

What Readers Are Saying About Security on Rails

A thorough and comprehensive guide to the most common security

issues faced by Rails developers, this book provides real code exam-

ples of security concerns and exploits and covers how to mitigate

them in a Rails application and make it more secure.

Tore Darell

Ruby on Rails developer

Security on Rails is not a mere tutorial on how to beef up your appli-

cation, but a rich opportunity to learn what vulnerabilities exist and

how they’re exploited. The reader is taught not only the solutions, but

how they were derived. This is a must for anyone who hosts a Rails

application.

Kevin W. Gisi

Ruby on Rails developer

Do not deploy your next Rails application until you’ve read this book.

This book details both common and uncommon security issues that

you need to be aware of, whether you’re working for yourself or for a

large enterprise. It’s a “must have” for the beginning or intermediate

Rails developer.

Brian Hogan

Rails consultant and trainer

Security on Rails is a good book to take security in Rails applica-

tions a step further. It includes detailed guides for how to implement

advanced security technologies in Rails. Once again, it illustrates how

secure Rails apps can be.

Heiko Webers

CEO of bauland42, Ruby on Rails Security Project

This book is the life preserver that Ruby on Rails developers need to

keep them from drowning in a sea of security problems.

John Viega

CTO, Software-as-a-Service, McAfee, Inc.

Security on Rails

Ben Poweski

David Raphael

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-48-4

ISBN-13: 978-1-934356-48-7

Printed on acid-free paper.

P1.0 printing, December 2009

Version: 2009-12-14

http://www.pragprog.com

Contents
1 Security in Ruby on Rails 10

1.1 Who’s This Book For? 10

1.2 What Does This Book Cover? 11

1.3 Entering a Security Mind-Set 12

1.4 Defense in Depth . 13

1.5 Only Secure as the Weakest Link 14

1.6 Fail Close . 15

1.7 Whitelisting . 16

1.8 Least Privilege . 17

1.9 Do Not Repeat Yourself 19

1.10 Avoid Complexity . 19

1.11 Acknowledgments . 21

I Getting Started 22

2 Hacking the Example 23

2.1 Getting Started with LunchedIn 23

2.2 The Tools of the Trade 24

2.3 Exploit: Parameter Manipulation 26

2.4 Exploit: Broken Authorization 31

2.5 Exploit: SQL Injection 36

2.6 Exploit: Cross-Site Scripting 40

2.7 Exploit: Cross-Site Request Forgery 45

CONTENTS 8

3 Fixing the Example 49

3.1 Protecting Against Parameter Manipulation 49

3.2 Adding Authorization . 52

3.3 Preventing SQL Injection 57

3.4 Cross-Site Scripting Countermeasures 60

3.5 Protecting Against a Cross-Site Request Forgery 64

II Building on the Basics 67

4 Testing for Security 68

4.1 Things You Should Test 68

4.2 Testing in Layers . 70

4.3 Authentication Tests . 70

4.4 Authorization Tests . 73

4.5 Data Protection Tests . 74

4.6 Input Validation and Sanitization Tests 78

4.7 Measuring Test Coverage 81

4.8 Other Testing Frameworks 82

5 Validation 84

5.1 Command Injection . 85

5.2 SQL Injection . 88

5.3 Mitigating SQL Injection 89

5.4 Built-in SQL Injection Mitigation in Rails 92

6 Authentication: Decentralized Authentication 95

6.1 Authentication Concepts 95

6.2 User Registration . 99

6.3 LDAP/Directory-Based Authentication 107

6.4 Flexible Authentication 122

7 Authorization 135

7.1 What Is Authorization? 135

7.2 Mandatory Access Control 136

7.3 Discretionary Access Control 138

7.4 Role-Based Access Control 140

7.5 Implementing RBAC . 142

7.6 A Simple Approach to Model Security 151

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=8

CONTENTS 9

8 Data Protection Using Cryptography 155

8.1 Message Digests . 156

8.2 Encrypting Data . 158

8.3 Using Cryptography with ActiveRecord 165

9 Digital Signatures and Email 172

9.1 Digital Signatures . 172

9.2 Storing Certificates . 178

9.3 Secure Email Exchange 178

9.4 Sending Signed Messages 182

9.5 Verifying Received Messages 187

10 SSO: Centralized Authentication 191

10.1 Public Versus Private . 191

10.2 OpenID . 193

10.3 Implementing an OpenID Provider 204

10.4 Kerberos, GSSAPI, and SPNEGO 219

10.5 CAS . 251

III Reference 260

11 Web Application Proxies 261

11.1 Web Application Proxies 261

12 Authentication Appendix 263

12.1 OpenLDAP Setup . 263

12.2 GSSAPI . 267

12.3 SPNEGO . 280

13 Bibliography 281

Index 282

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=9

Chapter 1

Security in Ruby on Rails
Security is a major concern in all software development, and the cre-

ators of Ruby on Rails have built many security features into the frame-

work. In order to build secure applications, we must use the built-in

security features correctly. Additionally, most problem domains have

their own set of security needs beyond the scope of any framework.

Large companies often utilize a software-development process that

overlays security on each phase of a project. For example, at McAfee, we

review code for security vulnerabilities before releasing it to the world.

Many development organizations require that architecture be reviewed

by someone security-savvy. This process works well for projects that

have long life cycles and massive budgets.

But let’s face it, heavyweight processes don’t fit for the majority of Ruby

on Rails developers. One of the strengths of Ruby on Rails is its agility—

security should be applied with the same spirit.

1.1 Who’s This Book For?

This book is for any Rails developer looking to:

• Improve general security knowledge

• Write more secure software

• Defend applications from common threats

• Encrypt data

• Control access to information

• Authenticate users from within applications

• Integrate with external user management systems

• And more...

WHAT DOES THIS BOOK COVER? 11

We do not cover many of the community plug-ins—not out of dislike,

but because building components from scratch is the best way to learn

about writing secure code. Please make copious use of the community

code available: the more eyes that have looked at a particular code

base, the more secure that code base is likely to be. You can apply the

principles covered in this book to help you choose which community

code base to use for your projects.

1.2 What Does This Book Cover?

When we decided to write a book about Ruby on Rails security, we

began by outlining an exhaustive list of security topics. We realized

quickly that there simply wasn’t enough time to give every topic the

appropriate amount of focus, so we had to pick and choose to narrow

things down.

Here’s what the chapters cover:

• Chapter 2, Hacking the Example, on page 23, takes you through

the process of hacking an application. We walk you through each

exploit and, by the end of the chapter, you’ll learn many common

techniques used by hackers.

• Chapter 3, Fixing the Example, on page 49, takes you through

fixing the application. You will learn how to fix the vulnerabilities

discovered in the previous chapter.

• Chapter 4, Testing for Security, on page 68, takes you through

testing the application. You will learn how to test the application

from the standpoint of security.

• Chapter 5, Validation, on page 84, covers techniques for accepting,

rejecting, or sanitizing system input and output. Rails provides

excellent facilities for validation, and this chapter provides some

background and general techniques for ensuring that we leverage

Rails’ facilities to the fullest extent possible.

• In Chapter 6, Authentication: Decentralized Authentication, begin-

ning on page 95, we cover authentication techniques that are

tightly coupled with your application. This chapter is ideal for any-

one who wants to control user accounts directly in the application

database or in an application-controlled directory server.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=11

ENTERING A SECURITY MIND-SET 12

• Chapter 7, Authorization, on page 135, covers the process of con-

trolling access to application resources. In this chapter, we will

modify the way our controllers determine if a user is allowed to

invoke a particular action based on the user’s role.

• Chapter 8, Data Protection Using Cryptography, on page 155, cov-

ers the basics of how to use cryptography in applications. This is

an important issue if you need to store sensitive information like

Social Security numbers or credit card data.

• Chapter 9, Digital Signatures and Email, on page 172, builds on

the cryptography concepts covered in the preceding chapter. You

will learn to implement code that creates digitally signed emails.

• Chapter 10, SSO: Centralized Authentication, on page 191, cov-

ers authenticating users against multiple external systems. We

demonstrate CAS, OpenID, and Kerberos (Active Directory).

Feel free to skip ahead to any chapter. We will spend the rest of this

chapter focusing on security concepts and principles.

1.3 Entering a Security Mind-Set

How did things like door locks, car alarms, PINs, and passwords come

to be designed in the first place? How many are a result of human

nature versus the nature of technology?

At my son’s elementary school, there is a sign that says, “You can

do anything you want—as long as it doesn’t bother anyone else.” This

sign is intended to help the kids develop into good, law-abiding adults.

Unfortunately, many people don’t live by this sign’s rule. On the Web,

theft, harassment, and other malicious activities occur every day. Tak-

ing these risks into account is a necessary first step toward entering a

security mind-set when developing code.

Our applications are like little islands in an ocean of merchants, pi-

rates, and passers-by. We have to protect our population from the dan-

gers that lurk around it. And while there are endless analogies compar-

ing software security and real-world security, in this book we’ll asso-

ciate these concepts with established security principles.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=12

DEFENSE IN DEPTH 13

1.4 Defense in Depth

The concept of Defense in Depth originates with military teachings on

fortress construction. Multiple layers of defense can stop or slow down

attackers, and each layer typically deals with a different type of attack.

Our homes have doors with locks. To enhance the security of our homes

further, we can add alarm systems to our homes. In many communities,

gates and security guards at the entrance further limit unauthorized

access.

The way that we deploy web applications implements a form of Defense

in Depth:

1. Network: firewalls, network intrusion detection systems

Detecting attacks at a network level enables us to add an addi-

tional defense against an attack that might not be detected at any

of the other layers.

2. Operating system: host-level intrusion detection, stack protection

By detecting malware, stack overflows, and other OS-level behav-

iors, we decrease the likelihood that an attacker can gain access

to our systems.

3. Web server: HTTP protocol enforcement

If our web server enforces strict adherence to HTTP specifications,

then our application is less likely to break unexpectedly because

of a protocol error.

4. Web application: application-specific, user login

Our application can control access prior to any database or web

service connectivity.

5. Database: host-specific access control, DB user access control

The database can ensure that only authorized systems can con-

nect through host names.

Defense in Depth applies to the architecture of our web applications as

well.

Let’s explore a real-world example of Defense in Depth. A banking cus-

tomer is browsing her bank account balances and activities. In the

banking application’s menu, there is an option for external account

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=13

ONLY SECURE AS THE WEAKEST LINK 14

 Sir -

I assure you that

no one is getting through

that gate.

Figure 1.1: Look familiar?

transfers. This allows the customer to transfer money from her account

to an external account based on an account and routing number.

What if our user gets up from her computer and forgets to logoff? Could

someone else walk up and make a nice little deposit into an account of

his choice? How would the banking customer repudiate the transfer?

What if we also require the user to answer some secret questions before

transferring the funds? Or maybe we can mail a separate PIN in the mail

for transfers.

1.5 Only Secure as the Weakest Link

The weakest link of an application within the context of its security

also happens to be the highest level of security we can hope to achieve

for that same application. What this means is that we can assume an

attacker is going to go after the easiest target. Figure 1.1 is a tongue-in-

cheek illustration of the way many security systems work. We can see

that the gate is strong and sturdy, but the fence is not.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=14

FAIL CLOSE 15

Often, developers will go to great lengths to enforce password complex-

ity, but the application may still have a SQL Injection vulnerability. We

explore this in Chapter 2, Hacking the Example, on page 23. A hacker

can bypass the password altogether.

Remember we’re not in control of every component in our applications.

There are databases, third-party libraries, legacy applications, and

other participants in our application stack. Knowing the weaknesses

of each component is crucial. Perhaps there’s a known exploit against

a particular database or parsing library. We must proceed with caution

when incorporating external systems and create well-defined bound-

aries that allow applications to isolate dangerous transitions.

1.6 Fail Close

Fail close is the opposite of fail open. For example, if a building catches

on fire, all electronically locked doors will open to allow the fire depart-

ment in and the people who were inside to get out. This is probably

the desired functionality of a security system for a building with people

inside it. However, in most software applications, we want our systems

to fail in such a way that they are secure post-failure.

Consider the following code:

def show_invoice

@invoice = Invoice.find(params['id'])

unless @user.validate_secret_code(@invoice.secret_code)

redirect_to :action => 'not_authorized'

end

end

This code checks to see if the invoice record contains the secret code

that exists in the user object. If it doesn’t exist, the code redirects the

user to another page. Otherwise, the code returns the invoice. While

this code might or might not work, it shows a flaw (not a bug) in the

design. The code should redirect to the authorized page on a positive

condition and continue with a fail condition otherwise:

def show_invoice

@invoice = Invoice.find(params['id'])

if @user.validate_secret_code(@invoice.secret_code)

redirect_to :action => 'authorized'

else

this is where we tell the user that they are

not authorized to view the invoice.

redirect_to :action => 'not_authorized'

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=15

WHITELISTING 16

If the condition in the first code example fails for some reason, the appli-

cation will continue as if the user is authorized. In the second example,

the opposite is true. The application will continue on the unauthorized

path.

1.7 Whitelisting

Consider the following word list:

bad_words = %w{< > ' " script}

This is a very limited list of words and characters that we want to

restrict our users from inputting. The problem is that we are guessing

what characters or words are potentially malicious. What happens if

our user Base64-encodes the input or HTML-encodes the input? There

are many exploits possible in these cases. Let’s look at another exam-

ple:

restricted_users %w{alice bob kevin}

We’ve created a list of users who have abused their privileges. While

this list might be useful from a reporting standpoint, we shouldn’t use

this list for a security control.

Fundamentally, any list that tries to assert what is not allowed is known

as a blacklist. Blacklists should be avoided whenever possible in design-

ing security controls because they tend to be flexible in nature. Flexi-

bility and security don’t mix well.

At this point, it is probably a good idea to break up lists in the context

of security controls into two categories:

• Access control

• Filters

Access Control Lists

Consider the following list:

admins = %w{dave ben}

The admins list includes Dave and Ben. We now have a situation where

our control can implement the following logic:

if admins.include? user

redirect_to :action => "admin_console"

else

redirect_to :action => "user_console"

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=16

LEAST PRIVILEGE 17

This is a whitelist, a list of acceptable items. Whitelists work quite well

with our principle of failing closed. Anytime we are making a security

decision based on some criteria, that criteria should come in the form

of a whitelist. Additionally, we must write our code to fail close. Here is

an example of what not to do:

Don't do this.

if !admins.include? user

redirect_to :action => "user_console"

else

redirect_to :action => "admin_console"

end

In the previous example, we’ve succeeded in creating a whitelist, but

we’ve managed to violate our principle of failing closed.

Input Filters

Consider the following filter:

First and Last Name Tokens

acceptable_name = /[a-zA-Z]+(([']{1}[a-zA-Z]+)|([\-]{1}[a-zA-Z]+))*/

We’ve constructed a whitelist of acceptable characters for a person’s

name. It whitelists any normal name like David or O’Reilly, or even

O’Reilly-Smith. It is very difficult to write a blacklist that effectively

detects an invalid name. Here’s our attempt at a list:

unacceptable_name = /''|--|[\-]{2}-+|[\d];/

This is hardly a complete blacklist. And that is really the point of this

example. It is nontrivial to create a complete blacklist, and really unnec-

essary for most situations. You can probably already see a number of

characters that we should include in this blacklist. But it’s not an effec-

tive technique if you want to cover your bases completely.

1.8 Least Privilege

Least privilege is the notion that users or subsystems should only be

able to execute code that they need in order to function per business

requirements, and nothing else. We can think of least privilege as a

whitelist of necessary functionality.

Here’s a dialogue that illustrates a typical scenario in the corporate

world:

Business Analyst: Why can’t I add a new user to the document man-

agement system?

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=17

LEAST PRIVILEGE 18

Administrator: Because you are not authorized to make those kind of

changes.

Business Analyst: Why not?

Administrator: Because you are not a member of the administrator

group.

Business Analyst: OK. Make me a member of the administrator group.

Administrator: No.

Business Analyst: Why not?

Administrator: Because business analysts are not allowed to be ad-

ministrators. You would grant permissions to the wrong people. Feel free

to write a business justification document explaining why you need to

add users to the system. Perhaps we could add a group called “business

analyst admins.” This group would be allowed to add only other busi-

ness analysts. You have only read access to the system, for the purpose

of reading documents for business analysts; this is consistent with our

policy of enforcing least privilege.

Business Analyst: Gee. Thanks.

As we engineer more complex types of software, we must understand

our usage scenarios to implement security controls across security

boundaries. Security boundaries are areas of our software that exe-

cute some code that might require different levels of access. We cover

specifics of this in Chapter 7.

Regardless of the mechanism that supports our transition across a se-

curity boundary, we should implement our security controls to enforce

or allow the expression of least privilege.

An example of the misuse of this principle is when developers deploy

database-connected applications. Often, if an attacker is able to break

the application-layer defenses, that attacker will then have adminis-

trator access to a database system. This is not a good idea. The soft-

ware should be accessing the database with the least amount of priv-

ilege to perform the mandated functionality. This can also be looked

at within the context of Defense in Depth. At every level, part of the

defense should be least privilege.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=18

DO NOT REPEAT YOURSELF 19

1.9 Do Not Repeat Yourself

DRY, or Do Not Repeat Yourself, is a principle first coined by The Prag-

matic Programmer [HT00]. If we focus on not cutting and pasting, our

code will be more secure—we won’t repeat security mechanisms in dif-

ferent ways if we share common code across our security controls. This

allows us to also correct vulnerabilities as they are discovered, all in

one place as opposed to many.

1.10 Avoid Complexity

Complexity is bad. Complexity is an enemy to development cost,

maintainability, and security. As software complexity increases, so does

the risk of vulnerability. Throughout the brief history of modern, dis-

tributed application development, developers, business drivers, and ex-

cessive feature lists in general have caused application code bases to

become unmanageable. There is no question that complexity has cre-

ated numerous security flaws. It begins during the design phase, when

long lists of desired features pile up like dirty laundry.

It is almost impossible to describe a secure system by specification. We

can have software requirements descriptions (SRDs) that enumerate

“secure requirements.” They might look something like this:

• All cryptographic keys must be stored in separate files outside of

the application directory.

• Key strength for symmetric cryptographic routines must be a min-

imum of 256 bits.

• Key strength for asymmetric cryptographic routines must be a

minimum of 2,048 bits.

• A system should filter SQL keywords and SQL escape sequences.

• A system should filter all JavaScript.

This is a very basic list. In reality, a security consulting firm will provide

you with a book of security requirements to code against for the sum of

several thousand dollars. And while these can be useful, they also tend

to be fairly context-insensitive.

Ultimately, security requirements are much like usability requirements.

X UI component should be usable. And likewise, X component should

be secure. It’s a bit vague, isn’t it?

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=19

AVOID COMPLEXITY 20

If we apply some of the previously described principles to our devel-

opment, we can reduce the amount of complexity involved in making

more secure applications. Here’s a summary of the principles that drive

the techniques we will explore in this book:

• Defense in Depth pushes us to look at a layered-application model.

Layers break up our security boundaries naturally in our software.

This leads to simpler software that delegates duties to each appro-

priate layer. You need to focus on creating silos of defense, which

makes your components both more reusable and more secure!

• Whitelisting makes life easier. If we were to try to figure out all the

things users shouldn’t be doing before we ship our code, well, we’d

never ship any code. However, if we focus on what our users can

do, we have a finite list to concentrate on, which requires much

less of our time. Additionally, we can be explicit about what our

users can do, which fits nicely into the next principle.

• Least privilege pushes our security logic further down the applica-

tion stack. This inspires us to write security-aware components

that play nicely in our system’s ecosystem. Instead of creating

infinitely configurable security controls, our components can push

for convention-driven security rather than configuration-driven

security. Business analysts prefer to have infinitely configurable

security subsystems. Don’t listen to them. Have you ever encoun-

tered an administration console allowing you to configure every

conceivable permission in the world? That is complexity at its

worst.

• Secure by default allows more convention-driven security in our

application. Building software in such a way that it is secure

out-of-the-box drastically reduces the dependency on users and

administrators to harden the security of a particular application.

• Writing code that fails close, incidentally, is easier for most devel-

opers to read. Easier-to-read code is easier to maintain, and main-

tenance is an important aspect of application complexity.

• DRYing your code up is one of Rails’ guiding principles. It keeps

your code base much more manageable, which in turn leads to

easier maintenance. We all make mistakes, but we can make sure

those mistakes are easy to fix.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=20

ACKNOWLEDGMENTS 21

1.11 Acknowledgments

The authors wish to thank the tech reviewers for their valuable insights

and assistance, including Greg Vaughn, Jeffrey Turner, Heiko Webers,

Frederick Cheung, Brian Hogan, Paul Butcher, Christophe Porteneuve,

Kevin Gisi, and Tore Darell. Thank you also to Randall Munroe, for

allowing us to reprint one of his exceptional comic strips (you can find

more at http://xkcd.com).

Ben Poweski

I’d like to thank my mother, father, and sister for supporting me in

this endeavor. Also, I’d like to thank David, for pushing me to become

better at my craft, and Glenn Vanderburg, because without him this

book would not be possible. And finally, I’d like to thank everyone that

has put up with my incessant cancellation of social outings for sake of

the “book.”

Dave Raphael

Dave Thomas is a total joy to work with as an editor. This book would

never have been realized if it weren’t for his patience and guidance.

Glenn Vanderburg was right when he said, “There are not too many

guys like Dave Thomas... I don’t know how he does all of the things he

does and still has time to sleep.” Thanks to Glenn for introducing us to

Dave.

I’d like to thank my son, Pierce, for being so patient on the weekends

when “daddy” needed to work on his book. This was also made possible

with the support of my dear family and friends—all of you provided me

inspiration when I was ready to give up. Thank you.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=21

Part I

Getting Started

Chapter 2

Hacking the Example
Before we can protect software, we need to understand how to break

it. The purpose of this chapter is to learn techniques of web-application

hacking. We will exploit a sample application called LunchedIn, which

we will discuss in greater detail later in this chapter (and throughout

the book). We will patch the major security holes in Chapter 3, Fixing

the Example, on page 49. In this chapter, we cover the following attacks:

• Parameter manipulation

• Broken authorization

• SQL injection

• Cross-site scripting (XSS)

• Cross-site request forgery (CSRF; pronounced “sea-surf”)

Rails developers will likely encounter these vulnerabilities in their quest

for web application greatness. Later in the book, we discuss more ad-

vanced attacks, and mitigation techniques to prevent them.

There is no better way to learn how to improve security than to experi-

ence firsthand how to break it. In other words, we hack an application

to help us become better developers because we increase our under-

standing of what we need to do to protect applications.

2.1 Getting Started with LunchedIn

All the examples in this chapter use a sample application that contains

vulnerabilities. This application, LunchedIn, is a collaborative tool for

scheduling, rating, and managing lunch dates.

THE TOOLS OF THE TRADE 24

Danger, Will Robinson!

The code in this chapter is not meant to be used for anything
other than learning how to attack software!

You can download the code for the LunchedIn application, as well as

the rest of the code from this book, by visiting the book’s home page

at http://pragprog.com/titles/fr_secure and following the link to the code.

Once you download and unpack the code archive, you’ll be able to find

the file corresponding to a particular code listing in the book by fol-

lowing the path shown in the gray lozenge at the top of the printed

extract. If you’re reading the PDF version of the book, try clicking the

gray lozenge.

To access the code for the vulnerable LunchedIn application, you can

navigate to this path in the book’s code archive: code/getting_started/

lunchedin_broken.

You can load the sample data used in exercises throughout this book

with this command:

lunchedin_broken> rake db:create:all

lunchedin_broken> rake db:migrate

lunchedin_broken> rake db:fixtures:load

If you feel the need to start over with clean data, simply execute the

commands again, and new data will appear.

2.2 The Tools of the Trade

So how do we break into a web application? Well, we probably have

to go beyond the standard web interface provided by the application’s

developers. In fact, we want to peel back the layers and see what’s

happening at the protocol level. This will let us see just what the appli-

cation is sending to the browser and what the browser is sending to

the server. We’ll also need to manipulate traffic, injecting information

that the application developer wasn’t expecting. If the developer wasn’t

expecting it, it’s possible she didn’t bother to deal with it, and that

gives us (the bad guy) an edge. The tool of choice for doing this is an

application proxy.

Report erratum

this copy is (P1.0 printing, December 2009)

http://pragprog.com/titles/fr_secure
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=24

THE TOOLS OF THE TRADE 25

Figure 2.1: Installing Tamper Data

Application proxies are simply web servers that act as mediators be-

tween the browser and the destination server. They allow us to manip-

ulate the request before the browser sends it to the server. We can

also use them to manipulate the response before it is received by the

browser.

You can find a list of HTTP proxies useful for security testing and anal-

ysis in Chapter 11, Web Application Proxies, on page 261. The proxy we

will use for hacking is the Firefox extension, Tamper Data.

Using Firefox, navigate to Tamper Data’s home page.1 Click the install

link and agree to the installation dialog (see Figure 2.1).

We have our extension installed; now let’s use it to start hacking into

the LunchedIn application.

1. https://addons.mozilla.org/en-US/firefox/addon/966

Report erratum

this copy is (P1.0 printing, December 2009)

https://addons.mozilla.org/en-US/firefox/addon/966
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=25

EXPLOIT: PARAMETER MANIPULATION 26

2.3 Exploit: Parameter Manipulation

Parameter manipulation is simply the act of modifying the informa-

tion sent back and forth between the client (the web browser) and the

server in a way the application never would. Anything sent by the client

is fair game to be modified. Any form field, HTTP header, cookie, or

query parameter can be changed and even removed from the outgoing

request.

Enabling Administrator Access

Like many applications, LunchedIn provides an administrative console

exposed to the Web. We will hack the administration console using an

ordinary account.

Navigate your browser to http://localhost:3000/users/new of LunchedIn,

and view the HTML source of the page. We should see something similar

to the following:

Download getting_started/create_user.html

<form action="/users" method="post">

<div style="margin:0;padding:0">

<input name="authenticity_token"

type="hidden" value="3b9f8f1e0915d96ba3d9e804bf46703d53261173"/>

</div>

<div class="highlighted-form">

<table class="form">

<tr>

<td class="label">First Name:</td>

<td>

<input id="user_first_name" name="user[first_name]"

size="16" type="text"/>

</td>

</tr>

<tr>

<td class="label">Last Name:</td>

<td>

<input id="user_last_name" name="user[last_name]"

size="16" type="text"/>

</td>

</tr>

...

</table>

</div>

<div style="padding: 10px;">

<input name="commit" type="submit" value="Create"/>

</div>

</form>

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/users/new
http://media.pragprog.com/titles/fr_secure/code/getting_started/create_user.html
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=26

EXPLOIT: PARAMETER MANIPULATION 27

The Art of Pen-Testing

How do we know to do this? In short, we don’t. For the sake
of brevity, we will use the omniscient knowledge of the author
to skip the part where the attacker modifies the request and
painstakingly looks at the output. Security professionals refer to
this as penetration, or pen-testing.∗ Pen-testers are the profes-
sional hackers of the security world, and much of their work
involves painstaking trial-and-error processes, such as the one
described in Figure 2.2, on the following page.

∗. You can find more information about pen-testing at
http://www.securityfocus.com/pen-test.

A simple inspection of the HTML source using our browser reveals a

typical Rails HTML form. Assuming this application follows Rails con-

ventions, we can infer the following:

• The application invokes a POST request to http://localhost:3000/users

after the form is submitted. This URI maps to a ActionController::

Base subclass called UsersController and the create() method.2

• A User object is instantiated; then the save() or create() method is

invoked.

• The values inside of the left and right brackets map to object

attribute names and database columns, so we can infer that the

User class and corresponding table have the attributes first_name,

last_name, email, and probably several more.

Unless countermeasures are present to prevent the automatic binding

of fields within the form, all attributes passed to the new() method will

be set in the User object. This means if the developer skipped imple-

menting protection mechanisms, such as use of the attr_protected()

class method, we can insert our own form fields and the application

will gladly set values if a column exists.

If a setter method does not exist on the object being instantiated, we get

an undefined method error, and the request stops processing. This usu-

ally shows up as a nasty error in our web browser, but the Rails design-

ers thought of this and changed the verbosity of error messages running

2. This pattern is inferred from the Rails REST architecture.

Report erratum

this copy is (P1.0 printing, December 2009)

http://www.securityfocus.com/pen-test
http://localhost:3000/users
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=27

EXPLOIT: PARAMETER MANIPULATION 28

View
Source

Modify
Parameter

Desired Result
Found
Exploit!

yes

no

Figure 2.2: Testing process for parameter manipulation

in different configuration modes. This protection helps prevent leaks of

internal information that might be used against our applications.

How can we enable administrator access by using parameter manipu-

lation? The attack is actually quite simple, but it requires us to under-

stand how the application determines a user is an administrator.

A common approach to designing user management is to create a User

model, a corresponding set of Role models, and relationships via a

belongs_to(), has_many(), or has_and_belongs_to_many() method. We will

discuss more about authentication and authorization in later chapters,

but let’s expand our assumptions along this line of thinking.

We have a pretty good idea that the application contains a User model

and a UsersController file, based on the information leaked from the URI

(http://localhost:3000/users/new). So let’s take a guess that LunchedIn’s

authorization model or method for determining access control is built

on a user belongs to a role relationship. If this guess holds true, then

the User model should contain the attribute role_id or something similar.

From a black hat perspective, setting this field involves a little guess-

work. First, a hacker must work out what we called the “this user is

an administrator” column, and then he must guess what value means

“yes.” We’ll skip that guessing step (but, as a hint, common column

names that control user access include role_id, role, is_admin, group, per-

mission_id, static_permission_id, admin, group_id, and grp_id).

The field is called role_id in the LunchedIn application. To add admin-

istrator access to a new User object, we need to add the following form

field to the request:

<input type="text" name="user[role_id]" value="1"/>

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/users/new
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=28

EXPLOIT: PARAMETER MANIPULATION 29

Figure 2.3: Starting Tamper Data

We will use the Firefox extension installed earlier to add the role_id

parameter to the outgoing request. To start Tamper Data, select the

Tools menu and then the Tamper Data menu item. This will bring up

the Tamper Data dialog console, as shown in Figure 2.3.

Navigate to the http://localhost:3000/profile/new and enable Tamper Data.

Next, enter data for a new user account. Now clicking Create causes

Tamper Data to intercept the outgoing request and bring up a dialog

box, as shown in Figure 2.4, on the following page. Click the Tamper

button in the dialog box, as shown in Figure 2.6, on page 32.

At this point, we have successfully intercepted the outgoing create re-

quest to the LunchedIn application. We are able to modify this request

in any way we want. To add administrator functionality to the User

object, right-click or Control -click the column in the dialog box, then

select Add Element.

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/profile/new
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=29

EXPLOIT: PARAMETER MANIPULATION 30

Figure 2.4: Creating a user

This brings up another dialog box that tells the user to enter post data;

the dialog should look something like Figure 2.5, on the following page.

Enter the following into the text field, and click OK .

user%5Brole_id%5D=1

We add this value as a new form element to accommodate the way Rails

maps form parameters to newly instantiated objects. Specifically, HTTP

parameters in the form of foo[bar] are mapped to hashes in the form

params[:foo][:bar]. The values %5B and %5D are the URL-encoded values

of [and]. The values are usually passed directly into the create() or

update_attributes() methods of Active Records.

Now click OK on the “Outgoing requests” dialog; if all goes well, the User

object will be added successfully to the application with administrator

rights.

When browsing through the application with our new administrative

privileges, the comments on a venue should look something like Fig-

ure 2.7, on page 33. We have changed the role of the user, so the

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=30

EXPLOIT: BROKEN AUTHORIZATION 31

Figure 2.5: Adding a form element with Tamper Data

application now gives us the ability to mark comments as spam, thus

allowing us to remove that nasty comment about our brother-in-law’s

restaurant—or eliminate all the good ones.

So far we’ve learned how to manipulate the request and response using

the Tamper Data proxy. This technique is very useful for testing possi-

ble security vulnerabilities, as well as for learning about what is going

on between the browser and the server.

2.4 Exploit: Broken Authorization

As application developers, we often limit access to various parts of our

applications. To gain access to these areas, a user must be authorized

or allowed. Sometimes the logic behind limiting access is flawed; we

refer to this as an authorization vulnerability. To illustrate authorization

vulnerabilities, we will exploit the voting mechanism in LunchedIn and

show how to access the events of other users.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=31

EXPLOIT: BROKEN AUTHORIZATION 32

Figure 2.6: Enabling an administrator role

Failure to Authorize Ajax Actions

In Rails, Ajax actions are the natural way of expressing usable solu-

tions to complex UI interactions. Unfortunately, when we implement

such functionality, it is easy to lose sight of where our code is placing

trust. As developers, we must think about traversing server to client

and all of the changes in between. These interactions can be difficult

to understand, which can make identifying vulnerabilities that much

more difficult. In the next example, we will look at a flaw around a

voting mechanism in our application.

Our application allows only a single vote—at least, that was the inten-

tion. When we look at the source of http://localhost:3000/venues/show/

1, we can see there are two links that control voting via the onclick()

JavaScript event.

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/venues/show/1
http://localhost:3000/venues/show/1
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=32

EXPLOIT: BROKEN AUTHORIZATION 33

Figure 2.7: Administrator privileges

Download getting_started/venue_vote.html

...

<div id="venue-rating">

<a href="#" onclick="new Ajax.Updater('venue-rating',

'/ratings/rate?score=1&venue_id=1',

{asynchronous:true, evalScripts:true, parameters:'authenticity_token=' +

encodeURIComponent('43986a596e750503311132c669057d3e089f')}); return false;"

style="color:green">I love it

|

<a href="#" onclick="new Ajax.Updater('venue-rating',

'/ratings/rate?score=0&venue_id=1',

{asynchronous:true, evalScripts:true, parameters:'authenticity_token=' +

encodeURIComponent('43986a596e750503311132c669057d3e089f')}); return false;"

style="color:red">I hate it

</div>

...

Rails favors convention over configuration, so we have to keep in mind

that attackers can draw assumptions about our application, just as

we can. Note that these assumptions are not the cause of security

vulnerabilities; quite the contrary, they help us produce correct code

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/venue_vote.html
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=33

EXPLOIT: BROKEN AUTHORIZATION 34

by reducing the number of steps it takes to solve a particular prob-

lem. Adhering to conventions is an example of reducing complexity, the

sworn enemy of security.

Now let’s look at the markup generated by the application and see what

we can learn. We can use our general knowledge of Rails to derive the

following:

• There is a controller called RatingsController that includes a create()

method.

• The rate() method accepts a parameter, score. We assume this be-

cause the rendered markup contains references to http://localhost:

3000/ratings/rate/1?score=1.

• The rate() method returns a JavaScript fragment. The integration

of the Rails and Ajax toolkits thrive on lightweight marshaling

between the client and server. A common approach is to send

JavaScript to the client to execute after a remote action is invoked.

We are able to draw these assumptions without ever looking the source

code on the server, deriving them entirely from the visible HTML our

browser uses to render the view. Of course, this is unavoidable because

the browser must access the markup.

Hacking the Voting Links

The ability to vote is removed in LunchedIn after a user votes on a par-

ticular venue—or so the designers thought. Let’s hack this functionality

using Tamper Data.

When a user clicks the voting link, the browser submits an Ajax request

using Ajax.Request from the Prototype JavaScript library. After the vote

is submitted, the server responds with a bundle of JavaScript, telling

the browser what parts of the page need to be updated. We are going to

intercept this request and replay it.

We need to log into LunchedIn, navigate to http://localhost:3000/venues/1,

and enable Tamper Data. We do this by selecting Tools > Tamper Data

> Start Tamper. Choose and click a voting link; then click the Submit

button when you get to Figure 2.8, on the following page.

At this point, we have the outgoing request logged in our proxy. The

first vote has been processed, and we now can replay it by selecting

“Replay in browser,” as shown in Figure 2.9, on page 36.

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/ratings/rate/1?score=1
http://localhost:3000/ratings/rate/1?score=1
http://localhost:3000/venues/1
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=34

EXPLOIT: BROKEN AUTHORIZATION 35

Figure 2.8: Intercepting the Ajax vote request

Selecting “Replay in browser” brings up the outgoing request dialog, as

shown in Figure 2.10, on page 37.

If all goes well, we will be able to resubmit the same outgoing request

using our web proxy. This demonstrates that, while the view was re-

moved after the Ajax request, we are still able to send it again. This

means the server isn’t properly limiting what we see versus what the

server will process.

Unprotected ID Access

One exploit that is easy to overlook concerns allowing direct access to

objects not belonging to a user. It is all too easy to forget to add autho-

rization checks, not least because we have to look for such behavior.

Let’s test LunchedIn for such a flaw:

1. We need to log in to LunchedIn using the bob account and the

hello password.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=35

EXPLOIT: SQL INJECTION 36

Figure 2.9: Replaying a request in Tamper Data

2. Next, we navigate to the URI, http://localhost:3000/events/1. This

brings up an event by Wally Webcoder.

If all is well, you should be able to access the event created by Wally,

as shown in Figure 2.11, on page 38. You can infer from this that

LunchedIn probably suffers from an authorization flaw allowing direct

access to its resources.

So far we’ve learned that broken authorization allows malicious users

to execute functionality the designer never planned for. Using a proxy

like Tamper Data, we can insert arbitrary markup and exploit these

flaws, as we did when we created the “improved” voting button.

2.5 Exploit: SQL Injection

SQL injection vulnerabilities can have potentially disastrous consequen-

ces. The concept behind the attack is quite simple: inject SQL into the

input points the application uses to build a query. This input will be

sent to the database and interpreted. Our example will use MySQL, but

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/events/1
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=36

EXPLOIT: SQL INJECTION 37

Figure 2.10: An outgoing request in Tamper Data

the code we create should be portable across a variety of databases.

Some SQL injection attacks are not so portable because they use fea-

tures specific to the RDBMS. For example, SQL Server uses the xp_

cmdshell stored procedure to execute shell commands; some hackers

target this specific implementation.

Testing the Water

The first task is to poke at the application and see if it responds to input

that would signal a vulnerability. One of the easiest ways to do this is

to send single quotation marks in the input field of an application. If an

unhandled error occurs, this is a good indication that the application

might be vulnerable to SQL injection exploits.

In LunchedIn’s login screen, enter the following into the username field

and submit the form:

hello'

When you insert a single quote in the username field, there is a surpris-

ing effect: an unhandled ActiveRecordError occurs. If we are running the

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=37

EXPLOIT: SQL INJECTION 38

Figure 2.11: Direct ID access

sample application with RAILS_ENV set to development, then we should

see the details of the error, as shown in Figure 2.12, on the following

page. If the RAILS_ENV variable is set to production, a limited view of the

error will be displayed.

Attacking the Login

Now that we have a good idea our application might not be handling

input properly, it is time to attempt another exploit: circumventing the

login process. The presence of a quote character has triggered an error

outside of the expected norm, a rather nasty error message, so we can

guess it is affecting the validity of the underlying database query.

A common approach for authenticating users in web applications is to

delegate the logic of the login process to the database. While this isn’t

always the most sound design, it can be done securely. Our example

does not. We cover authentication in detail in Chapter 6, Authentication:

Decentralized Authentication, on page 95.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=38

EXPLOIT: SQL INJECTION 39

Figure 2.12: SQL interpretation error

For now, we are going to break the authentication scheme of the

LunchedIn application. Enter the following values into the username

and password form fields:

Field Value

Username wally

Password fakepass’ OR ’a’ = ’a

When we input the preceding values into the form field, we are whisked

away into the protected areas of the application. Congratulations, we’ve

defeated the authentication process!

How did this happen? In the password field, we entered the values in the

form of value’ or ’a’ = ’a. This allowed us to alter the boolean logic of the

select statement to always return true.

Think of this attack as a crossword puzzle. We need a SQL fragment

that starts with ’ that yields a true result when mixed with an existing

query. Choose a real username (wally); then use ’a’ = ’a as the terminat-

ing, always true condition. The values sent will produce the following

query, which returns all rows and then the first value:

SELECT * FROM users WHERE (username = 'wally'

AND password = 'fakepass' or 'a' = 'a') LIMIT 1

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=39

EXPLOIT: CROSS-SITE SCRIPTING 40

In the wild, hackers don’t usually have access to your source, but don’t

let that set you at ease! Security professionals refer to the belief that

you are secure because attackers don’t know about your vulnerabilities

as security through obscurity. Security through obscurity is an anti-

pattern, or a pattern of what not to do in your application.

The consequences of SQL injection vulnerabilities can be devastating.

The extensive security controls built around your database server—the

private network, IP tables, and encrypted transport—become entirely

useless as an attacker takes an express lane to the center of your

database.

These examples have taught us the following:

• Characters that have meaning within the SQL language for your

database can be used to identify possible vulnerabilities.

• SQL statements that always return true can be used to alter dele-

gated authentication or authorization controls that utilize results

from the database.

2.6 Exploit: Cross-Site Scripting

For the purposes of this book, we will focus on identifying the unique

attributes of a cross-site scripting exploit, and leave the naming and

semantics to someone else. As with many technology concepts, various

groups have embarked on an effort to categorize the subcategories of

this exploit. This leads to the unfortunate side-effect that if someone

mentions cross-site scripting, there isn’t a precise definition of what it

means. However, we can all agree that cross-site scripting vulnerabili-

ties are bad, regardless of what subcategory anyone wants to put them

under.

HTML Injection

Let’s begin by showing an example of HTML injection that uses the login

screen we attacked in the previous section. HTML injection is just what

it sounds like: inserting markup so that the server will echo it back into

a page.

When entering various values into the username form field, you might

have noticed that the application echos back the supplied value. Given

this, let’s see if the developer has missed some important input-vali-

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=40

EXPLOIT: CROSS-SITE SCRIPTING 41

Figure 2.13: Simple XSS example

dation techniques, such as those discussed in Chapter 5, Validation,

on page 84.

We can test our hypothesis by entering the following value into the

Username field of the login screen, along with an incorrect password so

the application will trigger the failure notification:

<i>wally</i>

You should see the username in a slightly different form, as shown in

Figure 2.14, on the next page. Italics aren’t especially menacing, but

this action proves the application is in fact vulnerable to HTML injection

exploits. However this doesn’t mean too much until we look at more

advanced attacks. It might be helpful to think of HTML injection as the

basic building block of all other XSS vulnerabilities.

Reflected XSS

Getting users to enter JavaScript into a text field on the behalf of an

attacker is not entirely out the question, but it isn’t the most practical

approach, either. A far more common approach is to embed the payload

in a hyperlink. This is done with a technique called reflected cross-site

scripting.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=41

EXPLOIT: CROSS-SITE SCRIPTING 42

Figure 2.14: Simple XSS result

Enter the following into your browser:

http://localhost:3000/session/check_login?user%5Busername%5D=%3Ci%3Ewally%3C/i%3E

The result should be similar to what we saw in Figure 2.14. Note how

the login screen of the application echos the user name “wally” in the

error message. In Rails, the special characters [and] are used to group

sets of like parameters together. When sending special and reserved

characters, we must URL-encode them. We can accomplish this in Ruby

by calling the escape(string) method of the CGI class:

irb(main):001:0> require 'cgi'

=> true

irb(main):002:0> CGI.escape('user[user_name]')

=> "user%5Buser_name%5D"

Ruby’s CGI class is part of the standard library. The escape() method

is used to URL-encode the input. Keep in mind that the similar escape-

HTML() method lets you escape special HTML characters from interpre-

tation by a browser:

• All HTTP requests are vulnerable, but GET requests require the

least effort to exploit.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=42

EXPLOIT: CROSS-SITE SCRIPTING 43

Reserved Characters Hex Unsafe Characters Hex

$ %24 Space %20

& %26 ’ %22

+ %2B < %3C

, %2C > %3E

/ %2F # %23

: %3A % %25

; %3B { %7B

= %3D } %7D

? %3F | %7C

@ %40 / %5C

^ %5E

~ %7E

[%5B

] %5D

‘ %60

Figure 2.15: URL-encoded values

• Be wary of links with HEX encoding because hackers might use

them to smuggle HTML payloads.

Cookie Theft Using Persistent XSS

Persistent XSS is an attack where JavaScript is submitted to a site,

saved, and then repeated back to the world long after the attacker has

gone. Enter the following value into a venue’s comment:

<script>

alert("I'm vulnerable. Please hold me.");

</script>

If all goes as expected, we should see some something like Figure 2.16,

on the next page.

This alert will be shown every time the page is loaded. Apart from being

really annoying, the markup serves an important purpose: it is a good

test for other kinds of attacks.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=43

EXPLOIT: CROSS-SITE SCRIPTING 44

Figure 2.16: Persistent cross-site scripting

If we can inject JavaScript into a comment, then we can probably har-

vest session identifiers,3 invoke fancy Ajax methods, or leak informa-

tion accessible from the page.

Navigate to a venue, such as the one at http://localhost:3000/venues/1,

and enter the following as a comment:

<script>

new Image().src = "http://localhost:3000/?cookie=" + escape(document.cookie);

</script>

If you check the console log of your Ruby server, you’ll see a request

containing the contents of your cookie. Note how we escaped the value

of the document.cookie property using the JavaScript escape(contents)

method. This is important because cookies typically contain values not

legal within URLs.

In our example, we sent the session tokens to the same web server

that we lifted the session information from. In the wild, an attacker

would send your session token to an entirely different site. This prac-

tice is known as session harvesting or cookie theft. At this point, the

3. Rails 2.0+ contains session fixation attack protections that mitigate the impact of

these kinds of attacks.

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/venues/1
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=44

EXPLOIT: CROSS-SITE REQUEST FORGERY 45

attackers could use the session identifier as their own, enabling them

to do anything that the account is allowed to do. Rails gives us the pro-

tect_from_forgery mechanism to make this type of attack more difficult;

we’ll cover this in Chapter 3, Fixing the Example, on page 49.

It should also be noted that this attack is valid only for the duration

of the active session. Limiting the length of active sessions through the

use of session timeouts enables us to reduce the window of time that

this kind of attack is viable:

Completed in 0.05237 (19 reqs/sec) | Rendering: 0.02995 (57%) | DB: 0.016 (31%)

200 OK [http://localhost/?cookie=_lunchedin_session_id%3D2379e020624035e45d7]

In our access log, we can see what session it is: 2379e020624035e45d762d-

880527f41d. The prefix, _lunchedin_session_id, is used by Rails to make

sure each application’s session ID does not collide with another. The

value in between, %3D, is a hex-encoded equals sign.

So far we’ve learned the following about cross-site scripting:

• If an application will accept input from a user that includes HTML

markup and the markup is echoed back on the screen, then the

application is likely vulnerable to XSS exploits.

• An XSS flaw exists if we can embed properly encoded markup into

parameters that are echoed by the application.

• XSS vulnerabilities can be used to send sensitive data to remote

sites or to automate unwanted actions.

2.7 Exploit: Cross-Site Request Forgery

In a cross-site request forgery (CSRF, pronounced “see-surf”), a user

is tricked into executing malicious code on a site using his own

credentials.

Computers are not very good at determining the intent of requests

sent by users, which makes it difficult for applications to protect sites

against CSRF attacks.

Attack Clients

To initiate a CSRF attack, we need a mechanism to initiate the network

call from the victim’s browser. Fortunately for us, HTML and JavaScript

provide this functionality! The following is a brief list of various HTML

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=45

EXPLOIT: CROSS-SITE REQUEST FORGERY 46

Browser Trusted Site Compromised Website

http://localhost:3000/login

Set-Cookie: a3b7c2a3b0..

GET /venues/show/2

<html>

...

...

</html>

GET /ratings/rate?score=1&venue_id=2

Figure 2.17: Cross-site request forgery

elements and JavaScript classes that permit remote access of network

resources using HTTP GET requests:

• script

• img

• link

• form

• object

• applet

• embed

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=46

EXPLOIT: CROSS-SITE REQUEST FORGERY 47

Joe Asks. . .

How Does CSRF Differ from XSS?

How does CSRF differ from XSS? People disagree about the
exact differences; the best explanation we can give is that XSS
exploits the trust a client has for a site, while CSRF exploits the
trust a site has for a user.

For example, a browser interpreting malicious markup saved
into a comment on a forum is an example of XSS because the
user trusts the site. If that markup caused the client’s browser
to do something against another site, such as execute a stock
trade via an existing authenticated session, it would be a CSRF
attack against the remote site. In many cases, the techniques
are combined to create a more devastating attack than could
be managed with either technique on its own.

Similarly, the following JavaScript classes can be instantiated and used

to invoke remote HTTP GET requests:

• XMLHttpRequest4

• Image

Now let’s add the following markup as a comment to one of the restau-

rants listed under http://localhost:3000/venues:

<script>

new Image().src = "http://localhost:3000/ratings/rate/2?score=1"

</script>

After we add this HTML to the comment, we should see something like

the following in the server log files:

Processing RatingsController#rate (for 127.0.0.1 at 2007-07-01 13:53:10) [GET]

Session ID: b7b9c3c9a1dc311f08fdb3112e4d1022

Parameters: {"score"=>"1", "action"=>"rate", "venue_id"=>"2",

"controller"=>"ratings"}

This is a sign the CSRF attack worked! We initiated a vote by simply

viewing the comment. What makes this attack so powerful is that the

4. The XMLHttpRequest object is subject to the same-origin policy.

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/venues
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=47

EXPLOIT: CROSS-SITE REQUEST FORGERY 48

JavaScript located on this site could be used to attack an entirely dif-

ferent one. For example, a comment viewed on LunchedIn could trigger

an action to a site that you visited previously. The worst part is, this

traffic would be nearly indistinguishable from normal traffic patterns.

So far we’ve learned the following about cross-site request forgery:

• Compromised sites can be used to attack sites that do not have

cross-site scripting vulnerabilities.

