

Early praise for Ruby Performance Optimization

This book is a must-have for anyone bringing performance-sensitive Ruby programs
to production. It will teach you how to efficiently hunt down and correct the bot-
tlenecks that make users sad and prevent teams from spending time building
new functionality.

➤ Matt Margolis
Director of application development, Getty Images

A fantastic book. Probably the best tech book I have read in the last few years. It
brings together information I can’t just find in 30 minutes of web searches. This
book has taught me to be a better developer and to start filling a hole in my skill
set.

➤ Charley Stran
Web developer, TheBlaze | Mercury Radio Arts

Ruby Performance Optimization has changed the way I develop. I now think about
simple performance tweaks before I commit code. It is a book I keep close for ref-
erence when solving tough performance issues.

➤ Jeff Holland
Senior software engineer, Ackmann & Dickenson

For programmers who aren’t familiar with what is going on “under the covers,” I
think this book will open their eyes to new levels of understanding their code.

➤ Kim Shrier
Principal, Westryn Internet Services, Shrier and Deihl

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Ruby Performance Optimization
Why Ruby Is Slow, and How to Fix It

Alexander Dymo

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-069-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2015

https://pragprog.com
rights@pragprog.com

To my wife Helen and my daughter Sophia.

Contents

Preface ix

1. What Makes Ruby Code Fast 1
What Makes Ruby Code Slow 2
Optimize Memory 8
Get Into the Performance Mind-set 10

2. Fix Common Performance Problems 13
Save Memory 15
Optimize Your Iterators 25
Write Less Ruby 33
Takeaways 38

3. Make Rails Faster 39
Make ActiveRecord Faster 39
Make ActionView Faster 46
Takeaways 50

4. Profile 53
Measure with Ruby-Prof 54
Visualize with Ruby-Prof Printers 58
Visualize with KCachegrind (QCachegrind) 66
Takeaways 72

5. Learn to Optimize with the Profiler 73
Optimize but Don’t Break 73
Pick Low-Hanging Fruit 75
Take a Step Back 82
Takeaways 84

6. Profile Memory 85
Detect Excessive Memory Usage 85
Profile Memory with Ruby-Prof 92
Measure Memory Yourself with GC#stat and GC::Profiler 100
Takeaways 102

7. Measure 103
Minimize External Factors 104
Make Internals Behave Predictably 106
Analyze and Compare Measurements Using Statistics 107
Takeaways 113

8. Test Performance 115
Benchmark 116
Assert Performance 119
Report Slowdowns and Optimizations 123
Test Rails Application Performance 124
Takeaways 134

9. Think Outside the Box 135
Cycle Long-Running Instances 135
Fork to Run Heavy Jobs 139
Do Out-of-Band Garbage Collection 141
Tune Your Database 143
Buy Enough Resources for Production 145
Takeaways 146

10. Tune Up the Garbage Collector 149
Understand How Ruby Uses Memory 149
Know What Triggers GC 161
Understand Why GC in Ruby 2.1 and 2.2 Is So Much Faster 168
Tune Up GC Settings 169
Takeaways 172
Onward! 173

Index 175

Contents • viii

Preface
While I was writing this book, Ruby turned 21. During those two decades the
Ruby core team has steadily evolved the language and stabilized standard
libraries, the Ruby community has developed a whole ecosystem of advanced
tools, and Rubygems has pretty much become a source of solutions for all of
a Ruby developer’s needs. But one nagging little concern has always remained:
performance.

The Need for Speed
It’s a widely shared belief that Ruby is slooow. Ruby, the common wisdom
says, is a lovely language that saves you time while you’re developing your
application but drags its feet when you execute it. How much truth is there
to that belief?

Well, good old Ruby 1.8, released in 2003, was indeed slow. But since then
Ruby developers have radically improved the language’s performance. Ruby
1.9 added a virtual machine that executes the code faster. Ruby 2.0 has copy-
on-write friendly memory management that makes large web application
deployments faster. And finally, thanks to the outstanding work of Koichi
Sasada, Ruby got a generational garbage collector in version 2.1 and an
incremental garbage collector in 2.2. That work continues and better perfor-
mance is now one of the primary goals of the new releases.

So how slow is Ruby now? Not so slow: it’s now on par with other dynamic
languages. And how slow are Ruby applications now? Ah, that depends. A
lot of legacy code exists that still runs Ruby 1.8 or 1.9 with little to no possi-
bility to upgrade. You can assume that it’s slow. But more importantly, there
is a whole lot of Ruby code that was written without performance in mind.
And that code will stay slow no matter which Ruby version you run.

I have been developing Ruby and Rails applications since 2006. I have seen
slow Ruby code everywhere. And now in 2015 I still have to spend as much

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

time optimizing my code as I did back in 2006—even when I use the latest
and fastest Ruby.

You might very well be wondering why I bother to optimize code when there
are other, better-known ways to make an application run faster—namely
caching and scaling. Both techniques are well known and understood. You’ll
have no trouble finding plenty of advice on caching strategies, as well as many
scaling recipes, and some very good tools are available for caching and scaling.

And you’re right, caching and scaling do help with performance. I used to do
both. But one day my cache invalidation code became too complex. Another
day I found myself spending too much money on servers and Heroku dynos.
Then there was the time when my long-running asynchronous processes ran
around the clock and still struggled to serve incoming jobs in time. That was
the point at which I started looking at code optimization. I wanted to make
my programs run faster and use fewer resources. It turned out code optimiza-
tion is the only way to do that more cheaply and without overcomplicating
the application architecture.

To my surprise I found no good single source of information on Ruby code
optimization. Resources you can find online are either technical descriptions
of Ruby internals or advice on micro-optimizations like the recommendation
to use instance variables instead of method calls. But knowledge of the
internals is not useful without an understanding of the big picture. Micro-
optimizations sometimes work, but most times they’re simply too low-level to
be effective.

I learned code optimization myself the hard way and wrote this book so you
don’t have to tread that hard path. In this book you’ll learn why Ruby code
becomes slow, how to make it faster, and what tools to use to do it. I hope
you’ll also grow to enjoy code optimization as much as I do. It is a very
rewarding process: you dig the details, you build the big picture in your mind,
make a change, and measure a difference. And you instantly know how
big/important your change is. This is the second shortest reward cycle I know
after writing “Hello World” in a new language.

How to Read This Book
This book starts by demonstrating simple Ruby and Rails performance opti-
mization tips and tricks. Then you’ll see how to use profiling tools to optimize
when simple changes no longer work. You’ll learn how to measure the opti-
mization effect, and how to write tests to ensure the performance does not

Preface • x

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

degrade after the optimization. You’ll also learn to tune up both the deployment
infrastructure and the Ruby interpreter itself for optimal performance.

The complexity of material gradually increases as the book goes on. So, if you
are new to performance optimization, your best bet would be to read it from
start to finish. Otherwise, feel free to skip chapters, or even read in your own
order.

At the website for this book1 you’ll find the full source code for all the example
programs used in this book; an errata page that lists mistakes in the current
edition; and a discussion forum, where you can talk to the author and other
people interested in Ruby performance optimization.

Acknowledgments
This book took more than a year for me to complete, and I’d like to acknowl-
edge a few people who helped me make it happen.

First, my editor Michael Swaine and the folks at the Pragmatic Bookshelf.
I’ve always admired your work. Thanks for giving me the chance to write my
first book with you.

Gleb Arshinov, who introduced me to the world of performance optimization.
Thanks, Gleb.

My tech reviewers Sam Ruby, Alessandro Bahgat, Charley Stran, Kevin Gisi,
Jeff Holland, Matthew Margolis, and Kim Shrier. Your feedback helped me to
reorganize my thoughts to make this book much better. Thanks.

Special thanks go to my family for their continued support of all my endeavors,
no matter how crazy, lengthy, or surprising they are.

Now let’s start optimizing!

Alexander Dymo

alex@alexdymo.com
Chicago, November 2015

1. https://pragprog.com/book/adrpo

report erratum • discuss

Acknowledgments • xi

https://pragprog.com/book/adrpo
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 1

What Makes Ruby Code Fast
It’s time to optimize.

This is what I think when my Heroku dyno restarts after logging an “R14 -
Memory quota exceeded” message. Or when New Relic sends me another
bunch of Apdex score alerts. Or when simple pages take forever to load and
the customer complains that my application is too slow. I’m sure you’ve had
your own “time to optimize” moments. And every time these moments occur,
we both ask exactly the same question: “What can I do to make the code
faster?”

In my career as a Ruby programmer I have learned that the immediate answer
to this question is often “I don’t know.” I’ll bet that’s your experience, too.
After all, you thought you were writing efficient code. What we typically do
then is to skip optimization altogether and resort to caching and scaling.
Why? Because we don’t immediately see how to improve the code. Because
conventional wisdom says optimization is hard. And because caching and
scaling are familiar to seasoned Ruby developers. In most cases you only need
to configure some external tool and make minimal changes to the code, and
voilà! Your code is faster.

But there is a limit to what caching and scaling can do for you. One day my
company discovered that Hirefire, the automated scaling solution for Heroku,
scaled up the number of Heroku web dynos to 36 just to serve a meager five
requests per minute. We would have to pay $3,108 per month for that. And
our usual bill before was $228 for two web dynos and one worker. Whoa, why
did we have to pay almost fifteen times more? It turned out there were two
reasons for that. First, web traffic increased. Second, our recent changes in
the code made the application three times slower. And our traffic kept
increasing, which meant that we’d have to pay even more. Obviously, we

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

needed a different approach. This was a case where we hit a limit to scaling
and had to optimize.

It is also easy to hit a limit with caching. You can tell that you need to stop
caching when your cache key gets more and more granular.

Let me show you what I mean with a code snippet from a Rails application
of mine:

cache_key = [@org.id, @user.id,
current_project, current_sprint, current_date,
@user_filter, @status_filter,
@priority_filter, @severity_filter, @level_filter]

cache(cache_key.join("_")) do
render partial: 'list'

end

Here my cache key consists of ten parts. You can probably guess that the
likelihood of hitting such a granular cache is very low. This is exactly what
happened in reality. At some point my application started to spend more
resources (either memory for Memcached or disk space) for caching than for
rendering. Here’s a case where further caching would not increase performance
and I again had to optimize.

So have I convinced you of the need to optimize? Then let’s learn how.

Here’s when most sources on performance optimization start talking about
execution time, profilers, and measurements. The hard stuff. We’ll do our
own share of profiling and measuring, but let’s first step back and think about
what exactly we need to optimize. Once we understand what makes Ruby
slow, optimization stops being a search for a needle in a haystack with the
profiler. Instead it can become almost a pleasing task where you attack a
specific problem and get a significant performance improvement as the reward.

What Makes Ruby Code Slow
To learn what makes Ruby code fast, we must understand what makes Ruby
code slow.

If you’ve done any performance optimization in the past, you probably think
you know what makes code slow. You may think that even if you haven’t done
performance optimization. Let me see if I can guess what you think.

Your first guess is algorithmic complexity of the code: extra nested loops,
computations, that sort of stuff. And what would you do to fix the algorithmic
complexity? Well, you would profile the code, locate the slow section, identify

Chapter 1. What Makes Ruby Code Fast • 2

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

the reason for the slowness, and rewrite the code to avoid the bottleneck.
Rinse and repeat until fast.

Sounds like a good plan, right? However, it doesn’t always work for Ruby
code. Algorithmic complexity can be a major cause for performance problems.
But Ruby has another cause that developers often overlook.

Let me show you what I’m talking about. Let’s consider a simple example that
takes a two-dimensional array of strings and formats it as a CSV.

Let’s jump right in. Key in or download this simple program.

chp1/example_unoptimized.rb
require "benchmark"

num_rows = 100000
num_cols = 10
data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }

time = Benchmark.realtime do
csv = data.map { |row| row.join(",") }.join("\n")

end

puts time.round(2)

We’ll run the program and see how it performs. But before that we need to
set up the execution environment. There are five major Ruby versions in use
today: 1.8.7, 1.9.3, 2.0, 2.1, and 2.2. These versions have very different per-
formance characteristics. Ruby 1.8 is the oldest and the slowest of them, with
a different interpreter architecture and implementation. Ruby 1.9.3 and 2.0
are the current mainstream releases with similar performance. Ruby 2.1 and
2.2 are the only versions that were developed with performance in mind, at
least if we believe their release notes, and thus should be the fastest.

It’s hard to target old software platforms, so I’ll make a necessary simplification
in this book. I will neither write examples nor measure performance for Ruby
1.8. I do this because Ruby 1.8 is not only internally different, it’s also source-
incompatible, making my task extremely complicated. However, even if you
have a legacy system running Ruby 1.8 with no chance to upgrade, you can
still use the performance optimization advice from this book. Everything I
describe in the book applies to 1.8. In fact, you might even get more
improvement. The old interpreter is so inefficient that any little change can
make a big difference. In addition to that I will give 1.8-specific advice where
appropriate.

report erratum • discuss

What Makes Ruby Code Slow • 3

http://media.pragprog.com/titles/adrpo/code/chp1/example_unoptimized.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

The easiest way to run several Rubys without messing up your system is to
use rbenv or rvm. I’ll use the former in this book. Get rbenv from https://github.com/
sstephenson/rbenv. Follow the installation instructions from README.md. Once you
install it, download the latest releases of Ruby versions that you’re interested
in. This is what I did; you may want to get more recent versions:

$ rbenv install -l
...
1.9.3-p551
2.0.0-p598
2.1.5
2.2.0
...

$ rbenv install -k 1.9.3-p551
$ rbenv install -k 2.0.0-p598
$ rbenv install -k 2.1.5
$ rbenv install -k 2.2.0

Note how I install Ruby interpreters with the k option. This keeps sources in
rbenv’s directory after compilation. In due time we’ll talk about the internal
Ruby architecture and implementation, and you might want to have a peek
at the source code. For now, just save it for the future.

To run your code under a specific Ruby version, use this:

$ rbenv versions
* system (set by /home/user/.rbenv/version)

1.9.3-p551
2.0.0-p598
2.1.5
2.2.0

$ rbenv shell 1.9.3-p551
$ ruby chp1/example_unoptimized.rb

To get a rough idea of how things perform, you can run examples just one
time. But you shouldn’t make comparisons or draw any conclusions based
on only one measurement. To do that, you need to obtain statistically correct
measurements. This involves running examples multiple times, statistically
post-processing the measurement results, eliminating external factors like
power management on most modern computers, and more. In short, it’s hard
to obtain truly meaningful measurement. We will talk about measurements
later in Chapter 7, Measure, on page 103. But for our present purposes, it is
fine if you run an example several times until you see the repeating pattern
in the numbers. I’ll do my measurements the right way, skipping any details
of the statistical analysis for now.

OK, so let’s get back to our example and actually run it:

Chapter 1. What Makes Ruby Code Fast • 4

report erratum • discuss

https://github.com/sstephenson/rbenv
https://github.com/sstephenson/rbenv
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

$ rbenv shell 1.9.3-p551
$ ruby example_unoptimized.rb
9.18
$ rbenv shell 2.0.0-p598
$ ruby example_unoptimized.rb
11.42
$ rbenv shell 2.1.5
$ ruby example_unoptimized.rb
2.65
$ rbenv shell 2.2.0
$ ruby example_unoptimized.rb
2.43

Let’s organize the measurements in a tabular format for easy comparison.
Further in the book, I’ll skip the session printouts and will just include the
comparison tables.

2.22.12.01.9.3

2.432.6511.429.18Execution time

What? Concatenating 100,000 rows, 10 columns each, takes up to 10 seconds?
That’s way too much. Ruby 2.1 and 2.2 are better, but still take too long. Why
is our simple program so slow?

Let’s look at our code one more time. It seems like an idiomatic Ruby one-
liner that is internally just a loop with a nested loop. The algorithmic efficiency
of this code is going to be O(n m) no matter what. So the question is, what
can we optimize?

I’ll give you a hint. Run this program with garbage collection disabled. For
that just add a GC.disable statement before the benchmark block like this:

chp1/example_no_gc.rb
require "benchmark"

num_rows = 100000
num_cols = 10
data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }

GC.disable
time = Benchmark.realtime do

csv = data.map { |row| row.join(",") }.join("\n")
end

puts time.round(2)

Now let’s run this and compare our measurements with the original program.

report erratum • discuss

What Makes Ruby Code Slow • 5

http://media.pragprog.com/titles/adrpo/code/chp1/example_no_gc.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

2.22.12.01.9.3

2.432.6511.429.18GC enabled

1.161.191.151.14GC disabled

52%55%90%88%% of time spent in GC

Do you see why the code is so slow? Our program spends the majority of its
execution time in the garbage collector—a whopping 90% of the time in older
Rubys and a significant 50% of the time in modern versions.

I started my career as C++ developer. That’s why I was stunned when I first
realized how much time Ruby GC takes. This surprises even seasoned
developers who have worked with garbage-collected languages like Java and
C#. Ruby GC takes as much time as our code itself or more. Yes, Ruby 2.1
and later perform much better. But even they require half the execution time
for garbage collection in our example.

What’s the deal with the Ruby GC? Did our code use too much memory? Is
the Ruby GC too slow? The answer is a resounding yes to both questions.

High memory consumption is intrinsic to Ruby. It’s a side effect of the language
design. “Everything is an object” means that programs need extra memory to
represent data as Ruby objects. Also, slow garbage collection is a well-known
historical problem with Ruby. Its mark-and-sweep, stop-the-world GC is not
only the slowest known garbage collection algorithm. It also has to stop the
application for the time GC is running. That’s why our application takes
almost a dozen seconds to complete.

You have surely noticed significant performance improvement with Ruby 2.1
and 2.2. These versions feature much improved GC, called restricted genera-
tional GC. We’ll talk about what that means later in Chapter 10, Tune Up the
Garbage Collector, on page 149. For now it’s important to remember that the
latest two Ruby releases are much faster thanks to the better GC.

High GC times are surprising to the uninitiated. Less surprising, but still
important, is the fact that without GC all Ruby versions perform the same,
finishing in about 1.15 seconds. Internally the Ruby VMs are not that different
across the versions starting from 1.9. The biggest improvement relevant to
performance is the restricted generational GC that came with Ruby 2.1. But
that, of course, has no effect on code performance when GC is disabled.

If you’re a Ruby 1.8 user, you shouldn’t expect to get the performance of 1.9
and later, even with GC turned off. Modern Rubys have a virtual machine to
execute precompiled code. Ruby 1.8 executes code in a much slower fashion
by traversing the syntax tree.

Chapter 1. What Makes Ruby Code Fast • 6

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

OK, let’s get back to our example and think about why GC took so much time.
What did it do? Well, we know that the more memory we use, the longer GC
takes to complete. So we must have allocated a lot of memory, right? Let’s
see how much by printing memory size before and after our benchmark. The
way to do this is to print the process’s RSS, or Resident Set Size, which is
the portion of a process’s memory that’s held in RAM.

On Linux and Mac OS X you can get RSS from the ps command:

puts "%dM" % `ps -o rss= -p #{Process.pid}`.to_i

On Windows your best bet is to use the OS.rss function from the OS gem,
https://github.com/rdp/os. The gem is outdated and unmaintained, but it still should
work for you.

chp1/example_measure_memory.rb
require "benchmark"

num_rows = 100000
num_cols = 10
data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }

puts "%d MB" % (`ps -o rss= -p #{Process.pid}`.to_i/1024)➤

GC.disable
time = Benchmark.realtime do

csv = data.map { |row| row.join(",") }.join("\n")
end

puts "%d MB" % (`ps -o rss= -p #{Process.pid}`.to_i/1024)➤

puts time.round(2)

$ rbenv shell 2.2.0
$ ruby example_measure_memory.rb
1040 MB
2958 MB

Aha. Things are getting more and more interesting. Our initial dataset is
roughly 1 gigabyte. Here and later in this book when I write kB I mean 1024
bytes, MB - 1024 * 1024 bytes, GB - 1024 * 1024 * 1024 bytes (yes, I know,
it’s old school). So, we consumed 2 extra gigabytes of memory to process that
1 GB of data. Your gut feeling is that it should have taken only 1 GB extra.
Instead we took 2 GB. No wonder GC has a lot of work to do!

You probably have a bunch of questions already. Why did the program need
2 GB instead of 1 GB? How do we deal with this? Is there a way for our code
to use less memory? The answers are in the next section, but first let’s review
what we’ve learned so far.

report erratum • discuss

What Makes Ruby Code Slow • 7

https://github.com/rdp/os
http://media.pragprog.com/titles/adrpo/code/chp1/example_measure_memory.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Takeaways
• Memory consumption and garbage collection are among the major reasons

why Ruby is slow.

• Ruby has a significant memory overhead.

• GC in Ruby 2.1 and later is up to five times faster than in earlier versions.

• The raw performance of all modern Ruby interpreters is about the same.

Optimize Memory
High memory consumption is what makes Ruby slow. Therefore, to optimize
we need to reduce the memory footprint. This will, in turn, reduce the time
for garbage collection.

You might ask, why don’t we disable GC altogether? That is rarely a good
thing to do. Turning off GC significantly increases peak memory consumption.
The operating system may run out of memory or start swapping. Both results
will hit performance much harder than Ruby GC itself.

So let’s get back to our example and think how we can reduce memory con-
sumption. We know that we use 2 GB of memory to process 1 GB of data. So
we’ll need to look at where that extra memory is used.

chp1/example_annotated.rb
Line 1 require "benchmark"

-

- num_rows = 100000
- num_cols = 10
5 data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }
-

- time = Benchmark.realtime do
- csv = data.map do |row|

row.join(",")-

10

end
end.join("\n")

-

puts time.round(2)
-

-

I made the map block more verbose to show you where the problem is. The
CSV rows that we generate inside that block are actually intermediate results
stored into memory until we can finally join them by the newline character.
This is exactly where we use that extra 1 GB of memory.

Chapter 1. What Makes Ruby Code Fast • 8

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp1/example_annotated.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Let’s rewrite this in a way that doesn’t store any intermediate results. For
that I’ll explicitly loop over rows with a nested loop over columns and store
results as I go into the csv.

chp1/example_optimized.rb
require "benchmark"

num_rows = 100000
num_cols = 10
data = Array.new(num_rows) { Array.new(num_cols) { "x"*1000 } }

time = Benchmark.realtime do
csv = ''
num_rows.times do |i|

num_cols.times do |j|
csv << data[i][j]
csv << "," unless j == num_cols - 1

end
csv << "\n" unless i == num_rows - 1

end
end

puts time.round(2)

The code got uglier, but how fast is it now? Let’s run it and compare it with
the unoptimized version.

2.22.12.01.9.3

2.432.6511.429.18GC enabled

1.161.191.151.14GC disabled

1.091.051.061.01Optimized

These are great results! Our simple changes got rid of the GC overhead. The
optimized program is even faster than the original with no GC. And if you run
the optimized version with the GC disabled, you’ll find out that its GC time
is merely a 10% of total execution time. Because of this, our program performs
the same in all Ruby versions.

By making simple changes, we got from 2.5 to 10 times performance
improvement. Doing so required us merely to look through the code and think
how much memory each line and function call takes. Once you catch memory
copying, or extra memory allocation, or another case of a memory-inefficient
operation, you rewrite the code to avoid that. Simple, isn’t it?

Actually, it is. It turns out that to get significant speedup you might not need
code profiling. Memory optimization is easier: just review, think, and rewrite.
Only when you are sure that the code spends a reasonable time in GC should

report erratum • discuss

Optimize Memory • 9

http://media.pragprog.com/titles/adrpo/code/chp1/example_optimized.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Performance in Ruby 2.1 and Later

It turns out Ruby 2.1 is not a silver performance bullet. It indeed speeds up unopti-
mized code, but memory-efficient code actually nets no improvement from Ruby 2.1.
Once your program is memory optimized, it doesn’t matter much which Ruby version
you run. You will always get the best possible performance.

My personal experience is that 2.1 and 2.2 finally make default Ruby application
performance acceptable, on par with other dynamic programming languages. This is
the level of performance that you’d probably expect these days. But it’s nothing
spectacular, and it still requires optimization.

you look further and try to locate algorithmic complexity or other sources of
poor performance.

But in my experience there’s often no need to optimize anything other than
memory. For me the following 80-20 rule of Ruby performance optimization
is always true: 80% of performance improvements come from memory opti-
mization, the remaining 20% from everything else.

Review, think, and rewrite. Maybe we should think about thinking. If optimiz-
ing memory requires rethinking what the code does, then what exactly should
we think about? We’ll talk about that in the next section, but first let’s review
what we’ve learned so far.

Takeaways
• The 80-20 rule of Ruby performance optimization: 80% of performance

improvements come from memory optimization, so optimize memory first.

• A memory-optimized program has the same performance in any modern
Ruby versions.

• Ruby 2.1 is not a silver performance bullet; it just minimizes losses.

Get Into the Performance Mind-set
Ruby optimization is more about rethinking what the code does and less
about finding bottlenecks with specialized tools. The major skill to learn is
rather the right way of thinking about performance. This is what I call the
Ruby Performance Mind-set.

How do you get into this mind-set? Let me give you a hint. When you write
code, remember that memory consumption and garbage collection are, most
likely, why Ruby is slow, and constantly ask yourself these three questions:

Chapter 1. What Makes Ruby Code Fast • 10

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

1. Is Ruby the right tool to solve my problem?

Ruby is a general-purpose programming language, but that doesn’t mean
you should use it to solve all your problems. There are things that Ruby
is not so good at. The prime example is large dataset processing. That
needs memory: exactly the sort of thing that you want to avoid.

This task is better done in a database or in background processes written
in other programming languages. Twitter, for example, once had a Ruby
on Rails front end backed by Scala workers. Another example is statistical
computations, which are better done with, say, the R language.

2. How much memory will my code use?

The less memory your code uses, the less work Ruby GC has to do. You
already know some tricks to reduce memory consumption—the ones that
we used in our example: line-by-line data processing and avoiding inter-
mediate objects. I’ll show you more in subsequent chapters.

3. What is the raw performance of this code?

Once you’re sure the memory is used optimally, take a look at the algo-
rithmic complexity of the code itself.

Asking these three questions, in the stated order, will get you into the Ruby
Performance Mind-set. And then you may begin to find that new code that
you write is fast right from the start, without any optimization required.

Ah, but what can you do about an old program? What problems should you
look for? It turns out that the majority of performance problems come from
a relatively limited number of sources. In the next chapter we’ll talk about
these, and how to fix them.

report erratum • discuss

Get Into the Performance Mind-set • 11

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 2

Fix Common Performance Problems
There is nothing new under the sun.

The reasons code is slow invariably come down to familiar issues. This is
especially true for us Ruby developers. We are far removed from writing bare-
metal code. We heavily use language features, standard libraries, gems, and
frameworks. And each of these brings along its performance issues. Some of
these are actually memory inefficient by design! We should be extremely
careful about how we write our code and what features or libraries we use.

We have talked about two of the common reasons for poor performance in
the previous chapter: extra memory allocation and data structure copying.
What are the others?

Execution context copying, memory-heavy iterators, slow type conversions,
and iterator-unsafe functions are a few of the culprits. In the next pages I’ll
walk you through the steps to avoid these. But before we start, let’s briefly
talk about a subject we’ve avoided so far: measurements.

We need some way to know that the changes we make really improve perfor-
mance. In the previous chapter we used Benchmark.realtime to measure execution
time and `ps -o rss= -p #{Process.pid}`.to_i to measure current memory usage. To
understand how reduced memory usage translates into the improved perfor-
mance, we’ll also measure the number of GC calls and the time required for
GC. The former is easy to measure. Ruby provides the GC#stat function that
returns the number of GC runs (and more stats that we’ll ignore for now).
The latter is harder, and requires running the same program twice, once with
GC disabled, and getting a difference you can attribute to GC.

Let’s build a tool. We’ll create a wrapper function that will measure execution
time, the number of GC runs, and total allocated memory. In addition to that,

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

let’s make the function read the --no-gc command-line option and turn off GC
if requested.

chp2/wrapper.rb
require "json"
require "benchmark"

def measure(&block)
no_gc = (ARGV[0] == "--no-gc")

if no_gc
GC.disable

else
collect memory allocated during library loading
and our own code before the measurement
GC.start

end

memory_before = `ps -o rss= -p #{Process.pid}`.to_i/1024
gc_stat_before = GC.stat
time = Benchmark.realtime do

yield
end
puts ObjectSpace.count_objects
unless no_gc

GC.start(full_mark: true, immediate_sweep: true, immediate_mark: false)
end
puts ObjectSpace.count_objects
gc_stat_after = GC.stat
memory_after = `ps -o rss= -p #{Process.pid}`.to_i/1024

puts({
RUBY_VERSION => {
gc: no_gc ? 'disabled' : 'enabled',
time: time.round(2),
gc_count: gc_stat_after[:count] - gc_stat_before[:count],
memory: "%d MB" % (memory_after - memory_before)

}
}.to_json)

end

OK, there’s another way to measure GC time: the GC::Profiler that Ruby 1.9.2
introduced. The problem is that it adds significant overhead to both memory
and CPU. This is good for profiling where absolute numbers are not important
and you’re interested only in relative values. It’s less useful for measurements
that we want to do in this chapter.

Memory measurements with and without GC will of course differ. In the former
case, we will get the amount of memory allocated by the block that stays

Chapter 2. Fix Common Performance Problems • 14

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/wrapper.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

allocated after we’re done. We’ll use this number to find memory leaks. In the
latter case, we’ll get total memory consumption: the amount of memory allo-
cated during the execution of the block. That’s the metric we’ll use most often
in this chapter, as it directly shows how much work your program makes for
the GC.

So let’s do some measuring. Let’s use the wrapper to run our unoptimized
code example from the previous chapter. Here and later in this chapter I will
use Ruby 2.2 to run my examples unless otherwise noted.

chp2/wrapper_example.rb
require 'wrapper'
require 'csv'

measure do
data = CSV.open("data.csv")
output = data.readlines.map do |line|

line.map { |col| col.downcase.gsub(/\b('?[a-z])/) { $1.capitalize } }
end
File.open("output.csv", "w+") { |f| f.write output.join("\n") }

end

$ cd code/chp2
$ ruby -I . wrapper_example.rb
{"2.2.0":{"gc":"enabled","time":14.96,"gc_count":27,"memory":"479 MB"}}
$ ruby -I . wrapper_example.rb --no-gc
{"2.2.0":{"gc":"disabled","time":10.17,"gc_count":0,"memory":"1555 MB"}}

The results are exactly what we saw before. But in addition, we see that GC
kicked off 27 times during execution. As usual with these measurements,
you will have to run the wrapper several times to obtain (more or less) accurate
measurement. But there’s no need yet to aim for statistical significance. We’ll
handle that problem later.

So let’s take this wrapper as a basic measurement tool and see what is slow
in Ruby and how to fix it.

Save Memory
The first step to make your application faster is to save memory. Every time
you create or copy something in memory, you add work for GC. Let’s look at
the best practices to write code that doesn’t use too much memory.

report erratum • discuss

Save Memory • 15

http://media.pragprog.com/titles/adrpo/code/chp2/wrapper_example.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Modify Strings in Place
Ruby programs use a lot of strings, and copy them a lot. In most cases they
really shouldn’t. You can do most string manipulations in place, meaning
that instead of making a changed copy, you change the original.

Ruby has a bunch of “bang!” functions for in-place modification. Those are
gsub!, capitalize!, downcase!, upcase!, delete!, reverse!, slice!, and others. It’s always a
good idea to use them as much as you can when you no longer need the
original string.

chp2/string_in_place1.rb
Line 1

str = "X" * 1024 * 1024 * 10 # 10 MB string

require 'wrapper'
2

3

4 measure do
5

end
str = str.downcase

6

7 measure do
8

end
str.downcase!

9

$ ruby -I . string_in_place1.rb --no-gc
{"2.2.0":{"gc":"disabled","time":0.02,"gc_count":0,"memory":"9 MB"}}
{"2.2.0":{"gc":"disabled","time":0.01,"gc_count":0,"memory":"0 MB"}}

The String#downcase call on line 5 allocates another 10 MB in memory to copy
a string, then changes it to lowercase. The bang version of the same function
on line 8 does not need any extra memory. And that’s exactly what we see in
the measurements.

Another useful in-place modification function is String::<<. It concatenates
strings by appending a new string to the original. When asked to append one
string to another, most developers write this:

x = "foo"
x += "bar"

This code is equivalent to

x = "foo"
y = x + "bar"
x = y

Here Ruby allocates extra memory to store the result of the concatenation.
The same code using the shift operator will need no additional memory if your
resulting string is less than 40 bytes (on a 64-bit architecture; more on that
later on page 149). If the string is larger than that, Ruby will only allocate
enough memory to store the appended string. So next time, write this instead:

Chapter 2. Fix Common Performance Problems • 16

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/string_in_place1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

x = "foo"
x << "bar"

Behind the scenes the String#<< may not be able to increase the size of the
original string to do a true in-place modification. In this case it may have to
move the string data in memory into the new location. However, that happens
in the realloc() C library function behind Ruby’s back and does not trigger GC.

Another thing worth pointing out is that “bang!” functions are not guaranteed
to do an in-place modification. Most of them do, but that’s implementation
dependent. So don’t be surprised when one of them doesn’t optimize anything.

Modify Arrays and Hashes in Place
Like strings, arrays and hashes can be modified in place. If you look at the
Ruby API documentation, you’ll again see “bang!” functions like map!, select!,
reject!, and others. The idea is the same: do not create a modified copy of the
same array unless really necessary.

