 221

Download inheritance/super-no-arg.rb

class Parent

def arglist_taker(*args)

puts "Parent: I was given #{args.inspect}."

end

end

class Child < Parent

def arglist_taker(one_arg, another)

puts "Child: I have two arguments: #{one_arg} and #{another}."
Ê super()

end

end

Instance Variables

An instance variable mentioned in a superclass is also available in the

subclass. That’s because an instance of a subclass is a single object. It

happens to be described in two different classes, with different names,

but it’s still one object being described. So any mention of a particular

instance variable, whether it be in the superclass or subclass, must be

the same one.

In Figure 22.4, on the following page, we see how instance variables are

“shared.” It also shows that any particular transaction with an object

can be happily oblivious of whether it’s using superclass methods or

subclass methods.

A TimingNoteTaker is created at Ñ. That subclass doesn’t define initialize,

so the inherited one at Ê is used. initialize creates the instance variable

@commentary and gives it a starting value. When the new object is sent

the timestamp message (at Ò), Ruby finds the corresponding method

in the subclass (at Í). Were there one in the superclass, it would be

ignored.

The first line of timestamp sends two messages (at Î). (Those messages

are sent to self, as is any message without an explicit receiver.) One,

boundary, is defined in the subclass (at Ð). The other, note, is defined

in the superclass (at Ë). That doesn’t make any difference; Ruby finds

them both. Both timestamp and note refer to @commentary, an instance

variable of self. That is, both methods use the same variable to update

the same array.

When outside code sends the instance the note message, at Ó, Ruby

again finds the corresponding method in the superclass.

http://media.pragprog.com/titles/bmsft/code/inheritance/super-no-arg.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=221

INHERITANCE 222

Download inheritance/instance.rb

class NoteTaker

attr_reader :commentary

Ê def initialize(title)

@commentary = [title]

end

Ë def note(notation)
Ì @commentary << "Note: #{notation}"

end

end

class TimingNoteTaker < NoteTaker

Í def timestamp
Î note(boundary('-'))
Ï @commentary << Time.now.to_s

end

Ð def boundary(character)

character * 20

end

end

Ñ child = TimingNoteTaker.new("May 1")
Ò child.timestamp
Ó child.note("coffee")

child.note("bagels")

child.timestamp

child.note('email')

puts child.commentary

inheritance/instance.rb

Figure 22.4: Superclasses and Subclasses Share Instance Variables

http://media.pragprog.com/titles/bmsft/code/inheritance/instance.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=222

GATHERING USER CHOICES 223

22.3 Gathering User Choices

watchdog has two jobs: it has to discover a user’s choices (from the com-

mand line or configuration file), and it has to act on them. Let’s start

with discovery which uses the four classes shown in Figure 22.5, on

the next page. The framework has many classes, but the figure shows

only the three a user of the framework has to care about. They’re the

top ones. The class on the bottom (marked with a dashed border) is a

subclass that completes the framework (fills in the blanks).

To understand the subclass, you first have to understand how the Com-

mand class orchestrates the discovery of user choices. I’ll explain that

with the following code. It’s an abbreviated version of the real Command

class that can be found in code/user-choices/lib/user-choices/command.rb.

class Command

attr_reader :user_choices

def initialize

builder = ChoicesBuilder.new
Ê add_sources(builder)
Ë add_choices(builder)

@user_choices = builder.build
Ì postprocess_user_choices

end

Í def add_sources(builder); subclass_responsibility; end
Î def add_choices(builder); subclass_responsibility; end

Ï def postprocess_user_choices

end

Ê add_sources tells a ChoicesBuilder object where to look for user

choices. In watchdog, that’s first in the configuration file and then

in the command’s argument list on the command line.

Ë add_choices tells the builder what user choices a source may con-

tain: what tags may appear in the configuration file and which

command-line options are allowed.

Ì As you’ll see, the builder does a certain amount of error checking,

and it can convert some of the string-valued choices into integers

or other classes. postprocess_user_choices is for all the error check-

ing and conversions that the builder can’t do.

There’s nothing obvious about the message sends at Ê, Ë, or Ì to tell

you that the subclass has to define those methods. The documentation

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=223

GATHERING USER CHOICES 224

Command

Watchdog
Command

I know (in

general) how to

describe user

choices

I describe the

choices this

script allows

UserChoices

I provide user

choices in a

simple format

ChoicesBuilder

Command uses me

to build a

UserChoices

instance

Framework classes

Your classes

Figure 22.5: Classes That Discover User Choices

tells you that. I’ve also made the code give you a broad hint. Lines Í and

Î are defined to use a method, subclass_responsibility, that doesn’t exist. If

the subclass doesn’t redefine add_sources, any attempt to create a new

instance will yield an error message like this:

NameError: undefined local variable or method ‘subclass_responsibility' ←֓

for main:Object

The mention of “subclass responsibility” is my way of hinting at the

underlying problem. I didn’t need to define add_sources and add_choices

in the superclass. If I had left them out, the attempt to create an

instance would yield a similar message:

NoMethodError: undefined method ‘add_sources' for main:Object

I think my way is better because it’s more explicit.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=224

GATHERING USER CHOICES 225

At line Ï, postprocess_user_choices is defined a little differently: as a

method that does nothing. That means a subclass doesn’t have to

define that method. If it doesn’t, nothing will happen. But the sub-

class can define it as code that manipulates the @user_choices object

that initialize creates.

The Blank-filling Methods

This section will be a brief introduction to how a script uses UserChoices.

For more details, I recommend the documentation in the user-choices

package (see code/user-choices/doc/html/index.html) and—especially—the

examples in the examples folder.

Plugging in is done by subclassing Command and overriding the three

choice-handling methods:

class WatchdogCommand < Command

def add_sources...

def add_choices...

def postprocess_user_choices...

end

add_sources

Download watchdog/lib/watchdog/choices.rb

def add_sources(builder)

builder.add_source(PosixCommandLineChoices, :usage,

"Usage: ruby #{$0} [options] program args...",

"Site-wide defaults are noted below.",

"Override them in the '#{RC_FILE}' file in your home folder.")
Ê builder.add_source(XmlConfigFileChoices, :from_file, RC_FILE)

end

Each source of configuration information (command line, configuration

file, or others) is added to the builder via the builder’s add_source method.

Each source takes priority over the sources that follow it. So, for exam-

ple, choices made on the command line take precedence over choices

made in the configuration file.

add_source’s first argument is a class that processes choices from some

source. The second argument is the name of the class method used to

create an instance of the class, and remaining arguments are treated

as that method’s arguments. The builder, then, transforms line Ê into,

in effect, this:

XmlConfigFileChoices.from_file(RC_FILE)

It then stashes the resulting instance away for later use.

http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/choices.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=225

GATHERING USER CHOICES 226

add_choices

Download watchdog/lib/watchdog/choices.rb

def add_choices(builder)

builder.add_choice(:jabber,

:type => :boolean,

:default => DEFAULT_JABBER) { | command_line |

command_line.uses_switch('-j', "-jabber",

"Control IM notification.",

"Defaults to #{DEFAULT_JABBER}.")

}

builder.add_choice(:mail,

:type => :boolean,

:default => DEFAULT_MAIL) { | command_line |

command_line.uses_switch('-m', "-mail",

"Control mail notification.",

"Defaults to #{DEFAULT_MAIL}.")

}

The builder is then told about each possible user choice via a series of

add_choice messages. The first, for example, tells the builder that each

source should be able to supply the :jabber choice, which is either true or

false. If no choice is made in any source, the default from site-defaults.rb

is used.

Although XmlConfigFileChoices can figure out for itself that the choice

:jabber should be specified with a <jabber> tag, the command line

requires more flexibility.

For example, it’s typical for frequently used choices to have both a long

(--jabber) and short (-j) form. The code can’t guess which choices are fre-

quently used, so you have to tell it. Further, each choice should provide

documentation to be printed when the --help option is given.

The builder handles the add_choice message by passing along appropri-

ately tailored messages to each Choices object, but you don’t need to

care about that.

postprocess_user_choices

After add_choices returns, the WatchdogCommand asks the builder to

spring into action. It asks each source to collect the user’s choices,

merges the results together, uses defaults if necessary, and converts

from Strings to other classes if desired. The resulting UserChoices object

(a subclass of Hash) is named by the instance variable @user_choices.

http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/choices.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=226

GATHERING USER CHOICES 227

Once @user_choices is ready, postprocess_user_choices does any remain-

ing setup. The bit I show next is something of an aside: if the user

selected the --choices command-line option, the program should print a

list of the values of all possible choices. (Try it and see).

Download watchdog/lib/watchdog/choices.rb

def postprocess_user_choices

if @user_choices[:choices]

puts "Choices gathered from all sources:"

pp @user_choices

puts "Looking for configuration information in:"

puts File.join(S4tUtils.find_home, RC_FILE)

end

You can see how @user_choices is treated just like a hash.

Note the useful utility method pp. The name is short for “prettyprint.”

It prints objects like hashes and arrays in a nicely indented form that

makes them easier to read. You need to require ’pp’ before using it.

Doing the Work

I didn’t choose the name Command for the template class at random.

In the jargon, a Command object is one that separates the decision

about what should be done from the decision about when it should be

done. A program creates a Command object (with new) when it knows

something should (eventually) be done. It uses the object (by sending

it execute) when “eventually” arrives. This separation has a number of

advantages in larger programs.6 This particular script doesn’t make use

of the potential separation, though. It executes the command as soon

as it creates it. (See Î in Figure 22.6, on page 229).7

6. Here’s one. Suppose that you want to implement multilevel undo. Make every Com-

mand object’s execute method record what’s needed to undo what it just did. Add an undo

method that uses that record. Change the program so that it stores each Command it

executes in an array. When the user chooses to undo using a menu item or keystroke,

pop the last Command off the array and send it the undo message.
7. I’ve separated the WatchdogCommand class into two files. watchdog/lib/watchdog/

choices.rb contains the WatchdogCommand code that handles user choices, while watch-

dog/bin/watchdog.rb contains the WatchdogCommand code that watches programs and

informs users. Usually, two sets of methods with completely different responsibilities

are a sign that you need two classes, not one. That might be true in this case. That’s

actually the way I started, but it seemed to work better when I combined them. It would

be an interesting exercise to separate them again and see if it works out better now.

http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/choices.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=227

GATHERING USER CHOICES 228

The execute method is the one that does the work of the Command.

It’s defined at line Ê. execute uses a handy method time (defined in

watchdog/lib/watchdog/timer.rb) to time the execution of any block. time

returns an array of two elements. The first is how long the block took;

the second is the result of the block (in this case, the output from

the command). Notice (on Ë) that you can assign an array to several

variables at once. Each variable gets one of the elements of the array.8

The command itself is run using backticks (Ì). You saw backticks ear-

lier on page 85, but there’s one small addition. A backtick returns only

standard output in its string. Standard error will continue to its default

destination (usually the terminal window). The notation 2>&1 tells the

command line to send standard error to the same place as standard

output (so it will appear in the Ruby string).

The @kennel (Í) is an object that was created in postprocess_user_choices.

Chapter 23, Discovery Is Safer Than Creation, beginning on page 230,

explains that creation in detail. Here, it’s doing the work of sending

results to the selected destinations.

8. If there are more elements than variables, the last variable gets an array of all the

remaining elements. If there are fewer elements, the extra variables get nil.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=228

GATHERING USER CHOICES 229

Download watchdog/bin/watchdog.rb

class WatchdogCommand < Command

def command_string(command_to_watch =

@user_choices[:command_to_watch])

command_to_watch.join(' ')

end

def command_name(command_to_watch = @user_choices[:command_to_watch])

progname = if command_to_watch[0] == 'ruby'

command_to_watch[1]

else

command_to_watch[0]

end

File.basename(progname)

end

def message(duration, text)

[

"Duration: #{duration} seconds.",

"Command: #{command_string}",

"Output:",

text.indent(2),

].join("\n")

end

Ê def execute
Ë duration, text = Watchdog.time {
Ì ‘#{self.command_string} 2>&1‘

}

title = "Program #{self.command_name} finished."
Í @kennel.bark(title, message(duration, text))

end

end

if $0 == __FILE__

with_pleasant_exceptions do
Î WatchdogCommand.new.execute

end

end

watchdog/bin/watchdog.rb

Figure 22.6: watchdog’s Watching Code

http://media.pragprog.com/titles/bmsft/code/watchdog/bin/watchdog.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=229

Chapter 23

Discovery Is Safer Than Creation
The UserChoices framework is a somewhat elaborate one. You may never

create one with as many classes as it has. (Most of them are behind the

scenes.) You’re more likely to create one or two superclasses that you’ll

use as you adapt your script to new or expanded purposes. This chapter

is about how to do that.

Figure 23.1, on the next page, shows a simple framework with two

classes, one of which leaves blanks to be filled in with subclasses.1

This chapter illustrates my most important advice about frameworks:

be intensely skeptical of any urge to spend time today designing and

scripting a framework that will be useful next month. Instead, write code

that solves today’s problem. Tomorrow, extend the code to solve tomor-

row’s problem. With every extension, keep the code clean enough that

it’s never hard to work with. The main trick is to be ruthless about

removing duplication. One way of doing that is to take two related

classes and extract a superclass from them. When you run into next extract a superclass

week’s problem, perhaps you can solve it with a class that inherits from

that superclass. Where the inheritance is awkward, adjust the super-

class to make it better. At some point, you’ll find that you’ve evolved one

or more superclasses competent to handle everything the world throws

at them. Presto! A framework.

1. Some would say this is too simple to be a real framework. I’m happy to call it some-

thing else. The idea matters more than the name.

THE STORY OF BARKER 231

Kennel

I hold onto

Barkers

Barker

I know about the

different kinds

of Barkers

StdoutBarker SmtpBarker JabberBarker

I can bark to

one kind of

destination

Figure 23.1: The Class Structure I Discovered

23.1 The Story of Barker

I did not start with any of the classes in Figure 23.1. The WatchdogCom-

mand’s execute method at first just called a simple method in the same

class. It was named send, and it sent mail to a hard-coded address.