• Cross-site vulnerabilities typically occur without the user’s knowl-

edge and typically appear as normal traffic.

The purpose of this chapter was to show the thought process an at-

tacker uses to exploit a web application’s vulnerabilities. We hope that

highlighting and understanding some common exploits will enable us

to protect our own software from such exploits.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=48

Chapter 3

Fixing the Example
In the previous chapter, we saw how vulnerabilities in our sample appli-

cation could be exploited. Let’s spend this chapter patching up these

holes. The goal isn’t to show the most elegant solutions possible, but

something that works. In Part II of this book, we’ll go a step further

and strengthen the security of the application by adding additional

defenses.

Keep in mind that removing every possible security flaw from an appli-

cation is impossible. It only takes one vulnerability to compromise an

application, so it’s easy to see how this might be a discouraging topic.

Don’t get frustrated! Security isn’t a black art, contrary to what many

would have you believe. Through an iterative process, we can build up

defenses that will reduce the risk of your application being compro-

mised. Reducing the risk is what securing your application is all about.

Topics that we’ll explore in this chapter include the following:

• How to whitelist and blacklist the binding of parameters by using

ActiveRecord class methods; we’ll also cover when it is appropriate

to use each method.

• How to use authorization techniques that rely on roles, including

when it is appropriate to use them.

• How to implement input validation and output sanitization tech-

niques to prevent SQL injection and XSS exploits.

• How to implement basic techniques to prevent CSRF attacks.

3.1 Protecting Against Parameter Manipulation

The first exploit we looked at in the previous chapter was a case of

parameter manipulation. Within Rails, HTTP parameters are mapped

PROTECTING AGAINST PARAMETER MANIPULATION 50

to object properties. In typical Rails fashion, this convention saves us

time because we can instantiate a model object by passing a Hash of

HTTP parameters to our object.

Let’s look at an example. The following is the vulnerable code that we

attacked during the creation of a User accessible at the http://localhost:

3000/users/new URI:

Download getting_started/lunchedin_broken/app/controllers/users_controller.rb

Line 1 def create
- @hide_tabs = true

- @user = User.new(params[:user])
- if @user.save
5 flash[:notice] = 'your account was successfully created.'
- session[:user_id] = @user.id
- redirect_to user_path(@user)
- else

- render :action => 'new'
10 end

- end

Note how the value params[:user] is passed into the new(params) method

on line 3 of the User class. At this point, all parameters of the HTTP

request that have the form of user[property_name] are bound to their

respective properties. The role_id attribute determines the privilege level

of a user. This is why the application gladly assigned the unintended

privilege level when we added the user[role_id] parameter.

The question is this: how can we prevent automatic binding of param-

eters to ActiveRecord properties? One approach would be to remove the

sensitive parameters from the params hash before we pass it to our

ActiveRecord object. The Rails designers took this technique a step fur-

ther and created the attr_protected() class method that does exactly this.

Let’s protect our application from the exploit by updating the User class

to look like this:

Download getting_started/lunchedin/app/models/user.rb

Line 1 class User < ActiveRecord::Base
- attr_protected :role_id
- validates_presence_of :email, :first_name, :last_name
- validates_presence_of :username, :password_hash
5 validates_uniqueness_of :username
- validates_length_of :zip_code, :is => 5
- validates_length_of :password, :in => 7..32
- validates_numericality_of :zip_code
- validates_confirmation_of :password

10 has_many :events
- has_many :comments, :as => :commentable
- belongs_to :role
-

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/users/new
http://localhost:3000/users/new
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin_broken/app/controllers/users_controller.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=50

PROTECTING AGAINST PARAMETER MANIPULATION 51

- def password=(password)
15 @password = password

- write_attribute(:password_hash,
- OpenSSL::Digest::SHA1.new(password).hexdigest)
- end

-

20 def password
- @password
- end

-

- def authentic?(p)
25 password_hash == OpenSSL::Digest::SHA1.new(p).hexdigest

- end

-

- def self.find_and_authenticate(username, password)
- user = User.find_by_username(username)

30 return false if user.nil?
- if user.authentic?(password)
- user
- else

- false

35 end

- end

- end

Note how line 2 of user.rb invokes the attr_protected() class method, pass-

ing the :role_id symbol. The role_id attribute will not be populated via the

new(params) or update_attributes(params) methods.

Let’s update our test case to verify that this parameter is not set when

the create() action is executed:

Download getting_started/lunchedin/test/functional/users_controller_test.rb

Line 1 test "should not create user with mass assigned role id" do

- post :create, :user => {
- :username => 'bsmith',
- :password => 'hello11',
5 :password_confirmation => 'hello11',
- :email => 'bob@yahoo.com',
- :zip_code => '75024',
- :first_name => 'Bob',
- :last_name => 'Smith',

10 :role_id => 1
- }
- user = User.find_by_username('bsmith')
- assert_not_nil user, assigns(:user).errors.inspect
- assert_equal 2, user.role_id

15 assert_response :redirect
- assert_redirected_to user_path(user)
- assert_equal @request.session[:user_id], user.id
- end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/test/functional/users_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=51

ADDING AUTHORIZATION 52

The :role_id parameter is added to the HTTP POST request with a value

of 1 on line 10. As you might recall from the previous chapter, 1 is the

primary key of the administrator role for LunchedIn. Next, we assert

that the persisted User has a role_id of 2 on line 14. It is the attr_pro-

tected(properties) class method that makes all this possible.

Listing sensitive parameters works well when there are only a hand-

ful of items. You will likely run into situations where you want the

default behavior to be secure. We can accomplish this by using the

attr_accessible(properties) class method. This method switches off auto-

matic binding for all properties except those passed as arguments. This

means we need to use the new() method to list every parameter we want

set during instantiation.

When using ActiveRecord, it’s important that you remember several key

points:

• Use attr_protected() to blacklist sensitive parameters. This method

is ideal when there are few sensitive parameters because it can

reduce the lines of code required in the model class definition.

• Use attr_accessible() to whitelist nonsensitive parameters. This

method is our best option when most of the application param-

eters are sensitive.

• The default behavior in Rails is to bind all HTTP parameters to

ActiveRecord model objects. This approach makes things easy on

the developer, but it is not always secure. We must exercise care

when building our applications, and we must understand the lim-

itations of using ActiveRecord without calling attr_accessible().

3.2 Adding Authorization

Authorization is the act of enforcing what a user can or cannot do. The

algorithm behind allowing or disallowing behavior is simple:

if user X is permitted to do Y

permit user X to do Y

else

disallow action and show error

end

Unfortunately, the designs required to implement the abstraction of

such functionality are not always as simple. Before diving into the topic

of authorization, there are a few terms we need to become acquainted

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=52

ADDING AUTHORIZATION 53

with. Security people often refer to users as principals. Rather than

declaring all permitted actions of a principal, it is often easier to group

them into something called a role. We can now revise our pseudo-code

to say this:

if principal X is in role Admin

show admin console

else

redirect to main page and show error

end

This snippet illustrates role-based access control, which is a fancy name

for an authorization model that maps principals to groups of allowable

actions or permissions. We’ll focus on authorization in more detail in

Chapter 7, Authorization, on page 135. For now, let’s concentrate on

fixing our code.

Fixing the Voting Link

In the previous chapter, we exploited the voting functionality of

LunchedIn by replaying the Ajax request using Tamper Data. Let’s

investigate where the vulnerability might be:

Download getting_started/lunchedin_broken/app/views/venues/show.html.erb

<div id="venue-rating">

<% unless @venue.has_user_rated?(session[:user_id]) %>

<%= render :partial => 'ratings/new' %>

<% else %>

<%= render :partial => 'ratings/show' %>

<% end %>

</div>

The logic to determine whether the user should receive voting links or

a summary is determined by the result of the has_user_rated?(user_id)

method. This method takes a single argument, the user_id of the cur-

rently logged-in user. So far, so good. Now let’s look at RatingsController:

Download getting_started/lunchedin_broken/app/controllers/ratings_controller.rb

Line 1 def rate
2 @venue = Venue.find(params[:id])
3 @venue.ratings << Rating.new do |r|
4 r.score = params[:score]
5 r.user_id = session[:user_id]
6 end

7 render :partial => 'show'
8 end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin_broken/app/views/venues/show.html.erb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin_broken/app/controllers/ratings_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=53

ADDING AUTHORIZATION 54

Eureka! Now we see the source of the vulnerability, which is that the

rate() action of RatingsController is not applying the same protection af-

forded by the view. We can see on line 3 that a new Rating object is

instantiated and added to the Venue object. Nothing stops this code

from creating a new Rating object.

To fix the vulnerability, we need to add the same authorization check

that we see in the view of show.html.erb. Update RatingsController to look

like the following example:

Download getting_started/lunchedin/app/controllers/ratings_controller.rb

Line 1 def rate
2 @venue = Venue.find(params[:id])
3 unless @venue.has_user_rated?(session[:user_id])
4 @venue.ratings << Rating.new do |r|
5 r.score = params[:score]
6 r.user_id = session[:user_id]
7 end

8 end

9 render :partial => 'show'
10 end

On line 3, we add the unless statement, which causes the code to fail

safely into the render() method. Now subsequent calls to vote on a venue

will be blocked, regardless of which rendered view is displayed to the

user.

The following test cases try out the fix applied to RatingsController:

Download getting_started/lunchedin/test/functional/ratings_controller_test.rb

test "should rate positively using post" do

assert_difference 'Rating.count', 1 do

@request.session[:user_id] = users(:bob).id

2.times do

xhr :post, :rate, :id => venues(:micos).id, :score => 1

assert_response :success

end

end

end

Download getting_started/lunchedin/test/functional/ratings_controller_test.rb

test "should rate negatively using post" do

assert_difference 'Rating.count', 1 do

@request.session[:user_id] = users(:bob).id

2.times do

xhr :post, :rate, :id => venues(:micos).id, :score => 0

assert_response :success

end

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/ratings_controller.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/test/functional/ratings_controller_test.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/test/functional/ratings_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=54

ADDING AUTHORIZATION 55

Our updated functional test case mimics the behavior of multiple votes

for a Venue with the same user. When developing authorization controls,

it is important to do the following:

• Enforce the same level of authorization throughout your applica-

tion. Changing the output of a view can give a false sense of pro-

tection from an attack. This behavior needs to be enforced during

the execution of the corresponding action.

• Add authorization test methods in your controller test cases. Good

test cases will trigger failures if the behavior changes; adding these

methods will help you discover vulnerabilities sooner than you

would if you were to employ only manual testing procedures.

Protecting ID Parameters

Direct ID access is easy to overlook. Most software processes focus

entirely on the domain, rather than aspects such as security. In other

words, security is usually an afterthought when we write software.

Implementing proper authorization is imperative for creating a secure

application.

In LunchedIn, we exploited direct access of Event objects. This means

that any user could manipulate the model associated with the primary

key as if it were her own. Let’s look at the EventController class and see

if we can find the source of the flaw.

Several actions in this controller operate on event data. The data for

any particular event object is owned by a specific user, so we need to

be careful not to reveal it to other users:

Download getting_started/lunchedin_broken/app/controllers/events_controller.rb

def show

@event = Event.find(params[:id])

end

We must determine which methods need protection from prying eyes.

First, the show() method should be limited to those events created by

the current user only. Let’s update this method with the following code

to authorize access properly:

Download getting_started/lunchedin/app/controllers/events_controller.rb

Line 1 def show
2 begin

3 @event = @authenticated_user.events.find(params[:id])
4 rescue

5 render :action => 'no_access'
6 end

7 end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin_broken/app/controllers/events_controller.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/events_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=55

ADDING AUTHORIZATION 56

On line 3, you can find the query from User.find(params[:id]) to @authenti-

cated_user.events.find(params[:id]). This technique takes advantage of the

has_many :events association to scope the find method of the event to the

user_id of the currently logged-in user. We can accomplish this by using

the @authenticated_user instance variable that is set in a filter defined

in application.rb. The show() action is taken care of, so let’s look at the

issues that remain with the update() method. The following code shows

the broken update() action:

Download getting_started/lunchedin_broken/app/controllers/events_controller.rb

def update

@event = Event.find(params[:id])

if @event.update_attributes(params[:event])

redirect_to event_path(@event)

else

render :action => 'show'

end

end

You might have noticed that this method also lacks appropriate access

controls. To fix this, we need to update the following methods with

authorization logic:

Download getting_started/lunchedin/app/controllers/events_controller.rb

def update

begin

@event = @authenticated_user.events.find(params[:id])

if @event.update_attributes(params[:event])

redirect_to event_path(@event)

else

render :action => 'show'

end

rescue

render :action => 'no_access'

end

end

Download getting_started/lunchedin/app/controllers/attendees_controller.rb

def create

begin

@event = @authenticated_user.events.find(params[:event_id])

if @attendee = @event.attendees.create(params[:attendee])

respond_to do |format|

format.js

end

end

rescue

render :nothing => true

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin_broken/app/controllers/events_controller.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/events_controller.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/attendees_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=56

PREVENTING SQL INJECTION 57

Download getting_started/lunchedin/app/controllers/attendees_controller.rb

def destroy

begin

@attendee = @authenticated_user.events.find(params[:event_id]).

attendees.find(params[:id])

if @attendee.destroy

respond_to do |format|

format.js do

render :update do |page|

page.visual_effect :fade, "attendee_#{@attendee.id}"

end

end

end

end

rescue

render :nothing => true

end

end

The updated code isn’t pretty, but it does the job of protecting actions

from users with valid sessions that didn’t create the Event. We’ll look

at additional techniques to provide more concise declarations of autho-

rization logic in Chapter 7, Authorization, on page 135. For now, let’s

move on to the issues with our login functionality.

3.3 Preventing SQL Injection

We can prevent SQL injection vulnerabilities by filtering properly or

sanitizing the input. SQL injection occurs because the application

trusts the data received will not contain interpretable code. The correct

approach is to code defensively and assume that the input will likely

contain these dangerous characters and then take the proper actions

to prevent the application from interpreting such code.

What Is Wrong with the Login Controller?

Recall that we discussed how to break the login functionality of our

application in Chapter 2, Hacking the Example, on page 23. The follow-

ing code in SessionController enables SQL injection:

Download getting_started/lunchedin_broken/app/controllers/session_controller.rb

Line 1 def check_login
- if @user = User.find(:first, :conditions =>
- "username = '#{params[:user][:username]}' " +
- "AND password = '#{params[:user][:password]}'")
5 session[:user_id] = @user.id
- redirect_to user_path(@user)

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/attendees_controller.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin_broken/app/controllers/session_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=57

PREVENTING SQL INJECTION 58

- else

- flash[:notice] = "the user #{params[:user][:username]}, "
- flash[:notice] << "was not found with the specified password"

10 redirect_to '/login'
- end

- end

Let’s drill down on what makes controller vulnerable. Take a look at

the code in line 3 and line 4. Note how the query is constructed by

interpolating or evaluating variables within a string using the #{vari-

able_name} operators. Using variable interpolation for query construc-

tion is dangerous! This is because SQL fragments can be inserted into

the constructed query, altering the outcome. In the previous chapter,

we attacked LunchedIn by injecting SQL fragments in such a way that

the login would never fail.

Getting Our Fix On

Now that we’ve identified the source of a vulnerability, let’s patch the

security hole. To fix this flaw, we need to add protection mechanisms

before the query is sent to the database and evaluated. There are sev-

eral techniques within Rails to mitigate the risk of such an attack. For

example, we could try the following:

1. Add custom sanitization or filter methods using the ActionCon-

troller::Base class method, before_filter().

2. Add sanitization or filter logic to model objects using custom finder

methods.

3. Rewrite the query to use the bind variables or generated finder

methods. Doing so would delegate the responsibility for filtering

dangerous characters to the ActiveRecord framework.

Each of these techniques will accomplish the goal, albeit in varying

degrees of elegance.

Building sanitization logic into ActionController, as described in tech-

nique #1, is generally not advisable because web applications typically

have more complex entry points at the controller layer than in the

model layer. This added complexity increases the likelihood of intro-

ducing additional vulnerabilities

The model is usually where we should put filtering or sanitization logic.

This is because the model, not the controller, is the abstraction layer

to the persistent store where the attack is directed. If more complex

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=58

PREVENTING SQL INJECTION 59

filtering is required, it makes sense that the model should contain the

logic because we will probably want to reuse these protections in other

entry points.

Technique #3 presents a different solution altogether: delegating the

responsibility to the framework. This is the ideal technique for queries

with a small number of input parameters. For cases where a flat list of

substituted variables becomes unwieldy, we can use named bind vari-

ables. We have only two fields in this case, so let’s use the generated

finder methods.

The following code shows our find_and_authenticate(username, password)

class method, which returns a User object if the password is valid

against the hash stored in the database:

Download getting_started/lunchedin/app/models/user.rb

def self.find_and_authenticate(username, password)

user = User.find_by_username(username)

return false if user.nil?

if user.authentic?(password)

user

else

false

end

end

Next we need to address the authentic?(password) instance method that

hashes the password and compares the result:

Download getting_started/lunchedin/app/models/user.rb

def authentic?(p)

password_hash == OpenSSL::Digest::SHA1.new(p).hexdigest

end

Download getting_started/lunchedin/app/controllers/session_controller.rb

Line 1 def check_login
- username, password = params[:user][:username], params[:user][:password]
- if @authenticated_user = User.find_and_authenticate(username, password)
- session[:user_id] = @authenticated_user.id
5 redirect_to user_path(@authenticated_user)
- else

- flash[:notice] = "the user #{params[:user][:username]}, "
- flash[:notice] << "was not found with the specified password"
- redirect_to login_path

10 end

- end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/session_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=59

CROSS-SITE SCRIPTING COUNTERMEASURES 60

On line 3, we altered check_login() so it uses a class method on our User

model. We also let ActiveRecord do the substitution because it knows

how to sanitize the data that it uses to construct SQL statements.

That fixes our SQL injection flaw; now we need to update our unit test.

On line 7, we assert the controller redirects to the login view. On line

8, we now assert that the :user_id—the value used to determine whether

the user is logged in—is not set.

Download getting_started/lunchedin/test/functional/session_controller_test.rb

Line 1 test "should not validate login using sql injection" do

2 post :check_login, :user => {
3 :username => "bob' OR 'a' = 'a",
4 :password => "fakepass' OR 'a' = 'a"
5 }
6 assert_redirected_to login_path
7 assert_nil @request.session[:user_id]
8 end

You might have noticed that our flash still suffers from an XSS flaw. Hold

your horses, eagle-eyed readers; we’ll get to that in the next section.

So far we’ve looked at techniques for securing the SessionController class.

We will cover defenses that extend these concepts more thoroughly

throughout the book; for now, we can use the following guidelines to

list some dos and don’ts that detail our motivation for the design we

chose:

• Do put sanitization and filter methods inside of methods on model

objects. It protects your application at a low level, and if alternate

interfaces such as Web Services use the same methods, these fil-

ters and methods will inherit the protection mechanisms.

• Do use Rails finder methods when possible. These methods are

well-tested and will do the heavy lifting of preventing injection vul-

nerabilities for you.

• Do not build your own ActiveRecord query strings unless you pro-

tect the input sufficiently. Using variable interpolation operators

such as #{variable_name} can be a source of injection flaws.

3.4 Cross-Site Scripting Countermeasures

As you did for SQL injection vulnerabilities, you need to take steps to

mitigate XSS vulnerabilities through a combination of input validation

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/test/functional/session_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=60

CROSS-SITE SCRIPTING COUNTERMEASURES 61

and output sanitization. XSS presents a more challenging input to filter,

as safe and unsafe inputs look very similar.

What exactly is the difference between safe and unsafe input? Well, it

depends on whom we ask and what the application is doing. Any input

that is vulnerable to XSS attacks is unsafe. Unfortunately, these input

patterns are deceptively difficult to blacklist. This is why blacklisting

input patterns is considered a bad security practice.

Validating the Input

Getting input validation correct isn’t easy. Fortunately, Rails provides

excellent facilities to control input that enters the perimeter of a web

application.

You might remember from the previous chapter that we inserted HTML

markup into several areas of our web application. One area we inserted

HTML was the user[user_name] form field at the /session/login URL. We

fixed the SQL injection vulnerability in Section 3.3, Preventing SQL

Injection, on page 57, but an XSS vulnerability still exists!

Update the comment.rb file with the following code:

Download getting_started/lunchedin/app/models/comment.rb

Line 1 class Comment < ActiveRecord::Base
2 belongs_to :user
3 belongs_to :commentable, :polymorphic => true

4 validates_presence_of :subject, :body, :commentable_id
5 validates_format_of :subject, :with => /\A[a-zA-Z0-9\n\t\s,.!?\-]*\Z/
6 validates_format_of :body, :with => /\A[a-zA-Z0-9\n\t\s,.!?\-]*\Z/
7 end

We add two calls to the validates_format_of() class method on line 5

and line 6. Next, we pass a regular expression that defines our allow-

able input for a Comment object. For good measure, let’s create a unit

test that describes a case where the save() method should not succeed

because of forbidden input:

Download getting_started/lunchedin/test/unit/comment_test.rb

def test_save_fails

comment = Comment.new do |c|

c.subject = "Comment with markup
"

c.body = "hacked! <script>alert('hello');</script>"

c.commentable_id = 1

end

assert_equal false, comment.save

assert_equal 2, comment.errors.length

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/models/comment.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/test/unit/comment_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=61

CROSS-SITE SCRIPTING COUNTERMEASURES 62

We will cover input validation in Chapter 5, Validation, on page 84. For

now, you need to know that Rails provides excellent validation func-

tionality with its validation class methods in the ActiveRecord library.

Sanitizing the Output

If attacks manage to slip through our application’s force field of input

validation, there is still hope. We can also sanitize the output of our

application to prevent XSS flaws that have entered our system.

The following code comprises the _comment.html.erb partial that is used

to display comments in the broken version of LunchedIn. In this partial,

we render the output of each variable to produce HTML. The problem

with this is that if any attributes contain dangerous characters, they

are rendered blindly:

Download getting_started/lunchedin_broken/app/views/comments/_comment.html.erb

<div class="comment" id="comment_<%= comment.id %>">

<% if @user && @user.role.name == 'admin' %>

<div class="comment-delete-link">

<%= link_to_remote 'mark as spam',

:url => {:controller => 'comments', :action => 'destroy', :id => comment},

:method => :delete %>

</div>

<% end %>

<h4><%= comment.subject || "Comment" %></h4>

<p><%= comment.body %></p>

<div class="comment-meta">

<i><%= comment.user ? comment.user.username : "anonymous" %></i> wrote

<%= time_ago_in_words(comment.created_at) if comment.created_at %> ago

</div>

</div>

We can fix this by changing how each attribute is rendered in the

view. Rails includes the h() view helper method that is designed for

just such a purpose. This method sanitizes the output of dangerous

HTML markup.

You should always use h(content) or html_escape(content) methods when

writing ActiveRecord properties! It’s an easy thing to add, and it could

end up saving your application from XSS vulnerabilities.

The following code shows the updated _comment.html.erb partial that

contains the sanitized ActiveRecord properties.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin_broken/app/views/comments/_comment.html.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=62

CROSS-SITE SCRIPTING COUNTERMEASURES 63

Download getting_started/lunchedin/app/views/comments/_comment.html.erb

<div class="comment" id="comment_<%= comment.id %>">

<% if @user && @user.role.name == 'admin' %>

<div class="comment-delete-link">

<%= link_to_remote 'mark as spam',

:url => {:controller => 'comments', :action => 'destroy', :id => comment},

:method => :delete %>

</div>

<% end %>

<h4><%= h(comment.subject) || "Comment" %></h4>

<p><%= h(comment.body) %></p>

<div class="comment-meta">

<i><%= comment.user ? h(comment.user.username) : "anonymous" %></i> wrote

<%= time_ago_in_words(comment.created_at) if comment.created_at %> ago

</div>

</div>

Congratulations; the dangerous markup will be escaped before it is ever

rendered to the view!

Let’s run the reflected XSS exploit from Chapter 2, Hacking the Exam-

ple, on page 23. Enter the following into the patched example applica-

tion:

http://localhost:3000/login/check_login?user%5Buser_name%5D=%3Ci%3Ewally%3C/i%3E

Note that the exploit is still present in the application:

Download getting_started/lunchedin/app/controllers/session_controller.rb

flash[:notice] = "the user #{params[:user][:username]}, "

flash[:notice] << "was not found with the specified password"

redirect_to login_path

Our goal is to sanitize the output so that the application will not blindly

repeat dangerous input. Your first thought might be to use the h()

method directly in SessionController, but the easiest approach is to call it

from the view and pass the contents of the flash object:

Download getting_started/lunchedin/app/views/session/login.html.erb

<% if flash[:notice] %>

<div class="notice">

<%= h(flash[:notice]) %>

</div>

<% end %>

To avoid repeating ourselves, we put the flash contents inside the login.

html.erb view. To sanitize the output, we pass the results of the

flash[:notice] method call to h().

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/views/comments/_comment.html.erb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/session_controller.rb
http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/views/session/login.html.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=63

PROTECTING AGAINST A CROSS-SITE REQUEST FORGERY 64

While we’ve undertaken a significant effort to sanitize, we have also

created new problems for our application. Our solution is unfortunately

hostile to internationalization, and it doesn’t allow for common types of

punctuation. Never mind this for now; we’ll cover input validation in

depth in Chapter 5, Validation, on page 84.

Here are a handful of points to keep in mind; following them will help

us minimize our exposure to XSS exploits:

• The safest approach to preventing XSS exploits is to filter or es-

cape all potentially dangerous characters. Use the escapeHTML()

method of the CGI class to provide this functionality.

• Do filter or sanitize input before records are persisted. ActiveRecord

callbacks such as before_validation() and before_save() can provide

such functionality hooks, regardless of which method initiated the

action.

• Do filter or sanitize model attributes displayed in a view. Actively

sanitizing the markup generated from a persisted object will mit-

igate against input that infiltrated our input validation defenses.

We can accomplish this using the h() method in the .html.erb files.

3.5 Protecting Against a Cross-Site Request Forgery

CSRF vulnerabilities can be difficult to protect against because they

blend in with normal, user-generated traffic. The nature of these at-

tacks is such that an unsuspecting user loads markup from a remote

site and then initiates an attack on an entirely different site using his

authenticated session.

The distributed nature of these attacks make them especially danger-

ous. For example, CSRF attacks occur in the context of the network

location the victim’s browser is running in, which means the target

system could be any system visible from that user’s location. Such sys-

tems, which can include trusted networks such as routers, firewalls, or

intranet sites, can now be accessed by the hacker.

To protect our applications, we have to add countermeasures that

distinguish this traffic and reduce the likelihood that non-user-

generated traffic passes through. To do this, we combine several dif-

ferent techniques.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=64

PROTECTING AGAINST A CROSS-SITE REQUEST FORGERY 65

We can use the following techniques to mitigate against cross-site

request forgery attacks:

• Enforce the use of proper HTTP request methods. This alone will

not keep you safe, but it can thwart simple attacks using

and <link> tags. Enforcing request methods also has the side

benefit of reducing the chance accidental page loads will cause

irreversible damage, as well as preventing proxy accelerators from

precaching every link on a page.

• Ensure that session timeout values are enforced—the shorter the

better. This reduces the window of exposure to a given attack.

• Use protect_from_forgery() to mitigate CSRF attacks through the

use of request tokens.

• Implement CAPTCHA technologies, which ferret out computer-

based bots from live humans. CAPTCHA is a bit of a two-edged

sword; on the one hand, CAPTCHA technologies provides the best

protection for mitigating CSRF attacks; on the other, the technolo-

gies themselves can be quite annoying, and they often introduce

accessibility problems.

This chapter will focus on the first technique. We will cover techniques

for leveraging CAPTCHA in Chapter 6, Authentication: Decentralized

Authentication, on page 95.

Enforce Proper HTTP Methods

The HTTP specification1 states that GET requests should be used only

for safe interactions.2 The authors of the HTTP protocol define safe inter-

actions as those that take no action other than retrieval. This means

that we should use only POST, PUT, or DELETE requests for any action

that modifies data on the server. The methods GET and HEAD should

be reserved for idempotent activities—those that produce the same re-

sult across multiple invocations.

We exploited an unsafe interaction in our venue voting attack. This was

accomplished by embedding the http://localhost:3000/venues/rate URL

with the proper parameters inside of the src attribute of an tag.

1. You can find more information on the HTTP specification at

http://www.w3.org/Protocols/rfc2616/rfc2616.html.
2. See Section 9.1 of the HTTP/1.1 specification for more details on safe interactions.

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:3000/venues/rate
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=65

PROTECTING AGAINST A CROSS-SITE REQUEST FORGERY 66

The Rails designers are aware of such situations, and they have given

us the verify() class method to combat this kind of exploit. Add the

following code to the VenuesController:

Download getting_started/lunchedin/app/controllers/venues_controller.rb

Line 1 class VenuesController < ApplicationController
2

3 verify :method => :post,
4 :only => [:create, :add_tag, :comment, :rate],
5 :redirect_to => { :action => :list }

On line 3, we invoke the verify() class method. This method allows cre-

ate(), add_tag(), comment(), and rate() actions only if they are invoked

using an HTTP POST request. If another method is used, a redirect to

the action list() is returned. Enforcing HTTP POST

requests has the side

benefit of reducing the

trail of form data in

access logs.

The first line of defense in protecting against CSRF vulnerabilities is

to enforce proper usage of HTTP methods. Unfortunately, this will not

protect us fully from every attack. Attacks that are initiated with ECMA-

Script can forge the HTTP request method, thus rendering your appli-

cation vulnerable.

Note that verification is built in to RESTful routes if you declare them

using map.resource in routes.rb.

It’s probably obvious by now that protecting our application from a

multitude of attacks can be quite involved. Part of becoming a proficient

developer of secure code is knowing when enough is enough. There are

still issues surrounding our application, but the purpose of this chapter

wasn’t to remove every last possible vulnerability (that is impossible),

but instead to introduce techniques we can build on in later chapters.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/getting_started/lunchedin/app/controllers/venues_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=66

Part II

Building on the Basics

Program testing can be a very effective way to show the

presence of bugs, but is hopelessly inadequate for showing

their absence.

Edsger W. Dijkstra, 1972

Chapter 4

Testing for Security
If you want to sleep at night knowing your software is secure, you must

test it, and test it well. But testing software is not enough to guaran-

tee that it is secure—you have to test the right things. The right things

vary for each application, but there is a large amount of commonality.

Our programs use authorization, authentication, validation, and data

protection as defenses against attack. We can test these defenses pro-

grammatically. In the same way that we describe how our application

should respond to valid inputs, we can test it to make sure it responds

appropriately to common attack scenarios.

4.1 Things You Should Test

The following sections include lists of questions to think about when

deciding which test cases to write for your applications. These aren’t

comprehensive lists, but the questions will get us thinking about how to

approach testing our security concerns. In later chapters, we’ll continue

to focus on creating sound test cases for the techniques described.

Keeping in mind four basic defense points can help us write good test

cases for our application: authentication, authorization, data protec-

tion, and input validation and sanitization.

THINGS YOU SHOULD TEST 69

Authentication

We need to consider several issues when deciding which authentication

test cases to apply to passwords and other aspects of verifying a user’s

identity:

• How robustly does the application handle the authentication of

users? Can malicious users bypass the authentication process

altogether?

• Are we enforcing an acceptable password strength for users? Can

the user register with no password? Can the user update her pass-

word to a blank value?

Authorization

Once we authenticate a user, we need to ensure that he can access the

material intended for him—and only the material intended for him. Test

cases should take into account several authentication issues:

• Does the application verify that only authenticated users with ap-

propriate privileges can access sensitive areas of the application?

• Do we have authorization checks for all show(), edit(), update(),

create(), and delete() actions? Do we have authorization checks

for custom action methods?

Data Protection

There is nothing more important to our application than the data that

drives it, so protecting its contents is critical. We should keep the fol-

lowing questions in mind when designing test cases for data protection:

• Are sensitive parameters masked properly in log files? Are such

parameters within the application’s view?

• Are sensitive fields encrypted or hashed during persistence?

• Are we using ciphers that are currently regarded as insecure, such

as DES or MD5?

• Are we enforcing the use of TLS during the transmission of sen-

sitive information such as passwords, credit card numbers, and

Social Security numbers?

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=69

TESTING IN LAYERS 70

Input Validation and Sanitization

Proper validation and sanitization are essential for providing a line of

defense against would be attackers of our web application; questions

to consider when creating test cases to measure our validation and

sanitization efficacy include the following:

• Are we allowing dangerous input to enter through our applica-

tion’s interfaces?

• When displaying information, are we sanitizing the output?

• Is all input validated on the server, regardless of what browser

checks might be in place?

• Are we following secure coding practices when we construct SQL

queries? Have we designed these queries so they cannot accept

unsafe input? Have we given enough attention to XPath, LDAP,

system commands, or filenames?

4.2 Testing in Layers

As Rails developers, we know that we already have access to a wide

range of internal application testing tools. When Rails creates a new

application, it also creates unit, functional, and integration test direc-

tories. When we add new models, the corresponding stub unit tests are

added. Similarly, each new controller gets a stub functional test.

These unit and functional tests provide a vital foundation when testing

our application’s security. We’ll look at each shortly. In Figure 4.1, on

the next page, we can see what types of tests are suited for various

vulnerability categories.

But we will need more than the basic Rails testing infrastructure to ad-

dress all the security questions in Section 4.1, Things You Should Test,

on page 68. We’ll also need external tools—tools that let us prod and

poke at the application from the outside. Later in this chapter, we’ll

explore one of these applications, Selenium, in greater depth.

4.3 Authentication Tests

Authentication is the act of verifying a user’s identity. To test our au-

thentication measures, we must go through all the possible permuta-

tions of how our application enacts authentication. We start by testing

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=70

AUTHENTICATION TESTS 71

Unit Tests Functional Tests Integration Tests Selenium

input validation attacks

authorization attacks

session management

html injection

Ruby to Ruby
interactions

Single
ActionController
request

Multiple
ActionController
requests over a
session

authentication

Browser to server
interactions.

Figure 4.1: The Rails testing stack

a happy case of a user successfully logging in. The authentication pro-

cess is really tied to the business logic of verifying a user’s password,

so let’s create a unit test that reflects this:

Download testing/lunchedin/test/unit/user_test.rb

test "authentication is successful with valid password" do

@user = users(:bob)

assert @user.authentic?('hello')

end

The user model handles the business logic behind the authentication

process, but the act of authentication or the login process occurs in a

different layer. In our application, it occurs in the SessionController class.

Let’s add a functional test case that verifies this part works as expected:

Download testing/lunchedin/test/functional/session_controller_test.rb

def test_login_success

@request.env['HTTPS'] = 'on'

post :check_login, :user => { :username => 'bob', :password => 'hello' }

assert_response :redirect

assert_not_nil @request.session[:user_id]

assert_equal users(:bob).id, @request.session[:user_id]

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/functional/session_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=71

AUTHENTICATION TESTS 72

Logging out a user properly is equally important, so let’s add a test case

for this functionality, as well:

Download testing/lunchedin/test/functional/session_controller_test.rb

def test_logout_success

@request.session[:user_id] = users(:bob).id

post :logout

assert_response :success

assert_nil @request.session[:user_id]

end

At this point, we know our application is able to authenticate the user.

What we don’t know—and this is far more important—are the circum-

stances that surround the process of rejecting authentication. Let’s look

at some code that tests an authentication failure:

Download testing/lunchedin/test/unit/user_test.rb

test "authentication fails with invalid password" do

@user = users(:bob)

assert !@user.authentic?('hello1')

end

The preceding bit of code shows a test case that asserts how our au-

thentication process shouldn’t behave. When testing the security of our

application, it is important that we focus on how it shouldn’t work,

rather than how it should. Security vulnerabilities exist because devel-

opers didn’t anticipate properly how their application would respond to

a particular input.

So we should also make certain that our authentication filter is not

bypassed. We’re operating at the controller layer, so we use a functional

test:

Download testing/lunchedin/test/functional/venues_controller_test.rb

def test_logged_out_redirect

get :index

assert_response :redirect

assert_redirected_to :controller => 'session'

end

The next step is to create test cases to verify the strength of our au-

thentication factors; in our example, authentication consists of a simple

password. The effectiveness of our authentication process is dependent

upon the strength of our user’s password, so it would behoove us to

write test cases that exercise these policies!

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/functional/session_controller_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/functional/venues_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=72

AUTHORIZATION TESTS 73

Let’s start by writing a test case that asserts a user cannot enter an

empty password. Our user is a model, so a unit test is ideal for this

scenario:

Download testing/lunchedin/test/unit/user_test.rb

test "user creation should fail with weak password" do

@user = User.new do |u|

u.first_name = 'Bob'

u.last_name = 'Smith'

u.password = 'short'

u.password_confirmation = 'short'

u.email = 'bob@somedomain.com'

u.username = 'bsmith'

u.zip_code = '75024'

end

assert !@user.save

end

So far we’re confident that our code is checking whether authentication

occurs where it is supposed to. We also know that we’re protecting our

users from themselves by enforcing a password-length requirement.

We’ll cover user registration in more detail in Chapter 6, Authentication:

Decentralized Authentication, on page 95.

Once we have a user authenticated, we now need to make sure our

application restricts what is allowed.

4.4 Authorization Tests

Testing for authorization is about making sure users are able to access

only the data or operations they’re supposed to. To test this, we need

to mimic illegal access and make sure our application is responding

accordingly. Let’s look at the following functional test case:

Download testing/lunchedin/test/functional/events_controller_test.rb

test "not_authorized_update_status" do

@request.session[:user_id] = users(:bob).id

post :update, :id => events(:rubycon), :event => { :status => 'organized' }

assert_template 'no_access'

end

Here we mimic an authenticated user who is attempting to modify

another user’s event. We use the users(:bob) user fixture, as defined

in users.yml, to attempt to modify the events(:rubycon) event owned by

Wally. Our controller utilizes the events association of the User object to

query for an Event, so the test case won’t find any event with Wally’s ID.

The point of this test case is twofold: first, we want to make sure that

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/functional/events_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=73

DATA PROTECTION TESTS 74

we can’t associate any event with Wally’s ID; second, we want to make

sure that the no_access.html.erb template is rendered.

But what if our authorization is dependent upon previous requests

against a URI? We encountered such a scenario when we attacked the

voting links of our application in Chapter 2, Hacking the Example, on

page 23. To test for this, we can use an integration test:

Download testing/lunchedin/test/integration/attack_voting_link_test.rb

def test_double_vote

get '/venues'

assert_response :redirect

assert_redirected_to :controller => 'session'

https!

post_via_redirect '/session/check_login',

:user => { :username => 'bob', :password => 'hello' }

assert_response :success

assert_template 'show'

get_via_redirect venue_path(2)

assert_response :success

assert_template 'show'

assert_difference 'Venue.find(2).ratings.count' do

xhr :post, '/ratings/rate/2?score=1'

end

try to post again

assert_no_difference 'Venue.find(2).ratings.count' do

xhr :post, '/ratings/rate/2?score=1'

end

end

Our application now uses the ssl_requirement plug-in, so the following

call was added before the post to the check_login() action:

https!

At a minimum, we should add tests that exercise the authorization

checks of our domain objects. For RESTful controllers, this means test-

ing the following methods: show(), update(), create(), and delete(). This

is especially true if we rely on code created by script/generate because

the default code created has no built-in restrictions.

4.5 Data Protection Tests

The question confronting us is this: how can we test to ensure sensitive

parameters are masked properly in log files? To do this, we must invoke

the filter_parameter_logging(*params) method for all sensitive parameters

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/integration/attack_voting_link_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=74

DATA PROTECTION TESTS 75

in our application. The purpose of this test is to make certain that we

prevent sensitive information from leaking into log files that might not

be secured to the same degree as other parts of our application.

Let’s begin by adding this call for the password and password_confirmation

fields:

Download testing/lunchedin/app/controllers/application.rb

filter_parameter_logging :password

Next, let’s look at how we can ensure that sensitive fields are encrypted

or hashed during persistence using a unit test:

Download testing/lunchedin/test/unit/user_test.rb

test "password is hashed" do

@user = users(:bob)

assert_equal OpenSSL::Digest::SHA1.new('hello').hexdigest, @user.password_hash

end

Enforcing cipher selection policies is a bit trickier. If we want to write a

test case around our application without using a particular cipher, we

need to think outside the box.

One way we to discover the use of a forbidden cipher in our application

is to replace the offending Ruby library with our own version, one that

raises a RuntimeError informing us that a given library is using code we

don’t want it to use:

Download testing/illegal_cipher_test.rb

require 'openssl'

module OpenSSL

module Cipher

class Cipher

alias :initialize_old :initialize

def initialize(cipher)

if cipher.upcase.match(/^DES/)

raise "Cipher: #{cipher} is not acceptable!"

else

initialize_old(cipher)

end

end

end

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/app/controllers/application.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/illegal_cipher_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=75

DATA PROTECTION TESTS 76

Let’s write some tests so we can see this principle in action:

Download testing/illegal_cipher_test.rb

def test_des_with_named_cipher

assert_raises RuntimeError do

cipher = OpenSSL::Cipher::Cipher.new("DES")

end

end

Download testing/illegal_cipher_test.rb

def test_des_with_cipher_class

assert_raises RuntimeError do

cipher = OpenSSL::Cipher::DES.new

end

end

Now let’s add a test for a different cipher, asserting that it is allowed:

Download testing/illegal_cipher_test.rb

def test_aes_successful

assert_nothing_raised do

cipher = OpenSSL::Cipher::Cipher.new("AES128")

end

end

Testing for the proper use of Transport Layer Security (TLS) seems odd, Secure Sockets Layer

(SSL) is the predecessor

of Transport Layer

Security.

not least because our application isn’t even operating in the layer where

this would happen.

We can’t really test for this in a traditional unit-testing manner, but we

can leverage the ssl_requirement plug-in to prevent access. We’ll look at

this in more detail in a bit. For now, let’s install the plug-in and lock

down our application:

$ ruby script/plugin install ssl_requirement

After we install the plug-in, we need to include the SslRequirement mod-

ule in our base application controller and then mark the methods that

need confidentiality:

Download testing/lunchedin/app/controllers/application.rb

class ApplicationController < ActionController::Base

include SslRequirement

helper :all # include all helpers, all the time

Let’s mark SessionController and UsersController, indicating they require a

confidential conversation.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/illegal_cipher_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/illegal_cipher_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/illegal_cipher_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/app/controllers/application.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=76

DATA PROTECTION TESTS 77

Download testing/lunchedin/app/controllers/session_controller.rb

class SessionController < ApplicationController

ssl_required :check_login unless RAILS_ENV['development']

ssl_allowed :index, :logout

Download testing/lunchedin/app/controllers/users_controller.rb

class UsersController < ApplicationController

ssl_required :create unless RAILS_ENV['development']

ssl_allowed :new, :show

Now when we run our functional tests, they fail! This is because they

do not appear to occur in a confidential manner; more precisely, an

environment variable sent with the request is not set. To fix this, we

need to set the HTTPS environment variable in the same way our web

server sets our Rails processes:

Download testing/lunchedin/test/functional/session_controller_test.rb

def test_login_success

@request.env['HTTPS'] = 'on'

post :check_login, :user => { :username => 'bob', :password => 'hello' }

assert_response :redirect

assert_not_nil @request.session[:user_id]

assert_equal users(:bob).id, @request.session[:user_id]

end

Download testing/lunchedin/test/functional/session_controller_test.rb

Line 1 test "should not validate login using sql injection" do

2 @request.env['HTTPS'] = 'on'
3 post :check_login, :user => {
4 :username => "bob' OR 'a' = 'a",
5 :password => "fakepass' OR 'a' = 'a"
6 }
7 assert_redirected_to login_path
8 assert_nil @request.session[:user_id]
9 end

We also need to use the same technique to update our tests in user_con-

troller_test.rb. We can accomplish this by adding the following line to each

of our test methods; this line tells the ssl_required plug-in that our

request is originating from a confidential transport:

@request.env['HTTPS'] = 'on'

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/app/controllers/session_controller.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/app/controllers/users_controller.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/functional/session_controller_test.rb
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/functional/session_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=77

INPUT VALIDATION AND SANITIZATION TESTS 78

Even with a confidential connection, it is critical that we prevent mali-

cious input within our application.

4.6 Input Validation and Sanitization Tests

Building test cases for input validation and sanitization is usually fairly

involved because such tests typically span multiple layers of our appli-

cation. To test in the client layer, we need to solicit the help of the tool,

Selenium, which we’ll examine soon.

We saw that HTML injection and XSS vulnerabilities derive from the

way the browser interprets content in Chapter 2, Hacking the Example,

on page 23. However, it is our server-side code that allowed exploits in

the first place. How should we approach testing for this?

First, let’s consider the following test case:

Download testing/lunchedin/test/unit/comment_test.rb

def test_save_fails

comment = Comment.new do |c|

c.subject = "Comment with markup
"

c.body = "hacked! <script>alert('hello');</script>"

c.commentable_id = 1

end

assert_equal false, comment.save

assert_equal 2, comment.errors.length

end

Here we have a unit test that expects our model to reject persistence

because the body and subject attributes contain potentially dangerous

characters. As you might recall, our Comment model uses a regular

expression in conjunction with the validates_format_of() class method:

validates_format_of :subject, :with => /\A[a-zA-Z0-9\n\t\s,.!?\-]*\Z/

How do we know that this is a safe validation method? Let’s start by

testing against a dictionary of known attacks.1 This site provides a

database of known XSS attacks you can use to test against. Let’s cre-

ate a functional test to execute our XSS attacks database against our

CommentsController.

1. You can find an XML version of RSnake’s cheat sheet for XSS attacks at

http://ha.ckers.org/xssAttacks.xml.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/unit/comment_test.rb
http://ha.ckers.org/xssAttacks.xml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=78

INPUT VALIDATION AND SANITIZATION TESTS 79

Installing Selenium for Rails

Selenium is installed using the Selenium gem and a correspond-
ing Rails plug-in. Execute the following to install the Selenium
gem and the Selenium rails plug-in:

testing> gem install selenium
testing> ruby script/plugin source \

http://svn.openqa.org/svn/selenium-on-rails/stable
testing> ruby script/plugin install selenium-on-rails

If you’re a Windows user, you will also need to make sure you
have installed the win32-open3 gem. You can install it using this
command:

C:\> gem install win32-open3

Now we’re ready to build our in-browser test cases.

Download testing/lunchedin/test/functional/comments_controller_test.rb

def test_attack_comment_with_dictionary

@request.session[:user_id] = users(:bob).id

attacks = File.dirname(__FILE__) + '/../files/xssAttacks.xml'

document = REXML::Document.new(File::read(attacks))

document.elements.each("xss/attack") do |e|

info = "#{e.elements['label'].text}: #{e.elements['code'].text}"

assert_no_difference 'Comment.count', info do

xhr :post, :create, :venue_id => 1, :comment => {

:subject => "XSS Attack", :body => e.elements["code"].text }

end

end

end

The first time it is run, our test case passes the signature database.

Let’s see what happens when we modify the validation routine on our

comment model and remove the sanitization method call to h(input) in

the _comment.html.erb partial:

validates_format_of :body,

:with => /\A[a-zA-Z0-9\n\t\s,.!?\%\#\(\)\/<>]*\Z/

Here we’ve included a few extra characters that would not be out of

place in the body of a comment in a public-facing application. Let’s use

Selenium to see how our browser reacts to such input.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/functional/comments_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=79

INPUT VALIDATION AND SANITIZATION TESTS 80

At this point, we are ready to use Selenium to test in the browser for

XSS vulnerabilities. Let’s begin by adding a Selenium test case; we can

accomplish by executing the following script:

testing> ruby script/generate selenium xss_test

Next, we add the following code to the generated add_xss_comment.rsel

script under test/selenium: We need to sync up Ajax

with Selenium when we

combine them, which we

can accomplish with

a pause(time) command.

Otherwise, our next

command might execute

before the asynchronous

call is complete.

Download testing/lunchedin/test/selenium/add_xss_comment.rsel

setup :clear_tables => [:comments], :fixtures => :all

wait_for_page_to_load(1000)

open '/login'

wait_for_page_to_load(1000)

type 'user_username', 'bob'

type 'user_password', 'hello'

click 'commit'

wait_for_page_to_load(1000)

open '/venues/show/3'

type 'comment_subject', 'XSS'

type 'comment_body',

'<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>'

click 'document.forms[1].commit'

pause '1000'

verify_failure_on_next 'There were no alerts'

verify_not_alert 'XSS'

We’re using the ssl_required plug-in; however, the default configuration

of Selenium operates only under the test Rails environment, so we need

to update it so that Selenium works under the RAILS_ENV[’development’],

too. Create the config.yml file under vendor/plugins/selenium-on-rails. Up-

date the location of the Firefox executable, if necessary:

Download testing/lunchedin/vendor/plugins/selenium-on-rails/config.yml

environments:

- development

browsers:

firefox: '/Applications/Firefox.app/Contents/MacOS/firefox-bin'

We can start the LunchedIn application with the following command:

testing> rake db:fixtures:load

testing> ruby script/server

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/test/selenium/add_xss_comment.rsel
http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/vendor/plugins/selenium-on-rails/config.yml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=80

MEASURING TEST COVERAGE 81

Now let’s execute our Selenium tests:

testing> rake test:acceptance

Starting firefox

"/Applications/Firefox.app/Contents/MacOS/firefox" "http://localhost:3000/sel...

..

Stopping browser (pid=1444) ...

Finished in 1 seconds.

0 tests passed, 1 tests failed

rake aborted!

Test failures

We now have a failing test case that evaluates the input in the con-

text of a browser! Let’s add the sanitization method call back into the

app/views/comments/_comment.html.erb partial:

Download testing/lunchedin/app/views/comments/_comment.html.erb

<p><%= h(comment.body) %></p>

Let’s run our Selenium test cases again:

testing> rake test:acceptance

Starting firefox

"/Applications/Firefox.app/Contents/MacOS/firefox" "http://localhost:3000/sel...