String, array, and hash in-place modification functions are extremely powerful
when used together. Compare these two examples:

chp2/combined_in_place1.rb
require 'wrapper'

data = Array.new(100) { "x" * 1024 * 1024 }

measure do
data.map { |str| str.upcase }

end

chp2/combined_in_place2.rb
require 'wrapper'

data = Array.new(100) { "x" * 1024 * 1024 }

measure do
data.map! { |str| str.upcase! }

end

map! and upcase!map and upcase

0.14 s0.22 sTotal time

0 MB100 MBExtra memory

03# of GC calls

See how this code got 35% faster by simply adding two “!” characters? Easy
optimization, isn’t it? The second example gives no work to GC at all despite
crunching through 100 MB of data.

report erratum • discuss

Save Memory • 17

http://media.pragprog.com/titles/adrpo/code/chp2/combined_in_place1.rb
http://media.pragprog.com/titles/adrpo/code/chp2/combined_in_place2.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Read Files Line by Line
It takes memory to read the whole file. We expect that, of course, and some-
times willingly do that for convenience. But as usual with Ruby, it takes a
toll on memory. How big is the overhead? It’s insignificant if you just read
the file. For example, reading the 26 MB data.csv file1 takes exactly 26 MB
of memory.

chp2/file_reading1.rb
require 'wrapper'
measure do

File.read("data.csv")
end

$ ruby -I . file_reading1.rb --no-gc
{"2.2.0":{"gc":"disabled","time":0.02,"gc_count":0,"memory":"25 MB"}}

Here we simply create one File object (it takes just 40 bytes on a 64-bit archi-
tecture) and store the 26 MB string there. No extra memory is used.

Things rapidly become less perfect when we try to parse the file. For example,
it takes 158 MB to split the same CSV file into lines and columns.

chp2/file_reading2.rb
require 'wrapper'
measure do

File.readlines("data.csv").map! { |line| line.split(",") }
end

$ ruby -I . file_reading2.rb --no-gc
{"2.2.0":{"gc":"disabled","time":0.45,"gc_count":0,"memory":"186 MB"}}

What does Ruby use this memory for? The file has about 163,000 rows of
data in 11 columns. So, to store the parsed contents we should allocate
163,000 objects for rows and 1,793,000 objects for columns—1,956,000
objects in total. On a 64-bit architecture that requires approximately 75 MB.
Together with 26 MB necessary to read the file, our program needs at least
101 MB of memory. In addition to that, not all strings are small enough to
fit into 40-byte Ruby objects. Ruby will allocate more memory to store them.
That’s what the remaining 85 MB are used for. As the result, our simple
program takes seven times the size of our data after parsing.

The Ruby CSV parser takes even more. It needs 346 MB of memory, 13 times
the data size.

1. http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-
Charge-Data/Downloads/IPPS_DRG_CSV.zip

Chapter 2. Fix Common Performance Problems • 18

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/file_reading1.rb
http://media.pragprog.com/titles/adrpo/code/chp2/file_reading2.rb
http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Downloads/IPPS_DRG_CSV.zip
http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Downloads/IPPS_DRG_CSV.zip
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp2/file_reading3.rb
require 'wrapper'
require 'csv'

measure do
CSV.read("data.csv")

end

$ ruby -I . file_reading3.rb --no-gc
{"2.2.0":{"gc":"disabled","time":2.66,"gc_count":0,"memory":"368 MB"}}

This memory consumption math is really disturbing. In my experience, the
size of the data after parsing increases anywhere from two up to ten times
depending on the nature of the data in real-world applications. That’s a lot
of work for Ruby GC.

The solution? Read and parse data files line by line as much as possible. In
the previous chapter we did that for the CSV file and got a two times speedup.

Whenever you can, read files line by line, as in this example:

chp2/file_reading4.rb
require 'wrapper'

measure do
file = File.open("data.csv", "r")
while line = file.gets

line.split(",")
end

end

And do the same with CSV files:

chp2/file_reading5.rb
require 'csv'
require 'wrapper'

measure do
file = CSV.open("data.csv")
while line = file.readline
end

end

Now, let’s measure these examples with our wrapper code. To our surprise,
memory allocation is about the same as before: 171 MB and 367 MB.

$ ruby -I . file_reading4.rb --no-gc
{"2.2.0":{"gc":"disabled","time":0.45,"gc_count":0,"memory":"171 MB"}}
$ ruby -I . file_reading5.rb --no-gc
{"2.2.0":{"gc":"disabled","time":2.64,"gc_count":0,"memory":"367 MB"}}

report erratum • discuss

Save Memory • 19

http://media.pragprog.com/titles/adrpo/code/chp2/file_reading3.rb
http://media.pragprog.com/titles/adrpo/code/chp2/file_reading4.rb
http://media.pragprog.com/titles/adrpo/code/chp2/file_reading5.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

But if you think about this a little more, you’ll understand. It doesn’t matter
how we parse the file—in one go, or line by line. We’ll end up allocating the
same amount of memory anyway. And look at execution time. It’s the same
as before. What’s the deal?

We’ve been measuring the total amount of memory allocated. That makes
sense when we want to know exactly how much memory in total a certain
snippet of code needs. But it doesn’t tell us anything about peak memory con-
sumption. During program execution, GC will deallocate unused memory.
This will reduce both peak memory consumption and GC time because there’s
much less data held in memory at any given moment.

When we read a file line by line, we’re telling Ruby that we don’t need the
previous lines anymore. GC will then collect them as your program executes.
So, to see the optimization, you need to turn on GC. Let’s do that and compare
before and after numbers.

Before optimization:

$ ruby -I . file_reading2.rb
{"2.2.0":{"gc":"enabled","time":0.68,"gc_count":11,"memory":"144 MB"}}
$ ruby -I . file_reading3.rb
{"2.2.0":{"gc":"enabled","time":3.25,"gc_count":17,"memory":"175 MB"}}

After optimization:

$ ruby -I . file_reading4.rb
{"2.2.0":{"gc":"enabled","time":0.44,"gc_count":106,"memory":"0 MB"}}
$ ruby -I . file_reading5.rb
{"2.2.0":{"gc":"enabled","time":2.62,"gc_count":246,"memory":"1 MB"}}

Now you see why reading files line by line is such a good idea. First, you’ll
end up using almost no additional memory. In fact, you’ll end up storing just
the line you are processing and any previous lines that were allocated after
the last GC call. Second, the program will run faster. Speedup depends on
the data size; in our examples it is 35% for plain file reading and 20% for CSV
parsing.

Watch for Memory Leaks Caused by Callbacks
Rails developers know and use callbacks a lot. But when done wrong, callbacks
can hurt performance. For example, let’s write a logger object that will lazily
record object creation. For that, instead of writing the output right away, it
will log events and replay them later all at once. It is tempting to implement
the event logger using Ruby closures (lambdas or Procs) like this:

Chapter 2. Fix Common Performance Problems • 20

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Joe asks:

Optimized CSV Parsing Example Runs GC Way
More Often but Still Finishes Faster. What Gives?

Ruby 2.2 has incremental garbage collection that runs more often, but collects only
a small part of object space. That’s why you see several hundreds of GC runs. For
our example this works best, as GC runs once per about 1,600 rows processed
(163,000 rows divided by 106 collections in the plain file parsing example). This
amounts to only 260k of additional memory needed for the parsing at any given
moment during the program execution. Our example reports 0 MB of additional
memory because it does the rounding.

The math will be different for older Rubys, but expect the end result to be similar.
You will see the optimization with any Ruby version. Go check it yourself!

chp2/callbacks1.rb
module Logger

extend self
attr_accessor :output, :log_actions

def log(&event)
self.log_actions ||= []
self.log_actions << event

end

def play
output = []
log_actions.each { |e| e.call(output) }
puts output.join("\n")

end
end

class Thing
def initialize(id)

Logger.log { |output| output << "created thing #{id}" }
end

end

def do_something
1000.times { |i| Thing.new(i) }

end

do_something
GC.start
Logger.play
puts ObjectSpace.each_object(Thing).count

report erratum • discuss

Save Memory • 21

http://media.pragprog.com/titles/adrpo/code/chp2/callbacks1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

We log an event by storing a block of code that gets executed later. The code
actually looks quite cool. At least I feel cool every time I use bits of functional
programming in Ruby.

Unfortunately, when I write something cool or smart, it tends to turn out slow
and inefficient. The same thing happens here. Such logging will keep the
references to all created objects even if we don’t need them. So add the follow-
ing lines to the end of the program and run it:

GC.start # collect all unused objects
puts ObjectSpace.each_object(Thing).count

$ ruby -I . callbacks1.rb
created thing 0
created thing 1
«...»
created thing 999
1000

After we’re done with the do_something, we don’t really need all one thousand
of these Thing objects. But even an explicit GC.start call does not collect them.
What’s going on?

Callbacks stored in the Logger class are the reason the objects are still there.
When you pass an anonymous block in the Thing constructor to the Logger#log
function, Ruby converts it into the Proc object and stores references to all
objects in the block’s execution context. That includes the Thing instance. In
this way we end up keeping references from the Logger object to all one thou-
sand instances of Thing. It’s a classic example of a memory leak.

A dumbed-down version of the Logger class will look less cool, but will prevent
the memory leak. You can of course write an even more dumb version that
doesn’t use any callbacks at all, but I’ll keep them for this example.

chp2/callbacks2.rb
module Logger

extend self
attr_accessor :output

def log(&event)
self.output ||= []
event.call(output)

end

def play
puts output.join("\n")

end
end

Chapter 2. Fix Common Performance Problems • 22

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/callbacks2.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

class Thing
def initialize(id)

Logger.log { |output| output << "created thing #{id}" }
end

end

def do_something
1000.times { |i| Thing.new(i) }

end

do_something
GC.start
Logger.play
puts ObjectSpace.each_object(Thing).count

$ ruby -I . callbacks1.rb
created thing 0
created thing 1
«...»
created thing 999
0

In this case no memory is leaked and all Thing objects are garbage collected.

So be careful every time you create a block or Proc callback. Remember, if you
store it somewhere, you will also keep references to its execution context.
That not only hurts the performance, but also might even leak memory.

Are All Anonymous Blocks Dangerous to Performance?
Anonymous blocks do not store execution context unless they are converted
to Proc objects. When calling a function that takes an anonymous block, Ruby
stores a reference to the caller’s stack frame. It’s OK to do that since the callee
is guaranteed to exit before the caller’s stack frame is popped. When calling
a function that takes a named block, Ruby assumes that this block is long-
lived and clones the execution context right there.

An obvious case of anonymous block to Proc conversion is when your receiving
function defines the &block argument.

def take_block(&block)
block.call(args)

end
take_block { |args| do_something(args) }

It’s a good idea to change such code to use anonymous blocks. We don’t
really need the Proc conversion since the block is simply executed, and never
stored as in the logger example in the previous section.

report erratum • discuss

Save Memory • 23

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

def take_block
yield(args)

end
take_block { |args| do_something(args) }

However, it’s not always clear when conversion happens. It may be hidden
well down into the call stack, or even happen in C code inside the Ruby
interpreter. Let’s look at this example:

chp2/signal1.rb
Line 1

def initialize
class LargeObject

-

@data = "x" * 1024 * 1024 * 20-

-

end
end

5

-

- def do_something
- obj = LargeObject.new
-

end
trap("TERM") { puts obj.inspect }

10

-

- do_something
- # force major GC to make sure we free all objects that can be freed
-

puts "LargeObject instances left in memory: %d" %
GC.start(full_mark: true, immediate_sweep: true)

15

ObjectSpace.each_object(LargeObject).count-

$ ruby -I . signal1.rb
LargeObject instances left in memory: 1

This example behaves suspiciously similar to what we saw with the smart
logger in the previous section. It leaves one large object behind. There’s only
one place in the code that could cause that. Line 9 passes an anonymous
block to the trap function. A quick look at the source code2 reveals that the
trap implementation calls cmd = rb_block_proc(); that indeed converts the block to
Proc behind the scenes.

If you comment out line 9, the program will report 0 large objects left after
execution.

So, if you suspect memory leaks in named blocks, you’ll have to review the
code down the stack—at least down to the Ruby standard library, including
functions implemented in C. It’s not as hard as it sounds. You can always
look up the function implementation in the Ruby API docs from the website.
Ruby source code is well written and clean. You’ll be able to make sense of
it even if you don’t know any C, as with the trap example earlier.

2. http://www.ruby-doc.org/core-2.1.2/Signal.html#method-c-trap

Chapter 2. Fix Common Performance Problems • 24

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/signal1.rb
http://www.ruby-doc.org/core-2.1.2/Signal.html#method-c-trap
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Optimize Your Iterators
To a Ruby newcomer, Ruby iterators typically look like a convenient syntax
for loops. In fact, iterators are such a good abstraction that even seasoned
developers often forget that they really are nothing more than methods of Array
and Hash classes with a block argument.

However, keeping this in mind is important for performance. We talked in
Modify Arrays and Hashes in Place, on page 17 about the importance of in-
place operations on hashes and arrays. But that’s not the end of the story.

Because a Ruby iterator is a function of an object (Array, Range, Hash, etc.), it
has two characteristics that affect performance:

1. Ruby GC will not garbage collect the object you’re iterating before the
iterator is finished. This means that when you have a large list in memory,
that whole list will stay in memory even if you no longer need the parts
you’ve already traversed.

2. Iterators, being functions, can and will create temporary objects behind
the scenes. This adds work for the garbage collector and hurts perfor-
mance.

Compounding these performance hits, iterators (just like loops) are sensitive
to the algorithmic complexity of the code. An operation that by itself is just
a tad slow becomes a huge time sink when repeated hundreds of thousands
of times.

So let’s see when exactly iterators become slow and what can we do about
that.

Free Objects from Collections During Iteration
Let’s assume we have a list of objects, say one thousand elements of class
Thing. We iterate over the list, do something useful, and discard the list. I’ve
seen and written a lot of such code in production applications. For example,
you read data from a file, calculate some stats, and return only the stats.

class Thing; end
list = Array.new(1000) { Thing.new }

list.each do |item|
do something with the item

end
list = nil

report erratum • discuss

Optimize Your Iterators • 25

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Obviously we can’t deallocate list before each finishes. So it will stay in memory
even if we no longer need access to previously traversed items. Let’s prove
that by counting the number of Thing instances before each iteration.

chp2/each_bang.rb
class Thing; end
list = Array.new(1000) { Thing.new }
puts ObjectSpace.each_object(Thing).count # 1000 objects

list.each do |item|
GC.start
puts ObjectSpace.each_object(Thing).count # same count as before
do something with the item

end

list = nil
GC.start
puts ObjectSpace.each_object(Thing).count # everything has been deallocated

$ ruby -I . each_bang.rb
1000
1000
«...»
1000
1000
0

As expected, only when we clear the list reference does the whole list get
garbage collected. We can do better by using a while loop and removing elements
from the list as we process them, like this:

chp2/each_bang.rb
class Thing; end
list = Array.new(1000) { Thing.new } # allocate 1000 objects again
puts ObjectSpace.each_object(Thing).count

while list.count > 0
GC.start # this will garbage collect item from previous iteration
puts ObjectSpace.each_object(Thing).count # watch the counter decreasing
item = list.shift

end

GC.start # this will garbage collect item from previous iteration
puts ObjectSpace.each_object(Thing).count # watch the counter decreasing

$ ruby -I . each_bang.rb
1000
999
«...»
2
1

Chapter 2. Fix Common Performance Problems • 26

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/each_bang.rb
http://media.pragprog.com/titles/adrpo/code/chp2/each_bang.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

See how the object counter decreases as we loop through the list? I’m again
running GC before each iteration to show you that all previous elements are
garbage and will be collected. In the real world you wouldn’t want to force
GC. Just let it do its job and your loop will neither take too much time nor
run out of memory.

Don’t worry about negative effects of list modification inside the loop. GC time
savings will outweight them if you process lots of objects. That happens both
when your list is large and when you load linked data from these objects—
for example, Rails associations.

Use the Each! Pattern
If we wrap our loop that removes items from an array during iteration into a
Ruby iterator, we’ll get what its creator, Alexander Goldstein, called “Each!”.
This is how the simplest each! iterator looks:

chp2/each_bang_pattern.rb
class Array

def each!
while count > 0
yield(shift)

end
end

end

Array.new(10000).each! { |element| puts element.class }

This implementation is not 100% idiomatic Ruby because it doesn’t return
an Enumerator if there’s no block passed. But it illustrates the concept well
enough. Also note how it avoids creating Proc objects from anonymous blocks
(there’s no &block argument).

Avoid Iterators That Create Additional Objects
It turns out that some Ruby iterators (not all of them as we will see) internally
create additional Ruby objects. Compare these two examples:

chp2/iterator_each1.rb
GC.disable
before = ObjectSpace.count_objects

Array.new(10000).each do |i|
[0,1].each do |j|
end

end

after = ObjectSpace.count_objects

report erratum • discuss

Optimize Your Iterators • 27

http://media.pragprog.com/titles/adrpo/code/chp2/each_bang_pattern.rb
http://media.pragprog.com/titles/adrpo/code/chp2/iterator_each1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

puts "# of arrays: %d" % (after[:T_ARRAY] - before[:T_ARRAY])
puts "# of nodes: %d" % (after[:T_NODE] - before[:T_NODE])

$ ruby -I . iterator_each1.rb
of arrays: 10001
of nodes: 0

chp2/iterator_each2.rb
GC.disable
before = ObjectSpace.count_objects

Array.new(10000).each do |i|
[0,1].each_with_index do |j, index|
end

end

after = ObjectSpace.count_objects
puts "# of arrays: %d" % (after[:T_ARRAY] - before[:T_ARRAY])
puts "# of nodes: %d" % (after[:T_NODE] - before[:T_NODE])

$ ruby -I . iterator_each2.rb
of arrays: 10001
of nodes: 20000

As you’d expect, the code creates 10,000 temporary [0,1] arrays. But something
fishy is going on with the number of T_NODE objects. Why would each_with_index
create 20,000 extra objects?

The answer is in the Ruby source code. Here’s the implementation of each:

VALUE
rb_ary_each(VALUE array)
{

long i;
volatile VALUE ary = array;
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
for (i=0; i<RARRAY_LEN(ary); i++) {

rb_yield(RARRAY_AREF(ary, i));
}
return ary;

}

Compare it to the implementation of and each_with_index.

enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{

NODE *memo;
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
memo = NEW_MEMO(0, 0, 0);
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
return obj;

}

Chapter 2. Fix Common Performance Problems • 28

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/iterator_each2.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

static VALUE
each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
{

long n = RNODE(memo)->u3.cnt++;
return rb_yield_values(2, rb_enum_values_pack(argc, argv), INT2NUM(n));

}

Even if your C-fu is not that strong, you’ll still see that each_with_index creates
an additional NODE *memo variable. Because our each_with_index loop is nested
in another loop, we get to create 10,000 additional nodes. Worse, the internal
function each_with_index_i allocates one more node. Thus we end up with the
20,000 extra T_NODE objects that you see in our example output.

How does that affect performance? Imagine your nested loop is executed not
10,000 times, but 1 million times. You’ll get 2 million objects created. And
while they can be freed during the iteration, GC still gets way too much work
to do. How’s that for an iterator that you would otherwise easily mistake for
a syntactic construct?

It would be nice to know which iterators are bad for performance and which
are not, wouldn’t it? I thought so, and so I calculated the number of additional
T_NODE objects created per iterator. The table on page 30 summarizes the
results for commonly used iterators.

Iterators that create 0 additional objects are safe to use in nested loops. But
be careful with those that allocate two or even three additional objects: all?,
each_with_index, inject, and others.

Looking at the table, we can also spot that iterators of the Array class, and in
some cases the Hash class, behave differently. It turns out that Range and Hash
use default iterator implementations from the Enumerable module, while Array
reimplements most of them. That not only results in better algorithmical
performance (that was the reason behind the reimplementation), but also in
better memory consumption. This means that most of Array’s iterators are safe
to use, with the notable exceptions of each_with_index and inject.

Watch for Iterator-Unsafe Ruby Standard Library Functions
Iterators are where the algorithmic complexity of the functions you use mat-
ters, even in Ruby. One millisecond lost in a loop with one thousand iterations
translates to a one-second slowdown. Let me show which commonly used
Ruby functions are slow and how to replace them with faster analogs.

report erratum • discuss

Optimize Your Iterators • 29

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

RangeArrayEnum†IteratorRangeArrayEnum†Iterator

——0fill333all?
222find222any?
111find_all110collect
222grep110cycle
222inject0—0delete_if
110map222detect
222none?000each
222one?——0each_index
222reduce0——each_key
010reject0——each_pair
——0reverse0——each_value
110reverse_each222each_with_index
010select111each_with_object

Table 1—Number of additional T_NODE objects created by an iterator
† Enum is Enumerable

Date#parse

Date parsing in Ruby has been traditionally slow, but this function is espe-
cially harmful for performance. Let’s see how much time it uses in a loop with
100,000 iterations:

chp2/date_parsing1.rb
require 'date'
require 'benchmark'

date = "2014-05-23"
time = Benchmark.realtime do

100000.times do
Date.parse(date)

end
end
puts "%.3f" % time

$ ruby date_parsing1.rb
0.833

Each Date#parse call takes a minuscule 0.02 ms. But in a moderately large
loop, that translates into almost one second of execution time.

A better solution is to let the date parser know which date format to use, like
this:

Chapter 2. Fix Common Performance Problems • 30

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/date_parsing1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp2/date_parsing2.rb
require 'date'
require 'benchmark'

date = "2014-05-23"
time = Benchmark.realtime do

100000.times do
Date.strptime(date, '%Y-%m-%d')

end
end
puts "%.3f" % time

$ ruby date_parsing2.rb
0.182

That is already 4.6 times faster. But avoiding date string parsing altogether
is even faster:

chp2/date_parsing3.rb
require 'date'
require 'benchmark'

date = "2014-05-23"
time = Benchmark.realtime do

100000.times do
Date.civil(date[0,4].to_i, date[5,2].to_i, date[8,2].to_i)

end
end
puts "%.3f" % time

$ ruby date_parsing3.rb
0.108

While slightly uglier, that code is almost eight times faster than the original,
and almost two times faster than the Date#strptime version.

Object#class, Object#is_a?, Object#kind_of?

These have considerable performance overhead when used in loops or fre-
quently used functions like constructors or == comparison operators.

chp2/class_check1.rb
require 'benchmark'

obj = "sample string"
time = Benchmark.realtime do

100000.times do
obj.class == String

end
end
puts time

report erratum • discuss

Optimize Your Iterators • 31

http://media.pragprog.com/titles/adrpo/code/chp2/date_parsing2.rb
http://media.pragprog.com/titles/adrpo/code/chp2/date_parsing3.rb
http://media.pragprog.com/titles/adrpo/code/chp2/class_check1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

$ ruby class_check1.rb
0.022767841

chp2/class_check2.rb
require 'benchmark'

obj = "sample string"
time = Benchmark.realtime do

100000.times do
obj.is_a?(String)

end
end
puts time

$ ruby class_check2.rb
0.019568893

In a moderately large loop, again 100,000 iterations, such checks take 19–22
ms. That doesn’t sound bad, except that, for example, a Rails application can
call comparison operators more than 1 million times per request and spend
longer than 200 ms doing type checks.

It’s a good idea to move type checking away from iterators or frequently called
functions and operators. If you can’t, unfortunately there’s not much you can
do about that.

BigDecimal::==(String)

Code that gets data from databases uses big decimals a lot. That is especially
true for Rails applications. Such code often creates a BigDecimal from a string
that it reads from a database, and then compares it directly with strings.

The catch is that the natural way to do this comparison is unbelievably slow
in Ruby version 1.9.3 and lower:

chp2/bigdecimal1.rb
require 'bigdecimal'
require 'benchmark'

x = BigDecimal("10.2")
time = Benchmark.realtime do

100000.times do
x == "10.2"

end
end
puts time

$ rbenv shell 1.9.3-p551
$ ruby bigdecimal1.rb
0.773866128

Chapter 2. Fix Common Performance Problems • 32

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp2/class_check2.rb
http://media.pragprog.com/titles/adrpo/code/chp2/bigdecimal1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

$ rbenv shell 2.0.0-p598
$ ruby bigdecimal1.rb
0.025224029
$ rbenv shell 2.1.5
$ ruby bigdecimal1.rb
0.027570681
$ rbenv shell 2.2.0
$ ruby bigdecimal1.rb
0.02474011096637696

Older Rubys have unacceptably slow implementations of the BigDecimal::==
function. This performance problem goes away with a Ruby 2.0 upgrade. But
if you can’t upgrade, use this smart trick. Convert a BigDecimal to a String before
comparison:

chp2/bigdecimal2.rb
require 'bigdecimal'
require 'benchmark'

x = BigDecimal("10.2")
time = Benchmark.realtime do

100000.times do
x.to_s == "10.2"

end
end
puts time

$ rbenv shell 1.9.3-p545
$ ruby bigdecimal2.rb
0.195041792

This hack is three to four times faster—not forty times faster, as in the Ruby
2.x implementation, but still an improvement.

Write Less Ruby
One of the gurus who taught me programming used to say that the best code
is the code that does not exist. If we could solve the problem without writing
any code, then we wouldn’t have to optimize it. Right?

Unfortunately, in the real world we still write code to solve our problems. But
that doesn’t mean that it has to be Ruby code. Other tools do certain things
better. We have seen that Ruby is especially bad in two areas: large dataset
processing and complex computations. So let’s see what you can use instead,
and how that improves performance.

report erratum • discuss

Write Less Ruby • 33

http://media.pragprog.com/titles/adrpo/code/chp2/bigdecimal2.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Offload Work to the Database
The Ruby community tends to view databases only as data storage tools. Rails
developers are especially prone to this because they often use ActiveRecord and
ActiveModel abstractions without having to interface with the database directly.
So yes, you can build a Rails application without knowing any SQL or
understanding the differences between MySQL and PostgreSQL. But by doing
this, you’ll trade performance for convenience and miss out on the data pro-
cessing power that databases provide.

It turns out—surprise, surprise—that databases are really good at complex
computations and other kinds of data manipulation. Let me show you just
how good they are.

Let’s imagine we have a large database with company employees, say, 10,000
people working in 25 various departments. We know each person’s salary,
and we want to to calculate the employees’ rank within a department by
salary.

I’ll use PostgreSQL for this example and will create random data for simplicity.
To reproduce this example, you should install and launch the PostgreSQL
database server.

$ createdb company_data
$ psql company_data

create table empsalaries(
department_id integer,
employee_id integer,
salary integer);

insert into empsalaries (
select (1 + round(random()*25)), *, (50000 + round(random()*250000))

from generate_series(1, 10000)
);

create index empsalaries_department_id_idx on empsalaries (department_id);

Let me explain this in case you’re not familiar with PostgreSQL. The insert
statement will generate a series of 10,000 rows (our employee IDs), and then
for each of those rows will assign a random department ID from 1 to 25 and
a random salary from $50,000 to $250,000.

Let’s first use ActiveRecord to calculate an employee rank. For that we’ll create
a folder called group_rank with Gemfile and group_rank.rb in it.

Chapter 2. Fix Common Performance Problems • 34

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp2/group_rank/Gemfile
source 'https://rubygems.org'

gem 'activerecord'
gem 'pg'

chp2/group_rank/group_rank.rb
require 'rubygems'
require 'active_record'

ActiveRecord::Base.establish_connection(
:adapter => "postgresql",
:database => "company_data"

)

class Empsalary < ActiveRecord::Base
attr_accessor :rank

end

time = Benchmark.realtime do
salaries = Empsalary.all.order(:department_id, :salary)

key, counter = nil, nil
salaries.each do |s|

if s.department_id != key
key, counter = s.department_id, 0

end
counter += 1
s.rank = counter

end
end

puts "Group rank with ActiveRecord: %5.3fs" % time

Now let’s run bundler to install all the required gems and launch the applica-
tion to see how long it takes to execute:

$ cd group_rank
$ rbenv shell 2.2.0
$ bundle install --path .bundle/gems
$ bundle exec ruby group_rank.rb
Group rank with ActiveRecord: 0.264s

Taking 246 ms to process a mere 10,000 rows is pretty bad. Now try to do
the same thing with 100,000 rows and 1 million rows. Ruby >= 2.0 will take
2.4 and 24 seconds, respectively. Older Rubys like 1.8 and 1.9 might not even
finish because GC will kick in too often. I was patient enough to wait 110
seconds for Ruby 1.9 to process 1 million rows. I’m quite sure the users of
my code are not that patient.

report erratum • discuss

Write Less Ruby • 35

http://media.pragprog.com/titles/adrpo/code/chp2/group_rank/Gemfile
http://media.pragprog.com/titles/adrpo/code/chp2/group_rank/group_rank.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Now let’s see how fast PostgreSQL can do the same thing on 10,000 rows:

$ psql company_data

=# \timing
Timing is on.
=# select department_id, employee_id, salary,

rank() over(partition by department_id order by salary desc)
from empsalaries;

Time: 22.573 ms

This is ten times faster in PostgreSQL. As a bonus, it also scales nicely. It
needs 280 ms for 100,000 rows and 2.3 seconds for 1 million rows.

Notice how PostgreSQL’s performance is consistently ten times faster than
the best of Ruby’s. Yes, my example uses Postgres-specific features like window
functions. But that’s exactly my point. The database is much better at data
processing. That makes a huge difference. We have seen that ten times is not
a limit. Sometimes it’s a difference between never finishing the task in Ruby
and completing it in several seconds simply by letting your database do what
it’s good at.

Rewrite in C
Ruby is implemented in C, so it has an easy way to interface with C code. So
if your Ruby code is slow, you can always rewrite it in C. Wait! What? Fear
not, I’m not going to try to talk you into writing the C code yourself. You can
certainly do that, but it’s out of the scope of this book. Instead I’d like to point
out that there are plenty of Ruby gems written in C that do the job faster than
their counterparts.

I divide these native code gems into two types:

1. Gems that rewrite slow parts of Ruby or Ruby on Rails in C

2. Gems that implement a specific task in C

The Date::Performance gem3 is a good example of the first type. It’s an old gem
that all Ruby 1.8 developers should use. It transparently replaces the slow
Ruby Date and DateTime libraries with a similar implementation written in C.

Note that the Date::Performance gem is Ruby 1.8 only. Ruby 1.9 and later have
a date library that is much faster.

3. https://github.com/rtomayko/date-performance

Chapter 2. Fix Common Performance Problems • 36

report erratum • discuss

https://github.com/rtomayko/date-performance
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Let me show how much faster Date::Performance is. For that, we’ll switch to Ruby
1.8, install the date-performance gem, and measure the execution time
(without GC, to factor it out) of a program that creates a lot of Date objects.

$ rbenv shell 1.8.7-p375
$ gem install date-performance
Fetching: date-performance-0.4.8.gem (100%)
Building native extensions. This could take a while...
Successfully installed date-performance-0.4.8
1 gem installed

Let’s see how Date from the standard library performs.

chp2/date_without_date_performance.rb
require 'date'
require 'benchmark'

GC.disable

memory_before = `ps -o rss= -p #{Process.pid}`.to_i/1024

time = Benchmark.realtime do
100000.times do

Date.new(2014,5,1)
end

end

memory_after = `ps -o rss= -p #{Process.pid}`.to_i/1024

puts "time: #{time}, memory: #{"%d MB" % (memory_after - memory_before)}"

$ ruby date_without_date_performance.rb
time: 2.19644594192505, memory: 262 MB

We need 2.2 seconds to create 100,000 dates. Now let’s compare this with
Date::Performance.

chp2/date_with_date_performance.rb
require 'benchmark'
require 'rubygems'
require 'date/performance'

GC.disable

memory_before = `ps -o rss= -p #{Process.pid}`.to_i/1024

time = Benchmark.realtime do
100000.times do

Date.new(2014,5,1)
end

end

report erratum • discuss

Write Less Ruby • 37

http://media.pragprog.com/titles/adrpo/code/chp2/date_without_date_performance.rb
http://media.pragprog.com/titles/adrpo/code/chp2/date_with_date_performance.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

memory_after = `ps -o rss= -p #{Process.pid}`.to_i/1024

puts "time: #{time}, memory: #{"%d MB" % (memory_after - memory_before)}"

$ ruby -I . date_with_date_performance.rb --no-gc
time: 0.294741868972778, memory: 84 MB

The same code written in C is almost eight times faster! And as a bonus it
uses 175 MB less memory. Both are great improvements. That’s why I advise
that everybody who is stuck with a good old Ruby 1.8 should use the
Date::Performance gem.

There are also gems that implement a specific task in C. The best example of
this is markdown libraries. Some of them are written in C, some of them in
Ruby. Here’s the performance comparison made by Jashank Jeremy, one of
the Jekyll blog engine contributors:

Speed, posts/secondLanguageGem

60.7 ± 17.8CBlueCloth

56.1 ± 16.5CRedCarpet

54.9 ± 16.6CRDiscount

40.1 ± 8.4RubyKramdown

17.1 ± 6.5RubyMaruku

The slowest C implementation (RDiscount) is 1.4 times faster than the fastest
Ruby one (Kramdown). The difference between the fastest and slowest is an
impressive 3.5 times. As you can see, it makes total sense to search for gems
that do the hard work in native code.

Takeaways
We saw in this chapter that there are only three things that you need to
consider to make your Ruby code faster:

• Optimize memory by avoiding extra allocations and memory leaks.
• Write faster iterators that take both less time and memory.
• And finally, write less Ruby code by letting specialized tools do their job.

The beauty of these techniques is that you can apply them to any Ruby pro-
gram to make it up to ten times faster. But the majority of the Ruby developers
are writing Rails applications, so it’s now time to dive deeper and apply our
optimization techniques to Ruby on Rails.

Chapter 2. Fix Common Performance Problems • 38

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 3

Make Rails Faster
In principle, you already know how to make Rails faster: the same performance
optimization strategies that we’ve discussed in the previous chapter will work
for any Rails application. Use less memory, avoid heavy function calls in
iterators, and write less Ruby and Rails. These are the big things that make
Rails applications faster, and you’ll learn how to apply them in this chapter.

But before we start, make sure you have at least a bare Rails application set
up and running. All the examples you’ll see in this chapter require a Rails
4.x application with a database connection. I’ll also assume we are both using
a PostgreSQL 9.x database. PostgreSQL is my preferred choice not only
because it is one of the best-performing freely available databases. I choose
it specifically because I will need a lot of random data for the examples, and
that’s easy to generate with the Postgres-specific generate_series function. That
lets us start with an empty database and add schema and data in migrations
as necessary.

So, take the Rails app (bare or your own), and let’s optimize it.

Make ActiveRecord Faster
ActiveRecord is a wrapper around your data. By definition that should take
memory, and oh indeed it does. It turns out the overhead is quite significant,
in both the number of objects and in raw memory.