A hard-coded address wouldn’t work if I were demoing watchdog on

someone else’s machine, so I used UserChoices to let people customize

choices like the SMTP2 host. When I added choices, I had to validate

them (to check, for example, that there was at least one To address).

That seemed to belong in a separate method.

Now I had two methods that were about something—email—that noth-

ing else in the WatchdogCommand class was about. That’s often a sign

that there’s a new class struggling to get out.

Actually, there was something else in the class that was about email. It

was inside the execute method:

send_email(subject, body) if @user_choices[:mail]

2. SMTP stands for Simple Mail Transfer Protocol. It defines the rules that one computer

uses to send mail to another.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=231

THE STORY OF BARKER 232

WatchdogCommand knew when email should be sent. If I created a

new class for sending email, probably objects of that class should take

responsibility for knowing whether the user wants email. So I should

move the if inside of the send_email method.

I didn’t actually make a new class until I finished the code that sent

Jabber messages. Now I had three chunks of code with more or less

separate responsibilities: one chunk about mail, one about instant

messaging, and one about everything else.

So I pulled out the first two chunks of code into their own classes.

Because of the name of the script (watchdog), I decided to call them

“barkers” and give them a bark method.

They had code in common. For example, to know what the user wanted,

they needed a UserChoices object. It was passed into the new method of

the two Barker classes:

Download watchdog/lib/watchdog/barkers.rb

def initialize(user_choices = {})

@user_choices = user_choices

Since that code was identical in the two classes, I was inspired to create

the Barker superclass and put the initialize method there. initialize also

seemed like it would be a good place to initiate validation, so I had it

send a validate message to itself:

Download watchdog/lib/watchdog/barkers.rb

def initialize(user_choices = {})

@user_choices = user_choices

@errors = self.validate

end

The two different subclasses would each implement validate appropri-

ately. At first, there was no version of validate in Barker itself. That made

Barker what’s called an abstract superclass. abstract superclass

Any attempt to create a Barker would have led to a no such method 'vali-

date' error. Later, I created a test subclass of Barker and was surprised

by that error. So I created a default version of validate that returns an

empty list of errors:

Download watchdog/lib/watchdog/barkers.rb

def validate; []; end

http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=232

THE STORY OF BARKER 233

Joe Asks. . .

You Expect Me to Believe It Went This Smoothly?

Well, no. This is the general direction I went. I’m leaving out
the mistaken side trips, the course corrections, and the plain
stupid mistakes. What matters is that none of those was a
disaster, because I was moving in small steps, supported by
tests.

At this point, my WatchdogCommand code used an array of Barkers.3 It

looked like this:

barkers = []

JabberBarker.new(@user_choices).invite_into(barkers)

SmtpBarker.new(@user_choices).invite_into(barkers)

Inside invite_into, I had each Barker decide whether it wanted to be in

the list. It would decline the invitation if it had validation errors or the

user didn’t want its kind of message. That way, the WatchdogCommand

had no responsibility for knowing which Barkers were being used: it just

went down the barkers list and told each one that had ended up there

to bark.

However, annoyingly, WatchdogCommand still had the responsibility for

knowing which Barkers might be in the list (since it had to know all

their names to invite them). That meant every time I invented a new

kind of Barker, I had to remember to add a single line of code in the

WatchdogCommand. Ick.

Who should have responsibility of keeping track of all the Barkers? How

about the Barker class itself? (After all, don’t you have responsibility for

knowing who your own children are?)

After arranging that, the code looked something like this, which will be

explained in Section 23.2, An Example, on page 235:

barkers = []

Barker::Subclasses.each do | barker_class |

barker_class.new(@user_choices).invite_into(barkers)

end

3. Note that when I’m referring to objects that could be either JabberBarkers or SmtpBarkers,

I refer to them by the name of the superclass, Barker.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=233

WHAT HAPPENS WHERE? 234

I then decided to convert the array into a Kennel class. I confess that I

mainly did it because I thought it was cute to have a Kennel full of Bark-

ers.4 Although that new class was premature, it was probably justified

after I decided to make the different Barkers bark simultaneously, rather

than one after the other. That required some tricky code, and it’s right

to isolate it in its own class. That way, someone who doesn’t have to

care about it doesn’t have to look at it.

And that’s how I ended up with the classes I did.

23.2 What Happens Where?

One of the challenges of scripting with objects, especially once you start

making superclasses and subclasses, is that no method ever seems to

do anything—it just asks some other method to do something. It can be

frustrating to figure out what’s going on, even in code you wrote. There

are ways to ease the frustration.

Don’t go wild with new classes, especially superclasses and subclasses.

Don’t write code your experience hasn’t prepared you to read.

Pick good names, ones that are memorable and specific. If they’re mem-

orable, you’ll be able to keep more of them in your head at once as you

try to figure out the purpose of the whole collection. My early use of

send was far inferior to my final bark. First, I was overriding a method

that’s available to all objects. (Recall that "foo".send(:upcase) is the same

as "foo".upcase.) Second, it’s vague—there might be lots of objects in a

script that send something to something else. But in a program named

watchdog, bark must be the method that finally communicates with the

outside world.

I am lousy at naming, so I’m resigned to picking bad names and hav-

ing to change them later. Even if you’re great at picking names, the

purposes of your classes and methods will shift over time. You need to

change their names to match. A completely obscure name is probably

better than one that clearly suggests what the class no longer does.

Difficulty finding a good name may be a sign you’re coding down the

wrong path. Once when I was extracting a superclass, the best name

I could think of was PageThing. That turned out to be a sign that the

4. I toyed with the idea of giving all Barkers a class method named whelp to be used

instead of new but stopped myself in time.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=234

WHAT HAPPENS WHERE? 235

I need an instance of you

(whatever you are)

a WatchdogCommandKennel Class Barker Class

Here...
What Barker classes are there?

These three...

I need a Kennel

a Kennel

StdoutBarkerClass
SmtpBarkerClassJabberBarker Class

Here...

a JabberBarker

Join this Kennel

(if you like)

Add me, please

Figure 23.2: A Sequence Diagram

duplicate code really belonged in only one of the classes. Eventually,

I realized that, so I gradually made the superclass go away. Whenever

a change to add a new feature brought me in contact with the clumsy

code, I took a little time to make it better.

An Example

Figure 23.2 is a sequence diagram showing the communication among sequence diagram

some of watchdog’s classes. It should make it easier to understand the

code explained in this section. Time increases from top to bottom. The

arrows describe messages flowing between objects and (if helpful) the

return values.

Let’s look at the different steps in this calculation.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=235

WHAT HAPPENS WHERE? 236

Download watchdog/lib/watchdog/choices.rb

Ê @kennel = Kennel.new
Ë Barker::Subclasses.each do | barker_class |
Ì barker = barker_class.new(@user_choices)
Í errors += barker.errors
Î barker.invite_into(@kennel)

end

Ï raise errors.join("\n") unless errors.empty?

watchdog/lib/watchdog/choices.rb

Figure 23.3: Stocking a Kennel

“I Need a Kennel”

As its last action, the WatchdogCommand’s postprocess_user_choices

method asks for a new Kennel instance. That’s done in the usual way,

by sending new to the appropriate class. See line Ê in Figure 23.3.

“What Barker Classes Are There?”

Barker contains a constant, Subclasses. At any given moment, that con-

stant names an array of all Barker subclasses. That array lets the Watch-

dogCommand stock the Kennel without ever having to care specifically

which classes it’s using.

It’s interesting how that array is filled. By using a nice Ruby feature,

no human ever has to maintain a list of subclasses. When any sub-

class is defined, its superclass is sent the inherited message. Its single

argument is the new child class. The default implementation of inherited

does nothing, but Barker responds to that message like this:

Download watchdog/lib/watchdog/barkers.rb

Subclasses = []

def self.inherited(new_child_class)

Subclasses << new_child_class

end

“I Need an Instance of You (Whatever You Are)”

Line Ì shows that a class can be named by any old variable, not just a

capitalized class name. So new can be sent to it without ever knowing

what class will receive the message.

http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/choices.rb
http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=236

WHAT HAPPENS WHERE? 237

The Barker subclass is given the UserChoices object that has already been

filled. During initialize, the Barker subclass checked the suitability of the

choices and stashed any errors found in an instance variable. The errors

method (used at Í) will fetch a list of error messages to be printed to

the screen. All the messages are gathered for all the Barkers before any

are printed.

“Join This Kennel (If You Like)”

At Î, the new Barker is invited into the Kennel. No object except the Barker

itself needs to know or care whether it accepts the invitation. The Kennel

just operates on the Barkers it has, oblivious to whether there are other

kinds out there.

Every Barker decides whether to accept the invitation the same way:

Download watchdog/lib/watchdog/barkers.rb

def invite_into(kennel)

return unless errors.empty?

return unless wanted?

kennel.add(self)

end

(return is a handy way of returning from a method before the end. This

method shows a common idiom: if there are unusual or error cases,

they’re handled at the top of the method. After the returns, the main part

of the method worries only about the common case, not the oddities.

Separating these two concerns makes the code easier to read.)

That code is defined in the Barker, not in the specific subclasses. It uses

a helper method, wanted?, that’s also defined in the superclass:

Download watchdog/lib/watchdog/barkers.rb

def wanted?

@user_choices[self.symbol]

end

All that a particular Barker subclass needs to define is symbol, the

@user_choices key used to discover whether the user wants that Barker.

So, for example, the JabberBarker needs to define only this:

Download watchdog/lib/watchdog/barkers.rb

def symbol; :jabber; end

Once it has done that, all the rest of initialization comes for free.

http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=237

WHAT HAPPENS WHERE? 238

“Add Me, Please”

Suppose the Barker decides to accept the invitation. It could do that in

one of two ways:

• It could ask the Kennel for the array it uses to hold Barkers. Then it

could add itself to that array:

kennel.barkers << self

• Or it could ask the Kennel to do the work:

Download watchdog/lib/watchdog/barkers.rb

kennel.add(self)

The second is usually better. By analogy, suppose you want someone to

take a pill. The first approach is like reaching down their throat, pulling

out their stomach, and putting the pill in it. The second is like giving

them the pill and asking them to take it. Which is more appealing?5

The first is usually the worst because it requires you to know something

about Kennel’s innards. Once again, there’s duplication: both Kennel and

Barker know how a Kennel holds onto Barkers. If that knowledge changes

in one, it has to change in the other.

The first is not always the wrong choice. Kennel’s add method is one

line long—easy to write:

Download watchdog/lib/watchdog/kennel.rb

def add(*barkers)

@barkers += barkers

end

If getting rid of duplication required me to make a whole new class, I

probably wouldn’t do it.6

Sometimes you won’t be able to decide which of two choices to make.

Just pick one. Agonizing over it won’t produce a better decision. If you

take care to keep your script clean, you can easily change your mind

later.

“Oops! Changed My Mind!”

After all the Barkers have added themselves, the code checks whether

any errors were found. If so, it raises an exception (Ï). That will travel

5. I adapted this analogy from one I heard from Joseph Bergin.
6. Although the Barkers add themselves one at a time, this method can add several at

once. I use that in the Kennel tests.

http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/barkers.rb
http://media.pragprog.com/titles/bmsft/code/watchdog/lib/watchdog/kennel.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=238

MODULES INSTEAD OF SUPERCLASSES 239

all the way to with_pleasant_exceptions, where it will be printed. All that

work of adding will have been done for nothing. Big deal: it’s work that a

computer does in a vanishingly small fraction of a second. Don’t worry

about wasted effort unless you know—by measurement—that the waste

is noticeable and important. Always favor the clean code you need over

the fast code you might need.

23.3 Modules Instead of Superclasses

From the point of view of a subclass, what does this do?

class Subclass < Superclass

end

It makes the methods of Superclass available to the Subclass. And what

does this do?

class AnyClass

include SomeModule

end

It makes the methods of SomeModule available to AnyClass.

Superclasses and modules are closely related. Just as superclass meth-

ods can send messages whose receiving methods are expected to be

defined in all subclasses, module methods can send messages whose

receiving methods are expected to be defined in all classes that include

the module.

Whew! That’s hard for me to follow, and I wrote it. Maybe this will help:

Superclass methods

...

can send messages

whose receivers

are expected

to be defined in

...

all subclasses

Module methods

all classes that

include the module

Or this:

class Receiver < Sender
class Receiver

 include Sender

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=239

MODULES INSTEAD OF SUPERCLASSES 240

A module that makes heavy use of such an expectation is Enumer-

able. It defines all the collection methods you’re used to—collect, find,

include?, etc.—in terms of each. If your class defines each, you need

only includeEnumerable to get all those methods for free. Like this:

Download inheritance/module-inclusion.rb

class Threeer

include Enumerable

def each

yield(1)

yield(2)

yield(3)

end

end

Having done that:

irb(main):002:0> Threeer.new.collect { | e | e * 2 }

=> [2, 4, 6]

irb(main):003:0> Threeer.new.include?(3)

=> true

When Do You Use Which?

The only important difference between modules and classes is that a

class can have only one superclass, but it can include many modules.

So you’ll often be faced with a choice between extracting methods into a

superclass or into a module. I decide by trying to pick a good name for

the code I’m extracting. Class names are almost always nouns, like Ken-

nel or Barker. Module names are typically adjectives that modify nouns,

like Enumerable, Comparable, or Observable. Including a module adds, or

mixes in, a new kind of property to objects, but it’d be a stretch to say mixes in

a module defines any kind of thing. For that reason, you can’t create

new instances from a module—they don’t respond to new.

http://media.pragprog.com/titles/bmsft/code/inheritance/module-inclusion.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=240

Chapter 24

Final Thoughts
Right now, you have the tools to become a truly accomplished scripter.

What you need is experience. The way to get experience is to write

scripts. But there’s an old question among readers of resumes: “Does

this person have ten years of experience or one year of experience

repeated ten times?” Unless each script you write teaches you some-

thing, you will not become accomplished.

Many scripters fail because they always write a straightforward script

that’s mostly one big method, add lots of duplication when they change

it, get bogged down, and throw the script away.