..

Stopping browser (pid=1555) ...

Finished in 1 seconds.

1 tests passed, 0 tests failed

Our input validation allowed the XSS markup through, but we have

a test case asserting that the browser won’t evaluate it because we’re

sanitizing the output using the h(input) method! We should assume that

our application is only as secure as what we’ve tested for. The next

logical step is to provide insight into what we’ve tested.

4.7 Measuring Test Coverage

Benchmarking the coverage of our testing effort can provide us with

clues to potential security vulnerabilities. To do this, we’ll need tools

beyond those included with a standard Rails application.

Rcov and its corresponding plug-in rails_rcov are extremely powerful

tools we can use to measure code coverage. The standard Rails appli-

cation gives us the quantity of test code using the stats Rake task. This

metric is interesting, but it tells us only how many lines of code we’ve

written for our test cases. It says nothing about the quality of those test

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/testing/lunchedin/app/views/comments/_comment.html.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=81

OTHER TESTING FRAMEWORKS 82

cases. Rcov gives us insight into which lines of code are never executed

during our test process. If we don’t have a test case for a particular

part of our application, we can assume only that it might be a potential

security vulnerability!

Installing Rcov

Execute the following commands to install the Rcov gem and corre-

sponding Rails plug-in:

testing> gem install rcov

testing> ruby script/plugin install http://svn.codahale.com/rails_rcov

Let’s report the code coverage of LunchedIn using Rcov. Execute the

following command to build the coverage reports:

testing> rake test:units:rcov SHOW_ONLY=m

testing> rake test:functionals:rcov SHOW_ONLY=c

The Rcov tasks execute the test suite and then generate an HTML code

coverage report under the directory coverage.2 To view the report, open

the index.html file under the directory coverage/test. We can use the

SHOW_ONLY=m and SHOW_ONLY=c parameters to filter test coverage only

by models and controllers.

The index.html file contains a summary of each file analyzed. The report

shows the source and highlights lines that were not executed. We can

see this at work in Figure 4.2, on the following page. Rcov tells us our

test suite has not exercised the failure condition of the check_login() of

the SessionController class.

Rcov helps us find untested areas of our code. It doesn’t prove that our

tests are good, but it does give us a baseline of what has been executed

in a set of test cases.

4.8 Other Testing Frameworks

The Rails community has blessed us with a multitude of testing frame-

works to help us achieve our goal of building well-tested software. One

such framework, Tarantula, provides an implementation of a technique

called fuzz testing.

Fuzz testing generates random and invalid data in attempt to find flaws

within an application. Tarantula incorporates this technique, as well as

2. To prevent the generated report from being committed alongside your project in Sub-

version, execute svn propedit svn:ignore coverage from the root of your project directory.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=82

OTHER TESTING FRAMEWORKS 83

Figure 4.2: Rcov code coverage report

tests for common security exploits such as XSS and SQL injection. In

essence, Tarantula is a spider that integrates into your Rails applica-

tion and explores everything, including the paths less traveled. You can

acquire Tarantula at http://github.com/relevance/tarantula.

Behavior-driven development (BDD) is another testing strategy you can

apply to useful for testing security concerns. RSpec is the original BDD

testing framework and has a vibrant community. RSpec can be found

at http://rspec.info/.

Given the choice of improving our code or writing documents about our

code, we’d choose improving our code every time. Rails provides world-

class frameworks and tools useful for building and executing test cases,

and it’s a good idea to use them. Keep in mind that your application

testing is only as good as your test cases!

Mastering the art of building quality test suites can reduce the defect

rate of your software tremendously. This applies to defects related to

both the domain and the security aspects of your application.

Report erratum

this copy is (P1.0 printing, December 2009)

http://github.com/relevance/tarantula
http://rspec.info/
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=83

Chapter 5

Validation
Validation is the process of accepting, rejecting, or sanitizing user input

or server output. Sometimes people refer to validation separately as

input validation, data validation, or other variations based on the speci-

ficity of the validation. In this chapter, we will focus on validation as an

activity that helps us prevent harm from input or output data.

When software developers initially started creating websites that con-

tained more than static HTML content, little consideration was given

to the potential security implications of exposing databases and OS

filesystems to the public Internet. The first web applications were noth-

ing more than Perl or C programs that listened for inbound traffic and

responded based on the parameters provided by the user. Very quickly,

security folks became aware of the dangers inherent from trusting input

from the outside world. It seemed that the developers of the world

were more concerned with getting the shopping cart interface perfect

for those Beanie Babies that were selling like hot cakes. Even today,

many developers focus on cool features and deadlines, and things like

validation are secondary.

And while we should deliver the coolest software we can, we must never

forget about these critical rules for input and output:

• Don’t trust data from your users.

• Don’t trust data from other systems.

• Validate all data passing to/from a trust boundary.

• Return safe data when possible.

These rules haven’t changed since the very first line of code ever written,

and they won’t change any time soon. Fundamentally, validation is the

first line of defense for all software, whether it’s a C/C++ function that

COMMAND INJECTION 85

Web Browser Perl / C Program Operating System

Malicious
Text

Exploit
Delivered

Figure 5.1: Simple, old-school attack

handles string data, or it’s the latest Ajax control that sorts your friends

by how much money they spent on you for your birthday.

Let’s take a look at the various parts of our Rails applications where we

need to validate data.

5.1 Command Injection

Injection is the underlying principle behind these attacks. Injection

flaws exist in parts of a web application where input from a user or

system can be passed to an underlying API or system call, as demon-

strated in Figure 5.1. Let’s take a look at an example of an injection

flaw:

Download input_validation/lunched_in/app/controllers/root_controller.rb

def system_command_run

index

if params[:command]

system("ls #{params[:command]} > __tmp.file")

file = File.open("__tmp.file")

@text = file.read

File.delete("__tmp.file")

end

end

end

Download input_validation/lunched_in/app/views/root/system_command_run.rhtml

<div class="welcome-tags">

<% for tag in @tags %>

<%= link_to(tag.name, :controller => 'venues', :action => 'tag',

:id => tag.name) %>

<% end %>

</div>

<div id="bad_ways"><pre><%= @text %></pre></div>

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/app/controllers/root_controller.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/app/views/root/system_command_run.rhtml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=85

SQL INJECTION 86

Joe Asks. . .

Why Would You Call a System Command Based on User
Input?

The code in our methods with injection flaws might appear a
little bit out of place, but it is not uncommon for an application
to support interaction with the system. At the same time, this
sort of design is one of the most heavily exploited types of web
application vulnerabilities. For a sense of how heavily exploited
this is, visit Google and enter this search: cmd.exe + web appli-
cation vulnerabilities. Often, we need to access the underlying
filesystem or call a legacy script to support our web applica-
tion. However, take extra care when dealing with such calls to
the system.

In this example, we accept a parameter from the user called :command.

This parameter is used as the directory path for an ls command.

Once we execute this action with a system command—a parameter,

for example—the results of the command are placed in __tmp.file and

inserted into @text. The results are then displayed by the corresponding

page template. These results should look something like Figure 5.2, on

the following page, where we executed ps aux. This is a trivial example,

but we could easily execute any known vulnerability for a particular

platform because we have full command-shell access to the system.

While we might not be accessing system calls in most of our web appli-

cations, this example is important because we need to appreciate that

the possibility for injection vulnerabilities exist wherever we accept

input from a user or system. This example also demonstrates an addi-

tional reason why the principle of Defense in Depth is so important,

as discussed in Chapter 1, Security in Ruby on Rails, on page 10. If

we force our web application to run under a user account that has no

command-shell or limited command-shell access, this particular type

of vulnerability becomes harder to exploit.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=86

SQL INJECTION 87

Figure 5.2: Command injection

Figure 5.3: Exploits of a mom, xkcd.com

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=87

SQL INJECTION 88

5.2 SQL Injection

It’s time to start the music from Jaws. The phrase SQL injection is

probably the most pervasive security term in the web application secu-

rity world. No matter how many times this vulnerability is explained,

SQL injection consistently makes it to the top of the list of web appli-

cation vulnerabilities. In Figure 5.3, on the preceding page, we see a

possible scenario depicted in Randall Munroe’s comic, xkcd.

SQL injection is the process of manipulating data passed to a web appli-

cation in a way that changes the result of a SQL command. Let’s start

with a simple SQL statement that queries a user database using a user-

name and password:

select username, email, first_name, last_name,\

role from users where username = "dave" and \

password = "let_me_in"}"

The natural tendency is to do something like the following:

sql_query = 'select username, email, first_name,\

last_name, role from users where username = \

"#{username}" and password = "#{password}"'

The problem lies in the fact that we are passing input from an untrusted

source, unabated to the database server. Consider the following sce-

nario:

username = params[:username] # => '" or 1=1; --'

password = password[:password] # => 'hacking you!'

sql_query =

'select username, email, first_name,\

last_name, role from users where \

username = "#{username}" and \

password = "#{password}"' # => \

'select username, email, first_name,\

last_name, role from users where \

username = "" or 1=1; -- and \

password = "hacking you!"'

Our malicious user wrote some nasty SQL code that terminated our

username clause, appended an or 1=1, and added --; to terminate our

SQL statement prematurely. The result: this returns every user row in

our database! We demonstrated an exploit like this early in Chapter 2,

Hacking the Example, on page 23.

We can derive literally dozens of variations on this attack. Fundamen-

tally, the flaw is improper input-string handling. The fundamental

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=88

MITIGATING SQL INJECTION 89

Joe Asks. . .

What About Unicode Character Sets?

In Rails, there is support for internationalized characters from the
methods added to String by ActiveSupport::Multibyte. This means
that regular expressions and other techniques for detecting
malicious characters should work as expected. However, if you
are using a database that isn’t well supported in Rails, you will
need to ensure that any multibyte characters are handled cor-
rectly by the connection.

structure of a SQL injection attack is very simple, but preventing SQL-

injection attacks can be quite challenging.

So how do we mitigate this vulnerability once and for all?

5.3 Mitigating SQL Injection

Let’s take a look at what characters are dangerous for SQL query con-

struction:

Character Typical Meaning

’ Single quote: Typically, this initiates or terminates a string

parameter for a SQL query.

" Double quote: Such quotes are often interchangeable with

a single quote. You should treat them similarly from the

perspective of SQL injection.

—- Double dash: This introduces a SQL comment.

; Semicolon: This character terminates a SQL statement.

\ Backslash: This character typically escapes the next char-

acter.

At first glance, mitigating attacks based on the exploitation of these

special characters seems like a fairly straightforward task. We could

just write the following regular expression that replaces evil characters

with asterisks:

Download input_validation/lunched_in/test/unit/user_test.rb

This is an example of what not to do.

input = '" or 1=1; --\""'

input.gsub(/;|--|'|"|\\/, "*") # => "* or 1=1* ****"

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=89

MITIGATING SQL INJECTION 90

In this code, we are substituting a * for any of the characters we don’t

like. We could just as easily have removed them from the string alto-

gether. This is a blacklist technique. While this might seem like a rea-

sonable approach at first glance, it is overkill for most situations. In

fact, it is both overkill and fragile. A better approach would be to refac-

tor this into a whitelist:

Download input_validation/lunched_in/test/unit/user_test.rb

This is an example of what not to do.

input = '" or 1=1; --\""'

input.gsub(/[^a-zA-Z0-9=]/, "*") # => "* or 1=1* *****"

With this whitelist, we substitute any nonsafe characters with a * as

well. The difference here is that we are following our principle of white-

listing. And while we should be proud of our principled development,

we’ve also essentially blocked anyone with a name that could be dan-

gerous, such as O’Reilly:

Download input_validation/lunched_in/test/unit/user_test.rb

This is an example of what not to do.

input = "O'Reilly"

input.gsub(/[^a-zA-Z0-9=]/, "*") # => "O*Reilly"

And this code illustrates, O’Reilly is not a valid name! That’s not very

fair to the Irish, and it also doesn’t account for hyphenated names.

What if a Bush married a Clinton and took the name Clinton-Bush?

That wouldn’t work with this code, either. Let’s take a look at another

method:

Download input_validation/lunched_in/test/unit/user_test.rb

This is a better example, but not perfect.

input = "O'Reilly"

input.gsub(/\'/, "''") # => "O''Reilly"

Now we are getting somewhere. In this example, we are not really white-

listing or blacklisting. Instead, we are sanitizing the data so it is safe

for SQL. These characters are not intrinsically evil; rather, they simply

require that we escape them. Now it is a simple matter of using the

rules of SQL for escaping our quotes. But what about other quotes? For

example, assume that I want to use the following signature: O’Reilly, the

“Daredevil.” Let’s take a look at how to handle this:

Download input_validation/lunched_in/test/unit/user_test.rb

This is an example of what to do.

input = "O'Reilly, the \"Daredevil.\""

input.gsub(/\\/, '\&\&').gsub(/'/, "''") # => "O''Reilly, the \"Daredevil.\""

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=90

MITIGATING SQL INJECTION 91

We’ve made some significant progress; next, let’s put this new method

to a more malicious test:

Download input_validation/lunched_in/test/unit/user_test.rb

This is an example of what to do.

input = '" or 1=1; --\""'

input.gsub(/\\/, '\&\&').gsub(/'/, "''") # => "\" or 1=1; --\\\\\"\""

This looks pretty good. In fact, this is the basic code that Rails uses

to protect its ActiveRecord users from string-based attacks. However,

this doesn’t protect us from non-string-based parameters. In fact, many

SQL injection vulnerabilities are a result of SQL statements that don’t

use strings. In many cases, we construct a query based on a numeric

value, as in this example:

Download input_validation/lunched_in/test/unit/user_test.rb

This is an example of what not to do.

input = "6"

sql_statement = "select * from foo where id = #{input}"

puts sql_statement # >> "select * from foo where id = 6"

Well, now we have a problem: a SQL injection attack can occur without

any malicious characters. Let’s look at such an attack:

Download input_validation/lunched_in/test/unit/user_test.rb

This is an example of what not to do.

input = "6 or 1=1"

sql_statement = "select * from foo where id = #{input}"

puts sql_statement # >> "select * from foo where id = 6 or 1=1"

This is a new problem. Here, the attacker is exploiting the fact that the

input is passing from the user interface as a string—as all HTML form

data does. Let’s take a look at a possible fix:

Download input_validation/lunched_in/test/unit/user_test.rb

This is a better example, but not perfect.

input = "6 or 1=1"

sql_statement = "select * from foo where id = #{input.to_i}"

puts sql_statement # >> select * from foo where id = 6

By invoking to_i() on the input, we are forcing the type of integer. We

know what kind of data we are dealing with in our SQL database, so we

can force the cast. In Ruby, this does a nice conversion, but there are

cases where this won’t have a desirable behavior. Ruby will default to 0

for all non-numeric strings. However, this is a reasonable behavior that

counters this form of injection attack.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=91

BUILT -IN SQL INJECTION MITIGATION IN RAILS 92

The little bag of goodies we’ve built up already exists in Rails. In fact, we

learned about a quick fix using bind parameters in Chapter 3, Fixing

the Example, on page 49. However, let’s dive a little deeper and look at

how we can leverage the various types of SQL injection prevention in

Rails.

5.4 Built-in SQL Injection Mitigation in Rails

When we leverage ActiveRecord for our database access, we get several

useful features:

• Character escaping

• Bind parameters for SQL statement construction

• Named bind parameters for SQL statement construction

In our earlier examples, we came up with a reasonable solution for pre-

venting string and numeric SQL injection attacks. Rails has already

implemented this in the ActiveRecord::ConnectionAdapters::Quoting mod-

ule. In this module, Rails implements the quote_string(s) method, which

performs the regular expression we built in Section 5.3, Mitigating SQL

Injection, on page 89. Let’s take a look at the default quote_string(s)

method in the Rails source:

Download input_validation/lunched_in/doc/quoting.rb

Quotes a string, escaping any ' (single quote) and \ (backslash)

characters.

def quote_string(s)

s.gsub(/\\/, '\&\&').gsub(/'/, "''") # ' (for ruby-mode)

end

Next, let’s look at the DB2 implementation:

Download input_validation/lunched_in/doc/quoting.rb

def quote_string(string)

string.gsub(/'/, "''") # ' (for ruby-mode)

end

Not all databases treat data the same way, and the different implemen-

tations out there can undermine the methods you use to handle input

sanitization.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/doc/quoting.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/doc/quoting.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=92

BUILT -IN SQL INJECTION MITIGATION IN RAILS 93

We can leverage the ActiveRecord API directly by invoking this code:

Download input_validation/lunched_in/test/unit/user_test.rb

username = 'dave " or 1=1; --\""'

q_username = User.quote_value(username)

assert(q_username == "'dave \\\" or 1=1; --\\\\\\\"\\\"'")

The result is a safe String that we can use with our database query.

This solution covers only basic string handling. What about integers?

Floats? DateTime? Well, we could write more code to handle these

cases, as well. Or we could leverage the API in a more thorough manner

by using bind variables.

Many security articles refer to the use of stored procedures as the best

way to mitigate SQL injection. This is simply not true. Stored proce-

dures are vulnerable to string interpolation. If it often appears that

they are not, it is probably because the APIs are being used correctly

within the stored procedure. In this case, protection is provided by

bind variables. We should follow the same technique here that we see

in ActiveRecord and its use of bind variables. Let’s look at a simple

example:

Download input_validation/lunched_in/test/unit/user_test.rb

username = 'dave " or 1=1; --\""'

password = 'letmein'

User.find(:all, :conditions => ["user_name = ?", username])

Using the ? constant in our :condition variable enables us to create a

placeholder for ActiveRecord. This placeholder acts as an anchor for the

variables that are passed as the second part of the condition array. We

can also use named bind variables for better readability:

Download input_validation/lunched_in/test/unit/user_test.rb

username = 'dave " or 1=1; --\""'

password = 'letmein'

bind_vars = {:username => username, :password => 'letmein'}

User.find(:all, :conditions =>

["user_name = :username and password = :password", bind_vars])

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=93

BUILT -IN SQL INJECTION MITIGATION IN RAILS 94

Both strategies leverage the underlying mechanism:

Download input_validation/lunched_in/doc/quoting.rb

From Rails source...

def quote(value, column = nil)

records are quoted as their primary key

return value.quoted_id if value.respond_to?(:quoted_id)

case value

when String, ActiveSupport::Multibyte::Chars

value = value.to_s

if column && column.type ==

:binary && column.class.respond_to?(:string_to_binary)

"'#{quote_string(column.class.string_to_binary(value))}'"

' (for ruby-mode)

elsif column && [:integer, :float].include?(column.type)

value = column.type == :integer ? value.to_i : value.to_f

value.to_s

else

"'#{quote_string(value)}'" # ' (for ruby-mode)

end

when NilClass then "NULL"

when TrueClass

then (column && column.type == :integer ? '1' : quoted_true)

when FalseClass

then (column && column.type == :integer ? '0' : quoted_false)

when Float, Fixnum, Bignum then value.to_s

BigDecimals need to be output in a non-normalized form and quoted.

when BigDecimal then value.to_s('F')

when Date then "'#{value.to_s}'"

when Time, DateTime then "'#{quoted_date(value)}'"

else "'#{quote_string(value.to_yaml)}'"

end

end

These values might differ, depending on the database we are leveraging,

so it’s always a good idea to look at the Rails source if you are unsure

how a particular database query works.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/input_validation/lunched_in/doc/quoting.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=94

Let me in, let me in, or I’ll huff and I’ll puff and I’ll blow

your house down!

Big Bad Wolf

Chapter 6

Authentication:
Decentralized Authentication

In our examples so far, we’ve gathered the username and password

directly from the user. And in doing so, we’ve implemented decentral-

ized authentication. It is considered decentralized because we don’t rely

on any additional infrastructure to authenticate our users. In other

words, we are our own little island.

We’ll learn how to delegate the responsibility of gathering the username

and password to other systems in Chapter 10, SSO: Centralized Authen-

tication, on page 191. These systems, which include OpenID, Kerberos,

or CAS, will all rely on centralized authentication mechanisms.

For now, let’s focus on decentralized authentication. Along the way,

we’ll improve the robustness of our decentralized authentication by

improving the robustness of our existing user database, adding support

for LDAP, and improving our architecture to support LDAP or our appli-

cation’s database. Let’s get started by reviewing some key concepts.

6.1 Authentication Concepts

We need to makes sure to keep the difference between authentication

and authorization clear.Authentication is the process of identifying and

verifying a principal. We’ll see what a principal is in just a few para-

graphs. For now, just think of principal as a user.

AUTHENTICATION CONCEPTS 96

Authorization is the process of allowing or denying a principal access

to a target resource or action. Authorization is also known as access

control. Chapter 7, Authorization, on page 135, covers authorization in

depth.

We need to keep our authentication code separate from our authoriza-

tion code, as a general rule. We will see some of the benefits of this

separation when we explore supporting multiple authentication mech-

anisms in Section 6.4, Flexible Authentication, on page 122.

Users, Services, and Principals

Users are not the only entities that must prove their identities. In fact,

our Rails application connects to a database using a username and

password. However, our Rails application itself isn’t really a user. The

Rails application is a service. Nonhuman accounts are typically referred

to as service accounts.

In database.yml, the username for the Rails application grants access to

an account configured specifically for that application. This is a service

account for the database.

Our Rails application runs with a service account, such as apache or

some other account designated for running our website. apache is a

service account for the operating system.

In the Windows family of operating systems, service accounts are differ-

ent than user accounts. In the Unix family, they are accounts that are

set up without the ability to be used by a human interactively, such as

in a terminal session. At least, we hope that nobody logs in as apache.

You should try interchanging the word user or service with the word

principal when you are thinking about authentication. It proves an

especially good habit to form when dealing with more complex authenti-

cation frameworks and libraries that refer to principals instead of users

or services.

Identification, Credentials, and Factors

Imagine we want to purchase something with our credit card at a store.

When we present our credit card to the clerk, the clerk asks for proof

of our identity.

So we hand our photo ID to the clerk, and the clerk does the following:

1. She compares the name on the ID to the name on the card.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=96

AUTHENTICATION CONCEPTS 97

At this point, she believes that the ID credential is correct for the

credit card.

Let’s call this the first factor.

2. She compares your face with the photo on the ID.

And finally, because you’ve aged gracefully since your last ID

photo was taken, the clerk believes that you are the person in

the picture.

Let’s call this the second factor.

If the credit card also had a photo, that would have been one more

factor to strengthen the clerk’s belief in the authenticity of the principal.

You probably noticed that we introduced the term factor. A factor is

simply a piece of information provided by a principal to prove identity.

Credentials are one or more factors provided by a principal.

In this example, the clerk didn’t question the credentials too much

because high-quality factors were used. To build strong authentica-

tion systems, we must look at the quality of factors that our principal

provides:

• Any factor that a principal is or does—such as DNA or voice

samples—is extremely unlikely to collide with someone else’s fac-

tor of the same kind. That makes it very difficult or impossible to

impersonate this kind of factor. Factors of this type are very high-

quality, but they aren’t practical for a lot of systems. These are

known as biometric factors.

• Any factor that a principal has, such as a security token device

or email account, provides out-of-band proof. Such proofs must

be coupled with another factor. These are medium-quality factors.

Let’s call these out-of-band factors.

• Typically, the user sets any factor that a principal knows, such as

a PIN or password. This is a weak factor, but it is the most usable

and pragmatic type of factor. We’ll call these secret factors.

We need to choose our factors based on the sensitivity of our data.

Sometimes, it’s only necessary to gather a username and password

from a user. Other times, we might send a text message to the user’s

phone with a verification code or physically verify some information

with a third party.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=97

USER REGISTRATION 98

Action

Listed?
Authentication

Filter

Invoke Action Authenticated?

Login Action

Action

Requested

Figure 6.1: Basic authentication flow in Rails

Sessions and Contexts

Of course, all of this effort is meaningless if we can’t secure our dialog

with our authenticated principal. Such dialogs are referred to as ses-

sions or contexts. Just as we use names to identify principals, we need

to be able to refer to dialogs through some sort of handle.

SSL primarily provides the ability to protect sessions on the Web. It

provides a suite of protection mechanisms that drastically reduce the

likelihood of an attacker gaining access to the session. But let’s not get

too comfortable just yet.

SSL provides protection against eavesdroppers, but it doesn’t really

help us with authentication. SSL will gladly transport an attacker who

has guessed a password correctly.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=98

USER REGISTRATION 99

6.2 User Registration

Before we can authenticate users in our application, the users must

exist in our database! LunchedIn allows anyone with a pulse to sign

up for the service. After all, it’s all about user acquisition! Maybe one

day we’ll be able to charge for our LunchedIn service, but for now it’s

available to anyone who wants to try it.

LunchedIn already supports user registrations. Let’s see how we can

mitigate some of the typical vulnerabilities associated with a new user

registration.

The only requirement of a user to sign up for LunchedIn is a pulse, so

how do we verify that they are human?

CAPTCHA

CAPTCHA stands for Completely Automated Public Turing test to tell Com-

puters and Humans Apart. I prefer this definition: those weird and dis-

torted pictures of words that I have to type in for Google and Yahoo sites.

Wow! That sounds like a perfect match for our “user needs a pulse”

requirement. Implementing a CAPTCHA from scratch is not something

you should try, unless you are just doing it for fun. Let’s go ahead and

install a simple_captcha1 Rails plug-in for our application.

Simple Captcha Installation

First, we’ll need RMagick.2 This tool is a Ruby interface to the Image-

Magick image-processing library. Simple Captcha uses RMagick to gen-

erate the CAPTCHA images. RMagick is available as a gem:

> gem install rmagick > ruby script/plugin install\

svn://rubyforge.org/var/svn/expressica/plugins/simple_captcha

Next, we set up our application for Simple Captcha:

> rake simple_captcha:setup

> rake db:migrate

> rake db:test:clone

1. Sur Max created and maintains the popular simple_captcha plug-in at

http://expressica.com.
2. You can download RMagick at http://rmagick.rubyforge.org.

Report erratum

this copy is (P1.0 printing, December 2009)

http://expressica.com
http://rmagick.rubyforge.org
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=99

USER REGISTRATION 100

RMagick Is a Pain to Install!

The installation challenges of a particular dependency aren’t
usually worth commenting on, but RMagick can be a challeng-
ing library to install. Be sure to search the Web for the latest infor-
mation on building RMagick for your particular platform.

At this point, we can add the necessary route in routes.rb:

Download authentication/lunchedin_captcha/config/routes.rb

map.simple_captcha '/simple_captcha/:action', :controller => 'simple_captcha'

map.connect '/login', :controller => 'session', :action => 'login'

map.connect '/logout', :controller => 'session', :action => 'logout'

Finally, we need to include the SimpleCaptcha::ControllerHelpers in our

ApplicationController:

Download authentication/lunchedin_captcha/app/controllers/application.rb

class ApplicationController < ActionController::Base

include SimpleCaptcha::ControllerHelpers

helper :all # include all helpers, all the time

protect_from_forgery # :secret => 'cf9d327f2d16793b606c6689f76e90c3'

before_filter :check_authentication, :except => [:logout]

def check_authentication

if session[:user_id]

begin

@authenticated_user = User.find(session[:user_id])

return

rescue

reset_session

redirect_to :controller => "session" and return

end

end

redirect_to :controller => "session"

end

end

Adding CAPTCHA to LunchedIn’s Registration

The Simple Captcha plug-in’s integrated helpers support a controller

or model-oriented approach. The model-oriented approach keeps the

domain logic out of our controllers.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_captcha/config/routes.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_captcha/app/controllers/application.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=100

USER REGISTRATION 101

Let’s begin by adding the apply_simple_captcha() method call to the User

model.

Download authentication/lunchedin_captcha/app/models/user.rb

apply_simple_captcha

def password=(password)

@password = password

write_attribute(:password_hash,

OpenSSL::Digest::SHA1.new(password).hexdigest)

end

The apply_simple_captcha() method call adds the following instance

methods to our User model:

• save_with_captcha()

• valid_with_captcha?()

Let’s use the save_with_captcha() method in order to save the model to

UsersController:

Download authentication/lunchedin_captcha/app/controllers/users_controller.rb

def create

@user = User.new(params[:user])

respond_to do |format|

if @user.save_with_captcha

flash[:notice] = 'your account was successfully created.'

session[:user_id] = @user.id

format.html { redirect_to(@user) }

else

format.html { render :action => 'new' }

end

end

end

The save_with_captcha() method ensures that a correctly matching

CAPTCHA is validated before saving the user. Next, let’s add the show_

simple_captcha view helper to the User form:

Download authentication/lunchedin_captcha/app/views/users/new.html.erb

<tr>

<td class="label">Zip Code:</td>

<td><%= text_field('user', 'zip_code', :size => 6) %></td>

</tr>

<tr>

<td class="label">Are you human?</td>

<td><%= show_simple_captcha(:object => "user",

:distortion => 'high',

:image_style => 'random') %>

</td>

</tr>

</table>

</div>

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_captcha/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_captcha/app/controllers/users_controller.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_captcha/app/views/users/new.html.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=101

USER REGISTRATION 102

Figure 6.2: New user form with CAPTCHA

<div style="padding: 10px;">

<%= submit_tag 'Create' %>

</div>

<% end %>

At this point, we have a CAPTCHA-enabled LunchedIn. If we navigate to

our registration page, we should see the CAPTCHA. The result is shown

in Figure 6.2.

Adding Salts to the Passwords

Keeping a password secret is the top priority of any password storage

mechanism. As a security precaution, we don’t even store the password

in LunchedIn’s database; instead, we store a digest of the password. We

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=102

USER REGISTRATION 103

Joe Asks. . .

Why Do We Need So Much Password Security?

You might be asking yourself, “Why does it matter if the users’
passwords are so hard to break? A hacker has to figure out
only how to get in the database. Once he is in, he can read
whatever data he pleases.” This is true for data that is stored
in plaintext in the database; however, we will learn how to use
password-based encryption to protect user privacy in Chap-
ter 8, Data Protection Using Cryptography , on page 155. Even
if the attacker has access to the database in this scenario, he
would then have to break each individual user’s encryption to
gain access to private data.

only need to verify that the user has provided a correct password. The

digest acts like a fingerprint of the password.

We don’t store the password directly, but there is still a threat: diction-

ary-based attacks can discover the value of a password from its digest.

Let’s take a look at how this attack works. For our example, the pass-

words have a maximum length of 1 and must be an English vowel: a,

e, i, o, or u.

The following table is a dictionary containing all of the single-letter vow-

els and their digests.3

Password Digest

a 86f7e437faa5a7fce15d1ddcb9eaeaea377667b8

e 58e6b3a414a1e090dfc6029add0f3555ccba127f

i 042dc4512fa3d391c5170cf3aa61e6a638f84342

o 7a81af3e591ac713f81ea1efe93dcf36157d8376

u 51e69892ab49df85c6230ccc57f8e1d1606caccc

We can determine the password by looking up the password’s digest as

the key. So how do we make this harder for attackers? We salt the pass-

word. A salt is a small amount of random data that is included in the

digest calculation. Let’s look at what happens to that same dictionary

3. If this were a real dictionary, there would be hundreds of thousands of entries.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=103

USER REGISTRATION 104

if we also include the precalculated values with salts. For this example,

we will limit our possible salt values to 0, 1, 2, and 3:

Password Salt Digest

a 0 40b25eac438260c9ad4e3142adc38a8d0885e5f3

a 1 f29bc91bbdab169fc0c0a326965953d11c7dff83

a 2 b9f85daa6f83cf02ce5c31913d1f64d3f5c8fade

a 3 252bc06763afb3b6c2a0802f7346700ab55f46f5

e 0 8b5eaccb28f2182b656fc1a2589dd64891df3a08

e 1 84896d3e067884621c0f54334b8d840949665844

e 2 dc1885915a8902bc29de6d834477a26d748b60b8

e 3 0e647f28da2af6b6f4a51e217990dd1cd4f66124

i 0 3553fbf24132495ad14b3c090956d321c8c68490

i 1 3795b54c5ba62df52f7f5132a3c17a2191fc7f74

i 2 ce4e91a86af472f2ee56d8ba8a3a2530ae3c9dd4

i 3 c5f511a6b910604bf76b6450f64e404cfa24c440

o 0 3c72690938e0e42ad8dc15f563c27bf1e0625d64

o 1 a473a8c1ab29e55e40e14f2c8d0fe078ad9920ad

o 2 0f927dce74ec3475c7a39299e5bffab222ca665d

o 3 d099916d553b31fdbfa04885af9355bce9757722

u 0 a165438a9e9fdbbb6b0354143903f5830e77e316

u 1 c5ea71554c774daf7fab320fc3476afc0617eb00

u 2 b9c69e5488ff88b92096f1137382e67fe1172fa6

u 3 e2e5f0fd9054a323948762af20580a9403523e36

As you can see, the size of our table grew to four times its original

size. If we apply that same logic to a dictionary of 50,000 words with 8-

byte salts, we get a dictionary with 893,905,167,390,644,531,250,000

entries. This makes for a much more difficult dictionary attack.

Now that we have reviewed the theory, let’s put salts to use in our

LunchedIn app.

Adding Salts to LunchedIn

Adding salt to our passwords in LunchedIn requires that we accomplish

several tasks:

• Create and store the salts

• Modify the authentication code to support the salts

• Deal with existing unsalted user passwords

• Rerun unit tests to ensure that we haven’t broken anything

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=104

USER REGISTRATION 105

In our initial example, we will store the salt in a separate column of our

User model. We will take a different approach, integrating with a system

that stores the salt as part of the password digest string, in Section 6.3,

LDAP/Directory-Based Authentication, on page 107. But for now, we will

enjoy the readability of separate data.

Now let’s add the salt column:

Download authentication/lunchedin/db/migrate/011_add_salt_to_user.rb

def self.up

add_column :users, :salt, :text

end

We should probably make this migration irreversible, as well:

Download authentication/lunchedin/db/migrate/011_add_salt_to_user.rb

def self.down

raise IrreversibleMigration "Salts are a one way road."

end

Next, let’s add some code to the User class:

Download authentication/lunchedin/app/models/user.rb

def hashed_and_salted_password(p, s)

OpenSSL::Digest::SHA1.new([s,p].to_s).hexdigest

end

The hashed_and_salted_password() method calculates a SHA1 digest of the

password with the salt data prepended. Does it matter where the salt is

placed in the calculation? Nope—we just need to be consistent in how

we do this across our applications.

Now we need to make sure our password persistence works smoothly

with the rest of our application. Add the following code to the pass-

word=() method:

Download authentication/lunchedin/app/models/user.rb

Line 1 def password=(password)
2 @password = password
3 write_attribute(:salt,
4 OpenSSL::Digest::SHA1.new(
5 OpenSSL::Random.random_bytes(256)).hexdigest)
6 write_attribute(:password_hash,
7 hashed_and_salted_password(password, salt))
8 end

On line 2, this code stores the plaintext password in the @password

attribute. This means we do not break our validates_confirmation_of

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/db/migrate/011_add_salt_to_user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/db/migrate/011_add_salt_to_user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=105

USER REGISTRATION 106

validation, which expects a plaintext password to be present for con-

firmation. Next, we generate a salt to be used in the password digest

on line 7. Finally, we generate a digest using a SHA1 hash function

computed from the salt+password on line 7.

Don’t worry, we’re getting there. Next, we modify our authentic?() meth-

od so it supports the salt:

Download authentication/lunchedin/app/models/user.rb

def authentic?(p)

password_hash ==

hashed_and_salted_password(p,salt)

end

Now let’s add a fixture to Users.yml that uses a salt. We will leave our

existing fixtures to ensure that we test passwords without salts, as

well:

Download authentication/lunchedin/test/fixtures/users.yml

With salt:

salty:

id: 5

first_name: Wally

last_name: Salty

username: salty

salt: salt

password_hash: <%= OpenSSL::Digest::SHA1.new(

["salt","password"].to_s).hexdigest %>

email: bpoweski@yahoo.com

role_id: 1

zip_code: 75024

created_at: 2007-11-27 14:18:26

updated_at: 2007-11-27 14:18:26

Without salt:

admin:

id: 4

first_name: The

last_name: Admin

username: admin

password_hash: <%= OpenSSL::Digest::SHA1.new("admin1").hexdigest %>

email: bpoweski@yahoo.com

role_id: 1

zip_code: 75024

created_at: 2007-11-27 14:18:26

updated_at: 2007-11-27 14:18:26

The next step is to add a positive test for our new salt functionality.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/test/fixtures/users.yml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=106

LDAP/DIRECTORY-BASED AUTHENTICATION 107

Download authentication/lunchedin/test/unit/user_test.rb

def test_user_with_salt

@user = users(:salty)

assert @user.authentic?('password')

end

We also want to add a negative test:

Download authentication/lunchedin/test/unit/user_test.rb

def test_user_fail_with_salt

@user = users(:salty)

assert !@user.authentic?('wrong_password')

end

To be thorough, let’s also add a find and authenticate test method:

Download authentication/lunchedin/test/unit/user_test.rb

def test_find_and_authenticate_with_salt_success

assert User.find_and_authenticate('salty', 'password')

end

At this point, we need to rerun our unit tests and make sure we haven’t

broken anything.

This code should not create any failures. We have preserved our test

logic, and our changes did nothing more than rework the password-

handling functionality of LunchedIn. Additionally, the rest of the appli-

cation’s functionality should be intact. For example, user registrations

will continue working without a hitch.

6.3 LDAP/Directory-Based Authentication

Let’s imagine for a moment that we’ve been asked to integrate Lunched-

In into a company that has a sales force of 5,000. LunchedIn will be the

internal lunch-planning tool for this company’s salespeople. We’ll call

our fictional company SellIt During Lunch. Let’s begin by imagining a

fictional sales dialogue with the SellIt During Lunch management rep,

Joe, and our LunchedIn sales rep, Dave:

Dave: We are very happy that you’re considering the purchase of a

corporate edition of LunchedIn. Do you have any questions?

Joe: How do you control access to the software?

Dave: We have a very user-friendly registration page. Your users will

create an account with a username and password. . .

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=107

LDAP/DIRECTORY-BASED AUTHENTICATION 108

Joe: Wait! Are you saying that users will have to remember yet another

password? That is not going to work. Our salespeople don’t remember

their own names very well. If we’re going to buy LunchedIn, it will have

to integrate with our existing LDAP-compliant directory.4

Dave: I will have to go talk to our developers about this. Let me get

back to you.

Joe: Sounds good!

The dialogue between Joe and Dave touches on the fact that most

companies don’t want their users to have to remember multiple pass-

words. In fact, most users don’t want to remember multiple passwords.

Dialogues like this drive many products to support various alternative

authentication mechanisms.

Most companies deploy Lightweight Directory Access Protocol, or LDAP,

a protocol for communicating with directory services. There are dozens

of LDAP-compliant directories available on the market, including Micro-

soft Active Directory, OpenLDAP, and ApacheDS, among others.

This section will use a technique known called LDAP binding to authen-

ticate the user. Depending on your specific deployment, you might have

to implement some additional steps. Let’s begin by setting up a basic

ApacheDS instance.

Setting up ApacheDS

Download and install the following:

• Apache Directory Studio 1.5. This is the version that was tested

with these instructions. However, any LDAP-compliant directory

should work fine for this chapter’s examples.

• Apache Studio. You should download this regardless of your exist-

ing LDAP technology. Apache Studio is a superb tool for dealing

with any directory.

Let’s begin by firing up Apache Studio. This is where we will do most of

our LDAP-oriented work. Trust me, this is a lot less painful than using

vi and ldif files. You should see something very close to Figure 6.3, on

the following page.

4. It is highly unlikely that any company would actually refer to its directory as “LDAP-

compliant.”

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=108

LDAP/DIRECTORY-BASED AUTHENTICATION 109

Figure 6.3: Apache Directory Studio

We’ll start by creating a new directory instance for our example:

1. Navigate to the Servers View by selecting Window > Show View >

Other.

2. Create a New Server. Call it something like Rails Example.

Right-click the Servers Panel and select New > New Server.

3. Double-click the newly created server.

4. Click the Partitions tab at the bottom of view and rename the sam-

ple partition to anything you want. Most of the defaults are fine for

this example.

5. Create a new connection to the server.

Right-click the server you want and go to LDAP Browser > Create

a Connection.

6. Finally, start the server.

At this point, you can right-click the server and click Run to

launch your new directory instance.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=109

LDAP/DIRECTORY-BASED AUTHENTICATION 110

Figure 6.4: Apache Directory Studio: new LDAP entry

Joe Asks. . .

What’s inetOrgPerson?

Years ago, CCITT, now known as the ITU-T, came up with
a series of standards known as the X.500 Directory Stan-
dards. These standards define the items of information
common across organizations. Since the rise of the Inter-
net, things like JPEG images and cryptographic certifi-
cates can be associated with people. The RFC describes
inetOrgPerson like this: “The inetOrgPerson object class is a
general-purpose object class that holds attributes about
people.” Cool, eh?

Create a New LDAP User

Assuming everything with the ApacheDS setup went smoothly, we can

create our test user.

Let’s create Wally Webcoder in our newly created LDAP Instance. Let’s

use wally for the username—as we did in our User test fixture:

1. Right-click the little earth icon, and click New Entry.

This should bring up a dialog similar to the one in Figure 6.4.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=110

LDAP/DIRECTORY-BASED AUTHENTICATION 111

Figure 6.5: Apache Directory Studio: selecting object class

2. Now let’s select inetOrgPerson as our object class, as shown in Fig-

ure 6.5. Do this by typing in the first few letters of the desired

class and double-clicking when it is highlighted.

3. Next, we will use UID in the drop-down list to the left of the = sign.

To the right of the = sign, we enter the username. In this case, we

will use wally. For help on how to do this, take a look at Figure 6.6,

on the next page.

4. Before we click the Finish button, we need to click the Add Attri-

bute button. This button is hard to find, but you can see it high-

lighted in Figure 6.7, on page 113.

5. Next, enter userPassword into the “Attribute type” input field, as

shown in Figure 6.8, on page 113.

6. Now we get to employ a couple clever tricks we learned previously

in the book. First, we get to take advantage of salting passwords

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=111

LDAP/DIRECTORY-BASED AUTHENTICATION 112

Figure 6.6: Apache Directory Studio: selecting distinguished name

from Section 6.2, Adding Salts to LunchedIn, on page 104. Sec-

ond, we can leverage the hashing example from Chapter 3, Fixing

the Example, on page 49. This might sound exciting, but all it

entails here is marking a checkbox. We don’t need to implement

any hashing or salting code here; instead, we get to leverage the

work we did earlier. Selecting SSHA gives us a salted SHA1 pass-

word, as shown in Figure 6.9, on page 114.

Talking to LDAP from Rails

At this point, we have our ApacheDS instance up and running. It will

require several steps on our end to integrate LunchedIn (as shown in

Figure 6.10, on page 114):

• Add test and development configurations for ApacheDS.

• Add logic in our User model to connect and authenticate with LDAP.

• Add LDAP create logic to our User model.

We need to set up a way to store our LDAP connections in our applica-

tion. Rails provides a good pattern for this in database.yml. Let’s mimic

this approach with our own ldap.yml:

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=112

LDAP/DIRECTORY-BASED AUTHENTICATION 113

Add Attribute Button

Figure 6.7: Apache Directory Studio: entering MUST attributes

Figure 6.8: Apache Directory Studio: selecting password as attribute

type

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=113

LDAP/DIRECTORY-BASED AUTHENTICATION 114

Figure 6.9: Apache Directory Studio: Password Editor

Authenticate

Connect to LDAP

with User

Credentials

Binded

Successfully

?

Query User from

Database

user exists

in

Database?

Fail

Authentication

Authentication

Success

Figure 6.10: LDAP Authentication in LunchedIn

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=114

LDAP/DIRECTORY-BASED AUTHENTICATION 115

Download authentication/lunchedin_ldap/config/ldap.yml

LDAP Connectivity. Tailor this file to meet your own needs.

development:

port: 10636

auth:

method: simple

username: uid=admin,ou=system

password: RailsRulez

host: localhost

encryption: simple_tls

basedn: dc=railssecurity,dc=org

test:

port: 10636

auth:

method: simple

username: uid=admin,ou=system

password: RailsRulez

host: localhost

encryption: simple_tls

basedn: dc=railssecurity,dc=test

The test and development configurations look almost identical. However,

if you look carefully, you will see that they use different basedn: values.

This allows us to host the directories on the same server—much as we

do with our databases in Rails.

To read ldap.yml, we need to add a line of code to our environment.rb

that reads the settings into an LDAP_CONF constant. There is also an

AUTHENTICATION_MECHANISM constant—ignore that one for now. Here is

the code that loads ldap.yml:

Download authentication/lunchedin_ldap/config/environment.rb

RAILS_GEM_VERSION = '2.2.2' unless defined? RAILS_GEM_VERSION

require File.join(File.dirname(__FILE__), 'boot')

require 'yaml'

Rails::Initializer.run do |config|

config.time_zone = 'UTC'

LDAP_CONF = YAML.load_file("#{RAILS_ROOT}/config/ldap.yml")

AUTHENTICATION_MECHANISM = "ldap"

end

This is pretty straightforward so far. Next, let’s add a test:

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/config/ldap.yml
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/config/environment.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=115

LDAP/DIRECTORY-BASED AUTHENTICATION 116

Download authentication/lunchedin_ldap/test/unit/user_test.rb

def test_ldap_conf_yml

assert_not_nil(LDAP_CONF)

assert_equal(10636, LDAP_CONF["test"]["port"], LDAP_CONF.inspect)

end

At the time this book is being written, there are a few options for

connecting to an LDAP directory. In these examples, we use the ruby-

net-ldap gem. You will need to install the gem for the LDAP examples

described in this book to work:

> gem install ruby-net-ldap

Once we have our Ruby LDAP support in place, we can change our

authentic?() method in the User model so it performs an LDAP bind,

rather than the database. Our previous database authentication code

looked like this:

Download authentication/lunchedin/app/models/user.rb

def authentic?(p)

password_hash ==

hashed_and_salted_password(p,salt)

end

Now our authentication code looks like this:

Download authentication/lunchedin_ldap/app/models/user.rb

def authentic?(p)

ldap = Net::LDAP::new({

:host => "localhost",

:port => 10636,

:auth => {

:method => :simple,

:username =>

"uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}",

:password => p

},

:encryption => :simple_tls

})

bind = ldap.bind

end

Next, let’s run a unit test:

Download authentication/lunchedin_ldap/test/unit/user_test.rb

def test_authentic

assert users(:wally).authentic?("newpass1")

end

Finally, let’s create an entry for our test fixture:

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=116

LDAP/DIRECTORY-BASED AUTHENTICATION 117

Download authentication/lunchedin_ldap/test/fixtures/users.yml

bobldap:

id: 5

first_name: Bob

last_name: Ldap

username: bldap

email: bldap@railssecurity.org

role_id: 1

zip_code: 75024

created_at: 2008-11-27 14:18:26

updated_at: 2008-11-27 14:18:26

For test_authentic() to work correctly, you must have created wally in the

basedn value specified in the test: section of ldap.yml.

The key thing to take away from this code is that the user now exists in

both the database and the directory. The difference is that we are now

validating the credentials against another datasource.

We want to connect to our LDAP instance in different methods, so

let’s refactor our LDAP connection code from authentic?() into another

method:

Download authentication/lunchedin_ldap/app/models/user.rb

def self.ldap_server(conf = LDAP_CONF[RAILS_ENV], &block)

ldap = Net::LDAP.new({:host => conf["host"],

:port => conf["port"],

:auth => {

:method => conf["auth"]["method"].to_sym,

:username => conf["auth"]["username"],

:password => conf["auth"]["password"]

},

:encryption => conf["encryption"].to_sym})

yield(ldap)

ldap

end

We can then turn around and use this method to create users in our

directory, as shown in this code:

Download authentication/lunchedin_ldap/app/models/user.rb

def create_in_ldap

User.ldap_server do |ldap|

lattrs = {

:cn => "#{first_name} #{last_name}",

:objectclass =>

["inetOrgPerson", "organizationalPerson",

"person","top"],

:sn => "#{last_name}",

:uid => "#{username}",

:mail => "#{email}",

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/fixtures/users.yml
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=117

LDAP/DIRECTORY-BASED AUTHENTICATION 118

:userPassword => User.ldap_ssha(@password)

}

dn = "uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}"

ldap.open {|l| l.add(:dn => dn, :attributes => lattrs)}

end

end

We want to create the password properly during our insertion opera-

tion, so we create a properly formatted password string. We do it this

way because we want to write raw string data to the directory. Here is

the code to accomplish that task:

Download authentication/lunchedin_ldap/app/models/user.rb

def self.ldap_ssha(password)

salt_byte_data = OpenSSL::Random.random_bytes(8)

sha1_digest = Digest::SHA1.digest(password + salt_byte_data)

pwd_sha1_bs_sa_bs = Base64::encode64(sha1_digest + salt_byte_data)

"{SSHA}#{pwd_sha1_bs_sa_bs}"

end

This code starts by creating eight bytes of random data. Next, it cre-

ates a digest of the password with the salt appended. Then, it creates a

Base64 representation of the digest, with the salt data appended. Isn’t

this cool? Now we have a nice little method to format a password for any

LDAP inserts we might need in the future. Let’s test this functionality:

Download authentication/lunchedin_ldap/test/unit/user_test.rb

def test_ldap_server_with_ssha_password

username = 'bldap'

plaintext = 'newpass1'

password = User.ldap_ssha(plaintext)

lattrs = {

:cn => "Bob",

:objectclass =>

["inetOrgPerson", "organizationalPerson",

"person","top"],

:sn => "LDAPguy",

:uid => username,

:mail => "bob@railssecurity.org",

:userPassword => password

}

dn = "uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}"

User.ldap_server do |ldap|

ldap.open {|l| l.add(:dn => dn, :attributes => lattrs)}

assert User.find_and_authenticate(username, plaintext)

ldap.open {|l| l.delete(:dn => dn)}

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=118

LDAP/DIRECTORY-BASED AUTHENTICATION 119

Note how we use password to store the digested and salted password,

but we use plaintext to perform the actual authentication. This is, of

course, the format we will receive from our users. But now let’s consider

another case, where we don’t want to use salts for our passwords:

Download authentication/lunchedin_ldap/test/unit/user_test.rb

def test_ldap_server_with_plain_password

username = 'bldap'

plaintext = 'newpass1'

lattrs = {

:cn => "Bob",

:objectclass =>

["inetOrgPerson", "organizationalPerson",

"person","top"],

:sn => "LDAPguy",

:uid => username,

:mail => "bob@railssecurity.org",

:userPassword => plaintext

}

dn = "uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}"

User.ldap_server do |ldap|

ldap.open {|l| l.add(:dn => dn, :attributes => lattrs)}

assert User.find_and_authenticate(username, plaintext)

ldap.open {|l| l.delete(:dn => dn)}

end

end

This code works because the LDAP server is performing the salt and

digest based on what is stored in the password. The ldap_ssha() class

method in our User model does some heavy lifting for us. Let’s jump into

a console session and have a look at some output:

>> User.ldap_ssha("password")

=> "{SSHA}7f4BW1lpdGQeG+7NfU/jtWkd24Sr0LOPsrsbrg==\n"

>>

The {SSHA} at the beginning of the string tells the LDAP server to apply

a SHA1 digest and an eight-byte salt to this principal’s password when a

bind request is made. Can you guess what the first S stands for? Here’s

a hint—LDAP also supports SMD5, SHA, and MD5. S stands for salt. If we

drop the {SSHA}, then the password is just plaintext.5

Talking to Microsoft Active Directory from Rails

Active Directory is probably the most popular LDAP implementation.