To see the overhead, let’s create a database table with 10 string columns and
fill it with 10,000 rows, each row containing 10 strings of 100 chars. (The
code starts on the next page.)

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp3/app/db/migrate/20140722140429_large_tables.rb
class LargeTables < ActiveRecord::Migration

def up
create_table :things do |t|
10.times do |i|

t.string "col#{i}"
end

end

execute <<-END
insert into things(col0, col1, col2, col3, col4,

col5, col6, col7, col8, col9) (
select

rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x')

from generate_series(1, 10000)
);

END
end
def down

drop_table :things
end

end

This migration creates 10 million bytes of data (10,000 * 10 * 100), approxi-
mately 9.5 MB. A database is quite efficient at storing that. For example, my
PostgreSQL installation uses just 11 MB:

$ psql app_development
app_development=# select pg_size_pretty(pg_relation_size('things'));
pg_size_pretty

11 MB

Let’s see how memory-efficient ActiveRecord is. We’ll need to create a Thing
model:

chp3/app/app/models/thing.rb
class Thing < ActiveRecord::Base
end

And we’ll need to adapt our wrapper.rb measurement helper from the previous
chapter to Rails:

Chapter 3. Make Rails Faster • 40

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp3/app/db/migrate/20140722140429_large_tables.rb
http://media.pragprog.com/titles/adrpo/code/chp3/app/app/models/thing.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp3/app/lib/measure.rb
class Measure

def self.run(options = {gc: :enable})
if options[:gc] == :disable
GC.disable

elsif options[:gc] == :enable
collect memory allocated during library loading
and our own code before the measurement
GC.start

end

memory_before = `ps -o rss= -p #{Process.pid}`.to_i/1024
gc_stat_before = GC.stat
time = Benchmark.realtime do
yield

end
gc_stat_after = GC.stat
GC.start if options[:gc] == :enable
memory_after = `ps -o rss= -p #{Process.pid}`.to_i/1024

puts({
RUBY_VERSION => {

gc: options[:gc],
time: time.round(2),
gc_count: gc_stat_after[:count].to_i - gc_stat_before[:count].to_i,
memory: "%d MB" % (memory_after - memory_before)

}
}.to_json)

end

end

For this to work, add the lib directory to Rails’ autoload_paths in config/application.rb.

chp3/app/config/application.rb
config.autoload_paths << Rails.root.join('lib')

Got that? Good. Now we can run our migration and measure the memory
usage. Note that this needs to be done in production mode to make sure we
do not include any of Rails development mode’s side effects.

$ RAILS_ENV=production bundle exec rake db:create
$ RAILS_ENV=production bundle exec rake db:migrate
$ RAILS_ENV=production bundle exec rails console

2.2.0 :001 > Measure.run(gc: :disable) { Thing.all.load }
{"2.2.0":{"gc":"enable","time":0.32,"gc_count":1,"memory":"33 MB"}}
=> nil

report erratum • discuss

Make ActiveRecord Faster • 41

http://media.pragprog.com/titles/adrpo/code/chp3/app/lib/measure.rb
http://media.pragprog.com/titles/adrpo/code/chp3/app/config/application.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

ActiveRecord uses 3.5 times more memory than the size of the data. It also
triggers one garbage collection during loading.

ActiveRecord is convenient, but the convenience that ActiveRecord affords comes
at a steep price. I realize I’m not going to convince you to avoid ActiveRecord.
But you do need to understand the consequences of using it. In 80% of cases,
the speed of development is worth more than the cost in execution speed. In
the remaining 20% of cases, you have other options. Let me show you them.

Load Only the Attributes You Need
Your first option is to load only the data you intend to use. Rails makes this
very easy to do, like this:

$ RAILS_ENV=production bundle exec rails console
Loading production environment (Rails 4.1.4)

2.2.0 :001 > Measure.run { Thing.all.select([:id, :col1, :col5]).load }
{"2.2.0":{"gc":"enable","time":0.21,"gc_count":1,"memory":"7 MB"}}
=> nil

This uses 5 times less memory and runs 1.5 times faster than Thing.all.load.
The more columns you have, the more it makes sense to add select into the
query, especially if you join tables.

Preload Aggressively
Another best practice is preloading. Every time you query into a has_many or
belongs_to relationship, preload.

For example, let’s add a has_many relationship call to our Thing. We’ll need to
set up the migration and ActiveRecord model.

chp3/app/db/migrate/20140724142101_minions.rb
class Minions < ActiveRecord::Migration

def up
create_table :minions do |t|
t.references :thing
10.times do |i|

t.string "mcol#{i}"
end

end

execute <<-END
insert into minions(thing_id,

mcol0, mcol1, mcol2, mcol3, mcol4,
mcol5, mcol6, mcol7, mcol8, mcol9) (

select
things.id,

Chapter 3. Make Rails Faster • 42

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp3/app/db/migrate/20140724142101_minions.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x')

from things, generate_series(1, 10)
);

END
end
def down

drop_table :minions
end

end

chp3/app/app/models/minion.rb
class Minion < ActiveRecord::Base

belongs_to :thing
end

chp3/app/app/models/thing.rb
class Thing < ActiveRecord::Base

has_many :minions
end

Run the migration with RAILS_ENV=production bundle exec rake db:migrate and you will
get 10 Minions for each Thing in the database.

Iterating over that data without preloading is not such a good idea.

$ RAILS_ENV=production bundle exec rails console
Loading production environment (Rails 4.1.4)

2.2.0 :001 > Measure.run { Thing.all.each { |thing| thing.minions.load } }
{"2.2.0":{"gc":"enable","time":272.93,"gc_count":16,"memory":"478 MB"}}
=> nil

Good luck waiting for this one line of code to finish. It needs not only to load
everything into memory, but also to execute 10,000 queries against the
database to fetch the minions for each thing.

Preloading is the better way.

$ RAILS_ENV=production bundle exec rails console
Loading production environment (Rails 4.1.4)

2.2.0 :001 > Measure.run { Thing.all.includes(:minions).load }
{"2.2.0":{"gc":"enable","time":11.59,"gc_count":19,"memory":"518 MB"}}
=> nil

Depending on the Rails version, this might be slightly less memory efficient.
But the code finishes 25 times faster because Rails performs only two database
queries—one to load things, and another to load minions.

report erratum • discuss

Make ActiveRecord Faster • 43

http://media.pragprog.com/titles/adrpo/code/chp3/app/app/models/minion.rb
http://media.pragprog.com/titles/adrpo/code/chp3/app/app/models/thing.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Combine Selective Attribute Loading and Preloading
Even better is to take my advice from the Load Only the Attributes You Need
section and select only the columns we need. But there’s a catch. Rails does
not have a convenient way of selecting a subset of columns from the dependent
model. For example, this will fail:

Thing.all.includes(:minions).select("col1", "minions.mcol4").load

It fails because includes(:minions) runs an additional query to fetch minions for
the things it selected. And Rails is not smart enough to figure out which of
the select columns belong to the Minions table.

If we queried from the side of the belongs_to association, we would use joins.

Minion.where(id: 1).joins(:thing).select("things.col1", "minions.mcol4")

From the has_many side joins will return duplicates of the same Thing object, 10
duplicates in our case. To combat that, we can use the PostgreSQL-specific
array_agg feature that aggregates an array of columns from the joined table.

$ RAILS_ENV=production bundle exec rails console
Loading production environment (Rails 4.1.4)

2.2.0 :001 > query = "select id, col1, array_agg(mcol4) from things
2.2.0 :002"> inner join
2.2.0 :003"> (select thing_id, mcol4 from minions) minions
2.2.0 :004"> on (things.id = minions.thing_id)
2.2.0 :005"> group by id, col1"
=> "select id, col1, array_agg(mcol4) from things

inner join
(select thing_id, mcol4 from minions) minions
on (things.id = minions.thing_id)
group by id, col1"

2.2.0 :006 > Measure.run { Thing.find_by_sql(query) }
{"2.2.0":{"gc":"enable","time":0.62,"gc_count":1,"memory":"8 MB"}}
=> nil

Just look at the memory consumption: 8 MB instead of 518 MB from a full
select with preloading. As a bonus, this runs 20 times faster.

Restricting the number of columns you select can save you seconds of execu-
tion time and hundreds of megabytes of memory.

Use the Each! Pattern for Rails with find_each and find_in_batches
It is expensive to instantiate a lot of ActiveRecord models. Rails developers knew
that and added two functions to loop through large datasets in batches. Both
find_each and find_in_batches will load by default 1,000 objects and return them

Chapter 3. Make Rails Faster • 44

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

to you—the first function, one by one; the latter, the whole batch at once.
You can ask for smaller or larger batches with the :batch_size option.

find_each and find_in_batches will still have to load all the objects in memory. So
how do they improve performance? The effect is the same as with the each!
pattern from Use the Each! Pattern, on page 27. Once you’re done with the
batch, GC can collect it. Let’s see how that works.

$ RAILS_ENV=production bundle exec rails console
Loading production environment (Rails 4.1.4)

2.2.0 :001 > ObjectSpace.each_object(Thing).count
=> 0

2.2.0 :002 > Thing.find_in_batches { |batch|
2.2.0 :003?> GC.start
2.2.0 :004?> puts ObjectSpace.each_object(Thing).count
2.2.0 :005?> }
1000
2000
… 6 lines elided

2000
2000
=> nil

2.2.0 :006 > GC.start
=> nil

2.2.0 :007 > ObjectSpace.each_object(Thing).count
=> 0

GC indeed collects objects from previous batches, so no more than two
batches are in memory during the iteration. Compare this with the regular
each iterator over the list of objects returned by Thing.all.

$ RAILS_ENV=production bundle exec rails console
Loading production environment (Rails 4.1.4)

2.2.0 :001 > ObjectSpace.each_object(Thing).count
=> 0

2.2.0 :002 > Thing.all.each_with_index { |thing, i|
2.2.0 :003?> if i % 1000 == 0
2.2.0 :004?> GC.start
2.2.0 :005?> puts ObjectSpace.each_object(Thing).count
2.2.0 :006?> end
2.2.0 :007?> }; nil
10000
10000
… 6 lines elided

10000
10000
=> nil

report erratum • discuss

Make ActiveRecord Faster • 45

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Here we keep 10,000 objects for the whole duration of the each loop. This
increases both total memory consumption and GC time. It also increases the
risk of running out of memory if the dataset is too big (remember, ActiveRecord
needs 3.5 times more space to store your data).

Use ActiveRecord without Instantiating Models
If all you need is to run a database query or update a column in the table,
consider using the following ActiveRecord functions that do not instantiate
models.

• ActiveRecord::Base.connection.execute("select * from things")

This function executes the query and returns its result unparsed.

• ActiveRecord::Base.connection.select_values("select col5 from things")

Similar to the previous function, but returns an array of values only from
the first column of the query result.

• Thing.all.pluck(:col1, :col5)

Variation of the previous two functions. Returns an array of values that
contains either the whole row or the columns you specified in the argu-
ments to pluck.

• Thing.where("id < 10").update_all(col1: 'something')

Updates columns in the table.

These not only save you memory, but also run faster because they neither
instantiate models nor execute before/after filters. All they do is run plain
SQL queries and, in some cases, return arrays as the result.

Make ActionView Faster
It’s not unusual for template rendering to take longer than controller code.
But you may think that you can’t do much to speed it up. Most templates
are just a collection of calls to rendering helper functions that you didn’t write
and can’t really optimize—except when they’re called in a loop.

Rendering is basically a string manipulation. As we already know, that takes
both CPU time and memory. In a loop we multiply the effect of what is already
slow. So every time you iterate over a large dataset in a template, see whether
you can optimize it.

Chapter 3. Make Rails Faster • 46

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Rails template rendering has performance characteristics similar to Ruby
iterators. It’s fine to do just about anything, until you render partials in a
loop. There are two reasons for that.

First, rendering comes at a cost. It takes time to initialize the view object,
compute the execution context, and pass the required variables. So every
partial that you render in a loop should be your first suspect for poor perfor-
mance.

Second, the majority of Rails view helpers are iterator-unsafe. One call to
link_to will not slow you down, but a thousand of them will.

These two potential performance problems are really the same as we have
already discussed in Avoid Iterators That Create Additional Objects, on page
27 and Watch for Iterator-Unsafe Ruby Standard Library Functions, on page
29, just one level of abstraction higher, and they apply only to Rails. So let’s
discuss these problems in detail and see what we can optimize.

Render Partials in a Loop Faster
When asked to render a set of objects, your template code would probably
look something like this:

<% objects.each do |object| %>
<%= render partial: 'object', locals: { object: object } %>

<% end %>

There’s nothing wrong with the code, except that it becomes slow on a large
collection of objects. How slow? I measured the rendering of 10,000 empty
partials in different versions of Rails and the results were not pleasant.

Rails 4.xRails 3.xRails 2.x

1.840 ± 0.0451.355 ± 0.0330.335 ± 0.006

Table 2—Time to render 10,000 partials
Measured with GC disabled, in seconds. Results scale linearly with the number of partials.

Although 10,000 objects is not a large dataset, just rendering the placeholders
for them will set you back by 2 seconds with recent Rails. That’s disturbing.
Also disturbing is that rendering also gets much worse with each subsequent
version of Rails. But before you fall into your memories of good old Rails 2.x
times, let me point out that even 0.3 seconds for doing nothing is already too
much.

Rails 3.0 and higher has a solution to this problem called render collection:

<%= render :partial => 'object', :collection => @objects %>

report erratum • discuss

Make ActionView Faster • 47

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Or, in a shorter notation:

<%= render @objects %>

This inserts a partial for each member of the collection, automatically figuring
out the partial name and passing the local variable.1 That also performs 20
times faster.

Rails 4.xRails 3.x

0.100 ± 0.0050.066 ± 0.001

Table 3—Time to render a collection of 10,000 objects
Empty partials. Measured with GC disabled, in seconds. Results scale linearly with the number of partials.

The reason rendering a collection is faster is that it initializes the template
only once. Then it reuses the same template to render all objects from the
collection. Rendering 10,000 partials in a loop will have to repeat the initial-
ization 10,000 times.

How much work is it to initialize the template? I have profiled the rendering
of 10,000 partials in Rails 4 to illustrate that. Let’s look at the summary.

Percent of total execution timeOperation

45%Logging

21%Finding and reading the template (from disk or cache)

9%Setting up execution context (local variables, etc.)

5%Template class instantiation

5%Rendering

15%Other work

I’m sure we are both having our aha moment now. Actual rendering takes
only 5% of the time. No wonder that if we skip initialization, we’ll get two
orders of magnitude speedup—exactly as in our measurements.

Let’s see why logging takes 45% of the time. It turns out that with default
config.log_level = :info in production mode Rails produces too much output.

INFO --: Started GET "/test" for 127.0.0.1 at 2014-08-13 10:21:40 -0500
INFO --: Processing by TestController#index as HTML
INFO --: Rendered test/_object.html.erb (0.1ms)
«9998 more object.html.erb partial rendering notifications»
INFO --: Rendered test/_object.html.erb (0.0ms)
INFO --: Rendered test/_dummy.html.erb (1904.0ms)
INFO --: Rendered test/index.html.erb within layouts/application (1945.4ms)
INFO --: Completed 200 OK in 1952ms (Views: 1948.6ms | ActiveRecord: 0.0ms)

1. http://guides.rubyonrails.org/layouts_and_rendering.html#rendering-collections

Chapter 3. Make Rails Faster • 48

report erratum • discuss

http://guides.rubyonrails.org/layouts_and_rendering.html#rendering-collections
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Joe asks:

But Rails Applications Rarely Need to Render
10,000 Partials, Do They?

Most likely not a lot of them render 10,000 partials. But 1,000 does not seem like an
unreachable number. Let’s do some math. Imagine you render 100 objects with a
partial in a loop. Now imagine that partial calls 10 other partials. These numbers
look legit. If you render a paginated table with 10 columns, you’ll get a setup like
this. How many render partial calls do we have? Already 1,000. How much time will
we spend just inside the render partial function? About 200 ms according to my
measurements. If we factor in the time for actually rendering useful content, we’ll
easily cross the 1-second response time mark. And that’s already unacceptable for
any web application.

Chances are you won’t want to silence your logs completely with config.log_level
= :warn, but doing that would give you two times speedup.

config.log_level = :warnconfig.log_level = :info

0.830 ± 0.0491.840 ± 0.045

Table 4—Time to render a collection of 10,000 objects with different log levels
Rails 4. Empty partials. Measured with GC disabled, in seconds

That is still not as fast as render collection (0.1 s). Where do the remaining
0.7 seconds go? It turns out that Rails implements a logger using the
Observer pattern. Partial rendering triggers a render_partial.action_view event.
When that happens ActionSupport::LogSubscriber gets notified and, in turn, runs
Logger to produce the output. This plumbing code takes about 0.2 seconds.
Template initialization and execution context evaluation take the rest.

Render collection has none of that overhead, and it doesn’t produce excessive
log output, either. That makes it clearly superior to rendering partials in a
loop.

There’s no render collection in Rails 2.x. But if you’re still using that version,
try the template inliner plug-in.2 It achieves the same effect by textually
inserting partial code into the parent template before Rails compiles it.

This is what I wrote when I worked at Acunote,3 the online project management
system built with Ruby on Rails. There we rendered hundreds of tasks on
the page, each task having 8–10 fields. For each field we had a separate partial

2. https://github.com/acunote/template_inliner
3. http://www.acunote.com/

report erratum • discuss

Make ActionView Faster • 49

https://github.com/acunote/template_inliner
http://www.acunote.com/
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

for rendering, and there was no render collection in Rails 2.x. That’s when
the template inliner was born.

To use it, add the plug-in to your Rails application, and append inline: true to
the render statement:

<% @objects.each do |object| %>
<%= render partial: 'object', locals: { object: object }, inline: true %>

<% end %>

Rails never sees the render partial call, and as result, we get the same two
orders of magnitude performance improvement.

Rails 2.x with template inlinerRails 2.x

0.003 ± 0.00010.335 ± 0.006

Table 5—Time to render 10,000 partials inline
Measured with GC disabled, in seconds. Results scale linearly with the number of partials.

Avoid Iterator Unsafe Helpers and Functions
All rendering helpers are what I call iterator unsafe. They take both time and
memory, so be careful when using them in a loop, especially with link_to, url_for,
and img_tag.

I do not have any better advice than to be careful, for two reasons. First, you
cannot avoid using these helpers (especially in newer Rails). Second, it’s very
hard to benchmark them. Helpers’ performance depends on too many factors,
making any synthetic benchmark useless. For example, link_to and url_for get
slower when the complexity of your routing increases. And img_tag performs
worse as you add more assets. In one application it’s safe to render a thousand
URLs in the loop, whereas in another it’s not. So…be careful.

Takeaways
It takes the same techniques we learned in Chapter 2, Fix Common Performance
Problems, on page 13 to make your Rails application faster:

• Optimize memory taken by ActiveRecord by aggressive preloading, selective
attribute fetching, and data processing in batches.

• Replace explicit iterators in views with render collection, which takes both
less time and memory.

• Let your database server do your data manipulation.

This and the two previous chapters contain all the advice I can give you to
make your Ruby and Rails code faster. Go ahead, apply it, and reap your

Chapter 3. Make Rails Faster • 50

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

performance benefits. So why, you may ask, is this not the end of the book?
Because any cookbook-style advice is only good for well-known situations.
And it leaves you unprepared when performance degrades for an entirely
different reason that I did not experience, or could not predict.

It’s time to learn what to do if none of the advice works. When that happens,
you’ll need to profile your application, understand what can go wrong, opti-
mize, measure, and make sure slowdown never happens again. In the next
three chapters you’ll learn how to do all that.

report erratum • discuss

Takeaways • 51

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 4

Profile
All right, so you’ve learned the key performance optimization techniques and
can apply them to your code. But what do you do when none of the techniques
we’ve discussed work?

You profile.

Profiling is the only sure way to answer the question “What is slowing this
code down?” Profiling can be hard and time consuming, but there’s really no
shortcut. If you can’t optimize just by looking at the code or by taking an
educated guess, you have to profile.

Once you know exactly what is slowing you down, fixing it becomes trivial.
So now I’ll teach you the arcane secrets of profiling, which will make finding
out what’s slow easier.

Let’s start our exploration of profiling by breaking it down into its two basic
parts. First, there’s measuring memory or CPU usage and attributing this to
specific places in the code, most often function calls. Second, there’s inter-
preting the results to identify the slow parts of the code. These are two very
different kinds of activities, and you need to think about them differently.

Measuring is a pure engineering task and is simple. You can do it by hand
or use a profiler tool. I’ll show you how to use the tools.

Interpreting measurements is more complicated, but the secret is to treat it
as a craft, not as an engineering task. I’ve seen many brilliant software
developers give up profiling precisely because they tried to profile as engineers.
Your left brain will see profiling as cumbersome and unsatisfying. Involve
your right brain, and instead you will find it intriguing and exciting.

Because profiling is a craft, I will teach it as that—in other words, by example.
I’ll show you how I profile my code using concrete examples, and I’ll leave it

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

for you to abstract the techniques that work for you. That’ll be easy once you
pick up the patterns in the examples. So turn on your right brain, and let’s
start.

Up to now I’ve kept telling you that you need to optimize memory first. But
now we’re going to reverse the order and look first at CPU profiling, and only
then at memory. There are much better and more mature tools available for
CPU optimization. Once you master them, you can apply the same approach
to memory optimization, despite the inferior tools available for that task.

CPU profiling and optimization, then, is what you need to do to speed up
algorithmically slow code.

For profiling we’ll use the ruby-prof1 tool. It will measure the execution time
of your program and will break it down to individual functions that your
program uses.

After you get the measurements from ruby-prof, you can visualize them either
with the built-in ruby-prof printing tools or with KCachegrind.2

Both ruby-prof and KCachegrind are multiplatform and freely available. We’ll
go through examples of exactly how to use each of them in profiling your
code, but first: the rules of CPU profiling.

There’s just one. The first and the only rule of successful CPU profiling is:
turn off the garbage collector. GC is unpredictable and hidden from any Ruby
code, including the profiler itself. So instead of separating the GC time, the
profiler will attribute it to the function that was running when GC kicked off.
This will result in unhelpful advice like learning that the Fixnum::+ function
takes 300 ms of execution time doing 2+2. To get meaningful results, always
disable GC.

OK, let’s pick up our first CPU profiling tool and get to work!

Measure with Ruby-Prof
ruby-prof is a Ruby gem that comes with both an API and a command-line
tool. In most cases you’ll probably want use the API to profile just that isolated
part of the code that you suspect to be slow. But the command-line tool is
what you want for profiling application startup, especially if you’re interested
in rubygems startup costs. In Rails applications you can get the complete
request profile by inserting ruby-prof into the middleware stack.

1. https://github.com/ruby-prof/ruby-prof
2. http://kcachegrind.sourceforge.net/html/Home.html

Chapter 4. Profile • 54

report erratum • discuss

https://github.com/ruby-prof/ruby-prof
http://kcachegrind.sourceforge.net/html/Home.html
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

1. ruby-prof API
In this example we’ll use the ruby-prof API to profile a specific part of your
code.

chp4/ruby_prof_example_api1.rb
require 'date'
require 'rubygems'
require 'ruby-prof'

GC.disable

RubyProf.start
Date.parse("2014-07-01")
result = RubyProf.stop

printer = RubyProf::FlatPrinter.new(result)
printer.print(File.open("ruby_prof_example_api1_profile.txt", "w+"))

Alternatively, you can pass a block to ruby-prof.

result = RubyProf.profile do
Date.parse("2014-07-01")

end

The idea is to wrap the code, in our example the Date#parse call, between
RubyProf.start and RubyProf.stop and then print the report.

There are several types of reports ruby-prof can print, but for now we’ll use
just one of them, called FlatPrinter, that shows the overall time spent in each
function. The output is sorted by time, with functions that take the most time
printed first, so you can easily see which functions are the CPU hogs.

Make sure you have the ruby-prof gem installed and run the program.

$ rbenv shell 2.1.5
$ gem install ruby-prof
$ ruby ruby_prof_example_api1.rb

Let’s briefly take a look at the profile.

chp4/ruby_prof_example_api1_profile.txt
Thread ID: 70237499659060
Fiber ID: 70237507374720
Total: 0.001111
Sort by: self_time

%self total self wait child calls name
59.98 0.001 0.001 0.000 0.000 2 Regexp#match
28.96 0.001 0.000 0.000 0.001 1 <Class::Date>#parse
4.72 0.001 0.000 0.000 0.001 1 Global#[No method]

report erratum • discuss

Measure with Ruby-Prof • 55

http://media.pragprog.com/titles/adrpo/code/chp4/ruby_prof_example_api1.rb
http://media.pragprog.com/titles/adrpo/code/chp4/ruby_prof_example_api1_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

3.81 0.000 0.000 0.000 0.000 1 String#gsub!
1.22 0.000 0.000 0.000 0.000 1 MatchData#begin
0.67 0.000 0.000 0.000 0.000 1 String#[]=
0.38 0.000 0.000 0.000 0.000 1 Fixnum#div
0.25 0.000 0.000 0.000 0.000 1 MatchData#end

* indicates recursively called methods

Our code spends more than 60% of its time matching the date I passed to
the regular expression. Most of the remaining time is taken up by the Date#parse
function itself, probably for Date instantiation.

Now let’s see how to use the command-line tool.

2. ruby-prof Command-Line Tool
You don’t have to add any instrumentation to the program itself in order to
use the command-line tool. So the program can simply be this:

chp4/ruby_prof_example_command.rb
require 'date'

GC.disable
Date.parse("2014-07-01")

Run the ruby-prof command to profile it.

$ ruby-prof -p flat -m 1 -f ruby_prof_example_command_profile.txt\
ruby_prof_example_command.rb

Here the -p option tells which printer to use to output the report (flat printer
again in our case). And -m limits the outputs by suppressing all functions
that took less than a specified percentage of time to execute. In this case I
don’t care about places where the code spends less than 1% of its time.

You should get a profile like this one:

chp4/ruby_prof_example_command_profile.txt
Thread ID: 69883126035220
Fiber ID: 69883132260680
Total: 0.002094
Sort by: self_time

%self total self wait child calls name
17.37 0.001 0.000 0.000 0.001 3 *Kernel#gem_original_requi
16.97 0.000 0.000 0.000 0.000 2 Regexp#match
10.85 0.001 0.000 0.000 0.000 1 <Class::Date>#parse
2.36 0.000 0.000 0.000 0.000 113 Module#method_added
1.83 0.000 0.000 0.000 0.000 6 IO#set_encoding
1.57 0.000 0.000 0.000 0.000 1 String#gsub!
1.23 0.000 0.000 0.000 0.000 6 MonitorMixin#mon_enter

Chapter 4. Profile • 56

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp4/ruby_prof_example_command.rb
http://media.pragprog.com/titles/adrpo/code/chp4/ruby_prof_example_command_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

1.16 0.002 0.000 0.000 0.002 2 Global#[No method]
1.12 0.000 0.000 0.000 0.000 3 Array#each
1.07 0.000 0.000 0.000 0.000 49 BasicObject#singleton_met
1.03 0.000 0.000 0.000 0.000 6 MonitorMixin#mon_exit

* indicates recursively called methods

With this profile you can see what took the most time during the whole pro-
gram run. In this case it’s Kernel#gem_original_require—the line that we didn’t see
when we profiled only date parsing. We can see the time spent in require 'date'.
Other things like class and object initialization functions also appear in the
profile. Unsurprisingly, our profile confirms that such a simple program
spends more time on startup than on actual code execution.

Your profile may be a bit different, and sometimes GC#disable can appear at
the top because it performs a lazy GC sweep before disabling. That may or
may not take noticeable time depending on how many objects are currently
marked for deletion in the memory heap. In case you’re wondering what that
GC sweep is that I’m talking about, take a peek at Chapter 10, Tune Up the
Garbage Collector, on page 149. But don’t think too much about GC#disable if
you spot it here, as we have it in the source code only for profiling.

As I mentioned, a profile generated by the ruby-prof command-line tool is
very useful if you’re interested in the efficiency of application startup and
gem loading. For other cases it adds too much data to the report, and you
are much better off using the ruby-prof API.

3. Rails Middleware
The ruby-prof API works best if all you want is to profile a part of the Rails
application—for example, controller action or template rendering. But to get
insight into middleware, routing, and controller initialization, you need to
insert ruby-prof as middleware.

To do that, add the ruby-prof gem into the Gemfile:

gem 'ruby-prof'

Also, insert the ruby-prof Rack adapter into the middleware stack in, for
example, config/applilcation.rb:

config.middleware.use Rack::RubyProf, path: '/tmp/rails_profile'

The use call will insert the profiler into the bottom of the middleware stack.
So the profile will include Rails initialization code, skipping the middleware.
If you want to profile the middleware, insert the profiler before Rack::Runtime:

report erratum • discuss

Measure with Ruby-Prof • 57

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

config.middleware.insert_before Rack::Runtime, Rack::RubyProf,
path: '/tmp/rails_profile'

With Rack::RubyProf middleware loaded, you will get flat and HTML reports saved
in the path you provide.

Don’t forget to disable GC before Rack::RubyProf starts. The best way to do it is
to write one more middleware and insert it before the profiler into the stack:

class GCDisabler
def initialize(app)

@app = app
end

def call(env)
GC.start
GC.disable
response = @app.call(env)
GC.enable
response

end
end

in config/application.rb
config.middleware.insert_before Rack::RubyProf, GCDisabler

Rails Profiling Best Practices

• Disable GC before profiling, as you should do for any Ruby code.

• Always profile in production mode. Development mode profiles are not useful
because all you will see is class reloading and I/O operations made by noncached
template initialization.

• Profile twice without restarting the application and discard the results of the first
run to get the hot-start profile where everything is loaded and cached.

• If using Rails page or fragment caching, obtain two profiles: with and without
caching.

Visualize with Ruby-Prof Printers
Ruby-prof can generate several types of human-readable reports. I find three
of them to be the most useful: flat, call graph, and call stack reports. (You
can see the full list in the ruby-prof documentation.)3 Each serves a different

3. https://github.com/ruby-prof/ruby-prof

Chapter 4. Profile • 58

report erratum • discuss

https://github.com/ruby-prof/ruby-prof
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

purpose. But we’re learning by example here, and to show them to you, I’ll
need a more sophisticated example to profile.

chp4/app.rb
require 'date'
require 'rubygems'
require 'ruby-prof'

This generates CSV like
1, John McTest, 1980-07-01
2, Peter McGregor, 1985-12-23
3, Sylvia McIntosh, 1989-06-13
def generate_test_data

50000.times.map do |i|
name = ["John", "Peter", "Sylvia"][rand(3)] + " " +

["McTest", "McGregor", "McIntosh"][rand(3)]
[i, name, Time.at(rand * Time.now.to_i).strftime("%Y-%m-%d")].join(',')

end.join("\n")
end

def parse_data(data)
data.split("\n").map! { |row| parse_row(row) }

end

def parse_row(row)
row.split(",").map! { |col| parse_col(col) }

end

def parse_col(col)
if col =~ /^\d+$/

col.to_i
elsif col =~ /^\d{4}-\d{2}-\d{2}$/

Date.parse(col)
else

col
end

end

def find_youngest(people)
people.map! { |person| person[2] }.max

end

data = generate_test_data
GC.disable
result = RubyProf.profile do

people = parse_data(data)
find_youngest(people)

end

printer = RubyProf::FlatPrinter.new(result)

report erratum • discuss

Visualize with Ruby-Prof Printers • 59

http://media.pragprog.com/titles/adrpo/code/chp4/app.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

printer.print(File.open("app_flat_profile.txt", "w+"), min_percent: 3)

printer = RubyProf::GraphPrinter.new(result)
printer.print(File.open("app_graph_profile.txt", "w+"), min_percent: 3)

printer = RubyProf::CallStackPrinter.new(result)
printer.print(File.open("app_call_stack_profile.html", "w+"))

Our program generates random CSV with the list of people and their birth
dates, parses it, and finds the youngest person from that list. Here I parse
the CSV by hand to make the profile sophisticated, but still simple enough
to fully understand. At the end, I print the three reports I mentioned earlier.
I limit flat and graph reports to print-only functions that take more than 3%
of the total time.

The only external dependency of this example is the ruby-prof gem. I have a
Gemfile like the following and run the application with bundle exec ruby app.rb.

chp4/Gemfile
source 'https://rubygems.org'
gem 'ruby-prof', require: false

All clear? OK, let’s run the app. It will generate three files: app_flat_profile.txt,
app_graph_profile.txt, and app_call_stack_profile.html. These correspond to the three
reports: flat, graph, and call stack. After you run the app, open these reports
in your editor or web browser, and let’s see what useful information we can
extract from each of them.

Flat Report: Find Which Functions Are Slow
The flat profile shows the amount of time spent in each function. For our
example application, the flat profile looks like this:

chp4/app_flat_profile.txt
Thread ID: 70137029546800
Fiber ID: 70137039955760
Total: 1.882948
Sort by: self_time

%self total self wait child calls name
27.33 1.354 0.515 0.000 0.839 150000 Object#parse_col
22.31 0.806 0.420 0.000 0.386 50000 <Class::Date>#parse
8.59 0.162 0.162 0.000 0.000 100000 Regexp#match
5.11 1.707 0.096 0.000 1.611 50000 Object#parse_row
4.79 1.797 0.090 0.000 1.707 50002 *Array#map!
4.66 0.088 0.088 0.000 0.000 50001 String#split
4.46 0.084 0.084 0.000 0.000 50000 String#gsub!

* indicates recursively called methods

Chapter 4. Profile • 60

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp4/Gemfile
http://media.pragprog.com/titles/adrpo/code/chp4/app_flat_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Let me first explain what the columns in the report mean.

The percentage of the time spent only in this function. See the definition
of self.

%self

The total time spent in this function, including the execution time of
functions that it calls.

total

The time spent only in this function, excluding the execution time of
functions that it calls.

self

The time spent waiting for other threads. This will always be zero for
single-threaded apps. I’ll sometimes omit this column from profiles
included in this book to save some space.

wait

The time spent in functions that are called from the current function.child

The total number of calls to this function.calls

The flat report is sorted by self time. So functions at the top of the report are
the ones where our program spends most of the time.