Throwing scripts away is, in itself, not a problem. Your job is not to

write scripts; it’s to solve problems. Once you’ve solved the problem,

it’s fine to discard the script. Even if you face a similar problem next

year, it may be easier to write a new script than to adapt an old one.

But you should throw scripts away because you choose to, not because

you have to. If you spend all your time making throwaway scripts, you

won’t build up your toolbox, and you’ll stop getting better too soon.

Economics being what it is, we’re all under enormous pressure to do a

barely acceptable job as fast as possible. If you want to get good, you’ll

have to resist that pressure. You’ll have to do at least a little bit better

than barely good enough.

As I’ve mentioned, the way I do that is to spend twenty or so minutes

at the end of a task improving something that needs improving (either

me or the code). Something that I wish I did more often is to explore

other people’s packages to see how they do things and what tricks they

use. When you find a bug in someone’s package, consider fixing the

CHAPTER 24. FINAL THOUGHTS 242

bug, not just reporting it. That will give you a much more concrete

understanding of how that author approaches scripting.

What I tell people on my consulting trips is that every week you spend

at your job should make you worth at least a little more money. Make

a habit of asking yourself whether that has been true of the past week.

Some fraction of scripters fall into the opposite trap: they get so enthral-

led with scripting that they build elaborate, gorgeous (to them, at least)

frameworks far in excess of what their job demands. The trick in script-

ing is to push yourself beyond the minimum while still regularly pro-

ducing results that justify your salary. To do that, you have to grow

your scripts bit by bit, satisfying one real and immediate need after

another, while still keeping the code clean. This book won’t surgically

implant that skill in your skull, but it’s given you some of the tools you

need:

• Test-driven scripting with Test::Unit

• A wary attitude toward duplication

• Places to extract duplicate code into: methods, classes, and mod-

ules

• An emphasis on picking good names, a realization that the right

name for a method or class will likely change over time, and a

willingness to change the name until you get it right

• Scripting by assumption: the habit of assuming that Ruby pro-

vides exactly the methods and classes you need, using those meth-

ods, and creating them when they turn out not to exist

I hope this book helps you remove a little of the tedium and frustration

from your job. Thanks for reading it.

Champaign, Illinois; March 17, 2005–September 30, 2006

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=242

Part V

The Back of the Book

Appendix A

Glossary
abstract superclass

An incomplete class, one whose instances would be useless. Only

instances of subclasses should be created. An abstract class is a

template or framework for its subclasses.

accessor

A method that’s either a reader or a writer.

anchor

In a regexp, a character that requires the match to either begin at

the beginning of the string or end at the end of the string.

argument

One of the objects passed, along with a message, to a method. The

name of the argument appears in the method’s argument list and

is treated as a local variable.

array

An array is a composite object that is indexed by a number, start-

ing with 0.

assignment

Assignment causes some human-readable name to refer to a par-

ticular object. The usual jargon is “foo is assigned 5.”

base class

A class that another class inherits from. Also: superclass or parent

class.

block

A chunk of Ruby code that acts much like a method without a

name. Like a method, it takes arguments and returns some object.

APPENDIX A. GLOSSARY 245

body

In a conditional statement like if or unless, the Ruby code that’s

sometimes executed, sometimes not.

boolean-valued

Having a value that’s either true or false.

bootstrapping test

Instead of manufacturing test objects directly, a bootstrapping test

uses already-tested methods to make them. Contrast with direct

test.

case sensitive

Ruby is case sensitive because words with different capitalization

are different variables.

character class

In a regexp, a backslashed character that stands in for a whole set

of characters.

class

A class is an object that specializes in creating other objects, typi-

cally called instances of that class.

class method

A method that is reached by sending a message to a class rather

than to one of its instances. new is the most common class

method.

class variable

A variable visible to all instances of a class and its subclasses, as

well as to class methods of the classes themselves.

client

A client of an object sends it messages.

command-line argument

On the command line, all the space-separated words after the

name of the script are its command-line arguments. They’re given

to the script in array named ARGV.

composite object

A composite object is one object that names a whole set of objects.

A composite object can typically be indexed to pick one object out

of the set. Arrays and hashes are composite objects.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=245

APPENDIX A. GLOSSARY 246

continuation prompt

A prompt that tells you an interpreter (the command-line inter-

preter or irb) needs more information before it can respond to a

command.

core (Ruby)

Those classes a Ruby script can use without having to require

them.

coupling

Two classes are coupled when one can’t work without the other.

current working folder

If a file is in your current working folder, it can be used as a

command-line argument without having to specify what folder it’s

in.

data type

A synonym for class.

descend from

To make a class a subclass of some superclass. Also: to inherit

from, to subclass, to extend.

direct test

A test that itself manufactures objects given as arguments (or other

kind of input) to a method under test. Contrast to bootstrapping

test.

dynamic (decisions)

Decisions made (by Ruby) at the time a script is run. Consider this

code:

obj.update

There might be many classes that define an update method. Ruby

chooses which method to run at the moment the message is sent.

Contrast to static.

dynamic language

A language that favors dynamic decisions over static.

elaborative test

A test that confirms something you already suspected. Contrast

to generative test.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=246

APPENDIX A. GLOSSARY 247

element

One of the objects a composite object names.

environment variable

A named value that’s accessible to any program (not just Ruby

programs). For example, the environment variable HOME usually

names a user’s home folder.

escape character

In a regexp or string, the escape character \ removes any special

meaning from the following character.

exception

An object raised by Ruby code to indicate that something unusual

has happened. Often used in error handling.

extend

To make a class a subclass of some superclass. Also: to inherit

from, to subclass, to descend from.

extract (a superclass)

Suppose you have two classes that don’t have superclasses (other

than Object, which all classes inherit from). Suppose also they

both have a copy of a particular method. You can then extract a

superclass by creating a new class, putting the common method

there, deleting it from the two classes, and declaring that they

inherit from the superclass.

floating-point number

A number with a decimal point, like 5.3.

framework

A collection of interrelated classes. You use a framework by ex-

tending some of those classes through inheritance.

fully qualified (name)

A name prefixed by all the nested modules that include it, as in

Test::Unit::TestCase.

generative test

A test that the current version of a method fails. A generative test

causes you to write new code. Contrast to elaborative test.

global namespace

The collection of names that’s visible to a Ruby script before any

modules are included. It contains names like ARGV, $:, File, and

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=247

APPENDIX A. GLOSSARY 248

puts. The names in the global namespace can be used unquali-

fied both inside any module or class or outside all modules and

classes.

global variables

Global variables are visible everywhere.

greedy (regexp)

A greedy regexp finds the largest possible match.

group (regexp)

In a regexp, a group is formed by surrounding some regexp text

with unescaped parentheses. Groups allow you to select pieces of

matches.

hash

A composite object that looks much like an array, except that it

can be indexed by any object, not just integers.

include (a module)

When a class or module includes a module, all the names in the

module can be used in their unqualified form.

index (noun)

Most commonly, an integer used to select one element of an array.

Hashes are indexed, too, but their index is usually called a key.

index (verb)

You index a composite object to pick out one of its elements.

inherit

A class inherits from another class if it is a subclass of that class.

The connotation is that the subclass has everything the superclass

does, except for certain specified differences. Also: to subclass, to

extend, to descend from.

inheritance

Creating a class by pointing at another one and saying, “this new

class is just like that old one, except. . . .” The exceptions are ex-

pressed as method definitions.

instance

An instance is an object created by sending a class the new mes-

sage.

instance method

A method that’s reached via an instance of a class, not via the

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=248

APPENDIX A. GLOSSARY 249

class itself. The word “method,” unqualified, usually refers to an

instance method.

instance variable

An instance variable is a variable that can be seen only by the

methods of a particular object.

integer

A number without a decimal point, like 5. A counting number.

interpreter

An interpreter is a program that responds to commands typed by

a person.

iterator

A method that takes a block and potentially applies it to every

element of a compound object.

key

An object used to pick an element out of a hash.

keyword

All those words in Ruby that aren’t the names of methods, classes,

variables, etc. if, def, and return are all keywords.

keyword argument

A named message argument, like this:

center(:spread => 2, :padding => '-')

library

A collection of files for scripts to require. In practice, library, pack-

age, and project are used pretty much interchangeably. I’ll often

use library when I want to emphasize that none of the files are

scripts to be run from the command line.

literal

Strings, hashes, arrays, and symbols can be created as literal

expressions. Rather than constructing the object with new, it’s

constructed by typing to Ruby what you’d expect irb to print for

that object. So, for example, a hash is made with h = {’key’ =>

’value’} rather than h = Hash.new; h[’key’] = ’value’.

load path

A list of folders in which Ruby looks for files named in a require or

load command.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=249

APPENDIX A. GLOSSARY 250

local variable

A variable that’s visible only within a single method. A method’s

argument names are treated as local variables.

message

Messages are sent to objects to cause them to do something (by

executing a method) and then return results.

method

A method is snippet of Ruby code that an object runs in response

to a message.

mix in (verb)

To include a module with the specific intent of making mixin meth-

ods available to the class doing the including.

mixin method

A method inside a module that can be used only by a class or

module that includes it. The methods collect, reject, and find_all are

mixin methods of module Enumerable.

module

A Ruby object that restricts the visibility of a set of names to code

that fully qualifies them or that includes the module.

module method

A method inside a module that can be used only by (1) sending

the message with the same name to the module (File.open) or (2)

qualifying the message name with the module (File::open).

namespace

A collection of names; a module.

natural order

For numbers, increasing value. For strings, increasing alphabeti-

cal order.

object

An object is a bundle of instance variables and methods that oper-

ate on the objects the variables name.

operator

A way of making Ruby look more appealing. Strictly, adding two

numbers ought to look like this: 5.plus(3). That’s ugly, so Ruby

converts 5+3, which looks like ordinary addition, into the usual

message-sending form. The plus sign, minus sign, asterisk for

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=250

APPENDIX A. GLOSSARY 251

multiplication, brackets for array indexing: all of those are opera-

tors that don’t look like messages, but they really are.

optional argument

An argument that, if not provided by the message sender, is as-

signed some default object. The default is declared when the

method is written.

override

When a subclass and a superclass both have a method with the

same name, the subclass version overrides the superclass version.

When the message of the same name is sent to an instance of the

subclass, the overriding version is the one that’s run.

package

A collection of Ruby files. Strictly, a package can contain scripts

while a library cannot. In practice, package, library, and project

are used interchangeably.

parent class

A class that another class inherits from. Also: superclass or base

class.

polymorphic message

If more than one class of object responds to a message, that mes-

sage is called “polymorphic.”

precedence

Precedence is used to remove ambiguity from expressions. Expres-

sions are normally evaluated left to right, but a||b&&c is evaluated

like a||(b&&c) (that is, right to left) because && has a higher prece-

dence than ||.

project

A common synonym for package.

protocol

The rules governing communication between two computer pro-

grams, especially over a network.

qualified (name)

A name that’s prefixed with the module that controls its visibility.

question-mark operator

The conditional expression boolean ? truecase : falsecase. A short-

hand version of if.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=251

APPENDIX A. GLOSSARY 252

raise (an exception)

Execution of the current method does not proceed to the next Ruby method

statement. Instead, it begins inside the first available handler for

the exception.

reader (method)

A method is a reader if it returns the object named by an instance

variable.

receiver

An object that’s sent a message by another object. When it receives

the message, it activates the corresponding method and then

returns a result.

redirect (output)

To send output that would otherwise show on the screen to a file.

refactoring

Changing a script in a way that doesn’t change its behavior. It’s

often done to clean up the code after making a test pass.

regexp

Slang for “regular expression.” Regular expressions are ways of

describing a large number of matching strings.

rescue (an exception)

begin

...

raise Exception.new

...

rescue Exception

...

end

An exception raised during execution of the rescue statement’s

begin. . . end block is handled by the rescue statement’s body if the

exception’s class matches the class named in the rescue state-

ment.

responds to

An object responds to a message if it has a method with the same

name.

rest argument

An argument assigned all unused objects in a message’s argument

list. Declared like this:

def all_args(required, *rest)

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=252

APPENDIX A. GLOSSARY 253

result

A Ruby method returns a object as its result.

sender

An object that sends a message to another object and then awaits

the result.

separation of concerns

The design guideline that a class or method should do one thing

and do it well.

sequence diagram

A diagram that shows how messages flow among a set of objects.

See Figure 23.2 on page 235.

short-circuiting evaluation

In an expression like a and b, b doesn’t need to be evaluated if a is

false. Ruby already knows the whole expression will be false. The

evaluation of b is “short-circuited.”

slice

A subarray of an array. For example, you might pick out the slice

of a twelve-element array that extends from element 3 through 8.

Some ways of picking out a slice remove it from the original array;

others don’t.

spaceship operator

<=>, the generalized comparison operator. It returns -1, 0, or 1,

depending on whether its left side is less than, equal to, or larger

than the right, in the class’s natural order.

stack trace

A list of methods that have begun execution and have not yet

returned.

standard library (Ruby)

Classes delivered with Ruby that have to be required before they

can be used.

static (decisions)

Decisions made (by a person) at the time a script is written. Con-

sider this code:

obj.update

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=253

APPENDIX A. GLOSSARY 254

There might be many classes that define an update method. In a

static language, a human would have to declare (in script code)

which class of objectobj is allowed to name.