Because it is compliant with X.509 and other standards, it seems

5. Well, not quite. Plaintext passwords are still Base64-encoded.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=119

LDAP/DIRECTORY-BASED AUTHENTICATION 120

Configurable Authentication

We added the AUTHENTICATION_MECHANISM constant in environ-

ment.rb and ignored it. We didn’t write LunchedIn to support
LDAP authentication exclusively, so we need to provide a way
to support both. Here’s a cheap way we can add that needed
flexibility:

Download authentication/lunchedin_ldap/app/models/user.rb

if AUTHENTICATION_MECHANISM == "ldap"

before_save :create_in_ldap

def authentic?(p)
ldap = Net::LDAP::new({
:host => "localhost",
:port => 10636,
:auth => {
:method => :simple,
:username =>
"uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}",
:password => p

},
:encryption => :simple_tls

})

bind = ldap.bind
end

else
def authentic?(p)
password_hash ==
hashed_and_salted_password(p,salt)

end
end

Adding a single constant to our environment gives us a simple
way of choosing authentication types. This approach might be
a little ugly, but it works.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=120

LDAP/DIRECTORY-BASED AUTHENTICATION 121

reasonable to hope that our code will work correctly. Let’s write a unit

test that connects to an Active Directory installation:

Download authentication/lunchedin_ldap/test/unit/user_test.rb

def test_active_directory_domain_name_success

ldap = Net::LDAP::new({

:host => "192.168.137.10",

:port => 389,

:auth => {

:method => :simple,

:username =>

'RAILSSECURITY\\draphael',

:password => "RailsIs5uper"

}

})

assert ldap.bind

end

Don’t forget that draphael must exist on the RAILSSECURITY Windows

domain for this code to work. Let’s also add a failure test:

Download authentication/lunchedin_ldap/test/unit/user_test.rb

def test_active_directory_domain_name_failure

ldap = Net::LDAP::new({

:host => "192.168.137.10",

:port => 389,

:auth => {

:method => :simple,

:username =>

'RAILSSECURITY\\foobar',

:password => "foobar"

}

})

assert !ldap.bind

end

There are other ways we can build the username portion of our binding,

as well. Here’s a more traditional LDAP example:

Download authentication/lunchedin_ldap/test/unit/user_test.rb

def test_active_directory_ldap_name

ldap = Net::LDAP::new({

:host => "192.168.137.10",

:port => 389,

:auth => {

:method => :simple,

:username =>

'cn=David Raphael,CN=Users,dc=railssecurity,dc=org',

:password => "RailsIs5uper"

}

})

assert ldap.bind

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/unit/user_test.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_ldap/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=121

FLEXIBLE AUTHENTICATION 122

Authenticate

Authentication

Success

Lookup User in

DB

User Exists?

Fail

Authentication

Query

Supported

Authentication

mechanism

Authenticate

with mechanism

Authentic?

Figure 6.11: Choosing between LDAP or database at runtime

Figuring out the right combination of CNs and DCs is going to be depen-

dent on a particular Active Directory installation. You will have to talk

to the local Active Directory administrator for details on your particular

setup.6

6.4 Flexible Authentication

We’ve added LDAP support to LunchedIn, but now we find ourselves

stuck with either LDAP or database authentication at deployment—

6. Sometimes Active Directory administrators will set up their domains in a way that

doesn’t lend itself to LDAP authentication.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=122

FLEXIBLE AUTHENTICATION 123

through our environment setting. This might be sufficient for some

applications, but how can we make this more flexible? Specifically, how

would we deal with this in an application like LunchedIn? Let’s look at

ways to modify LunchedIn so we can deal with this in a more dynamic

manner.

A Smarter User Model

The basic flow that we want to achieve with our flexible authentica-

tion is shown in Figure 6.11, on the preceding page. We can solve this

problem in quite a few ways, but let’s start attacking this problem by

leveraging one of my favorite ActiveRecord features: polymorphic models

with single-table inheritance. Here is the migration we’ll need to be able

to subclass User:

Download authentication/lunchedin_flex_auth/db/migrate/012_add_type_to_users.rb

class AddTypeToUsers < ActiveRecord::Migration

def self.up

add_column :users, :type, :string, :default => "User"

add_index :users, :type

end

def self.down

remove_column :users, :type

end

end

Rethinking Our Users

You might recall that we hacked LDAP support into the code base

in Section 6.3, Talking to LDAP from Rails, on page 112. And while

that code passed all unit tests, we didn’t really analyze the difference

between our original User model and the LDAP-enabled version. For

example, we added a :before_save callback that inserted the user into

our directory. What about existing LDAP users? In fact, most organi-

zations have facilities already in place for managing user accounts. We

need to do a better job of integrating LunchedIn—as we would in the

case of a real-world corporate integration.

Let’s start by identifying what concerns users share, regardless of au-

thentication mechanism. Here are the common concerns that we want

to address for Users in LunchedIn:

• Users must have a defined role, such as admin or user.

• Users must be tied to comments through a join table.

• Users must have a first name, last name, email, and ZIP code.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/db/migrate/012_add_type_to_users.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=123

FLEXIBLE AUTHENTICATION 124

• Users should be authenticated through a username and pass-

word, regardless of authentication mechanism. This means we can

create a common contract for finding and authenticating any type

of user.

Now let’s list the common concerns we want to address specific to users

authenticating against the database:

• Database-authenticated users must store their passwords in the

database.

• Database-authenticated users must provide validation support for

password creation and manipulation.

• Database-authenticated users must provide the necessary code to

salt and hash the passwords.

• Database-authenticated users must provide the necessary code to

authenticate based on a username and password.

Finally, we need to consider the concerns that are specific to users

authenticating against LDAP:

• LDAP-authenticated users must exist in the directory. We will

need to add this to the user validation.

• LDAP-authenticated users must hydrate an address, first name,

last name, and ZIP code from the directory.

• LDAP-authenticated users must provide the necessary code to

authenticate based on a username and password.

Polymorphic user models are described in a simple class diagram in

Figure 6.12, on the following page. We can use this diagram for guid-

ance while we code.

User, DbUser, and LDAPUser are now separate models, but all of them

share the same database table. This means we should be able to add

authentication types without affecting any of our relationships with

other models, such as Event or Comment.

User, DbUser, and LDAPUser

Let’s begin by creating our DbUser. This should be an easy change

because we don’t need to add or subtract any functionality.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=124

FLEXIBLE AUTHENTICATION 125

username
role
events
comments
first_name
last_name
zip_code

User

find_and_authenticate()

LDAPUser

authentic?()

hydrate_values_from_ldap()
validate()
ldap_server()
build_ldap_user_hash()
ldap_ssha()

password_hash
salt

DbUser

authentic?()

password()=
password()
hashed_and_salted_password()

Figure 6.12: Polymorphic user models

The first step is to amputate portions of our original User until it looks

like this:

Download authentication/lunchedin_flex_auth/app/models/user.rb

class User < ActiveRecord::Base

attr_protected :role_id

validates_presence_of :username

validates_uniqueness_of :username

has_many :events

has_many :comments, :as => :commentable

belongs_to :role

def self.find_and_authenticate(username, password)

user = find_by_username(username)

return false if user.nil?

if user.authentic?(password)

return user

end

false

end

end

Nothing too exciting happens here.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=125

FLEXIBLE AUTHENTICATION 126

Next, we need to take the code that we removed from User and add it to

our newly created DbUser:

Download authentication/lunchedin_flex_auth/app/models/db_user.rb

class DbUser < User

DbUser specific

validates_presence_of :password_hash

validates_length_of :zip_code, :is => 5

validates_numericality_of :zip_code

validates_presence_of :email, :first_name, :last_name

validates_length_of :password, :in => 7..32

validates_confirmation_of :password

def password=(password)

@password = password

write_attribute(:salt,

OpenSSL::Digest::SHA1.new(

OpenSSL::Random.random_bytes(256)).hexdigest)

write_attribute(:password_hash,

hashed_and_salted_password(password, salt))

end

def password

@password

end

def authentic?(p)

password_hash ==

hashed_and_salted_password(p,salt)

end

def hashed_and_salted_password(p, s)

OpenSSL::Digest::SHA1.new([s,p].to_s).hexdigest

end

end

The main thing worth noting here is that we’ve added the validations

and authentic?() method. We also need to move the relevant test code

from the old UserTest to DbUserTest:

Download authentication/lunchedin_flex_auth/test/unit/db_user_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class DbUserTest < ActiveSupport::TestCase

def test_find_and_authenticate_success

assert User.find_and_authenticate('wally', "newpass1")

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/models/db_user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/test/unit/db_user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=126

FLEXIBLE AUTHENTICATION 127

def test_authentic_failed

assert !User.find_and_authenticate('wally', 'foo')

end

def test_authentic

assert users(:wally).authentic?("newpass1")

end

end

For our unit test to work correctly, we also need to update all of our

fixtures to have the correct type, as in this example:

Download authentication/lunchedin_flex_auth/test/fixtures/users.yml

bob:

id: 1

type: DbUser

username: bob

password_hash: <%= OpenSSL::Digest::SHA1.new("hello").hexdigest %>

first_name: Bob

last_name: Smith

email: bob@gmail.com

role_id: 1

zip_code: 75024

created_at: 2007-11-27 14:18:26

updated_at: 2007-11-27 14:18:26

Here’s a nice detail: we can add a type: of DbUser to all of our test data.

Let’s add one for LDAP:

Download authentication/lunchedin_flex_auth/test/fixtures/users.yml

wally:

id: 3

type: LDAPUser

first_name: Wally

last_name: Webcoder

username: wally

password_hash: <%= OpenSSL::Digest::SHA1.new("newpass1").hexdigest %>

email: wally@yahoo.com

role_id: 2

zip_code: 75024

created_at: 2007-11-27 14:18:26

updated_at: 2007-11-27 14:18:26

At this point, we can create our LDAPUser model. We can start by stealing

the authentic?() method code from the LDAP example in Section 6.3,

Talking to LDAP from Rails, on page 112.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/test/fixtures/users.yml
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/test/fixtures/users.yml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=127

FLEXIBLE AUTHENTICATION 128

Download authentication/lunchedin_flex_auth/app/models/ldap_user.rb

class LDAPUser < User

attr_accessor :password, :password_confirmation

def authentic?(p)

ldap = Net::LDAP::new({

:host => "localhost",

:port => 10636,

:auth => {

:method => :simple,

:username =>

"uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}",

:password => p

},

:encryption => :simple_tls

})

bind = ldap.bind

end

We can test this code using the user we created in Section 6.3, Create

a New LDAP User, on page 110:

Download authentication/lunchedin_flex_auth/test/unit/ldap_user_test.rb

def test_find_and_authenticate_success

assert User.find_and_authenticate('wally', "newpass1")

end

Again, nothing too exciting occurs here. Just keep in mind that it would

be ideal for the test LDAP data to be refactored out of the unit tests.7

Next, let’s add the code that will pull the appropriate data from the

directory and populate our database:

Download authentication/lunchedin_flex_auth/app/models/ldap_user.rb

before_save :hydrate_values_from_ldap

def hydrate_values_from_ldap

LDAPUser.ldap_server do |ldap|

results = ldap.search({

:base => LDAP_CONF[RAILS_ENV]["basedn"],

:filter => Net::LDAP::Filter.eq("uid", username)})

raise "Ambiguous LDAP search. " if results.size > 1

write_attribute(:email, results[0].mail[0])

write_attribute(:zip_code, results[0].postalCode[0])

write_attribute(:first_name, results[0].givenName[0])

write_attribute(:last_name, results[0].sn[0])

end

end

7. We didn’t want to spend too much time focusing on non-authentication-related code

here. It would be relatively trivial to leverage this code to move LDAP test data out of the

unit tests and into fixtures.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/models/ldap_user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/test/unit/ldap_user_test.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/models/ldap_user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=128

FLEXIBLE AUTHENTICATION 129

Notice that we’ve attached the hydrate_values_from_ldap() as an ActiveRe-

cord callback—before saving.

We require that an LDAPUser exist in LDAP before we create the account

in LunchedIn, so we need to authenticate the user in LDAP:

Download authentication/lunchedin_flex_auth/app/models/ldap_user.rb

def validate

unless authentic?(password)

errors.add_to_base("LDAP Authentication failed")

end

end

This code reuses the authentic?() method. Kinda cool, eh? The password

is simply a value that we get from controller when it’s posting.

We are never done until we’ve tested. This test code is a little bit bulky,

but that’s mainly because our fixtures are inline:

Download authentication/lunchedin_flex_auth/test/unit/ldap_user_test.rb

def test_create_success

LDAPUser.ldap_server do |ldap|

username = "test_create_username"

lattrs = LDAPUser.build_ldap_user_hash("test","user",

"test@railssecurity.org", username, "password", "75093")

create our test user in LDAP

dn = "uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}"

ldap.open {|l| l.add(:dn => dn, :attributes => lattrs)}

user = LDAPUser.new do |u|

u.username = username

u.password = "password"

end

assert(user.save, user.errors.entries.join("\n"))

user.reload

Make sure that the attributes are getting populated

assert_equal("test@railssecurity.org", user.email)

assert_equal("test", user.first_name)

assert_not_nil("user", user.last_name)

assert_equal("75093", user.zip_code)

This shouldn't be getting populated

assert_nil(user.password_hash)

assert(User.find_and_authenticate(username, "password"))

make sure we delete our test user afterwards

ldap.open {|l| l.delete(:dn => dn)}

end

end

Our next snippet uses the build_ldap_user_hash() class method to create

a hash for LDAP inserts (again, this is a by-product of not having LDAP

test fixtures).

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/models/ldap_user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/test/unit/ldap_user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=129

FLEXIBLE AUTHENTICATION 130

Download authentication/lunchedin_flex_auth/app/models/ldap_user.rb

def self.build_ldap_user_hash(first_name, last_name,

email, username, password, zip_code)

lattrs = {

:cn => "#{first_name} #{last_name}",

:givenName => first_name,

:objectclass =>

["inetOrgPerson", "organizationalPerson",

"person","top"],

:sn => last_name,

:uid => username,

:mail => email,

:postalCode => zip_code,

:userPassword => ldap_ssha(password)

}

end

The build_ldap_user_hash() uses the ldap_ssha() class method that we

built previously. Here’s that snippet of code again:

Download authentication/lunchedin_flex_auth/app/models/ldap_user.rb

def self.ldap_ssha(password)

salt_byte_data = OpenSSL::Random.random_bytes(8)

sha1_digest = Digest::SHA1.digest(password + salt_byte_data)

pwd_sha1_bs_sa_bs = Base64::encode64(sha1_digest + salt_byte_data)

"{SSHA}#{pwd_sha1_bs_sa_bs}"

end

With this code in place, we can proceed to the controller and views.

Updating Registration Form

We’ve extended our User model into DbUser and LDAPUser, which means

need to make a few tweaks to UserController to accommodate the new

classes.

Let’s begin by updating the new() method:

Download authentication/lunchedin_flex_auth/app/controllers/users_controller.rb

def new

user_type = params[:user].nil? ? '' : params[:user][:type]

case user_type

when 'LDAPUser'

@user = LDAPUser.new(params[:user])

else

@user = DbUser.new(params[:user])

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/models/ldap_user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/models/ldap_user.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/controllers/users_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=130

FLEXIBLE AUTHENTICATION 131

It’s worth noting that this code defaults to DbUser if the request doesn’t

specify a type.

We also need to add code that is similar to the create() method in the

controller:

Download authentication/lunchedin_flex_auth/app/controllers/users_controller.rb

def create

Little glue to create correct account type

case params[:user][:type]

when 'LDAPUser'

@user = LDAPUser.new(params[:user])

else

@user = DbUser.new(params[:user])

end

respond_to do |format|

if @user.save

flash[:notice] = 'your account was successfully created.'

session[:user_id] = @user.id

format.html { redirect_to(@user) }

else

format.html { render :action => 'new' }

end

end

end

We need to add two lines to routes.rb for redirect_to() to work correctly:

Download authentication/lunchedin_flex_auth/config/routes.rb

map.resources :users

These are pointing to the User controller

map.resources :db_users, :controller => "users"

map.resources :ldap_users, :controller => "users"

This tells Rails to use the UserController as the controller for DbUser and

LDAPUser.

Next, we need to update our functional test. First, we need to add a type

parameter to our create requests—because the controller now expects

a type for creation explicitly. This requires a handful of changes in our

test_create_user_success() method:

Download authentication/lunchedin_flex_auth/test/functional/users_controller_test.rb

def test_create_user_success

post :create, :user => {

:type => "DbUser",

:first_name => 'Juan',

:last_name => 'Valdez',

:email => 'juan@gmail.com',

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/controllers/users_controller.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/config/routes.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/test/functional/users_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=131

FLEXIBLE AUTHENTICATION 132

:username => 'juaninamillion',

:zip_code => '75024',

:password => 'hello34',

:password_confirmation => 'hello34'

}

user = User.find_by_username('juaninamillion')

assert_not_nil user, assigns(:user).errors.inspect

assert_response :redirect

assert_redirected_to user_path(assigns(:user))

end

So far we’ve updated the existing test; next, we need to add a test case

for our LDAP user creation:

Download authentication/lunchedin_flex_auth/test/functional/users_controller_test.rb

def test_create_user_success_in_ldap

LDAPUser.ldap_server do |ldap|

username = "juaninamillion"

password = "hello34"

lattrs = LDAPUser.build_ldap_user_hash("test","user",

"test@railssecurity.org", username, password, "75093")

dn = "uid=#{username},#{LDAP_CONF[RAILS_ENV]["basedn"]}"

ldap.open {|l| l.add(:dn => dn, :attributes => lattrs)}

post :create, :user => {

:type => "LDAPUser",

:username => username,

:password => password

}

user = User.find_by_username('juaninamillion')

assert_not_nil user, assigns(:user).errors.inspect

assert_response :redirect

assert_redirected_to user_path(assigns(:user))

ldap.open {|l| l.delete(:dn => dn)}

end

end

This code has the funky LDAP-user creation embedded, just as in our

unit tests. Once we add this, we can proceed to fixing our view code.

We’re dealing with two different models in this case, which means we

need to be careful not to split our views into separate partials. However,

the LDAPUser requires only a subset of DbUser, so we can guard against

this by adding a little glue to the existing form:

Download authentication/lunchedin_flex_auth/app/views/users/new.html.erb

<h1>Have lunch with us</h1>

<h2>Create A Profile</h2>

<%= error_messages_for 'user' %>

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/test/functional/users_controller_test.rb
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_flex_auth/app/views/users/new.html.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=132

FLEXIBLE AUTHENTICATION 133

<% form_tag :action => 'create' do %>

<div class="highlighted-form">

<table class="form">

<tr>

<td class="label">Account Type:</td>

<td>

<%= radio_button('user', 'type','LDAPUser') %> LDAP

<%= radio_button('user', 'type', 'DbUser') %> Database

</td>

</tr>

<tr>

<td class="label">User Name:</td>

<td><%= text_field('user', 'username', :size => 14) %></td>

</tr>

<tr>

<td class="label">Password:</td>

<td><%= password_field('user', 'password', :size => 14) %></td>

</tr>

<% if @user.is_a? DbUser %>

<tr>

<td class="label">Confirm Password:</td>

<td><%= password_field('user', 'password_confirmation', :size => 14) %></td>

</tr>

<tr>

<td class="label">First Name:</td>

<td><%= text_field('user', 'first_name', :size => 16) %></td>

</tr>

<tr>

<td class="label">Last Name:</td>

<td><%= text_field('user', 'last_name', :size => 16) %></td>

</tr>

<tr>

<td class="label">Email:</td>

<td><%= text_field('user', 'email') %></td>

</tr>

<tr>

<td class="label">Zip Code:</td>

<td><%= text_field('user', 'zip_code', :size => 6) %></td>

</tr>

<% end %>

</table>

</div>

<div style="padding: 10px;">

<%= submit_tag 'Create' %>

</div>

<% end %>

These changes should produce the result we see in Figure 6.13, on the

next page. If we select a database user, we should see a result similar

to that displayed in Figure 6.14, on the following page.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=133

FLEXIBLE AUTHENTICATION 134

Figure 6.13: Creating an LDAP-authenticated user

Figure 6.14: Creating a database-authenticated user

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=134

Chapter 7

Authorization
7.1 What Is Authorization?

We defined authorization as the process of verifying privilege for a given

principal in Chapter 6, Authentication: Decentralized Authentication, on

page 95. To put it another way, authorization is the process of deciding

which actors have access to what actions and what data.

Authorization fits into several models:

• Mandatory access control (MAC) grants access based on the sen-

sitivity (denoted by a label) of the information contained in the

objects and the formal authorization (i.e., clearance) of subjects to

access information of a given sensitivity. Government information

classification, such as Secret or Top Secret, is a good example of

MAC-style authorization.

• Discretionary access control (DAC) grants access to objects based

on the identity of subjects and/or groups to which they belong.

Windows and Unix file permissions are good examples of DAC-

style authorization.

• Role-based access control (RBAC) lets you associate access con-

trol with actions in a system that typically exist above the object

level. A given action of an application can interact with a num-

ber of objects, but access to actions is controlled through permis-

sion based on role assignments, not at the level of individual data

objects.

MANDATORY ACCESS CONTROL 136

Several community development projects provide generic authorization

support in Rails:

ActiveRbac . http://active-rbac.rubyforge.org/

The ActiveRbac plug-in helps you implement role-based access control in your

application.

ModelSecurity http://perens.com/FreeSoftware/ModelSecurity/

The ModelSecurity plug-in leverages the data model to implement access

control.

ActiveRbac appears to remain in active development. Its primary goal

is to provide programmatic support for attaching permissions to roles

and attaching roles to users.

ModelSecurity appears to be stagnant at this point. However, for some-

one who needs tight control over ActiveRecord models, ModelSecurity

takes an approach similar to the ACEGI project from the Java com-

munity. Essentially, it provides a wormhole from the controller layer to

the model layer, enabling the model to be aware of the current user.

This enables an additional layer of defense that you don’t get in more

controller-centric approaches.

7.2 Mandatory Access Control

Authorization systems that implement MAC generally do so on a

system-wide basis. You need to use a MAC model when regulations

or laws make specific classifications or mandates regarding data. For

example, certain U.S. laws prevent the export of cryptographic libraries

to certain countries labeled as restricted. Therefore, any site that pro-

vides software downloads must control access to cryptographic soft-

ware downloads based on restriction labels. MAC is another method

for enforcing the principle of least privilege, as defined in Chapter 1,

Security in Ruby on Rails, on page 10; it accomplishes this by reducing

privilege system-wide.

Let’s take a look at a less political example, where we need to implement

a corporate policy on access control for payroll data:

• The HR Coordinator has access to employee information.

• The Payroll Manager has access to employee information and pay-

roll information.

Report erratum

this copy is (P1.0 printing, December 2009)

http://active-rbac.rubyforge.org/
http://perens.com/FreeSoftware/ModelSecurity/
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=136

MANDATORY ACCESS CONTROL 137

...

Payrolls

employee_id_fk
monthly_gross

id

...
termination_date
start_date

Employee

first_name
last_name

id

...
termination_date
start_date

PerformanceReviews

first_name
last_name

id

Hiring Manager

Payroll Manager

HR Coordinator

PayrollsPerformance

Yes

No

Yes

Payroll Manager

HR Coordinator

Employee

Yes Yes

No

Hiring Manager

Yes

No

Yes

Figure 7.1: Mandatory access control

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=137

DISCRETIONARY ACCESS CONTROL 138

Wally y

n

y y

Read Delete

y

PersonnelRecord

WallysPersonalData

y

Update

y

Create

n

y

n

Target

Jim

y

n

Jim PayrollRecord

Figure 7.2: Discretionary access control

• The Hiring Manager has access to employee information, employee

performance reviews, and payroll information.

Let’s take a look at Figure 7.1, on the previous page. Here we see three

tables that contain data about employees. It is our lowest level of secu-

rity control because the basic employee information, such as name and

employment data, is a piece of data that anyone in an HR department

can access (access to payroll data is essential for people who admin-

ister payroll or perform salary reviews). Finally, this example restricts

performance reviews to the hiring managers.

7.3 Discretionary Access Control

We see DAC implemented most widely in operating systems, relational

databases, or any kind of system-level software. We need DAC whenever

we have generic (not activity-centric) access control concerns.

We can see an example that relies on DAC in Figure 7.2. Here we have a

small list of principals, actions, and targets. Together, the items in this

list comprise the generic building blocks of a DAC system. We derive

actions from a well-defined interface. For files, Unix and Windows pro-

vide a contract for dealing with files that include a permission. In many

languages, such as Java or C#, the virtual machine provides a security

manager that understands how to deal with objects that implement a

predetermined security interface.

Although we can create a collection of permissions, add them to a

group, and call this a role, we haven’t created a “role” from a security

purist’s standpoint. Our example separates the action (read, update,

delete, and so on) from the target (some data). In RBAC, the action is

the target.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=138

DISCRETIONARY ACCESS CONTROL 139

Joe Joe's Page
n

Bob

Everyone y

y

Create OwnerDelete Target

n

n

y

yn

n

y

n

n

Read

n

Update

yy

Joe's Friends

Owner

n

Figure 7.3: Initial access list: Joe’s page

Joe Joe's Page
n

Bob

Everyone n

n

Create OwnerDelete Target

n

n

y

nn

n

y

n

n

Read

n

Update

yy

Joe's Friends

Owner

n

Figure 7.4: Access list: Joe’s page after he sets the page to

private

If we want to implement a user-centric content-management system

(CMS), such as a community wiki, DAC allows our users to set specific

access based on the site’s content.

Let’s imagine a fictional wiki that we’ve built for users to exchange tech-

niques for writing better web applications. Let’s also assume that Joe

and Bob participate on this wiki. In this scenario, the default behavior

dictates that any user can read any page that any other user on the

site creates. However, the wiki also supports discretionary control on

its pages. Let’s look at a more detailed example:

• Joe creates a new wiki page.

• The wiki application creates a new access list (see Figure 7.3).

• Joe sets access on the page to private.

• The wiki application modifies the page’s access list so only the

owner can read it (see Figure 7.4).

• Bob browses to the page that Joe created.

• The wiki application checks the page’s access list. Bob doesn’t

meet the criteria to access the page, so the site denies access to

Bob (see Figure 7.5, on the next page).

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=139

ROLE-BASED ACCESS CONTROL 140

Joe Joe's Page
n

Bob

Everyone n

y

Create OwnerDelete Target

n

n

y

yn

n

y

n

n

Read

n

Update

yy

Joe's Friends

Owner

n

Figure 7.5: Access list: Joe’s page after he grants additional rights

But now let’s assume that Joe wants to grant certain people access to

his page, so he creates a group called Joe’s Friends.

We need to remember several important details when dealing with DAC:

• Groups are principals.

• Users are principals.

• Principals are the actors in a DAC-based system.

• Targets are assigned ownership, usually by the target’s creator.

7.4 Role-Based Access Control

Often, individual roles or job functions drive access requirements with-

in an organization. These roles can be associates with activities in a sys-

tem. For example, a doctor can create a prescription that might move

throughout the system. The doctor might have created the prescription,

but she doesn’t own the prescription object. The prescription object is

a transient object—one that represents the authorization itself! Several

entities can read the prescription, including the patient, the pharma-

cist, and the insurance company.

Assume we have a short list of roles associated with their respective

controllers and actions (see Figure 7.6, on the following page). In this

example, we create two roles: admin and user. This maps well to the

following user stories:

• An admin can add or delete users.

• An admin can update or delete profiles.

• A user can register as a user.

• A user can update her profile.

Using a story-centric approach enables us to include our security

requirements during our planning sessions. In other words, autho-

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=140

ROLE-BASED ACCESS CONTROL 141

Roles Controllers

:admin

ProfilesController

UsersController

#delete_profile

#update_profile

#delete_user

#add_user

Actions

:user

ProfilesController

UsersController

#register

#update_my_profile

Figure 7.6: Role-based access control

rization is not an afterthought. Let’s simulate a dialogue between our

user(s) and developer(s) about a new social-networking application for

a site dedicated to discussing and sharing music lyrics.

Joe User: We need the ability to flag potentially vulgar lyrics.

Dave Developer: Who is “we”?

Joe User: The Site Moderators.

Dave Developer: OK, so Site Moderators must have an interface to flag

lyrics submitted by a Community User as Vulgar.

Joe User: Yes, and Community Users should also have the ability to

mark lyrics as Vulgar, but a Site Moderator should review those particular

Vulgar Flags.

Dave Developer: Got it.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=141

IMPLEMENTING RBAC 142

This dialogue reveals several things:

• We will need a flag_vulgar() action that we will assign this action to

the Site Moderator role.

• We will need a submit_as_vulgar() action that we will assign to the

Community User role.

• We will need an approve_as_vulgar() action that we will assign to

the Site Moderator role.

Now, all we need is a way to implement these roles in our application.

7.5 Implementing RBAC

Before we jump into implementing RBAC in our application, let’s take a

look at where our authorization will reside in the request life cycle (see

Figure 7.7, on the next page).

We will implement our authorization control inside a filter that executes

only if our authentication filter returns true.

However, we need to provide a list of controller actions paired with roles

for our filter to work its magic.

Role-Based Controller Authorization

We have several choices for enumerating access across our controllers:

• We can create a static list of controller actions and their roles in a

separate file. This approach is simple, but it decouples our imple-

mentation from the role assertions. Decoupling the two creates

unnecessary maintenance complexity.

• We can create a database-driven list of controller actions and their

roles. This strategy can work if we want to configure our applica-

tion roles at runtime. However, it eliminates the benefit of captur-

ing our RBAC requirements during our planning sessions with the

users. This approach also decouples the role assertions from the

code.

• We can leverage the brilliantly dynamic nature of Ruby and cre-

ate our own macro-like constructs to support role assertions on

controller methods. This allows us to assign roles to the software

during our code implementation. Additionally, we can expand our

functional tests to assert authorization checks for each action we

test.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=142

IMPLEMENTING RBAC 143

Action

Listed?
Authentication

Filter

Invoke Action

Authorized?

Login Action
Action

Requested

Authenticated?

Authorization

Filter

Action

Listed?

Invoke Not

Authorized Action

Figure 7.7: Application filter flow

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=143

IMPLEMENTING RBAC 144

A Note About Filters

It is a good practice to return true or false in filter methods explic-
itly. This is easy to forget because Ruby does not require an
explicit return in methods. Rails depends on true|false to deter-
mine whether it should execute the next filter in the chain.

Let’s try to implement the third option because it just feels right! This

code illustrates what we want our syntax for a role(s) declaration to look

like:

...

roles :admin

def delete_user

end

...

roles :admin, :user

def add_comment

end

...

To do this, we need to create another module and call it RoleBasedCon-

trollerAuthorization. This module implements several features:

• It provides class methods to mix in with our controllers.

• It provides a class instance variable read accessor that renders a

method’s role(s).

• It provides a class instance variable or accessor that renders the

roles for a state variable as they are called by the macro.

• It implements a self.method_added for the controller. This method

captures the methods as we add them. It then correlates the roles

stored by the state variable into the correct hash value in the

access list.

• It provides the authorization filter method for our controllers.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=144

IMPLEMENTING RBAC 145

Let’s get started. First, we define a self.included() method that also mixes

the class methods in. This saves us from having to use a separate

extend() in our controllers:

Download authorization/lunchedin_old/app/security/role_based_controller_authorization.rb

module RoleBasedControllerAuthorization

def self.included(base)

base.extend(AuthorizationClassMethods)

end

Second, we need to create our class methods:

Download authorization/lunchedin_old/app/security/role_based_controller_authorization.rb

Line 1 module AuthorizationClassMethods
- def self.extended(base)
- class <<base
- @access_list = {}
5 attr_reader :access_list
- end

- end

-

- def roles(*roles)
10 @roles = roles

- end

-

- def method_added(method)
- logger.debug "#{caller[0].inspect}"

15 logger.debug "#{method.inspect}"
- @access_list[method] = @roles
- end

- end

This code defines an access_list() reader on line 5. This method gives us

read-only access to our role-based access list. Next, we define a roles()

method that accepts an array of roles on line 10. Finally, we add the

@roles state variable to the access_list when a method is defined in a

controller on line 16.

Additionally, we need to include our newly crafted module into our

ApplicationController:

Download authorization/lunchedin_old/app/controllers/application.rb

class ApplicationController < ActionController::Base

include RoleBasedControllerAuthorization

Let’s unit-test our work. We begin by creating a controller with role

declarations that we can use for testing.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/app/security/role_based_controller_authorization.rb
http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/app/security/role_based_controller_authorization.rb
http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/app/controllers/application.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=145

IMPLEMENTING RBAC 146

Joe Asks. . .

Wait! Aren’t We Changing the Way Ruby/Rails Works?

One of Ruby’s greatest benefits is that it lets you leverage its
metaprogramming facilities. For example, our ability to par-
ticipate in the class evaluation life cycle of our controller
classes tremendously simplifies the effort required to implement
the role-based authorization described in this chapter. It also
greatly reduces the amount of code required to perform an
authorization check for each action.

class RoleBasedController < ApplicationController

roles :admin

def admin_only

end

roles :admin, :user

def user_and_admin

end

end

Now let’s write our test:

class RoleBasedControllerAuthorizationTest < Test::Unit::TestCase

def test_admin_only

assert(RoleBasedController.access_list[:admin_only] == [:admin])

assert(RoleBasedController.access_list[:user_and_admin] == [:admin, :user])

end

end

Our unit test should pass, assuming we’ve done everything correctly so

far. Now that we’ve established a way to express roles on a per-action

basis in our controllers, we need to perform authorization checks using

this data. Let’s add the filter code to our RoleBasedControllerAuthorization

module:

Download authorization/lunchedin_old/app/security/role_based_controller_authorization.rb

def authorization_filter

user = User.find(:first,

:conditions => ["id = ?", session[:user_id]])

action_name = request.parameters[:action].to_sym

action_roles = self.class.access_list[action_name]

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/app/security/role_based_controller_authorization.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=146

IMPLEMENTING RBAC 147

if action_roles.nil?

logger.error "You must provide a roles declaration\

or add skip_before_filter :authorization_filter to\

the beginning of #{self}."

We deliberately did not return any information to the user here.

This is considered a programmer error. We could also raise an

Error or Exception here. If we wanted to switch to a blacklist

version of the role based access control, this would allow the

Action. However, this violates two of our principles; Least

Privilege, Whitelist

redirect_to :controller => 'root', :action => 'index'

return false

elsif action_roles.include? user.role.name.to_sym

return true

else

logger.info "#{user.user_name} (role: #{user.role.name}) attempted to access\

#{self.class}##{action_name} without the proper permissions."

flash[:notice] = "Not authorized!"

redirect_to :controller => 'root', :action => 'index'

return false

end

end

The authorization_filter() executes several actions:

• It looks up the user from the session. We should always include

this step if we chain an authentication filter before the authoriza-

tion filter. Depending on our application’s requirements, we might

want to handle the case where a user is nil.

• It retrieves the action from the request.

• It retrieves the roles associated with the action.

• If the action’s roles are nil, then it logs an error and redirects the

request.

• If the user’s role exists in the method access list, it returns true

and ends the authorization-filter process.

• Finally, it fails securely. The default behavior of the filter is to

redirect to the root controller.

There are many variations that we can implement in this filter. Depend-

ing on what our application’s requirements dictate, we can alter the

behavior of the authorization failures. However, we should always pre-

serve a fail-close model in our authorization logic.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=147

IMPLEMENTING RBAC 148

Previously, we performed an authorization check in our Comments-

Controller:

Download authentication/lunchedin_old/app/controllers/comments_controller.rb

class CommentsController < ApplicationController

before_filter :check_authorization

def check_authorization

unless @user and @user.role.name == 'admin'

flash[:notice] = "Not authorized!"

redirect_to :controller => 'root', :action => 'index'

end

end

def remove

Comment.delete(params[:id])

render :update do |page|

page.visual_effect :fade, "comment_#{params[:id]}"

end

end

end

Let’s revise this code with our new role-based authorization module:

Download authorization/lunchedin_old/app/controllers/comments_controller.rb

class CommentsController < ApplicationController

roles :admin

def remove

Comment.delete(params[:id])

render :update do |page|

page.visual_effect :fade, "comment_#{params[:id]}"

end

end

end

This change reduces the complexity of the code dramatically, while also

increasing its readability and maintainability.

Let’s add an additional test to the unit test of our comments controller:

Download authorization/lunchedin_old/test/functional/comments_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'comments_controller'

Re-raise errors caught by the controller.

class CommentsController; def rescue_action(e) raise e end; end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_old/app/controllers/comments_controller.rb
http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/app/controllers/comments_controller.rb
http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/test/functional/comments_controller_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=148

IMPLEMENTING RBAC 149

class CommentsControllerTest < Test::Unit::TestCase

fixtures :users

def setup

@controller = CommentsController.new

@request = ActionController::TestRequest.new

@request.session[:user_id] = users(:dave).id

@response = ActionController::TestResponse.new

end

Replace this with your real tests.

def test_truth

assert true

end

def test_roles

assert(CommentsController.access_list[:remove] == [:admin])

end

end

Next, let’s add a roles “viewer” for our application. This viewer will give

us a nice view of actions and roles across all of our controllers. Let’s

begin by adding a controller to host this functionality:

script/generate controller Authorization

Now we add our logic to present the controllers, actions, and roles to

the view:

Download authorization/lunchedin_old/app/controllers/authorization_controller.rb

class AuthorizationController < ApplicationController

roles :admin

def index

@controllers =

ActionController::Routing.possible_controllers.delete_if do |controller|

is_it_a? controller

end

@controllers.collect! {|c| controller_class c }

end

private

def controller_class(controller)

"#{controller.camelize}Controller".constantize

end

def is_it_a?(controller)

the_class = controller_class(controller)

!the_class.is_a?(Class) ||

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/app/controllers/authorization_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=149

IMPLEMENTING RBAC 150

!the_class.ancestors.include?(ApplicationController) ||

!the_class.included_modules.include?(RoleBasedControllerAuthorization)

end

end

The preceding code sample has several goals:

• To declare our roles to be :admin only

• To gather all controllers through the ActionController::Routing class

• To delete all references to noncontroller classes and controllers

that do not include our authorization module

Now we can create a view:

Download authorization/lunchedin_old/app/views/authorization/index.rhtml

<!-- This is obviously designed for functionality - not beauty. -->

<% for controller in @controllers %>

<table style="width: 100%; font-size: 10px">

<th style="background-color: #FFCF5C"><%= controller %></th>

<% for method in controller.access_list.keys %>

<tr style="background-color: #FFFB93">

<td>#<%= method %></td>

</tr>

<% if !controller.access_list[method.to_sym].nil? %>

<% for role in controller.access_list[method.to_sym] %>

<tr><td style="padding-left: 15px;">:<%= role %> </td></tr>

<% end %>

<% end %>

<% end %>

</table>

<% end %>

At this point, we should be able to view all of our controllers, actions,

and roles (see Figure 7.8, on the following page).

We also need to make role declarations in the rest of our controllers.

Most of them will be :user, :admin. It is a good exercise to debug the rest

of the controllers, write unit tests to assert permissions, and validate

that our controllers with roles behave as intended.

Beyond Controller-Based RBAC

A controller-based RBAC covers 90 percent of most application’s autho-

rization requirements, but we must also consider the user interface—

we need to make sure we don’t render links and other user interface

controls that result in an authorization denial for the end user.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_old/app/views/authorization/index.rhtml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=150

A SIMPLE APPROACH TO MODEL SECURITY 151

Figure 7.8: Role declarations

We can do this by providing something functionality along these lines

in a view helper:

def if_authorized :controller, :action => :foo

...

end

We will leave this part as an exercise to the reader. The principle is very

similar to our authorization filter. Based on the parameters, a lookup

of the current user’s role, combined with the controller and action, pro-

vides enough data to the view helper to determine whether it should

render the contents.

7.6 A Simple Approach to Model Security

There are many cases when RBAC doesn’t cover a specific requirement.

If the application’s requirements mandate granular runtime control

over all data, then we have two basic options:

• We can implement a data-access class that is driven by an access-

control list approach. The challenge with this approach is the fact

that our has_many macros will bypass the data-access class. But

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=151

A SIMPLE APPROACH TO MODEL SECURITY 152

this might still be an acceptable option if its children inherit per-

mission implicitly.

• We can write a library to intercept all ActiveRecord calls. This is the

approach that Bruce Perens took with ModelSecurity. The chal-

lenge with this approach is that Rails changes over time, and it

could be a maintenance nightmare. Also, ActiveRecord’s aggressive

approach in creating complex relationships with all the macros it

provides could make creating a secure solution very challenging.

But the truth is, most applications don’t require such granular control

at the model level. In fact, the biggest gap in the RBAC model is gen-

erally between users of the same role. For example, if a user creates a

blog entry in a multiuser blog system, that user owns the data. That

user should be able to delete her blog entry, update it, and so on.

Fortunately, we can build this kind of authorization into our applica-

tion quite easily. Let’s look at how to add an edit_my_profile() action to

our ProfileController. All users are members of the :user role, so we must

prevent users from editing other users’ profiles.

Let’s begin by adding a couple methods to our ProfileController:

Download authorization/lunchedin_i2_old/app/controllers/profile_controller.rb

def edit_my_profile

render :action => 'edit'

end

def save_my_profile

if @user.update_attributes(params[:user])

flash[:notice] = 'account successfully updated'

redirect_to :action => 'my_profile', :id => @user

else

render :action => 'edit'

end

end

So where is the extra authorization code? The answer: we don’t need

any. Let’s look another look at the application controller we created in

Chapter 6, Authentication: Decentralized Authentication, on page 95:

Download authorization/lunchedin_i2_old/app/controllers/application.rb

def check_authentication

logger.debug "FILTER> #{self}#check_authentication called"

if session[:user_id]

begin

@user = User.find(session[:user_id]) and return

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_i2_old/app/controllers/profile_controller.rb
http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_i2_old/app/controllers/application.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=152

A SIMPLE APPROACH TO MODEL SECURITY 153

rescue

reset_session

end

end

You must return false for this condition.

We do not want our authorization filter to be called

redirect_to :controller => "login", :action => "login" and return false

end

We query the @user object automatically for each authenticated request.

This code uses session[:user_id] to fetch the @user, so it does not require

a parameter provided from the user request. We can take advantage of

this fact in a few ways:

• We can eliminate repetitive code in each of our methods that deal

with a @user.

• We can scope all :user role methods to that particular user. This

allows us to access data through the user, as opposed to using

some request parameter—such as user_id.

Now let’s add an edit link to the profile view:

Download authorization/lunchedin_i2_old/app/views/profile/show.rhtml

<tr>

<td class="label">Zip Code:</td>

<td><%= @user.zip_code %></td>

</tr>

<tr>

<td><%= link_to "Edit", { :action => :edit_my_profile } %></td>

</tr>

Next, we can add a view:

Download authorization/lunchedin_i2_old/app/views/profile/edit.rhtml

<h1>Have lunch with us</h1>

<h2>Edit Profile</h2>

<%= error_messages_for 'user' %>

<% form_tag :action => 'save_my_profile' do %>

<%= render :partial => 'form' %>

<div style="padding: 10px;">

<%= submit_tag 'Save' %>

</div>

<% end %>

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_i2_old/app/views/profile/show.rhtml
http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_i2_old/app/views/profile/edit.rhtml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=153

A SIMPLE APPROACH TO MODEL SECURITY 154

Finally, we can add the partial:

Download authorization/lunchedin_i2_old/app/views/profile/_form.rhtml

<div class="highlighted-form">

<table class="form">

<tr>

<td class="label">First Name:</td>

<td><%= text_field('user', 'first_name', :size => 16) %></td>

</tr>

<tr>

<td class="label">Last Name:</td>

<td><%= text_field('user', 'last_name', :size => 16) %></td>

</tr>

<tr>

<td class="label">Email:</td>

<td><%= text_field('user', 'email') %></td>

</tr>

<tr>

<td class="label">User Name:</td>

<td><%= text_field('user', 'user_name', :size => 14) %></td>

</tr>

<tr>

<td class="label">Password:</td>

<td><%= password_field('user', 'password', :size => 14) %></td>

</tr>

<tr>

<td class="label">Confirm Password:</td>

<td><%= password_field('user', 'password_confirmation', :size => 14) %></td>

</tr>

<tr>

<td class="label">Zip Code:</td>

<td><%= text_field('user', 'zip_code', :size => 6) %></td>

</tr>

</table>

</div>

There is a tendency when building applications to add authorization

and authentication after the application is well under development.

Because we made a good design decision in our authentication filter,

we’re in a strong position to reap the benefits of scoping the authority

of :user role actions.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authorization/lunchedin_i2_old/app/views/profile/_form.rhtml
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=154

Cryptography is about communication in the presence of

adversaries.

Ron Rivest

Chapter 8

Data Protection
Using Cryptography

Data protection is about keeping information safe. For example, you

want to prevent the rest of the world from learning your passwords,

credit card numbers, and Social Security numbers—any of these could

cause you serious distress if they were to fall into the wrong hands. An

additional complication: sometimes we need to communicate informa-

tion across public channels, such as the Internet.

Security researchers seem fond of pointing out that cryptography does

not ensure a secure system. This is true, but not using cryptography

won’t deliver a secure system, either—and it could be a recipe for disas-

ter! Encryption is an important tool that we can use to hide information

from potential eavesdroppers.

In this chapter, we’ll focus on techniques we can use to prevent oth-

ers from spying on our information. When protecting data, we must

consider, not just whether an attacker can read protected information,

but whether that information has been altered. In this chapter, we will

cover the following:

• How to verify information using message digests

• How to use the Ruby OpenSSL bindings to encrypt and decrypt

information

• Guidelines for selecting cryptography types and algorithms

• How to leverage ActiveRecord in order to encrypt and decrypt data

transparently

MESSAGE DIGESTS 156

SHA-1
ea76cad7e5583825bb93

ec3e520b253253c0f4ad
chunky bacon

Figure 8.1: A one-way hash function

8.1 Message Digests

We touched on protecting passwords earlier in Chapter 6, Authentica-

tion: Decentralized Authentication, on page 95. As you might recall, mes-

sage digests are unique one-way hashes of a variable-length input mes-

sage. These hashes act like fingerprints for a message; no two should

be alike. We’ll talk more about this later in the chapter.

For example, assume you ran the input, chunky bacon, through the

SHA1 digest function (see Figure 8.1). Let’s re-create this digest using

the OpenSSL module in the Ruby standard library:

irb(main):001:0> require 'openssl'

=> true

irb(main):002:0> OpenSSL::Digest::SHA1.new('chunky bacon')

=> ea76cad7e5583825bb93ec3e520b253253c0f4ad

In this example, we instantiate a SHA1 digest class, passing the mes-

sage we want returned. SHA1 is not the only algorithm we can use. For

example, the OpenSSL Ruby library supports additional functions in the

same form:

Download data_protection/digests.rb

require 'openssl'

%w(DSS1 MD2 MD4 MD5 MDC2 RIPEMD160 SHA SHA1).each do |digest|

h = eval("OpenSSL::Digest::#{digest}.new('chunky bacon')").hexdigest

puts "#{digest}: #{h}"

end

data_protection> ruby digests.rb

DSS1: ea76cad7e5583825bb93ec3e520b253253c0f4ad

MD2: 414b03d14ed5a47ae0aea8cdac470578

MD4: 275043efc7c862d50b156a4a3447ea02

MD5: 792edef71cf5dbb64592311985d3daee

MDC2: f9f8e4bd7cf17fa4190422a22bd2d35e

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/digests.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=156

MESSAGE DIGESTS 157

Read Input
Create Message

Digest
Digest Matches? Success

Failure

Yes

No

Read Stored

Digest

Figure 8.2: Message digest verification

RIPEMD160: b43bacf76eacaab9bb87f151e4cc738aa4895086

SHA: 395cb5b149cf7fc7720297570e03360c0bd84dff

SHA1: ea76cad7e5583825bb93ec3e520b253253c0f4ad

The standard library includes many standard Digest classes. In addition

to using subclasses such as SHA1, we can also use Digest directly:

irb(main):001:0> require 'openssl'

=> true

irb(main):002:0> OpenSSL::Digest::Digest.new('SHA1', 'chunky bacon')

=> ea76cad7e5583825bb93ec3e520b253253c0f4ad

We don’t need to use any other cryptography library in Ruby—just

about everything you might need is available in the OpenSSL classes in

the Ruby standard library. Using hand-rolled cryptography algorithms

is never a good idea!