For any given function, self time in the report is a sum of self times of all calls
to that function, no matter where this call is in the code. For example,
String#split is called once from the parse_data function and 50,000 times in the
loop from parse_row. In the flat profile we see one line that reports all 50,001
String#split calls. All other metrics are also aggregated.

Also remember that self time doesn’t include the time of nested function calls.
For example, self time for Object#parse_col doesn’t include the time of regular
expression matching or date parsing. Despite being a simple-looking function
with just an if-else statement, Object#parse_col still takes a considerable amount
of time on its own. We’ll discuss the reasons shortly, but for now just keep
this in mind.

As we now know, the functions at the top are the slowest. So the first thing
you should do is to optimize them. There’s a chance this will make your code
fast enough right away.

But often optimization doesn’t end here. It’s not enough to optimize the
slowest functions by self time, for two reasons:

• The profiler may still report a large self time for a function even after you
speed it up. For example, our top offender, Object#parse_col, does nothing
on its own. All it really executes is an if-else statement. And it’s still slow!

• The slowest function is either a library function, or simple enough already
that you cannot further optimize it. In our example, Array#map! is the #3
slowest function. But it’s a library routine that we can’t really improve.

report erratum • discuss

Visualize with Ruby-Prof Printers • 61

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

In both cases the slowness is caused by the number of function calls rather
than by the function code itself. The obvious way to optimize in this situation
is to reduce the number of function calls. For that you need to know where
the function is called and how often. But our flat profile doesn’t show that.
It’s time to look at another profile: the graph report.

Graph Report: Understand Which Parts of the Code Are Slow
The graph report is sorted by the total time spent in the function, including
the time from functions that it calls. Let’s look at the graph profile of our
example application and figure out what it means.

chp4/app_graph_profile.txt
Thread ID: 70137029546800
Fiber ID: 70137039955760
Total Time: 1.8829480049999994
Sort by: total_time

%total %self total self child calls Name

100.00% 0.01% 1.883 0.000 1.883 1 Global#[No method]

1.777 0.000 1.777 1/1 Object#parse_data
0.106 0.000 0.106 1/1 Object#find_youngest

0.000 0.000 0.000 50000/50002 Object#parse_row
0.031 0.031 0.000 1/50002 Object#find_youngest
1.767 0.060 1.707 1/50002 Object#parse_data

95.46% 4.79% 1.797 0.090 1.707 50002 *Array#map!
1.707 0.096 1.611 50000/50000 Object#parse_row
1.354 0.515 0.839 150000/150000 Object#parse_col

1.777 0.000 1.777 1/1 Global#[No method]

94.39% 0.00% 1.777 0.000 1.777 1 Object#parse_data
1.767 0.060 1.707 1/50002 Array#map!
0.010 0.010 0.000 1/50001 String#split

1.707 0.096 1.611 50000/50000 Array#map!

90.67% 5.11% 1.707 0.096 1.611 50000 Object#parse_row
0.077 0.077 0.000 50000/50001 String#split
0.000 0.000 0.000 50000/50002 Array#map!

1.354 0.515 0.839 150000/150000 Array#map!

71.88% 27.33% 1.354 0.515 0.839 150000 Object#parse_col
0.806 0.420 0.386 50000/50000 <Class::Date>#parse
0.033 0.033 0.000 50000/50000 String#to_i

0.806 0.420 0.386 50000/50000 Object#parse_col

42.79% 22.31% 0.806 0.420 0.386 50000 <Class::Date>#parse
0.162 0.162 0.000 100000/100000 Regexp#match

Chapter 4. Profile • 62

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp4/app_graph_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

0.084 0.084 0.000 50000/50000 String#gsub!
0.046 0.046 0.000 50000/50000 String#[]=
0.039 0.039 0.000 50000/50000 MatchData#begin
0.031 0.031 0.000 50000/50000 Fixnum#div
0.024 0.024 0.000 50000/50000 MatchData#end

0.162 0.162 0.000 100000/100000 <Class::Date>#parse

8.59% 8.59% 0.162 0.162 0.000 100000 Regexp#match

0.106 0.000 0.106 1/1 Global#[No method]
5.61% 0.00% 0.106 0.000 0.106 1 Object#find_youngest

0.075 0.000 0.075 1/1 Enumerable#max
0.031 0.031 0.000 1/50002 Array#map!

0.010 0.010 0.000 1/50001 Object#parse_data
0.077 0.077 0.000 50000/50001 Object#parse_row

4.66% 4.66% 0.088 0.088 0.000 50001 String#split

0.084 0.084 0.000 50000/50000 <Class::Date>#parse
4.46% 4.46% 0.084 0.084 0.000 50000 String#gsub!

0.075 0.000 0.075 1/1 Object#find_youngest

3.98% 0.00% 0.075 0.000 0.075 1 Enumerable#max
0.075 0.035 0.040 1/1 Array#each

0.075 0.035 0.040 1/1 Enumerable#max

3.98% 1.87% 0.075 0.035 0.040 1 Array#each
0.040 0.040 0.000 49999/49999 Date#<=>

For this book I’ve generated the graph profile in the plain text format because
it looks better on paper. But an HTML representation of the same report is
easier to understand and more convenient to navigate because all function
names are hyperlinks to their sections of the profile. To get the HTML report,
replace the printer = RubyProf::GraphPrinter.new(result) line in our example with printer
= RubyProf::GraphHtmlPrinter.new(result). It’s a good idea to always use the HTML
report for your own profiling needs.

The meaning of the columns is the same as for the flat report. I removed the
wait column from graph reports included in this book so that they fit the page.
We won’t profile multithreaded applications, so the wait values will always be
zero for us anyway.

Now let me guide you through this report. Each row contains the same
function profiling data as in the flat profile, but with immediate function
callers listed above and callees listed below.

The topmost function, called Global#nomethod, represents either part of code
between RubyProf.start and RubyProf.end or a block passed to RubyProf.profile. It has

report erratum • discuss

Visualize with Ruby-Prof Printers • 63

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

no callers, so it comes first in its row. Below the Global#nomethod you see its
two callees: Object#parse_data and Object#find_youngest. Each is called exactly one
time. Hence the profile reports 1/1 calls, meaning that function is called one
time from the global block and there is only one such function call in total.

The second row for Array#map! requires more effort to decipher. The function
data line is now in the middle because there are both three callers above it
and two callees below it. It may be confusing that the Array#map! data line is
not the first in its row, but it’s easy to tell it from callers and callees: it is the
only line that has %total and %self values.

Total, self, and child times for the function data line have the same meaning as
in the flat profile. These are, respectively, the total time that your program
spends in the map iterator, the self time of the iterator function, and the time
spent in the block that is passed to map and executed in a loop.

Let’s look at Array#map! caller lines and try to make sense out of them.

The Calls column shows that we executed Array#map! 50,002 times: 50,000 of
them from Object#parse_row, one from Object#find_youngest, and another one from
Object#parse_data. A quick look at the application code confirms these numbers.

The timing columns for the caller lines have a slightly different meaning. For
each caller line these show the total, self, and child times that Array#map! took
while that caller executed it.

The timing for Object#parse_data and Object#find_youngest makes perfect sense.
Parsing took an order of magnitude more time than selecting an element from
the array in the find_youngest function.

But zeroes in total, self, and child times for Object#parse_row do not make any sense
at the first sight. Row parsing is one of the slowest functions according to our
flat profile, isn’t it? The trick is that the Object#parse_data caller line already
includes row parsing times because it calls parse_row in a loop. So the profiler
in this case tries to prevent double counting and allocates the time only to
the topmost function in the call stack. That happens to be Object#parse_data.

What useful information do we extract from this report? First, we get a high-
level overview of where your program spends time. For example, our program
spends almost 90% of its time iterating the data to parse CSV rows. Second,
we can walk through the profile top-down to get an idea of which part of the
code we should optimize. For example, we see that the slowest function by
total time Array#map! calls Object#parse_row. That, in turn, calls String#split, which
has a significant self time. So one way of optimizing would be to reduce the
number of String#split calls or to replace them with something else.

Chapter 4. Profile • 64

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

But because of aggregation and double counting prevention, the graph report
is still not good enough for top-down performance review. There’s a better
report for that: the call stack report.

Call Stack Report: Find Which Execution Path Is Slowest
This report really shows the call tree (not a stack as the name implies). Each
node in the tree looks like this:

% of total time (% of caller time) Function [# of calls, # of calls total]

You get the percentage of this function’s execution time (including its callees)
relative to the total execution time, and the caller function’s time. And you
get the number of calls to this function within the current execution path
and the total number of calls.

Let’s see how the call stack profile looks for our example application.

chp4/app_call_stack_profile.txt
Call tree for application app.rb
Generated on 2014-10-02 08:53:27 -0500 with options {}
Threshold: [1.0] [Apply] [Expand All] [Collapse All] [Show Help]
Thread: 70137029546800, Fiber: 70137039955760 (100.00% ~ 1.8829480049999994)

* [-] 100.00% (100.00%) Global#[No_method] [1 calls, 1 total]
o [-] 94.39% (94.39%) Object#parse_data [1 calls, 1 total]

[-] 93.83% (99.41%) Array#map! [1 calls, 50002 total]
[-] 90.67% (96.63%) Object#parse_row [50000 calls,

50000 total]
[-] 81.45% (89.84%) Array#map! [50000 calls,

50002 total]
[-] 71.88% (88.25%) Object#parse_col
[150000 calls, 150000 total]

[-] 42.79% (59.52%) <Class::
Date>#parse
[50000 calls, 50000 total]

[] 1.76% (2.45%) String#to_i
[50000 calls, 50000 total]

[] 4.10% (4.52%) String#split [50000 calls,
50001 total]

[] 0.56% (0.59%) String#split [1 calls, 50001 total]
o [+] 5.61% (5.61%) Object#find_youngest [1 calls, 1 total]

[+] 3.98% (70.93%) Enumerable#max [1 calls, 1 total]
[+] 3.98% (99.98%) Array#each [1 calls, 1 total]

[] 2.11% (52.96%) Date#<=> [49999 calls,
49999 total]

[] 1.63% (29.06%) Array#map! [1 calls, 50002 total]

report erratum • discuss

Visualize with Ruby-Prof Printers • 65

http://media.pragprog.com/titles/adrpo/code/chp4/app_call_stack_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

You can read it top-down exactly as you would read the Ruby code. Our code
snippet that we profile calls the parse_data and find_youngest functions. parse_data
calls parse_row in a loop. That, in turn, calls parse_col in another loop.

What I like about this type of profile is that the total time percentages are not
aggregated between code branches. Here’s what I mean: Both flat and graph
reports have only one line for Array#map! in the profile, but it’s actually called
from three different places in the code. In contrast, this is exactly what you
see in the call stack profile. In our example profile you clearly see that a map
from find_youngest takes less than 2% of the execution time, whereas the map
that parses columns accounts for about 90% of the total time.

The percentage of caller time is useful to see which branch of code is slower.
For example, in the find_youngest branch, two-thirds of the time is spent finding
the maximum element in the array and only one-third of the time preparing
that array.

The call stack profile is definitely easier to understand than the flat or graph
profiles. I would even call it intuitive. But such a report works best for small
chunks of code. Profiling a large codebase will give you a huge report, less
suitable for optimization than for learning how the unfamiliar code works.

That’s why my recommendation is to start with aggregated flat and graph
reports and refer to the call stack report only when the data from those two
is unclear.

And even when you can’t seem to make sense out of the aggregated reports,
a proper visualization tool can help you more than the call stack report will.
Let me show you one such tool.

Visualize with KCachegrind (QCachegrind)
Ruby-prof can generate profiles in so-called callgrind format. This is the format
used by the Valgrind profiler used in the C and C++ world. With the CallTree-
Printer, you can obtain the callgrind-formatted profile and reuse some of the
best visualization tools developed by C/C++ programmers.

KCachegrind4 is, in my opinion, the best such tool. It comes as a part of all
major Linux distributions. Its version for Mac OS and Windows is called
QCachegrind. On Mac you can install it via MacPorts or Homebrew. On
Windows you can use precompiled packages.5

4. http://kcachegrind.sourceforge.net/html/Home.html
5. http://sourceforge.net/projects/qcachegrindwin/

Chapter 4. Profile • 66

report erratum • discuss

http://kcachegrind.sourceforge.net/html/Home.html
http://sourceforge.net/projects/qcachegrindwin/
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

If you want to follow along, install it now, if necessary. And then let’s take
our example application and generate the callgrind output. Add this code
snippet to the end of app.rb:

chp4/app.rb
printer = RubyProf::CallTreePrinter.new(result)
printer.print(File.open("callgrind.out.app", "w+"))

This will generate a file called callgrind.out.app. Callgrind has a strange naming
convention where the file takes a callgrind.out prefix instead of an extension
(suffix). After the prefix comes the name of the executable file, app in our case.

The file format is textual, but it’s optimized for machine reading. So let’s open
KCachegrind or QCachegrind and see how it looks and what visualizations
we have.

Flat Profile and Callers List
The list at the left looks like the same flat profile that ruby-prof’s flat printer
generates, except that it is sorted by Incl. time (total time in ruby-prof’s parlance)
by default. Clicking on the column will change the sorting.

While the profile looks the same as ruby-prof’s flat profile, in reality it’s not.
Timings are different. So let’s take a closer look at this profile and try to
understand why and how it differs.

report erratum • discuss

Visualize with KCachegrind (QCachegrind) • 67

http://media.pragprog.com/titles/adrpo/code/chp4/app.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

The first notable difference is that Incl. and Self times are in microseconds. If
you divide the Global#[No method] time you see in KCachegrind by 106, you
should get the same total time reported by flat and graph profiles.

The second difference is in the total time for the Array#map function. It’s way
larger than what we see in the flat profile. Confusingly, it is also larger than
total app execution time! Self time appears to be the same, though. What
gives?

Remember that when we looked at the graph profile, we discussed the double
counting prevention that ruby-prof has. KCachegrind does no such thing.
This is why the Incl. time for Array#map includes its time when called from
Object#find_youngest, Object#parse_data, and Object#parse_col. The last is called from
parse_data and should have not been counted.

This way, total time for Array#map is a sum of its times inside all caller func-
tions. You can clearly see this in KCachegrind in the second list view on the
right, in the Callers tab.

Chapter 4. Profile • 68

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

If you add the process_time numbers, you’ll get the same Incl. time that you see
in the flat profile view.

Except for the differences we have just seen, all other data should be the
same as in ruby-prof’s flat profile.

Callee and Caller Maps
When all you want is to quickly see where the whole application or any given
function spends its time, look at the callee map. It shows functions as nested
blocks. The area of each block is proportional to its Incl. time.

You can get the callee map for any function. For example, this is the map for
Global#[No method]. That is the name for the whole code part that we profile.

As expected, we see Object#parse_col, Date#parse, and Regexp#match taking most
of the space. Object#parse_col has both significant self and total times. Its self
time is visible in this report as the area not occupied by nested functions.

This view makes it easy to get an idea, graphically, of what takes time without
digging through the numbers from the flat profile. But beware of the two
shortcomings.

First, it tends to visualize nested calls as recursive. In reality Array#map calls
Object#parse_row in a loop, which, in turn, calls Array#map again to parse columns.
There’s no recursion here—just two nested loops. What we see in the chart
is instead the recursive call from Array#map to Object#parse_row, and recursively
to Array#map and, again, Object#parse_row. KCachegrind is not smart enough to
understand that the map that iterates over rows is different from the map
that iterates over columns, and confuses them with the recursion.

report erratum • discuss

Visualize with KCachegrind (QCachegrind) • 69

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Second, it double counts. Select the Array#map line in the Flat Profile view at
the left and look at its callee map.

See how the largest box for Object#parse_col already reports 100% of its total
time. And subsequent calls in the loop show more and more Object#parse_col
boxes. Remember, we saw Array#map Incl. time double counting in the previous
section. Column parsing is done within that map iterator, so its time is mis-
calculated as well, and distributed among the Array#map boxes in the chart.

Once you’re aware of the potential miscalculations, the Callee Map view can
be very useful in the first stages of the optimization. Caller Map at the bottom
of the KCachegrind window is the similar view that shows an area chart of
the function’s callers. You should exercise similar caution when interpreting
its results. Incorrect nesting and double counting are possible.

Source Code
The Callgrind format lets profilers store full path and line numbers of profiled
functions. Ruby-prof does that for Ruby code so you can look inside the source
with KCachegrind. For example, this is how Global#nomethod’s source code view
looks:

Lines that we are not profiling are grayed out. Each line for which ruby-prof
has performance data is annotated with Incl. time. Double-clicking on the
annotation line lets you dive into the callee function.

Unfortunately, KCachegrind doesn’t show you the source of Ruby C standard
library functions. Ruby-prof knows neither where to find Ruby sources nor
how to find the function implementation there. Despite that, browsing the

Chapter 4. Profile • 70

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

profile by reviewing the actual code can reveal information that you wouldn’t
otherwise get. For example, you can spot code that does nothing, or debug
output.

Call Graph
The last view I’m going to talk about here is the call graph, and it’s the most
useful one in KCachegrind. It represents the same information that we have
already seen in ruby-prof’s graph report, but as an actual graph rendered by
the dot tool from the GraphViz package.

KCachegrind can draw the call graph for any function that you select in the
Flat Profile view. Choose Global#nomethod to get the graph for the entire code
that you profile. This is how it looks for our example program:

Here you can see the distribution of execution time between functions even
more easily than with default ruby-prof’s graph report. Also, all boxes on the
chart are clickable, so you can dive in and see the call graph for any given
function.

Double counting is a concern here, similar to other visualizations. Array#map
has extra Incl. time once again.

report erratum • discuss

Visualize with KCachegrind (QCachegrind) • 71

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Your intuition may suggest that you’ll get the most value from the call graph
by reading it from top to bottom and focusing on the branch where your
program spends the most time. But double counting invalidates this approach.

The right way to look at a call graph is a bottom-up, breadth-first search and
optimization. First, you look at the graph leaves and optimize them. Then you
move up and try to optimize the next level of nodes, and so on. In the next
chapter I’ll show you how we can optimize our example application using this
approach.

Takeaways
Let’s review what you just learned about profiling:

• Use ruby-prof for profiling. Get better profile visualization with
KCachegrind/QCachegrind.

• Profiling is the only reliable way to understand what is slow in your
application. Unfortunately it doesn’t tell you how to optimize.

• Profiling and visualization tools are prone to double counting. You must
carefully examine your profile to draw the right conclusions.

• Remember little details that can make your profiles invalid. Turn off GC
for CPU profiling.

Chapter 4. Profile • 72

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 5

Learn to Optimize with the Profiler
The profiler gives you plenty of information with different reports and visual-
izations. To optimize, your job is to take all that information, make an educated
guess on what might be slow, optimize that, reprofile, and see whether your
guess was correct.

Profiling is always guesswork. There’s nothing deterministic except for the
general routine of profile, guess, optimize, then profile again and repeat. Do
not expect an ultimate profiler report that will magically tell you what’s slow.
Every report or visualization is looking into your app’s performance from one
specific angle. You might be able to see the problem from that angle, but most
often you will not. Worse, miscounting and double counting obstruct the data
even more.

So how do you profile then? Remember I told you that profiling is a craft. I
can start you off by profiling our example app that we wrote in the previous
section, but then you’ll have to go out in the wild and profile for yourself.
With time, you’ll master this craft, and you’ll be able to see the real sources
of performance problems. So let’s jump right in and optimize our example
application.

Optimize but Don’t Break
We’ll start our profiling session by writing a test and a benchmark. Why?
Because optimization means making changes to the code, most often to its
core part. Sometimes, optimization requires complex architectural changes.
And we should be able to make substantial changes without fearing we’ll
break things. This is why we need the test. We’ll use the test to make sure
we didn’t break anything during optimization. Benchmarking is important
because, as you’ll see later, the speedup in the profiler won’t always translate

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

to the same improvement in the real world. So we need to measure our code’s
performance before and after optimization to ensure that things got faster.

We’ll embed the test directly into the application and add the --test command-
line option to run the test suite. Without the option, the program will run the
profiler as before.

With --benchmark option we’ll run our code outside the profiler and measure
and print the execution time.

chp4/app.rb
«...»
if ARGV[0] == "--test"

ARGV.clear
require 'minitest/autorun'

class AppTest < MiniTest::Unit::TestCase

def setup
@parsed_data = parse_data(generate_test_data)

end

def test_parsing
assert_equal @parsed_data.length, 50000
assert @parsed_data.all? do |row|

row.length == 3 && row[0].class == Fixnum && row[2].class == Date
end

end

def test_find_youngest
youngest = find_youngest(@parsed_data)
assert @parsed_data.all? { |row| youngest >= row }

end

end

exit(0)
elsif ARGV[0] == "--benchmark"

require 'benchmark'

data = generate_test_data
result = Benchmark.realtime do

people = parse_data(data)
find_youngest(people)

end
puts "%5.3f" % result

exit(0)

Chapter 5. Learn to Optimize with the Profiler • 74

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp4/app.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

else
data = generate_test_data
GC.disable
result = RubyProf.profile do

people = parse_data(data)
find_youngest(people)

end
end
«...»
The first test_parsing test checks that we got the right number of columns and
rows after parsing and that the data types were recognized correctly. The
second test_youngest checks that we indeed found the latest birth date from the
parsed data.

Let’s run the test and make sure it passes.

$ bundle exec ruby app.rb --test
Running tests:
..
Finished tests in 5.427569s, 0.3685 tests/s, 0.5527 assertions/s.
2 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Let’s also benchmark the application before optimization.

$ bundle exec ruby app.rb --benchmark
0.937

Pick Low-Hanging Fruit
Finally, it’s time to optimize. We’ll start by looking at the flat profile in
KCachegrind and sort it by Self time, as shown in the figure on page 76.

Object#parse_col comes first, taking more than half a second of execution time.
The function itself is not that slow, but we call it 150,000 times. Also, it calls
two slow functions: <Class::Date>#parse and Regexp#match.

We should definitely concentrate our optimization on this group of three
functions. Why is column parsing so slow? It’s not because it takes too much
time to parse one row. We do that in about 3 microseconds, but repeat that
150,000 times (50,000 rows multiplied by 3 columns). Can we reduce the
number of repetitions? Not unless we change the way we parse the data or
the amount of data itself.

Before we make any big architectural changes to the program, let’s search
for the low-hanging fruit in the parse_col function itself.

report erratum • discuss

Pick Low-Hanging Fruit • 75

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp4/app.rb
def parse_col(col)

if col =~ /^\d+$/
col.to_i

elsif col =~ /^\d{4}-\d{2}-\d{2}$/
Date.parse(col)

else
col

end
end

Inside we see the Date#parse that’s responsible for about 800 ms on its own.
Yes, we can expect that parsing dates is slow. But let’s see what it’s doing
internally. Let’s select its Date#parse in the flat profile and look at the call graph
in the bottom-right view, shown in the image on page 77.

OK, it uses regular expressions to extract the year, month and date numbers.
But wait, we already do that ourselves in the elsif statement. Date#parse just
repeats the same thing. So why don’t we use results of our own parsing and
create a Date instance ourselves? Well, let’s try that.

Chapter 5. Learn to Optimize with the Profiler • 76

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp4/app.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp5/app_optimized1.rb
def parse_col(col)

if col =~ /^\d+$/
col.to_i

elsif match = /^(\d{4})-(\d{2})-(\d{2})$/.match(col)
Date.new(match[1].to_i, match[2].to_i, match[3].to_i)

else
col

end
end

In addition to changing parsing to object creation, we had to make two other
changes. First, the regular expression now has three groups to capture: year,
month, and day. Second, we converted the captured results to integers because
the Date constructor doesn’t accept string arguments.

We’ll need to compare profiles before and after optimization, so we’ll save the
new profile to a different file.

chp5/app_optimized1.rb
printer = RubyProf::CallTreePrinter.new(result)
printer.print(File.open("callgrind.out.app_optimized1", "w+"))

Before reprofiling, we run the tests to make sure we didn’t break anything
while optimizing.

report erratum • discuss

Pick Low-Hanging Fruit • 77

http://media.pragprog.com/titles/adrpo/code/chp5/app_optimized1.rb
http://media.pragprog.com/titles/adrpo/code/chp5/app_optimized1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

$ bundle exec ruby app.rb --test
Running tests:
..
Finished tests in 4.115975s, 0.4859 tests/s, 0.7289 assertions/s.
2 tests, 3 assertions, 0 failures, 0 errors, 0 skips

Let’s run the application with bundle exec ruby app.rb, go to KCachegrind, open
the new profile, and compare it to the original one.

Hey, we actually optimized something! Look at the Incl. time for Global#[No
method]. We reduced it by about 500 ms—that’s a 20% speedup. Yes, we’ve
added about 100 ms for string-to-integer conversion, and we do take additional
time to extract groups out of matched strings. But we optimized the 800 ms
that date parsing took. So we came out net positive despite additional work
our program has to do.

What’s next? Let’s look at the flat profile one more time. Object#parse_col is still
slow for no obvious reason. Remember, it’s just an if/else statement that doesn’t
do anything on its own. So we’ll skip it and look at what’s next: regexp
matching and string-to-integer conversion. We can’t really get rid of the latter
because it’s a part of our new manual date parsing code. So let’s look what
can we do with the former. Go back again to the source.

chp5/app_optimized1.rb
def parse_col(col)

if col =~ /^\d+$/
col.to_i

elsif match = /^(\d{4})-(\d{2})-(\d{2})$/.match(col)

Chapter 5. Learn to Optimize with the Profiler • 78

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp5/app_optimized1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Date.new(match[1].to_i, match[2].to_i, match[3].to_i)
else

col
end

end

Let’s take a wild guess. What if we merge the two regexp matches in the if
and elsif branches like this, retest, and reprofile?

chp5/app_optimized2.rb
def parse_col(col)

if match = /^(\d+)$|^(\d{4})-(\d{2})-(\d{2})$/.match(col)
if match[1]
match[1].to_i

else
Date.new(match[2].to_i, match[3].to_i, match[4].to_i)

end
else

col
end

end

But this time there’s no improvement. We even lost about 200 ms if you
compare Incl. time for Global#[Nomethod] between this and previous optimization
attempts. Why? The flat profile can tell us. Look how increased complexity of
the regular expression matcher negated any potential benefits by taking twice
as much time.

report erratum • discuss

Pick Low-Hanging Fruit • 79

http://media.pragprog.com/titles/adrpo/code/chp5/app_optimized2.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

So this optimization didn’t work. What lesson have we just learned? Always
complete the profile–optimize–profile cycle. Your “optimization” might not be
an optimization at all. You never know unless you reprofile.

What else can we optimize? Let’s tackle an issue of large self time of
Object#parse_col. It takes 27% of total execution time. That’s too much self time
for a function that’s just an if-else statement that calls another function. What’s
the deal?

Since there’s no code other than function calls, then it must be a function
call itself that takes this much time. Ruby is an interpreted language, and
there’s a cost to any function call because of that.

Let’s look again at the code and estimate how many functions Object#parse_col
calls.

chp5/app_optimized3.rb
def parse_col(col)

if col =~ /^\d+$/❶
col.to_i❷

elsif match = /^(\d{4})-(\d{2})-(\d{2})$/.match(col)❸
Date.new(match[1].to_i, match[2].to_i, match[3].to_i)❹

else
col

end
end❺

❶ Two calls: Regexp#initialize and String#=~. These are part of the if condition
and are executed every time we call Object#parse_col.

❷ One call to String#to_i. Executed only in one-third of the cases because we
have three columns to parse in our example data and only one of the
columns is a number.

❸ Again two calls, to Regexp#initialize and Regexp#match. These are executed in
two-thirds of the cases.

❹ Date constructor call. We have one date column out of three, hence it’s
executed only in one-third of the cases.

❺ While this is not exactly a function call, there’s some work that Ruby does
to return the value from a function.

In total we have an average of 2 + 1⁄3 + 2⁄3 + 1⁄3 + 1⁄3 = 32⁄3 function calls and
one value returned from each Object#parse_col invocation.

To test our theory we’ll add a fake column parsing function that will call
another dummy function 32⁄3 times on average. We’ll make 150,000 calls to

Chapter 5. Learn to Optimize with the Profiler • 80

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp5/app_optimized3.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

our fake function, the same number as the real one gets, and compare their
self times.

chp5/app_optimized3.rb
def dummy
end

def fake_parse_col
dummy; dummy;
dummy if rand < 2/3.0

end
«...»
data = generate_test_data
GC.disable
result = RubyProf.profile do

people = parse_data(data)
find_youngest(people)
150000.times { fake_parse_col }

end

printer = RubyProf::CallTreePrinter.new(result)
printer.print(File.open("callgrind.out.app_optimized3", "w+"))

Our fake column parsing function makes three function calls at all times:
two of them are to dummy and one of them to rand. In two-thirds of the cases
there’s one more dummy invocation. That roughly accounts for 32⁄3 function
calls per one fake_parse_col.

Let’s look at the flat profile in KCachegrind.

It turns out our theory is correct. Look how similar the self times are for
Object#parse_col and Object#fake_parse_col. Does this mean there’s a large cost to
a function call in Ruby? Not necessarily. Remember, we run our code in the
profiler that does extra work (usually measurements) per each function call.

What part of that cost is the profiler upkeep? It’s easy to find out—we’ll just
run the same code from the Ruby console without any profiler and use
Benchmark.realtime for measurements.

> irb
irb(main):001:0> def dummy
irb(main):002:1> end

report erratum • discuss

Pick Low-Hanging Fruit • 81

http://media.pragprog.com/titles/adrpo/code/chp5/app_optimized3.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

=> :dummy
irb(main):003:0> def fake_parse_col
irb(main):004:1> dummy; dummy;
irb(main):005:1* dummy if rand < 2/3.0
irb(main):006:1> end
=> :fake_parse_col
irb(main):007:0> require 'benchmark'
=> true
irb(main):008:0> Benchmark.realtime { 150000.times { fake_parse_col } }
=> 0.049100519

That’s approximately 10 times faster than in the profiler. What’s our conclu-
sion? Profiler adds up to 10 times to the Ruby function call cost, so we don’t
need to optimize the functions with large self times. Without the profiler they
won’t cause a performance problem.

Take a Step Back
Looking at the profile again, we think we collected all the low-hanging fruit
there. Row parsing is still slow, though. The first five rows in the flat profile
are for functions that do that parsing. In short, we optimized individual
functions, but the whole thing is still slow.

In such cases the next step in optimization is to look at the code at a higher
abstraction level. In our case we’ll need to reexamine what the parsing code
does. The first thing we note is that our code doesn’t take advantage of the
fact that column order is predefined. The first column is always a number,
the second a name, and the third a date. So instead of determining the column
type in the if/else statement, we can just go ahead and parse it. The date format
is also predefined—there’s no need to parse it with a regular expression.
Instead we can extract date parts by their position. So, let’s try out these
ideas.

chp5/app_optimized4.rb
def parse_row(row)

col1, col2, col3 = row.split(",")
[

col1.to_i,
col2,
Date.new(col3[0,4].to_i, col3[5,2].to_i, col3[8,2].to_i)

]
end

Tests pass, and the new profile looks like this:

Chapter 5. Learn to Optimize with the Profiler • 82

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp5/app_optimized4.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Ta-da! This code is more than two times faster! With a simple change, we
eliminated regular expressions altogether. All that’s left from parsing are
String#to_i and String#[]. Together they take less than 30% of execution time.
That’s not bad.

Now our program is almost three times faster than it originally was. That’s
already impressive, and now it’s time to decide whether it’s worth it to optimize
further. That’s the decision you’ll need to make every time you do significant
optimization. I think three times is good enough, and the best is the enemy
of the good. So let’s stop here.

Does our optimization session ends with the decision to stop profiling? Not
at all. Here comes the most important part. We’ll benchmark the program
without the profiler and check whether we’ll see the same three times speedup.
Here’s the new number from Benchmark.realtime:

$ bundle exec ruby app_optimized4.rb --benchmark
0.201

Before optimization, the execution time was 0.937 seconds. After optimization,
it’s just 0.201 seconds. That’s 4.7 times faster! The real-world effect is even
better than the one we saw in the profiler.

report erratum • discuss

Take a Step Back • 83

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Takeaways
Here’s what you learned during this profiling session:

• Optimization with the profiler is a craft, not engineering.

You must look at the data, make your best guess at what’s slow, change
the code, reprofile, and see whether your optimization worked. Rinse and
repeat. The best way to learn this craft is by doing it. The more you profile,
the better you understand the results you get, and the better optimization
guesses you make.

• Write tests before profiling.

You’ll change the code a lot during profiling. Tests are your only way to
ensure the program still does what it’s supposed to do.

• The profiler will tell you what to optimize or where to concentrate your
optimization effort.

In our profiling session example, the profiler focused our attention on
column parsing. First, we optimized date parsing. Second, we got rid of
regular expressions. Once we did that, it turned out there wasn’t much
else to optimize.

• Optimize details, but never forget about the big picture.

We had to go one layer of abstraction up to make our best optimization.
It’s worth rethinking what the code does. When we did that, we rewrote
the whole column parsing code instead of trying to squeeze bits of perfor-
mance out of existing code.

• The profiler obscures measurements. Make sure you check with the real
world.

Our profiles gave us the wrong impression that function call cost matters.
Actually, it doesn’t matter. The profiler has its own internal upkeep cost.
For that reason, it’s important to confirm optimization by measuring your
program’s execution time without the profiler.

Chapter 5. Learn to Optimize with the Profiler • 84

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 6

Profile Memory
As we’ve seen, the 80-20 rule of Ruby application optimization says that 80%
of performance improvements come from memory optimization. So now that
you know profiling basics, I’ll show you how to profile memory.

Unlike with CPU profiling, you can’t simply use ruby-prof to profile memory
out of the box. You’ll need to have a patched Ruby interpreter for that. An
alternative is to print measurements from GC#stat or GC::Profiler yourself. We’ll
discuss both approaches in this section.

Detect Excessive Memory Usage
But before we get to that, let’s talk about how to determine that memory usage
is in fact a problem in your application. For that you’ll need two kinds of tools:
one for monitoring and one for profiling.