Contrast to dynamic.

static language

A language that favors static decisions over dynamic.

stderr

The place a program normally sends error output. May be redi-

rected. Short for “standard error.”

stdout

The place a program normally sends nonerror output. May be redi-

rected. Short for “standard output.”

string

A Ruby object of class String. It is essentially a sequence of charac-

ters.

subclass (noun)

A class that inherits from another class.

subclass (verb)

To make a class a subclass of some superclass. Also: to inherit

from, to extend, to descend from.

superclass

A class that another class inherits from. Also: base class or parent

class.

symbol

A symbol is a simplified string. Most places you can use a string,

you can also use a symbol. Using the symbol tells the reader that

you’re using it as a pure name or marker, not because you will ever

want to send it messages. So, for example, symbols are often used

as hashkeys. Literal symbols are written with a leading colon:

:my_symbol.

ternary operator

The conditional expression boolean ? truecase : falsecase. A short-

hand version of if.

test-driven programming

The same thing as test-first programming.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=254

APPENDIX A. GLOSSARY 255

test expression

In a conditional statement like if or unless, the Ruby code that

determines whether a body is executed. A test expression is either

false or true.

test-first programming

Write code by writing a test, watching the program fail it, writing

the minimal amount of code that passes the test, and then writing

the next test. Along the way, clean up code whenever it starts

to get messy. Also called test-driven programming or test-driven

design.

unqualified (name)

A name not prefixed by the nested modules that include it. TestCase

is the unqualified version of the fully qualifiedTest::Unit::TestCase.

variable

A variable gives a name to an object. More than one variable may

name the same object. Variables are caused to name objects via

assignment.

writer (method)

A method is a writer if it changes which object an instance variable

names.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=255

Appendix B

Solutions to Exercises
You can find all solutions in your downloaded code folder. In the sub-

folder exercise-solutions, there’s one folder for each chapter with exer-

cises. Each exercise solution is named after the exercise. For example,

exercise-1.rb.

B.1 Solutions for Chapter 3

The solution files are in exercise-solutions/inventory.

Exercise 1

The value of x is 4, because new_inventory - old_inventory is the list of

files in the first but not in the second—that is, the number of new files.

There are four of those: new-inventory.txt, recycler, recycler/inst-39.tmp, and

temp/inst-39.

So a better name than x would be new_file_count or new_count or even

number_of_new_files.

Exercise 2

I exited from irb before doing this exercise. I was too lazy to read in

the files again, so I just made up some values for new_inventory and

old_inventory and then typed the new line. Here’s what happened:

irb(main):001:0> new_inventory = ['a', 'b', 'c']

=> ["a", "b", "c"]

irb(main):002:0> old_inventory = ['old']

=> ["old"]

irb(main):003:0> new_inventory - old_inventory.length

TypeError: cannot convert Fixnum into Array

from (irb):4:in ‘-'

from (irb):4

SOLUTIONS FOR CHAPTER 3 257

The length message is sent to old_inventory’s object first. It returns some

number. Then the subtraction is done. That means Ruby is now trying

to subtract a number from an array—which doesn’t make sense.

Exercise 3

Here is the number of new and deleted messages:

new_count = (new_inventory - old_inventory).length

deleted_count = (old_inventory - new_inventory).length

The number of messages in common is a little trickier to calculate.

Consider the size of the new inventory. That’s the number of elements

in common plus the number of new elements. So we can get the number

of elements in common like this:

common_count = new_inventory.length - new_count

There’s actually an easier way, but it depends on a fact you don’t know

about arrays. Just as - gives the difference between two arrays, & gives

the elements they have in common:

irb(main):007:0> ['1', '2', '3'] & ['2', '3', '4']

=> ["2", "3"]

So a better way to find common_count is this:

common_count = (new_inventory & old_inventory).length

I say that’s better because it’s more obviously right. And it would prob-

ably have taken me less time to say, “there must be a Ruby method

that does this” and find it than it did to convince myself that the other

way was correct.

Having calculated the values, we can print them. I’d like a tidy, compact

printout, something like this:

13 new files; 2 deleted files; 5 files in common.

But I’m going to defer teaching you how to format output until Chap-

ter 7, The Churn Project: Writing Scripts without Fuss, on page 67. So

for now let’s print the strings and values on separate lines:

Download exercise-solutions/inventory/exercise-1.rb

old_inventory = File.open('old-inventory.txt').readlines

new_inventory = File.open('new-inventory.txt').readlines

puts "The following files have been added:"

puts new_inventory - old_inventory

puts ""

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/inventory/exercise-1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=257

SOLUTIONS FOR CHAPTER 5 258

puts "The following files have been deleted:"

puts old_inventory - new_inventory

new_count = (new_inventory - old_inventory).length

deleted_count = (old_inventory - new_inventory).length

common_count = new_inventory.length - new_count

puts ""

puts "New files added:"

puts new_count

puts "Old files deleted:"

puts deleted_count

puts "Files in common:"

puts common_count

Exercise 4

Array subtraction doesn’t depend on order. This example shows that:

irb(main):002:0> ['a', 'b', 'c', 'd'] - ['b', 'c']

=> ["a", "d"]

irb(main):003:0> ['d', 'b', 'c', 'a'] - ['c', 'b']

=> ["d", "a"]

B.2 Solutions for Chapter 5

The solution files are in exercise-solutions/more-inventory.

Exercise 1

When differences-version-8.rb is loaded, this happens:

prompt> irb

irb(main):001:0> load 'snapshots/differences-version-8.rb'

Usage: differences.rb old-inventory new-inventory

prompt>

This happens because everything in the file is executed as it’s loaded.

Here are the first lines loaded:

unless ARGV.length == 2

puts "Usage: differences.rb old-inventory new-inventory"

exit

end

As soon as that construct is read, Ruby checks the length of ARGV.

What’s ARGV? It’s the list of command-line arguments given to the orig-

inal script. In this case, the original script is irb (which is, remember,

itself a Ruby script). Since I gave irb no arguments, ARGV is the empty

array, whose length is 0.

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=258

SOLUTIONS FOR CHAPTER 5 259

Therefore, the body of the unless is executed. First a message is printed

to the screen, and then the script—irb—exits (just as if you’d typed exit

at the irb prompt).

Exercise 2

Here’s the original version of boring?:

def boring?(line)

line.split('/').include?('temp') or

line.split('/').include?('recycler')

end

Here’s the version with chomp added:

Download exercise-solutions/more-inventory/exercise-2.rb

def boring?(line)

line.chomp.split('/').include?('temp') or

line.chomp.split('/').include?('recycler')

end

Exercise 3

Here’s the result of splitting boring? into two methods:

Download exercise-solutions/more-inventory/exercise-3.rb

def boring?(line)

contains?(line, 'temp') or contains?(line, 'recycler')

end

def contains?(line, a_boring_word)

line.chomp.split('/').include?(a_boring_word)

end

Question: as long as we’re trying to make the code clearer, what about

that variable line? Is what we’re working with any old line? What would

be a better name?

Exercise 4

Download exercise-solutions/more-inventory/exercise-4.rb

def boring?(line, boring_words)

boring_words.any? do | a_boring_word |

contains?(line, a_boring_word)

end

end

Checking it:

irb(main):004:0> load 'differences.rb'

=> true

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/more-inventory/exercise-2.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/more-inventory/exercise-3.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/more-inventory/exercise-4.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=259

SOLUTIONS FOR CHAPTER 5 260

irb(main):005:0> boring?("temp", ["temp", "recycler"])

=> true

irb(main):006:0> boring?("/foo/bar", ["food", "bart", "quux"])

=> false

Exercise 5

The script fails like this:

prompt> ruby differences.rb before.txt after.txt
Ê differences.rb:32:in ‘boring?': wrong number of arguments (1 for 2)

(ArgumentError)

from differences.rb:30:in ‘inventory_from'

from differences.rb:29:in ‘reject'

from differences.rb:29:in ‘inventory_from'

from differences.rb:35:in ‘compare_inventory_files'

from differences.rb:48

Line Ê of the error message tells you what line of the script failed. That’s

the one also marked Ê here:

def inventory_from(filename)

inventory = File.open(filename)

downcased = inventory.collect do | line |

line.downcase

end

downcased.reject do | line |
Ê boring?(line)

end

end

Now that boring? takes two arguments, it has to be called with two

arguments. I could change line Ê to this:

Download exercise-solutions/more-inventory/exercise-5.rb

boring?(line, ['temp', 'recycler'])

Call this the first solution. A question is whether I should go to a further

solution where inventory_from takes a boring_words argument as well and

passes that array onto boring?. Here’s what that would look like, with

the further changes marked at Ê and Ë:

Download exercise-solutions/more-inventory/exercise-5-rejected.rb

Ê def inventory_from(filename, boring_words)

inventory = File.open(filename)

downcased = inventory.collect do | line |

line.downcase

end

downcased.reject do | line |
Ë boring?(line, boring_words)

end

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/more-inventory/exercise-5.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/more-inventory/exercise-5-rejected.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=260

SOLUTIONS FOR CHAPTER 7 261

Whereas the first solution gives responsibility of deciding what’s bor-

ing to inventory_from, the proposed solution moves it to inventory_from’s

client, compare_inventory_files—or perhaps even to its client.

But I think I want the responsibility left with inventory_from. Suppose

the script were to be used on some Unix derivative. It would have to be

changed in two ways. First, the list of boring files would be different.

For example, Unix derivatives use tmp where Windows uses temp. Sec-

ond, case matters, in that Manifest.txt names a different file than does

manifest.txt. (In fact, a folder could have files with both names at the

same time.) So the code that downcases all the lines would need to be

removed.

Both those changes would be made in compare_inventory_files in the first

solution. That’s good: it increases the chance they’ll both actually be

made. In the second solution, a switch to a new operating system affects

more than one place in the code, making it more likely that one will be

overlooked. For that reason, I reject the second solution.1

B.3 Solutions for Chapter 7

The solution files are in exercise-solutions/churn.

Exercise 1

Here’s one possible solution:

def header(an_svn_date)

"Changes between #{an_svn_date} and #{svn_date(Time.now)}:"

end

That would require no changes to the rest of the script, but it would

be impractically hard to test (since the expected results would depend

on the time the test was run). For the benefit of testing, I’ll pass in

the date to use. I can pass it as either a Time object or a date string.

Since header’s first argument is a date string, and it seems safest to be

consistent, I’ll choose to pass a date string. Here’s the new test:

Download exercise-solutions/churn/exercise-1-tests.rb

def test_header_format

assert_equal("Changes between 2005-08-05 and 2006-12-30:",

header(svn_date(month_before(Time.local(2005, 9, 2))),

svn_date(Time.local(2006, 12, 30))))

end

1. That’s not to say that this script is as good as it could be—it certainly doesn’t draw

attention to where such OS dependencies live—but it’s good enough for now.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-1-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=261

SOLUTIONS FOR CHAPTER 7 262

Here’s the code that passes that test:

Download exercise-solutions/churn/exercise-1.rb

def header(starting_svn_date, ending_svn_date)

"Changes between #{starting_svn_date} and #{ending_svn_date}:"

end

And here’s how it’s used:

start_date = svn_date(month_before(Time.now))

puts header(start_date, svn_date(Time.now))

Exercise 2

Here is the complete set of tests for asterisks_for. Notice the long names.

I name tests as sentences in the hope that someone can skim down the

list of names and get a pretty good idea of what the method does. More

detail means reading the body of the test, and the ultimate detail comes

from reading the method definition.

Download exercise-solutions/churn/exercise-2-tests.rb

def test_asterisks_for_divides_by_five

assert_equal('****', asterisks_for(20))

end

def test_asterisks_for_rounds_up_and_down

assert_equal('****', asterisks_for(18))

assert_equal('***', asterisks_for(17))

end

def test_asterisks_for_zero_is_a_dash

assert_equal('-', asterisks_for(0))

end

def test_asterisks_for_rounds_up_small_numbers

assert_equal('*', asterisks_for(1))

assert_equal('*', asterisks_for(2))

Just in case, check nearby boundaries.

assert_equal('*', asterisks_for(5))

assert_equal('*', asterisks_for(7))

assert_equal('**', asterisks_for(8))

end

Note the last 3 assertions in test_asterisks_for_rounds_up_small_numbers.

I was pretty sure that an implementation that passed the first two

asserts would pass the last three. The logic should be the same divide-

by-five-and-round as before. But it’s easy to check, so I decided to make

sure.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-1.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-2-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=262

SOLUTIONS FOR CHAPTER 7 263

Bill Wake calls those elaborative tests because they elaborate on what elaborative tests

the code does without the expectation that they’ll make you write new

code. The kind that does make you write new code is called a generative

test. The implementation is a simple if construct: generative test

Download exercise-solutions/churn/exercise-2.rb

def asterisks_for(an_integer)

if an_integer == 0

'-'

elsif an_integer < 3

'*'

else

'*' * (an_integer / 5.0).round

end

end

Exercise 3

I wrote two tests for the change:

def test_normal_subsystem_line_format

assert_equal('audit (45 changes) *********',

subsystem_line("audit", 45))

end

def test_subsystem_line_has_special_format_for_zero_changes

assert_equal('data - -',

subsystem_line("data", 0))

end

I could have put both assertions into one test, but I adhere to my prac-

tice of having the test method name be a second description of what the

test is about.

Even though I wrote both tests in advance, I ignored the second one

until I’d made the first pass, with this code:

def subsystem_line(subsystem_name, change_count)

name = subsystem_name.ljust(14)

change_description = "(#{change_count} changes)".ljust(14)

asterisks = asterisks_for(change_count)

"#{name} #{change_description} #{asterisks}"

end

Making the second test pass would force the code to check whether the

change count is zero. It seemed appropriate to farm that work out to

another change-count-creation method, just as the calculation of the

asterisks was. I had some trouble naming that method, but then I hit

on the idea that a subsystem line really has two descriptions of the

change: the row of asterisks is really an image to be seen as a whole,

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=263

SOLUTIONS FOR CHAPTER 7 264

whereas the other is text to be read. That gave me two words to use in

variable names: text and image. Here’s what I wrote:

Download exercise-solutions/churn/exercise-3.rb

def subsystem_line(subsystem_name, change_count)

image = image_for(change_count)

text = text_for(change_count)

"#{subsystem_name.ljust(14)} #{text.ljust(14)} #{image}"

end

Notice that I’ve also decided to separate two concerns: getting a descrip-

tive string and justifying it within a blank-padded field.

The next step was to implement text_for and change asterisks_for’s name

to image_for.

I was tempted not to write tests for text_for. After all, both cases it has

to handle are tested, indirectly, by the tests for subsystem_line. But I

decided to err on the side of being explicit. I probably wouldn’t have

done that if it hadn’t been blindingly easy and if I hadn’t already had

tests for asterisks_for (now image_for). I mention this because I don’t want

you to think you must have direct tests for every method. That belief

can dissuade you from making little methods when you really should,

which is worse than having indirect tests.