Hashes and Passwords

In an ideal world, a password database will never be visible to the

public. However, in the case of a system or application vulnerability,

this data may become visible to an attacker. Message digests help us

address this problem by providing a fingerprint we can verify against.

The steps used to verify a password are shown in Figure 8.2. What

makes this a powerful concept is that we can determine whether a

password matches the fingerprint without having to know the actual

value!

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=157

ENCRYPTING DATA 158

We can also employ a salt, which is a small amount of random data

added to the original message before the digest function processes it.

The salt is not a secret, and you need it to verify that a message matches

the digest. We cover salts in depth in Section 6.2, Adding Salts to the

Passwords, on page 102.

When Hashes Attack

Earlier we said the hash values produced for different inputs should

themselves be different. This determines the quality of a hash function.

When two inputs are found that return the same message digest, a

collision is said to have occurred. We know collisions exist because of

how hash functions are calculated; in fact, all hash functions have an

infinite number of collisions! How can this be? Hash functions yield a

fixed-length output with a variable-length input, so an infinitely large

input divided by a finite number is infinity. Don’t be alarmed just yet.

The goal is to create a hash function where collisions can’t occur. Col-

lision attacks do exist for many hash functions in use today, but the

context of their use plays a larger role in selection.

Choosing a Hash Function

We have only a handful of options when it comes to choosing a cryp-

tographic hash function. If our application must interoperate with an

existing application, the choice is typically made for us. For new devel-

opment, the SHA family of hash digests is preferred. While recent devel-

opments signal a possible collision attack against the SHA1 algorithm,

it remains the most widely accepted algorithm. It is also the current

U.S. standard. That could (and probably will) change in the future, but

the likely replacements are SHA-2 variants (SHA-224, SHA-256, SHA-

384, or SHA-512).

We, the authors, believe you should avoid the MD5 algorithm. Many

well-known collision attacks exist for MD5, and the cost of using the

SHA family is minimal.

8.2 Encrypting Data

It’s not uncommon to hear someone say, “We must encrypt this data.”

In most cases, the person who says it expects the person handling the

encryption to use block cipher encryption. Block ciphers are black boxes

that house the algorithms. We use block ciphers to encrypt information

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=158

ENCRYPTING DATA 159

called the plaintext. The plaintext is whatever we want to protect. Block

ciphers operate on a fixed length of data, called a block. Many variable length

block ciphers exist, but

they are not the norm.

Types of Cryptography

For the purposes of the book, we can divide cryptography into two main

groups: symmetric and asymmetric. Each group has its own strengths

and weaknesses, and neither group is always better than the other.

Symmetric cryptography

Symmetric cryptography gets its name from the way the same key is

used to encrypt and decrypt the information protected. We refer to

encrypted information as the ciphertext.

The following example illustrates basic usage of the OpenSSL module in

the Ruby standard library:

Download data_protection/aes_test.rb

Line 1 #!/bin/env ruby
- require 'openssl'
-

- plain_text = "To the limit!"
5 algorithm = "AES-128-CBC"
- aes = OpenSSL::Cipher::Cipher.new(algorithm)
- key = aes.random_key
-

- puts %(clear plain_text: "#{plain_text}")
10 puts %(symmetric key: "#{key.inspect}")

- puts %(cipher alg: "#{algorithm}")
-

- aes.encrypt(key)
- cipher_text = aes.update(plain_text)

15 cipher_text << aes.final
- puts %(encrypted plain_text: #{cipher_text.inspect})
-

- # clear the aes cipher
- aes.reset

20

- # decrypt and display output
- aes.decrypt(key)
- out = aes.update(cipher_text)
- out << aes.final

25 puts %(decrypted plaintext: "#{out}")

data_protection> ruby aes_test.rb

clear plain_text: "To the limit!"

symmetric key: ""\204\016<#p\216\310;\256\227\366\2064\017#\355""

cipher alg: "AES-128-CBC"

encrypted plain_text: "\376KS\001I\020\317\307i\202)\271+\0225K"

decrypted plaintext: "To the limit!"

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/aes_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=159

ENCRYPTING DATA 160

Joe Asks. . .

Why Should I Use an OpenSSL random_key?

The question that really needs to be answered is this: why
should we use the OpenSSL::Cipher.random_key() class instead of
the Kernel::srand() class? The OpenSSL library uses a pseudo-
random number algorithm designed specifically for cryptog-
raphy. Producing a cryptographically random number gener-
ator is a nontrivial, computationally intensive task. Ruby’s Ker-

nel::srand() class is better than many others due to its underlying
Mersenne Twister algorithm, but our goal was never to replace
a true cryptographically random number generator. In short,
we should use OpenSSL because it provides an easy way to
defend against attacks that rely on sequence predictability.

This code begins by instantiating the OpenSSL::Cipher::Cipher class, pass-

ing the algorithm, key length, and block mode to the initialization() meth-

od. In our example, we use AES, 128-bit key length, and block mode

cipher block chaining.

We can generate a random key from an initialized Cipher object by

invoking the random_key() method. We can adjust the length of the

key based upon the key length value passed to the initialize() method.

Encryption and decryption occur by triggering the cipher mode with

the encrypt(key) and decrypt(key) methods. Once we put the cipher into

a mode, we call the update() method, passing it the plaintext or cipher-

text.

The next example illustrates how to use an initialization vector, or IV.

An initialization vector is an array of bits used to introduce additional

randomness to the ciphertext stream:

Download data_protection/aes_iv_test.rb

Line 1 #!/bin/env ruby
- require 'openssl'
-

- plain_text = "To the limit!"
5 algorithm = "AES-128-CBC"
- aes = OpenSSL::Cipher::Cipher.new(algorithm)
- key = aes.random_key
- iv = aes.random_iv
-

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/aes_iv_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=160

ENCRYPTING DATA 161

10 puts %(clear plain_text: "#{plain_text}")
- puts %(symmetric key: #{key.inspect})
- puts %(initialization vector: "#{iv.inspect}")
- puts %(cipher alg: "#{algorithm}")
-

15 aes.encrypt(key, iv)
- cipher_text = aes.update(plain_text)
- cipher_text << aes.final
- puts %(encrypted plain_text: #{cipher_text.inspect})
-

20 # clear the aes cipher
- aes.reset
-

- # decrypt and display output
- aes.decrypt(key, iv)

25 out = aes.update(cipher_text)
- out << aes.final
- puts %(decrypted plaintext: "#{out}")

data_protection> ruby aes_iv_test.rb

clear plain_text: "To the limit!"

symmetric key: "]\364\323T\317\377\216\264\221\216b\314;\237\021\267"

initialization vector: ""\004\332\235\320\315\250K\244\227}\232`\326_\237H""

cipher alg: "AES-128-CBC"

encrypted plain_text: "\3162jqS\224\305B\347:\267\350><N\203"

decrypted plaintext: "To the limit!"

You can see the only significant change between these two examples on

line 15. To use an initialization vector, we must pass it as the second

parameter to the encrypt() and decrypt() methods of the Cipher class.

When using block ciphers that support initialization vectors, we must

take care to use those vectors! Initialization vectors add additional

strength to the ciphertext, and they can help reduce the amount of

information that can be gleaned from the encrypted information. For

example, if we did not use an initialization vector and two plaintexts

were the same, the ciphertext of each message would be the same. This

might not pose an immediate problem, but it could become a serious

issue if someone learned one of the plaintext values.

Keep in mind the initialization vector is not a secret. It’s an array of

bytes required to decrypt the message. If we were to lose this informa-

tion, we would lose any means of decrypting the message. We should

store our initialization vector with the ciphertext. Some developers

choose to prepend the IV to the ciphertext, while others prefer to create

a separate field to hold the value. Each approach works, but prepend-

ing the value to the ciphertext confers a slight advantage because an

attacker would need to determine its location.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=161

ENCRYPTING DATA 162

Plain Text

Cipher Text

Cipher Public Key

CipherPrivate Key

Figure 8.3: Asymmetric encryption

We should use symmetric encryption when we face each of the following

situations:

• We need to encrypt and decrypt large amounts of data in a timely

manner. Symmetric cryptography is an order of magnitude faster

than asymmetric cryptography.

• We do not need key distribution because the same application

encrypts and decrypts the information.

• Key exchange can occur out of band, in an secure manner.

Asymmetric cryptography

Asymmetric cryptography uses two keys. Each key can be used to

decrypt ciphertexts, as long as the other key was used to encrypt it (see

Figure 8.3). This approach enables bidirectional message communica-

tion without divulging the private key. This is a remarkable concept.

Key distribution is a serious pain, and asymmetric cryptography can

help us alleviate it.

Let’s look at an example that uses the RSA algorithm to encrypt and

decrypt a message:

Download data_protection/rsa_test.rb

Line 1 #!/bin/env ruby
- require 'openssl'
- include OpenSSL
-

5 rsa = PKey::RSA.generate(512)
- txt = "Chunky Bacon"
- puts "Plain Text: #{txt}"
-

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/rsa_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=162

ENCRYPTING DATA 163

- cipher_text_with_priv = rsa.private_encrypt(txt)
10 cipher_text_with_pub = rsa.public_encrypt(txt)

-

- puts "== Plain Text Decrypted With Public Key =="
- puts pt_with_pub = rsa.public_decrypt(cipher_text_with_priv)
-

15 puts "== Plain Text Decrypted With Private Key =="
- puts pt_with_priv = rsa.private_decrypt(cipher_text_with_pub)

data_protection> ruby rsa_test.rb

Plain Text: Chunky Bacon

== Plain Text Decrypted With Public Key ==

Chunky Bacon

== Plain Text Decrypted With Private Key ==

Chunky Bacon

On line 5, we instantiate an RSA public key. Next, on lines 9 and 10,

we generate two ciphertexts using the private and public keys. Finally,

on lines 13 and 16, we decrypt each ciphertext using the opposite key.

Choosing the right cryptography

So far we’ve learned about symmetric block ciphers like AES and asym-

metric algorithms like RSA. Next, we need to determine when to use a

specific algorithm and the consequences of choosing one over the other.

We can choose from several well-respected algorithms for symmetric

block ciphers. The current number-one choice is the advanced encryp-

tion standard, or AES. AES was established using a contest where var-

ious groups submitted proposals, and the top submission was cho-

sen. This approach contrasts distinctly with a design-by-committee

approach, where any specific vision is normalized to the lowest com-

mon denominator. An algorithm known as Rijndael was selected as the

winner, and it now bears the name AES. AES is the current U.S. gov-

ernment standard for symmetric encryption, and it is ideal for cases

where third parties do not need to send or receive encrypted data.

If choosing the same algorithm the U.S. government uses makes you

uncomfortable, don’t fret; you have many other options. Serpent was

another AES finalist, as was the Twofish algorithm. These algorithms

currently represent a sound approach, but new attacks are being devel-

oped constantly, so what’s sound for now might not hold true for the

future. The DES algorithm is a good example of this; attacks targeting

the DES algorithm have rendered it undesirable, except in the case of

backwards compatibility.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=163

ENCRYPTING DATA 164

Joe Asks. . .

Why Is ECB Undesirable?

From the previous examples, you might have noticed some
extra information passed into the initialize() method of the
Cipher classes. These values instruct the cipher how to handle
messages that grow beyond a single block. Block sizes are typi-
cally in the eight-byte range, so this situation occurs frequently:

$ ruby ecb_versus_cbc.rb
aes with mode cbc
"\267X\254lI\216M\021\255\300`\"\251\220\272\243"
"\036\237\234\224p\324D{i\036\266\342MTiV"
"\203r\246\232\220\301=\205\267cN\314\376n?."
"\331\v\225\024j\301\310\037l(\222>\246\274\230T"
"s\213n\212\270\232\022\230v\327\035\215\237\eZ\005"

aes with mode ecb
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"\0356\215\017\332\246\034\000$\357\252D\f\016I\374"
"d\026\325\252d\305D\304\031H C\310\310\215{"

In our example we can see that the plaintext is identical, but
the corresponding ciphertext is not. The output of each line
corresponds to one AES block. The first group of lines displays
a pseudo-random distribution of block contents; it used cipher
block chaining to achieve that effect. The second example
shows four equal consequence blocks within the cipher text;
it appears this way because the cipher wasn’t instructed to
extend its algorithm across blocks. This is bad because it allows
for known plaintext attacks or attacks where the part of the
message is known. An example of this would be attacking pro-
tocols that contain standard headers included in the plaintext.
By limiting the protection to a single block and knowing the
order of certain parts of the plaintext, we can narrow drastically
how much of the plaintext must be deciphered.

To sum up, don’t use ECB!

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=164

USING CRYPTOGRAPHY WITH ACTIVERECORD 165

If an application requires that you exchange messages with encrypted

information, then managing symmetric keys will become a nightmare

once any party involved is no longer trusted. This is where asymmet-

ric, or public-key cryptography, shines. Unfortunately, using public-

key cryptography is more difficult because it has significantly more

going on within it. Given this fact, we must concede proper encryp-

tion is beyond the scope of this book. That said, both RSA and DSA

serve as excellent starting points for encryption.

8.3 Using Cryptography with ActiveRecord

Now that we’re acquainted with the basics of using cryptography with

Ruby, it’s time to improve our data-protection implementation. One way

to improve it: we can use extension techniques common to the con-

struction of Rails.

ActiveRecord Encryptor

The book Agile Web Development with Rails [RTH08],includes an exam-

ple of leveraging ActiveRecord hooks to provide transparent encryption

and decryption of a model’s properties. That example focuses on teach-

ing developers how to use ActiveRecord callbacks, but it leaves out the

finer details of using cryptography. Our next task is to provide an imple-

mentation for that book’s example.

Add a security question

When authenticating users, it is important to provide additional fac-

tors. One example of this involves incorporating a security question to

further challenge the user. Let’s add a security question to LunchedIn

that helps us authenticate a user who has lost her password.

We can run the following command to create a Migration class that

builds the additional fields required for our security question:

$ ruby script/generate migration add_secret_user_question

Next add the following code to 011_add_secret_user_question.rb:

Download data_protection/lunchedin/db/migrate/011_add_secret_user_question.rb

class AddSecretUserQuestion < ActiveRecord::Migration

def self.up

add_column "users", "secret_question", :string

add_column "users", "secret_answer", :string

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/db/migrate/011_add_secret_user_question.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=165

USING CRYPTOGRAPHY WITH ACTIVERECORD 166

def self.down

remove_column "users", "secret_question"

remove_column "users", "secret_answer"

end

end

This migration adds the secret_question and secret_answer columns to the

users table. We can use these columns to store the plaintext question

and the ciphertext answer.

Creating the encryptor

We will use the AES symmetric block cipher to encrypt the answer to

the associated secret question. Create the encryptor directory under the

app/security folder. If there is no security folder under the app folder, we

need to go ahead and create this now. Next, let’s create a file named

routines.rb and add the following code to it:

Download data_protection/lunchedin/app/security/encryptor/routines.rb

module Encryptor

module Routines

def encrypt(plain_text, key, opts)

cipher = OpenSSL::Cipher::Cipher.new(algorithm(opts))

iv = cipher.random_iv

cipher.encrypt(key, iv)

cipher_text = cipher.update(plain_text)

cipher_text << cipher.final

cipher_text.insert(0,iv)

Base64.encode64(cipher_text)

end

def decrypt(cipher_text, key, opts)

cipher = OpenSSL::Cipher::Cipher.new(algorithm(opts))

decoded_cipher_text = Base64.decode64(cipher_text)

cipher.decrypt(key, decoded_cipher_text.slice!(0..15))

out = cipher.update(decoded_cipher_text)

out << cipher.final

end

def algorithm(opts)

"#{opts[:cipher]}-#{opts[:keylength]}-#{opts[:block_mode]}"

end

end

end

In the Encryptor::Routines module, we define the methods to use for en-

crypting and decrypting the plaintext and ciphertext. These methods

require no internal state, so we can mix them safely into many types of

classes.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/app/security/encryptor/routines.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=166

USING CRYPTOGRAPHY WITH ACTIVERECORD 167

Next, we create a file called active_record.rb under the app/security/en-

cryptor directory and add the following code:

Download data_protection/lunchedin/app/security/encryptor/active_record.rb

module ActiveRecord

class Base

def self.encryption_key=(key)

write_inheritable_attribute :encryption_key, key

end

def self.encryption_key

read_inheritable_attribute :encryption_key

end

end

end

The preceding code adds the encryption_key() and encryption_key=(key)

class methods to ActiveRecord::Base. These class methods serve as the

accessors for key storage.

In the body of each method, we call read_inheritable_attribute(attribute)

and write_inheritable_attribute(attribute, value). These two ActiveSupport

methods facilitate retrieval and storage of class instance variables. We

can use these to define a base value, but we need to keep in mind that

subclasses can redefine this base value without changing its parent’s

value.

Next, we add the following class definition to the same active_record.rb

file:

Download data_protection/lunchedin/app/security/encryptor/active_record.rb

module Encryptor

module ActiveRecord

class Encryptor

include ::Encryptor::Routines

@@default_options = {

:cipher => 'AES', :block_mode => 'CBC', :keylength => 128

}

def self.default_options

@@default_options

end

def initialize(field, opts = {})

@field = field

@options = @@default_options.merge(opts)

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/app/security/encryptor/active_record.rb
http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/app/security/encryptor/active_record.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=167

USING CRYPTOGRAPHY WITH ACTIVERECORD 168

def before_save(model)

unless model[@field].blank?

key = model.class.encryption_key

model[@field] = encrypt(model[@field], key, @options)

end

end

def after_save(model)

unless model[@field].blank?

key = model.class.encryption_key

model[@field] = decrypt(model[@field], key, @options)

end

end

alias_method :after_find, :after_save

end

end

end

We use the Encryptor::ActiveRecord::Encryptor class as a delegate of Active-

Record callback hooks.1 We can use these callbacks to intercept the life-

cycle events associated with the retrieval and persistence of ActiveRe-

cord objects. After the object is retrieved from the database, we decrypt

the ciphertext and replace the attribute’s value with the plaintext. A

similar operation occurs right before the object is saved, except that

here we can encrypt the plaintext and replace the attribute with the

ciphertext.

Now we need to add a class method to ActiveRecord::Base that will let us

declare that a field can be persisted only in an encrypted state. Next,

let’s create the class_methods.rb file under the app/security/encryptor

directory and add the following code:

Download data_protection/lunchedin/app/security/encryptor/class_methods.rb

module Encryptor

module ActiveRecord

def self.included(base)

base.extend(ClassMethods)

end

module ClassMethods

def encrypt(attribute, options = {})

encryptor = Encryptor.new(attribute, options)

before_save(encryptor)

after_save(encryptor)

after_find(encryptor)

1. ActiveRecord callbacks are defined in http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/app/security/encryptor/class_methods.rb
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=168

USING CRYPTOGRAPHY WITH ACTIVERECORD 169

define_method(:after_find) { }

end

end

end

end

In this code, we declare the Encryptor::ActiveRecord module that con-

tains the included(base) class method and the ClassMethods module.

The included(base) method is a callback that is invoked whenever the

receiver is included in another module or class.2 We define this method

so we can call extend(module) on the receiving module or class. This

effectively allows us to define class methods in a module and mix them

into any other class.

In our example, we mix the Encryptor::ActiveRecord::ClassMethods module

into ActiveRecord::Base. This enables us to invoke our encrypt(attribute,

options) method from any model object.

This method creates an Encryptor instance for a specific attribute and

registers itself with the before_save(), after_save(), and after_find() call-

backs.

Now we need to set up a file to load and mix in the dependent Ruby

files for our encryptor implementation. Create the encryptor.rb file in the

app/security folder, and then add the following code:

Download data_protection/lunchedin/app/security/encryptor.rb

require "encryptor/routines"

require "encryptor/active_record"

require "encryptor/class_methods"

ActiveRecord::Base.send(:include, Encryptor::ActiveRecord)

In this file, we add the require statements for the dependent files and

invoke the include(klass) method, passing it the Encryptor::ActiveRecord

module.

Integrating ActiveRecord encryptor

Now that we have constructed the encryptor, we can integrate it into

our LunchedIn application. If we didn’t do so in a previous chapter, we

need to enable the security folder under app folder.

2. See the module documentation at http://www.ruby-doc.org/core/classes/Module.html.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/app/security/encryptor.rb
http://www.ruby-doc.org/core/classes/Module.html
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=169

USING CRYPTOGRAPHY WITH ACTIVERECORD 170

We can accomplish this by editing the environment.rb file so it looks like

this:

Download data_protection/lunchedin/config/environment.rb

Add additional load paths for your own custom dirs

config.load_paths += %W(#{RAILS_ROOT}/app/security)

Now let’s create the initializer for our encryptor. Let’s begin by creating

a file named security.rb under config/initializers and adding the following

code:

Download data_protection/lunchedin/config/initializers/security.rb

require 'encryptor'

if RAILS_ENV['production']

ActiveRecord::Base.encryption_key = File::read('/etc/lunchedin.key')

else

test and development configuration

ActiveRecord::Base.encryption_key = '1234567890abcdef'

end

This sets a default key for the development and test configurations.

When LunchedIn is run in production, the key is read from the

filesystem.

Next, let’s declare that the secret_answer field must be encrypted when

persisted. We can do this by adding the following class method call to

the user.rb file:

Download data_protection/lunchedin/app/models/user.rb

class User < ActiveRecord::Base

encrypt :secret_answer

Now let’s add a test case to user_test.rb under test/unit:

Download data_protection/lunchedin/test/unit/user_test.rb

def test_encryptor

@user = users(:bob)

@user.secret_answer = 'Porsche Carrera GT'

assert @user.save

@answer = User.connection.select_all(

"select secret_answer from users where id = 1"

)

cipher_text = @answer.first['secret_answer']

opts = Encryptor::ActiveRecord::Encryptor.default_options

@plain_text = decrypt(cipher_text, User.encryption_key, opts)

assert_equal 'Porsche Carrera GT', @plain_text

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/config/environment.rb
http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/config/initializers/security.rb
http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/app/models/user.rb
http://media.pragprog.com/titles/fr_secure/code/data_protection/lunchedin/test/unit/user_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=170

USING CRYPTOGRAPHY WITH ACTIVERECORD 171

At this point, we can run through our unit tests:

data_protection> rake test

Keep in mind that we used this example to illustrate the mechanism of

symmetric cryptography with ActiveRecord. A small number of simple,

secret questions isn’t a very strong test of authenticity—just ask Paris

Hilton!3

Ruby’s power enables us to provide transparent confidentiality of Active-

Record properties with only a single class method invocation of the

model object. To accomplish this, we used ActiveRecord callbacks to

intercept persistence life-cycle events.

Protecting data in the context of a typical Rails application is well within

the power of the OpenSSL bindings in the Ruby standard library. We,

the authors, recommend that you avoid third-party libraries that dupli-

cate the functionality within OpenSSL. Our reasoning is this: OpenSSL

is a very stable project that receives significant scrutiny from the open

source community. This doesn’t assure that nothing will go wrong, but

it definitely inspires greater confidence.

3. http://www.macdevcenter.com/pub/a/mac/2005/01/01/paris.html

Report erratum

this copy is (P1.0 printing, December 2009)

http://www.macdevcenter.com/pub/a/mac/2005/01/01/paris.html
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=171

Chapter 9

Digital Signatures and Email
We have touched on data-protection topics; now it’s time to build on

these ideas and strengthen our protection techniques using digital

signatures.

Specifically, we’re going to cover X.509 digital certificates, the same

certificates used to secure HTTP traffic with Transport Layer Security

(TLS).

Transport Layer Security is often referred to by its predecessor protocol,

Secure Sockets Layer (SSL). TLS was designed to prevent eavesdropping

by establishing an authenticated and secure channel between parties.

In this chapter, we will cover how to use techniques similar to what

TLS uses to protect messages between two parties. For example, we

will cover how to do the following:

• Create and verify digital signatures in the Ruby language

• Use digital signatures in the context of email messages

• Add signed email messages to LunchedIn

• Authenticate received mail by verifying digital signatures

9.1 Digital Signatures

As a resident of the World Wide Web, you’ve probably heard about

digital signatures. Digital signatures are crypto-systems built using

message digests and asymmetric cryptography.Crypto-system is just

a fancy way of describing a collection of cryptography techniques used

as a system. The reasoning behind this is simple: coordinated properly,

the elements of a cryptography system will form a stronger defense than

DIGITAL SIGNATURES 173

individual techniques, enabling you to mitigate the various downsides

of individual techniques that you combine into a system. For example,

TLS is a cryptographic system that combines the use of asymmetric

ciphers, certificates, and symmetric ciphers to achieve several goals,

including authentication, confidentiality, and performance.

In this chapter, we will focus on digital signatures as implemented by

the ITU-T X.509 standard. While there are many different mechanisms

for creating a digital substitute for a signature, the X.509 standard is

the most widely adopted.

X.509

We create digital signatures using a message called a certificate. The

standard for this is X.509. A certificate is an organization’s or individ-

ual’s digital representation. These representations are issued by a third

party, called a certificate authority. Certificate authorities are responsi-

ble for verifying identities, tracking compromised certificates, and issu-

ing certificates. At least, this is how it works in theory.

In reality, public key infrastructure (PKI) is more about paying a fee

to certificate authorities so that our applications won’t display warning

messages when browsing to sites using certificates they created them-

selves. How does this work?

Any application using X.509 certificates maintains a database that con-

tains the root certificates of major certificate authorities. Certificate

authorities pay for the privilege of being included in major applications

such as web browsers, mail clients, and mobile phones.

The reason only root certificates are included in these browsers et al.

is because all certificates are issued under the authority of another

when they are created. This means that we have a chain of trust. An

application—your web browser, for example—trusts the root certificate

holders, and those root certificate companies can issue other certifi-

cates based on that trust. Effectively, a browser trusts a certificate

because it’s signed by some third party that the browser trusts.

The process a client uses to verify a certificate is straightforward (see

Figure 9.1, on the next page). The process is initiated when the client

receives a certificate and then verifies the signature against its list of

known certificate authorities. If the certificate checks out, the client

resumes normal communication with the entity that presented the

certificate.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=173

DIGITAL SIGNATURES 174

Root CA
Certificate

My Serverʼs
Certificate

issues

Client

1. retrieves
 certificate

2. verifies

3. communicate

Figure 9.1: Digital certificate verification

Security for all

For public-facing web applications that require the use of TLS, a certifi-

cate issued by a major CA is a necessity. The main difference between

each certificate authority has nothing to do with the cryptographic

strength of a given CA’s secure channel, but with the amount of back-

ground verification and paperwork performed before a given CA issues

a certificate. In our experience, the so-called credibility conferred on a

site by purchasing a $400 VeriSign certificate versus a $100 Thawte

certificate is minimal. We, the authors, recommend that you save your

money and go with the cheapest certificate signed by a CA present in

your targeted browsers’ trusted CA lists.

If the clients connecting to your server are not end users, but instead

machine-to-machine interfaces controlled entirely by you, then creating

your own certificate authority might be an option for you.

Creating Self-Signed Certificates

Regardless of how your production environment is configured, a self-

signed certificate—one that is not issued from a certificate authority—is

useful for testing and development. There is no certificate chain in self-

signed certificates—the presence of the certificate cannot be attested to

by a higher authority.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=174

DIGITAL SIGNATURES 175

To create a self-signed certificate, we begin by creating a private key

that we will derive the public key from. This code enables us to create

an RSA private key for use in digital signature:

digital_signatures> openssl genrsa 1024 > host.key

It’s possible to create the same key using the Ruby OpenSSL bindings.

To do this, we create a file called create_host_key.rb and add this code:

Download digital_signatures/create_host_key.rb

#!/bin/env ruby

require 'openssl'

File.open("host.key", "w") do |f|

f.write(OpenSSL::PKey::RSA.new(1024))

end

After we create the script, we can generate an RSA private key by exe-

cuting the following code:

digital_signatures> ruby create_host_key.rb

So far we’ve created a private key; now it’s time to generate an X.509

certificate. This command creates a certificate using the OpenSSL

command-line toolkit:

digital_signatures> openssl req -new -x509 -nodes -sha1 -days 365 \

-key host.key > host.cert

As an alternative to using the command-line toolkit, we can generate a

certificate using the Ruby bindings. We do this by creating a file called

create_host_cert.rb and adding the following code:

Download digital_signatures/create_host_cert.rb

#!/bin/env ruby

require 'openssl'

File.open("host.cert1", "w") do |f|

private_key = OpenSSL::PKey::RSA.new(File::read('host.key'))

cert = OpenSSL::X509::Certificate.new

cert.subject = OpenSSL::X509::Name.new('/CN=')

cert.not_before = Time.now

cert.not_after = Time.now + 365 * 24 * 60 * 60

cert.public_key = private_key.public_key

cert.serial = 3

cert.version = 2

cert.sign(private_key, OpenSSL::Digest::SHA1.new)

f.write(cert)

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/create_host_key.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/create_host_cert.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=175

DIGITAL SIGNATURES 176

After we create the script, we can generate the X.509 certificate from

the private key we generated previously:

digital_signatures> ruby create_host_cert.rb

The Ruby bindings provide a nice object-oriented abstraction to the

OpenSSL library. Let’s inspect the certificate we just created using the

OpenSSL module. Create a file called inspect_certificate.rb and add this

code:

Download digital_signatures/inspect_certificate.rb

#!/bin/env ruby

require 'openssl'

include OpenSSL::X509

inspect the certificate

cert = Certificate.new(File.read("host.cert"))

puts "Subject: #{cert.subject}"

puts "Algorithm: #{cert.signature_algorithm}"

puts "Serial: #{cert.serial}"

puts "Not Before: #{cert.not_before}"

puts "Not After: #{cert.not_after}"

puts "#{cert.public_key.to_pem}"

Next, we invoke this command to execute the script:

digital_signatures> ruby inspect_certificate.rb

Subject: /C=US/ST=TX/L=Plano/O=Internet Widgits Pty Ltd

Algorithm: sha1WithRSAEncryption

Serial: 14414595003654168849

Not Before: Sat Nov 10 20:04:25 UTC 2007

Not After: Sun Nov 09 20:04:25 UTC 2008

-----BEGIN RSA PUBLIC KEY-----

MIGJAoGBAPCkM2zkrTuSuCsORktAjNq4w9bBUCYbj9PS2tzLghCumgi2+C/tUY79

YWUfnWeGdjBgCr1SgBV0PznwIZDrIvtmHpjNMS0FbFhefnUi2DK+U8izVveqFCvq

SrHQMcvk+lMimYR3c0rppmvTKt7ktDvQAsTCBoyKHrxHelpMhs/jAgMBAAE=

-----END RSA PUBLIC KEY-----

In this example, we begin by instantiating the OpenSSL::X509::Certificate

class and passing it the contents of the certificate in the host.cert file.

PEM encoding is a standard way to store a single certificate. The Certifi-

cate class aliases the to_s() method to the to_pem() method. To DER-encode a

certificate, execute

the to_der() method.Now that we have had a little experience using X.509 certificates in

Ruby, let’s create a signature and verify the contents.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/inspect_certificate.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=176

DIGITAL SIGNATURES 177

Converting Certificates

Sometimes certificates don’t arrive in the required format. For-
tunately, the OpenSSL toolkit has us covered: we can execute
the following command to convert a PEM-encoded certificate
to a DER-encoded certificate:

digital_signatures> openssl x509 -in file.der -inform der
-out file.pem

This works great if all we ever get are DER-encoded certificates.
This code enables us to go in the opposite direction:

digital_signatures> openssl x509 -in file.pem -outform pem
-out file.der

The following code shows how to sign and verify data using the Certifi-

cate class:

Download digital_signatures/digital_signature_test.rb

Line 1 require 'openssl'
2 include OpenSSL
3

4 cert = X509::Certificate.new(File.read('host.cert'))
5 private_key = PKey::RSA.new(File.read("host.key"))
6 input = "Loafing is not permitted"
7

8 signature = private_key.sign(Digest::SHA1.new, input)
9 is_verified = cert.public_key.verify(Digest::SHA1.new, signature, input)

In this example, we start by instantiating a Certificate object. We do this

by passing the PEM-encoded certificate located in the host.cert file. Next

we load the private key from the host.key file.

At this point, we have successfully loaded all of the keys and certificates

needed to generate a digital signature. This means we can digitally sign

any stream of data by invoking the sign(cipher, data) method and passing

it the data we want signed, as well as the desired hash cipher. On line

9, we verify that the signature is correct by invoking the verify(cipher,

signature, data) method, passing it the same hash cipher used to create

the signature and the plaintext received

The return value of the verify(cipher, signature, data) method gives us con-

fidence that the data hasn’t changed and that the message was sent by

a party with access to the private key associated with the certificate.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/digital_signature_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=177

STORING CERTIFICATES 178

9.2 Storing Certificates

When storing or transporting certificates and key pairs, it is advisable

to keep them in a protected form. We can achieve this using the PKCS12

format #12. This format is a file-based key store that utilizes password-

based symmetric encryption.

The code shows how to create a PKCS12 key store:

Download digital_signatures/pkcs12_test.rb

require 'openssl'

pkey = OpenSSL::PKey::RSA.new(512)

cert = OpenSSL::X509::Certificate.new

cert.version = 1

cert.subject = cert.issuer = OpenSSL::X509::Name.parse("/C=FOO")

cert.public_key = pkey.public_key

cert.not_before = Time.now

cert.not_after = Time.now + (365*24*60*60)

cert.sign(pkey, OpenSSL::Digest::SHA1.new)

p12 = OpenSSL::PKCS12.create("supers3cr3t", "P12 Certificate", pkey, cert)

File.open("test.p12", "w") { |s| s.write(p12.to_der) }

We can use the OpenSSL::PKCS12.create(password, description, pkey, cert)

method to create the PKCS12 store. To persist this store on the file

system, we combine the standard Ruby file operations with the to_der()

instance method of the PKCS12 object.

The following shows how we can read and extract the private key and

the certificate from a PKCS12 store:

Download digital_signatures/pkcs12_test.rb

require 'openssl'

p12 = OpenSSL::PKCS12::PKCS12.new(File::read('test.p12'), "supers3cr3t")

puts p12.certificate

puts p12.key

We can read a PKCS12 store by invoking the new(contents, password)

method of the OpenSSL::PKCS12::PKCS12 class.

9.3 Secure Email Exchange

Securing email might sound like an impossible task, given the prolif-

eration of pharmaceutical and anatomy-enhancement advertisements

using the same medium, but there is a way! Using asymmetric cryptog-

raphy and PKI, we can digitally sign and encrypt messages for

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/pkcs12_test.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/pkcs12_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=178

SECURE EMAIL EXCHANGE 179

Ext MIME Type Used For...

.p7m application/pkcs7-mime SignedData, EnvelopedData

.p7c application/pkcs7-mime Degenerate SignedData certificate

management message

.p7z application/pkcs7-mime CompressedData

.p7s application/pkcs7-signature SignedData

Figure 9.2: S/MIME file attachments

transit. This is an especially important development because of the

asynchronous nature of how mail is transferred through untrusted

SMTP infrastructure.

The most widely accepted technique for accomplishing this is to use

a set of standard extensions built on the Multipurpose Internet Mail

Extensions—the MIME standard called S/MIME.

The S/MIME Message Format

The MIME standard allows for attachments of varying type to be in-

cluded within the body of an email message. The S/MIME standard

builds upon this idea by creating special encoding types for signatures

and ciphertexts. We can see the list of file extensions associated with

each MIME type in Figure 9.2.

Creating a Root Certificate

Let’s begin our S/MIME adventure by creating a root certificate for

LunchedIn; we’ll use this certificate to issue all client certificates. We

can execute the following commands to create our root certificate:

digital_signatures> openssl genrsa 1024 > email_ca.key

digital_signatures> openssl req -new -x509 -nodes -sha1 -days 3650 \

-key email_ca.key > email_ca.cer

Next, we create a certificate for the email address associated with our

application, as outlined in Figure 9.3, on the next page. When dealing

with certificate authorities, we must create several intermediate files

(you can find a description of those files in Figure 9.4, on the following

page):

digital_signatures> openssl genrsa 1024 > lunchedin.gmail.email.key

digital_signatures> openssl req -new -key lunchedin.gmail.email.key \

-out lunchedin.gmail.email.csr

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=179

SECURE EMAIL EXCHANGE 180

lunchedin.gmail.key

lunchedin.gmail.csr lunchedin.gmail.cer

email_ca.key

email_ca.cer

Create Key

Create Certificate

Signing Request

Create Certificate

From Signing

Request

Figure 9.3: Creating the LunchedIn email certificate

The X.509 certificate created from the certificate signing
request lunchedin.gmail.csr and the private key of the

certificate authority email_ca.key.
lunchedin.gmail.cer

The certificate signing request created from the private key
lunchedin.gmail.key and the public key of the certificate

authority email_ca.cer.
lunchedin.gmail.csr

Private key associated with the email account for the
LunchedIn application.

lunchedin.gmail.key

The X.509 certificate and public key of the certificate
authority, created using email_ca.key

email_ca.cer

email_ca.key Private key of certificate authority

File Description

Figure 9.4: Certificate file descriptions

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=180

SECURE EMAIL EXCHANGE 181

In this example, we create an RSA key pair and save the output in the

lunchedin.gmail.email.key file. Let’s start by creating a special file called a

certificate signing request, or CSR. This file contains all the information

required to construct the certificate, which we then sign using our pri-

vate key. The purpose of a CSR is to package our soon to be certificate

securely, so that the CA can generate a valid X.509 certificate using its

private key.

This command generates a valid certificate using the CSR we created

in the previous command; it also generates the private key and a cer-

tificate for our chosen CA:

digital_signatures> openssl x509 -req -days 3650 -in lunchedin.gmail.email.csr \

-CA email_ca.cer -CAkey email_ca.key -set_serial 01 \

-out lunchedin.gmail.email.cer

Now that we have the necessary certificates, let’s see how we can create

S/MIME signatures that we might embed within email messages.

Creating S/MIME Signatures and Ciphertexts

The OpenSSL extension in the Ruby standard library includes classes

to create and read S/MIME data under the PKCS7 module. This example

shows how to sign a message using the PKCS7 format:

Download digital_signatures/smime_sign_test.rb

Line 1 require 'openssl'
2 include OpenSSL
3

4 msg = "Hello\r\n"
5 cert = X509::Certificate.new(File::read('lunchedin.gmail.email.cer'))
6 key = PKey::RSA.new(File::read('lunchedin.gmail.email.key'))
7 p7sig = PKCS7::sign(cert, key, msg, [], OpenSSL::PKCS7::DETACHED)
8 smime = PKCS7::write_smime(p7sig)

On line 7, we create the PKCS7 signature by invoking the sign(cert, key,

data, certs, flags) method. On line 8, we create the S/MIME output. The

S/MIME message contains the signature, the plaintext message, and a

wrapper.

Once we create the S/MIME message, we can verify it by reversing the

steps we used to create it. This code shows how to verify an S/MIME

message using the email certificate authority created earlier:

Download digital_signatures/smime_sign_test.rb

Line 1 to_verify = PKCS7::read_smime(smime)
2 store = X509::Store.new
3 store.add_cert(X509::Certificate.new(File::read('email_ca.cer')))
4 is_verified = to_verify.verify([], store)

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/smime_sign_test.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/smime_sign_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=181

SENDING SIGNED MESSAGES 182

On line 1, we read the S/MIME message using the read_smime(message)

method from the PCKS7 module. Then we instantiate a certificate store

the object and add the contents of the email_ca.cer certificate. Next, we

verify the message against the certificate store.

Wait, there’s more! Not only can we sign messages, but we can also

encrypt them using the same techniques. The only requirement is that

we have access to the certificate of the person at the destination email

address. This code illustrate how to encrypt messages:

Download digital_signatures/smime_protect_test.rb

require 'openssl'

include OpenSSL

sender_cert = X509::Certificate.new(File::read('host.cert'))

sender_key = PKey::RSA.new(File::read('host.key'))

data = "This is a clear-signed message.\r\n"

sender_p7sig = PKCS7::sign(sender_cert, sender_key, data, [], PKCS7::TEXT)

sender_smime = PKCS7::write_smime(sender_p7sig)

lunchedin_cert = X509::Certificate.new(File::read('lunchedin.gmail.email.cer'))

sender_p7enc = PKCS7::encrypt([lunchedin_cert], sender_smime)

msg = PKCS7::write_smime(sender_p7enc)

decrypt

lunchedin_key = PKey::RSA.new(File::read('lunchedin.gmail.email.key'))

lunchedin_p7enc = PKCS7::read_smime(msg)

lunchedin_data = lunchedin_p7enc.decrypt(lunchedin_key, lunchedin_cert)

puts lunchedin_data.inspect

Creating the email message is only part of the task at hand as we create

a secure email application. Next we need to learn how to package and

send our secure messages within Rails.

9.4 Sending Signed Messages

LunchedIn, which has become the influential restaurant-rating site we

always hoped it would be, is now experiencing issues with compet-

ing sites sending spoofed customer emails! As part of a comprehensive

approach, we will now implement digital signatures on sensitive emails

that originate from our site. This enables the recipient to verify our

emails.

To send signed email in LunchedIn, we can use an ActionMailer class

to prepare and send the messages. We create the ActionMailer stub with

this command:

digital_signatures> ruby script/generate mailer MailPerson

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/smime_protect_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=182

SENDING SIGNED MESSAGES 183

The ActionMailer generator creates the mail_person.rb file under the app/

models directory, along with a unit-test stub and directory under fixtures.

Creating Digital Signatures with ActionMailer

Now that we have the basic ActionMailer functionality in place, let’s add

the welcome message. Add this code to the app/models/mail_person.rb

file:

Download digital_signatures/lunchedin/app/models/mail_person.rb

def welcome_message(user)

from 'lunchedin@gmail.com'

recipients user.email

subject "Thank you for registering with our website"

body :first_name => user.first_name, :last_name => user.last_name

end

We use this method to set up the recipients, subject, and accessible

variables for the ActionMailer view.

Create the welcome_message.html.erb view under app/views/mail_person,

and add this code:

Download digital_signatures/lunchedin/app/views/mail_person/welcome_message.html.erb

Dear <%= @first_name %> <%= @last_name %>,

Thanks for signing up at LunchedIn!

Your account will allow you to search, add and view restaurants in

your local area. Remember...with great power, comes great responsibility.

Thanks.

-Management

At this point, we have the basic pieces necessary to send email. Now

let’s look at how we can add S/MIME functionality. We can use the

following test case to prototype this functionality in LunchedIn:

Download digital_signatures/lunchedin/test/unit/mail_person_test.rb

Line 1 def test_create_signed_welcome_message
- message = MailPerson.create_welcome_message(users(:wally))
-

- # instantiate openssl objects
5 key = OpenSSL::PKey::RSA.new(
- File::read("#{RAILS_ROOT}/config/lunchedin.gmail.email.key"))
- cert = OpenSSL::X509::Certificate.new(
- File::read("#{RAILS_ROOT}/config/lunchedin.gmail.email.cer"))
-

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/models/mail_person.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/views/mail_person/welcome_message.html.erb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/test/unit/mail_person_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=183

SENDING SIGNED MESSAGES 184

10 # sign encoded message
- p7sig = OpenSSL::PKCS7::sign(cert, key, message.encoded, [],
- OpenSSL::PKCS7::DETACHED)
- smime = OpenSSL::PKCS7::write_smime(p7sig, message.encoded)
-

15 new_message = TMail::Mail.parse(smime)
- # assert_equal(new_message.encoded, smime) doesn't work!
-

-

- def smime.encoded; self end

20 def smime.from; TMail::Mail.parse(self).parts.first.from end

- def smime.destinations; TMail::Mail.parse(self).parts.first.destinations end

-

- MailPerson.deliver(smime)
- assert_equal ['lunchedin@gmail.com'], smime.from

25 assert_equal ['wally@yahoo.com'], smime.destinations
- end

In this example, we start by invoking create_welcome_message() on line

2. This is actually not a method at all, but an interception on behalf of

our good friend, method_missing(method_symbol, *parameters).1

Once we create the TMail::Mail object and assign it to message, we can

instantiate the necessary OpenSSL objects. On line 12, we use our key

and certificate to sign the message. The PKCS7::sign() method expects

a String, so we must invoke the encoded() method on message. This is

significant because, from this point forward, the signature will be invalid

if the message is changed. But we face trouble ahead: ActionMailer still

needs access to some of the TMail::Mail methods to deliver the message

properly. No sweat; here comes metaprogramming to the rescue!

In just about any language, we wouldn’t be able to accomplish our

next task without inducing a major headache. But here the solution

is simple: we add the methods we need directly to the string instance,

referenced by the smime variable. Now we have a String object that acts

like a TMail::Mail object, so the deliver(message) method accepts it with no

problems.

We’ve figured out how to send a signed email with ActionMailer; next,

let’s add a convenience method to MailPerson that enables us to keep

our model code tidy.

1. This is true as of ActionMailer 1.99.0. See digital_signatures/action_mailer/base.rb.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=184

SENDING SIGNED MESSAGES 185

Add the following method to digital_signatures/lunchedin/app/models/mail_

person.rb:

Download digital_signatures/lunchedin/app/models/mail_person.rb

def self.deliver_signed(method, *vargs)

message = send("create_#{method}", vargs.first)

key = OpenSSL::PKey::RSA.new(

File::read("#{RAILS_ROOT}/config/lunchedin.gmail.email.key"))

cert = OpenSSL::X509::Certificate.new(

File::read("#{RAILS_ROOT}/config/lunchedin.gmail.email.cer"))

p7sig = OpenSSL::PKCS7::sign(cert, key, message.encoded, [],

OpenSSL::PKCS7::DETACHED)

smime = OpenSSL::PKCS7::write_smime(p7sig)

def smime.encoded; self end

def smime.from; TMail::Mail.parse(self).parts.first.from end

def smime.destinations

TMail::Mail.parse(self).parts.first.destinations

end

def smime.method_missing(*vargs); end

self.deliver(smime)

end

To verify the functionality, let’s add a test case for good measure. Add

this code to digital_signatures/lunchedin/test/unit/mail_person_test.rb:

Download digital_signatures/lunchedin/test/unit/mail_person_test.rb

def test_deliver_signed

MailPerson.deliver_signed(:welcome_message, users(:wally))

smime = OpenSSL::PKCS7::read_smime(ActionMailer::Base.deliveries.first)

ca = File::read("#{RAILS_ROOT}/config/email_ca.cer")

cacert = OpenSSL::X509::Certificate.new(ca)

store = OpenSSL::X509::Store.new

store.add_cert(cacert)

assert smime.verify([], store)

end

We should now be able to run the unit tests and verify that all is well.

We have created the necessary changes for ActionMailer, so now we can

add an email event that fires when a new user is created in LunchedIn.

We can execute this command to create a SignupObserver class:

digital_signatures> ruby script/generate observer signup

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/models/mail_person.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/test/unit/mail_person_test.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=185

SENDING SIGNED MESSAGES 186

Next, update app/models/signup_observer.rb so it looks like the following:

Download digital_signatures/lunchedin/app/models/signup_observer.rb

class SignupObserver < ActiveRecord::Observer

observe :user

def after_create(user)

MailPerson.deliver_signed(:welcome_message, user)

end

end

Some email servers require TLS-enabled connections, but ActionMailer

doesn’t support this functionality out of the box. Fortunately, Kyle

Maxwell wrote a Rails plug-in to solve this problem. If you’re using a

TLS-enabled SMTP gateway, such as Gmail, install the action_mailer_

optional_tls plug-in by executing the following command:

digital_signatures> ruby script/plugin install \

http://svn.kylemaxwell.com/rails_plugins/action_mailer_optional_tls/trunk

Now let’s configure the development.rb file to use Gmail’s TLS-enabled

SMTP gateway. Edit the configuration file with your Gmail username

and password or another SMTP gateway:

Download digital_signatures/lunchedin/config/environments/development.rb

ActionMailer::Base.smtp_settings = {

:address => "smtp.gmail.com",

:port => 25,

:user_name => "lunchedin",

:password => "lunchedin1",

:authentication => :plain,

:tls => true

}

We need to implement the preceding step to activate the observer, which

we accomplish by uncommenting and editing the config.active_record.

observers setting in the config/environment.rb file. Update this line in

your environment.rb file to enable the SignupObserver observer for the User

class:

Download digital_signatures/lunchedin/config/environment.rb

config.active_record.observers = [:signup_observer]

When a user is created, the after_save() callback triggers the delivery of

the signed welcome email.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/models/signup_observer.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/config/environments/development.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/config/environment.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=186

VERIFYING RECEIVED MESSAGES 187

For Extra Credit

It’s always possible to make something good even better.
Delivering signed emails using ActionMailer is no exception. For
starters, we could convert the preceding code into a Rails plug-
in. Here are a handful of additional ways we might improve on
how we integrate S/MIME signatures into ActionMailer:

• We could use the alias_method_chain() method to copy
the existing method_missing() method and redefine the
existing one with a check for deliver_signed_#{method}(). If
the check fails, we could call the previous version’s missing
method.

• We could add class method calls to define keys and cer-
tificates for the various ActionMailer methods.

• We could package the ActionMailer modifications into a
Rails plug-in for easy distribution and reuse.