No matter where you deploy, on servers or on customers’ workstations, you’ll
need a monitoring tool to show your application’s memory usage. In the Ruby
on Rails world the go-to monitoring tool is New Relic.1 Some deployment
platforms, such as Heroku, have their own monitoring. If you prefer to set up
your own solution, tools are available for that too. Good examples are Nagios2

and Munin.3

So what can a monitoring tool show you? Something like this:

1. http://newrelic.com
2. http://www.nagios.org
3. http://munin-monitoring.org

report erratum • discuss

http://newrelic.com
http://www.nagios.org
http://munin-monitoring.org
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

That’s the Heroku memory metric chart. You can see that once the application
starts, its memory usage constantly grows over the course of the next few
hours. When it reaches 512 MB, Heroku restarts the application, and then
the growth happens again. This all definitely smells, either like a memory
leak or a memory-intensive operation on the large dataset.

Should you see something like that happening for your application, your first
task would be to investigate what takes that memory. So next we’ll talk about
the two tools you can use for that.

Profile Memory with Valgrind Massif
Valgrind4 is a profiler for C and C++ programs that collects different data
depending on the “tool” that you use. For example, Memcheck records mem-
ory leaks, Callgrind records execution times (in the same way ruby-prof does),
Massif records heap usage, and so on.

Valgrind Massif produces a chart showing heap usage over time, including
information about which parts of the program are responsible for the most
memory allocations. Raw Massif output is not human readable, so again you’ll
need a visualization tool. The best multiplatform one is ms_print, which is
included in the Valgrind suite. The best third-party tool is Massif Visualizer.5

The latter works on Linux, with packages available for major distributions,
and on Mac OS via my Homebrew KDE tap.6

Let me show you a sample Massif profile for our—already optimized—applica-
tion from the previous chapter. But first let’s strip everything related to testing
and ruby-prof profiling from it. The program should look like this:

chp6/app_optimized4.rb
require 'date'

This generates CSV like
1, John McTest, 1980-07-01
2, Peter McGregor, 1985-12-23
3, Sylvia McIntosh, 1989-06-13
def generate_test_data

4. http://valgrind.org/
5. https://projects.kde.org/projects/extragear/sdk/massif-visualizer
6. https://github.com/adymo/homebrew-kde

Chapter 6. Profile Memory • 86

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp6/app_optimized4.rb
http://valgrind.org/
https://projects.kde.org/projects/extragear/sdk/massif-visualizer
https://github.com/adymo/homebrew-kde
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

50000.times.map do |i|
name = ["John", "Peter", "Sylvia"][rand(3)] + " " +

["McTest", "McGregor", "McIntosh"][rand(3)]
[i, name, Time.at(rand * Time.now.to_i).strftime("%Y-%m-%d")].join(',')

end.join("\n")
end

def parse_data(data)
data.split("\n").map! { |row| parse_row(row) }

end

def parse_row(row)
col1, col2, col3 = row.split(",")
[

col1.to_i,
col2,
Date.new(col3[0,4].to_i, col3[5,2].to_i, col3[8,2].to_i)

]
end

def find_youngest(people)
people.map! { |person| person[2] }.max

end

data = generate_test_data
people = parse_data(data)
find_youngest(people)

One more thing. You can only run native executables in Valgrind. So if you
are using rbenv or any other wrapper script like me, you’ll need to extract from
it the full path to the Ruby executable.

$ valgrind --tool=massif `rbenv which ruby` app_optimized4.rb
==17814== Massif, a heap profiler
==17814== Copyright (C) 2003-2013, and GNU GPL'd, by Nicholas Nethercote
==17814== Using Valgrind-3.10.0 and LibVEX; rerun with -h for copyright info
==17814== Command: ~/.rbenv/versions/2.2.0/bin/ruby app_optimized4.rb
==17814==
==17814==

This will produce the output file named massif.out.PID. In my case, it’s called
massif.out.17814. Massif prints out the process identifier (PID) of the program it
profiles to the console, so be sure to look at that to locate the correct profile.

Let’s open our profile in Massif Visualizer. The result is shown in the screen-
shot on page 88.

What we see here is a memory consumption chart for the duration of program
execution plus a series of snapshots that Massif takes periodically. Each
snapshot records how much memory the program has used at the time. Some

report erratum • discuss

Detect Excessive Memory Usage • 87

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

of the snapshots are detailed and include a call stack, so you can figure out
which part of the code took the most memory. Unfortunately, you will see
only C/C++ functions in the stack. Even though Valgrind can’t dig into the
Ruby code, you still can figure out what happens there. Let’s look closely at
one such snapshot.

Particularly interesting is a peak snapshot that I highlighted in the screenshot.
In the following image on page 89 you’ll see the call stack from the Massif
Data view.

The first thing we see here is that our code doesn’t use that much memory,
peaking only at 21 MB. Roughly half of that stores our unparsed and parsed
data. You will see it under the ruby_xmalloc2 branch. Most of the remaining half
of the memory is the Ruby object heap, the heap_assign_page branch.

Looking through the Ruby internals stack can be daunting at first. But if you
know even a bit about Ruby internals, some of which you’ll learn about later
in this book in Chapter 10, Tune Up the Garbage Collector, on page 149, you
should be able to figure it out. For example, how do we know that

Chapter 6. Profile Memory • 88

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

heap_page_allocate represents Ruby object creation? Because we see a newobj_of
call beneath it, and we know that Ruby stores objects in its own heap.

The ruby_xmalloc2 branch is even more obvious. Inside it we only see what looks
like constructor calls for arrays of strings. We don’t even have to know what
exactly those internal Ruby functions do. What else can they be other than
constructor calls for our unparsed and parsed data objects?

From the chart itself we see that up until snapshot #51 the memory consump-
tion was growing linearly. If we expand that snapshot, we’ll see only the
functions that create arrays of strings. That is the result of the data generation
that we do in the generate_test_data function.

report erratum • discuss

Detect Excessive Memory Usage • 89

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Once data is ready, our program takes 21 MB. Next we see a drop in memory
usage by about 7 MB. It looks like GC was able to reclaim some memory.
Then we see the 7 MB spike again, a result of data parsing and searching for
the youngest person on the list. We can’t optimize data generation in our
example, so if we were to optimize memory, data parsing and searching is
where we’d concentrate our efforts.

Massif is a great tool for looking at memory consumption. But it lacks insight
into your Ruby code, and you have to guess what happens there. It would be
great to look into the Ruby call stack, wouldn’t it? It turns out there’s a tool
that almost does that.

Profile Object Allocations with Stackprof
Stackprof is the Ruby tool that implements the same idea as Massif. Similar
to Massif, it takes snapshots (samples in Stackprof’s parlance) during the
program execution, and gives you a similar chart as the result. What’s the
catch? It samples the number of object allocations, not memory consumption.
Also, it works only with Ruby 2.1 and later.

For some programs the number of objects allocated is roughly proportional
to total memory consumption. That’s the case for our example. All our strings
are small, fit into the Ruby object, and require no additional memory on the
heap. But if your program allocates small amounts of large objects, then
Stackprof will not help you with memory optimization.

Let’s see what Stackprof can find in our example.

First, let’s install Stackprof as a gem:

$ gem install stackprof

Now let’s require it in our example and wrap the code into the StackProf.run
block:

chp6/app_optimized_stackprof.rb
require 'rubygems'
require 'stackprof'

StackProf.run(
mode: :object,
out: 'stackprof-object-app-optimized.dump',
raw: true) do

data = generate_test_data
people = parse_data(data)
find_youngest(people)

end

Chapter 6. Profile Memory • 90

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp6/app_optimized_stackprof.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

After we run the program it will create the stackprof-object-app-optimized.dump file
with profiling results. It’s a binary file that requires us to use the visualization
tools that Stackprof has.

The plain-text report aggregates object allocation data either for the whole
program or for any given function. Look at the report for our example program:

$ stackprof stackprof-object-app-optimized.dump --text

==================================
Mode: object(1)
Samples: 6149204 (0.00% miss rate)
GC: 0 (0.00%)

==================================
TOTAL (pct) SAMPLES (pct) FRAME

5599193 (91.1%) 5599193 (91.1%) block in Object#generate_test_data
500000 (8.1%) 500000 (8.1%) Object#parse_row
550003 (8.9%) 50003 (0.8%) Object#parse_data

5599199 (91.1%) 6 (0.0%) Object#generate_test_data
2 (0.0%) 2 (0.0%) Object#find_youngest

6149204 (100.0%) 0 (0.0%) block in main
6149204 (100.0%) 0 (0.0%) main
6149204 (100.0%) 0 (0.0%) main
500000 (8.1%) 0 (0.0%) block in Object#parse_data

Here 90% of all object allocations happen when we generate the test data.
Parsing takes the rest. And only two allocations happen inside the find_youngest
function that returns the program output.

So by looking at the Stackprof output you can determine which functions to
optimize to reduce the memory consumption. In our example these are
clearly Object#generate_test_data and Object#parse_row.

You can also dig deeper into the functions and see which lines generate too
many objects. For example, let’s look at the Object#parse_row.

$ stackprof stackprof-object-app-optimized.dump\
--text --method "Object#parse_row"

samples: 500000 self (8.1%) / 500000 total (8.1%)
callers:

500000 (100.0%) block in Object#parse_data
code:

| 19 | def parse_row(row)
250000 (4.1%) / 250000 (4.1%) | 20 | col1, col2, col3 = row.split(",")

| 21 | [
50000 (0.8%) / 50000 (0.8%) | 22 | col1.to_i,

| 23 | col2,
200000 (3.3%) / 200000 (3.3%) | 24 | Date.new(...)

| 25 |]

report erratum • discuss

Detect Excessive Memory Usage • 91

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Here date object creation is the biggest offender, with type conversion coming
second.

There are more ways to visualize Stackprof data. For example, you can gener-
ate the HTML page with the flame graph. This is what Massif Visualizer does
for Massif profiles.

The process of generating a flame graph may be a bit confusing. Once we
have a Stackprof dump, we need to generate a JavaScript file with flame graph
data:

$ stackprof stackprof-object-app-optimized.dump\
--flamegraph > stackprof-object-app-optimized-flamegraph.js

Then we get a link to the HTML page that does visualization:

$ stackprof stackprof-object-app-optimized.dump\
--flamegraph-viewer stackprof-object-app-optimized-flamegraph.js

open file:///path_to_stackprof/viewer.html?data=
/path_to_book/chp6/stackprof-object-app-optimized-flamegraph.js

Finally, we copy the link from the output and open it in the browser.

Unlike with Massif, it’s OK to use Stackprof in production. It’s built on top
of rb_profile_frames(), a C API for fetching Ruby backtraces. The API performs no
allocations and adds minimal CPU overhead. So unlike Massif or ruby-prof,
which slow us down by 2–10 times, Stackprof is safe to use in a live system.

Massif only tells us when and where, approximately, memory gets used.
Sometimes we’ll be able to guess what takes memory. Stackprof may point
at the actual location in the code that takes the memory. But that only works
if we’re allocating too many objects, and it won’t be useful if we allocate just
a few heavy objects. In practice, to understand and fix the problem we’ll need
to dig deeper. There are better tools for that, so let’s look at the available
options next.

Profile Memory with Ruby-Prof
We can use the ruby-prof profiler for memory optimization too. We can ask
it to measure either the size or the number of memory allocations, get a profile
similar to those we saw earlier, and visualize it with the same tools. Even the
approach to memory profiling is going to be similar. But there’s one catch:
we’ll need a patched Ruby interpreter for memory profiling to work. Why?
Because Ruby doesn’t give the profiler enough information about memory
allocation by default—exactly for performance reasons.

Chapter 6. Profile Memory • 92

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

If you aren’t adventurous enough to patch and recompile Ruby, you can skip
this section and go directly to the next one, where I’ll explain how to incorpo-
rate memory measurements into your code. If you’re still with me here, I have
good news. It’s not that hard to get the patched Ruby, at least on development
boxes.

Memory profiling patches are included in the RailsExpress patch set7 main-
tained by Stefan Kaes along with other performance-related patches. I won’t
describe the whole patch set, but be sure to look at it. You may find some of
those patches useful.

We’ll continue to use rbenv here. We can compile Ruby with RailsExpress
patches with both rbenv and rvm. The former needs an additional plug-in8 with
build scripts that I wrote and maintain. If you, like me, use rbenv, install the
plug-in now.

At this point we’ve installed the plug-in, and rbenv install -l will show us which
RailsExpress versions we can install.

$ rbenv install -l | grep railsexpress
1.9.3-p551-railsexpress
2.0.0-p598-railsexpress
2.1.5-railsexpress

$ rbenv install -k 1.9.3-p551-railsexpress
$ rbenv install -k 2.0.0-p598-railsexpress
$ rbenv install -k 2.1.5-railsexpress

These versions were the latest as of this writing. Run rbenv install -l to find the
latest available patched Ruby version for you.

Also make sure you have ruby-prof gem installed for all patched Rubys:

$ rbenv shell 1.9.3-p551-railsexpress
$ gem install ruby-prof

As of this writing, memory profiling patches work only with Ruby 1.8.7, 1.9.3,
and 2.0.0; they don’t support 2.1 and 2.2. When patches don’t work, you get
a memory profile with all measurements equal to zero. Try memory profiling
the simple application with your Ruby version and see whether you get the
results.

If you use Ruby 2.1 or 2.2, try memory profiling your app under 2.0. These
versions are mostly compatible and differ only by the garbage collector. That
difference has no effect on most types of memory profiling.

7. https://github.com/skaes/rvm-patchsets
8. https://github.com/adymo/ruby-build-railsexpress

report erratum • discuss

Profile Memory with Ruby-Prof • 93

https://github.com/skaes/rvm-patchsets
https://github.com/adymo/ruby-build-railsexpress
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Now that you have a working memory profiling config, let’s explore memory
profiling. Here’s an extremely simple program that allocates a 10 MB string
in memory and then transforms it to uppercase.

chp6/memprof_app.rb
require 'rubygems'
require 'ruby-prof'
require 'benchmark'

exit(0) unless ARGV[0]

GC.enable_stats
RubyProf.measure_mode = RubyProf.const_get(ARGV[0])

result = RubyProf.profile do

str = 'x'*1024*1024*10
str.upcase

end

printer = RubyProf::FlatPrinter.new(result)
printer.print(File.open("#{ARGV[0]}_profile.txt", "w+"), min_percent: 1)

printer = RubyProf::CallTreePrinter.new(result)
printer.print(File.open("callgrind.out.memprof_app", "w+"))

When profiling your application, don’t forget to call the GC.enable_stats function
before profiling as we did in this example. Otherwise all your measurements
will be zero.

Ruby-prof comes with four memory profiling modes:

• RubyProf::MEMORY measures the total memory usage.

• RubyProf::ALLOCATIONS measures the number of object allocations.

• RubyProf::GC_RUNS measures the number of GC runs.

• RubyProf::GC_TIME measures the GC time.

Our program takes memory profiling mode as an argument and produces the
flat profile named by that mode. So, let’s look at what profiles we can get from
all these modes.

Profile Total Memory Usage
This profile will show you how much memory your program allocates and
where. This is the most important report because there’s a direct relationship
between the memory usage, number of garbage runs, and performance.

Chapter 6. Profile Memory • 94

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp6/memprof_app.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Joe asks:

Should I Disable GC During Memory Profiling?
No, we disabled GC for CPU profiling because it adds extra time to random places.
But garbage collection neither allocates extra objects nor uses additional memory in
a way that the profiler can detect, so it doesn’t have any effect on memory profiles.
And for some profiles like GC runs and time, we even have to keep GC turned on.

Let’s run the example program and look at the report. This examples uses
Ruby 1.9.3 since it’s supported best by RailsExpress memory patches.

$ rbenv shell 1.9.3-p551-railsexpress
$ ruby memprof_app.rb MEMORY

Here’s the report—yours might have slightly different numbers.

Thread ID: 4082460
Fiber ID: 5403500
Total: 21508.534180
Sort by: self_time

%self total self wait child calls name
52.38 11265.339 11265.339 0.000 0.000 3 String#*
47.61 10240.337 10240.337 0.000 0.000 1 String#upcase

* indicates recursively called methods

The flat profile measures memory usage in kilobytes. As we’d expect, the
program takes slightly more than 10 MB during the large string creation, and
10 MB more to do string replacement.

Note that the numbers we see in the profiler represent only new memory
allocated and used in any given function. This has no relation to the current
memory usage during the function execution. The profiler shows you neither
how much memory the garbage collector reclaimed nor how much memory
was allocated before the function was called. The only way to know current
memory usage is to ask the operating system.

For optimization, the current memory usage is less relevant than the amount
of additional memory used by a function. Even if you temporarily allocate
100 MB to do some operation, you still create 100 MB worth of work for the
garbage collector. Current memory usage might have a peak, but only if you
allocate more than the current Ruby heap size. Often in production you won’t
see the peak at all, and your code will keep being slow until you optimize
those 100 MB.

report erratum • discuss

Profile Memory with Ruby-Prof • 95

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

You now understand what you see in the profile. So let’s optimize memory.

As you’ll recall from Modify Strings in Place, on page 16, we can modify our
string in place to reduce the memory consumption. Let’s do that and reprofile.

chp6/memprof_app_optimized.rb
require 'rubygems'
require 'ruby-prof'
require 'benchmark'

exit(0) unless ARGV[0]

GC.enable_stats
RubyProf.measure_mode = RubyProf.const_get(ARGV[0])

result = RubyProf.profile do

str = 'x'*1024*1024*10
str.upcase!

end

printer = RubyProf::FlatPrinter.new(result)
printer.print(File.open("#{ARGV[0]}_optimized_profile.txt", "w+"),

min_percent: 1)

This is how the profile looks for the optimized program:

chp6/MEMORY_optimized_profile.txt
Thread ID: 3407160
Fiber ID: 4578980
Total: 11269.050781
Sort by: self_time

%self total self wait child calls name
99.97 11265.378 11265.378 0.000 0.000 3 String#*

* indicates recursively called methods

As expected, the program takes half as much memory. String#upcase! doesn’t
even appear in the profile because we’ve limited it to functions that take more
than 1% of memory.

There’s always some hidden knowledge that the profiler will reveal—especially
the memory profiler. Remember iterators that allocate extra objects from
Chapter 2, Fix Common Performance Problems, on page 13? Guess how I
learned about them? By profiling a slow piece of my own code, of course. That
time I profiled allocations, not memory usage. So let’s see how to do that with
ruby-prof.

Chapter 6. Profile Memory • 96

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp6/memprof_app_optimized.rb
http://media.pragprog.com/titles/adrpo/code/chp6/MEMORY_optimized_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

String#gsub! Memory Consumption

Try to repeat the same profiling exercise with String#gsub and String#gsub!. You’ll find
that the memory profile doesn’t change after optimization, meaning that String#gsub!
doesn’t save memory.

You can run the following program to measure the additional memory overhead of
string replacement:

chp6/str_gsub_test.rb
str = "x"*1024*1024*10

def test(str)
str.gsub!("x", "y")

end

measurement1 = `ps -o rss= -p #{Process.pid}`.to_i/1024
test(str)
GC.start
measurement2 = `ps -o rss= -p #{Process.pid}`.to_i/1024

puts "memory added by string replacement: #{measurement2 - measurement1}"

It doesn’t matter whether you use String#gsub or String#gsub!; the program will report
an additional 9 MB of memory caused by string replacement.

It turns out Ruby has a suboptimal implementation of gsub that doesn’t really save
memory. Only Ruby 2.2 fixes this bug.

Actually, using bang functions never guarantees memory savings. When you call
them, you do change the state of the object. But that doesn’t always mean in-place
modification. That’s implementation dependent.

Ruby-Prof Object Allocations
Garbage collection time increases not only with increased memory usage, but
also with more allocations. If you think about it, it’s natural that the more
objects the garbage collector has to process, the more time it will take. Take
a peek at Chapter 10, Tune Up the Garbage Collector, on page 149 if you can’t
wait to learn more about that.

Let’s profile allocations in our example program before String#upcase! optimiza-
tion.

$ rbenv shell 1.9.3-p551-railsexpress
$ ruby memprof_app.rb ALLOCATIONS

chp6/ALLOCATIONS_profile.txt
Thread ID: 15433020
Fiber ID: 16613520
Total: 7.000000
Sort by: self_time

report erratum • discuss

Profile Memory with Ruby-Prof • 97

http://media.pragprog.com/titles/adrpo/code/chp6/str_gsub_test.rb
http://media.pragprog.com/titles/adrpo/code/chp6/ALLOCATIONS_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

%self total self wait child calls name
42.86 3.000 3.000 0.000 0.000 3 String#*
28.57 2.000 2.000 0.000 0.000 1 String#upcase
28.57 7.000 2.000 0.000 5.000 1 Global#[No method]

* indicates recursively called methods

In our simple case the allocations are not the problem. We create just seven
objects. Two objects created in Global#[No method] are str and 'x'. String multipli-
cation requires three more objects for each of the three “star” operators.
String#upcase produces two more objects. One of them is the resulting string
in uppercase. Another one is a temporary object that Ruby creates internally
when the original string doesn’t fit into the Ruby object and requires extra
heap memory (when string length is more than 23 characters on most modern
computers).

Our optimized program does exactly two allocations less.

$ rbenv shell 1.9.3-p551-railsexpress
$ ruby memprof_app_optimized.rb ALLOCATIONS

chp6/ALLOCATIONS_optimized_profile.txt
Thread ID: 13865760
Fiber ID: 15186560
Total: 5.000000
Sort by: self_time

%self total self wait child calls name
60.00 3.000 3.000 0.000 0.000 3 String#*
40.00 5.000 2.000 0.000 3.000 1 Global#[No method]

* indicates recursively called methods

There’s no line for String#upcase! in the profile. That’s because it doesn’t need
any extra memory.

I keep saying that it’s best to use less memory and create fewer objects so
that garbage collection has less work to do. So why don’t we measure the
number of GC runs and time directly? Let’s see.

Ruby-Prof GC Runs and Times
Yes, ruby-prof can measure the number of GC runs and the amount of time
GC took.

$ rbenv shell 1.9.3-p551-railsexpress
$ ruby memprof_app.rb GC_RUNS
$ ruby memprof_app.rb GC_TIME

Chapter 6. Profile Memory • 98

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp6/ALLOCATIONS_optimized_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp6/GC_RUNS_profile.txt
Thread ID: 9671460
Fiber ID: 10992080
Total: 3.000000
Sort by: self_time

%self total self wait child calls name
66.67 2.000 2.000 0.000 0.000 1 String#upcase
33.33 1.000 1.000 0.000 0.000 3 String#*

* indicates recursively called methods

chp6/GC_TIME_profile.txt
Thread ID: 16753440
Fiber ID: 18074020
Total: 0.005989
Sort by: self_time

%self total self wait child calls name
62.35 0.004 0.004 0.000 0.000 1 String#upcase
37.65 0.002 0.002 0.000 0.000 3 String#*

* indicates recursively called methods

Why didn’t we start by measuring those in the first place? It seems that these
numbers are exactly what we need to know—except that they aren’t. Ruby
GC is an adaptive system. It adjusts its settings during the program runtime
depending on current memory usage, memory allocation pattern, age of allo-
cated objects, original GC settings, and many other factors.

This means that we need to replicate the same program’s state in memory
before each profiling session in order to expose the same GC behavior. That
is of course not possible except in the simplest cases. Any production appli-
cation is guaranteed to be in a different state in memory before running the
same piece of code that we’re trying to profile. And the same code that triggers
GC several times in one case may not trigger it at all in another.

That’s why the numbers of GC runs and time are useless for optimization.
We should optimize the memory usage instead because it doesn’t change no
matter when the code is executed.

Visualize Memory Profile with KCachegrind
We can visualize all memory profiles with KCachegrind in the same way as
CPU profiles. The optimization process is also the same, and will look exactly
like the one we went through earlier in this chapter. Let’s look at the unopti-
mized app memory profile in KCachegrind.

report erratum • discuss

Profile Memory with Ruby-Prof • 99

http://media.pragprog.com/titles/adrpo/code/chp6/GC_RUNS_profile.txt
http://media.pragprog.com/titles/adrpo/code/chp6/GC_TIME_profile.txt
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

As you can see, it’s the same information that we saw in the flat text report
from ruby-prof. The units (KB) are also the same.

As long as we have patched Ruby and can use it to run our application,
memory profiling is easy. But what if we can’t or don’t want to run patched
Ruby? Well, there’s still one option open to us. Let’s look at it next.

Measure Memory Yourself with GC#stat and GC::Profiler
You need to make manual measurements to profile memory without RailsEx-
press patches. We want to measure memory usage and GC statistics, print
and collect them, then analyze them. That’s a lot of work, but sometimes it’s
our only option. For example, a memory leak might happen in production
only. We certainly don’t want to run production inside the profiler—that would
slow it down. But we can insert the measurement code instead.

The first thing we want to measure is the current memory usage. As we dis-
cussed earlier, it’s less relevant than the memory usage deltas that we saw
in ruby-prof, but in production, it’s the only number we can get.

The best way to measure memory is to ask the operating system, as we did
earlier in the book.

memory_before = `ps -o rss= -p #{Process.pid}`.to_i/1024
do_something
memory_after = `ps -o rss= -p #{Process.pid}`.to_i/1024

Chapter 6. Profile Memory • 100

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

This of course works only on Unix operating systems.

A multiplatform approach is to ask Ruby for the GC statistics, but as we
already discussed that’s even less useful than measuring current memory
usage. But if we have reproducible high memory usage or a leak in production,
we can definitely collect GC statistics to get an idea of what happens there.

You can get GC statistics in one of two ways. You can manually collect data
by calling GC#stat in several places in your code. Or you can use GC::Profiler,
available in Ruby 1.9.3 and later. Let me show you both in an irb session.

2.1.4 :001 > GC.stat
=> {:count=>7, :heap_used=>81, :heap_length=>81, :heap_increment=>0,

:heap_live_slot=>32578, :heap_free_slot=>438,
:heap_final_slot=>0, :heap_swept_slot=>19535,
:heap_eden_page_length=>81, :heap_tomb_page_length=>0,
«…»
:oldmalloc_increase=>2162848, :oldmalloc_limit=>16777216}

2.1.4 :002 > x = "x"*1024*1024*100; nil # allocate 100 MB of memory
=> nil
2.1.4 :003 > GC.stat
=> {:count=>9, :heap_used=>81, :heap_length=>81, :heap_increment=>0,

:heap_live_slot=>12785, :heap_free_slot=>20231,
:heap_final_slot=>0, :heap_swept_slot=>20479,
:heap_eden_page_length=>81, :heap_tomb_page_length=>0,
«…»
:oldmalloc_increase=>4776, :oldmalloc_limit=16777216 }

2.1.4 :004 > GC::Profiler.enable
2.1.4 :005 > y = "y"*1024*1024*100; nil # allocate another 100 MB of memory
=> nil
2.1.4 :006 > GC::Profiler.report
GC 10 invokes.
Index Invoke Time(sec) Use Size(b) Total Size(b) Total Object GC Time(ms)

1 0.171 505320 1321920 33048 0.755
=> nil
2.1.4 :007 > GC::Profiler.disable
=> nil

Here we’ve allocated a 100 MB string twice and measured GC statistics first
with GC#stat, then with GC::Profiler.

To fully understand all the numbers reported by GC#stat you need to know
the Ruby GC architecture. We’ll look at that later in Chapter 10, Tune Up the
Garbage Collector, on page 149. But even without knowing the internals, you
can see that the GC count increased from 7 to 9, meaning that Ruby called
the garbage collector twice during the string allocation. We also allocated
more objects on the Ruby heap, but not enough to increase it. The heap still

report erratum • discuss

Measure Memory Yourself with GC#stat and GC::Profiler • 101

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

has 81 slots, with more than half of them free. The 100 MB of memory we
allocated went to the operating system heap and wasn’t reported here.

GC::Profiler gives us the same information but in a human-readable form. Instead
of heap slots numbers we see bytes. We also get GC time. In our case GC was
invoked ten times. Nine of them happened before GC::Profiler, and one during
profiling. Our example doesn’t create a lot of new Ruby objects, so heap usage
and total size don’t interest us. GC time does. As you see, the single collection
pass took almost 800 ms. That’s huge, and it’s definitely something we’d want
to optimize if it were production code.

Takeaways
1. Memory profiling is harder than CPU profiling (mostly because the tools

are immature), but it can reveal more severe slowdowns. The more you
use memory, the more time your program spends in garbage collection.

2. You can use ruby-prof and KCachegrind tools for memory profiling, but
you need to run a patched Ruby. Fortunately, it’s easy to do so with rbenv
and rvm.

3. Remember the little details that can make your profiles invalid. Turn off
GC for CPU profiling, but leave it on for memory profiling, especially GC
calls/time profiling.

4. Don’t use current memory usage and GC statistics for memory profiling
unless you have no other choice. Those numbers are a function of current
program state and GC settings; they aren’t repeatable in production.
Optimize memory allocation instead.

Profiling is hard and intimidating when you first do it. I showed you some
pitfalls—expect more. The good news is that once you’re comfortable profiling,
you’ll start to find performance gems. Remember the Ruby iterators that
allocate additional objects? Or String#gsub! that doesn’t really save any memory?
I found these during my profiling sessions. You’ll make your own discoveries,
which will make up for all your struggles with the profiler.

Now that you know how to optimize with the profiler, it’s time to step back
and focus on measurement. We’ve measured execution time and memory
usage before and after optimization. But did we do it right? The next chapter
will answer that question.

Chapter 6. Profile Memory • 102

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 7

Measure
So far I’ve avoided talking too much about measurements, despite their
obvious importance to optimization. Why? Because in most cases people get
it right. Your intuition nudges you to run the code several times, measure
results, and pick the most commonly seen measurement.

This is a viable approach, and it should yield meaningful results most of the
time. But if you get your measurements wrong, your optimization will go
wrong too. You may either miss the small speedup, or falsely believe in ten
times optimization where in fact there is none.

So let’s think about what can go wrong with measurements and how to deal
with it.

External factors are the first issue that comes to mind. These might be pro-
cesses running in parallel on the same machine, or unexpected swapping, or
even CPU frequency management capping the system performance.

But your application internals can also affect measurements. Earlier we saw
that to profile execution time you must turn off GC. Otherwise you’ll see
random slowdowns in unexpected places—in the same way disk operations,
or other system calls in your code, may lead to nondeterministic results.

Finally, it is impossible to exclude all external and internal factors. So your
measurements will vary when repeated. It can be hard in this case to compare
sets of before and after optimization numbers because they will be just
slightly different or even overlap.

So, let’s talk about all these issues and see what we can do to obtain valid
measurements and compare them correctly.

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Minimize External Factors
It’s obvious that before measuring performance you need to free up memory,
ensure that nothing else runs in parallel, and that no disk I/O happens. But
there are a few things you might want to do beyond that.

Disable Dynamic CPU Frequency Scaling
The first thing to consider is disabling dynamic CPU frequency scaling, not
because scaling makes your program run slower, but because two separate
program runs may be incomparable because they’re executed with the CPU
capped at different frequencies. That’s why it’s a good idea to disable CPU
frequency scaling if you can.

On Linux, the governor defines the current CPU frequency. By default the
ondemand governor is used, meaning that CPU speed will change dynamically
depending on the load. You can check which governor your system runs with
the cpupower tool.

$ cpupower frequency-info
analyzing CPU 0:
hardware limits: 1.20 GHz - 2.67 GHz
available cpufreq governors: ondemand, performance
current policy: frequency should be within 1.20 GHz and 2.67 GHz.

The governor "ondemand" may decide which speed to use
within this range.

current CPU frequency is 1.20 GHz.

These are the frequency stats for my laptop. It doesn’t have much to do while
I’m just typing this text, so the ondemand governor scales my CPU down to a
leisurely 1.20 GHz.

If you’re on Linux, you can ask the cpupower tool to set the performance governor
that will force CPU to its maximum frequency.

$ sudo cpupower frequency-set -g performance
Setting cpu: 0
Setting cpu: 1
Setting cpu: 2
Setting cpu: 3
$ cpupower frequency-info
analyzing CPU 0:
hardware limits: 1.20 GHz - 2.67 GHz
available cpufreq governors: ondemand, performance
current policy: frequency should be within 1.20 GHz and 2.67 GHz.

The governor "performance" may decide which speed to use
within this range.

current CPU frequency is 2.67 GHz.

Chapter 7. Measure • 104

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Windows has an analog to Linux’s governor called the power plan. The default
power plan is Balanced, similar to ondemand on Linux. You can change it to High
performance in the Windows Control Panel.1

There’s no easy way to disable CPU power management features on Mac OS.
You might have to Google. There are solutions that work for some people.

Note on Intel Turbo Boost

Dynamic frequency scaling is controlled by your operating system. But Intel CPUs
equipped with Turbo Boost technology can scale the frequency themselves. Based on
demand they increase CPU frequency for as long as possible without overheating.

Turbo Boost has the same effect on measurements: two separate program runs may
become incomparable because of differences in CPU frequency.

There are tools to disable Turbo Boost. On Linux you’d simply use cpupower frequency-
set -f [desired frequency] to fixate the CPU frequency. On Windows the trick is to set CPU
speed at 99% in Control Panel.a On the Mac there’s a Turbo Boost Switcher app.b

a. http://superuser.com/questions/627665/how-to-disable-intel-turbo-boost-on-my-dell-laptop-with-i5-
processor

b. https://github.com/rugarciap/Turbo-Boost-Switcher

Disabling dynamic CPU frequency will make your measurements more
deterministic, but don’t spend too much time on it if none of the tools and
tricks I’ve described work for you. A bit of statistical analysis will help you
make sense out of your measurements anyway.

Warm It Up
Another thing you should be aware of is a “cold” state. Alternative Ruby
implementations running on a virtual machine (VM), like JRuby and Rubinius,
require warm-up before they can produce their best results. If you run one
of these, be sure to estimate how many times you need to execute the same
code before the VM warms up. This number depends on code complexity, and
can be as small as 10 times and as large as 10,000 times.

Even if you’re running MRI, you can still run into the cold state problems
with third-party software. Let’s take, for example, the PostgreSQL database
server.