Here are the tests:

Download exercise-solutions/churn/exercise-3-tests.rb

def test_normal_text_for_format

assert_equal('(45 changes)', text_for(45))

end

def test_special_text_for_no_changes

assert_equal('-', text_for(0))

end

And here’s the code that passes them:

Download exercise-solutions/churn/exercise-3.rb

def text_for(an_integer)

if an_integer == 0

'-'

else

"(#{an_integer} changes)"

end

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-3.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-3-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=264

SOLUTIONS FOR CHAPTER 9 265

Given the smaller tests for text_for and image_for, all that the previous

subsystem_line tests speak to is how the pieces are put together. They

both say the same thing: “the subsystem name is left-justified in a

fourteen-space field, then there’s a space, then the change-count text

is left-justified. . . .”

So I decided to delete this one (once I’d seen it pass):

Download exercise-solutions/churn/exercise-3-tests.rb

def test_subsystem_line_has_special_format_for_zero_changes

assert_equal('data - -',

subsystem_line("data", 0))

end

Why delete it? After all, maybe it accidentally tests something that none

of the other tests does. It might be the only test that finds a bug.

True, but it will also fail when other tests do. If I change the script again

in four months and both tests fail, I’ll have to spend time wondering why

they both exist. What does the second one tell me that the first doesn’t?

It’s annoying to spend time asking that question when the answer is

“nothing.”

Worse, I’m likely to think that I must have had some reason for writing

the test, even if I can’t remember it, so I’ll keep it around just in case.

Now I’ve bought myself the obligation to keep changing and changing

and changing a test that does nothing for me.

I think most people are too skittish about throwing tests away once

they’ve outlived their usefulness, and I include myself among “most

people.” So I’ll sometimes give a test one more chance: if I think it’s

useless, but it’s not failing right now, I’ll leave it around until it does. If

that failure tells me nothing new, the test is history.

B.4 Solutions for Chapter 9

The solution files are in exercise-solutions/churn-regexp.

Exercise 1

I’ll make a method, interesting, that filters out the uninteresting lines in

an array. Here it is in use (at Ê), here is the test I wrote, and here is the

resulting implementation:

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn/exercise-3-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=265

SOLUTIONS FOR CHAPTER 9 266

Download exercise-solutions/churn-regexp/exercise-1.rb

if $0 == __FILE__

subsystem_names = ['audit', 'fulfillment', 'persistence',

'ui', 'util', 'inventory']

start_date = svn_date(month_before(Time.now))

puts header(start_date)

lines = subsystem_names.collect do | name |

subsystem_line(name, change_count_for(name, start_date))

end
Ê puts order_by_descending_change_count(interesting(lines))

end

Download exercise-solutions/churn-regexp/exercise-1-tests.rb

def test_interesting_lines_contain_at_least_one_asterisk

boring_line = " inventory (0)"

interesting_line = " ui * (3)"

big_line = " util ************ (61)"

original = [interesting_line, boring_line, big_line]

expected = [interesting_line, big_line]

assert_equal(expected, interesting(original))

end

Download exercise-solutions/churn-regexp/exercise-1.rb

def interesting(array)

array.find_all do | line |

/*/ =~ line

end

end

Exercise 2

Even if the subsystem name contains an asterisk, the format of the

line is still subsystem-name asterisks (count). Asterisks that indicate

changes are surrounded by spaces, but asterisks in names are not. I’m

going to build my solution around this observation.

That’s a more fragile observation than the one in the previous exer-

cise, which was just that interesting lines contain asterisks. It would

be easier for subsystem_line to change in a way that breaks it.

That’s a worry because the test in the previous example gave explicit

strings to interesting. Those strings match today’s subsystem_line, but they

might not match tomorrow’s.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-1.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-1-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=266

SOLUTIONS FOR CHAPTER 9 267

It would be better to test interesting by getting its input from subsys-

tem_line, like this:

Download exercise-solutions/churn-regexp/exercise-2-tests.rb

def test_interesting_lines_contain_at_least_one_asterisk

boring_line = subsystem_line("inventory", 0)

interesting_line = subsystem_line("ui", 3)

big_line = subsystem_line('util', 61)

original = [interesting_line, boring_line, big_line]

expected = [interesting_line, big_line]

assert_equal(expected, interesting(original))

end

Having done that, I’m inspired to document explicitly—in tests—the

behavior of subsystem_line that I’m depending on:

Download exercise-solutions/churn-regexp/exercise-2-tests.rb

def test_subsystem_line_surrounds_asterisks_with_spaces

assert_match(/ * \(3\)/, subsystem_line("ui", 3))

assert_match(/ ** \(10\)/, subsystem_line("ui", 10))

end

def test_subsystem_line_surrounds_even_no_asterisks_with_spaces

... so interesting can depend on this, if it needs to.

assert_match(/ \(0\)/, subsystem_line("ui", 0))

end

If I ever do break something, that’ll make it easier to figure out what

I’ve done. It also gives me a little more confidence that the observation

I’m working from is indeed correct.

Having done all that—and seen that the tests pass—I’m ready (at last!)

for the new test:

Download exercise-solutions/churn-regexp/exercise-2-tests.rb

def test_interesting_lines_subsystem_can_have_asterisk_at_end

boring_line = subsystem_line('inventory*', 0)

interesting_line = subsystem_line('ui*', 3)

original = [interesting_line, boring_line]

expected = [interesting_line]

assert_equal(expected, interesting(original))

end

And the code to pass that is remarkably simple. Simply look for one or

more asterisks with spaces on either side:

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-2-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-2-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-2-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=267

SOLUTIONS FOR CHAPTER 9 268

Download exercise-solutions/churn-regexp/exercise-2.rb

def interesting(array)

array.find_all do | line |

/ *+ / =~ line

end

end

I debated whether I should check that the asterisks are followed by

a count in parentheses. That would work correctly with a subsystem

name ending in a space and an asterisk (fast ui two *). I decided not to.

Exercise 3

Download exercise-solutions/churn-regexp/exercise-3.rb

def rearrange(string)
Ê match = /(\w+), (\w+) (\w+)/.match(string)

last_name = match[1]

first_name = match[2]

middle_name = match[3]
Ë "#{first_name} #{middle_name[0,1]}. #{last_name}"

end

We want the three groups of word characters to be plucked out of the

string. Those groups are defined at line Ê and plucked out in the three

following lines.

Notice the string operation on line Ë that extracts a single-character

string from the middle_name. A mistake I often make is to write such

an expression like this: middle_name[0]. That extracts a single charac-

ter, not a one-character string. That’s particularly confusing because

individual characters are actually represented by integers. Here’s the

difference:

irb(main):001:0> "Elaine"[0]

=> 69

irb(main):002:0> "Elaine"[0,1]

=> "E"

It may help to think of a string as an array of characters. You want

to extract a slice of an array—a one-element subarray—rather than a

single element. Compare the previous to this:

irb(main):003:0> [69, 108, 97, 105, 110, 101][0]

=> 69

irb(main):004:0> [69, 108, 97, 105, 110, 101][0,1]

=> [69]

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-2.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=268

SOLUTIONS FOR CHAPTER 10 269

Exercise 4

Download exercise-solutions/churn-regexp/exercise-4.rb

def rearrange(string)
Ê has_middle_name = /(\w+), (\w+) (\w+)/.match(string)
Ë no_middle_name = /(\w+), (\w+)/.match(string)

Ì if has_middle_name

last_name = has_middle_name[1]

first_name = has_middle_name[2]

middle_name = has_middle_name[3]

"#{first_name} #{middle_name[0,1]}. #{last_name}"

elsif no_middle_name

last_name = no_middle_name[1]

first_name = no_middle_name[2]

"#{first_name} #{last_name}"

end

end

The two kinds of name can be represented by two patterns, matched

separately (Ê and Ë). In one of the lines, the match will return a Match-

Data object; in the other, it will return nil. In an if statement, a Match-

Data counts as true, and nil counts as false, so rearrange can use match’s

return value to tell which kind of name it was given. (See Ì.)

There’s a lot of duplication in that method, isn’t there? You’ll remove it

in the next chapter’s exercises.

B.5 Solutions for Chapter 10

The solution files are in exercise-solutions/regexp.

Exercise 1

The necessary insight here is that no matter what the subsystem name

looks like, the end of the line has to be a space followed by a parenthe-

sized number. If there’s an asterisk just before that, the line is interest-

ing. If there’s a space just before that, that means the line must look

something like "subsystem (0)", which is uninteresting.

Here’s the code:

Download exercise-solutions/regexp/exercise-1.rb

def interesting(array)

array.find_all do | line |

/* \(\d+\)$/ =~ line

end

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-regexp/exercise-4.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/regexp/exercise-1.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=269

SOLUTIONS FOR CHAPTER 11 270

Exercise 2

Download exercise-solutions/regexp/exercise-2.rb

def rearrange(name)
Ê match = /(\w+), (\w+)(\w+)?/.match(name)

last_name = match[1]

first_name = match[2]

if match[3]
Ë separator = "#{match[3][0,2]}. "

else
Ì separator = ' '

end

Í "#{first_name}#{separator}#{last_name}"

end

The difference between "Marick, Dawn Elaine" and "Marick, Paul" is that

the former ends in a space and a name. At first, I thought I wanted only

the name, but then I realized I could use the space to construct the

return value, so I wrapped both in a group that could occur zero or one

times (line Ê).

When constructing the final string, I flailed around trying to get the

right number of spaces in the right places. Then I realized I was con-

fusing myself by thinking about three chunks of name separated by

spaces. Instead, I should think about a first and last name separated

by a separator (Í). If there’s a middle name, the separator is a space

and the middle initial (Ë). (The space is the first character in the group;

that’s why the slice extracts two characters.) Otherwise, it’s just a space

(Ì). As it so often is when you look at the problem right, the right code

became easy.

B.6 Solutions for Chapter 11

The solution files are in exercise-solutions/churn-classes.

Exercise 1

I would add all the methods except month_before. Those are header,

subsystem_line, asterisks_for, order_by_descending_change_count, and

churn_line_to_int. I wouldn’t add month_before because it has nothing in

particular to do with formatting.

Suppose I used a script to plan my vacations, and there was some

company rule about not taking two vacations in one month. I might

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/regexp/exercise-2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=270

SOLUTIONS FOR CHAPTER 11 271

very well borrow month_before for that other script, but I wouldn’t want

all the rest. That’s a sign that month_before has a distinct responsibility

and should not be lumped in with them.

Exercise 2

See Figure B.1, on the following page, for the Formatter tests. There are

three things to note:

Ê If the methods are grouped into a class, it makes sense to group

the test methods as well.

Ë It’s likely that you had something like this at the beginning of your

tests:

formatter = Formatter.new

That way, each test method works with its own independent For-

matter. The repetition is a little boring, and I got rid of it with a

Test::Unit feature I haven’t told you about: if the test class has a

setup method defined, it’s run before each test method.

In this particular case, I had setup make a Formatter and name it

with an instance variable. That way, all the tests can use it. Since

setup runs before each test method, it’s still a new instance per

test.

There’s also a message teardown that’s sent to the object after the

test method is finished, but I had no use for it.

Ì The only change to the actual tests is to use @formatter to refer to

the Formatter object.

Exercise 3

Figure B.2, on page 273, shows the Formatter class. Notice that there’s

no initialize method. If there’s nothing to initialize, there’s no need for the

method.

Exercise 4

When the Formatter class is finished, there will be two kinds of methods

in it. Three of them—the three we’re testing in this exercise—are for

public consumption. The rest will be used by those public methods. I

decided to test the new ones in a new test class, FormatterNormalUseTests.

When thinking about the test, I realized that there’s only one sensible

way to use the methods: create a Formatter, give it a date, add data for

http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=271

SOLUTIONS FOR CHAPTER 11 272

Download exercise-solutions/churn-classes/exercise-2.rb

Ê class FormatterTests < Test::Unit::TestCase

Ë def setup

@formatter = Formatter.new

end

def test_header_format

assert_equal("Changes since 2005-08-05:",
Ì @formatter.header('2005-08-05'))

end

def test_normal_subsystem_line_format

assert_equal(' audit ********* (45)',

@formatter.subsystem_line("audit", 45))

end

def test_asterisks_for_divides_by_five

assert_equal('****', @formatter.asterisks_for(20))

end

def test_asterisks_for_rounds_up_and_down

assert_equal('****', @formatter.asterisks_for(18))

assert_equal('***', @formatter.asterisks_for(17))

end

def test_churn_line_to_int_extracts_parenthesized_change_count

assert_equal(19, @formatter.churn_line_to_int(" churn2 **** (19)"))

assert_equal(9, @formatter.churn_line_to_int(" churn ** (9)"))

end

def test_order_by_descending_change_count

original = ["all that really matters is the number in parens - (1)",

" inventory (0)",

" churn ** (12)"]

expected = [" churn ** (12)",

"all that really matters is the number in parens - (1)",

" inventory (0)"]

actual = @formatter.order_by_descending_change_count(original)

assert_equal(expected, actual)

end

end

exercise-solutions/churn-classes/exercise-2.rb

Figure B.1: Formatter tests

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=272

SOLUTIONS FOR CHAPTER 11 273

Download exercise-solutions/churn-classes/exercise-3.rb

class Formatter

def header(a_date)

"Changes since #{a_date}:"

end

def subsystem_line(subsystem_name, change_count)

asterisks = asterisks_for(change_count)

"#{subsystem_name.rjust(14)} #{asterisks} (#{change_count})"

end

def asterisks_for(an_integer)

'*' * (an_integer / 5.0).round

end

def order_by_descending_change_count(lines)

lines.sort do | first, second |

first_count = churn_line_to_int(first)

second_count = churn_line_to_int(second)

- (first_count <=> second_count)

end

end

def churn_line_to_int(line)

/\((\d+)\)/.match(line)[1].to_i

end

end

exercise-solutions/churn-classes/exercise-3.rb

Figure B.2: Code that passes the Formatter tests

some subsystems, and get the output. That done, some things ought to

be true about the output:

• The header comes before the subsystem lines.