9.5 Verifying Received Messages

Sending secure mail is only one part of the equation when it comes

to creating a comprehensive, email-enabled application. Next, we can

use similar S/MIME verifications techniques to authenticate incoming

messages. For example, ActionMailer supports receiving mail with the

receive(message) method. Before we begin stuffing our MailPerson class

with encoded messages, let’s create the email that the user will reply to.

Sending Out the Reply Email

Let’s add an observer to send out an email the recipient can respond

to. We can use the an issued digital certificate as the authentication

mechanism. Start by executing the following command, which creates

our event observer:

digital_signatures> ruby script/generate observer event

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=187

VERIFYING RECEIVED MESSAGES 188

Now add this code to the generated EventObserver class located in app/

models/event_observer.rb:

Download digital_signatures/lunchedin/app/models/event_observer.rb

class EventObserver < ActiveRecord::Observer

observe :event

def after_save(event)

if event.status == 'organized'

MailPerson.deliver_venue_comment(event)

end

end

end

This observer hooks into the life cycle of our Event class. When we

update the model with the organized status, an email is sent out re-

questing feedback. Add the following method to the MailPerson class:

Download digital_signatures/lunchedin/app/models/mail_person.rb

def venue_comment(event)

from 'lunchedin@gmail.com'

recipients event.hosted_by.email

subject "Tell us what you think!"

body :event => event

end

Next let’s add the view for the associated ActionMailer method. Create the

venue_comment.html.erb file under app/views/mail_person, and add this

code:

Download digital_signatures/lunchedin/app/views/mail_person/venue_comment.html.erb

Dear <%= @event.hosted_by.first_name %> <%= @event.hosted_by.last_name %>,

Thanks for using LunchedIn to organize your event!

Please respond to this email and tell us about <%= @event.venue.name %>.

This message is about:

[<%= @event.venue.name %>=<%= @event.venue.id %>]

As before, we need to tell Rails to include our Observer in the life cycle

of our models. Add the following line to the environment.rb file:

Download digital_signatures/lunchedin/config/environment.rb

config.active_record.observers += [:event_observer]

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/models/event_observer.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/models/mail_person.rb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/views/mail_person/venue_comment.html.erb
http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/config/environment.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=188

VERIFYING RECEIVED MESSAGES 189

Improving Our Application

We can take several steps to improve the email feature in
LunchedIn. For starters, the application could benefit from a
proper object model that represents the issued certificate. This
feature would allow us to create certificate revocation lists
(curls) that we could use to revoke the ability to automate cre-
ate comments in our application.

Another improvement we could make is to add the option to
send fully encrypted emails using the certificates we issued. We
could achieve this by storing a copy of the issued certificate
and relating it to the user.

Verifying Email Messages

Now let’s add S/MIME authentication for incoming messages.

Add the following code to mail_person.rb to handle the processing of

received messages (we will add the code to receive messages from our

mail server later):

Download digital_signatures/lunchedin/app/models/mail_person.rb

def receive(email)

begin

pkcs7 = OpenSSL::PKCS7::read_smime(email.port.to_s)

store = OpenSSL::X509::Store.new

ca = File::read("#{RAILS_ROOT}/config/email_ca.cer")

store.add_cert(OpenSSL::X509::Certificate.new(ca))

if pkcs7.verify([], store)

id = email.parts.first.body.match(/\[(\d)\]/).captures.first

elements = pkcs7.certificates.first.subject.to_a

cert_email = elements.detect { |e| e.first == 'emailAddress' }

parts = email.parts.first.body.split('--- lunchedin@gmail.com wrote:')

body_text = parts.first

venue = Venue.find(id)

comment = Comment.new

comment.user = User.find_by_email(cert_email[1])

comment.subject = 'Well I thought...'

comment.body = body_text

venue.comments << comment

end

rescue OpenSSL::PKCS7::PKCS7Error

logger.debug 'PKCS7 error'

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/models/mail_person.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=189

VERIFYING RECEIVED MESSAGES 190

The receive(message) method contains the logic to verify the incoming

message using the supplied signature. If the messages check out, we

create a Comment and attach it to the Venue the message was sent for.

A key point: we use the Certificate to determine the email address of the

associated User.

Retrieving Email Using IMAP

Fortunately, the Ruby standard library supports both IMAP and POP

out of the box. This enables us to retrieve email messages from a remote

server and then process them using the receive(message) method of

MailPerson. For this example, we use the IMAP functionality provided by

a well-known search company. Add the following code to mail_person.rb:

Download digital_signatures/lunchedin/app/models/mail_person.rb

require 'net/imap'

require 'openssl'

class MailPerson < ActionMailer::Base

def self.check_mail

imap = Net::IMAP.new('imap.gmail.com', 993, true)

imap.login('lunchedin', 'lunchedin1')

imap.select('INBOX')

imap.search(['ALL']).each do |m|

msg = imap.fetch(m,'RFC822')[0].attr['RFC822']

receive(msg)

imap.store(m, "+FLAGS", [:Deleted])

end

imap.expunge()

end

The check_mail() class method creates an IMAP connection to the mail

server and issues the login command. Once authenticated, the Action-

Mailer class selects the “INBOX” mailbox and proceeds to invoke

receive(message) on each message. After the receive(message) is invoked,

we set the Deleted flag and then invoke the expunge() to clean up every-

thing. Now we should have a fully functional email Comment feature in

LunchedIn.

In this chapter, we looked at the basics of creating X.509 certificates

and keys that use the OpenSSL bindings for Ruby. Yes, there are many

parts of an application that can use digital signatures; however, the

good news is that they are relatively easy to integrate and provide a lot

of value.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/digital_signatures/lunchedin/app/models/mail_person.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=190

Chapter 10

SSO: Centralized Authentication
You might recall that we categorized authentication as either central-

ized or decentralized back in Chapter 6, Authentication: Decentralized

Authentication, on page 95.

Another term for centralized authentication is single sign-on, or SSO.

There are many different flavors of SSO. Some (like Kerberos) were

designed and intended for use on intranets, and they place the most

emphasis on user control and management. Others, such as OpenID,

were designed for public access; for example, you might use OpenID to

provide credentials when you log onto someone’s blog. OpenID places

its emphasis on user convenience.

In a nutshell, SSO provides the infrastructure necessary to authenti-

cate users across multiple applications without requiring that the user

log in every time he crosses an application boundary.

SSO implementations can be quite complex. In this chapter, we will

enable LunchedIn to authenticate against the following systems:

• OpenID

• CAS

• Kerberos, GSS-API, and SPNEGO

10.1 Public Versus Private

The critical question is this: how do we choose the right SSO solution

for our applications?

PUBLIC VERSUS PRIVATE 192

Joe Asks. . .

Isn’t OpenID Decentralized?

According to OpenID’s official website, “OpenID is an open,
decentralized, free framework for user-centric digital identity.”∗

You probably recall, however, that we listed OpenID as a
centralized-authentication system. We believe that centralized
is a loaded term. In defense of those who created OpenID, the
architecture of the OpenID system is decentralized because
there are many providers. In defense of our definition, we refer
to any authentication mechanism that resides outside an appli-
cation as centralized—in other words, if we were to write three
separate applications that use the same authentication sys-
tem, we would consider that to be centralized authentication
for those applications.

∗. http://openid.net/

This short list of guidelines can help us decide:

• Use OpenID if your users are public, as is the case with our stan-

dard LunchedIn users. You can read more about this option in

Section 10.2, OpenID, on the following page.

• If your users are private, as is the case with our corporate

LunchedIn users, you have a couple options:

– Use Kerberos, GSSAPI, and SPNEGO if your user environ-

ments are tightly controlled by the organization with Active

Directory or some other centralized user management. You

can learn more about this option in Section 10.4, Kerberos,

GSSAPI, and SPNEGO, on page 219.

– Use CAS if your user environments are not tightly controlled

by the organization. This is common for companies that use

contractors and there is a large mix of configurations, such

as Windows, Macs, Linux, and on. You can learn more about

option this in Section 10.5, CAS, on page 251.

Report erratum

this copy is (P1.0 printing, December 2009)

http://openid.net/
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=192

OPENID 193

End User initiates request, Relying Party
performs Discovery. Relying Party redirects
End User to discovered OpenID Provider.

Relying Party performs Association with
OpenID Provider. OpenID Provider
returns a secret, ttl, and other meta-data.

End User (User Agent) authenticates with
OpenID Provider. OpenID Provider
redirects End User to Relying Party with
credentials.

End User POSTs or GETs OpenID data from
OpenID Provider to Relying Party.
Relying Party authenticates OpenID data
with secret provided from OpenID
Provider.

End User
(User Agent)

Relying Party

OpenID
Provider

1 4

3

2

1

2

3

4

Figure 10.1: OpenID authentication flow

10.2 OpenID

OpenID is a series of specifications that the OpenID Foundation1 sup-

ports and promotes. At the time we write this, Google, Microsoft, IBM,

VeriSign, and Yahoo! hold board positions with the OpenID foundation.

It appears that industry support is only increasing and that we can look

forward to seeing more OpenID-compatible sites in the future.

OpenID combines the usability of not having to remember multiple

usernames and passwords with the improved security of delegating

authentication. You might wonder how delegating authentication im-

proves security. Let’s answer this question by delving a bit deeper into

the inner workings of OpenID.

Any OpenID authentication scenario involves the participation of three

actors:

• The End User is the user being authenticated. We will use the

terms End User and User Agent interchangeably.

• The OpenID Provider is the End User authentication server. Open-

ID Providers, often abbreviated as OP, store sensitive information

such as passwords and personal data.

• The Relying Party is the site requesting authentication of a user.

This is LunchedIn for our examples.

1. http://openid.net/foundation

Report erratum

this copy is (P1.0 printing, December 2009)

http://openid.net/foundation
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=193

OPENID 194

A good starting point is to take a careful look at Figure 10.1, on the

previous page. In this example, the End User never has to give his

password to the Relying Party. We know from our experience in pre-

vious chapters how difficult it is to implement robust password-based

authentication. With OpenID, the OpenID Provider decides the factor(s)

used to authenticate. This allows our End Users to be selective about

whom they trust. End Users can select their provider based on reputa-

tion and features. Some providers might provide more robust options

for authentication, such as biometrics or anti-phishing measures.

Implementing an OpenID Relying Party

Before we get started, make sure you’ve installed the OpenID gem:

> sudo gem install ruby-openid

Next, let’s consider how our LunchedIn sample application fits into Step

1 in Figure 10.1, on the preceding page.

Performing OpenID discovery

We will give our End Users the option to use OpenID instead of our

normal login mechanism. Let’s add the appropriate fields to our login

form.

Download sso/lunchedin_openid/app/views/session/login.html.erb

<!-- Standard Login -->

<div style="margin-top:14px">

<% form_tag :controller => 'session', :action => "check_login" do %>

<label for="user_user_name">Username</label>

<%= text_field 'user', 'username' %>

<label for="user_password">Password</label>

<%= password_field 'user', 'password' %>

<%= submit_tag 'Login' %>

<% end %>

</div>

<!-- Added for OpenID -->

<div>

Or you can login with your OpenID

</div>

<div style="margin-top:14px">

<% form_tag :controller => 'session', :action => "begin_openid" do %>

<label for="user_user_name">OpenID </label>

<!-- We'll use the standard 'openid_identifier' name so that User

agents that are OpenID aware can deal with it accordingly -->

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_openid/app/views/session/login.html.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=194

OPENID 195

Figure 10.2: OpenID login added

<%= text_field_tag 'openid_identifier', "", :size => 30 %>

<%= submit_tag 'Login' %>

<% end %>

</div>

We can see the changes to our login form in Figure 10.2.

Now, our users can initiate a request with their OpenID identifier. We

need to perform discovery on this identifier. Fortunately, the OpenID

gem provides an easy way to use its API for this. First, you need to

instantiate a OpenID::Consumer object, along with an OpenID::Store imple-

mentation. In this example, we add the following code to our SessionCon-

troller class, which we can reuse throughout our example:

def consumer

@store = OpenID::Store::Filesystem.new("#{RAILS_ROOT}/tmp/openid")

@consumer ||= consumer = OpenID::Consumer.new(session, @store)

end

Now let’s add the code to perform discovery to our controller:

def begin_openid

identifier = params[:openid_identifier]

openid_request = consumer.begin(identifier)

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=195

OPENID 196

Before we continue, let’s take a look at what’s happening in the initial

lines of our begin_openid() method inside an irb session:

>> identifier = "http://www.davesblog.com"

=> "http://www.davesblog.com"

>> consumer = OpenID::Consumer.new(session={}, store)

=> #<OpenID::Consumer:0x24e6ae0 @store=nil, @session={}, \

@session_key_prefix="OpenID::Consumer::">

>> openid_request = consumer.begin(identifier)

=> #<OpenID::Consumer::CheckIDRequest:0x2491504 ...>

>> openid_request.endpoint

=> #<OpenID::OpenIDServiceEndpoint:0x2492814 \

@local_id="https://me.yahoo.com/a/hqUGQw96lo90LCQE0UJ7Rm70tNMyZmc-", \

@display_identifier=nil, \

@type_uris=["http://specs.openid.net/auth/2.0/signon"], \

@used_yadis=false,

@server_url="https://open.login.yahooapis.com/openid/op/auth", \

@canonical_id=nil, @claimed_id="http://www.davesblog.com/">

At this point, we’ve passed only a single piece of information to our

API—http://www.davesblog.com. This is known as the claimed identifier.

From the claimed identifier, the API is able to discover a server URL2

and a local identifier. 3 So how did the API derive these values? We can

gain insight into this by looking at the source of http://www.davesblog.

com. For the sake of brevity, this snippet includes only the lines of code

related to OpenID:

...

<link rel="openid2.provider"

href="https://open.login.yahooapis.com/openid/op/auth" />

<link rel="openid2.local_id"

href="https://me.yahoo.com/a/hqUGQw96lo90LCQE0UJ7Rm70tNMyZmc-" />

...

Now, we see quite plainly that these are special links included in the

blog at http://www.davesblog.com. Alternatively, it would have been pos-

sible to use the local identifier that Yahoo! provided directly.

So what happens if no one pays the blog’s domain registration bill and

some other Dave gains control over this domain?

From the standpoint of a Relying Party, we cannot rely on the claimed

identifier as a nonrepudiable form of identification. Therefore, we might

want to rely on the combination of claimed identifier and local identity

if our application uses any personal data from the user.

2. https://open.login.yahooapis.com/openid/op/auth

3. https://me.yahoo.com/a/hqUGQw96lo90LCQE0UJ7Rm70tNMyZmc-

Report erratum

this copy is (P1.0 printing, December 2009)

http://www.davesblog.com
http://www.davesblog.com
http://www.davesblog.com
http://www.davesblog.com
https://open.login.yahooapis.com/openid/op/auth
https://me.yahoo.com/a/hqUGQw96lo90LCQE0UJ7Rm70tNMyZmc-
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=196

OPENID 197

Performing OpenID association

The OpenID association occurs inside the OpenID::Consumer::begin()

method in step 2 of Figure 10.1, on page 193. So we don’t need to

do much in our code for this to work. Let’s take a look at this method’s

source:

Download sso/ruby-openid-2.1.2/lib/openid/consumer.rb

def begin(openid_identifier, anonymous=false)

manager = discovery_manager(openid_identifier)

service = manager.get_next_service(&method(:discover))

if service.nil?

raise DiscoveryFailure.new("No usable OpenID services were found "\

"for #{openid_identifier.inspect}", nil)

else

begin_without_discovery(service, anonymous)

end

end

The service variable is nil in our first call to OpenID::Consumer::begin()—

which means we need to establish an association:

Download sso/ruby-openid-2.1.2/lib/openid/consumer.rb

def begin_without_discovery(service, anonymous)

assoc = association_manager(service).get_association

checkid_request = CheckIDRequest.new(assoc, service)

checkid_request.anonymous = anonymous

if service.compatibility_mode

rt_args = checkid_request.return_to_args

rt_args[Consumer.openid1_return_to_nonce_name] = Nonce.mk_nonce

rt_args[Consumer.openid1_return_to_claimed_id_name] =

service.claimed_id

end

self.last_requested_endpoint = service

return checkid_request

end

This association makes a call to association_manager():

Download sso/ruby-openid-2.1.2/lib/openid/consumer.rb

def association_manager(service)

AssociationManager.new(@store, service.server_url,

service.compatibility_mode, negotiator)

end

Now association_manager() makes a call to OpenID::Consumer::Association-

Manager.new() with the server URL that was discovered. Depending on

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/ruby-openid-2.1.2/lib/openid/consumer.rb
http://media.pragprog.com/titles/fr_secure/code/sso/ruby-openid-2.1.2/lib/openid/consumer.rb
http://media.pragprog.com/titles/fr_secure/code/sso/ruby-openid-2.1.2/lib/openid/consumer.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=197

OPENID 198

which OpenID::Store we use, the data is stored for future sessions. We

can look at this association data on the filesystem if we use OpenID::

Store::Filesystem. Here is a sample of that data:

Download sso/lunchedin_openid/doc/association_data.txt

version:2

handle:KBAxHgob1NPMY66pJ9RjjrA0xqpLyJDLtAqmWXUBzntNGOGIiRqb.a1T5ESUxz1Venoz2a\

s9hxAgQJ5khVAxmjMNHlwOP.iBkDRnlOAirkyFjY5br

W92D3wvdJWICLtO

secret:Io0U9Ujbdy6c9A9Lr4eKM/rQemA=

issued:1232851295

lifetime:14400

assoc_type:HMAC-SHA1

This is the data that OpenID uses to verify data from our End Users.

There is an association for each OpenID Provider our application has

authenticated users against.

So far we’ve completed steps 1 and 2 from Figure 10.1, on page 193.

It’s time to move to step 3, End User authentication with the OpenID

Provider.

Redirecting the End User to the OpenID Provider

We use the information we learned in step 1 to tell our End User to

authenticate against his OpenID Provider. We do that with a redirect or

Ajax call. We begin by constructing the URL for the redirect:

def begin_openid

identifier = params[:openid_identifier]

openid_request = consumer.begin(identifier)

return_to = url_for(:action => :complete_openid, :only_path => false)

realm = url_for(:action => :index, :only_path => false)

Next, we redirect the user:

redirect_to openid_request.redirect_url(realm, return_to, params[:immediate])

Note that we pass the realm and the return_to variables to the OpenID::

Consumer::CheckIDRequest::redirect_url() method. The OpenID Provider

uses the realm variable to inform the user which website has requested

authentication. When the authentication process completes, the End

User is redirected to the value in the return_to variable.

In some cases, we might want to support an OpenID Provider that has

an Ajax interface. We can add support for this using the :immediate

parameter and an alternate set of markup to support the inlined form:

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_openid/doc/association_data.txt
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=198

OPENID 199

if openid_request.send_redirect?(realm, return_to, params[:immediate])

redirect_to openid_request.redirect_url(realm, return_to, params[:immediate])

else

render :text => openid_request.html_markup(realm,

return_to, params[:immediate], {'id' => 'openid_form'})

end

We also need to add code to handle our registration process:

sregreq = OpenID::SReg::Request.new

required registration fields

sregreq.request_fields(['email', 'fullname', 'postcode'], true)

openid_request.add_extension(sregreq)

We are hard coding this to keep the implementation simple. This

could be provided as an option in the form.

openid_request.return_to_args['did_sreg'] = 'y'

Just note for now that this code requests the End User’s email, fullname,

and postcode. We will use this to populate our user data.

Here is the complete begin_openid() method:

We want to handle the client openid request

def begin_openid

identifier = params[:openid_identifier]

openid_request = consumer.begin(identifier)

return_to = url_for(:action => :complete_openid, :only_path => false)

realm = url_for(:action => :index, :only_path => false)

Registry data extension

sregreq = OpenID::SReg::Request.new

required registration fields

sregreq.request_fields(['email', 'fullname', 'postcode'], true)

openid_request.add_extension(sregreq)

We are hard coding this to keep the implementation simple. This

could be provided as an option in the form.

openid_request.return_to_args['did_sreg'] = 'y'

This if/else provides support for AJAX flow. This is not a complete

implementation.

if openid_request.send_redirect?(realm, return_to, params[:immediate])

redirect_to openid_request.redirect_url(realm, return_to, params[:immediate])

else

render :text => openid_request.html_markup(realm,

return_to, params[:immediate], {'id' => 'openid_form'})

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=199

OPENID 200

Figure 10.3: myOpenID OpenID Provider authentication dialog pre-

sented to End User

Let’s try out what we have so far. For our test to work, we need an

OpenID—I’ve created one at Yahoo!4 and one at myOpenID.5 For this

example, we recommend using myOpenID because this group sup-

ports more extensions for the standard this book’s example illustrates.

Regardless, we will write this code to the OpenID specifications, so it

should work with any OpenID provider.

When we enter our OpenID claimed identifier in the login form and sub-

mit it, the site should redirect us to the appropriate OpenID Provider.

For example, our login form redirects us to the myOpenID authentica-

tion screen if that’s our OpenID provider (see Figure 10.3). Similarly,

our login form redirects us to the Yahoo! authentication screen if that’s

our OpenID Provider (see Figure 10.4, on the next page).

Once the End User authenticates the user, the OpenID Provider redi-

rects the End User back to the return_to URL.6

4. http://openid.yahoo.com/

5. https://www.myopenid.com/

6. http://monster.railssecurity.org/session/complete_openid

Report erratum

this copy is (P1.0 printing, December 2009)

http://openid.yahoo.com/
https://www.myopenid.com/
http://monster.railssecurity.org/session/complete_openid
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=200

OPENID 201

Realm

Figure 10.4: Yahoo! OpenID OpenID Provider authentication dialog pre-

sented to End User

The End User will now have a collection of parameters that we must

handle (see Figure 10.5, on the following page).

Authenticating the End User

Let’s look at the first part of our complete_openid() controller method:

This implementation was strongly derived from the

OpenID example included with the OpenID gem.

def complete_openid

current_url = url_for(:action => 'complete_openid', :only_path => false)

parameters = params.reject{|k,v|request.path_parameters[k]}

oidresp = consumer.complete(parameters, current_url)

Here, we construct a OpenID::Consumer::Response object from our re-

quest parameters, filtering out any Rails parameters.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=201

OPENID 202

assoc_handle,claimed_id,identity,mode,ns,n
s.sreg,op_endpoint,response_nonce,return_t
o,signed,sreg.email,sreg.fullname,sreg.postc
ode

openid.claimed_id

openid.response_nonce

http://ceterumnet.myopenid.com/

openid.return_to

http://www.myopenid.com/server

http://specs.openid.net/auth/2.0

openid.assoc_handle

2009-02-22T20:14:18Zv4Mp5Y

openid.ns

openid.signed

openid.op_endpoint

http://ceterumnet.myopenid.com/

openid.mode

{HMAC-SHA1}{49a1a6ba}{diWL0A==}

openid.identity

http://monster.railssecurity.org:3000/
session/complete_openid?did_sreg=y

openid.sig VfIRVx3GS9vWN8rlrlnK2e90Qyo=

id_res

75093openid.sreg.postcode

David Raphaelopenid.sreg.fullname

draphael@gmail.comopenid.sreg.email

http://openid.net/extensions/sreg/1.1openid.ns.sreg

Standard OpenID 2.0 Response Parameters

Sreg Extension Response Parameters

Figure 10.5: OpenID parameters

The next chunk of code checks whether our End User was authenti-

cated successfully:

if oidresp.status == OpenID::Consumer::SUCCESS

identifier = oidresp.identity_url

if @authenticated_user = User.find_by_username(identifier)

session[:user_id] = @authenticated_user.id

Note that we retrieve a User object from the database. We need a way

to populate the user in the database so we can store our application’s

specific data. We populate the user by leveraging the OpenID Simple

Registration Extension.7

7. http://openid.net/specs/openid-simple-registration-extension-1_0.html

Report erratum

this copy is (P1.0 printing, December 2009)

http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=202

OPENID 203

else

if params[:did_sreg]

sreg_resp = OpenID::SReg::Response.from_success_response(oidresp)

if sreg_resp.empty?

This is where we would want to direct the user to a form where they

could fill in their profile data.

logger.debug "NO SREG DATA RETURNED"

flash[:notice] = 'We are unable to setup

an account with the provided OpenID.'

else

@authenticated_user = User.create_from_openid_data(identifier, sreg_resp)

session[:user_id] = @authenticated_user.id

end

end

end

redirect_to user_path(@authenticated_user)

We need to create a User from the parameters returned. The parameters

we need are listed in Figure 10.5, on the previous page. Refer to the

OpenID specification for a list of all possible values that we can request

from an OpenID Provider. In this case, we include email, fullname, and

postcode, the same parameters we specified in our initial begin_openid()

method. We can create the user by adding this code to our User class:

Download sso/lunchedin_openid/app/models/user.rb

def self.create_from_openid_data(identifier, openid_data)

user = User.new do |u|

u.first_name = openid_data['fullname'].split(' ').first

u.last_name = openid_data['fullname'].split(' ').last

u.email = openid_data['email']

Just create a random password

rand_data = OpenSSL::Random.random_bytes(255)

u.password_hash = OpenSSL::Digest::SHA1.new(rand_data).hexdigest

u.username = identifier

u.zip_code = openid_data['postcode']

end

We are going to skip validation for this kind of creation.

user.save(false)

user

end

The finished code for the complete_openid() method looks like this:

This implementation was strongly derived from the

OpenID example included with the OpenID gem.

def complete_openid

current_url = url_for(:action => 'complete_openid', :only_path => false)

parameters = params.reject{|k,v|request.path_parameters[k]}

oidresp = consumer.complete(parameters, current_url)

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_openid/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=203

IMPLEMENTING AN OPENID PROVIDER 204

if oidresp.status == OpenID::Consumer::SUCCESS

identifier = oidresp.identity_url

if @authenticated_user = User.find_by_username(identifier)

session[:user_id] = @authenticated_user.id

else

if params[:did_sreg]

sreg_resp = OpenID::SReg::Response.from_success_response(oidresp)

if sreg_resp.empty?

This is where we would want to direct the user to a form where they

could fill in their profile data.

logger.debug "NO SREG DATA RETURNED"

flash[:notice] = 'We are unable to setup

an account with the provided OpenID.'

else

@authenticated_user = User.create_from_openid_data(identifier, sreg_resp)

session[:user_id] = @authenticated_user.id

end

end

end

redirect_to user_path(@authenticated_user)

else

redirect_to :action => 'index'

end

end

Assuming we’ve implemented everything correctly, we see a welcome

screen for the just authenticated user, along with his registration data

(see Figure 10.6, on the following page).

So far we’ve built an OpenID support as a Relying Party into LunchedIn.

Let’s take the next step and implement an OpenID provider.

10.3 Implementing an OpenID Provider

It takes a bit more work to implement an OpenID Provider, but the

OpenID gem still makes it relatively straightforward to do so.

We can see the three request handlers we will implement in Figure 10.7,

on the next page. We can add these handlers in an OpenID Controller

in the LunchedIn application.

OpenID Provider: Controller Implementation

Let’s begin by generating a controller that acts as the primary interface

to our provider implementation:

> script/generate controller OpenId

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=204

IMPLEMENTING AN OPENID PROVIDER 205

Figure 10.6: A successful authentication using OpenID, along with reg-

istration data

Request

Type?

Incoming

OpenID

Request

Process

Check ID

Request

Process

Authentication

Request

Process

Associate

Request

Check ID

Authenticate

Associate

1 2 3

Figure 10.7: OpenID Provider request flow

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=205

IMPLEMENTING AN OPENID PROVIDER 206

Next, we can implement an index() method that acts as our OpenID

request router:

def index

begin

openid_request = session[:last_oidreq]

openid_request ||= server.decode_request(params)

session[:last_oidreq] = nil

case openid_request

when nil

render :text => "This is an OpenID server.", :status => 500

when CheckIDRequest
Ê handle_check_id_request(openid_request)

when CheckAuthRequest
Ë handle_check_auth_request(openid_request)

when AssociateRequest
Ì handle_associate_request(openid_request)

else

render :text => "Some general problem", :status => 500

end

rescue ProtocolError => e

render :text => "Problem processing OpenID Request", :status => 500

logger.debug { e.to_s }

end

end

Ê If the index() method receives a CheckIDRequest request, it routes that

to handle_check_id_request().

Ë If the index() method receives a CheckAuthRequest request, it routes

the request to handle_check_auth_request().

Ì If the index() method receives an AssociateRequest request, it routes

the request to handle_associate_request().

Next, we need to implement these request handlers. We’ll start with the

two easiest handlers first.

Implementing handle_check_auth_request() and

handle_associate_request()

Let’s look at handle_check_auth_request() first.

Responding to Authentication Requests

http://openid.net/specs/\

openid-authentication-2_0.html#responding_to_authentication

def handle_check_auth_request(openid_request)

render_response(server.handle_request(openid_request))

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=206

IMPLEMENTING AN OPENID PROVIDER 207

openid.sig 5en6G6MezRroT3XKqkdPOmY/BfQ=\n

op_endpoint,return_to,response_nonce,asso
c_handle,claimed_id,identity

openid.claimed_id

openid.response_nonce

http://ceterumnet.myopenid.com/

openid.return_to

http://www.myopenid.com/server

http://specs.openid.net/auth/2.0

openid.assoc_handle

2005-05-15T17:11:51ZUNIQUE

openid.ns

openid.signed

openid.op_endpoint

http://ceterumnet.myopenid.com/

openid.mode

{HMAC-SHA1}{49a1a6ba}{diWL0A==}

openid.identity

http://monster.railssecurity.org:3000/
session/complete_openid?did_sreg=y

openid.sig VfIRVx3GS9vWN8rlrlnK2e90Qyo=

check_authentication

OpenID check_authentication Request Parameters

Figure 10.8: OpenID check_authentication params

The handle_check_auth_request() processes a request that looks some-

thing like the data in Figure 10.8. The OpenID library verifies the data

by ensuring that the OpenID provider signed the data; it also makes

sure that the data has not been used by verifying the nonce. This work

happens inside the OpenID library.

We also have to implement the render_response() and server() methods

for this approach to work:

def render_response(openid_response)

if openid_response.needs_signing

signed_response = server.signatory.sign(openid_response)

end

web_response = server.encode_response(openid_response)

case web_response.code

when HTTP_OK

render :text => web_response.body, :status => 200

when HTTP_REDIRECT

redirect_to web_response.headers['location']

else

render :text => web_response.body, :status => 400

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=207

IMPLEMENTING AN OPENID PROVIDER 208

no-encryptionopenid.session_type

HMAC-SHA1openid.assoc_type

check_authenticationopenid.mode

http://specs.openid.net/auth/2.0openid.ns

OpenID associate Request Parameters

Figure 10.9: OpenID associate params

def server

if @server.nil?

server_url = url_for(:controller => :open_id,

:action => 'index', :only_path => false)

dir = Pathname.new(RAILS_ROOT).join('db').join('openid-store')

store = OpenID::Store::Filesystem.new(dir)

@server = Server.new(store, server_url)

end

@server

end

The server() method returns the @server instance variable, which is an

instance of the OpenId::Server class that has been instantiated with a

file-based store.

The render_response() method is a simple wrapper that adapts the Open-

ID responses so they work with our Rails controller.

Now, let’s do the same thing for handle_associate_request():

Establishing Associations

http://openid.net/specs/openid-authentication-2_0.html#associations

This is when the openid.mode == "associate"

def handle_associate_request(openid_request)

render_response(server.handle_request(openid_request))

end

The handle_associate_request() processes a request that looks something

like the data in Figure 10.9. The OpenID server takes the data and cre-

ates an association in the OpenID::Store. Once the association is created,

the server responds to the Relying Party with a shared secret that they

use in future information exchanges.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=208

IMPLEMENTING AN OPENID PROVIDER 209

OpenID Storage Concerns

For larger systems that span multiple physical devices, you need
to use a database to store the OpenID data. The OpenID gem
includes examples of ActiveRecord-based stores.

http://openid.net/extensions/sreg/1.1openid.ns.sreg

email,fullname,postcodeopenid.sreg.required

openid.realm http://localhost:3000/session

openid.claimed_id
http://monster.railssecurity.org:3001/
open_id/user_page/open_id_demo

openid.return_to

http://specs.openid.net/auth/2.0

openid.assoc_handle

openid.ns

http://monster.railssecurity.org:3001/
open_id/user_page/open_id_demo

openid.mode

{HMAC-SHA1}{49a1a6ba}{diWL0A==}

openid.identity

http://monster.railssecurity.org:3000/
session/complete_openid?did_sreg=y

checkid_setup

OpenID check_setup Request Parameters

Figure 10.10: OpenID checkid_setup params

That was easy. Because the gem includes most of the logic we needed

for those requests, we were able to add some basic code to wrap the

OpenID library’s functionality, enabling it to work nicely with Rails.8

It’s also worth noting that both of these methods handle server-to-

server communication requests. There is no view layer code to imple-

ment. The next handler, handle_check_id_request(), will be much more

complex, include view code, and interact with the user.

8. Some of this code was derived from the examples used in the OpenID gem examples

directory.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=209

IMPLEMENTING AN OPENID PROVIDER 210

Incoming

OpenID

Check ID

Request

User

Authenticated?
Authenticate

User
No

Yes

ID Select?

Further Action

Required

Yes

Immediate

(AJAX)?

User

Authorization

Decision

No

Site

Authorized?

Yes

No

Yes

No No

Yes

Redirect User to

return_to URL

Redirect User to

cancel URL

1

2

3

4

5

6

7
9

8

10

Figure 10.11: OpenID Check ID request flow

Implementing handle_check_id_request()

The handle_check_id_request() method processes the parameters shown

in Figure 10.10, on the preceding page. It also processes a similar set

of parameters, but with the mode set to checkid_immediate.

Our first task when handling a checkid_setup or checkid_immediate

OpenID request is to authenticate the user, according to decision 2 in

Figure 10.11. Let’s add that to our controller:

def handle_check_id_request(openid_request)

unless session[:user_id]

session[:last_oidreq] = openid_request

redirect_to :controller => :session

else

Here we face a situation where we need to duplicate some of the code

we wrote earlier in this chapter, repeating the logic from our application

authentication. We’d prefer to avoid duplicating code wherever possible,

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=210

IMPLEMENTING AN OPENID PROVIDER 211

but doing so here allows us to stash the OpenID request in a special

session key, :last_oidreq.

You might wonder we stash the OpenID request in this session. Let’s

look at our change to SessionController that uses this request:

def check_login

username, password = params[:user][:username], params[:user][:password]

if @authenticated_user = User.find_and_authenticate(username, password)

session[:user_id] = @authenticated_user.id

if session[:last_oidreq]

redirect_to :controller => :open_id

else

redirect_to user_path(@authenticated_user)

end

else

flash[:notice] = "the user #{params[:user][:username]}, "

flash[:notice] << "was not found with the specified password"

redirect_to :controller => 'session', :action => 'login'

end

end

This code routes us back to our OpenIdController after authenticating

our user, as shown in box 6 of Figure 10.11, on the preceding page.

After we authenticate the End User, we need to determine whether we

have the claimed_id or an id_select. We also need to determine whether

the request is immediate. We can accomplish both tasks in this bit of

code:

openid_response = nil

identity = openid_request.identity

We need to choose an identifier if the RP has send us

"http://specs.openid.net/auth/2.0/identifier_select"

if openid_request.id_select

if openid_request.immediate

If it's 'immediate' and the identifier_select

has been specified we must ask that the User

take further action.

openid_response = openid_request.answer(false)

render_response(openid_response)

else

Since the user is logged in, we can provide the

identity.

identity = url_for_user

end

end

Notice that we invoke openid_request.answer(false) if the request is imme-

diate and we have an id_select. This particular combination means that

the user is attempting to use Ajax, and she is not passing a claimed_id.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=211

IMPLEMENTING AN OPENID PROVIDER 212

This user will need to log in before she can leverage Ajax without pass-

ing a valid identity.

Once we have a valid identity, we need to check whether the user autho-

rizes the site that has requested authentication:

if is_authorized(identity, openid_request.trust_root)

Since the site is authorized, we will render

and authorize response

openid_response = openid_request.answer(true, nil, identity)

render_response(openid_response)

This code creates the is_authorized() method:

def is_authorized(identity_url, trust_root)

session[:user_id] and (identity_url == url_for_user) and approved(trust_root)

end

We also need to create an approved() method and a url_for_user() method:

def approved(trust_root)

if session[:approvals].nil?

false

else

session[:approvals].member?(trust_root)

end

end

def url_for_user

server_url = url_for(:action => 'index', :only_path => false)

user = User.find(session[:user_id])

"#{server_url}/user_page/#{user.username}"

end

If the End User authorizes the site, we redirect to the site or render the

appropriate Ajax response to the user.

To support discovery properly, we need to render something for the

user_page() method that we include as part of the url_for_user. Let’s look

at that method:

def render_user_xrds

@types = [OpenID::OPENID_2_0_TYPE,

OpenID::OPENID_1_0_TYPE,

OpenID::SREG_URI]

render :action => :xrds, :format => :xrds

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=212

IMPLEMENTING AN OPENID PROVIDER 213

This method also includes a corresponding view for HTML and XRDS:

Download sso/lunchedin_openid_provider/app/views/open_id/user_page.html.erb

<html>

<head>

<meta http-equiv="X-XRDS-Location" content="<%= @xrds_url %>" />

<link rel="openid.server" href="<%= url_for :action => 'index' %>" />

</head>

<body>

<p>OpenID identity page for <%= params[:username] %></p>

</body>

</html>

Download sso/lunchedin_openid_provider/app/views/open_id/xrds.xrds.erb

<?xml version="1.0" encoding="UTF-8"?>

<xrds:XRDS

xmlns:xrds="xri://$xrds"

xmlns="xri://$xrd*($v*2.0)">

<XRD>

<Service priority="0">

<% @types.each do |uri| %>

<Type><%= uri %></Type>

<% end %>

<URI><%= url_for(:controller => 'open_id', :only_path => false) %></URI>

</Service>

</XRD>

</xrds:XRDS>

Next, we need to deal with sites that the End User has not yet placed

in her approved list:

elsif openid_request.immediate

We have to answer negatively since 'immediate'

has been requested and the user has not authorized.

server_url = url_for(:action => 'index')

openid_response = openid_request.answer(false, server_url)

render_response(openid_response)

else

We will give the user the opportunity to authorize

this particular request.

session[:last_oidreq] = openid_request

@openid_request = openid_request

@url_for_user = url_for_user

render :action => :decide

end

end

end

The first elsif in the code handles the Ajax use case. We simply respond

that the request cannot be authorized without further action.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_openid_provider/app/views/open_id/user_page.html.erb
http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_openid_provider/app/views/open_id/xrds.xrds.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=213

IMPLEMENTING AN OPENID PROVIDER 214

In the else part of the code, we stash the openid_request in the session

(as we did in the previous example) and then render the :decide action.

This code creates the :decide view:

Download sso/lunchedin_openid_provider/app/views/open_id/decide.erb

<% form_for :decision, :url =>

{ :controller => :open_id, :action => :decision },

:method => :post do |f|%>

<table>

<!-- <tr><td>The following site:</td></tr> -->

<tr><td>Do you want to allow the following site</td></tr>

<tr><td><%= @openid_request.trust_root %></td></tr>

<tr><td>to use the identity?</td></tr>

<tr><td><%= h(@openid_request.identity) %></td></tr>

<tr><td><%= h(@url_for_user) %></td></tr>

</table>

<%= f.submit "Yes", :name => "yes", :value => "yes" %>

<%= f.submit "No", :name => "no", :value => "no" %>

<% end %>

This view posts to the decision() action:

def decision

openid_request = session[:last_oidreq]

Not sure we should nil this out here.

session[:last_oidreq] = nil

if params[:yes].nil?

redirect_to openid_request.cancel_url

else

identity = openid_request.identity

session[:approvals] ||= []

session[:approvals] << openid_request.trust_root

openid_response = openid_request.answer(true, nil, identity)

add_sreg(openid_request, openid_response)

render_response(openid_response)

end

end

The decision() action accumulates the approved site into the session

if the user chooses to allows this. OpenID doesn’t specify the precise

behavior for providers. In this example, we throw away the approval

data with the session, but depending on your needs in other circum-

stances, you might want to persist this data across sessions in some

user data that you store in the database.

The preceding code also adds the Sreg data for user registration data.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_openid_provider/app/views/open_id/decide.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=214

IMPLEMENTING AN OPENID PROVIDER 215

We also need to add the following code for this to work:

This could be refactored into the User Model

def add_sreg(openid_request, openid_response)

check for Simple Registration arguments and respond

sregreq = OpenID::SReg::Request.from_openid_request(openid_request)

if sregreq

In a real application the user should be asked for

permission to release registration data like this.

user = User.find(session[:user_id])

sreg_data = {

'nickname' => user.username,

'fullname' => "#{user.first_name} #{user.last_name}",

'email' => user.email,

'postcode' => user.zip_code

}

sregresp = OpenID::SReg::Response.extract_response(sregreq, sreg_data)

openid_response.add_extension(sregresp)

end

end

We saw this functionality in action with our Relying Party implemen-

tation above in Section 10.2, Implementing an OpenID Relying Party,

on page 194. Now let’s see if we can get our Relying Party implementa-

tion and our provider implementation to engage in a successful OpenID

communication.

Logging into Our LunchedIn OpenID Provider

Let’s begin by starting up an instance of our provider on a different port

(assuming we are running on the same system):

> script/server -p 3001

In this example, we test the provider running on port 3001.

We can start the Relying Party on port 3000:

> script/server -p 3000

Once we get both servers running, we need to create a user to test

the communication process. Let’s create a user like the one shown in

Figure 10.12, on the following page.

After we create the user successfully, let’s check out the username in

Figure 10.13, on page 217. This is the local username that the provider

uses.

OpenID doesn’t specify how we must provide the user identity. In our

implementation, we followed the format demonstrated in Figure 10.14,

on page 217.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=215

IMPLEMENTING AN OPENID PROVIDER 216

Figure 10.12: Registering demo user

Now let’s launch a session with our Relying Party running on port 3000.

Our OpenID login should be http://localhost:3001/open_id/user_page/

open_id_demo, as shown in Figure 10.15, on page 218.

Clicking the login button sets several actions in motion:

• The Relying Party performs discovery.

• The Relying Party redirects the user to the OpenID Provider.

• The OpenID Provider presents the user with the decide page, as

shown in Figure 10.16, on page 218.

Once we authorize the site, the provider adds the site to the approved

list and redirects the user to the return_to URL provided in the original

request. In this case, it’s our user page (see Figure 10.17, on page 219).

Note that the User Name is the claimed ID for our user.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=216

IMPLEMENTING AN OPENID PROVIDER 217

Figure 10.13: Demo user registration data on provider

Figure 10.14: A user page on provider

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=217

IMPLEMENTING AN OPENID PROVIDER 218

Figure 10.15: The login page on Relying Party

Figure 10.16: The decide page on the provider

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=218

KERBEROS, GSSAPI, AND SPNEGO 219

Figure 10.17: The user page for the OpenID user on Relying Party

10.4 Kerberos, GSSAPI, and SPNEGO

Kerberos is a network-authentication protocol that provides strong

authentication for client-server applications by employing secret-key

cryptography.9

The first published version, Kerberos 4, emerged sometime in the late

1980s from Project Athena—a joint MIT, DEC, and IBM project. It’s

primary intended use was to provide bidirectional authentication for

client-server architectures.

All modern operating systems use the current version of this protocol,

Kerberos 5.

9. http://web.mit.edu/Kerberos/#what_is

Report erratum

this copy is (P1.0 printing, December 2009)

http://web.mit.edu/Kerberos/#what_is
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=219

KERBEROS, GSSAPI, AND SPNEGO 220

Authentication
Server (AS)

Ticket Granting
Server (TGS)

Client authenticates with AS.

AS sends client Ticket Granting Ticket
(TGT).

Client sends ticket request to TGS with
TGT.

TGS sends client Ticket for requested
service.

Client
(Principal)

Service

Client requests access to Service with
Ticket.

Service verifies Ticket and grants or denies
access.

Figure 10.18: A simplified Kerberos/GSSAPI flow chart

Our goal here is to demonstrate how to use Kerberos from a Ruby or

Ruby on Rails environment. As such, we will avoid any complex the-

ory, but you can find a plethora of information available on Kerberos

for free on the Web. In any case, a relatively simple representation of

ticket-based authentication should be enough to see you through this

chapter’s basic Kerberos examples (see Figure 10.18).

Building Ruby Support for GSSAPI

At the time of writing this book, there are not any ready-to-use APIs or

libraries for Kerberos available for Ruby.

We, the authors, have written some basic SWIG wrappers around Ker-

beros, GSSAPI, and SPNEGO for these examples, but won’t cover the

implementation of these wrappers exhaustively. Instead, we will cover

the important interactions with the APIs. You can find the complete

listings for these wrappers in Chapter 12, Authentication Appendix, on

page 263. You will need to compile these libraries before you can run

the next set of examples. Do this by executing the following code in the

top level of gssapi_ruby and spnego_ruby:

> ruby extconf.rb

> make

> sudo make install

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=220

KERBEROS, GSSAPI, AND SPNEGO 221

Setting Up the Kerberos Server

Before we get started, let’s make sure we have a good development

environment for learning GSSAPI/Kerberos.

These examples use Microsoft’s Active Directory server. Active Directory

is probably the most common Kerberos system that developers need

to integrate with. However, most LDAP servers support Kerberos, and

Linux and OS X both ship with Kerberos support out of the box, as do

most Unix systems.

If you run Windows 2003—simply install the OS with Active Directory.

For Windows 2000 Server, you need to install the Kerberos tools man-

ually to get complete support.

Once we set up a basic Active Directory installation, it’s time to create

a couple of users and service principal names (SPNs).

Let’s begin by creating the test user that we will use in our first example,

rubything (feel free to substitute any name you like).

Next, we follow these steps to create the user with the normal Active

Directory dialogs:

1. Open Active Directory Users and Computers.

2. Right-click Users > New > User.

3. Fill out the data appropriately, and click Next.

Now we need to create the keytab and the associated SPN:

C:\Documents and Settings\Administrator\Desktop\krb>ktpass -princ\

rubything/monster.railssecurity.org@RAILSSECURITY.ORG -mapuser\

RAILSSECURITY\rubything +rndPass -ptype KRB5_NT_PRINCIPAL -crypto\

RC4-HMAC-NT -out ruby4.keytab

It’s important that we follow the command-line arguments precisely,

paying particular attention to the -princ and the -crypto parameters.

If we right-click the user in the administrative console, we should see

something very close to Figure 10.19, on the following page.

Let’s repeat these steps and create another account with the username,

monster, and the principal, HTTP/monster.railssecurity.org. If we right-click

the user in the administrative console, we should see something like

Figure 10.20, on page 223.

We have a couple of test users, so let’s tackle some Kerberos/GSSAPI

code.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=221

KERBEROS, GSSAPI, AND SPNEGO 222

Figure 10.19: rubything properties

Kerberos/GSSAPI

The Generic Security Services API (GSSAPI) was developed as an ab-

straction around ticket-granting network-authentication protocols. The

main purpose of GSSAPI is to abstract all the variations across Ker-

beros implementations.10

Microsoft calls its proprietary version of the GSSAPI the Security Sup-

port Provider Interface (SSPI). It differs slightly from the RFCs for GSS-

API, but it does support protocol interoperability for Kerberos 5.

Let’s write a basic client-server application to explore the inner work-

ings of Kerberos/GSSAPI.

10. GSSAPI is defined in RFCs 1964, 2743, 2744, and 4121.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=222

KERBEROS, GSSAPI, AND SPNEGO 223

Figure 10.20: Monster properties

GSSServer and GSSClient

GSSAPI and Kerberos are written in C, so they are very procedural in

their structure. We should also keep in mind that our Ruby bindings

don’t make an effort to reconcile the interface into an object-oriented

approach.

Before we implement any server or client code, let’s create a simpler API

that we can reuse for our example. This will give us an opportunity to

learn GSSAPI/Kerberos along the way.

The GSSAPI interface defines credential management calls, context-

level calls, per-message calls, and support calls.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=223

KERBEROS, GSSAPI, AND SPNEGO 224

Let’s begin with some basic credential management. Specifically, we

want to gather credentials for a user. Thus, we need to define

draphael@RAILSSECURITY.ORG in Active Directory.

We need to create a GssBufferDescStruct class. This is a Ruby class that

wraps the GSSAPI-defined C struct, gss_buffer_desc. This struct is a

buffer that holds data for various GSSAPI calls. Let’s create an empty

Ruby file and add this code:

Download sso/gssapi_ruby/client_credentials.rb

require 'gssapi_api'

include GSSAPI

client_name = "draphael@RAILSSECURITY.ORG"

buffer = GssBufferDescStruct.new

buffer.set_value_from_string(client_name)

So far we’ve created a buffer with our username; now let’s import it into

a format that GSSAPI can use:

results = gss_import_name(buffer, NT_USER_NAME)

major_status, minor_status, client_opaque_name = results

print_results(results,"gss_import_name")

results = gss_release_buffer buffer

print_results(results,"gss_release_buffer")

Here we’ve obtained an opaque name that we can pass to the next call.

We also release the buffer—GSSAPI provides memory management as

part of the standard. NT_USER_NAME indicates to GSSAPI that we are

using a named user, which means we can now retrieve the credentials:

results = gss_acquire_cred(client_opaque_name, 0, NULL_OID_SET, GSS_C_INITIATE)

print_results(results,"gss_acquire_cred")

At this point, we can run the example. Depending on the OS and where

it runs, whether in a graphical environment or from the command line,

what we see will look something like Figure 10.21, on page 226.