PostgreSQL relies on the filesystem cache to keep data in memory after first
access. Given enough memory, all data you ever touch will eventually end up

1. See, for example, http://aps2.toshiba-tro.de/kb0/HTD12017W0001R01.htm

report erratum • discuss

Minimize External Factors • 105

http://superuser.com/questions/627665/how-to-disable-intel-turbo-boost-on-my-dell-laptop-with-i5-processor
http://superuser.com/questions/627665/how-to-disable-intel-turbo-boost-on-my-dell-laptop-with-i5-processor
https://github.com/rugarciap/Turbo-Boost-Switcher
http://aps2.toshiba-tro.de/kb0/HTD12017W0001R01.htm
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

being cached. We all know that disk I/O is slow. This means that your Ruby
application performance will be radically different depending on whether or
not your data is cached.

Unlike in the previous case with alternative Rubys, here you should be really
interested in both cold and warm state performance. There’s no guarantee
your data will always remain cached, so you must measure both states.

To get to the warm state you can just execute the same code twice. But getting
a predictable cold state requires cleaning the filesystem cache. Here’s the
trick that works on Linux:

sudo echo 3 | sudo tee /proc/sys/vm/drop_caches

Make Internals Behave Predictably
Two things in our applications can randomly slow it down: GC and system
calls. (I/O is the most common case of a system call.)

I can imaging you sighing, “Oh no, not GC again.” But in this case it’s easy
to neutralize its effect on measurements, in one of two ways.

First, it’s sometimes OK to disable GC completely before measurement. If raw
performance of our code is what we’re interested in, then it’s absolutely fine
to do that.

If we want our measurement to be closer to the real world, we can try to make
GC as predictable as possible by forcing it before executing the code, like this:

GC.start
measurement = Benchmark.realtime do

...
end

This way our code will trigger GC in the same manner every time we run the
Benchmark.realtime block.

But beware of the pitfall here. We’ll have to run that code several times in
order to obtain the proper measurement. If we do that by restarting the
application, we’ll be fine. But in a loop, as in the following code snippet, this
will result in an incorrect measurement.

100.times do
GC.start
measurement = Benchmark.realtime do

..
end

end

Chapter 7. Measure • 106

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Why would the measurements be incorrect even though we run GC.start before
each benchmark block? Because our code will allocate memory for either
Ruby objects or their data. So GC will have to deal with more objects on the
Ruby heap and more data on the system heap. This way, after each iteration
GC time will tend to increase, thus increasing the execution time that we
measure.

On Linux, Mac OS X, or any other Unix-based system, we can fix it by forking
the code before the measurement:

100.times do
GC.start
pid = fork do

GC.start
measurement = Benchmark.realtime do
..

end
end

Process::waitpid(pid)

Forking ensures that any memory allocations happen in child processes only
and don’t affect the parent application. This way, every child process will start
in the same state, and any GC in the child will happen at (more or less) the
same time.

To minimize the effect of I/O and other system calls, simply make sure the
operating system is not busy with anything else and run the code several
times to cache the files that you read.

Analyze and Compare Measurements Using Statistics
Despite our best efforts to isolate our code from external factors, there will
still be a variation in our measurements when we run the same code over
and over again. Most of the time this won’t bother us. For example, if our
code takes from 10 to 15 seconds before optimization and from 1 to 2 seconds
after, we won’t need any statistics to tell us that our optimization worked.

But sometimes things do not look as certain. For example, say we optimized
the code and the execution time went down from the 120–150 ms range to
the 110–130 ms range. How can we be sure that the perceived optimization
of 10–20 ms is the result of our change and not some random factor?

To answer such questions, we’ll need to have some way of comparing perfor-
mance measurements without knowing the true performance values before
and after optimization. And statistics has the tools to do exactly that. Let me
show you how to use them.

report erratum • discuss

Analyze and Compare Measurements Using Statistics • 107

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Imagine we measured the performance of the same code n times before opti-
mization and n times after optimization. Now we want to compare these two.

Let me rephrase the same question in terms of statistics. I have two samples
of random independent variables x and y. The first is the performance before
optimization, the second is after. The size of my sample is n. And my question
is: Are these two samples significantly different?

If we knew the true values of performance before and after, the numerical
measure of the optimization effect would be just the difference between them.

And it turns out we can apply the same approach to the before and after
samples that have a degree of uncertainty in them. We can calculate an
interval within which we can confidently state the true optimization lies.
Statistics calls this interval the confidence interval. The size of that interval
will depend on the chosen level of confidence. In empirical science that level
is usually 95%, meaning we can be 95% sure that the true optimization will
lie inside that interval.

Let’s say we are subtracting the number after optimization from the number
before. So if the lower bound of the confidence interval is larger than zero,
then we can confidently state that the optimization worked. If the interval
starts with a negative number and ends with a positive number, then we can
say that our optimization does nothing. If the upper bound is lower than zero,
then our optimization made things worse.

So, it’s simple to reach conclusions once we find the confidence interval of
the optimization. The only remaining question is how to calculate one. Let
me show you the algorithm.

1. Estimate the mean of before and after performance measurements with
their averages:

y‾ =
∑i

y
i

nx‾ =
∑i

x
i

n

2. Calculate the standard deviation:

sy =
∑

i
(y
i
− y
‾
)2

n − 1
sx =

∑
i
(x
i
− x
‾
)2

n − 1

Chapter 7. Measure • 108

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

3. Get the difference between before and after means. That would be the
mean of our optimization:

x‾ − y‾
4. Calculate the standard error of the difference, or in other words, the

standard deviation of the optimization:

s
x
‾
− y
‾

=
sx
2

n +
sy
2

n

5. Finally, obtain the 95% confidence interval of the optimization. That is
roughly two standard deviations away from its mean:

(x‾ − y‾) ± 2 * s x
‾
− y
‾

We want the lower bound of the interval to be larger than 0. So for example,
this interval proves we indeed optimized our code:

0.05 ± 0.02

The true difference between before and after values lies in the interval from
0.03 to 0.07 seconds. So in this imaginary case we optimized at least 30 ms.

It might seem that there’s no point in calculating the confidence interval if
the difference of the means is negative. But remember, we also want to know
whether the optimization made things worse. For example, consider the
intervals −0.05 ± 0.08 and −0.05 ± 0.02.

In both cases optimization didn’t work. But in the second case it made things
worse. The upper bound of the interval is –0.03. This means that with 95%
confidence we can state that the code slowed down after the change, and the
“optimization” must be reverted.

If you are more statistically inclined, you might frown at my confidence
interval analysis. Yes, that is a shortcut, but a useful one. Of course, if you
would like to be more rigorous, you can apply any of the hypothesis tests to
make sure the optimization was significant. If you took 30 measurements or
more, you can use the z-test. Otherwise, the t-test should work. I won’t talk
about these tests here because the confidence interval analysis should be
good enough.

OK. Enough of formulas. It’s time for an example.

The following calculates the product of the numeric array values in an
idiomatic Ruby way:

report erratum • discuss

Analyze and Compare Measurements Using Statistics • 109

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp7/before.rb
require 'benchmark'

data = Array.new(100000) { 10 }

GC.start
time = Benchmark.realtime do

product = data.inject(1) { |product, i| product * i }
end
puts time

As we already know from Chapter 2, the inject iterator can be bad for perfor-
mance. So we optimize by replacing it with each and calculating the product
ourselves.

chp7/after.rb
require 'benchmark'

data = Array.new(100000) { 10 }

GC.start
time = Benchmark.realtime do

product = 1
data.each do |value|

product *= value
end

end
puts time

Let’s run our before and after examples ten times each. That’s not enough to
make statistically sound conclusions, but we’ll still do this for the sake of
brevity. To make our statistics work we should take, as a rule of thumb, more
than 30 measurements.

After optimization:Before optimization:

$ for i in {1..10}; do \$ for i in {1..10}; do \
ruby chp7/after.rb; \ruby chp7/before.rb; \

donedone
1.46091907899244691.4879834910097998
1.50911725700134411.4997473749972414
1.47359147900715471.4694619810034055
1.44982136000180621.4671519770054147
1.4454834709758871.4394851910183206
1.464905330009061.4421958939929027
1.4349790799873881.528489818010712
1.45969901600619781.4666885799961165
1.47349738900084051.4510531660052948
1.45130411698482931.4629958330187947

Chapter 7. Measure • 110

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp7/before.rb
http://media.pragprog.com/titles/adrpo/code/chp7/after.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Just looking at the numbers it’s impossible to tell whether the optimization
worked. So let’s use statistics.

But before we do that, we need to round our numbers off. They contain too
many non-significant figures. Ruby’s Benchmark#realtime that we use for mea-
surements uses the operating system clock. That has microsecond precision
in most cases, so we’ll round our results to that.

Here are the rules for rounding to significant figures:

• If the first non-significant figure is a 5 followed by other non-zero digits,
round up the last significant figure (away from zero).

For example, 1.2459 as the result of a measurement that only allows for
three significant figures should be written 1.25.

• If the first non-significant figure is a 5 not followed by any other digits or
followed only by zeros, rounding requires a tie-breaking rule. For our
case, use the “round half to even” rule, which rounds to the nearest even
number.

For example, to round 1.25 to two significant figures, round down to 1.2.
To round 1.35, you should instead round up to 1.4.

• If the first non-significant figure is more than 5, round up the last signif-
icant figure.

• If the first non-significant figure is less than 5, just truncate the non-
significant figures.

Once you start rounding to significant figures, you must continue doing so
for all subsequent results of calculations.

Let’s follow the rules and round our measurements to significant figures.

After optimization:Before optimization:

1.4609191.487983
1.5091171.499747
1.4735911.469462
1.4498211.467152
1.4454831.439485
1.4649051.442196
1.4349791.528490
1.4596991.466689
1.4734971.451053
1.4513041.462996

Now let’s follow our algorithm to get the optimization mean and its confidence
interval.

report erratum • discuss

Analyze and Compare Measurements Using Statistics • 111

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

1. Averages of the before and after performance measurements:

x‾ =
1.487983 + 1.499747 + ⋯

10
= 1.471525

y‾ =
1.460919 + 1.509117 + ⋯

10
= 1.462332

2. The standard deviation of the measurements:

sx =
(1.487983 − 1.471525)2 + (1.499747 − 1.471525)2 + ⋯

9
= 0.027361

sy =
(1.460919 − 1.462332)2 + (1.509117 − 1.462332)2 + ⋯

9
= 0.020456

3. The mean of our optimization:

1.471525 − 1.462332 = 0.009193

4. The standard deviation of the optimization:

s
x
‾
− y
‾

=
0.0273612

10
+
0.0204562

10
= 0.010803

5. The 95% confidence interval of the optimization:

0.009193 ± 2 * 0.010803 = (−0.012413, 0.030799)

What’s the conclusion? With 95% confidence we can say that our optimization
didn’t work. Or, more exactly, we can’t tell whether or not it worked. The dif-
ference between the inject and each iterators was not significant enough for
this example.

Now let’s take another look at the optimization mean and the confidence
interval. The mean of our optimization was positive, about 9 ms. What inval-
idated our result is the standard deviation. Because it was too large, the 95%
confidence interval is around plus/minus 20 ms.

What if we could reduce the variability in measurements? That would decrease
the standard deviation, and, in turn, the confidence interval would be shorter.
Can it be that with more precise measurements the confidence interval would
lie above zero? Absolutely! That’s why we spent so much time in the first part
of this chapter to reduce the effect of various external and internal factors.

It is important to reduce the standard deviation of measurements as much
as possible. Otherwise, you won’t be able to compare your before/after results
at all.

Chapter 7. Measure • 112

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Now, in this example we are talking about milliseconds. In reality I was never
able to detect such optimizations in Ruby applications. But you should defi-
nitely aim for the order of tens of milliseconds—at the very least, the lower
hundreds.

You should now know enough techniques to reduce the dispersion in mea-
surements. But if you tried them all and the standard deviation is still too
high to compare results, try this: exclude outliers—measurements that are
too distant from each other. Mathematicians don’t like this approach, but it
can help if nothing else works.

The second run of my after optimization example measured 1.509117 seconds.
That was definitely an outlier. If I excluded it, both my mean and standard
deviation would go down significantly.

But don’t blindly exclude any results. There are a couple of statistically sound
techniques of data rejection. Make sure you learn them.2

OK, so now you know how to compare measurements before and after opti-
mization. Some pretty hardcore statistics are involved in that, and you prob-
ably think now, “why bother?” You’ll find the answer right away in the next
chapter. For now, let’s summarize what you’ve learned.

Takeaways
There’s only one way to prove that the optimization worked. You measure the
performance before and after, and you compare. But the devil is in the details.
Here’s what you need to take care of to get the measurements right.

1. Minimize external factors to increase measurement accuracy.

2. Make sure that GC behaves as predictably as possible to decrease vari-
ability in measurements.

3. Take as many measurements as practical to make statistical analysis
possible. A good default is 30.

4. Compare before and after numbers by calculating the confidence interval
of the optimization effect. Conclude that optimization worked only when
the lower bound of the confidence interval is higher than 0.

5. Try to reduce dispersion in measurements as much as possible. Otherwise
even with statistical tools you won’t be able to tell whether or not you
optimized the code.

2. https://en.wikipedia.org/wiki/Truncation_(statistics) and https://en.wikipedia.org/wiki/Winsorising

report erratum • discuss

Takeaways • 113

https://en.wikipedia.org/wiki/Truncation_(statistics)
https://en.wikipedia.org/wiki/Winsorising
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Now we know how to do measurements, and how to compare them. But the
goal of optimization is not to measure it, nor even to make sure that the
optimized code indeed runs faster.

The real goal is to optimize and to make sure the slowdown never happens
again. How can you do that? After optimization you’ll need to measure the
performance after every change, and detect even the smallest regressions
from the achieved performance level.

If that smells like testing, you’re right: it is testing. Performance testing. And
that’s exactly what we’ll talk about in the next chapter.

Chapter 7. Measure • 114

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 8

Test Performance
As experienced software developers, we know that testing is the best way to
ensure that our code works as advertised. When you first write the code, a
test proves that it does what you think it does. When you fix a bug, the test
prevents it from happening again.

I’m a big fan of applying the same approach for performance. What if we write
tests that first set the expected level of performance, and then make sure that
performance doesn’t degrade below this level? Sounds like a good idea, right?

I learned about this concept while working on Acunote. We started Acunote
when Rails was at version 1.0, so performance was a huge concern. Perfor-
mance testing helped us not only to understand and improve application
performance, but to survive through numerous Rails upgrades. It turned out
that even a minor version upgrade could introduce the performance regression
in some unexpected way. We wouldn’t be able to detect and fix these regres-
sions without the performance tests.

So let me show you how we did performance testing in Acunote and how you
can do it too.

A unit test for a function might look something like this:

def test_do_something
assert_equal 4, do_something(2,2)

end

This test in fact performs three separate steps: evaluation, assertion, and
error reporting. Testing frameworks abstract these three steps, so we end up
writing just one line of code to do all three.

To evaluate, our example test runs the do_something function to get its return
value. The assertion assesses the equality of this actual value against the
expected value. If the assertion fails, the test reports the error.

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

A performance test should perform these same three steps, but each one of
them will be slightly different. Say we want to write the performance test for
this same do_something function. The test will look like this:

def test_something_performance
actual_performance = performance_benchmark do

do_something(2,2))
end
assert_performance actual_performance

end

The evaluation step is simply a benchmarking. The actual value for
assert_performance is the current set of the performance measurements.

Ah, but what is our expected level of performance? We said that our perfor-
mance test should ensure that performance doesn’t degrade below an
expected level. A reasonable answer is that our assert_performance should make
sure that performance is the same as or better than before. So the test should
somehow know the performance measurements from the previous test run.
Those measurements make up the expected value that we’ll compare to. What
if there are no previous results? Then the only thing the test should do is
store the results for future comparison.

We already know how to compare performance measurements from the pre-
vious chapter. So the remaining thing to figure out is how and where to store
the previous test results. This is something regular tests don’t do.

Should the test find a slowdown, we want to the performance before and after,
and their difference. As we know from the previous chapter, all before and
after numbers should come with their deviations, and the difference should
come with its confidence interval. This means the reporting step in perfor-
mance tests is also very different from what you usually see in tests.

OK, that’s the big picture of performance testing. Now, the details.

Benchmark
Let’s take everything you learned in the previous chapter on measurements
and apply that knowledge here to write a benchmark function. To reiterate,
here’s what such a function should do:

• Run the code multiple times to gather measurements. It’s best if we can
do 30 runs or more.

• Skip the results of the first run to reduce the warm-up effects and let
caching do its job.

Chapter 8. Test Performance • 116

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

• Force GC before each run.

• Fork the process before measurement to make sure all runs are isolated
and don’t interfere with each other.

• Store all measurements somewhere (in the file, on S3, etc.) to be processed
later.

• Calculate and report average performance and its standard deviation.

This list makes for a pretty detailed spec, so let’s go ahead and write the
benchmark function.

chp8/performance_benchmark.rb
require 'benchmark'

def performance_benchmark(name, &block)
31 runs, we'll discard the first result
(0..30).each do |i|

force GC in parent process to make sure we reclaim
any memory taken by forking in previous run
GC.start

fork to isolate our run
pid = fork do
again run GC to reduce effects of forking
GC.start
disable GC if you want to see the raw performance of your code
GC.disable if ENV["RUBY_DISABLE_GC"]

because we are in a forked process, we need to store
results in some shared space.
local file is the simplest way to do that
benchmark_results = File.open("benchmark_results_#{name}", "a")

elapsed_time = Benchmark::realtime do
yield

end

do not count the first run
if i > 0

we use system clock for measurements,
so microsecond is the last significant figure
benchmark_results.puts elapsed_time.round(6)

end
benchmark_results.close

GC.enable if ENV["RUBY_DISABLE_GC"]
end
Process::waitpid pid

end

report erratum • discuss

Benchmark • 117

http://media.pragprog.com/titles/adrpo/code/chp8/performance_benchmark.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

measurements = File.readlines("benchmark_results_#{name}").map do |value|
value.to_f

end
File.delete("benchmark_results_#{name}")

average = measurements.inject(0) do |sum, x|
sum + x

end.to_f / measurements.size
stddev = Math.sqrt(

measurements.inject(0){ |sum, x| sum + (x - average)**2 }.to_f /
(measurements.size - 1)

)

return both average and standard deviation,
this time in millisecond precision
for all practical purposes that should be enough
[name, average.round(3), stddev.round(3)]

end

We made three simplifications in the benchmarking function. First, we used
the Ruby round function that doesn’t follow the tie-breaking rule of rounding
when the first non-significant digit is 5 followed by 0. Instead of rounding to
the nearest even number, it’ll always round up. Second, we decreased precision
to milliseconds despite the system clock being able to measure times with
microsecond precision. Finally, we hard-coded the number of measurements
to 30.

You can easily undo the first and the last simplifications, but I recommend
you keep the second. Ruby isn’t a systems programming language, so we
usually don’t care about microseconds of execution time. In fact, in most
cases we don’t care about milliseconds or even tens of milliseconds—that’s
why we rounded off our measurements in our example.

Now let’s see how our benchmarking function works. Run this simple program:

chp8/test_performance_benchmark.rb
require 'performance_benchmark'

result = performance_benchmark("sleep 1 second") do
sleep 1

end
puts "%-28s %0.3f ± %0.3f" % result

$ cd code/chp8
$ ruby -I . test_performance_benchmark.rb
sleep 1 second 1.000 ± 0.000

Chapter 8. Test Performance • 118

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp8/test_performance_benchmark.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

As expected, sleep(1) takes exactly one second, with no deviation. We can be
sure our measurements are correct. Now it’s time to write the function to
assert the performance.

Assert Performance
We know that assert_performance should measure the current performance,
compare it with the performance from the previous run, and store the current
measurements as the reference value for the next run. Of course, the first
test run should just store the results because there’s no previous data to
compare with.

Now let’s think through success and failure scenarios for such tests. Failure
is easy. If performance is significantly worse, then report the failure. The
success scenario, though, has two possible outcomes: one when performance
is not significantly different, and another when it has significantly improved.

It looks like it’s not enough just to report failure/success. We need to report
the current measurement, as well as any significant difference in performance.

So let’s get back to the editor and try to do exactly that.

chp8/assert_performance.rb
require 'minitest/autorun'

class Minitest::Test
def assert_performance(current_performance)

self.assertions += 1 # increase Minitest assertion counter

benchmark_name, current_average, current_stddev = *current_performance
past_average, past_stddev = load_benchmark(benchmark_name)
save_benchmark(benchmark_name, current_average, current_stddev)

optimization_mean, optimization_standard_error = compare_performance(
past_average, past_stddev, current_average, current_stddev

)

optimization_confidence_interval = [
optimization_mean - 2*optimization_standard_error,
optimization_mean + 2*optimization_standard_error

]

conclusion = if optimization_confidence_interval.all? { |i| i < 0 }
:slowdown

elsif optimization_confidence_interval.all? { |i| i > 0 }
:speedup

else
:unchanged

end

report erratum • discuss

Assert Performance • 119

http://media.pragprog.com/titles/adrpo/code/chp8/assert_performance.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

print "%-28s %0.3f ± %0.3f: %-10s" %
[benchmark_name, current_average, current_stddev, conclusion]

if conclusion != :unchanged
print " by %0.3f..%0.3f with 95%% confidence" %

optimization_confidence_interval
end
print "\n"

if conclusion == :slowdown
raise MiniTest::Assertion.new("#{benchmark_name} got slower")

end
end

private

def load_benchmark(benchmark_name)
return [nil, nil] unless File.exist?("benchmarks/#{benchmark_name}")
benchmark = File.read("benchmarks/#{benchmark_name}")
benchmark.split(" ").map { |value| value.to_f }

end

def save_benchmark(benchmark_name, current_average, current_stddev)
File.open("benchmarks/#{benchmark_name}", "w+") do |f|
f.write "%0.3f %0.3f" % [current_average, current_stddev]

end
end

def compare_performance(past_average, past_stddev,
current_average, current_stddev)

when there's no past data, just report no performance change
past_average ||= current_average
past_stddev ||= current_stddev

optimization_mean = past_average - current_average
optimization_standard_error = (current_stddev**2/30 +
past_stddev**2/30)**0.5

drop non-significant digits that our calculations might introduce
optimization_mean = optimization_mean.round(3)
optimization_standard_error = optimization_standard_error.round(3)

[optimization_mean, optimization_standard_error]
end

end

Again, this includes some simplifications you can easily undo. First, we save
the benchmark results to the file in a predefined hard-coded location. Second,
we hardcode the number of measurement repetitions to 30, exactly as in the

Chapter 8. Test Performance • 120

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

performance_benchmark function. And third, our assert_performance works only with
Minitest 5.0 and later, so we need to install the minitest gem.

But now that we have our assert, we can write our first performance test.

chp8/test_assert_performance1.rb
require 'assert_performance'
require 'performance_benchmark'

class TestAssertPerformance < Minitest::Test

def test_assert_performance
actual_performance = performance_benchmark("string operations") do
result = ""
700.times do

result += ("x"*1024)
end

end
assert_performance actual_performance

end

end

Let’s run it (don’t forget to gem install minitest first).

$ ruby -I . test_assert_performance1.rb
Running:
string operations 0.172 ± 0.011: unchanged
.
Finished in 2.294557s, 0.4358 runs/s, 0.4358 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

The first run will save the measurements to the benchmarks/string operations file.
If we rerun the test without making any changes, it should report no change.

$ ruby -I . test_assert_performance1.rb
Running:
string operations 0.168 ± 0.016: unchanged
.
Finished in 2.313815s, 0.4322 runs/s, 0.4322 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

As expected, the test reports that performance hasn’t changed despite the
difference in average numbers. That’s statistical analysis at work! Now you
know why we spent so much time talking about it.

Now let’s optimize the program. I’ll take my own advice from Chapter 2 and
replace String#+= with String#<<.

report erratum • discuss

Assert Performance • 121

http://media.pragprog.com/titles/adrpo/code/chp8/test_assert_performance1.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp8/test_assert_performance2.rb
require 'assert_performance'
require 'performance_benchmark'

class TestAssertPerformance < Minitest::Test

def test_assert_performance
actual_performance = performance_benchmark("string operations") do
result = ""
700.times do

result << ("x"*1024)➤

end
end
assert_performance actual_performance

end

end

Let’s run the performance test again.

$ bundle exec ruby -I . test_assert_performance2.rb
Running:
string operations 0.004 ± 0.000: speedup by 0.161..0.167 with 95% confidence
.
Finished in 1.089948s, 0.9175 runs/s, 0.9175 assertions/s.
1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

And of course the test reports the huge optimization. That’s exactly what we
like to see when we optimize.

However, if the execution environment isn’t perfect, our performance test
might report a slowdown or optimization even if we did nothing. For example,
I can get the slowdown error from the first unoptimized test on my laptop
when it gets busy doing something else. This is one such test run:

$ ruby -I . test_assert_performance1.rb
Running:
string operations 0.201 ± 0.059: slowdown by -0.044..-0.022 with 95% confidence
F
Finished in 2.456716s, 0.4070 runs/s, 0.4070 assertions/s.

1) Failure:
TestAssertPerformance#test_assert_performance [test_assert_performance1.rb:10]:
string operations got slower

1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

See how big my standard deviation is? It’s almost a quarter of my average.
This means that some of the measurements were outliers, and they made the
test fail.

Chapter 8. Test Performance • 122

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp8/test_assert_performance2.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

We already talked about two ways of dealing with that. One is to further
minimize external factors. Another is to exclude outliers. But there’s one
more: you can increase the confidence level for the optimization interval.

The 95% confidence interval we use is roughly plus/minus two standard
errors from the mean of the difference between before and after numbers. We
can demand 99% confidence. This increases the interval to about plus/minus
three standard errors.

Let’s do some quick math to see whether that helps with my failing test. My
before and after numbers numbers are 0.168 ± 0.016 and 0.201 ± 0.059.

The mean of the difference is

x‾ − y‾ = 0.168 − 0.201 = −0.033

The standard error of the mean of the difference is

s
x
‾
− y
‾

=
0.0162

30
+
0.0592

30
= 0.011

The three standard error interval is (-0.066..0). This means that we can’t be
99% confident that the second test run was slower or faster. So the new
conclusion is that nothing has changed.

Note how simple tweaking of the confidence interval changed the test outcome.
So I recommend that you play with this and come up with the confidence
level that works reliably for your performance tests.

There’s of course a limit to confidence level increases. See how we were
barely able to determine that performance in our test stayed the same. Had
the standard deviation been one millisecond less, we would have declared
this run as a slowdown.

You might be tempted to increase the interval size to four or five standard
errors from the mean. But in practice, three standard errors (99%) is the
highest confidence you should aim for. You can’t demand the confidence of
the large hadron collider experiments from your Ruby tests. If your tests are
still not reliable, step back and look for more external factors, or start
excluding outliers in measurements.

Report Slowdowns and Optimizations
The test prints benchmarks together with any deviations from the previous
runs. Is there anything else to report? Yes, but not in the test output.

report erratum • discuss

Report Slowdowns and Optimizations • 123

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

A performance test is a perfect candidate for daily or continuous testing. Make
sure you notify developers about any changes in performance, good or bad.

I personally take the complete output of the test and report that. It contains
enough information for a human to assess performance. Your choice might
be different, so I won’t talk further about reporting here.

Test Rails Application Performance
If you’re writing Rails applications, you’ll surely want to apply the same per-
formance testing techniques to them. Rails developers have long since recog-
nized that. Rails 3 even included a performance testing framework. And while
Rails 4 no longer provides it, the code is still there in the rails-perftest gem.1

So should we simply use that gem for Rails performance testing? No, not
really. The rails-perftest gem tries to be the Jack of all trades and becomes the
master of none. It does benchmarking and profiling, and lets you collect many
metrics other than execution time.

At the same time, it doesn’t do enough runs for its benchmarks to be statisti-
cally significant. And it doesn’t do any comparison. And, honestly, mixing
profiling with performance testing in one tool doesn’t sound like a good idea.

With that in mind, I think we’re better off adapting our performance_benchmark
and assert_performance functions to work with Rails. So let’s see what it takes.

Make Rails Performance Test an Integration Test
Rails is a complex stack of software. In the performance test we need to make
sure we benchmark the complete stack, not just a part of it. It might be
tempting to performance test only a controller action, or even a function in
the model. But what if we add some middleware that totally ruins our perfor-
mance? Will our performance test spot that?

The only kind of test that runs the whole Rails stack every request is the
integration test, so let’s start writing one.

class RailsAppPerformanceTest < ActionDispatch::IntegrationTest
test "performance test something" do

actual_performance = performance_benchmark do
get "/something"

end
assert_performance actual_performance

end
end

1. https://github.com/rails/rails-perftest

Chapter 8. Test Performance • 124

report erratum • discuss

https://github.com/rails/rails-perftest
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

The good thing about this test is, again, that it processes the request almost
in the same way our production application would. Ah, but the devil is in
details. While the get or post calls from the integration test do execute the
whole Rails stack, they do excessive logging and no caching.

By default, tests run with the :debug log level. To imitate production, we’ll need
to set it to :info. We can either create a separate environment for performance
testing, or simply set the log level before each test like this:

class RailsAppPerformanceTest < ActionDispatch::IntegrationTest
def setup

@previous_log_level = Rails.application.config.log_level
Rails.application.config.log_level = :info

end
def teardown

Rails.application.config.log_level = @previous_log_level
end

end

Caching is more complicated. If our application heavily relies on caching, we
must be sure to turn it on for performance tests. Our benchmark function
skips the results of the first test run, so it will correctly ignore the first,
uncached, request. This means no changes to the testing infrastructure are
needed: we just execute Rails.application.config.action_controller.perform_caching = true in
the same place where we change the log level.

Benchmark Rails the Right Way
So we wrote an integration performance test, reduced logging, and decided
on caching. Is there anything else to think about? It turns out, yes.

The majority of Rails apps work with a database. They load and store data
there. When we talked about benchmarking Ruby code earlier, we didn’t think
about the byproducts of that code. Instead we assumed that there were no
side effects and that it was safe to rerun the same function again and again.

Not so much with Rails. In most cases the time you measure will increase
with each test run during the benchmark. Why? Because when you hit Rails,
more often than not you change the database. This way you might end up
with more and more data to process in each subsequent test run.

Say our Rails action inserts a record into the database, then returns a sum-
mary of the stored data. The more we insert, the slower our action becomes.
The measurement from the 30th test run will be way different from the first.
Remember what that means for performance tests? Large standard deviations

report erratum • discuss

Test Rails Application Performance • 125

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

in the benchmarks and large standard errors of the optimization. As a result,
we won’t be able to compare the performance.

So we’ll need to make sure the test runs leave no byproducts. The easiest
way to do that is to start a transaction, measure, and roll it back. That’s
exactly what Rails does in between tests. But now we’ll have to do that in
between measurements inside one test. Let me show you how to modify the
performance_benchmark function to do that.

chp8/rails_performance_benchmark.rb
require 'benchmark'

class PerformanceTestTransactionError < StandardError
end

def performance_benchmark(name, &block)
31 runs, we'll discard the first result
(0..30).each do |i|

force GC in parent process to make sure we reclaim
any memory taken by forking in previous run
GC.start

fork to isolate our run
pid = fork do
again run GC to reduce effects of forking
GC.start
disable GC if you want to see the raw performance of your code
GC.disable if ENV["RUBY_DISABLE_GC"]

because we are in a forked process, we need to store
results in some shared space.
local file is the simplest way to do that
benchmark_results = File.open("benchmark_results_#{name}", "a")

elapsed_time = nil➤

begin➤

ActiveRecord::Base.transaction do➤

elapsed_time = Benchmark::realtime do➤

yield➤

end➤

raise PerformanceTestTransactionError➤

end➤

rescue PerformanceTestTransactionError➤

rollback transaction as expected➤

end➤

do not count the first run
if i > 0

we use system clock for measurements,
so microsecond is the last significant figure

Chapter 8. Test Performance • 126

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp8/rails_performance_benchmark.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

benchmark_results.puts elapsed_time.round(6)
end
benchmark_results.close

GC.enable if ENV["RUBY_DISABLE_GC"]

Hack! Do this only if you use database sockets.➤

dup2 all file descriptors to /dev/null so that forked process➤

forgets them and doesn't close them at exit.➤

Otherwise the forked process will close the database connection.➤

3.upto(256) { |fd| IO.new(fd).reopen("/dev/null") rescue nil }➤

end
Process::waitpid pid

end

measurements = File.readlines("benchmark_results_#{name}").map do |value|
value.to_f

end
File.delete("benchmark_results_#{name}")

average = measurements.inject(0) do |sum, x|
sum + x

end.to_f / measurements.size
stddev = Math.sqrt(

measurements.inject(0){ |sum, x| sum + (x - average)**2 }.to_f /
(measurements.size - 1)

)

return both average and standard deviation,
this time in millisecond precision
for all practical purposes that should be enough
[name, average.round(3), stddev.round(3)]

end

All it takes is to wrap your measurement into the transaction, and roll it back
after you’re done. Some people may need the socket hack that I highlighted
in the previous example.

That’s the trick I learned at Acunote. We used to develop and test on Linux,
and connected to the PostgreSQL database via local sockets. If you do the
same, you’ll need the hack because the forked measurement process will
attempt to close all its sockets at exit. And one of those sockets will be the
database connection that the forked process is sharing with its parent. So
after the socket is closed, the parent won’t be able to continue benchmarking.

With all these modifications in place, our benchmarking function and our
assertion are Rails compatible and ready to be used. So, you’re good to go
and write your own Rails performance test for your applications.

report erratum • discuss

Test Rails Application Performance • 127

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

But before we jump into that, let me tell you about one more kind of perfor-
mance test that’s not applicable to most of the pure Ruby applications but
that’s really important for Rails.

Test Database Performance
A Rails application is not just Ruby code. With all the ActiveModel and ActiveRecord
abstractions, developers tend to forget about the underlying database. But
its performance is essential to the performance of the whole application.

If the queries we run are slow, the application will be slow. If we execute too
many queries, the application will be slow. See the pattern? We absolutely
need to take care that our performance tests account for the database perfor-
mance.