• Any data given appears in descending order of change count.

• The header and the lines are all that’s printed.

I could also make claims about how many asterisks there are or what

the lines look like exactly, but I’ve already made those claims in other

tests (the tests for the other methods). These claims are what’s special

and new about the new code.

Tests become helpful as documentation when their names are sen-

tences like the previous claims. So I made a test for each of them,

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=273

SOLUTIONS FOR CHAPTER 11 274

Download exercise-solutions/churn-classes/exercise-4.rb

class FormatterNormalUseTests < Test::Unit::TestCase

def setup

formatter = Formatter.new

formatter.use_date('1960-02-19')

formatter.add_subsystem_change_count('sub1', 30)

formatter.add_subsystem_change_count('sub2', 39)
Ê @output_lines = formatter.output.split("\n")

end

Ë def test_header_comes_before_subsystem_lines

assert_match(/Changes since 1960-02-19/, @output_lines[0])

end

Ì def test_both_lines_are_present_in_descending_change_count_order

assert_match(/sub2.*39/, @output_lines[1])

assert_match(/sub1.*30/, @output_lines[2])

end

Í def test_nothing_else_is_present

assert_equal(3, @output_lines.size)

end

end

exercise-solutions/churn-classes/exercise-4.rb

Figure B.3: New Formatter tests

as you can see in Figure B.3 (at Ë, Ì, and Í). Each of the tests needs

some output to work with. Instead of putting code to create the output

in each test, I put it in the setup method.

Did I choose for output to return an array or a single string? I picked

a single string. You can tell that from Ê, where I split the string apart

into separate lines. I don’t have a strong argument for that choice, only

that using a string implies that, yes, this is it; this is all the output

there is. It’s so easy to push data onto arrays that returning one might

imply that a client should feel free to tack on more lines. Returning a

string makes it (slightly) clearer that all the responsibility for producing

output strings belongs to Formatter.

If I later change my mind, not much has to be changed in these tests. I

just have to remove the split.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-4.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=274

SOLUTIONS FOR CHAPTER 11 275

Exercise 5

use_date takes a date string as its argument. That string at some point

has to be given to header to construct a header. That header will be

returned by output. Here’s one solution:

Download exercise-solutions/churn-classes/exercise-5.rb

def use_date(date_string)

@date_string = date_string

end

It stores the date string for later use in output. output will use header to

make the header string:

def output

... header(@date_string) ...

end

Alternately, I could have use_date immediately use header to construct

the line to be printed. That line could be stashed in an instance variable

and used by output. That would look like this:

def use_date(date_string)

@date_line = header(date_string)

end

def output

... @date_line ...

end

I chose the first way because I don’t like to limit my options. By storing

the date string, I reserve the option to use it in methods other than

header.

Exercise 6

Again, I have the choice: do I stash away the raw data, or do I construct

the output line and stash that away? In this case, there are two bits of

data: the subsystem name and its change count. It’s more convenient

to stash away a single datum—like an output line—so that’s what I do.

I stash the line away by pushing it onto an array:

Download exercise-solutions/churn-classes/exercise-6.rb

def use_subsystem_with_change_count(name, count)

@lines.push(subsystem_line(name, count))

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-5.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-6.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=275

SOLUTIONS FOR CHAPTER 11 276

@lines has to start out as an empty array. I’ll set that up in initialize:

def initialize

@lines = []

end

Why do I store lines in an array instead of appending them together

into one big string as I construct them? It’s because I don’t know how

to order the lines yet. I have to sort them once I’ve got them all.

Note: the convenience advantage of storing a line goes away if I know

about Ruby’s hashes (see Chapter 16, Ruby Facts: Hashes). With a

hash, add_subsystem_change_count could be written like this:

def add_subsystem_change_count(name, count)

@changes.push({ :name => name, :change_count => count })

end

Instead of storing a single datum, the line, I store a single datum that

contains what’s used to construct the line.

Exercise 7

Download exercise-solutions/churn-classes/exercise-7.rb

def output
Ê ordered_lines = order_by_descending_change_count(@lines)
Ë output_array = [header(@date_string)] + ordered_lines

output_array.join("\n")

end

The line at Ë is a bit confusing. First, a single-element array is created.

It contains the header. Then that array and the array of ordered lines

are concatenated to form the output_array.

Someone else might instead change ordered_lines to put the header in

front. That looks like this:

def output

ordered_lines = order_by_descending_change_count(@lines)

ordered_lines[0,0] = header(@date_string)

ordered_lines.join("\n")

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-7.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=276

SOLUTIONS FOR CHAPTER 11 277

Download exercise-solutions/churn-classes/exercise-7.rb

class Formatter

Public interface

def initialize

@lines = []

end

def use_date(date_string)

@date_string = date_string

end

def use_subsystem_with_change_count(name, count)

@lines.push(subsystem_line(name, count))

end

def output

ordered_lines = order_by_descending_change_count(@lines)

output_array = [header(@date_string)] + ordered_lines

output_array.join("\n")

end

Helpers

def header(a_date)

"Changes since #{a_date}:"

end

def subsystem_line(subsystem_name, change_count)

asterisks = asterisks_for(change_count)

"#{subsystem_name.rjust(14)} #{asterisks} (#{change_count})"

end

def asterisks_for(an_integer)

'*' * (an_integer / 5.0).round

end

def order_by_descending_change_count(lines)

lines.sort do | first, second |

first_count = churn_line_to_int(first)

second_count = churn_line_to_int(second)

- (first_count <=> second_count)

end

end

def churn_line_to_int(line)

/\((\d+)\)/.match(line)[1].to_i

end

end

exercise-solutions/churn-classes/exercise-7.rb

Figure B.4: The completed Formatter (or is it?)

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-7.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=277

SOLUTIONS FOR CHAPTER 11 278

Figure B.4, on the previous page, shows the completed Formatter.2 You

can test the code like this:

prompt> ruby exercise-4.rb

Loaded suite exercise-4

Started

.............

Finished in 0.089908 seconds.

13 tests, 16 assertions, 0 failures, 0 errors

In the first two lines of output, notice that header and order_by_

descending_change_count take instance variables as arguments. That

bugs me.

If they’re private methods intended to work on an instance variable,

they ought to refer to it directly, like this:

Download exercise-solutions/churn-classes/exercise-7b.rb

def header

"Changes since #{@date_string}:"

end

def lines_ordered_by_descending_change_count

@lines.sort do | first, second |

def output

([header] + lines_ordered_by_descending_change_count).join("\n")

end

That makes their purpose clearer. (I had to change the tests, too.)

Exercise 8

I decided to make the header look like this:

Changes between November 23, 2005, and December 21, 2005:

2. Notice that I’ve divided the class into two parts, marked as the public interface and

helper methods. It can be argued that code outside Formatter has no business using the

helper methods and should therefore be unable to use them. That can be accomplished

by putting the word private between the public and helper methods (just before header).

The problem with that is that the tests are “code outside Formatter,” so they couldn’t check

those methods. There are ways around that, though not with the tools you know about

yet. I tend not to use private, especially on small scripts—its theoretical benefits don’t

exceed the annoyance.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-7b.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=278

SOLUTIONS FOR CHAPTER 11 279

That required a change to header’s test:

Download exercise-solutions/churn-classes/exercise-8-tests.rb

def test_header_format

@formatter.report_range(Time.local(2001, 3, 3),

Time.local(2002, 2, 2))

assert_equal("Changes between March 3, 2001, and February 2, 2002:",

@formatter.header)

end

I also had to change the way the regular use tests were set up:

def setup

formatter = Formatter.new

formatter.report_range(Time.local(2005, 1, 1),

Time.local(2005, 2, 1))

formatter.use_subsystem_with_change_count('sub1', 30)

formatter.use_subsystem_with_change_count('sub2', 39)

@output_lines = formatter.output.split("\n")

end

The older version of test_header_comes_before_subsystem_lines depended

on the header format, since it looked for /Changes since 1960-02-19/.

I changed it to match the new format (but to be a little less dependent

on the details of date formatting):

def test_header_comes_before_subsystem_lines

assert_match(/Changes between/, @output_lines[0])

end

Then I had to change the code to match the tests. First I stashed away

the date range:

Download exercise-solutions/churn-classes/exercise-8.rb

def report_range(from, to)

@from = from

@to = to

end

Then I put it to use:

Download exercise-solutions/churn-classes/exercise-8.rb

def date(time)

date_format = "%B %d, %Y"

time.strftime(date_format).sub(' 0', ' ')

end

def header

"Changes between #{date(@from)}, and #{date(@to)}:"

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-8-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-8.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-8.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=279

SOLUTIONS FOR CHAPTER 11 280

I made a little utility method so that I didn’t have to repeat the format-

ting of the different dates inside header. strftime prints a leading zero

on days earlier than the 10th, probably so that columns line up neatly

when you print many lines of dates. The sub method changes a zero

after a space into just a space, giving me the format I want.

None of the SubversionRepository tests had to change. The code changed

a little:

Download exercise-solutions/churn-classes/exercise-8.rb

def change_count_for(name, a_time)

extract_change_count_from(log(name, date(a_time)))

end

change_count_for no longer gets a string already converted into Subver-

sion format, so it has to do it itself.

Notice that there are two methods named date: one in SubversionRepos-

itory, one in Formatter. Each converts a Ruby Time object into a string

format appropriate to its class. There’s no chance of confusing Ruby

because the message date is always sent to one class of object or the

other.

Exercise 9

I broke churn.rb into three files: churn.rb, subversion-repository.rb, and for-

matter.rb. churn.rbrequires the other two files:

Download exercise-solutions/churn-classes/exercise-9/churn.rb

require "subversion-repository"

require "formatter"

def month_before(a_time)

a_time - 28 * 24 * 60 * 60

end

month_before is the only method defined in churn.rb.

The tests are more interesting. If churn is divided into three files, it

makes sense for the tests to be divided as well. But how do you run all

three tests? The following does not work:

prompt> ruby churn-tests.rb formatter-tests.rb subversion-repository-tests.rb

Loaded suite churn-tests

Started

.

Finished in 0.003016 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-8.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-9/churn.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=280

SOLUTIONS FOR CHAPTER 12 281

Only the first file is used, so only one test—for month_before—is run.

One way to run all the tests is to require them in a single master test

file, like this:

Download exercise-solutions/churn-classes/exercise-9/annoying-test-all.rb

require 'churn-tests.rb'

require 'formatter-tests.rb'

require 'subversion-repository-tests.rb'

prompt> ruby annoying-test-all.rb

Loaded suite annoying-test-all

Started

.............

Finished in 0.085509 seconds.

13 tests, 18 assertions, 0 failures, 0 errors

I called that file annoying-test-all.rb because I have to remember to add

new test files to it. I’m lousy at that kind of thing, so I prefer this version,

called test-all.rb:

Download exercise-solutions/churn-classes/exercise-9/test-all.rb

Dir.glob("*tests.rb").each do | testfile |

puts testfile

require testfile

end

Dir is an object that knows about handling directories (folders). glob

is ancient Unix slang for the way wildcard characters are used in file-

names. *tests.rb refers to all files in the current folder that end in

“tests.rb”. Dir returns those as an array of string filenames.

Each of those is then required. Instead of building the list of files to

require statically, at the time the Ruby script is written, it’s built statically

dynamically, at the time the script is run. Languages like Ruby are dynamically

sometimes called dynamic languages because they prefer (and encour-
dynamic languages

age you to prefer) putting decisions off until runtime.

So as long as I follow the naming convention of ending all test files (and

no others) with test.rb, I won’t have to worry that test-all.rb won’t run all

the tests.

B.7 Solutions for Chapter 12

The solution files are in exercise-solutions/classes.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-9/annoying-test-all.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/churn-classes/exercise-9/test-all.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=281

SOLUTIONS FOR CHAPTER 12 282

Exercise 1

Here’s my test:

Download exercise-solutions/classes/exercise-1-tests.rb

require 'test/unit'

require 'exercise-1.v5'

class CounterTests < Test::Unit::TestCase

def test_Counter_counts

assert_equal(0, Counter.count)

Counter.counted_new

assert_equal(1, Counter.count)

Counter.counted_new

assert_equal(2, Counter.count)

end

end

It immediately finds a bug:

1) Failure:

test_Counter_counts(CounterTests) [exercise-1-tests.rb:6]:

<0> expected but was

<nil>.

The failure here is caused by Counter.count being called before

Counter.counted_new. But only Counter.counted_new sets the nil instance

variable to zero.

My first solution looked like this:

Download exercise-solutions/classes/exercise-1.v2.rb

class Counter

def self.counted_new

@count = 0 if @count.nil?

@count += 1

new

end

def self.count
Ê @count = 0 if @count.nil?

@count

end

end

At Ê, Counter.count initializes the count just as Counter.counted_new

does. The problem here is duplication. I toyed around with pulling all

the duplication into another method, defined at Ê below and used at Ë

and Ì in the code below.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-1-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-1.v2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=282

SOLUTIONS FOR CHAPTER 12 283

Download exercise-solutions/classes/exercise-1.v3.rb

class Counter
Ê def self.maybe_initialize

@count = 0 if @count.nil?

end

def self.counted_new
Ë maybe_initialize

@count += 1

new

end

def self.count
Ì maybe_initialize

@count

end

end

That’s no help, really. Previously, there was a twenty-five-character line

duplicated between two methods. Now there’s a sixteen-character line

duplicated—and it’s not clear to me that maybe_initialize is all that much

clearer than the if statement.

Moreover, the next time I add a method that uses the count, I might

forget to maybe_initialize the count. I don’t want to risk that.

There’s a simple solution—not perfectly foolproof, but better. Suppose

every method that needs the count gets it through Counter.value. Then

that method is the only one that needs to worry about whether initial-

ization is needed. Here’s an example of how the two methods would

look:

Download exercise-solutions/classes/exercise-1.v4.rb

class Counter

def self.counted_new
Ê @count = self.count + 1

new

end

def self.count

@count = 0 if @count.nil?