If we’ve authenticated successfully, the acquired credentials should be

in the credentials cache. We can check this using the klist command

included with Kerberos:

Kerberos 5 ticket cache: 'API:Initial default ccache'

Default principal: draphael@RAILSSECURITY.ORG

Valid Starting Expires Service Principal

04/11/09 12:06:55 04/11/09 22:06:54 krbtgt/RAILSSECURITY.ORG@RAILSSECURITY.ORG

renew until 04/18/09 12:06:55

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/client_credentials.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=224

KERBEROS, GSSAPI, AND SPNEGO 225

Some of the Calls Here Are Not GSSAPI

For example, the GssBufferDescStruct class enhances the SWIG
interface-generation process. In this case, we added the
set_value_from_string() method; GSSAPI doesn’t ship with this
functionality by default:

Download sso/gssapi_ruby/gssapi.i

%extend gss_buffer_desc_struct {
void setValueFromString(char * new_value) {
if(new_value == NULL)
return;

int len = strlen(new_value) + 1;
char *str;
str = (char*)malloc(sizeof(char) * len);
strncpy(str, new_value, len);
$self->value = str;
$self->length = strlen(str) + 1;

}

void setValueFromByteArray(char * new_value, int length) {
$self->value = new_value;
$self->length = length;

}
char *getValueAsString() {
return (char*) $self->value;

}

%typemap(in,numinputs=0) char *OUT_ARRAY($1_ltype temp) {
temp = ($1_ltype) malloc(sizeof($1_ltype));
$1 = temp;

}

%typemap(in,numinputs=0) int *OUT_LEN($1_ltype temp) {
temp = ($1_ltype) malloc(sizeof($1_ltype));
$1 = temp;

}

%typemap(argout,fragment="output_helper") char *OUT_ARRAY {
VALUE o = SWIG_FromCharPtrAndSize(arg1->value, arg1->length);
$result = output_helper($result, o);

}

void getValueAsByteArray(char *OUT_ARRAY, int *OUT_LEN) {
OUT_ARRAY = (char *)$self->value;
OUT_LEN = (int *)&$self->length;

}

};

SWIG generates Ruby classes from C structs. Sometimes, as in
this case, those interfaces don’t reconcile very well. The default
method for handling strings from Ruby breaks in SWIG if we
don’t implement these specialized setters.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/gssapi.i
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=225

KERBEROS, GSSAPI, AND SPNEGO 226

Figure 10.21: Acquiring credentials

If you’re running OS X, you can also use the Kerberos extras GUI

located in /System/Library/CoreServices/Kerberos. This tool shows a graph-

ical interface to many of the options for Kerberos (see Figure 10.22, on

the next page).

You have probably noticed that the GSSAPI methods return an Array

object. Every array includes two results: Major Status and Minor Sta-

tus. The values of these results translate into implementation-specific

issues.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=226

KERBEROS, GSSAPI, AND SPNEGO 227

Figure 10.22: Kerberos GUI

We can make sense of these return values by adding a helper method:

def print_results(results, _name="UNDEFINED")

puts "\n\n"

puts "#{_name} #{results.length} results"

print_errors(results[0],results[1])

results.each do |r|

puts "#{r} -> #{r.class}"

end

end

Here is the supporting C code:

Download sso/gssapi_ruby/gssapi_wrap.c

void printErrors(OM_uint32 iMajorStatus, OM_uint32 iMinorStatus) {

OM_uint32 message_context = 0;

gss_buffer_desc status_string;

OM_uint32 tempStatus = 0;

gss_display_status(&tempStatus, iMajorStatus,

GSS_C_GSS_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/gssapi_wrap.c
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=227

KERBEROS, GSSAPI, AND SPNEGO 228

SECRET_REQUEST

Access DeniedACCESS_DENIED

Client requests secret message

SRV_REQ_CREDS

Initial message to start communication

INVALID_TOKEN

Credentials Request

Access Granted

KNOCK_KNOCK

Invalid Token

ACCESS_GRANTED

CLIENT_ACK Client Acknowledgement

Figure 10.23: GssServer tokens

printf("GSS status: %s\n", status_string.value);

gss_display_status(&tempStatus, iMinorStatus,

GSS_C_MECH_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

printf("MECH status: %s\n", status_string.value);

return;

}

This approach gives us have readable error messages—a nontrivial part

of getting GSSAPI code up and running.

As we progress through our implementation, we will continue to add

features to our API that ease the mismatch of GSSAPI and Ruby.

We have a basic understanding of how we intend to interact with GSS-

API; next, we want to implement our client and server.

GssServer

Let’s begin by defining a communication protocol for our GssServer and

GssClient classes. You can find the list of tokens we’ll exchange between

our client and server in Figure 10.23.

Now let’s define our token-based server-control flow (see Figure 10.24,

on the next page).

So far we’ve specified our protocol; next, we need to create a server.rb file

and add the tokens as constants.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=228

KERBEROS, GSSAPI, AND SPNEGO 229

Incoming

Client

Request

KNOCK_KNOCK?

send

INVALID_TOKEN

No

Yes

send

SRV_REQ_CREDS

close session

send

ACCESS_DENIED

CLIENT_ACK?

Yes

No

process_

gss_requests

success?

Yes

Yes

No

communicate

securely

Figure 10.24: GssServer main flow

module Tokens

KNOCK_KNOCK = "knock knock\n"

SRV_REQ_CREDS = "credentials\n"

INVALID_TOKEN = "I don't understand your request\n"

CLIENT_ACK = "OK\n"

ACCESS_GRANTED = "Access Granted\n"

ACCESS_DENIED = "Access Denied\n"

SECRET_REQUEST = "Secret Request\n"

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=229

KERBEROS, GSSAPI, AND SPNEGO 230

We’re now ready to add some network code for basic transmission. We

do this by adding a method called send_message():

def send_message(msg, socket)

len = [msg.size].pack('N')

socket.write(len)

socket.write(msg)

end

This method packs the size of the data in a 4-byte integer and then

transmits the size of the message, followed by the message data.

We also need to add a read_message() method:

def read_message(socket)

if len = socket.read(4)

msg = socket.read(len.unpack('N').to_s.to_i)

msg

end

end

This method reads the first 4 bytes of the message to determine its size.

It then reads the amount of data specified by the size. Obviously, this

code is not the most reliable network communication code, but we’ve

kept it simple to demonstrate how Kerberos/GSSAPI can be imple-

mented with any protocol.

Next, we need some higher-level network code to move our GSSAPI

packets. Let’s create another method called send_msg():

def send_msg(gss_token, socket)

srv_str = gss_token.get_value_as_byte_array

token_string = Base64.encode64(srv_str)

send_message(token_string, socket)

gss_release_buffer gss_token

end

This method accepts a gss_token variable that we need to send over

the network. This method uses the send_message() method that we just

created. It also Base64-encodes the message.

Let’s create the complementary method recv_msg() that Base64-decodes

the message and constructs a new GssBufferDescStruct from the message:

def recv_msg(socket)

if recv_string_b64 = read_message(socket)

recv_string = Base64.decode64(recv_string_b64)

recv_token = GssBufferDescStruct.new

recv_token.set_value_from_byte_array(recv_string,recv_string.size)

recv_token

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=230

KERBEROS, GSSAPI, AND SPNEGO 231

Notice that we have to pass the length of the string—we do this because

the underlying wrappers assume that the string is null terminated. We

must treat these opaque data types as raw data.

Now that we’ve created some basic network code, let’s dive into our

server logic. Let’s begin by creating a constructor:

def initialize

puts "[#{self.class}] Initializing"

@secret_info = "Winning lotto: 1 2 4 11 21 9 8"

@ctx = nil

keytab_filename = "ruby4.keytab"

service_name = "rubything/monster.railssecurity.org@RAILSSECURITY.ORG"

@server_creds = acquire_service_cred(service_name, keytab_filename)

This first part of the initialize() method acquires credentials from the

keytab file that we created in Section 10.4, Setting Up the Kerberos

Server, on page 221. We also add a @secret_info variable; we need to

send this variable to our client once it provides the correct credentials.

The code to acquire credentials depends on the acquire_server_cred()

method:

def acquire_service_cred(service_name, keytab_filename)

krb_5_gss_register_acceptor_identity(keytab_filename)

buffer = GssBufferDescStruct.new

buffer.set_value_from_string(service_name)

results = gss_import_name(buffer, NT_USER_NAME)

major_status, minor_status, opaque_name = results

gss_release_buffer buffer

results = gss_acquire_cred(opaque_name, 0, NULL_OID_SET, GSS_C_ACCEPT)

major, minor, creds, oid_set, usage = results

creds

end

We will continue creating our initialize() method by adding the main

server routine:

server = TCPServer.new("127.0.0.1", 5000)

while(session = server.accept)

hello = read_message(session)

if(hello == KNOCK_KNOCK)

send_message(SRV_REQ_CREDS, session)

msg = read_message(session)

if CLIENT_ACK == msg

send_message(service_name,session)

if process_gss_requests(session)

req = read_message(session)

if req == SECRET_REQUEST

Without crypto -> send_message(@secret_info,session)

tell_secret(@secret_info, session)

else

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=231

KERBEROS, GSSAPI, AND SPNEGO 232

send_message(INVALID_TOKEN,session)

end

else

send_message(ACCESS_DENIED,session)

end

end

else

send_message(INVALID_TOKEN,session)

end

session.close

end

end

In the while loop, we handle a new request from the client, as shown in

Figure 10.24, on page 229.

We also incorporate a tell_secret() method:

def tell_secret(msg, socket)

buffer_to_encrypt = GssBufferDescStruct.new

buffer_to_encrypt.set_value_from_byte_array(msg.clone, msg.size)

session = g_wrap_message(@ctx, buffer_to_encrypt)

encrypted_buffer = session.token

send_msg(encrypted_buffer, socket)

end

The preceding code leverages GSSAPI message-level encryption. This

aspect of GSSAPI leverages the encryption keys that have already been

exchanged to protect data. Let’s add the g_wrap_message() method to

our API.

def g_wrap_message(ctx, buffer)

results = gss_wrap(ctx, 1, 0, buffer)

session = GSSSession.new

session.results = results

session.major = results[0]

session.minor = results[1]

session.token = results[3]

session

end

We also need a read_secret() for the client we will write:

def read_secret(socket)

recv_token = recv_msg(socket)

decrypted_buffer = g_unwrap_message(@ctx, recv_token).token

secret = decrypted_buffer.get_value_as_byte_array.clone

gss_release_buffer decrypted_buffer

secret

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=232

KERBEROS, GSSAPI, AND SPNEGO 233

The read_secret() method decrypts the message using the g_unwrap_

message() method:

def g_unwrap_message(ctx, buffer)

results = gss_unwrap(ctx, buffer)

session = GSSSession.new

session.results = results

session.major = results[0]

session.minor = results[1]

session.token = results[2]

session

end

The process_gss_requests() method performs the authentication check

(see Figure 10.24, on page 229). In this method, we handle the tokens

that GSSAPI sends back and forth:

def process_gss_requests(session)

results = []

authenticated = false

major_status = -5

client_princ = nil

begin

recv_token = recv_msg(session)

Pass the token received from the GssClient

gss_session =

accept_sec_context(:ctx => nil,

:creds => @server_creds,

:token => recv_token)

We reset our context to whatever is passed

back from GSSAPI.

@ctx = gss_session.ctx

msg = gss_session.token.get_value_as_byte_array

d_results = gss_display_name(gss_session.principal)

client_princ = d_results[2].get_value_as_string

puts "[#{self.class}] User requesting

authentication: #{client_princ}"

if(msg)

send_msg(gss_session.token, session)

end

major_status = gss_session.major

end while major_status == GSSAPI::GSS_S_CONTINUE_NEEDED

if major_status == GSSAPI::GSS_S_COMPLETE

authenticated = true

puts "Client Authenticated!" if DEBUG

else

puts "[#{self.class}] Failure: #{major_status}"

print_results(gss_session.results, self.class.to_s) if DEBUG

end

authenticated

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=233

KERBEROS, GSSAPI, AND SPNEGO 234

This method calls the accept_sec_context() method, which is the main

GSSAPI method we use for server-side authentication.

In the begin/end while of process_gss_requests(), we loop and pass the cur-

rent tokens to the accept_sec_context() method. Remember that GSSAPI

abstracts the implementation details—some Kerberos implementations

require that the client perform multiple steps. These steps are sent

back to the client:

• GSSAPI::GSS_S_CONTINUE_NEEDED is returned until no more informa-

tion is needed from the client.

• GSSAPI::GSS_S_COMPLETE is returned if the server has authenticated

the client’s credentials.

• All other return values indicate that the client was not authenti-

cated.

This code implements the accept_sec_context() method for our develop-

ing API:

def accept_sec_context(args={})

args.merge!(args)

results = gss_accept_sec_context(

args[:ctx],

args[:creds],

args[:token],

args[:bindings]

)

session = GSSSession.new

session.major = results[0]

session.minor = results[1]

session.ctx = results[2]

session.principal = results[3]

session.token = results[5]

session.creds = results[8]

session.results = results

session

end

We also need a basic container to transport our C-like data; let’s imple-

ment a GSSSession class:

class GSSSession

attr_accessor :ctx

attr_accessor :token

attr_accessor :major

attr_accessor :minor

attr_accessor :creds

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=234

KERBEROS, GSSAPI, AND SPNEGO 235

attr_accessor :results

attr_accessor :principal

attr_accessor :name

attr_accessor :oid

attr_accessor :oid_set

end

This class is nothing more than a data container that we can use to

wrap our unfriendly GSSAPI results into a more readable format.

We can create a small, simple command-line executable file to run the

server:

Download sso/gssapi_ruby/gss_server

#!/usr/bin/ruby

require 'server'

GssServer.run

Let’s review the entire GssServer code and the API we’ve developed before

we implement GssClient:

Download sso/gssapi_ruby/server.rb

require 'gssapi_api'

require 'socket'

require 'digest'

require 'base64'

class GssServer

DEBUG = true

attr_accessor :ctx

module Tokens

KNOCK_KNOCK = "knock knock\n"

SRV_REQ_CREDS = "credentials\n"

INVALID_TOKEN = "I don't understand your request\n"

CLIENT_ACK = "OK\n"

ACCESS_GRANTED = "Access Granted\n"

ACCESS_DENIED = "Access Denied\n"

SECRET_REQUEST = "Secret Request\n"

end

module TokenMechanisms

include GSSAPI

include Tokens

def send_msg(gss_token, socket)

srv_str = gss_token.get_value_as_byte_array

token_string = Base64.encode64(srv_str)

send_message(token_string, socket)

gss_release_buffer gss_token

end

def recv_msg(socket)

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/gss_server
http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/server.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=235

KERBEROS, GSSAPI, AND SPNEGO 236

if recv_string_b64 = read_message(socket)

recv_string = Base64.decode64(recv_string_b64)

recv_token = GssBufferDescStruct.new

recv_token.set_value_from_byte_array(recv_string,recv_string.size)

recv_token

end

end

def send_message(msg, socket)

len = [msg.size].pack('N')

socket.write(len)

socket.write(msg)

end

def read_message(socket)

if len = socket.read(4)

msg = socket.read(len.unpack('N').to_s.to_i)

msg

end

end

def tell_secret(msg, socket)

buffer_to_encrypt = GssBufferDescStruct.new

buffer_to_encrypt.set_value_from_byte_array(msg.clone, msg.size)

session = g_wrap_message(@ctx, buffer_to_encrypt)

encrypted_buffer = session.token

send_msg(encrypted_buffer, socket)

end

def read_secret(socket)

recv_token = recv_msg(socket)

decrypted_buffer = g_unwrap_message(@ctx, recv_token).token

secret = decrypted_buffer.get_value_as_byte_array.clone

gss_release_buffer decrypted_buffer

secret

end

end

include Socket::Constants

include Tokens

include TokenMechanisms

include GSSAPI

def initialize

puts "[#{self.class}] Initializing"

@secret_info = "Winning lotto: 1 2 4 11 21 9 8"

@ctx = nil

keytab_filename = "ruby4.keytab"

service_name = "rubything/monster.railssecurity.org@RAILSSECURITY.ORG"

@server_creds = acquire_service_cred(service_name, keytab_filename)

server = TCPServer.new("127.0.0.1", 5000)

while(session = server.accept)

hello = read_message(session)

if(hello == KNOCK_KNOCK)

send_message(SRV_REQ_CREDS, session)

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=236

KERBEROS, GSSAPI, AND SPNEGO 237

msg = read_message(session)

if CLIENT_ACK == msg

send_message(service_name,session)

if process_gss_requests(session)

req = read_message(session)

if req == SECRET_REQUEST

Without crypto -> send_message(@secret_info,session)

tell_secret(@secret_info, session)

else

send_message(INVALID_TOKEN,session)

end

else

send_message(ACCESS_DENIED,session)

end

end

else

send_message(INVALID_TOKEN,session)

end

session.close

end

end

def process_gss_requests(session)

results = []

authenticated = false

major_status = -5

client_princ = nil

begin

recv_token = recv_msg(session)

Pass the token received from the GssClient

gss_session =

accept_sec_context(:ctx => nil,

:creds => @server_creds,

:token => recv_token)

We reset our context to whatever is passed

back from GSSAPI.

@ctx = gss_session.ctx

msg = gss_session.token.get_value_as_byte_array

d_results = gss_display_name(gss_session.principal)

client_princ = d_results[2].get_value_as_string

puts "[#{self.class}] User requesting

authentication: #{client_princ}"

if(msg)

send_msg(gss_session.token, session)

end

major_status = gss_session.major

end while major_status == GSSAPI::GSS_S_CONTINUE_NEEDED

if major_status == GSSAPI::GSS_S_COMPLETE

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=237

KERBEROS, GSSAPI, AND SPNEGO 238

authenticated = true

puts "Client Authenticated!" if DEBUG

else

puts "[#{self.class}] Failure: #{major_status}"

print_results(gss_session.results, self.class.to_s) if DEBUG

end

authenticated

end

def self.run

GssServer.new

end

end

Download sso/gssapi_ruby/gssapi_api.rb

require File.expand_path(File.dirname(__FILE__) + "/GSSAPI")

module GSSAPI

NT_USER_NAME = nt_user_name

NULL_OID_SET = null_oid_set

class GSSSession

attr_accessor :ctx

attr_accessor :token

attr_accessor :major

attr_accessor :minor

attr_accessor :creds

attr_accessor :results

attr_accessor :principal

attr_accessor :name

attr_accessor :oid

attr_accessor :oid_set

end

def init_sec_context(args={})

args.merge!(args)

results = gss_init_sec_context(

args[:creds],

args[:ctx],

args[:opaque_name],

args[:mech],

args[:flags] ||=

GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG | GSS_C_DELEG_FLAG,

args[:time_req] ||= 0,

args[:bindings],

args[:token_from_server]

)

session = GSSSession.new

session.major = results[0]

session.minor = results[1]

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/gssapi_api.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=238

KERBEROS, GSSAPI, AND SPNEGO 239

session.ctx = results[2]

session.token = results[4]

session.results = results

session

end

def accept_sec_context(args={})

args.merge!(args)

results = gss_accept_sec_context(

args[:ctx],

args[:creds],

args[:token],

args[:bindings]

)

session = GSSSession.new

session.major = results[0]

session.minor = results[1]

session.ctx = results[2]

session.principal = results[3]

session.token = results[5]

session.creds = results[8]

session.results = results

session

end

def display_name(opaque_name)

results = gss_display_name(opaque_name)

session = GSSSession.new

session.major = results[0]

session.minor = results[1]

session.token = results[2]

session

end

def print_results(results, _name="UNDEFINED")

puts "\n\n"

puts "#{_name} #{results.length} results"

print_errors(results[0],results[1])

results.each do |r|

puts "#{r} -> #{r.class}"

end

end

def import_name(buffer, name_type)

results = gss_import_name(buffer, name_type)

major_status, minor_status, opaque_name = results

major, minor, creds, oid_set, usage = results

session = GSSSession.new

session.results = results

session.major = results[0]

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=239

KERBEROS, GSSAPI, AND SPNEGO 240

session.minor = results[1]

session.name = results[2]

session

end

def g_wrap_message(ctx, buffer)

results = gss_wrap(ctx, 1, 0, buffer)

session = GSSSession.new

session.results = results

session.major = results[0]

session.minor = results[1]

session.token = results[3]

session

end

def g_unwrap_message(ctx, buffer)

results = gss_unwrap(ctx, buffer)

session = GSSSession.new

session.results = results

session.major = results[0]

session.minor = results[1]

session.token = results[2]

session

end

def acquire_service_cred(service_name, keytab_filename)

krb_5_gss_register_acceptor_identity(keytab_filename)

buffer = GssBufferDescStruct.new

buffer.set_value_from_string(service_name)

results = gss_import_name(buffer, NT_USER_NAME)

major_status, minor_status, opaque_name = results

gss_release_buffer buffer

results = gss_acquire_cred(opaque_name, 0, NULL_OID_SET, GSS_C_ACCEPT)

major, minor, creds, oid_set, usage = results

creds

end

end

GssClient

So far we have a server implementation; we still need to write a client

that communicates with it. We can see our token-based client-control

flow in Figure 10.25, on page 242.

Before we start any network communication with the server, we need to

have credentials available for authentication. Let’s implement this logic

in a preauthenticate() method:

def preauthenticate

Attempt to use logged in user account

results = gss_acquire_cred(nil, 0, NULL_OID_SET, GSS_C_INITIATE)

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=240

KERBEROS, GSSAPI, AND SPNEGO 241

unless(results[0] == GSSAPI::GSS_S_COMPLETE &&

results[1] == GSSAPI::GSS_S_COMPLETE)

puts "Please enter username:"

client_name = gets.chomp

buffer = GssBufferDescStruct.new

buffer.set_value_from_string(client_name)

results = gss_import_name(buffer, NT_USER_NAME)

major_status, minor_status, client_opaque_name = results

gss_release_buffer buffer

results = gss_acquire_cred(client_opaque_name, 0,

NULL_OID_SET, GSS_C_INITIATE)

end

if(results[0] == GSSAPI::GSS_S_COMPLETE &&

results[1] == GSSAPI::GSS_S_COMPLETE)

true

else

false

end

end

This method begins by calling the gss_acquire_cred() method with no

principal specified; nil tells GSSAPI that we want to use the default cre-

dentials cache.

If we don’t receive GSS_S_COMPLETE as the result, we need to gather cre-

dentials. The following steps enable us to request TGT from Authentica-

tion Server:

1. Request a principal name from our user.

2. Wrap the principal name in a GssBufferDescStruct.

3. Invoke gss_acquire_cred() with the freshly created buffer.

Once the call to gss_acquire_cred() is complete, we need to return true if

the call completed successfully, but false if the call not complete suc-

cessfully.

Let’s put our preauthenticate() method to use in our initialize() method:

def initialize

puts "[#{self.class}] Initializing"

if preauthenticate

socket = TCPSocket.new("127.0.0.1", 5000)

send_message(KNOCK_KNOCK, socket)

recv = read_message(socket)

Once we preauthenticated the client successfully, we connect to the

server, send KNOCK_KNOCK, and receive the response.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=241

KERBEROS, GSSAPI, AND SPNEGO 242

Start Client

credentials

acquired?

send

ACK
Stop Client

existing

credentials?

send

KNOCK_KNOCK

SRV_REQ_

CREDENTIALS?

process_

gss_requests

send

SECRET_REQUEST

Check

Credentials

Acquire

Credentials

authenticated?

read_secret

Yes

Yes

No

No

Yes

No

No

Yes

Figure 10.25: GssClient main flow

Next, we check the response:

authenticated = false

if(recv == SRV_REQ_CREDS)

send_message(CLIENT_ACK,socket)

authenticated = process_gss_requests(socket)

end

If the server response is SRV_REQ_CREDS, then we invoke the process_gss_

requests() method.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=242

KERBEROS, GSSAPI, AND SPNEGO 243

If process_gss_requests() is successful—which means we’ve successfully

authenticated against the server—we send the SECRET_REQUEST token:

if authenticated

puts "[#{self.class}] Getting secret" if DEBUG

send_message(SECRET_REQUEST, socket)

secret = read_secret(socket)

puts "[#{self.class}] Secret: #{secret}"

else

msg = read_message(socket)

puts "[#{self.class}] #{msg}"

end

socket.close

else

puts "Unable to collect Valid Credentials."

end

end

Here, we decrypt the secret message using read_secret(), which we de-

fined in Section 10.4, GssServer, on page 228. Also, we can close the

socket. As we did in our GssServer class, we must implement the pro-

cess_gss_requests() method in our client class. Let’s take a look at this

method’s code:

def process_gss_requests(socket)

service_name = read_message(socket)

puts "[#{self.class}] Service name: #{service_name.inspect}"

We gather the name of the service and print it to the screen. This call

simply reads the service_name variable that the server sends after the

client sends CLIENT_ACK.

Next, let’s process the service name into a GSSAPI-compatible format:

buffer = GssBufferDescStruct.new

buffer.set_value_from_string(service_name.chomp)

results = gss_import_name(buffer, NT_USER_NAME)

major_status, minor_status, opaque_name = results

gss_release_buffer buffer

The opaque_name plays a key role in our next chunk of code:

recv_token = nil

gss_session = nil

authenticated = false

begin

puts "[#{self.class}] init_sec_context =>" if DEBUG

gss_session = init_sec_context({

:opaque_name => opaque_name,

:ctx => self.ctx,

:token_from_server => recv_token })

major_status = gss_session.major

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=243

KERBEROS, GSSAPI, AND SPNEGO 244

We have to use 'self' here to ensure that the variable is

scoped to the object instance level and not the block level.

self.ctx = gss_session.ctx

srv_str = gss_session.token.get_value_as_byte_array

if srv_str && major_status == GSSAPI::GSS_S_CONTINUE_NEEDED

puts "[#{self.class}] #{self.class} Sending token" if DEBUG

send_msg(gss_session.token, socket)

puts "[#{self.class}] receiving token" if DEBUG

recv_token = recv_msg(socket)

else

puts "[#{self.class}] no more tokens to process" if DEBUG

end

end while(major_status == GSSAPI::GSS_S_CONTINUE_NEEDED)

As we did in our server code, we loop until the GSSAPI calls complete.

Next, we verify that we are authenticated:

if(major_status == GSSAPI::GSS_S_COMPLETE)

puts "[#{self.class}] Client successfully authenticated!" if DEBUG

puts "[#{self.class}] Major Status: #{major_status}" if DEBUG

authenticated = true

else

puts "[#{self.class}] Client failed"

print_results(gss_session.results, self.class.to_s) if DEBUG

send_message("Failed\n.",socket)

end

authenticated

end

Let’s perform a final review of this code before we run the example:

Download sso/gssapi_ruby/client.rb

require 'gssapi_api'

require 'socket'

require 'server'

require 'digest'

require 'base64'

require 'pp'

class GssClient

include GssServer::Tokens

include GssServer::TokenMechanisms

include GSSAPI

attr_accessor :ctx

DEBUG = true

def initialize

puts "[#{self.class}] Initializing"

if preauthenticate

socket = TCPSocket.new("127.0.0.1", 5000)

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/client.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=244

KERBEROS, GSSAPI, AND SPNEGO 245

send_message(KNOCK_KNOCK, socket)

recv = read_message(socket)

puts "[#{self.class}] Received: #{recv}" if DEBUG

authenticated = false

if(recv == SRV_REQ_CREDS)

send_message(CLIENT_ACK,socket)

authenticated = process_gss_requests(socket)

end

if authenticated

puts "[#{self.class}] Getting secret" if DEBUG

send_message(SECRET_REQUEST, socket)

secret = read_secret(socket)

puts "[#{self.class}] Secret: #{secret}"

else

msg = read_message(socket)

puts "[#{self.class}] #{msg}"

end

socket.close

else

puts "Unable to collect Valid Credentials."

end

end

def preauthenticate

Attempt to use logged in user account

results = gss_acquire_cred(nil, 0, NULL_OID_SET, GSS_C_INITIATE)

unless(results[0] == GSSAPI::GSS_S_COMPLETE &&

results[1] == GSSAPI::GSS_S_COMPLETE)

puts "Please enter username:"

client_name = gets.chomp

buffer = GssBufferDescStruct.new

buffer.set_value_from_string(client_name)

results = gss_import_name(buffer, NT_USER_NAME)

major_status, minor_status, client_opaque_name = results

gss_release_buffer buffer

results = gss_acquire_cred(client_opaque_name, 0,

NULL_OID_SET, GSS_C_INITIATE)

end

if(results[0] == GSSAPI::GSS_S_COMPLETE &&

results[1] == GSSAPI::GSS_S_COMPLETE)

true

else

false

end

end

def process_gss_requests(socket)

service_name = read_message(socket)

puts "[#{self.class}] Service name: #{service_name.inspect}"

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=245

KERBEROS, GSSAPI, AND SPNEGO 246

buffer = GssBufferDescStruct.new

buffer.set_value_from_string(service_name.chomp)

results = gss_import_name(buffer, NT_USER_NAME)

major_status, minor_status, opaque_name = results

gss_release_buffer buffer

recv_token = nil

gss_session = nil

authenticated = false

begin

puts "[#{self.class}] init_sec_context =>" if DEBUG

gss_session = init_sec_context({

:opaque_name => opaque_name,

:ctx => self.ctx,

:token_from_server => recv_token })

major_status = gss_session.major

We have to use 'self' here to ensure that the variable is

scoped to the object instance level and not the block level.

self.ctx = gss_session.ctx

srv_str = gss_session.token.get_value_as_byte_array

if srv_str && major_status == GSSAPI::GSS_S_CONTINUE_NEEDED

puts "[#{self.class}] #{self.class} Sending token" if DEBUG

send_msg(gss_session.token, socket)

puts "[#{self.class}] receiving token" if DEBUG

recv_token = recv_msg(socket)

else

puts "[#{self.class}] no more tokens to process" if DEBUG

end

end while(major_status == GSSAPI::GSS_S_CONTINUE_NEEDED)

if(major_status == GSSAPI::GSS_S_COMPLETE)

puts "[#{self.class}] Client successfully authenticated!" if DEBUG

puts "[#{self.class}] Major Status: #{major_status}" if DEBUG

authenticated = true

else

puts "[#{self.class}] Client failed"

print_results(gss_session.results, self.class.to_s) if DEBUG

send_message("Failed\n.",socket)

end

authenticated

end

end

GssClient.new

Running GssClient and GssServer

We’ve written the server and client code; now let’s try to run them. Let’s

start by running the server in a terminal window:

[monster - draphael][gssapi_ruby]> ./gss_server

[GssServer] Initializing

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=246

KERBEROS, GSSAPI, AND SPNEGO 247

Before we can run our client, let’s make sure we don’t have any tickets

in the Kerberos credentials cache by deleting any Kerberos credentials

from that cache:

[monster - draphael][gssapi_ruby]> kdestroy

We can verify we don’t have any Kerberos tickets in the cache by run-

ning klist:

[monster - draphael][gssapi_ruby]> klist

klist: No Kerberos 5 tickets in credentials cache

We can start the client after we verify that the credentials cache is

empty:

⇐ [monster - draphael][gssapi_ruby]> ruby client.rb

⇒ [GssClient] Initializing

Please enter username:
⇐ draphael@RAILSSECURITY.ORG

⇒ Please enter the password for draphael@RAILSSECURITY.ORG:
⇐ **********
⇒ [GssClient] Received: credentials

[GssClient] Service name: "rubything/monster.railssecurity.org@RAILSSECURITY.ORG"

[GssClient] init_sec_context =>

[GssClient] GssClient Sending token

[GssClient] receiving token

[GssClient] init_sec_context =>

[GssClient] no more tokens to process

[GssClient] Client successfully authenticated!

[GssClient] Major Status: 0

[GssClient] Getting secret

[GssClient] Secret: Winning lotto: 1 2 4 11 21 9 8

Let’s check klist again:

[monster - draphael][gssapi_ruby]> klist

Kerberos 5 ticket cache: 'API:Initial default ccache'

Default principal: draphael@RAILSSECURITY.ORG

Valid Starting Expires Service Principal

04/18/09 15:32:07 04/19/09 01:32:06 krbtgt/RAILSSECURITY.ORG@RAILSSECURITY.ORG

renew until 04/25/09 15:32:07

04/18/09 15:32:06 04/19/09 01:32:06 rubything/monster.railssecurity.org@RAI...

renew until 04/25/09 15:32:06

You can see here that we have credentials that were previously not in

our cache. So what happens if we run our client again?

⇐ [monster - draphael][gssapi_ruby]> ruby client.rb

⇒ [GssClient] Initializing

[GssClient] Received: credentials

[GssClient] Service name: "rubything/monster.railssecurity.org@RAILSSECURITY.ORG"

[GssClient] init_sec_context =>

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=247

KERBEROS, GSSAPI, AND SPNEGO 248

[GssClient] GssClient Sending token

[GssClient] receiving token

[GssClient] init_sec_context =>

[GssClient] no more tokens to process

[GssClient] Client successfully authenticated!

[GssClient] Major Status: 0

[GssClient] Getting secret

[GssClient] Secret: Winning lotto: 1 2 4 11 21 9 8

Notice that we didn’t have to enter our credentials this time. You might

be wondering how this is useful for Rails applications; let’s look at how

we integrate GSSAPI into our Rails applications via SPNEGO.

SPNEGO

The Simple and Protected GSSAPI Negotiation Mechanism—commonly

referred to as SPNEGO—was designed as a standard for negotiating

authentication between two peers. It fills a gap in GSSAPI—GSSAPI pro-

vides standards for peers that have already acquired the same type of

credentials, but it doesn’t deal with peers that support multiple authen-

tication mechanisms over the same network protocol.

We will focus on HTTP as the network protocol for SPNEGO in this

section, but be aware that SPNEGO can operate over many different of

network protocols.

Microsoft started integrating Kerberos and NTLM authentication into

IIS and Internet Explorer several years ago. In conjunction with this

work, Microsoft published an extension to SPNEGO that defines NTLM

and Kerberos authentication over HTTP.11

Until recently, Internet Explorer and IIS were the only systems that

supported SPNEGO; however, Firefox, Safari, and several others have

now joined the list of browsers that support SPNEGO.

So how do we support SPNEGO in Rails?

Rails and SPNEGO

It turns out that we don’t have to do much to support SPNEGO in

Rails—that is, we don’t have to do much more than we’ve already done

to support GSSAPI in Section 10.4, Kerberos/GSSAPI, on page 222.

11. http://tools.ietf.org/html/rfc4559

Report erratum

this copy is (P1.0 printing, December 2009)

http://tools.ietf.org/html/rfc4559
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=248

KERBEROS, GSSAPI, AND SPNEGO 249

Let’s open up our SessionController and add some initialization code:

include GSSAPI

def check_login

@ctx = nil

keytab_filename = "#{RAILS_ROOT}/config/monster.keytab"

@server_creds = acquire_service_cred(nil, keytab_filename)

This code is very similar to what we included in GssServer. The only

difference here is that we use a different keytab file. We created this

keytab with the service name, HTTP/monster.railssecurity.org. Note the use

of HTTP in the beginning of the name; including that is a critical aspect

of making our code work correctly.

Next, we need to strip the GSSAPI Token from the HTTP header:

if auth_header = request.headers['HTTP_AUTHORIZATION']

logger.debug { "first 10: [#{auth_header[0..9]}]" }

token = auth_header[10..-1]

This code strips off the first ten characters of the header value; the rest

of the header value is a Base64-encoded token.

Now, let’s pass this token along to GSSAPI:

recv_string = Base64.decode64(token)

recv_token = GssBufferDescStruct.new

recv_token.set_value_from_byte_array(recv_string,recv_string.size)

gss_session =

accept_sec_context(:creds => @server_creds,

:token => recv_token)

As this code illustrates, we need to decode the token first, but the rest

of the code operates like our previous GSSAPI example.

Finally, let’s process the result:

case gss_session.major

when GSSAPI::GSS_S_CONTINUE_NEEDED

render :text => "not quite there.", :status => 401

when GSSAPI::GSS_S_COMPLETE

d_results = gss_display_name(gss_session.principal)

username = d_results[2].get_value_as_string

render(:text => "Authenticated. User: #{username}",

:status => 200)

@authenticated_user = User.create_or_find_from_kerb_princ(username)

session[:user_id] = @authenticated_user.id

redirect_to user_path(@authenticated_user)

else

render(:text => "Access Denied: #{gss_session.major}",

:status => 401)

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=249

KERBEROS, GSSAPI, AND SPNEGO 250

else

render(:text => "\nHeaders:\n#{request.headers.to_a.join("
")}",

:status => 401)

logger.debug { "Negotiate initiated" }

response.headers['WWW-Authenticate'] = 'Negotiate'

end

end

def logout

reset_session

end

end

This code is pretty rough, but it demonstrates the basic idea: the

browser does the heavy lifting for us. We also need to tweak our login

screen (see Figure 10.26, on the following page):

Download sso/lunchedin_spnego/app/views/session/login.html.erb

<% if flash[:notice] %>

<div class="notice">

<%= h(flash[:notice]) %>

</div>

<% end %>

<div style="margin-top:14px">

<% form_tag :controller => 'session', :action => "check_login" do %>

<%= submit_tag 'Login with Integrated Kerberos Login' %>

<% end %>

</div>

Finally, we need to add a method for user creation in our User model:

Download sso/lunchedin_spnego/app/models/user.rb

This is not the ideal implementation

You will have to adapt this to your needs

def self.create_or_find_from_kerb_princ(kerb_princ)

user = find_by_username(kerb_princ)

unless user

user = User.new do |u|

u.username = kerb_princ

u.email = "(email)"

u.first_name = "(first_name)"

u.last_name = "(last_name)"

u.zip_code = "75093"

end

user.save(false)

end

user

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_spnego/app/views/session/login.html.erb
http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_spnego/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=250

CAS 251

Figure 10.26: SPNEGO login dialog

Running this example should enable us to log in and see a screen like

Figure 10.27, on the next page.

10.5 CAS

Central Authentication Service, or CAS, was developed at Yale Uni-

versity as a way to decouple authentication from each individual web

application on its networks, as well as to provide users with the ability

to authenticate against many systems without providing their pass-

words to each individual system.

CAS also introduces the notion of a ticket-granting cookie (TGC), which

acts very much like a TGT from Kerberos. The TGC provides the user

with an SSO experience. We can see a simplified overview of CAS’s

authentication flow in Figure 10.28, on the following page.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=251

CAS 252

Figure 10.27: SPNEGO login success

4
1

2

End User
(User Agent)

1 End User requests access to protected Web
Application.

2 Web Application redirects End User to
CAS Server for authentication.

3 CAS Server grants credentials to End User

3

4 End User presents credentials to Web
Application.

5 Web Application validates credentials with
CAS Server.

6 Web Application grants access to End
User.

5

6
Web Application

CAS Server

Figure 10.28: CAS authentication flow

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=252

CAS 253

Yale University created its implementation of CAS in Java. However, you

can find a pair of CAS implementations written in Ruby: Castronaut

and RubyCAS.

Our example will use the Castronaut implementation, which was imple-

mented by Relevance LLC and stands out as the best Ruby-based im-

plementation of CAS in the opinion of this book’s authors.

Castronaut

The folks at Relevance implemented Castronaut as an open source

project, and you can find a link to install a gem for it at Relevance’s

website.12

To get started, let’s install the gem:

> sudo gem install relevance-castronaut --source http://gems.github.com

We also need the client plug-in:

> ./script/plugin install\

http://rubycas-client.googlecode.com/svn/trunk/rubycas-client

Next, we need to create a config file for Castronaut:

Download sso/lunchedin_castronaut/config/castronaut.yml

organization_name: Rails Security

environment: development

server_port: 4567

log_directory: log

log_level: Logger::DEBUG

ssl_enabled: false

cas_database:

adapter: sqlite3

database: db/cas.db

timeout: 5000

cas_adapter:

adapter: ldap

host: localhost

port: 10389

prefix: uid=

base: dc=railssecurity,dc=org

12. http://thinkrelevance.com/open-source

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_castronaut/config/castronaut.yml
http://thinkrelevance.com/open-source
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=253

CAS 254

Figure 10.29: Castronaut login screen

Finally, let’s fire up our Castronaut server and make sure it’s working:

[monster - draphael][lunchedin_castronaut]> castronaut

No configuration file specified. Defaulting to ./config/castronaut.yml

== Sinatra/0.9.0.2 has taken the stage on 4567 for development with backup from Thin

>> Thin web server (v1.0.0 codename That's What She Said)

>> Maximum connections set to 1024

>> Listening on 0.0.0.0:4567, CTRL+C to stop

Navigating to http://localhost:4567 should bring up something like Fig-

ure 10.29.

Adding CAS Authentication to LunchedIn

Now that we have a running Castronaut server, let’s create CAS support

for LunchedIn.

Report erratum

this copy is (P1.0 printing, December 2009)

http://localhost:4567
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=254

CAS 255

First, add the necessary support code to our Rails environment:

Download sso/lunchedin_castronaut/config/environment.rb

RAILS_GEM_VERSION = '2.2.2' unless defined? RAILS_GEM_VERSION

require File.join(File.dirname(__FILE__), 'boot')

Rails::Initializer.run do |config|

config.action_controller.session = {

:session_key => '_lunchedin_session',

:secret => '2b6d57c18f8884b65d248d72bf97e0f62e3eaa5ad3ba9eb6fef402109'+

'386ad0468758d2a3f19bb8f707e6a387531dfe344c9e99f699a8735f661a536f054d0de'

}

end

BEGIN_HIGHLIGHT

CASClient::Frameworks::Rails::Filter.configure(

:cas_base_url => "http://localhost:4567/",

:login_url => "http://localhost:4567/login",

:logout_url => "http://localhost:4567/logout"

)

We do need to make some changes to the ApplicationController class:

Download sso/lunchedin_castronaut/app/controllers/application.rb

class ApplicationController < ActionController::Base

helper :all # include all helpers, all the time

protect_from_forgery # :secret => 'cf9d327f2d16793b606c6689f76e90c3'

before_filter CASClient::Frameworks::Rails::Filter, :except => [:logout]

before_filter :check_authentication, :except => [:logout]

def check_authentication

if session[:cas_user]

@authenticated_user = User.find_by_username(session[:cas_user])

if @authenticated_user

session[:user_id] = @authenticated_user.id

return true

else

redirect_to :controller => "users", :action => :new and return

end

end

end

end

The first change you will probably notice is the addition of a new filter

provided by the CAS plug-in.

In our previous examples, we checked the value of session[:user_id]. Here

we need to check the value of session[:cas_user], which is injected by

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_castronaut/config/environment.rb
http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_castronaut/app/controllers/application.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=255

CAS 256

CASClient, a class included in the CAS client plug-in. If we can’t find the

user, we redirect him to the new action of UsersController.

Next, let’s take a look at our UsersController class:

Download sso/lunchedin_castronaut/app/controllers/users_controller.rb

class UsersController < ApplicationController

skip_before_filter :check_authentication, :only => [:new, :create]

def new

@user = User.new

end

def show

@user = User.find(params[:id])

respond_to do |format|

format.html

end

end

def create

@user = User.new(params[:user])

@user.username = session[:cas_user]

respond_to do |format|

if @user.save

flash[:notice] = 'your account was successfully created.'

session[:user_id] = @user.id

format.html { redirect_to(@user) }

else

format.html { render :action => 'new' }

end

end

end

end

In this file, all we modify only the skip_before_filter variable and then

tweak the create() method to add the username to the @user prior to

saving. We also need to change our User model:

Download sso/lunchedin_castronaut/app/models/user.rb

class User < ActiveRecord::Base

attr_protected :role_id

validates_presence_of :email, :first_name, :last_name

validates_presence_of :username

validates_uniqueness_of :username

validates_length_of :zip_code, :is => 5

validates_numericality_of :zip_code

has_many :events

has_many :comments, :as => :commentable

belongs_to :role

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_castronaut/app/controllers/users_controller.rb
http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_castronaut/app/models/user.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=256

CAS 257

We don’t need password validation because we rely on CAS to pro-

vide authentication. Indeed, we could remove those columns from the

database altogether. Additionally, this code removes the password and

authentication methods that existed previously in our User model.

Let’s have a look at the corresponding user view:

Download sso/lunchedin_castronaut/app/views/users/new.html.erb

<h1>Have lunch with us</h1>

<h2>Create A Profile</h2>

<%= error_messages_for 'user' %>

<% form_tag :action => 'create' do %>

<div class="highlighted-form">

<table class="form">

<tr>

<td class="label">CAS Username:</td>

<td><%= session[:cas_user] %></td>

</tr>

<tr>

<td class="label">First Name:</td>

<td><%= text_field('user', 'first_name', :size => 16) %></td>

</tr>

<tr>

<td class="label">Last Name:</td>

<td><%= text_field('user', 'last_name', :size => 16) %></td>

</tr>

<tr>

<td class="label">Email:</td>

<td><%= text_field('user', 'email') %></td>

</tr>

<tr>

<td class="label">Zip Code:</td>

<td><%= text_field('user', 'zip_code', :size => 6) %></td>

</tr>

</table>

</div>

<div style="padding: 10px;">

<%= submit_tag 'Create' %>

</div>

<% end %>

Here, we remove the password fields and hard-code the username with

the session[:cas_user] value.

Assuming we input all the changes correctly, an attempt to log in to

LunchedIn should result in a page like the one in Figure 10.30, on the

following page.

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_castronaut/app/views/users/new.html.erb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=257

CAS 258

Figure 10.30: LunchedIn registration screen with Castronaut

And if we create the user, we should be redirected to a screen like the

one in Figure 10.31, on the next page.

The last thing we need to modify is the SessionController class:

Download sso/lunchedin_castronaut/app/controllers/session_controller.rb

class SessionController < ApplicationController

skip_before_filter :check_authentication

def index

render :action => 'login'

end

def logout

reset_session

CASClient::Frameworks::Rails::Filter.logout(self)

end

end

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_castronaut/app/controllers/session_controller.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=258

CAS 259

Figure 10.31: LunchedIn registration success with Castronaut

We don’t change much in this code, apart from the call to CASClient::

Frameworks::Rails::Filter.logout(), which redirects a user to the CAS logout

screen.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=259

Part III

Reference

Chapter 11

Web Application Proxies
11.1 Web Application Proxies

MouseHole isn’t the only way to manipulate the requests and responses

of an application. The is a list of additional proxy applications that serve

a similar purpose:

SPIKE Proxy . http://www.immunitysec.com

SPIKE Proxy is a professional-grade tool for looking for application-level vul-

nerabilities in web applications. SPIKE Proxy covers the basics, such as SQL

Injection and cross-site scripting, but it also features a completely open Python

infrastructure that allows advanced users to customize it for web applications

that other tools fall apart on. SPIKE Proxy is available for Linux and Windows.

Paros . http://www.parosproxy.org

Paros is a proxy for those who need to evaluate the security of their web applica-

tions. It is free of charge and written completely in Java. Paros’s proxy nature

lets you intercept and modify all HTTP and HTTPS data between server and

client, including cookies and form fields.

Burp Proxy .http://www.portswigger.net

Burp Proxy is an interactive HTTP/S proxy server for attacking and debugging

web-enabled applications. It operates as a man-in-the-middle between the end

browser and the target web server, and it allows the user to intercept, inspect,

and modify the raw traffic passing in both directions.

Achilles Proxy . http://www.mavensecurity.com/achilles

Achilles acts as an HTTP/HTTPS proxy that allows a user to intercept, log, and

modify web traffic on the fly.

Odysseus Proxy . http://www.wastelands.gen.nz/odysseus/

Odysseus is a proxy server, which acts as a man-in-the-middle during an HTTP

session. A typical HTTP proxy will relay packets to and from a client browser

http://www.immunitysec.com
http://www.parosproxy.org
http://www.portswigger.net
http://www.mavensecurity.com/achilles
http://www.wastelands.gen.nz/odysseus/

WEB APPLICATION PROXIES 262

and a web server. Odysseus will intercept an HTTP session’s data in either

direction and give the user the ability to alter the data before transmission.

Webstretch Proxy.http://sourceforge.net/projects/webstretch

Webstretch enables a user to view and alter all aspects of communications with

a website via a proxy. Developers use this tool primarily for security-based pen-

etration testing of websites, but it can also prove useful for debugging during

development.

Firefox Developer Tools . http://www.mozdev.org

The Mozilla developer site contains a host of plug-ins that might be useful for

security testing.

Fiddler . http://www.fiddler2.com/fiddler2/

Fiddler is a web application proxy written in .NET that provides deep integration

with Internet Explorer and decryption functionality of HTTPS (with appropriate

certificates and keys).

Report erratum

this copy is (P1.0 printing, December 2009)

http://sourceforge.net/projects/webstretch
http://www.mozdev.org
http://www.fiddler2.com/fiddler2/
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=262

Chapter 12

Authentication Appendix
12.1 OpenLDAP Setup

On Linux or OS X systems, OpenLDAP typically comes preinstalled on

Linux and OS X systems. If you already have an LDAP server run-

ning, then you can use that configuration to run this example. Oth-

erwise, you will need to obtain OpenLDAP. You must include the fol-

lowing schema files in your configuration file (their specific location is

platform-dependent):

Download authentication/lunchedin_i3_old/doc/slapd.conf

include /etc/openldap/schema/core.schema

include /etc/openldap/schema/cosine.schema

include /etc/openldap/schema/inetorgperson.schema

Note that these schemas aren’t included by default, but they are impor-

tant because they define the constraints of our directory’s data. Addi-

tionally, we need to define a rootdn:

Download authentication/lunchedin_i3_old/doc/slapd.conf

database bdb

suffix "dc=railssecurity,dc=com"

rootdn "cn=Manager,dc=railssecurity,dc=com"

Cleartext passwords, especially for the rootdn, should

be avoid. See slappasswd(8) and slapd.conf(5) for details.