We have two kinds of database-related performance problems: slow queries
and too many queries. Are our performance tests helping us to prevent each
of these two kinds of database slowdowns? It turns out the answer is no in
both cases. What can we do about that? The answer: Generate enough data
for tests in the first case, and write another kind of tests in the second. Let
me explain.

Generate Enough Data for Performance Tests

Say we have an application that has a slow query. If we see that query in
development mode, we’ll optimize it, and write the performance test that calls
the code that executes this query. Such a test will make sure the query doesn’t
get any slower with time. Nothing more to do here.

But what if we spot the slow query only in production? For example, we see
it in the database server logs, or in the NewRelic report. This usually means
our test database doesn’t have enough data. Production has way more data,
and that makes queries slower there.

So our best strategy is to generate enough data for our performance tests.

How much is enough? That depends on both our application and our data.
In some cases our request only inserts data, and there’s nothing we need to
add to our test database.

In other cases our request processes all data from a table that, for example,
contains 10,000 rows on production. Then our test database also needs
10,000 rows in that table.

Yet another case is when the request uses just 100 rows out of 10,000 total.
So it might be enough to have only 100 rows prepared for the performance

Chapter 8. Test Performance • 128

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

test. Or it might not be—for example, if our database structure lacks an index
that makes fetching 100 rows out of 10,000 as fast as fetching 100 rows out
of 100.

There are more cases of course, so I can’t give you more specific advice here.
When writing the performance test, think through the data usage and use
your best judgment to generate just enough data to match the production
behavior for your particular situation.

Test Database Queries

Executing slow queries is obviously bad for performance. But running too
many queries is also bad.

We’ve seen that in the example from Preload Aggressively, on page 42. There,
the extra 10,000 queries took an extra 250 seconds of execution time.
Although realistic, that example is rather extreme. You’ll surely notice this
kind of slowdown before the code goes into production.

A more subtle case is when our request runs just several dozen queries. In
development that might not be noticeable at all because we have less data
and run everything in a single process with no concurrency. But our produc-
tion environment is going to be exactly the opposite, with more data and high
concurrency. So our harmless dozen queries can become a huge performance
problem.

Because Rails is such a good abstraction, it’s hard to understand how many
queries are executed just by looking at the source code. Gems that magically
do authentication, authorization, validation, and many other things completely
hide the database operations from us.

The only place to see the queries executed is the development log. And, hon-
estly, how often do you look there? In a moderately complex application the
log is too verbose to parse visually, let alone to count queries.

So how do we make sure we don’t run too many queries? When I worked on
Acunote, we ran into the same problem. Our solution was to write what we
called a query test.

A query test is a test that executes the snippet of code, gathers the list of SQL
queries from the log, and asserts that this list hasn’t changed from the previ-
ous test run. That’s like a performance test that measures the number of
queries instead of the execution time.

Rails 3.0 and higher makes it easy to gather the list of queries. We can simply
subscribe to the sql.active_record hook of ActiveSupport::Notifications.

report erratum • discuss

Test Rails Application Performance • 129

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp8/app/test/integration/query_test.rb
def track_queries

result = []
ActiveSupport::Notifications.subscribe "sql.active_record" do |*args|

event = ActiveSupport::Notifications::Event.new(*args)
query_name = event.payload[:name]
next if ['SCHEMA'].include?(query_name) # skip AR schema lookups
result << query_name

end
yield
ActiveSupport::Notifications.unsubscribe("sql.active_record")
result

end

This function will execute a block and return the list of query names. Now
how do we assert that the list stays the same? We can use assert_equal, but
we’d have to modify the test by hand every time we make a legitimate change
that results in an additional query.

The assert_value gem2 we wrote while working on Acunote is a better way to do
that. It compares the expected value with the actual value, just like assert_equal.
But when the actual value changes, it asks us to either confirm the change
as legitimate or reject it as a test failure. If we confirm, it goes into the test
file and updates the expected value. This turned out to be useful not only for
performance testing. We ended up using assert_value for the majority of our
tests in Acunote, and I now use it in all my other projects.

So let’s use the assert_value to write a query test. We’ll take a sample Rails
application from Chapter 3 for that.

First, let’s add my gem to the Gemfile:

gem 'assert_value', require: false

Second, update your bundle:

$ bundle install

Let’s take the preloading example from Preload Aggressively, on page 42, and
then write a query test for it. But first let’s modify it a bit. We’ll put the code
into the controller action to imitate the real Rails application, and limit the
number of rows to 10 for brevity. Also, our controller action will execute either
the unoptimized or optimized code depending on the params.

2. https://github.com/acunote/assert_value

Chapter 8. Test Performance • 130

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp8/app/test/integration/query_test.rb
https://github.com/acunote/assert_value
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

chp8/app/app/controllers/application_controller.rb
class ApplicationController < ActionController::Base

def do_something
if params[:preload]
Thing.limit(10).includes(:minions).load

else
Thing.limit(10).each { |thing| thing.minions.load }

end
render nothing: true

end

end

We’ll need a route to request that action, so we add the following line to our
config/routes.rb:

root 'application#do_something'

Now let’s put together everything we’ve talked about, and write our query
test.

chp8/app/test/integration/query_test.rb
require 'test_helper'
require 'assert_value'

class QueryTest < ActionDispatch::IntegrationTest

def test_loading_things
ActiveRecord::Base.connection.execute <<-END
insert into things(col0, col1, col2, col3, col4,

col5, col6, col7, col8, col9) (
select
rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x'), rpad('x', 100, 'x'), rpad('x', 100, 'x'),
rpad('x', 100, 'x')
from generate_series(1, 10000)

);
END

queries = track_queries do
get "/"

end
assert_value queries

end

private

def track_queries
result = []
ActiveSupport::Notifications.subscribe "sql.active_record" do |*args|

report erratum • discuss

Test Rails Application Performance • 131

http://media.pragprog.com/titles/adrpo/code/chp8/app/app/controllers/application_controller.rb
http://media.pragprog.com/titles/adrpo/code/chp8/app/test/integration/query_test.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

event = ActiveSupport::Notifications::Event.new(*args)
query_name = event.payload[:name]
next if ['SCHEMA'].include?(query_name) # skip AR schema lookups
result << query_name

end
yield
ActiveSupport::Notifications.unsubscribe("sql.active_record")
result

end

end

Like our previous performance tests, this query test is an integration test,
and for the same reason: we need to test the complete Rails stack to be sure
there are no extra queries magically added by gems and plug-ins behind our
back.

So, let’s run this test.

$ bundle exec ruby -I test test/integration/query_test.rb

The first time we run the test, it will collect the list of queries that are executed
within the track_queries block, and ask us to confirm that the list is correct.

$ bundle exec ruby -I test test/integration/query_test.rb
Running:

@@ -1,0, +1,11 @@
+Thing Load
+Minion Load
+Minion Load
+Minion Load
+Minion Load
+Minion Load
+Minion Load
+Minion Load
+Minion Load
+Minion Load
+Minion Load
Accept the new value: yes to all, no to all, yes, no? [Y/N/y/n] (y):

Press y , and the test will update the assert_value call in the test/integra-
tion/query_test.rb file.

chp8/app/test/integration/query_test.rb
assert_value queries.join("\n"), <<-END

Thing Load
Minion Load
Minion Load
Minion Load

Chapter 8. Test Performance • 132

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp8/app/test/integration/query_test.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Minion Load
Minion Load
Minion Load
Minion Load
Minion Load
Minion Load
Minion Load

END

As expected, this unoptimized code runs nine too many Minion Load queries.

Let’s see how the optimized version performs. First, change the code inside
the track_queries block:

chp8/app/test/integration/query_test.rb
queries = track_queries do

get "/", preload: true
end

Next, run the test again and accept the new value.

$ bundle exec ruby -I test test/integration/query_test.rb
Running:

@@ -1,11, +1,2 @@
Thing Load
Minion Load
-Minion Load
-Minion Load
-Minion Load
-Minion Load
-Minion Load
-Minion Load
-Minion Load
-Minion Load
-Minion Load
Accept the new value: yes to all, no to all, yes, no? [Y/N/y/n] (y): y
.

Finished in 21.327313s, 0.0469 runs/s, 0.0938 assertions/s.
1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

The test will update the query assert to this:

chp8/app/test/integration/query_test.rb
assert_value queries.join("\n"), <<-END

Thing Load
Minion Load

END

Again as expected, the optimized version runs only two queries to load all our
objects.

report erratum • discuss

Test Rails Application Performance • 133

http://media.pragprog.com/titles/adrpo/code/chp8/app/test/integration/query_test.rb
http://media.pragprog.com/titles/adrpo/code/chp8/app/test/integration/query_test.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

After optimization you can use this test as a reference. It will fail every time
you introduce an additional query. At that point you’ll either accept the change
or reject it and fix your code.

Takeaways
Testing is the best way to maintain application performance after optimization.
Let’s summarize what it takes to do that.

1. Write performance tests—special kinds of integration tests that benchmark
your code, keep results, and then assert performance by comparing cur-
rent and previous benchmarks.

2. Make sure your performance tests get the measurements and comparisons
right. Use the framework we wrote in this chapter to create your own
performance tests.

3. When performance testing Rails, don’t forget about database performance.
Make sure you create enough data for performance tests, and check how
many queries your requests run.

Congratulations! Now you know everything you need to know to optimize your
Ruby code, measure optimization result, and ensure that your optimization
persists.

But our quest for faster Ruby applications is not over yet. To optimize, we
thought of our code as of a white box that we can dissect and improve. As
you might guess, another approach would be to think of it as of a black box,
and optimize the way we run the code by speeding up its dependencies and
the whole execution environment. So let’s do just that.

Chapter 8. Test Performance • 134

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 9

Think Outside the Box
Our ability to focus, as software engineers, makes us vulnerable to the tunnel
vision syndrome. What that means when it comes to optimization is that when
our Ruby program is slow, we tend to concentrate only on Ruby code optimiza-
tion. But there are other ways to make our Ruby program faster, often
resulting in a greater improvement than the obvious approach of looking for
ways to optimize that Ruby code.

To find these other ways we have to step out of the box and look at how our
program runs in the real world, what other software it uses, and where it’s
deployed. Our program will become faster if we find a better way to run it by
optimizing all its dependencies and deployment infrastructure.

How exactly do we do that? I’ll show you a couple of examples here in this
chapter. But, unlike in the rest of my book, I can neither give you a complete
solution nor outline the steps to be taken. There are simply too many ways
to run the Ruby code, too many external tools it may use, and too many
deployment platforms. So look at the material in this chapter as a source of
inspiration for your own thinking outside the box, not as a complete guide.

Cycle Long-Running Instances
Let’s first look at how our program runs, and decide what we can do to make
it run faster.

Imagine you started a program. Let’s say it’s a web browser, and after some
time it’s become slow. What do you do? It’s not a trick question. You know
what you should do: restart it, and it’ll be fast again.

Can we apply the same principle with Ruby programs? It turns out we can.
Any long-running Ruby application will become faster after the restart.

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Back in Profile Memory we talked about how garbage collector performance
declines when the amount of memory allocated by the Ruby process
increases. Spoiler alert: I’m going to jump ahead of myself and add to this
one more fact. In most cases the Ruby process will never give the memory
allocated for Ruby objects back to the operating system. Take a peek at the
next chapter if you’re curious what happens, and why.

For now, let’s concentrate only on these two facts: (a) the performance declines
with the increased memory usage, and (b) the amount of memory allocated
by the Ruby process only grows with time.

What does this add up to? Slowdown. The longer our Ruby program runs,
the slower it gets. No amount of code optimization can prevent this. Only a
restart solves this slowdown!

So if you have a long-running Ruby instance, you’ll need to cycle it. And by
cycling I mean restarting it when it uses too much memory.

You can cycle Ruby applications in several ways:

• Use a hosting platform that does it for you. For example, Heroku cycles
its “dynos” daily1 and also aborts the process when it exceeds the dyno’s
memory limit.

• Use a process management tool, like monit,2 god,3 upstart,4 runit,5 or
foreman with systemd.6

• Ask the operating system to kill your application if it exceeds the memory
limit. Note that this still depends on a process management tool to restart
the application after it gets killed.

If you deploy on Heroku, its daily cycling might work well for you. But when
I worked on Acunote, we had our own deployment infrastructure and dedicated
servers. So we had to use the other techniques to combat excessive memory
usage. I’ll show a few examples of how we did it.

1. https://devcenter.heroku.com/articles/how-heroku-works#dyno-manager
2. http://mmonit.com/monit/
3. http://godrb.com/
4. http://blog.arkency.com/2014/06/create-run-and-manage-your-background-processes-with-upstart/
5. http://smarden.org/runit/index.html and http://jtimberman.housepub.org/blog/2012/12/29/process-supervision-

solved-problem/
6. http://ddollar.github.io/foreman/ and http://patrakov.blogspot.com/2011/01/writing-systemd-service-files.html

Chapter 9. Think Outside the Box • 136

report erratum • discuss

https://devcenter.heroku.com/articles/how-heroku-works#dyno-manager
http://mmonit.com/monit/
http://godrb.com/
http://blog.arkency.com/2014/06/create-run-and-manage-your-background-processes-with-upstart/
http://smarden.org/runit/index.html
http://jtimberman.housepub.org/blog/2012/12/29/process-supervision-solved-problem/
http://jtimberman.housepub.org/blog/2012/12/29/process-supervision-solved-problem/
http://ddollar.github.io/foreman/
http://patrakov.blogspot.com/2011/01/writing-systemd-service-files.html
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Example: Configure Monit to Cycle Ruby Processes
With monit we can check totalmem and loadavg variables and restart based on
their values, like this:

check process my_ruby_process
with pidfile /var/run/my_ruby_process/my_ruby_process.pid
start program = "my_ruby_process start"
stop program = "my_ruby_process stop"
eating up memory?
if totalmem is greater than 300.0 MB for 3 cycles then restart
bad, bad, bad
if loadavg(5min) greater than 10 for 8 cycles then restart
something is wrong, call the sys-admin
if 20 restarts within 20 cycles then timeout

Example: Set Operating System Memory Limit
On Unix systems we can use the setrlimit system call to enforce the process
memory limit.

For example, on Linux and Mac OS X, set RLIMIT_AS:

600 MB RSS limit
Process.setrlimit(Process::RLIMIT_AS, 600 * 1024 * 1024)

Example: Cycle Unicorn Workers in the Rails Application
Rails applications running on the Unicorn web server can cycle themselves
without any external process management tool. The idea is to set a memory
limit for workers and let the master process restart them once they get killed.

For example, this is what I have in my config/unicorn.rb:

after_fork do |server, worker|
worker.set_memory_limits

end

class Unicorn::Worker
MEMORY_LIMIT = 600 #MB

def set_memory_limits
Process.setrlimit(Process::RLIMIT_AS, MEMORY_LIMIT * 1024 * 1024)

end
end

That works for Unicorn 4.4, so you might need to change it to work with
newer versions.

report erratum • discuss

Cycle Long-Running Instances • 137

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Joe asks:

How Large Should My Memory Limit Be?
Modern Rails applications take from 100 MB to 200 MB after startup. So I wouldn’t
set this limit lower than 250 MB. And you probably want to go higher. How high? To
get a good approximation, take the amount of memory available to Rails and divide
by the number of Unicorn workers.

The only problem with this approach is that the operating system may kill
your worker while serving the request. To avoid that, I also set up what I call
the kind memory limit.

We can set this limit to a value lower than the RSS memory limit, and check
for it after every request. Once the worker reaches the kind memory limit, it
gracefully shuts itself down.

This way, in most cases workers quit before reaching the RSS memory limit
enforced by the operating system. That becomes a safeguard only against
long-running requests that grow too big in memory.

Here’s how I set up the kind limit with Unicorn:

class Unicorn::HttpServer
KIND_MEMORY_LIMIT = 250 #MB

alias process_client_orig process_client
undef_method :process_client
def process_client(client)

process_client_orig(client)
exit if get_memory_size(Process.pid) > KIND_MEMORY_LIMIT

end

def get_memory_size(pid)
status = File.read("/proc/#{pid}/status")
matches = status.match(/VmRSS:\s+(\d+)/)
matches[1].to_i / 1024

end
end

This example will work only for Linux and other Unixes because it gets the
current process memory usage from the /proc filesystem. If you’d like to port
it for Mac OS or Windows, you’ll have to rewrite the get_memory_size function.

There are, of course, many other ways to keep the Ruby process from growing
in memory. I can’t describe all of them in this book, but by now you should

Chapter 9. Think Outside the Box • 138

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

have the general idea. Whatever tool you use, make sure it restarts the long-
running Ruby application before it grows too big in memory.

Fork to Run Heavy Jobs
Cycling long-running Ruby instances helps to deal with sudden increases in
memory consumption. But often we know beforehand that the code we’re
going to execute will need memory. For example, our database query returned
100,000 rows, and we need to compute complex statistics based on that data.

We can let that memory-heavy operation run and then let our infrastructure
restart the Ruby process. But there’s a better solution. We can fork our process
and execute the memory-heavy code in the child process. This way, only the
child process will grow in memory, and when it exits, the parent process
remains unaffected.

The simplest possible implementation looks like this:

pid = fork do
heavy_function

end
Process::waitpid(pid)

You might recognize this code from the performance_benchmark function in the
previous chapter. We used the same fork-and-run approach to isolate
benchmarks from the parent process, and from themselves.

You might also recall the downside of this approach. Such code has no easy
way of returning data to the parent process. If you want to do it, you’ll need
to open a pipe between parent and child, use temporary storage, or store
results into the database.

In the previous chapter we already used the temporary storage to communicate
between the forked process and its parent. So now let’s see how to send the
data via the I/O pipe.

chp9/forked_process_io_pipe_example.rb
require 'bigdecimal'

def heavy_function
this allocates approx. 450,000 extra objects before returning the result
Array.new(100000) { BigDecimal(rand(), 3) }.inject(0) { |sum, i| sum + i }

end

disable GC to compute object allocation statistics
GC.disable
puts "Total Ruby objects before operation: #{ObjectSpace.count_objects[:TOTAL]}"

report erratum • discuss

Fork to Run Heavy Jobs • 139

http://media.pragprog.com/titles/adrpo/code/chp9/forked_process_io_pipe_example.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

open pipe, then close "read" end on child side,
and "write" end on parent side
read, write = IO.pipe

pid = fork do
child may run GC as usual
GC.enable

read.close
result = heavy_function
use Marshal.dump to save Ruby objects into the pipe
Marshal.dump(result, write)

exit!(0)
end

write.close
result = read.read
make sure we wait until the child finishes
Process.wait(pid)

use Marshal.dump to load Ruby objects from pipe
puts Marshal.load(result).inspect

this number should be not too different from the previous one
puts "Total Ruby objects after operation: #{ObjectSpace.count_objects[:TOTAL]}"

When we run the code, we see that despite the child allocating
400,000–450,000 objects, the parent process doesn’t grow at all.

$ ruby forked_process_io_pipe_example.rb
Total Ruby objects before operation: 30163
#<BigDecimal:7f99b3a612e8,'0.5016076916 4137E5',18(27)>
Total Ruby objects after operation: 30163

This technique is very useful for long-running Ruby applications that occa-
sionally have to perform memory-heavy operations. But for Rails, there are
usually better solutions.

Most modern deployments support the idea of background jobs. For example,
delayed_job gem7 essentially implements the same idea. It lets you delay any
function call by serializing the function and its data into the database, and
then executing the code in the separated, short-lived process (usually launched
by a rake task).

There are many other background job implementations that do the same
thing. You can use any of them.

7. https://github.com/collectiveidea/delayed_job

Chapter 9. Think Outside the Box • 140

report erratum • discuss

https://github.com/collectiveidea/delayed_job
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

But beware of the ones that use threads instead of separate processes. A
notable example is Sidekiq.8 It is usually one Ruby process running several
dozen Ruby threads. All these share the same ObjectSpace, so when one thread
grows, the whole process needs a restart. So make sure you use one of the
process management tools we talked about earlier to monitor and restart the
Sidekiq worker.

Both cycling and forking keep the Ruby process under a certain memory
limit, so that GC has less work to do and takes less time to complete. It’s GC
time that we’re really optimizing here.

Do Out-of-Band Garbage Collection
Despite all our optimization efforts, GC will continue to take a substantial
part of execution time. So what do we do if we can’t reduce GC time? We force
GC when our application isn’t doing anything. That approach is called Out-
of-Band Garbage Collection (OOBGC).

No OOBGC Necessary for Ruby Version 2.2 and Higher

Why is it important to reduce GC time or do GC while your code is idle? Because your
application must stop and wait for (the marking phase of) GC to finish. However, with
Ruby 2.2 and its incremental GC, the “stop the world” time is much less than before.
So chances are you’ll never need OOBGC if you use Ruby 2.2 and later. You’ll see
why in the next chapter.

Idle time is something that we usually observe in web applications and ser-
vices. So let me show you how to configure OOBGC for the most popular Ruby
web servers.

Example: OOBGC with Unicorn
Unicorn9 has direct support for OOBGC.

If you use Ruby 2.1 or later, add the gctools gem10 to your Gemfile and put this
into your config.ru for Unicorn:

require 'gctools/oobgc'
use(GC::OOB::UnicornMiddleware)

8. http://sidekiq.org/
9. http://unicorn.bogomips.org/
10. https://github.com/tmm1/gctools

report erratum • discuss

Do Out-of-Band Garbage Collection • 141

http://sidekiq.org/
http://unicorn.bogomips.org/
https://github.com/tmm1/gctools
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

When does the OOBGC happen? You might guess it should run after every
N requests. But that would add unnecessary load to your server. Not all
requests are the same, and some of them might leave little to no garbage.

The gctools library does it in a better way. Ruby 2.1 exposes enough information
about its internal state for the gctools to decide when the collection is required.
You can read more about how it works, and what results to expect, in its
author’s blog.11

However, if you’re still using Ruby version 2.0 and lower, then the only OOBGC
strategy is to force GC after every N requests. Unicorn has the built-in mid-
dleware for that:

require 'unicorn/oob_gc'
use(Unicorn::OobGC, 1)

Here the second parameter to the use() call is the frequency of OOBGC: 1
means after every request, 2 means after every two requests, and so on.

Example: OOBGC in Other Web Servers or Applications
We can use the gctools library to do OOBGC in any code. Once we determine
when our code has idle time, we can call this:

require 'gctools/oobgc'
GC::OOB.run

There are two things to keep in mind when implementing OOBGC on your
own.

First, make sure that you get your OOBGC timing right. For web applications,
it’s after the request body is flushed into the stream. For background workers,
it’s after finishing the task and before pulling the next task from the queue.

Second, be careful if you use threads. If you force GC from one thread while
the other is still doing its job, you will block that other thread. So you should
make sure all threads in the process are doing nothing before calling OOBGC.

That’s why, for example, the Puma web server doesn’t support OOBGC. Unlike
Unicorn, Puma’s workers can be multithreaded, and there’s no single point
in time when you can safely perform OOBGC.

11. http://tmm1.net/ruby21-oobgc

Chapter 9. Think Outside the Box • 142

report erratum • discuss

http://tmm1.net/ruby21-oobgc
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Tune Your Database
Your database server can be either a liability or an asset to performance. If
you use one of the modern SQL databases, don’t treat it as a dumb storage
mechanism. We have seen in Offload Work to the Database, on page 34 how
rewriting Ruby code into SQL can give you one or more orders of magnitude
improvement.

But equally important is having your database server tuned up for optimal
performance. You’ll want to do this, because the default settings are usually
inadequate, especially for PostgreSQL.

Example: Tune Up PostgreSQL for Optimal Performance
This example is relevant for you only when you have to set up the database
server on your own. If you host on Heroku, then you can expect your Post-
greSQL to be configured reasonably well. That might be true for other hosting
solutions.

PostgreSQL has a plethora of configuration options, so instead of diving into
details, we’ll talk at a high level about what we need to configure.

• Let the database use as much memory as possible. Ideally, all your data
should fit into RAM for faster access.

• Make sure the database has enough memory to store intermediate results,
especially for sorts and aggregations.

• Set the database to log slow queries and preserve as much information
about them as possible to reproduce the problem.

Let me show you the PostgreSQL configuration snippet that implements these
goals. This is an extract from the config we used for Acunote. It’s not a com-
plete config, so you should review these settings, read comments, and merge
with your own config as necessary.

chp9/postgresql.conf
For all memory settings below, RAM_FOR_DATABASE is the amount of memory
available to the PostgreSQL after the operating system and all other
services are started.
#
Evaluate the Ruby pseudocode in angle brackets and replace
it with actual values.

===
Use as Much Memory as Possible
===

report erratum • discuss

Tune Your Database • 143

http://media.pragprog.com/titles/adrpo/code/chp9/postgresql.conf
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

How much memory we have for database disk caches in memory
Note, disk caching is controlled by the operating system,
so this setting is just a guideline.
Recommended setting: RAM_FOR_DATABASE * 3/4
set effective_cache_size <ram_for_database.to_i * 3/4>MB

Shared memory that PostgreSQL itself allocates for data caching in RAM
Recommended setting: RAM_FOR_DATABASE/4
Warning: on Linux make sure to increase the SHMMAX kernel setting.
set shared_buffers <ram_for_database.to_i / 4>MB

===
Allocate Enough Memory for Intermediate Results
===

Work memory for queries (to store sort results, aggregates, etc.)
This is a per-connection setting, so it depends on the expected
maximum number of active connections.
Recommended setting: (RAM_FOR_DATABASE/max_connections) ROUND DOWN 2^x
set work_mem < 2**(Math.log(ram_for_database.to_i /

expected_max_active_connections.to_i)/Math.log(2)).floor >MB

Memory for vacuum, autovacuum, index creation
Recommended setting: RAM_FOR_DATABASE/16 ROUND DOWN 2^x
set maintenance_work_mem < 2**(Math.log(ram_for_database.to_i / 16)

/Math.log(2)).floor >MB

===
Log Slow Queries
===

Log only autovacuum's longer than 1 sec.
set log_autovacuum_min_duration 1000ms

Log long queries.
set log_min_duration_statement 1000ms
set auto_explain.log_min_duration 1000ms

Explain long queries in the log using the auto_explain plug-in.
set shared_preload_libraries 'auto_explain'
set custom_variable_classes 'auto_explain'

But do not use explain analyze, which may be slow
set auto_explain.log_analyze off

You might have noticed that this configuration mostly optimizes PostgreSQL
memory usage. Yes, it’s memory again. We spent the greater part of this book

Chapter 9. Think Outside the Box • 144

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

talking about Ruby memory optimization, and now it’s our database that also
needs memory tuning.

That’s not a coincidence. Modern software is rarely limited by CPU. The most
severe limitation is the amount of available memory, followed by network
latency and throughput, and disk I/O.

That’s why, no matter what database you use, you need to make sure it has
and uses as much memory as possible.

Buy Enough Resources for Production
A large number of Ruby applications run in the cloud today. There are many
providers of deployment infrastructure, but the better ones tend to be
expensive. So you often have to find the optimal compromise between the
price you pay and the resource limits you get for that price.

Hosting providers usually emphasize the number of CPU cores and the size
of the storage in their pricing plans. Both these numbers are irrelevant. CPU
performance is usually not a problem, and storage can be easily added. Here
are what I believe are the most important criteria when evaluating the
potential deployment stack:

1. Total RAM available.

After reading this book, it should be no surprise that memory comes first
in my list.

2. I/O performance.

This is the most overlooked parameter, which is often hard to evaluate
without deploying at least the test application. It doesn’t matter for some
applications, but if you write logs or cache to disk, pay attention to it.

3. Database configuration.

If you do not set up the database server yourself, make sure your provider
follows the best practices that we talked about earlier.

4. Everything else.

Don’t be afraid to pay for more memory. That is often cheaper than paying
for extra servers (virtual machines). For example, as of this writing, Heroku,
one of the most popular Rails deployment solutions, offers two kinds of dynos
(virtual machines): 1X and 2X. The first has 512 MB of RAM, and the second
has 1024 MB. 2X is about 2–2.5 times more expensive.

report erratum • discuss

Buy Enough Resources for Production • 145

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

On the 1X dyno you can run only one Rails instance because their average
size is about 250–300 MB. On the 2X dyno you can run three instances—for
example, three Unicorn workers. That more than justifies the increase in cost.

Also, when your Rails application goes bad and grows in memory, you’ll at
least have some extra memory on a 2X dyno to be used before you cycle the
offending process. In my experience that makes all the difference. With a 1X
dyno your application can just stop responding whereas 2X will slow down
for a short time.

I/O bit me several times in the past. At Acunote, we used to deploy on Engine
Yard before we bought our own hardware. Their virtual machines at the time
did not have their own storage, and instead used the network filesystem
(RedHat GFS).

GFS seemed to work really well for us until I found that certain cache expira-
tion calls took too long to execute.

We cached to disk, and expired it by traversing the whole cache directory and
matching the file paths to the expiration regular expression. It turned out
that GFS had a slow fstat() implementation, so traversing the large cache
directory could take several seconds. So we had to change our caching
strategy to limit the number of directories in the search path for expiration.

Takeaways
When optimizing your application, look beyond the code in your search for
performance problems. Sometimes an unoptimized application running on a
properly configured software stack will perform better than the thoroughly
optimized one in a poorly configured stack.

This chapter has expored several items you need to think about when
deploying your Ruby application:

• Restart your long-running processes when they grow too large in memory.
A freshly started application runs faster because the GC has fewer objects
to collect.

• Run heavy tasks in an isolated forked environment. This way the forked
process will give back to the operating system all the memory allocated
during its execution.

• Do out-of-band garbage collection if you use Ruby version 2.0 and lower,
and your application has idle time. This reduces GC stop-the-world time
when your code is actually doing its job.

Chapter 9. Think Outside the Box • 146

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

• Tune up your database and any other software for optimal performance.
Popular PostgreSQL database has over-conservative defaults that are
harmful for performance.

• Review your deployment stack and identify possible sources of slowdowns.
If in doubt what to improve in your infrastructure first, buy more memory.

Remember, this list is not exhaustive. Take it as a hint, a starting point, rather
than official advice. Forget your Ruby code for a moment, and take a fresh
look at how and where it runs. You’ll be surprised by the slowdowns you’ll
find.

So we’ve talked about tuning your Ruby program and the software it uses for
optimal performance. But so far we’ve ignored the elephant in the room. The
Ruby interpreter itself is the most important piece of software that your pro-
gram runs on. And it needs performance tuning too. That’s what we’ll talk
about in the next chapter.

report erratum • discuss

Takeaways • 147

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

CHAPTER 10

Tune Up the Garbage Collector
Many of the optimizations so far in this book involved avoiding or postponing
GC as much as possible. But we can only do so much by working around the
GC’s inefficiency. Let’s instead look into the face of evil. Ruby GC is, in fact,
not a black box. We can understand it. And with modern Ruby interpreters,
we can control it. This means that we can tune up GC for optimal performance
in our applications.

That is, of course, only possible if we know enough about Ruby and GC
internals. So let’s first figure out how they work, and then talk about tuning
the GC settings.

Understand How Ruby Uses Memory
Ruby stores objects in its own heap, and uses operating system heap for data
that doesn’t fit into objects. Let’s see how that works.

Objects
In Ruby everything is an object that’s internally represented as the RVALUE
struct. sizeof(RVALUE) is machine dependent:

• 20 bytes in 32-bit architecture when double is 4-byte aligned

• 24 bytes in 32-bit architecture when double is 8-byte aligned

• 40 bytes in 64-bit architecture

Most modern computers are 64-bit, so we’ll assume that one object costs us
40 bytes of memory to create.

You can see the object size on your computer in the debugger. I’m running
my examples on 64-bit Linux, so I’ll use the gdb debugger. If you are on Mac
OS X, try lldb that comes with the Xcode command-line tools. It’s compatible

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

with gdb, and examples from this book should run without modification. On
Windows, the easiest way is to install MinGW,1 which includes the gdb
debugger.

This is how you can get the object size in the debugger:

$ gdb `rbenv which ruby`
(gdb) p sizeof(RVALUE)
$1 = 40
(gdb)

As expected, it’s 40 bytes on my 64-bit Linux system.

Note that gdb requires the argument to be an executable and not a shell
wrapper, for example, the one that rbenv installs. That’s why I call rbenv which
to get the actual path to the Ruby executable and pass it to the debugger.

Is 40 bytes per object a large overhead? It doesn’t sound like a lot, but num-
bers will add up quickly at runtime.

A medium-sized Rails application will allocate half a million objects at startup.
That translates to about 20 MB of memory just to store the objects. And this
estimate doesn’t include extra space that you might need to store objects’
data.

In addition to that, to save time during object creation, Ruby preallocates
extra space and thus uses even more memory than necessary to keep all
existing objects. Let’s see how.

Ruby Objects Heap
Ruby allocates objects in the heap space that consists of heap pages. Each
heap page in turn is divided into slots, one slot for one object.

When Ruby wants to allocate an object, it takes up the unused slot from the
heap. If there are not enough free slots, Ruby grows the heap space by adding
one or more heap pages. How much is added depends on the current heap
usage, interpreter version, and the heap growth algorithm parameters.

Ruby 1.8

Ruby 1.8 adds one heap page at a time. The first page that is created at
startup contains HEAP_MIN_SLOTS slots. This constant is defined in gc.c and is
equal to 10000 by default.

1. http://www.mingw.org/

Chapter 10. Tune Up the Garbage Collector • 150

report erratum • discuss

http://www.mingw.org/
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Subsequent pages will be larger by a factor of 1.8. For example, the second
page will have 18,000 slots; the third, 32,400; and so on. The total number
of slots will be 10,000, 28,000, 60,400, and so on.

Ruby 1.9 and 2.0

Ruby 1.9 and later use a slightly different heap growth algorithm. First, the
heap growth factor defines the growth of the whole heap space, not the indi-
vidual heap page as in 1.8. Second, instead of adding one ever-increasing
heap page at a time, it preallocates several fixed-sized heap pages.

Smaller heap pages theoretically help to reduce memory fragmentation and
make it easier to reclaim unused heap space. We’ll explore later in this
chapter how well that theory corresponds to real life.