@count

end

end

It’s pretty creepy, though, to use an instance variable in the first part

of line Ê and a reader method in the latter half. It’d be better to write

the code on the next page.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-1.v3.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-1.v4.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=283

SOLUTIONS FOR CHAPTER 12 284

def self.counted_new

self.count = self.count + 1

new

end

If you’ll remember, x+=1 is shorthand for x=x+1. That works even when

x is a reader, provided the corresponding writer exists. So the final ver-

sion of Counter can look like this:

Download exercise-solutions/classes/exercise-1.v5.rb

class Counter

def self.counted_new

self.count += 1

new

end

def self.count

@count = 0 if @count.nil?

@count

end

def self.count=(value)

@count = value

end

end

Exercise 2

One solution is to put each test method in a file of its own and run it

with a separate Ruby command. That’s the only way to get an abso-

lutely unused version of Counter. That’s more than a little annoying,

though:

prompt> ruby Counter-test-1.rb

prompt> ruby Counter-test-2.rb

prompt> ruby Counter-test-3.rb

prompt> ruby Counter-test-4.rb

...

Instead, I’ll simulate an unused Counter by putting everything back as

it started. (“Everything” in this case means @count.) A test script can do

that by sending a Counter.reset message:

Download exercise-solutions/classes/exercise-2.rb

def self.reset

self.count = nil

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-1.v5.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=284

SOLUTIONS FOR CHAPTER 12 285

The Counter.reset method can be sent before every test by putting it in

the test class’s setup method:3

Download exercise-solutions/classes/exercise-2-tests.rb

def setup

Counter.reset

end

There’s a risk that I’ve misunderstood the right way to reset a Counter. If

I have, the tests will pass, but the class will be buggy. I’m sure of myself

(in this case), so I’m ready to move on.

Exercise 3

Add this line anywhere within the class definition:

Download exercise-solutions/classes/exercise-3.rb

attr_accessor :birth_order

Exercise 4

Here’s the test:

Download exercise-solutions/classes/exercise-4-tests.rb

def test_birth_order

assert_equal(1, Counter.counted_new.birth_order)

Test another one, just for luck.

assert_equal(2, Counter.counted_new.birth_order)

end

(Some might argue that the birth order of the first Counter should be

0, not 1. They might be right. The test shows what I intended; it has

nothing to say about whether that intention was mistaken. That’s a

matter of human judgment and debate.)

In the previous exercise, I added both a read and a write accessor for

@birth_order. I knew I would need the writer to make this test pass.

Even though Counter is intimately related to its instances, it still has no

access to their instance variables.

Just like any other object, the only way it has of changing them is to

ask the instance by sending a writer message:

3. setup was described on page 271.

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-2-tests.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-3.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-4-tests.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=285

SOLUTIONS FOR CHAPTER 21 286

Download exercise-solutions/classes/exercise-4.rb

def self.counted_new

self.count += 1

new_counter = new

new_counter.birth_order = self.count

new_counter

end

B.8 Solutions for Chapter 21

The solution files are in exercise-solutions/error-handling.

Exercise 1

Download exercise-solutions/error-handling/exercise-1.rb

def check_args(args)

raise "Exactly one argument is required." unless args.length == 1

only_arg = args[0]

raise "'#{only_arg}' is not an integer." unless /^\d+$/ =~ only_arg

end

if $0 == __FILE__

begin

check_args(ARGV)

puts ARGV[0].to_i

rescue Exception => ex

puts ex.message

end

end

Exercise 2

Download exercise-solutions/error-handling/exercise-2.rb

class Array

def my_each

index = 0

while index < self.length

yield self[index]

index += 1

end

self

end

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/classes/exercise-4.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/error-handling/exercise-1.rb
http://media.pragprog.com/titles/bmsft/code/exercise-solutions/error-handling/exercise-2.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=286

SOLUTIONS FOR CHAPTER 21 287

Exercise 3

Download exercise-solutions/error-handling/exercise-3.rb

class Reserver

def reserve(machine_name)

machine = Machine.new(machine_name)

yield machine

puts "Reserved #{machine.name}."

machine

rescue Exception => ex

puts "Test failure: #{ex.message}"

ensure

release(machine) if machine

end

def release(machine)

puts "Released #{machine.name}."

end

end

http://media.pragprog.com/titles/bmsft/code/exercise-solutions/error-handling/exercise-3.rb
http://books.pragprog.com/titles/bmsft/errata/add?pdf_page=287

Appendix C

Bibliography

[ASS84] Harold Abelson, Gerald Sussman, and Julie Sussman.

Structure and Interpretation of Computer Programs. MIT

Press, 1984.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 2000.

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly

& Associates, Inc, Sebastopol, CA, 1997.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Program-

ming Ruby: The Pragmatic Programmers’ Guide. The Prag-

matic Programmers, LLC, Raleigh, NC, and Dallas, TX, sec-

ond edition, 2005.

[TH01] David Thomas and Andrew Hunt. Programming Ruby: The

Pragmatic Programmer’s Guide. Addison-Wesley, Reading,

MA, 2001.