Use of strong authentication encouraged.

rootpw secret

In a production environment, we don’t want to store a plaintext pass-

word in our configuration. Indeed, we should follow the same practices

in our directory server that we would follow for any database server.

Once we configure and start our server, we can initialize it with some

data.

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_i3_old/doc/slapd.conf
http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_i3_old/doc/slapd.conf

OPENLDAP SETUP 264

Here is a sample:

Download authentication/lunchedin_i3_old/doc/railssecurity.ldif

dn: dc=railssecurity, dc=com

dc: railssecurity

objectClass: organization

objectClass: dcObject

o: railssecurity.com

dn: ou=people, dc=railssecurity, dc=com

ou: people

objectClass: organizationalUnit

dn: cn=wally,ou=people, dc=railssecurity, dc=com

mail: wally@yahoo.com

userPassword:: cGFzc3dvcmQ=

uid: wally

ou: people

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

sn: World

cn: Wally World

cn: wally

dn: cn=bob,ou=people, dc=railssecurity, dc=com

mail: bob@bobsworld.com

userPassword:: aGVsbG8=

uid: bob

ou: people

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

sn: World

cn: Bob World

cn: bob

dn: cn=dave,ou=people, dc=railssecurity, dc=com

mail: dave@davesworld.com

userPassword:: aGVsbG8=

uid: dave

ou: people

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

sn: World

cn: Dave World

cn: Dave

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/authentication/lunchedin_i3_old/doc/railssecurity.ldif
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=264

OPENLDAP SETUP 265

We load with the preceding sample with this command:

> ldapadd -x -w 'secret' -D\

'cn=Manager,dc=railssecurity,dc=com' -f\

railssecurity.ldif \

adding new entry "dc=railssecurity, dc=com"

adding new entry "ou=people, dc=railssecurity, dc=com"

adding new entry "cn=wally,ou=people, dc=railssecurity, dc=com"

Commercial LDAP implementations typically come with nice GUI-based

management tools. However, this is a GUI tool that comes in handy

when working with OpenLDAP.

University of Chicago LDAP Browser .
A Java Swing application that allows you to browse and manipulate LDAPv2-

and LDAPv3-compliant servers.

If we’ve set up our OpenLDAP server correctly, we should be able to

execute the following command:

> ldapsearch -x -b 'dc=railssecurity,dc=com'

Running this code produces a result that looks something like this:

extended LDIF

#

LDAPv3

base <dc=railssecurity,dc=com> with scope sub

filter: (objectclass=*)

requesting: ALL

#

railssecurity.com

dn: dc=railssecurity,dc=com

dc: railssecurity

objectClass: organization

objectClass: dcObject

o: railssecurity.com

people, railssecurity.com

dn: ou=people,dc=railssecurity,dc=com

ou: people

objectClass: organizationalUnit

wally, people, railssecurity.com

dn: cn=wally,ou=people,dc=railssecurity,dc=com

mail: wally@wallysworld.com

userPassword:: cGFzc3dvcmQ=

uid: wally

ou: people

objectClass: top

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=265

OPENLDAP SETUP 266

Figure 12.1: Browsing your OpenLDAP directory

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

sn: World

cn: Wally World

cn: wally

search result

search: 2

result: 0 Success

numResponses: 4

numEntries: 3

And if you’ve installed the LDAP Browser, you should see something

like Figure 12.1.

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=266

GSSAPI 267

12.2 GSSAPI

GSSAPI SWIG Bindings

Download sso/gssapi_ruby/gssapi.i

%feature("docstring") {

/*
Document-module: GSSAPI

GSSAPI Module

*/

}

%module GSSAPI

%include "typemaps.i"

%include "gssapi_wrap.h"

%{

#include <stdio.h>

#include <string.h>

#include <gssapi.h>

#include <gssapi/gssapi.h>

#include <gssapi/gssapi_generic.h>

#include <gssapi/gssapi_krb5.h>

#include "gssapi_wrap.h"

%}

typedef unsigned int uint32_t;

typedef int int32_t;

typedef uint32_t gss_uint32;

typedef int32_t gss_int32;

typedef gss_uint32 OM_uint32;

typedef gss_int32 OM_int32;

typedef int gss_cred_usage_t;

typedef int gss_qop_t;

%typedef unsigned int uint32_t;

%typedef int int32_t;

%typedef uint32_t gss_uint32;

%typedef int32_t gss_int32;

%typedef gss_uint32 OM_uint32;

%typedef gss_int32 OM_int32;

%typedef int gss_cred_usage_t;

%typedef int gss_qop_t;

#ifndef KRB5_CALLCONV

#define KRB5_CALLCONV

#define KRB5_CALLCONV_C

#endif

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/gssapi.i
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=267

GSSAPI 268

struct gss_name_struct;

typedef struct gss_name_struct * gss_name_t;

%typedef struct gss_name_struct * gss_name_t;

struct gss_cred_id_struct;

typedef struct gss_cred_id_struct * gss_cred_id_t;

%typedef struct gss_cred_id_struct * gss_cred_id_t;

struct gss_ctx_id_struct;

typedef struct gss_ctx_id_struct * gss_ctx_id_t;

%typedef struct gss_ctx_id_struct * gss_ctx_id_t;

typedef struct gss_OID_desc_struct {

OM_uint32 length;

void *elements;

} gss_OID_desc, *gss_OID;

typedef struct gss_OID_set_desc_struct {

size_t count;

gss_OID elements;

} gss_OID_set_desc, *gss_OID_set;

typedef struct gss_buffer_desc_struct {

size_t length;

void *value;

} gss_buffer_desc, *gss_buffer_t;

typedef struct gss_channel_bindings_struct {

OM_uint32 initiator_addrtype;

gss_buffer_desc initiator_address;

OM_uint32 acceptor_addrtype;

gss_buffer_desc acceptor_address;

gss_buffer_desc application_data;

} *gss_channel_bindings_t;

%extend gss_buffer_desc_struct {

void setValueFromString(char * new_value) {

if(new_value == NULL)

return;

int len = strlen(new_value) + 1;

char *str;

str = (char*)malloc(sizeof(char) * len);

strncpy(str, new_value, len);

$self->value = str;

$self->length = strlen(str) + 1;

}

void setValueFromByteArray(char * new_value, int length) {

$self->value = new_value;

$self->length = length;

}

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=268

GSSAPI 269

char *getValueAsString() {

return (char*) $self->value;

}

%typemap(in,numinputs=0) char *OUT_ARRAY($1_ltype temp) {

temp = ($1_ltype) malloc(sizeof($1_ltype));

$1 = temp;

}

%typemap(in,numinputs=0) int *OUT_LEN($1_ltype temp) {

temp = ($1_ltype) malloc(sizeof($1_ltype));

$1 = temp;

}

%typemap(argout,fragment="output_helper") char *OUT_ARRAY {

VALUE o = SWIG_FromCharPtrAndSize(arg1->value, arg1->length);

$result = output_helper($result, o);

}

void getValueAsByteArray(char *OUT_ARRAY, int *OUT_LEN) {

OUT_ARRAY = (char *)$self->value;

OUT_LEN = (int *)&$self->length;

}

};

/*

* Flag bits for context-level services.

*/

#define GSS_C_DELEG_FLAG 1

#define GSS_C_MUTUAL_FLAG 2

#define GSS_C_REPLAY_FLAG 4

#define GSS_C_SEQUENCE_FLAG 8

#define GSS_C_CONF_FLAG 16

#define GSS_C_INTEG_FLAG 32

#define GSS_C_ANON_FLAG 64

#define GSS_C_PROT_READY_FLAG 128

#define GSS_C_TRANS_FLAG 256

/*

* Credential usage options

*/

#define GSS_C_BOTH 0

#define GSS_C_INITIATE 1

#define GSS_C_ACCEPT 2

/*

* Status code types for gss_display_status

*/

#define GSS_C_GSS_CODE 1

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=269

GSSAPI 270

#define GSS_C_MECH_CODE 2

/*

* The constant definitions for channel-bindings address families

*/

#define GSS_C_AF_UNSPEC 0

#define GSS_C_AF_LOCAL 1

#define GSS_C_AF_INET 2

#define GSS_C_AF_IMPLINK 3

#define GSS_C_AF_PUP 4

#define GSS_C_AF_CHAOS 5

#define GSS_C_AF_NS 6

#define GSS_C_AF_NBS 7

#define GSS_C_AF_ECMA 8

#define GSS_C_AF_DATAKIT 9

#define GSS_C_AF_CCITT 10

#define GSS_C_AF_SNA 11

#define GSS_C_AF_DECnet 12

#define GSS_C_AF_DLI 13

#define GSS_C_AF_LAT 14

#define GSS_C_AF_HYLINK 15

#define GSS_C_AF_APPLETALK 16

#define GSS_C_AF_BSC 17

#define GSS_C_AF_DSS 18

#define GSS_C_AF_OSI 19

#define GSS_C_AF_X25 21

#define GSS_C_AF_NULLADDR 255

/*

* Various Null values.

*/

#define GSS_C_NO_NAME ((gss_name_t) 0)

#define GSS_C_NO_BUFFER ((gss_buffer_t) 0)

#define GSS_C_NO_OID ((gss_OID) 0)

#define GSS_C_NO_OID_SET ((gss_OID_set) 0)

#define GSS_C_NO_CONTEXT ((gss_ctx_id_t) 0)

#define GSS_C_NO_CREDENTIAL ((gss_cred_id_t) 0)

#define GSS_C_NO_CHANNEL_BINDINGS ((gss_channel_bindings_t) 0)

#define GSS_C_EMPTY_BUFFER {0, NULL}

#define GSS_KRB5_INTEG_C_QOP_DES_MD5 0x0002

#define GSS_KRB5_INTEG_C_QOP_DES_MAC 0x0003

/*

* Some alternate names for a couple of the above values. These are defined

* for V1 compatibility.

*/

#define GSS_C_NULL_OID GSS_C_NO_OID

#define GSS_C_NULL_OID_SET GSS_C_NO_OID_SET

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=270

GSSAPI 271

#define GSS_C_QOP_DEFAULT 0

/*

* Expiration time of 2^32-1 seconds means infinite lifetime for a

* credential or security context

*/

#define GSS_C_INDEFINITE ((OM_uint32) 0xfffffffful)

/* Major status codes */

#define GSS_S_COMPLETE 0

#define GSS_C_CALLING_ERROR_OFFSET 24

#define GSS_C_ROUTINE_ERROR_OFFSET 16

#define GSS_C_SUPPLEMENTARY_OFFSET 0

#define GSS_C_CALLING_ERROR_MASK ((OM_uint32) 0377ul)

#define GSS_C_ROUTINE_ERROR_MASK ((OM_uint32) 0377ul)

#define GSS_C_SUPPLEMENTARY_MASK ((OM_uint32) 0177777ul)

/*

* Supplementary info bits:

*/

#define GSS_S_CONTINUE_NEEDED (1 << (GSS_C_SUPPLEMENTARY_OFFSET + 0))

#define GSS_S_DUPLICATE_TOKEN (1 << (GSS_C_SUPPLEMENTARY_OFFSET + 1))

#define GSS_S_OLD_TOKEN (1 << (GSS_C_SUPPLEMENTARY_OFFSET + 2))

#define GSS_S_UNSEQ_TOKEN (1 << (GSS_C_SUPPLEMENTARY_OFFSET + 3))

#define GSS_S_GAP_TOKEN (1 << (GSS_C_SUPPLEMENTARY_OFFSET + 4))

#if defined (_WIN32) && defined (_MSC_VER)

ifdef GSS_DLL_FILE

define GSS_DLLIMP __declspec(dllexport)

else

define GSS_DLLIMP __declspec(dllimport)

endif

#else

define GSS_DLLIMP

#endif

const gss_OID NT_USER_NAME();

const gss_OID NT_MACHINE_UID_NAME();

const gss_OID NT_STRING_UID_NAME();

const gss_OID NT_HOSTBASED_SERVICE();

const gss_OID NT_ANONYMOUS();

const gss_OID NT_EXPORT_NAME();

const gss_OID_set NULL_OID_SET();

/*
Typemaps: These give us the ability to reconcile the API to Ruby nicely.

*/

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=271

GSSAPI 272

%define NEW_FROM_SWIG_PTR(type,swigtype,_ptr)

VALUE o = SWIG_NewPointerObj(SWIG_as_voidptr(_ptr),

swigtype,

SWIG_POINTER_OWN);

%enddef

%define IN_OUT_TYPEMAPPER(_type, _swigtype, _ptr)

%typemap(in,numinputs=0) _type OUTPUT($1_ltype temp) {

temp = ($1_ltype) malloc(sizeof($1_ltype));

$1 = temp;

}

%typemap(argout,fragment="output_helper") _type OUTPUT {

NEW_FROM_SWIG_PTR(type, _swigtype, _ptr);

$result = output_helper($result, o);

}

%enddef

IN_OUT_TYPEMAPPER(gss_name_t *, SWIGTYPE_p_gss_name_struct, *$1);

IN_OUT_TYPEMAPPER(gss_OID *, SWIGTYPE_p_gss_OID_desc_struct, $1);

IN_OUT_TYPEMAPPER(gss_OID_set *, SWIGTYPE_p_gss_OID_set_desc_struct, $1);

IN_OUT_TYPEMAPPER(gss_buffer_t, SWIGTYPE_p_gss_buffer_desc_struct, $1);

IN_OUT_TYPEMAPPER(gss_cred_id_t *, SWIGTYPE_p_gss_cred_id_struct, *$1);

%typemap(in,numinputs=0) gss_buffer_t OUTPUT2(gss_buffer_desc temp) {

$1 = GSS_C_NO_BUFFER;

}

%typemap(in,numinputs=0) gss_buffer_t OUTPUT3($1_ltype temp) {

$1 = malloc(sizeof(gss_buffer_t));

}

%typemap(argout,fragment="output_helper") gss_buffer_t OUTPUT3 {

NEW_FROM_SWIG_PTR((gss_buffer_t), SWIGTYPE_p_gss_buffer_desc_struct, $1);

$result = output_helper($result, o);

}

%typemap(in) gss_name_t * IN($*1_ltype temp) {

SWIG_ConvertPtr($input, (void **) &temp, $1_descriptor, SWIG_POINTER_OWN);

$1 = &temp;

}

%typemap(in,numinputs=1) gss_ctx_id_t * OUTPUT($*1_ltype tmp_ctx) {

if($input == Qnil) {

tmp_ctx = GSS_C_NO_CONTEXT;

$1 = &tmp_ctx;

} else {

void *vPtr = 0;

// Check if vPtr is just a NULL -> (void *) NULL

SWIG_ConvertPtr($input, &vPtr, $1_descriptor, SWIG_POINTER_OWN);

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=272

GSSAPI 273

$1 = vPtr;

}

}

%typemap(argout,fragment="output_helper") gss_ctx_id_t *OUTPUT {

NEW_FROM_SWIG_PTR((gss_ctx_id_t *), SWIGTYPE_p_p_gss_ctx_id_struct, *$1);

$result = output_helper($result, o);

}

%typemap(in) gss_ctx_id_t IN($1_ltype temp) {

SWIG_ConvertPtr($input, (void **) &temp, $&1_descriptor, SWIG_POINTER_OWN);

$1 = temp;

}

%apply gss_name_t *OUTPUT { gss_name_t *OUT };

%apply gss_name_t *IN { gss_name_t *IN };

%apply int *OUTPUT { OM_uint32 *OUT };

%apply gss_buffer_t OUTPUT { gss_buffer_t OUT };

%apply gss_buffer_t OUTPUT2 { gss_buffer_t OUT2 };

%apply gss_cred_id_t *OUTPUT { gss_cred_id_t *OUT };

%apply gss_ctx_id_t *OUTPUT { gss_ctx_id_t *INOUT };

%apply gss_OID_set *OUTPUT { gss_OID_set *OUT };

%apply gss_OID *OUTPUT { gss_OID *OUT };

%apply int *OUTPUT { gss_cred_usage_t *OUT };

%apply int *OUTPUT { int *OUT };

void printErrors(OM_uint32 iMajorStatus, OM_uint32 iMinorStatus);

%feature("docstring") {

/*
Document-method: gss_import_name

call-seq:

gss_import_name(GssBufferDesc name_buffer, opaque_name_type) ->

[MajorStatus, MinorStatus, gss_name_t]

A module function.

*/

}

OM_uint32 KRB5_CALLCONV gss_import_name

(

OM_uint32 *OUT, /* minor_status */

gss_buffer_t, /* input_name_buffer */

gss_OID, /* input_name_type(used to be const) */

gss_name_t *OUT /* output_name */

);

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=273

GSSAPI 274

// Returns:

// [MajorStatus, MinorStatus, MessageContext, StatusString]

// %feature("autodoc", "0");

OM_uint32 KRB5_CALLCONV gss_display_status

(

OM_uint32 *OUT, /* minor_status */

OM_uint32, /* status_value => GSS_C_GSS_CODE | GSS_C_MECH_CODE */

int, /* status_type */

gss_OID, /* mech_type (used to be const) => GSS_C_NULL_OID */

OM_uint32 *OUT, /* message_context */

gss_buffer_t OUT /* status_string */

);

// gss_acquire_cred(...) -> [MajorStatus, MinorStatus,

// gss_cred_id_t, gss_OID_set, TimeRec]

OM_uint32 KRB5_CALLCONV gss_acquire_cred

(

OM_uint32 *OUT, /* minor_status */

gss_name_t IN, /* desired_name -> NULL means default */

OM_uint32 IN, /* time_req */

gss_OID_set IN, /* desired_mechs -> NULL means default */

gss_cred_usage_t IN, /*
cred_usage

-- 0=INITIATE-AND-ACCEPT,

-- 1=INITIATE-ONLY,

-- 2=ACCEPT-ONLY

*/

gss_cred_id_t *OUT, /* output_cred_handle */

// if returned non-NULL,

// -- caller must release with GSS_Release_cred()

gss_OID_set *OUT, /* actual_mechs */

// if returned non-NULL,

// -- caller must release with GSS_Release_oid_set()

OM_uint32 *OUT /* time_rec */

);

OM_uint32 KRB5_CALLCONV gss_display_name

(OM_uint32 *OUT, /* minor_status */

gss_name_t IN, /* input_name */

gss_buffer_t OUT, /* output_name_buffer */

gss_OID *OUT /* output_name_type */

);

OM_uint32 KRB5_CALLCONV gss_inquire_cred

(

OM_uint32 *OUT, /* minor_status */

gss_cred_id_t, /* cred_handle */

gss_name_t *OUT, /* name */

OM_uint32 *OUT, /* lifetime */

gss_cred_usage_t *OUT, /* cred_usage */

gss_OID_set *OUT /* mechanisms */

);

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=274

GSSAPI 275

// gss_release_cred(gss_cred_id_t *) -> [MajorStatus, MinorStatus]

OM_uint32 KRB5_CALLCONV gss_release_cred

(

OM_uint32 *OUT, /* minor_status */

gss_cred_id_t *IN /* cred_handle */

);

// -> [MajorStatus, MinorStatus, ReturnedContext, actual_mech_type,

// output_token, ret_flags, time_rec]

OM_uint32 KRB5_CALLCONV gss_init_sec_context

(

OM_uint32 *OUT, /* minor_status */

gss_cred_id_t IN, /* claimant_cred_handle */

gss_ctx_id_t *INOUT, /* context_handle */

gss_name_t IN, /* target_name */

gss_OID IN, /* mech_type (used to be const)

should use -> GSS_C_NO_OID for KRB5*/

OM_uint32 IN, /* req_flags */

OM_uint32 IN, /* time_req */

gss_channel_bindings_t IN, /* input_chan_bindings */

gss_buffer_t IN, /* input_token */

gss_OID * OUT, /* actual_mech_type */

gss_buffer_t OUT, /* output_token */

OM_uint32 * OUT, /* ret_flags */

OM_uint32 * OUT /* time_rec */

);

OM_uint32 KRB5_CALLCONV gss_accept_sec_context

(

OM_uint32 *OUT, /* minor_status */

gss_ctx_id_t *INOUT, /* context_handle */

gss_cred_id_t IN, /* acceptor_cred_handle */

gss_buffer_t IN, /* input_token_buffer */

gss_channel_bindings_t IN, /* input_chan_bindings */

gss_name_t *OUT, /* src_name */

gss_OID *OUT, /* mech_type */

gss_buffer_t OUT, /* output_token */

OM_uint32 * OUT, /* ret_flags */

OM_uint32 * OUT, /* time_rec */

gss_cred_id_t * OUT /* delegated_cred_handle */

);

OM_uint32 KRB5_CALLCONV gss_process_context_token

(

OM_uint32 * OUT, /* minor_status */

gss_ctx_id_t IN, /* context_handle */

gss_buffer_t IN /* token_buffer */

);

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=275

GSSAPI 276

OM_uint32 KRB5_CALLCONV gss_delete_sec_context

(OM_uint32 * OUT, /* minor_status */

gss_ctx_id_t * IN, /* context_handle */

gss_buffer_t OUT2 /* output_token */

);

OM_uint32 KRB5_CALLCONV gss_release_name

(OM_uint32 *OUT, /* minor_status */

gss_name_t *IN /* input_name */

);

OM_uint32 KRB5_CALLCONV gss_release_buffer

(OM_uint32 *OUT, /* minor_status */

gss_buffer_t IN /* buffer */

);

OM_uint32 KRB5_CALLCONV gss_export_name

(OM_uint32 *OUT, /* minor_status */

const gss_name_t, /* input_name */

gss_buffer_t OUT /* exported_name */

);

OM_uint32 KRB5_CALLCONV gss_wrap

(

OM_uint32 *OUT, /* minor_status */

gss_ctx_id_t IN, /* context_handle */

int IN, /* conf_req_flag */

gss_qop_t IN, /* qop_req */

gss_buffer_t IN, /* input_message_buffer */

int *OUT, /* conf_state */

gss_buffer_t OUTPUT3 /* output_message_buffer */

);

OM_uint32 KRB5_CALLCONV gss_unwrap

(

OM_uint32 *OUT, /* minor_status */

gss_ctx_id_t IN, /* context_handle */

gss_buffer_t IN, /* input_message_buffer */

gss_buffer_t OUT, /* output_message_buffer */

int *OUT, /* conf_state */

gss_qop_t *OUT /* qop_state */

);

/*
KERBEROS / GSSAPI Stuff

*/

GSS_DLLIMP extern const gss_OID_desc * const GSS_KRB5_NT_PRINCIPAL_NAME;

OM_uint32 KRB5_CALLCONV krb5_gss_register_acceptor_identity(const char *);

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=276

GSSAPI 277

OM_uint32 KRB5_CALLCONV gss_krb5_get_tkt_flags

(OM_uint32 *OUT,

gss_ctx_id_t context_handle,

krb5_flags *ticket_flags);

OM_uint32 KRB5_CALLCONV gss_krb5_copy_ccache

(OM_uint32 *OUT,

gss_cred_id_t cred_handle,

krb5_ccache out_ccache);

OM_uint32 KRB5_CALLCONV gss_krb5_ccache_name

(OM_uint32 *OUT, const char *name,

const char **out_name);

GSSAPI SWIG C Helpers

Download sso/gssapi_ruby/gssapi_wrap.h

#include <gssapi.h>

#include <stdio.h>

#include <gssapi/gssapi_generic.h>

#include <string.h>

typedef struct gssapi_data {

gss_name_t gss_name; //opaque type

gss_cred_id_t credentials; //opaque type

OM_uint32 major_status; //basic unsigned int

OM_uint32 minor_status; //basic unsigned int

gss_ctx_id_t ctx; //opaque type

gss_buffer_desc recvToken; //value / length buffer

gss_buffer_desc sendToken; //value / length buffer

} GSSAPI_RESULT;

const char * getMechErrorMessage(OM_uint32 iMinorStatus);

const char * getGssErrorMessage(OM_uint32 iMajorStatus);

int GssImportNameHelper(const char * serviceName);

Download sso/gssapi_ruby/gssapi_wrap.c

#include "gssapi_wrap.h"

const gss_OID NT_USER_NAME() {

return GSS_C_NT_USER_NAME;

};

const gss_OID NT_MACHINE_UID_NAME() {

return GSS_C_NT_MACHINE_UID_NAME;

};

const gss_OID NT_STRING_UID_NAME() {

return GSS_C_NT_STRING_UID_NAME;

};

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/gssapi_wrap.h
http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/gssapi_wrap.c
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=277

GSSAPI 278

const gss_OID NT_HOSTBASED_SERVICE() {

return GSS_C_NT_HOSTBASED_SERVICE;

};

const gss_OID NT_ANONYMOUS() {

return GSS_C_NT_ANONYMOUS;

};

const gss_OID NT_EXPORT_NAME() {

return GSS_C_NT_EXPORT_NAME;

};

const gss_OID_set NULL_OID_SET() {

return GSS_C_NULL_OID_SET;

}

const char * getGssErrorMessage(OM_uint32 iMajorStatus) {

OM_uint32 message_context = 0;

gss_buffer_desc status_string;

OM_uint32 tempStatus = 0;

printf("\nAttempting to display error message::\n");

gss_display_status(&tempStatus, iMajorStatus,

GSS_C_GSS_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

printf("\nprinting GSS status:\n %s\n", status_string.value);

return status_string.value;

}

const char * getMechErrorMessage(OM_uint32 iMinorStatus) {

OM_uint32 message_context = 0;

gss_buffer_desc status_string;

OM_uint32 tempStatus = 0;

printf("\nAttempting to display error message::\n");

gss_display_status(&tempStatus, iMinorStatus,

GSS_C_MECH_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

printf("\nprinting MECH status:\n %s\n", status_string.value);

return "";

}

void printErrors(OM_uint32 iMajorStatus, OM_uint32 iMinorStatus) {

OM_uint32 message_context = 0;

gss_buffer_desc status_string;

OM_uint32 tempStatus = 0;

gss_display_status(&tempStatus, iMajorStatus,

GSS_C_GSS_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

printf("GSS status: %s\n", status_string.value);

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=278

GSSAPI 279

gss_display_status(&tempStatus, iMinorStatus,

GSS_C_MECH_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

printf("MECH status: %s\n", status_string.value);

return;

}

int GssImportNameHelper(const char * serviceName) {

OM_uint32 iMajorStatus;

OM_uint32 iMinorStatus;

gss_buffer_desc stServerNameBuffer;

gss_name_t stServerName;

int len = strlen(serviceName) + 1;

stServerNameBuffer.value = (char *)serviceName;

stServerNameBuffer.length = len;

iMajorStatus = gss_import_name(

&iMinorStatus,

&stServerNameBuffer,

GSS_C_NT_USER_NAME,

&stServerName);

if(iMajorStatus != GSS_S_COMPLETE) {

printf("Error importing.");

OM_uint32 message_context = 0;

gss_buffer_desc status_string;

OM_uint32 tempStatus = 0;

gss_display_status(&tempStatus, iMajorStatus,

GSS_C_GSS_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

printf("\nGSS status: %s", status_string.value);

gss_display_status(&tempStatus, iMinorStatus,

GSS_C_MECH_CODE, GSS_C_NULL_OID,

&message_context, &status_string);

printf("MECH status: %s\n", status_string.value);

return -1;

}

return 0;

}

Report erratum

this copy is (P1.0 printing, December 2009)

http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=279

SPNEGO 280

extconf

Download sso/gssapi_ruby/extconf.rb

require 'mkmf'

system('swig -v -autorename -ruby -I/usr/include -o gssapi.c gssapi.i')

have_library "gssapi_krb5"

create_makefile "gssapi"

12.3 SPNEGO

SPNEGO SWIG Bindings

Download sso/lunchedin_spnego/lib/spnego_ruby/spnego.i

%module R_spnego

%apply char *INPUT { unsigned char *pbMechToken };

%include "../../../spnegotokenhandler/src/spnego.h"

%{

#include "../../../spnegotokenhandler/src/spnego.h"

#include "../../../spnegotokenhandler/src/spnegodata.h"

#include "../../../spnegotokenhandler/src/derparse.h"

#include "../../../spnegotokenhandler/src/spnegoparse.h"

%}

extconf

Download sso/lunchedin_spnego/lib/spnego_ruby/extconf.rb

require 'mkmf'

system('swig -v -autorename -ruby -I/usr/include -o r_spnego.c spnego.i')

have_library "spnego"

create_makefile "r_spnego"

Report erratum

this copy is (P1.0 printing, December 2009)

http://media.pragprog.com/titles/fr_secure/code/sso/gssapi_ruby/extconf.rb
http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_spnego/lib/spnego_ruby/spnego.i
http://media.pragprog.com/titles/fr_secure/code/sso/lunchedin_spnego/lib/spnego_ruby/extconf.rb
http://books.pragprog.com/titles/fr_secure/errata/add?pdf_page=280

Chapter 13

Bibliography

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[RTH08] Sam Ruby, David Thomas, and David Heinemeier Hansson.

Agile Web Development with Rails. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, third edition, 2008.

Index
A
access_list(), 145

Achilles Proxy, 261

ActionMailer

digital signatures, 183–187

Active Directory, 119–122

ActiveRbac plug-in, 136

ActiveRecord, 92–94

attr_protected(), 52

callbacks, 168

calls, intercepting, 152

cryptography and, 165–171

encryptor integration, 169

h (), 62

HTTP parameter binding, 52

placeholders, 93

sanitization and, 60

validation and, 62

ActiveRecord::ConnectionAdapters::Quoting

module, 92

Administrator privileges, 33f

Administrator role, enabling, 28, 32f

Advanced encryption standard (AES),

163, 166

Agile Web Development with Rails (Ruby

et al), 165

Apache Directory Studio, 109f

distinguished name, 112f

installation, 108

LDAP entry, 110f

MUST attributes, 113f

object class, 111f

password editor, 114f

password, attribute type, 113f

Application filter flow, 143f

Application proxies, 25f, 24–25

approved(), 212

Asterisks, 90

Asymmetric cryptography, 162f,

162–163

Attacks, see Countermeasures; Web

application hacking techniques

attr_protected(), 52

Authentication, 95–133

vs. authorization, 95

centralized, 95

concepts in, 95–98

decentralized, 95

defined, 70, 95

flexible, 122f, 122–133

LDAP/Directory-based

authentication, 109f, 110f, 111f,

112f, 113f, 114f, 107–122

OpenLDAP setup, 263

passwords, 165

sessions and contexts, 98

testing, 69, 71–73

user registration, 99–107

users against database, 124

see also Single sign-on (SSO)

Authentication process, 39

Authorization, 52–57, 135–154

vs. authentication, 95

defined, 96, 135

discretionary access control, 138f,

139f, 140f, 138–140

implementing role-based access

control, 143f, 151f, 142–151

mandatory access control, 137f,

136–138

planning for, 140

Rails support for, 136

role-based access control, 141f,

140–142

security approaches, 151–154

Authorization checks, 35, 38f, 54

authorization_filter(), 147

AUTHORIZATION MODEL DEFENSE IN DEPTH CONCEPT

Authorization model, 28, 53

Authorization vulnerabilities, 31

Authorization, testing, 69, 73–74

B
begin_openid(), 199

Behavior-driven development (BDD), 83

Bind variables, 59, 92, 93

Biometric factors, 97

Blacklist technique, 90

Blacklisting input patterns, 61

Block cipher encryption, 158

Broken authorization, 35f, 36f, 31–36,

37, 38f

BURP Proxy, 261

C
CAPTCHA, 65, 99, 100, 102f

Castronaut, 253–259

authentication, 259f, 254–259

gem for installation, 253

registration, 254f, 258, 259f

Central Authentication Service (CAS),

252f, 254f, 258f, 259f, 251–259

authentication flow, 252f

Castronaut gem, 253

Centralized authentication, 95, 192

see also Single-sign-on (SSO)

Certificate authority, 173

Certificate file descriptions, 180f

Certificate-signing request, 181

Certificates

converting from PEM to DER, 177

root, 179

Character escaping, 92

Characters

SQL construction, 89–92

Unicode, 89

check_login(), 74

Cipher block chaining, 160, 164

Ciphers, 75, 76, 158

Ciphertext, 159, 181

Claimed identifier, 196

Collisions, 158

Command injection, 85f, 85–86, 87f

Community code, security and, 11

Complexity, 19–20

Configurable authentication, 120

Contexts, 98

Controller actions, 142

Convention, 33, 50

Cookies, theft of, 43, 44

Countermeasures

authorization, 52–57

CSRF prevention, 64–66

form fields and, 27

parameter manipulation protection,

49–52

SQL injection, 57–60

XSS prevention, 61–64

Credentials, 97

Cross-site request forgery (CSRF), 46f,

45–48

protecting against, 64–66

vs. XSS, 47

Cross-site scripting (XSS), 41f, 42f, 43f,

44f, 40–45

cookie theft, 43

vs. cross-site request forgery, 47

HTML injection, 40

overview of, 45

protecting against, 61–64

reflected XSS, 41

testing against known hacks, 78

Cryptographic software downloads, 136

Cryptography, 155–171

ActiveRecord and, 165–171

encryption and, 158–165

message digests and, 156f, 157f,

156–158

Ruby libraries for, 157

CSRF, see Cross-site request forgery

D
DAC, see Discretionary access control

Data protection, 57, 69, 155–171

ActiveRecord and, 165–171

encryption, 158–165

message digests, 156f, 157f,

156–158

tests for, 75–78

Database-authenticated users, 124,

134f

Decentralized authentication, 95

decision(), 214

decrypt(), 160

Defense in Depth concept, 86

complexity and, 19–20

DRY principle, 19

fail close, 15–16

least privilege, 17–18

overview, 13–14

283

DEFENSES INPUT

weakest link, 14f, 14

whitelisting, 16–17

Defenses, see Countermeasures;

Security measures

DES algorithm, 163

Digital signatures, 172–190

certificate verification, 174f

described, 172–177

email security, 179f, 180f, 179–182

incoming email messages, 187–189

overview of, 172

signed messages, 182–187

storing certificates, 178

Discretionary access control (DAC),

135, 138f, 139f, 140f, 138–140

DRY principal, 19

E
ECB, 164

Email, digital signatures, 172–190

incoming messages, 187–189

overview of, 174f, 172–177

securing exchanges, 179f, 180f,

179–182

signed messages, 182–187

storing certificates, 178

encrypt(), 160

Encryption, 158–165, 182

encryption_key(), 167

escape(), 42

escapeHTML(), 64

extend(), 145

F
Factors

biometric, 97

defined, 97

secret, 97

Fail close, 15–16

Fail safe, 54

Fiddler, 262

Filter logic, 58

Filter methods, 60

filter_parameter_logging(*params), 75

Filters, 143f, 144

Firefox Developer Tools, 262

Fixes, see Countermeasures; Security

measures

Fixtures, 127

flash object, 63

Flexible authentication, 122f, 122–133

Fuzz testing, 82

G
Gmail’s TL enabled SMTP gateway, 186

GSSAPI, 220, 222, 267

GSSClient, 242f, 223–248

GSSServer, 228f, 229f, 223–248

H
h (), 62, 63

Hacking

convention and, 33

known XSS hacks, 78

see also Web application hacking

techniques

handle_associate_request(), 209f

handle_associate_request(), 206, 208

handle_check_auth_request(), 206

handle_check_id_request(), 209

handle_check_auth_request(), 207

handle_check_id_request(), 210

Hash functions

collisions and, 158

message digests, 156

passwords and, 157

selecting, 158

HEX encoding, 43f

Hilton, Paris, 171

HTML injection, 40, 61

HTTP GET requests, 46

HTTP protocol, 65, 66

Hunt, Andrew, 19

I
ID access

protecting, 55–57

unprotected, 35, 38f

IMAP, 190

, 65

inetOrgPerson, 110

Initialization vectors (IVs), 160, 161

Injection, see Command injection; SQL

injection

Input

rules about, 84

safe vs. unsafe, 61

string handling, improper, 88

testing, 70, 78–81

validation of, 61, 84–94

command injection, 85f, 85–86,

87f

284

KERBEROS OUTPUT

SQL injection, 88–92

SQL injection, Rails module for,

92–94

K
Kerberos, 220f, 219–220

code with GSSAPI, 222

credentials, 226f

GSSAPI, 220

GSSServer and GSSClient, 228f,

229f, 242f, 223–248

GUI, 227f

server setup, 221

SPNEGO and, 251f, 248–251, 252f

Key distribution, 162

Keys

asymmetric cryptography, 162

PKCS12 store, 178

private, 175

storage of, ActiveRecord, 167

L
LDAP binding, 108

LDAP/Directory-based authentication,

109f, 110f, 111f, 112f, 113f, 114f,

107–122

Active Directory, 119–122

flexible, 122f, 122–133

Least privilege, 17–18

Lightweight Directory Access Protocol,

see LDAP/Directory-based

authentication

<link>, 65

Login

attacks on, 57

testing, 71

Login attacks, 38

Login process, testing

see also Authentication entries

Logout, testing, 72

LunchedIn

ActiveRecord encryptor, 169

authorization model, 28

broken authorization, 35f, 36f,

31–36, 37, 38f

CAPTCHA for, 100, 102f

CAS authentication, 258f, 259f,

254–259

CAS authentication flow, 252f

Castronaut, 254f

code for, 24

CSRF, 46f, 45–48

digital email signatures, 182–187

email certificate, 180f

EventController weaknesses, 55

LDAP authentication, 114f

LDAP vs. database authentication,

123

overview of, 23–24

parameter manipulation, 26–31

salts, adding, 104–107

security questions, 165

SQL injection, 39f, 37–40

voting more than once, 34

XSS, 41f, 42f, 43f, 44f, 40–45

M
Mandatory access control (MAC), 137f,

135–138

Message digests, 156f, 157f, 156–158

Metaprogramming, 184

Metaprogramming, Ruby, 146

MIME, see S/MIME

ModelSecurity, 152

ModelSecurity plug-in, 136

N
Named bind variables, 59, 92, 93

O
Odysseus Proxy, 262

OpenID, 192

association, 197

authentication flow, 193f

described, 193

discovery, 194, 195f

gem for, 194

overview of, 193–204

parameters, 202f

provider implementation, 205f, 207f,

208f, 209f, 210f, 216f, 204–216,

217–219f

redirect process, 200, 201f

relaying party authentication, 205f

storage, 209

OpenLDAP

directory, browsing, 266

setup, 263

OpenSSL, 159

OpenSSL::Cipher.random_key(), 160

Output, sanitization of, 62

285

PARAMETER MANIPULATION SECURITY MEASURES

P
Parameter manipulation, 28f, 29f, 30f,

31f, 26–31, 32, 33f

protecting against, 49–52

testing, 75–78

Parameters, binding of, 50

Paros, 261

Passwords

as factors, 97

hash verification, 157

hashes and, 157

parameters and, 75

plaintext, 119

salts, 103–104

salts and, 119

security questions for, 165

strength, 73

web application security, 103

see also LDAP

Patches, see Countermeasures;

Security measures

Payroll data example, 136

Pen-testing, 27

Perens, Bruce, 152

Persistent XSS, cookie theft, 43, 44f

PKCS12 key store, 178

Placeholders, 93

Plaintext, 119, 159

Polymorphic user models, 125f

The Pragmatic Programmer: From

Journeyman to Master (Hunt &

Thomas), 19

Prevention, see Security measures

Principals, 53, 96, 97

see also Authorization entries

Private keys, 175

ProfileController, 152

protect_from_forgery(), 65

Proxy applications, 261–262

Public vs. private users, 192

Q
Query construction, 58

Quotations, 90

quote_string(s), 92

R
Rails testing stack, 71f

rails_rcov plug-in, 81

RatingsController, 53

Rcov, 82, 83f

Reflected cross-site scripting, 41

Registration, user, 99–107

Remote access, GET requests for, 46

Reply email, 187–188

Rijndael, 163

RMagick, 99

Role declarations, 151f

Role-based access control (RBAC), 53,

135, 141f, 140–142

approaches to, 142

implementing, 143f, 151f, 142–151

RoleBasedControllerAuthorization, 144

Roles, 53, 138, 140, 144

Root certificates, 179

RSA private keys, 175

RSpec, 83

ruby-net-ldap gem, 116

S
S/MIME authentication, 189

S/MIME message attachments, 179f,

179

S/MIME signatures, 181

Salts, 103–104, 158

adding to LunchedIn, 104–107

defined, 103

LDAP and, 119

Sanitization, 60, 62, 70

SQL injection and, 90

testing, 78–81

Sanitization logic, 58

save(), 61

save_with_captcha(), 101

Secret factors, 97

Secure Sockets Layer (SSL), 98, 172

Security

addressing vulnerabilities, 49

community code and, 11

complexity and, 19–20

concerns with, 10

Defense in Depth concept, 13–14

fail close and, 15–16

least privilege, 17–18

mind-set of, 12

weakest link and, 14f, 14

whitelisting, 16–17

see also Security measures; Testing

Security boundaries, 18

Security measures

authorization, 52–57

286

SECURITY QUESTIONS VALIDATION

CSRF prevention, 64–66

parameter manipulation, 49–52

SQL injection prevention, 57–60

XSS prevention, 61–64

see also Data protection; Testing

Security questions, 165

Security through obscurity, 40

Selenium, 78–81

self.included(), 145

Self-signed certificates, 174–177

Serpent algorithm, 163

Service accounts, 96

Services, 96

Session harvesting, 44

Session timeouts, 65

SessionController, 57, 71, 76

Sessions, 98

show(), 55

simple_captcha plug-in, 99

Single quotation marks, 37

Single sign-on (SSO), 191–259

CAS, 252f, 254f, 258f, 259f, 251–259

Kerberos, 220f, 219–220

OpenID, 195f, 202f, 193–204, 205f

association, 197

authentication flow, 193f

redirect process, 200, 201f

OpenID provider, implementing,

205f, 207f, 208f, 209f, 210f, 216f,

204–216, 217–219f

public vs. private, 192

SPIKE Proxy, 261

SPNEGO, 251f, 248–251, 252f, 280

SQL injection, 39f, 37–40

characters, dangerous, 89–92

consequences of, 40

defined, 88

protecting against, 57–60

Rails module for, 92–94

validation, 88–92

SQL, true statements, 39

ssl_required plug-in, 80

ssl_requirement plug-in, 74, 76

SSO, see Single sign-on (SSO)

Symmetric cryptography, 159–162

Symmetric encryption, 163

T
Tamper Data, 25f

broken authorization, 34, 36f

form elements, adding, 31f

requests, outgoing, 37f

requests, replaying, 36f

starting, 29f

users, creating, 30f

Tarantula, 83

Testing, 68–83

authentication, 71–73

authorization, 73–74

frameworks for, 82

input validation, 78–81

layers, 70, 71f

LDAP data, 128

LDAP user authentication, 129

measuring coverage of, 81–82, 83f

parameters, 75–78

role declarations, 145

self-signed certificates, 174

what to test for, 68–70

see also Countermeasures; Security

measures

Thomas, Dave, 19

Timeouts, 65

TLS-enabled SMTP gateway, 186

to_i(), 91

Transport Layer Security (TLS), 172

Twofish algorithm, 163

U
Unicode characters, 89

unless keyword, 54

update(), 56

url_for_user(), 212

URL-encoded values, 43f

User interface, 150

User registration, 99–107, 130, 134f

User stories, authorization, 140

Users, 96, see Authorization entries

concerns, in LunchedIn, 123

database authentication, 124

demo, 215

LDAP and, 110

LDAP authentication, 124

as nil, 147

polymorphic model, 125f

public vs. private, 192

V
validates_format_of(), 78

Validation, 84–94

command injection, 85f, 85–86, 87f

data rules for, 84

287

VARIABLE INTERPOLATION XSS

defined, 84

of input, 61

SQL injection, 88–92

SQL injection, Rails module for,

92–94

Variable interpolation, 58

Verification

digital certificates, 174f

of email messages, 189

verify(), 66

Voting links

fixing, 53

hacking, 34

Vulgar lyrics example, 141

Vulnerabilities, see Web application

hacking techniques

W
“Wally Webcoder”, 36, 110

Weakest link, securing, 14f, 14

Web application hacking techniques,

23–48

application proxies, 25f, 24–25

broken authorization, 35f, 36f,

31–36, 37, 38f

cross-site request forgery, 46f, 45–48

LunchedIn, overview of, 23–24

parameter manipulation, 28f, 29f,

30f, 31f, 26–31, 32, 33f

SQL injection, 39f, 37–40

XSS, 41f, 42f, 43f, 44f, 40–45

see also Countermeasures

Webstretch Proxy, 262

Whitelisting, 16–17

Whitelists, 90

win32-open3 gem, 79

X
X.509 digital certificates, 174f, 173–174

XSS, see Cross-site scripting

288

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of December 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 250

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on

Mac OS X

2009 9781934356326 256

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your

Code

2009 9781934356289 232

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Grails: A Quick-Start Guide 2009 9781934356463 200

Continued on next page

pragprog.com

Title Year ISBN Pages

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2009 9781934356494 272

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Cocoa with Ruby: Create

Compelling Mac Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Continued on next page

Title Year ISBN Pages

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

iPhone SDK Development 2009 9781934356258 576

More Ruby in Depth...

Metaprogramming Ruby
This book describes metaprogramming as an

essential component of Ruby. Once you understand

the principles of Ruby, including the object model,

scopes, and eigenclasses, you’re on your way to

applying metaprogramming both in your daily work

and in your fun, after-hours projects. Whether

you’re a Ruby apprentice on the path to mastering

the language or a Ruby wiz in search of new tips,

this book is for you.

Metaprogramming Ruby

Paolo Perrotta

(240 pages) ISBN: 9781934356470. $32.95

http://pragprog.com/titles/ppmetr

The RSpec Book
RSpec, Ruby’s leading Behaviour Driven

Development tool, helps you do TDD right by

embracing the design and documentation aspects

of TDD. It encourages readable, maintainable

suites of code examples that not only test your

code, they document it as well. The RSpec Book will

teach you how to use RSpec, Cucumber, and other

Ruby tools to develop truly agile software that gets

you to market quickly and maintains its value as

evolving market trends drive new requirements.

The RSpec Book: Behaviour Driven

Development

with RSpec, Cucumber, and Friends

David Chelimsky, Dave Astels, Zach Dennis, Aslak

Hellesøy, Bryan Helmkamp, Dan North

(350 pages) ISBN: 978-1-9343563-7-1. $42.95

http://pragprog.com/titles/achbd

http://pragprog.com/titles/ppmetr
http://pragprog.com/titles/achbd

The Home of Ruby and Rails

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is the newly updated Third

Edition, which goes beyond the award winning

previous editions with new material covering the

latest advances in Rails 2.0.

Agile Web Development with Rails: Third Edition

Sam Ruby, Dave Thomas, and David Heinemeier

Hansson, et al.

(784 pages) ISBN: 978-1-9343561-6-6. $43.95

http://pragprog.com/titles/rails3

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

http://pragprog.com/titles/rails3
http://pragprog.com/titles/ruby3

More for Your Career...

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(200 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

Land the Tech Job You Love
You’ve got the technical chops—the skills to get a

great job doing what you love. Now it’s time to get

down to the business of planning your job search,

focusing your time and attention on the job leads

that matter, and interviewing to wow your

boss-to-be.

You’ll learn how to find the job you want that fits

you and your employer. You’ll uncover the hidden

jobs that never make it into the classifieds or

Monster. You’ll start making and maintaining the

connections that will drive your future career

moves.

You’ll land the tech job you love.

Land the Tech Job You Love

Andy Lester

(225 pages) ISBN: 978-1934356-26-5. $23.95

http://pragprog.com/titles/algh

http://pragprog.com/titles/cfcar2
http://pragprog.com/titles/algh

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Security on Rails’ Home Page

http://pragprog.com/titles/fr_secure

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fr_secure.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/fr_secure
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fr_secure
www.pragprog.com/catalog

	Contents
	Security in Ruby on Rails
	Who's This Book For?
	What Does This Book Cover?
	Entering a Security Mind-Set
	Defense in Depth
	Only Secure as the Weakest Link
	Fail Close
	Whitelisting
	Least Privilege
	Do Not Repeat Yourself
	Avoid Complexity
	Acknowledgments

	Getting Started
	Hacking the Example
	Getting Started with LunchedIn
	The Tools of the Trade
	Exploit: Parameter Manipulation
	Exploit: Broken Authorization
	Exploit: SQL Injection
	Exploit: Cross-Site Scripting
	Exploit: Cross-Site Request Forgery

	Fixing the Example
	Protecting Against Parameter Manipulation
	Adding Authorization
	Preventing SQL Injection
	Cross-Site Scripting Countermeasures
	Protecting Against a Cross-Site Request Forgery

	Building on the Basics
	Testing for Security
	Things You Should Test
	Testing in Layers
	Authentication Tests
	Authorization Tests
	Data Protection Tests
	Input Validation and Sanitization Tests
	Measuring Test Coverage
	Other Testing Frameworks

	Validation
	Command Injection
	SQL Injection
	Mitigating SQL Injection
	Built-in SQL Injection Mitigation in Rails

	Authentication: Decentralized Authentication
	Authentication Concepts
	User Registration
	LDAP/Directory-Based Authentication
	Flexible Authentication

	Authorization
	What Is Authorization?
	Mandatory Access Control
	Discretionary Access Control
	Role-Based Access Control
	Implementing RBAC
	A Simple Approach to Model Security

	Data Protection Using Cryptography
	Message Digests
	Encrypting Data
	Using Cryptography with ActiveRecord

	Digital Signatures and Email
	Digital Signatures
	Storing Certificates
	Secure Email Exchange
	Sending Signed Messages
	Verifying Received Messages

	SSO: Centralized Authentication
	Public Versus Private
	OpenID
	Implementing an OpenID Provider
	Kerberos, GSSAPI, and SPNEGO
	CAS

	Reference
	Web Application Proxies
	Web Application Proxies

	Authentication Appendix
	OpenLDAP Setup
	GSSAPI
	SPNEGO

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