Index
Symbols
%r{}, 143

* character, 107, 109, 171

+ character, 99, 107, 109

\d, 99, 100

\d, 107f

\n, 27, 33, 54, 80

==, 63, 99

=~ operator, 99, 101, 144

@ character, 118

@@, 136

character, 69

#{} marker, 79, 80, 86

$ character, 106, 136

$: variable, 181

% character, 77

ˆ character, 106, 108

| character, 108

<<, 160

A
Abstract superclasses, 232

Accessors, 126–129

defined, 127

Affinity list, 148

Affinity trip, 139–140

for a book, 140f

and comma-separated values, 158,

160–161

defined, 139

Agile Web Development with Rails

(Thomas et al), 148

Akira, Tanaka, 141

Amazon, see Scraping script; Affinity

trip

args, 170

Arguments, 169–172

command-line, 43–46

defined, 32

keyword, 171–172

optional, 148, 169–170

rest, 170–171

ARGV, 43, 44

Arrays, 39–42

ARGV, 43

of Barkers, 233

and block, 47

change an element of, 40

combining and expanding, 171

comparing, 34–35

and CSV files, 159

defined, 33

deleting elements, 40

empty, 39, 44

exclusive range and, 40

and flatten, 146

inclusive range and, 40

index for, 39

and iterators, 47

last element, selecting, 40

and length, 38, 39

literal, 39

naming, 33

negative indices and, 40

and numbers, 41

popping elements off, 41

printed, 33

and puts, 36, 62

putting arrays in, 41

putting objects in, 41

reordering, 102–104

and ri, 42

and scan, 145

shifting, 41

slices and, 41

and unshift, 41

assert-equal, 72

Associative arrays, see Hashes

ASTERISKS 290 DIRECT TEST

asterisks, 78, 81, 85, 87

Attributes, defining multiple, 129

B
Backslash, 80, 84, 100, 107

Backticks, 86, 228

Barker, 231–234

Bergin, Joseph, 238n

bin, 187, 192

Black-box testing, 85

Blank-filling methods, 225–227

Block, 47

Blocks

defined, 55

delimiting, 50

for cleanup, 159–160

and hashes, 167

and sort, 103

yielding control to, 208–210

Body, 45, 62

Boolean-valued, 63

Booleans, 94–97

object selection and, 96–97

operators, 94

precedence and, 94–96

precedence rules for, 95

values, 94

Bootstrapping test, 76, 77

Brackets, 107

Bugs

and error handling, 203

avoiding, 71

fixing, 53–55

and test-driven programming, 90

Bundling data,exercises for, 121–125

C
center, 169, 171

change_count_for, 83, 86

change_count, 79

Character classes, 107f, 107

chomp, 54

churn

see also Version control script

churn.rb, 74, 100

churn

and error handling, 90

methods for Subversion, 115

and scripting by assumption, 69

clash-check.rb, 182

class, 113, 131

Class variables, 136

Classes, 126–137

adding onto, 114

augmenting a superclass, 220

for Barker code, 231–234

bundling methods into, 116f

defined, 113, 126

defining accessors, 126–129

defining attributes, 129

defining methods, 114–115

documentation for, 119

exercises for, 121–125, 136–137

for Subversion, 112

and instance variables, 221, 222f

vs. instances, 114

methods, 133–135

as modules, 199–200

modules vs. classes, 240

names, 182–184

overriding, 219

and self, 129–133

structure of, 231f

and subclasses, 218

see also Frameworks

collect, 47, 98, 146, 168

Comma-separated values, 158–165

<<, 160

and affinity-trip.rb, 160–161

and blocks, 159–160

documentation on, 161, 163f

library for, 159

output, 158

replacing code with data, 163–165

Command, 223, 227, 228, 231

Command-line arguments, 43–46

Command-line interpreter

backticks and, 86

defined, 20

in Mac or Unix, 21–22

in Windows, 20–21

Comment character #, 69

Composite objects, 146

Continuation prompt, 27, 28

CSV, see Comma-separated values

Current working folder, 20, 22

D
Data types

see also Arrays

Dictionaries, see Hashes

Direct test, 76, 77

DOUBLE-QUOTED STRINGS 291 INDEX

Double-quoted strings, 80

downcase, 45

Downloads, 174–179

locating packages, 174

RubyGems, 175–178

setup.rb, 175–176

understanding, 178–179

Driving a browser, 155

E
each, 47, 48, 98, 168

Editors, 23, 37

else statement, 62

elsif statement, 62, 63

End-of-line character, 27, 33, 54

End-of-line comments, 69

Ensuring actions, 208

Environment variables, 177–178

Errors vs. failures, 75

Exceptions, 202

ensuring actions, 208

handled, 204f

handling, 204

handling options, 204–208

raised, 202, 203f

raising, 206

reraising, 207f, 207

rescuing, 205

Exclusive range, 40

execute, 228

Exercises

for bundling data and methods,

121–125

for classes, 136–137

for directory customization, 58–60

for error handling, 210–211

for version control script, 91–92

for inventory scripts, 38

for regular expressions, 104, 110

for scraping web info, 149–150

for scripts, polishing, 193–194

exit, 210

External programs, 83–90

F
Failures, 141

fetch, 167

File, 32

Filenames, 181–182

find_all, 85

flatten, 146

Floating-point numbers, 82, 160

Folder structure, 186f

Formatting time, 76–78

Frameworks, 213–228

add_choices, 226

add_sources, 225

advice about, 230

blank-filling method, 225–227

challenges with, 213

configuring watchdog script,

214–217

defined, 213

and inheritance, 217–221

postprocess_user_choices, 226–227

pp, 227

subclass responsibility, 223

user choices, 224f, 223–228

UserChoices, 217, 225

Watchdog’s code, 229f

see also Superclasses

G
gedit, 23

GET request, 156

Global namespaces, 195, 197, 199

Global variables, 136, 181

Groups, 101

H
Hash keys, 147, 166

Hash value, 147

Hashes, 146–147, 166–168

default value, 166

defined, 166

empty, 166, 167

key/value pairs, 166, 167

header, 70, 77

hello, 114

HTML, book information in, 142f

HTTP GET request, 156

HTTP POST request, 156

I
if statement, 61–64

“In the Beginning Was the Command

Line” (Stephenson), 20

include, 52, 183, 198

Including modules, 183, 197–199

Inclusive range, 40

index, 144

INDICES 292 NAMES

Indices

negative, 40

out of bounds, 40, 44

for strings, 100

zero-based, 39

Inheritance, 217, 221

instance variables, 221

and superclasses, 222f

initialize, 117, 202

inspect, 36

install, 177

Instance methods, 133

Instance variables, 221

and class methods, 135

defined, 117

super- and subclasses and, 222f

uninitialized, 128

Instances, 113, 114, 117, 133

Integers vs. floating-point numbers, 82

Inventory scripts, 30–38

no arguments in, 44

comparing arrays, 34–35, 52

for comparison, 36–37

exercises for, 38

filtering files, 51

fixing bugs, 53–55

new file, create, 31

printing to screen, 35–36

problems with, 43

testing uses for, 31

IO.read, 154

irb, 24

File, 32

command-line arguments and, 44

exiting from, 25

load, 73

and loadable scripts, 57f

mistakes in, 26–28

prompts for, 24

return values and, 36

and strings, 33

syntax errors in, 26

ISBN, 140

Iterations, 47

Iterators, 47

collect, 47

each, 47, 48

polymorphic, 48

J
Jabber, 214, 215, 232

K
Keyword arguments, 171–172

L
length, 38

line_format, 83

Literal array, 39

load, 73, 181

Load path, 181

Loadable scripts, 56, 57f

Local variables, 117, 122, 128, 132

Location-independent tests, 192–193

log, 116, 117

M
Mastering Regular Expressions (Friedl),

110

Match strings, 99–100, 108

MatchData, 108

McMahon, Chris, 31n

Messages, 31, 49

see also puts

Methods, 49–50

accessor, 126

and blocks, 208–210

and classes, 114–115, 116f, 133–135

creating synonyms, 133, 134

documentation for, 119

exercises for, 121–125

instance, 133

and local variables, 122

vs. messages, 49

and objects, 118

overriding, 219

Modules, 195–200

classes as, 199–200

content availability, 184, 185f

including into classes, 183, 197–199

namespaces and, 195

naming, 198, 200

nested, 196–197

nesting, 193f, 196, 197f

qualified names, 195

S4TUtils, 192

vs. superclasses, 239

uses for, 196f

visibility of objects, 197

N
Name rules (Ruby), 34

Names, 31

NAMESPACES 293 REGULAR EXPRESSIONS

convention for, 240

and files, 181–182

and methods, 50

and modules, 182–184, 198, 200

qualified vs. unqualified, 183

Namespaces, 195, 197

Negative indices, 40

Nested modules, 196–197

new, 113, 116, 117, 133, 199

nil

and hashes, 166

and indices, 40

and instance variables, 128, 129

and open-uri library, 141

and Ruby messages, 36

O
Objects, 31

File as, 32

attributes of, 127

challenges with, 234

and data, 116–118

equality in, 63

and instance variables, 118

and methods, 118

naming, 33–34

putting in arrays, 41

sending messages, 129–133

sending/receiving messages, 31–33

truth value of, 96

and variables, 118

see also Classes, see also Exceptions

open, 32, 45, 47, 141

open-uri library, 141, 152, 155–157

Optional arguments, 148, 169–170

Overriding methods, 219

P
Parentheses, 35, 46, 100–102, 108, 132

Parsers, 153

pico, 23

Polymorphic messages, 48

POST request, 156

Practice files

downloading, 19–20

overview of, 15

where to save, 25

Prettyprint, 227

Programming, see Scripting

Programming Ruby (Thomas, et. al.),

17, 77, 110, 140, 161

Prompts, 20, 21

command line vs. irb, 24

continuation, 27, 28

working with, 25

push, 41

puts

and arguments, 170

and arrays, 36

as message, 35

nil and, 36

and printing, 35

and quotes, 36

Q
Question-mark operator, 64–65

R
RAA, see Ruby Application Archive

Rails, 14

Raising exceptions, 206

rake, 176, 178

rakefile, 187–192

rake commit, 191

rake fast, 190

rake increment-version, 190

rake install-into, 191

rake install, 190

rake move-on, 191

rake rdoc, 191

rake test, 190

rake update-peers, 191

Rdoc, 162f

Refactoring, 71

Regular expressions, 98–110

%r{}, 143

and case sensitivity, 106

challenges in, 152

character classes, 107f

dissecting strings with, 101–102

exercises for, 104, 110

groups, 101, 108

if, 106

match strings, 99–100, 108

nil, 106

options, 109–110

reordering arrays, 102–104

and scan, 145

for searching strings, 143

spaces in, 142

special characters, 106–108

and substrings, 142

REJECT 294 SCRAPING SCRIPT

taking strings apart, 108–109

testing, 102

and variables, 109

and whitespace, 143

see also Scraping script

reject, 52

require, 73, 141, 181, 183

Reraising exceptions, 207f, 207

Rescued exceptions, 205

respond_to, 113

Rest arguments, 170–171

Returning values, 32

REXML, 153

ri, 42, 77, 119, 162

rjust, 78

Rounding, 82, 85

Ruby

arguments, 169–172

arrays in, 39–42

benefits of, 14, 56

boolean values, 94–97

and case sensitivity, 32, 34, 45

classes, 112

classes in standard library, 161–163

CSV library, 159

delimiting blocks, 50

else statement, 62

elsif statement, 62, 63

end, 45, 46

environment variable in, 177–178

equal signs in, 45n

Extensions, 189

Facets, 189

fixing bugs, 53–55

folder separator character, 51n

format characters, 77

helper scripts and applications for,

174–179

if statement, 61–64

installation of, 22

in Mac OS X, 23

in Unix, 175, 176

in Windows, 22, 176

installation root, 176

iterators in, 47

library documentation, making own,

163f

load path for, 181

mailing list for, 179

messages in, 31

methods, 49–50

modules, 195–200

name rules for, 34

names in, 31

namespaces in, 195

negations in, 64

nil and, 36

objects in, 31

parentheses in, 35

polymorphic messages and, 48

question mark operator, 64–65

receivers in, 35

regular expressions in, 106–110

REXML, 153

setup.rb, 175

and short-circuiting evaluation, 96

string multiplication, 82

strings in, 27

Test::Unit, 72f, 72

truth value of objects, 96

unless, 45, 64

variables in, 33

XML, support for, 153

and YAML, 216n

ruby -S, 180, 181

Ruby Application Archive (RAA), 174

RubyForge, 174–175

RubyGems, 192

installing, 175

and rake, 176

using, 176–178

Russell, Sean, 153n

S
scan, 142, 145

SciTE, 23, 37, 177

Scraping script, 139–151

and affinity trip, 139–140

and Amazon, 139

author and title info, 142–146

challenges of, 142, 144, 152

and comma-separated values,

158–165

driving a browser, 155

exercises, 149–150

failures in, 141

first draft of, 147–149

and hashes, 146–147

HTML book info, 142f

m, 145

testing, 150

web pages as files, 140–142

SCREEN SCRAPING 295 SUPERCLASSES

whitespace in, 143

and XHTML, 152–154

Screen scraping, see Scraping script

Script files

and require, 73

syntax errors in, 27

test files for, 72

Scripting

adding variables, 71

advice on, 241–242

by assumption, 69

benefits of using Ruby, 14

challenges of, 234–239

and complexity, 14

and computer speed, 14

defined, 13, 55

duplicate code in, 49

and frameworks, 213–228

if, use of, 62

improvement in, 241–242

number of tests, 87

process of, 67

test-driven, 71, 90, 150

Scripts, 180–194

class names and, 182–184

executing, 180

exercises for, 193–194

filenames and, 181–182

for folder and module structure,

186f, 184–188

frameworks for, 213–228

handling errrors in, 201–211

load path, 181

location-independent test, 192–193

rakefile, 188–192

skeleton files and, 187

see also Scraping script; Version

control script; Watchdog script

Selenium, 155

self, 129–133

and class methods, 133

defined, 130

uses for, 130–132

Sender, 32, 49

Separation of concerns, 70

setup.rb, 175–176, 180

Short-circuiting evaluation, 96

Single-quote strings, 80

Skeleton files, 187

Slices, 40–42, 109

SMTP, 231

sort, 102–104

Spaceship operator, 102–104

Special characters, 106–108

split, 52

Stack trace, 202, 203f, 204

stderr, 210

stdout, 210

Stephenson, Neal, 20

Strings

and \n, 54

backslash in, 28

in CSV files, 160

defined, 27, 33

dissecting, 51–53, 101–102

downcase, 45

equality in, 63

formatting, 78–83

indexing, 100

and IO.read, 154

match, 99–100, 106

multiplication, 82

printed, 33

searching through, 143

single-quoted vs. double-quoted, 80

substitution, 79

and symbols, 127, 128

taking apart, 108–109

see also Arrays

Structure and Interpretation of Computer

Programs (Abelson and Sussman),

69n

Subclasses

Barker classes for, 236

subsystem_line, 70, 78, 79, 85, 87

Subtraction, 34

Subversion

changes to a subsystem, 68f

as external program, 83

formatting for, 86

methods for, 115

repository class, 112, 120f

website for, 68

super, 220

Superclasses, 218, 220, 222f, 230–240

abstract, 232

and Barker, 231–234

challenges with, 234–239

vs. classes, 239

creating, 230

extracting, 230

instances and, 236

SUPPLEMENTS 296 WATCHDOG SCRIPT

watchdog sequence diagram, 235f

Supplements, 154

svn_log, 83, 85, 86

Symbols, 127, 128

Synonyms, 133, 134

Syntax errors, 26

in script files, 27

source of problem, 46

T
Ternary operator, 64–65

Test expressions, 62

Test::Unit, 217–221

assertions, 123f

failure, 75

name option, 81

overriding, 219

testing with, 72f

uses for, 72

Testing

snapshots in Unix, 74

and rakefile, 187

automation of, 16

bootstrapping, 76, 77

directly, 76, 77

failures, 73n, 74, 75, 141

and inventory scripts, 31

location independently, 192–193

number of, 87

in Ruby, 14

scraping script, 150

selecting, 85

snapshots in Windows, 73

speed of, 150

suites, 72

with Test::Unit, 72f

time format, 76–78

and version control, 68

TextMate, 23, 37

third-party, 187, 188

Thomas, Dave, 17

times, 148

to_i, 101

trip, 148

Troubleshooting, 201–211

with blocks, 208–210

ensuring actions, 208

exception raised, 203f

exception-handling options, 204–208

exercises for, 210–211

strategy for handling errors, 203

U
uninstall, 177

unless, 45, 64

unshift, 41

User choices, gathering, 224f, 223–228

UserChoices framework, 217, 225, 231

Utilities library, 189

V
Variables, 33–34

and accessors, 126

adding to a script, 71

class, 136

composite objects and, 146

environment, 177–178

global, 136, 181

instance, 117, 118, 128, 135, 221,

222f

local, 117, 122, 128

and objects, 118

and regular expressions, 109

Version control script, 67–92

churn code, 89f

corrections to, 86–91

direct vs. indirect approach, 70

exercises for, 91–92

and external programs, 83–90

formatting time, 76–78

ordering the lines, 98–105

refactoring time, 75

requirements for, 69

and rounding, 82

separation of concerns and, 70

time and test-driving, 70–76

W
Watchdog script

accepting invitation to join, 238

add_choices, 226

add_source, 225

and Barker, 231–234

challenges with, 234–239

configuring, 214–217

exceptions, 239

and --help, 215

and inheritance, 217–221

instances, 236

instant message, 214f

join this kennel, 237

and kennel, 236

WATIR 297 ZERO-BASED INDEXING

mail message, 215f

postprocess_user_choices, 226–227

pp, 227

sequence diagram, 235f

stocking a kennel, 236f

subclassing a class, 223

user choices and, 224f, 223–228

and UserChoices framework, 217, 225

watching code, 229f

Watir, 14, 155

Web pages

driving a browser, 155

and JavaScript, 152, 155

treating like files, 140, 142f,

142–146

XHTML vs. HTML, 152–154

Websites

for Agile Alliance, 93

for Amazon script, 140

for Extensions, 189

for Facets, 189

for failure help, 141

for this book, 17

for gems installed, 179

for practice files, 19

for Rails, 14

for Ruby Application Archive, 174

for Ruby installation, 22, 23

for Ruby library classes, 161

for Ruby mailing list, 179

for RubyForge, 174, 192

for RubyGems, 176, 192

for Selenium, 155

for Subversion, 68

for TextMate, 23

for this book, 176

for W3C, 153

for Watir, 14, 155

for Wildfire, 214n

for WinZip, 19

Weirich, Jim, 188

Whitespace, 143

with_pleasant_exceptions, 201–203, 209

X
XML

and REXML, 153

supplement for, 154

and W3C, 154

and watchdog configuration file,

216n

XPath

supplement for, 154

and XML documents, 154

Z
Zero-based indexing, 39

	Contents
	Introduction
	How the Book Works
	An Outline of the Book
	Service After the Sale
	Supplements
	Acknowledgments

	Getting Started
	Download the Practice Files
	In the Beginning Was the Command Line
	Do You Need to Install Ruby?
	Installing Ruby
	Your Two Basic Tools
	Prompts, Command Lines, Prompts, and irb
	It's Time to Make Mistakes

	The Basics
	A First Script: Comparing File Inventories
	A Script in Action
	The Ruby Universe
	Objects Send and Receive Messages
	Variables Name Objects
	Comparing Arrays
	Printing to the Screen
	Making a Script
	Where Do We Stand?
	Exercises

	Ruby Facts: Arrays
	Three Improvements and a Bug Fix
	Command-line Arguments
	Ignoring Case
	Methods
	Dissecting Strings
	Fixing a Bug
	Where Do We Stand?
	Prelude to the Exercises
	Exercises

	Ruby Facts: If, Equality Testing, and Unless
	if …elsif …else
	When Are Objects Equal?
	A Shorthand Version of if
	unless
	The Question Mark Operator

	Growing a Script
	The Churn Project: Writing Scripts without Fuss
	The Project
	Building a Solution
	Where Do We Stand?
	Exercises

	Ruby Facts: Booleans
	Other Boolean Operators
	Precedence
	Every Object Is a Truth Value
	Boolean Expressions Can Select Objects

	Our Friend, the Regular Expression
	Regular Expressions Match Strings
	Dissecting Strings with Regular Expressions
	Reordering an Array
	Where Do We Stand?
	Exercises

	Ruby Facts: Regular Expressions
	Special Characters
	Grouping and Alternatives
	Taking Strings Apart
	Variables Behind the Scenes
	Regular Expression Options
	Wait, There's More…
	Exercises

	Classes Bundle Data and Methods
	Classes Define Methods
	Objects Contain Data
	Where Do We Stand?
	Exercises

	Ruby Facts: Classes (with a Side Order of Symbols)
	Defining Accessors
	Self
	Class Methods
	Class Variables and Globals
	Exercises

	Working in a World Full of People
	Scraping Web Pages with Regular Expressions
	Treating Web Pages Like Files
	Restricting Attention to Part of the Page
	Plucking Out the Title and Authors
	Hashes Store Named Data
	Taking the Trip
	Exercise Yourself

	Other Ways of Working with Web Applications
	Handling XHTML
	Driving the Browser
	Direct Access to Underlying Protocols

	Working with Comma-Separated Values
	The CSV Library
	Using Blocks for Automatic Cleanup
	More CSV Operations
	Applying It All to affinity-trip.rb
	Discovering and Understanding Classes in the Standard Library
	Replacing Code with Data

	Ruby Facts: Hashes
	Ruby Facts: Argument Lists
	Optional Arguments
	Rest Arguments
	Keyword Arguments

	Downloading Helper Scripts and Applications
	Finding Packages
	Using setup.rb
	Using RubyGems
	Understanding What You've Downloaded

	A Polished Script
	The Load Path
	Avoiding Filename Clashes
	Avoiding Class Name Clashes Using Modules
	A Script to Do the Work for You
	Working Without Stepping on Yourself
	The rakefile
	Location-independent Tests
	Exercises

	Ruby Facts: Modules
	Nested Modules
	Including Modules
	Classes Are Modules

	When Scripts Run into Problems
	Use Exceptions to Report Problems
	An Error-handling Strategy
	Your Exception-handling Options
	Methods That Use Blocks
	Exercises

	The Accomplished Scripter
	Frameworks: Scripting by Filling in Blanks
	Using the watchdog Script
	Inheritance
	Gathering User Choices

	Discovery Is Safer Than Creation
	The Story of Barker
	What Happens Where?
	Modules Instead of Superclasses

	Final Thoughts

	The Back of the Book
	Glossary
	Solutions to Exercises
	Solutions for Chapter 3
	Solutions for Chapter 5
	Solutions for Chapter 7
	Solutions for Chapter 9
	Solutions for Chapter 10
	Solutions for Chapter 11
	Solutions for Chapter 12
	Solutions for Chapter 21

	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