Each heap page in Ruby >= 1.9 is 16 kB (minus extra several dozen bytes
required for upkeep); 16 kB is enough to keep, for example, 408 objects on
a 64-bit Linux system. The HEAP_OBJ_LIMIT constant tells us the number of
objects in a heap page:

$ gdb `rbenv which ruby`
(gdb) p HEAP_OBJ_LIMIT*1
$1 = 408
(gdb)

Let’s investigate how object preallocation works. First, we’ll talk about Ruby
1.9, the simplest of modern implementations.

At startup, Ruby 1.9 preallocates HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT heap pages.
With default settings, it’s 10,000 / 408 = 24 heap pages on my system.

When the interpreter needs to add more heap space, it takes the number of
pages currently used, multiplies that by a factor of 1.8, and allocates the
missing heap pages.

For example, once those 24 heaps created at startup are taken, Ruby grows
the heap space to 24 * 1.8 = 43, adding (43 - 24) = 19 new heaps. These 43
heaps will have space for 43 * HEAP_OBJ_LIMIT = 43 * 408 = 17,544 object slots.
Next time the heap grows to 43 * 1.8 = 77 heaps, giving us 77 * 408 = 31,416
slots.

Note that with this algorithm, heap growth is much slower than in 1.8, thus
reducing total memory usage in applications.

You can see the heap growth for yourself with GC#stat in irb.

$ rbenv shell 1.9.3-p551
$ irb

report erratum • discuss

Understand How Ruby Uses Memory • 151

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

irb(main):001:0> require 'pp'
=> true
irb(main):002:0> pp GC.stat; nil
{:count=>7,
:heap_used=>77,
:heap_length=>77,
:heap_increment=>0,
:heap_live_num=>14208,
:heap_free_num=>17146,
:heap_final_num=>104}
=> nil

Let me explain the numbers that GC#stat returns:

count
The number of times GC ran.

heap_used
The number of heap pages allocated.

The larger this number is, the more memory our Ruby process consumes,
and the more work GC has to do.

To estimate the Ruby heap memory consumption, multiply this by
HEAP_OBJ_LIMIT and sizeof(RVALUE).

In our example, the memory used for heap is 77 * 408 * 40 = 1,256,640
bytes, about 1.2 MB.

The name of this parameter is misleading. It doesn’t necessarily mean
that all of these heap pages are used. They might be allocated, but empty.
Also, this number isn’t cumulative. It can be decreased if Ruby shrinks
the heap space.

heap_increment
In theory, this should be the number of heap pages that can be allocated
before the interpreter needs to run the GC and grow the heap space again.

In practice, this number is always 0 in Ruby 1.9.

heap_length
The total number of heap pages, including heap_used and heap_increment.

heap_live_num
The current number of live objects in the heap.

This number includes objects that are still live but will be collected next
time GC runs. So we can’t use it to estimate the number of free slots in
the heap.

Chapter 10. Tune Up the Garbage Collector • 152

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

heap_free_num
The current number of free object slots in the heap after the last GC run.

This number is also misleading and can’t be used to estimate the current
number of free slots. The only way to know how much free space you have
on the heap is to call GC.start before looking at the heap_free_num.

heap_final_num
The number of objects that weren’t finalized during the last GC and that
will be finalized later.

Now that we know what GC#stat’s return values mean, let’s get back to our irb
session and try to make sense out of the numbers we see.

After startup, irb has 77 heap pages allocated. This means there were three
growth iterations: one at interpreter startup (24 pages), and two more during
irb initialization (giving us 43 and 77 pages in total).

We can predict that the next time the heap grows, it will increase to 77 * 1.8
= 138 pages.

To observe this in irb, we must know how many extra objects we need to
allocate. So we’ll force GC, and allocate slightly more than heap_free_num.

irb(main):003:0> GC.start
=> nil
irb(main):004:0> pp GC.stat; nil
{:count=>8,
:heap_used=>77,
:heap_length=>77,
:heap_increment=>0,
:heap_live_num=>12635,
:heap_free_num=>18764,
:heap_final_num=>0}
=> nil
irb(main):005:0> x = Array.new(19000) { Object.new }; nil
=> nil
irb(main):006:0> pp GC.stat; nil
{:count=>9,
:heap_used=>138,
:heap_length=>138,
:heap_increment=>0,
:heap_live_num=>30215,
:heap_free_num=>26156,
:heap_final_num=>42}
=> nil

report erratum • discuss

Understand How Ruby Uses Memory • 153

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Everything looks right. We have slightly fewer than 19,000 free slots on the
heap. And when we allocate 19,000 objects, we observe the heap growth from
77 to 138 pages as predicted.

Ruby 2.1

Ruby 2.1 renames the HEAP_MIN_SLOTS constant to GC_HEAP_INIT_SLOTS and adds
heap growth control. Instead of hard-coding 1.8, it defines the
GC_HEAP_GROWTH_FACTOR constant. That still defaults to 1.8, though.

In addition we can set a cap on the heap growth. If we set the
GC_HEAP_GROWTH_MAX_SLOTS constant, Ruby will add no more than the specified
number of slots any time it grows the heap. This way we can force the heap
growth to become linear at a certain point. We’ll talk a bit later about how
that can be useful.

While the growth factor is still the same 1.8 times, heap growth is more con-
servative in Ruby 2.1. To calculate the heap pages increment, the interpreter
takes only the number of allocated, nonempty slots, and multiplies that by
the growth factor.

If we try to observe the growth effect in Ruby 2.1, we see that the heap length
numbers are a bit off. For example, this is what I see when I run irb in Ruby
2.1.5:

$ rbenv shell 2.1.5
$ irb

irb(main):001:0> GC.stat[:heap_length]
=> 81

Why is the heap length 81 instead of 77 as in the similar Ruby 1.9 example
earlier? It’s because Ruby 2.1 creates one heap page at startup before allocat-
ing the initial 24 pages. This way we get 25 pages, which then grow to 25 *
1.8 = 45, and then to 45 * 1.8 = 81.

GC#stat in Ruby 2.1 returns more information:

$ rbenv shell 2.1.5
$ irb

irb(main):001:0> require 'pp'
=> true
irb(main):002:0> pp GC.stat; nil
{:count=>7,
:heap_used=>81,
:heap_length=>81,
:heap_increment=>0,
:heap_live_slot=>32505,

Chapter 10. Tune Up the Garbage Collector • 154

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

:heap_free_slot=>501,
:heap_final_slot=>0,
:heap_swept_slot=>19441,
:heap_eden_page_length=>81,
:heap_tomb_page_length=>0,
:total_allocated_object=>93148,
:total_freed_object=>60643,
:malloc_increase=>322184,
:malloc_limit=>16777216,
:minor_gc_count=>5,
:major_gc_count=>2,
:remembered_shady_object=>195,
:remembered_shady_object_limit=>300,
:old_object=>10585,
:old_object_limit=>11680,
:oldmalloc_increase=>2470360,
:oldmalloc_limit=>16777216}

=> nil

Here are some of the parameters that are relevant to heap allocation:

count, heap_used, heap_length, heap_increment
Same as in Ruby 1.9, except that heap_increment is not always zero anymore.

The heap space in Ruby 2.1 and later grows gradually. When Ruby grows
the heap space, it only allocates the space in the list of heap pages.
heap_length tells you the length of that list. Actual pages are allocated on
demand. heap_used shows how many of them are allocated at any given
time. heap_increment shows how many pages can be allocated.

This change means that newer Ruby interpreters grow the heap space
gradually, without the spikes in memory usage.

heap_live_slot, heap_free_slot, heap_final_slot
Same as heap_live_num, heap_free_num, and heap_final_num in Ruby 1.9.

One important difference is that heap_free_num refers to the number of free
slots in the allocated heap pages. So to estimate the free space in the
heap, add the number of slots that can be allocated in the heap, like this:
heap_increment * HEAP_OBJ_LIMIT + heap_free_num.

heap_swept_slot
The number of slots swept (freed) during the last GC.

total_allocated_object, total_freed_object
The number of allocated and freed objects during the process lifetime.

heap_eden_page_length, heap_tomb_page_length
The number of heap pages in eden and tomb.

report erratum • discuss

Understand How Ruby Uses Memory • 155

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

The heap space in Ruby 2.1 and later is divided into eden and tomb. This is
the Ruby way to keep track of occupied and empty heap pages. The former
are in the eden; the latter go into the tomb.

When allocating objects, Ruby looks for free space in the eden pages first.
Only if there’s no space in eden, it takes a free page from tomb. This algorithm
is good for two reasons. First, it reduces memory fragmentation by reusing
empty pages only as necessary. But second, and most important, it gives
more opportunity to the interpreter to destroy them and free up unused heap
space.

Let me explain why.

Ruby interpreters before 2.1 could not really shrink the heap space. Once
allocated, the page was likely to stay there until the program exits. For
example, in Ruby 1.8 each subsequent heap page is bigger than the previous
one by a factor of 1.8. And the bigger the page is, the less likely it is to become
empty and be a candidate for destruction. Even fixed-size pages in Ruby 1.9
are not that likely to be freed because of memory fragmentation.

So, theoretically, Ruby 2.1 should have a better chance of freeing up the heap
space. Let’s see if that works. First, we’ll start irb and create 100,000 objects:

$ rbenv shell 2.1.5
$ irb

irb(main):001:0> GC.start
=> nil
irb(main):002:0> "eden: %d, tomb: %d" % [GC.stat[:heap_eden_page_length],

GC.stat[:heap_tomb_page_length]]
=> "eden: 81, tomb: 0"
irb(main):003:0> x = Array.new(100000) { Object.new }; nil
=> nil
irb(main):004:0> "eden: %d, tomb: %d" % [GC.stat[:heap_eden_page_length],

GC.stat[:heap_tomb_page_length]]
=> "eden: 277, tomb: 0"

So far, all pages are on the eden because they contain live objects. Now let’s
clear the reference to our array of objects and call GC to free it up:

irb(main):005:0> x = nil
=> nil
irb(main):006:0> GC.start
=> nil
irb(main):007:0> "eden: %d, tomb: %d" % [GC.stat[:heap_eden_page_length],

GC.stat[:heap_tomb_page_length]]
=> "eden: 84, tomb: 168"

Chapter 10. Tune Up the Garbage Collector • 156

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Your numbers might be a bit different, but you should see the same pattern.
From 277 eden pages, 84 remained used. That’s almost the same number of
pages (81) as before we created our 100,000 objects.

A total of 168 pages became empty and got into the tomb. The rest, 277 – 84
– 168 = 25 pages were freed up. If we translate that into bytes, we’ll see that
Ruby freed up 400 kB (25 pages) out of 4.3 MB (277 pages), reducing the
heap size by about 9%. This reduction is not significant, but it indeed happens.

Why did Ruby decide to keep 168 unused pages in the heap? It’s because it
doesn’t want to shrink heap space too much. The interpreter makes an
assumption that if you created a lot of objects before, you’ll tend to continue
creating a lot of objects in the future. That’s not always true, but I can’t say
the assumption is unreasonable.

This is the algorithm that Ruby uses to determine the number of heap pages
to free.

1. Take the number of pages swept during GC, meaning pages where GC
found at least one object to collect.

In our case we dereferenced 100,000 objects, so GC had to sweep about
100,000 / HEAP_OBJ_LIMIT = 245 pages.

2. Calculate the maximum number of slots that should stay in the heap.
This number is either 80% of total heap slot count or GC_HEAP_INIT_SLOTS,
whichever is bigger.

In our case it’s 80% of 277 = 221 pages.

3. The number of pages to be freed is the difference between these two
numbers. If the difference is negative, then no pages will be freed.

In our case the number of pages to free is 245 – 221 = 24. In reality Ruby
freed up 25 pages, mostly because GC had more pages to sweep due to
fragmentation.

As you see, the heap space can indeed shrink in Ruby 2.1, but by not too
much. Ten percent is about the maximum reduction you’ll ever see. This is
certainly not enough to prevent your Ruby process from growing over time
because, by default, growth is 80% while reduction is only 10%.

So in production just assume that your Ruby process will always grow, and
be sure to periodically restart the long-running processes as we discussed
back in Cycle Long-Running Instances, on page 135.

report erratum • discuss

Understand How Ruby Uses Memory • 157

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Ruby 2.2

Ruby 2.2 changes GC#stat parameters yet again, and introduces some new
ones. Let’s review them:

$ rbenv shell 2.2.0
$ irb

irb(main):001:0> require 'pp'
=> true
irb(main):002:0> pp GC.stat
{:count=>7,
:heap_allocated_pages=>74,
:heap_sorted_length=>75,
:heap_allocatable_pages=>0,
:heap_available_slots=>30160,
:heap_live_slots=>29620,
:heap_free_slots=>540,
:heap_final_slots=>0,
:heap_marked_slots=>11631,
:heap_swept_slots=>10126,
:heap_eden_pages=>74,
:heap_tomb_pages=>0,
:total_allocated_pages=>74,
:total_freed_pages=>0,
:total_allocated_objects=>90529,
:total_freed_objects=>60909,
:malloc_increase_bytes=>212728,
:malloc_increase_bytes_limit=>16777216,
:minor_gc_count=>5,
:major_gc_count=>2,
:remembered_wb_unprotected_objects=>180,
:remembered_wb_unprotected_objects_limit=>278,
:old_objects=>10922,
:old_objects_limit=>11004,
:oldmalloc_increase_bytes=>1503376,
:oldmalloc_increase_bytes_limit=>16777216}

Let’s again ignore malloc parameters, and look only at those relevant to heap
space:

heap_allocated_pages, heap_allocatable_pages, heap_sorted_pages
These are the heap_used, heap_increment, and heap_length variables that we
know from Ruby 2.1.

heap_live_slots, heap_free_slots, heap_final_slots
Same as heap_live_num, heap_free_num, heap_final_num in Ruby 2.1.

heap_available_slots
The number of all available slots: heap_live_slots + heap_free_slots + heap_final_slots.

Chapter 10. Tune Up the Garbage Collector • 158

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

heap_marked_slots, heap_swept_slots
The number of slots marked and swept during the last GC.

heap_eden_pages, heap_tomb_pages
Same as heap_eden_page_length and heap_tomb_page_length.

total_allocated_pages, total_freed_pages, total_allocated_objects, total_freed_
objects

In addition to the total cumulative numbers of allocated and freed objects,
Ruby 2.2 lets us know the total number of allocated and freed pages
during the interpreter’s lifetime.

Ruby 2.2 takes an even more conservative approach to growing the heap
space than 2.1. Before, the growth was relative to the number of allocated
pages (heap_used or heap_allocated_pages. Starting from 2.2, the growth is relative
to the number of eden pages (heap_eden_pages). That number may be smaller,
because allocated pages may go into the tomb if unused.

You can see this for yourself in irb, similarly to how we did it earlier for Ruby
1.9 and 2.1. Don’t worry if the page and slot numbers are not exactly what
you think they should be. Ruby can reuse object slots and free or resurrect
heaps. That complicates calculations. Just make sure you understand the
big picture.

Now you know how memory is allocated and used for Ruby objects. By looking
at GC#stat parameters you can find out how much memory is needed, how
much can be allocated without doing GC, and what will happen to the object
space after GC. This is necessary to know when you are stuck with high
memory usage, and want to understand what happens.

But that’s not the whole story about memory usage. Remember, a Ruby object
is 40 bytes at maximum. What if the data you’re storing into memory is
larger than 40 bytes—for example, a large string that you’ve read from a file?

In Ruby that extra data doesn’t belong in the heap space, and is allocated
and managed separately. Let’s see where and how.

Object Memory
A Ruby object can store only a limited amount of data, up to 40 bytes in a
64-bit system. Slightly less than half of that is required for upkeep. All data
that does not fit into the object itself is dynamically allocated outside of the
Ruby heap. When the object is swept by GC, the memory is freed.

For example, a Ruby string stores only 23 bytes in the RSTRING object on a 64-
bit system. When the string length becomes larger than 23 bytes, Ruby allo-

report erratum • discuss

Understand How Ruby Uses Memory • 159

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

cates additional memory for it. We can see how much by calling
ObjectSpace#memsize_of, for example, like this:

$ rbenv shell 2.2.0
$ irb

irb(main):001:0> require 'objspace'
=> true
irb(main):002:0> str = 'x'
=> "x"
irb(main):003:0> ObjectSpace.memsize_of(str)
=> 40
irb(main):004:0> str = 'x'*23
=> "xxxxxxxxxxxxxxxxxxxxxxx"
irb(main):005:0> ObjectSpace.memsize_of(str)
=> 40
irb(main):006:0> str = 'x'*24
=> "xxxxxxxxxxxxxxxxxxxxxxxx"
irb(main):007:0> ObjectSpace.memsize_of(str)
=> 65

In this example we first create a string with one character. It fits into the
Ruby object, so ObjectSpace#memsize_of reports that 40 bytes is used. If we run
the same example in Ruby 2.1, we’ll see 0 in the output. That’s because older
interpreters do not include the size of the Ruby object itself into the number
returned by ObjectSpace#memsize_of.

When the string is more than 23 bytes, it’s stored outside the object. The total
size of the large string is 65 bytes: 40 for the Ruby object on the heap, 24
bytes dynamically allocated outside of the heap to store the whole string, and
1 byte for upkeep.

Files, long arrays, large hashes, and others get extra memory in the same
way.

Unlike the heap space, Ruby allocates this additional object memory only on
demand, and frees it up when the object is finalized.

So, if our program creates a large string and then discards its contents, the
memory goes back to the operating system right away. Let’s see for ourselves:

chp10/additional_object_memory.rb
puts "memory usage at start %d MB" %

(`ps -o rss= -p #{Process.pid}`.to_i/1024)

str = "x" * 1024 * 1024 * 10 # 10 MB

puts "memory usage after large string creation %d MB" %
(`ps -o rss= -p #{Process.pid}`.to_i/1024)

Chapter 10. Tune Up the Garbage Collector • 160

report erratum • discuss

http://media.pragprog.com/titles/adrpo/code/chp10/additional_object_memory.rb
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

str = nil
GC.start(full_mark: true, immediate_sweep: true)

puts "memory usage after string is finalized %d MB" %
(`ps -o rss= -p #{Process.pid}`.to_i/1024)

$ ruby additional_object_memory.rb
memory usage at start 8 MB
memory usage after large string creation 19 MB
memory usage after string is finalized 8 MB

Because this memory is allocated outside the heap space, it has almost no
effect on garbage collection time. So it may be actually OK to allocate large
amounts of data in memory if it ends up in the extra memory of one object.

For example, after reading the large file we’ll get one big string object in
memory. When we’re done with the file contents, the memory it used goes
back to the operating system. But if we parse the file, we might create a large
number of Ruby objects, increasing the heap size and total memory usage
more or less permanently.

That said, the very fact that we allocate extra memory might trigger GC. So
yes, by allocating one big object we won’t be adding work for GC, but we might
be increasing the number of collections required. There’s no free lunch in
Ruby.

Now that you how Ruby allocates memory, you can understand what exactly
GC is doing for us. Ruby can run without any GC, but it’d take too much
memory. So the only task GC has to do is keep the memory usage of the Ruby
process within reasonable limits. Let’s see how that works.

Know What Triggers GC
As you now know, GC must control both the object allocation in the heap
space and the object memory allocation outside the Ruby heap. Consequently,
two events will trigger GC:

• There are not enough free slots in the heap space.

• The current memory allocation (malloc) limit has been exceeded.

So any object creation or memory allocation can invoke GC. Let’s see when
that happens, and then talk about how we can reduce the number of GC
runs.

report erratum • discuss

Know What Triggers GC • 161

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

GC Triggered by Heap Usage
When Ruby runs out of slots, it executes GC to free up some memory. If GC
can’t free enough slots, Ruby increases the heap space as described earlier.

Ruby defines enough slots as either 20% of all allocated slots, or
GC_HEAP_FREE_SLOTS (FREE_MIN in Ruby 2.0 and earlier), whichever is greater.

GC_HEAP_FREE_SLOTS/FREE_MIN is by default 4,096 slots. In practice, this value is
too low, and gets used only once when Ruby increases the heap space for the
first time. Because the initial number of slots as defined by GC_HEAP_INIT_SLOTS
is 10,000, the enough slots rule is actually free 40% of slots the first time and
20% afterward.

Let’s see how that works in irb. For simplicity, we’ll use Ruby 1.9. Later ver-
sions behave the same, but they won’t let us observe the effect easily because
of the more complicated memory management.

$ rbenv shell 1.9.3-p551
$ irb
irb(main):001:0> GC.start
=> nil
irb(main):002:0> GC.stat
=> {:count=>7, :heap_used=>77, :heap_length=>77, :heap_increment=>0,

:heap_live_num=>11939, :heap_free_num=>19365, :heap_final_num=>0}

During startup irb called GC six times and allocated 77 heaps. We called it
one more time to ensure that heap_free_num will correctly estimate the number
of free slots on the heap. This number is about 19,000.

If we allocate fewer objects than free slots we won’t see GC:

irb(main):003:0> x = Array.new(15000) { Object.new }; nil
=> nil
irb(main):004:0> GC.stat.select { |k,v| [:count, :heap_used].include?(k) }
=> {:count=>7, :heap_used=>77}

As we’ve predicted, there was enough free space on the heap. Let’s now unset
the variable x to make all 15,000 objects in the array garbage, and allocate
15,000 objects again:

irb(main):005:0> x = nil
=> nil
irb(main):006:0> GC.stat.select { |k,v| [:count, :heap_used].include?(k) }
=> {:count=>7, :heap_used=>77}
irb(main):007:0> y = Array.new(15000) { Object.new }; nil
=> nil
irb(main):008:0> GC.stat.select { |k,v| [:count, :heap_used].include?(k) }
=> {:count=>8, :heap_used=>77}

Chapter 10. Tune Up the Garbage Collector • 162

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

This time when allocating our second array y, we didn’t have enough free slots
on the heap. So GC ran. However, it managed to reclaim enough free space.
It freed all 15,000 objects from the array x. The heap space size at that time
was 77 pages, approximately 31,000 slots on a 64-bit computer. So GC
reclaimed about 50% of free space, more than the 20% threshold. This is why
the heap space didn’t grow and heap_used stayed the same.

Now if we allocate another 15,000 objects, GC will not be able to free enough
space and the heap will grow:

irb(main):009:0> z = Array.new(15000) { Object.new }; nil
=> nil
irb(main):010:0> GC.stat.select { |k,v| [:count, :heap_used].include?(k) }
=> {:count=>9, :heap_used=>138}

This is exactly what happens. We see one more GC run, and the heap becomes
1.8 times bigger.

GC Triggered by Malloc Limit
Ruby objects can allocate extra memory outside of the Ruby heap space, and
Ruby GC has little control over that memory. The only thing it can do to
ensure Ruby objects don’t use too much memory is to free as many unused
objects as possible and hope that finalizing them reduces extra memory
consumption.

That’s why Ruby triggers GC by a memory limit. When we allocate more than
the current limit, GC is forced regardless of how many free heap slots we
have.

In Ruby 2.0 and earlier that limit is defined by a GC_MALLOC_LIMIT constant. Its
default value is 8 million bytes, about 7.63 MB.

This means that every time we allocate additional 7.63 MB, GC will run. And
this limit is too small.

What if our app is receiving 100 MB of data from the network in 10 MB
batches? Get ready for at least 10 extra GC runs. Let’s take a look:

$ rbenv shell 1.9.3-p551
$ irb

irb(main):001:0> data = "x"*1024*1024*10; nil
=> nil
irb(main):002:0> # store in array to keep data from garbage collection
irb(main):003:0* buffers = []
=> []
irb(main):004:0> GC.start

report erratum • discuss

Know What Triggers GC • 163

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

=> nil
irb(main):005:0> GC.stat[:count]
=> 9
irb(main):006:0> 10.times do |i|
irb(main):007:1* buffers[i] = data.dup
irb(main):008:1> # actually force Ruby to copy data in the memory
irb(main):009:1* buffers[i][0] = 'a'
irb(main):010:1> end; nil
=> nil
irb(main):011:0> GC.stat[:count]
=> 21

For me Ruby ran GC 12 times, because every time I allocated more than the
7.63 MB limit, and some allocations actually exceeded the limit twice. You
might see a slightly different number. But in any case it won’t be far off from
10.

These days 7.63 MB is nothing. Your program will easily exceed this limit by
doing trivial operations with data. So if you’re using Ruby 2.0 or earlier, the
malloc limit is the first parameter you’d want to tweak.

Admittedly, Ruby tries to adjust this limit at runtime. It takes the excess over
the limit, adjusts it by a percentage of free space in the Ruby heap, and adds
it to the current malloc limit.

For example, if our app uses 40% of the Ruby heap and allocates 10 MB, 2.37
MB over the limit, the malloc limit will be increased by 2.37 * 0.5 = 0.948
MB. And if it plans to continue allocating the 10 MB like our example did,
the subsequent limit increases will be smaller and smaller. In any case, the
limit will never exceed 10 MB with this algorithm.

So this malloc limit adaptation is not good enough for our example. In practice,
I’ve rarely found it adequate, and tweaking it is a must.

Ruby 2.1 and later work slightly better. Just repeat the same irb session with
the latest version. You’ll see something like this:

$ rbenv shell 2.2.0
$ irb

irb(main):001:0> data = "x"*1024*1024*10; nil
=> nil
irb(main):002:0> # store in array to keep data from garbage collection
irb(main):003:0* buffers = []
=> []
irb(main):004:0> GC.start
=> nil
irb(main):005:0> GC.stat[:count]
=> 8

Chapter 10. Tune Up the Garbage Collector • 164

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

irb(main):006:0> 10.times do |i|
irb(main):007:1* buffers[i] = data.dup
irb(main):008:1> # actually force Ruby to copy data in the memory
irb(main):009:1* buffers[i][0] = 'a'
irb(main):010:1> end; nil
=> nil
irb(main):011:0> GC.stat[:count]
=> 11

Having only 3 extra garbage collections is better than 11, isn’t it? So let’s see
what the newest Ruby does better.

Ruby 2.1 introduced RGenGC—restricted generational GC. Ruby 2.2 adds
RIncGC—incremental GC built on top of generational GC.

Here we’ll talk about RGenGC and RIncGC only enough to understand their
impact on performance. To learn more, read Aman Gupta’s blog post2 and
watch Koichi Sasada’s presentations.3

So how do RGenGC and RIncGC improve performance?

Generational GC divides all Ruby objects into two groups: a new generation
and the old generation. An object becomes old when it survives at least one
GC. Malloc limits for these generations are different: GC_MALLOC_LIMIT_MIN for
the new generation and GC_OLDMALLOC_LIMIT_MIN for the old generation. Initial
default values are the same, though: 16 MB.

The minimum 16 MB malloc limit is already a nice improvement over older
Ruby. But even better is that it is allowed to grow up until GC_MALLOC_LIMIT_MAX
(32 MB by default) for the new generation, and GC_OLDMALLOC_LIMIT_MAX (128
MB by default) for the old generation.

It is a good thing that the old generation’s limit is larger because long-lived
objects tend to be the ones to use more memory.

The malloc limit’s growth factor no longer depends on the Ruby heap usage.
Instead, it’s fixed at GC_MALLOC_LIMIT_GROWTH_FACTOR (1.4 by default) for the new
generation, and at GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (1.2 by default) for the
old generation. This way, Ruby is able to better adjust the GC settings when
your program keeps allocating memory.

The growth factor for the new generation is larger. That allows it to quickly
allocate memory without hitting GC. The growth factor for the old generation

2. http://tmm1.net/ruby21-rgengc/
3. https://vimeo.com/67807718

https://www.youtube.com/watch?v=4UO60ocw52w

report erratum • discuss

Know What Triggers GC • 165

http://tmm1.net/ruby21-rgengc/
https://vimeo.com/67807718
https://www.youtube.com/watch?v=4UO60ocw52w
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

is smaller, but its malloc limit maximum is much larger. That allows the old
generation to consume larger amounts of memory without the need for GC.

In practice, the new generations’ malloc limit grows even faster because it
applies not to the previous limit, but to the amount of memory your application
has allocated since the last GC. That number is always bigger. So, for example,
if our current limit is 16 MB and we’re trying to allocate another 20 MB, then
our next limit is 20 * 1.4 = 28 MB.

If our program doesn’t allocate memory over the current limit anymore, Ruby
gradually reduces it, decreasing by 0.98 times every time GC runs until the
limit reaches GC_MALLOC_LIMIT_MIN or GC_OLDMALLOC_LIMIT_MIN.

Now we should be able to explain why our example triggers GC only three
times.

We allocate 10 MB at a time, so only the second allocation will definitely
exceed the 16 MB new generation malloc limit and trigger GC. At that time
we’ll be allocating 20 MB of memory since the last GC. So our next malloc
limit will be 20 * 1.4 = 28 MB.

The fifth allocation will exceed the new limit, maxing it out at 32 MB because
of the GC_MALLOC_LIMIT_MAX cap. Finally, the ninth allocation will be the last to
exceed the limit and trigger GC. In total, this gives us the three GC runs that
we saw when we ran our example.

GC#stat in Ruby 2.1 and later give us enough information to see for ourselves
how well this theory corresponds to the practice.

Here are the malloc limit–related parameters:

malloc_limit (Ruby 2.1) or malloc_increase_bytes_limit (Ruby 2.2)
Current malloc limit for the new generation.

malloc_increase (Ruby 2.1) or malloc_increase_bytes (Ruby 2.2)
The amount of memory allocated by the new generation since the last GC.

oldmalloc_limit (Ruby 2.1) or oldmalloc_increase_bytes_limit (Ruby 2.2)
Current malloc limit for the old generation.

oldmalloc_increase (Ruby 2.1) or oldmalloc_increase_bytes (Ruby 2.2)
The amount of memory allocated by the new generation since the last GC.

So let’s see at GC#stat the output in between allocations.

$ rbenv shell 2.2.0
$ irb

Chapter 10. Tune Up the Garbage Collector • 166

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

As before, we’ll allocate the buffer and force GC to reset all malloc parameters
for predictability:

irb(main):001:0> data = "x"*1024*1024*10; nil
=> nil
irb(main):002:0> buffers = []
=> []
irb(main):003:0> GC.start
=> nil
irb(main):004:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [8, 22816, 16777216]

Our theory predicted that we’ll see the GC after the second allocation:

irb(main):005:0> buffers[0] = data.dup; buffers[0][0] = 'a'; nil
=> nil
irb(main):006:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [8, 10543000, 16777216]
irb(main):007:0> buffers[1] = data.dup; buffers[1][0] = 'a'; nil
=> nil
irb(main):008:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [9, 17032, 29464791]

Yes, that’s exactly what we see. And the new malloc limit is 28 MB as
expected. Let’s continue with allocations:

irb(main):009:0> buffers[2] = data.dup; buffers[2][0] = 'a'; nil
=> nil
irb(main):010:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [9, 10537568, 29464791]
irb(main):011:0> buffers[3] = data.dup; buffers[3][0] = 'a'; nil
=> nil
irb(main):012:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [9, 21057392, 29464791]
irb(main):013:0> buffers[4] = data.dup; buffers[4][0] = 'a'; nil
=> nil
irb(main):014:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [10, 7616, 33554432]

Everything goes as expected so far: another GC after the fifth allocation, and
the malloc limit is at its maximum.

irb(main):015:0> buffers[5] = data.dup; buffers[5][0] = 'a'; nil
=> nil
irb(main):016:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

report erratum • discuss

Know What Triggers GC • 167

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

GC.stat[:malloc_increase_bytes_limit]]
=> [10, 10488960, 33554432]
irb(main):017:0> buffers[6] = data.dup; buffers[6][0] = 'a'; nil
=> nil
irb(main):018:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [10, 21008104, 33554432]
irb(main):019:0> buffers[7] = data.dup; buffers[7][0] = 'a'; nil
=> nil
irb(main):020:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [10, 31528976, 33554432]
irb(main):021:0> buffers[8] = data.dup; buffers[8][0] = 'a'; nil
=> nil
irb(main):022:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [11, 16984, 33554432]
irb(main):023:0> buffers[9] = data.dup; buffers[9][0] = 'a'; nil
=> nil
irb(main):024:0> [GC.stat[:count], GC.stat[:malloc_increase_bytes],

GC.stat[:malloc_increase_bytes_limit]]
=> [11, 10536160, 33554432]

As you see, our theory matches perfectly with the practice. The ninth allocation
did the third GC run.

Now you know everything about what triggers GC. Armed with this knowledge,
you can not only predict how often your own program will hit GC, but optimize
it to reduce the number of collections.

Unsurprisingly, the best thing you can do to minimize GC is to upgrade to
the most recent Ruby. It needs less GC, and that by itself is a significant
optimization. But I’ll tell you more. Each individual GC run itself is much
faster in Ruby 2.1 and later. Let’s see why.

Understand Why GC in Ruby 2.1 and 2.2 Is So Much Faster
In this book we repeatedly observed that new Ruby versions consistently
perform better because the GC is faster. But why is it faster?

The first reason it’s faster is that less GC is needed. We have just seen that
with our memory allocation example. The second reason is that each individ-
ual GC run can take less time.

Ruby implements GC using a simple two-phase mark and sweep (M&S)
algorithm. In the mark phase it finds all living objects on the Ruby heap and
marks them as live. In the sweep phase it collects unmarked objects.

Chapter 10. Tune Up the Garbage Collector • 168

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Naturally, GC can’t allow you to allocate new objects while it marks. So your
program pauses for the duration of GC.

Ruby 2.1 with RGenGC reduces the number of pauses, and Ruby with RIncGC
optimizes the pause time.

RGenGC takes advantage of the fact that most objects die young. So most of
the time GC needs to collect only the objects from the new generation. This
is called Minor GC. Major GC happens when objects from both new and old
generations are collected. Minor GC is very fast because it has fewer objects
to mark and sweep, and most of the GC runs are minor—hence the optimiza-
tion.

RIncGC performs the mark phase incrementally. It does not decrease the
pause time, but rather distributes it. This way your program has a chance
to finish its job in between incremental mark phases. Note that the overall
GC time is not changed. So long-running code will see no difference between
RGenGC and RIncGC. Refer to the Koichi Sasada’s blog post4 for a good
visualization of this process.

Although we barely sketched Ruby GC internals, you should already under-
stand why Ruby 2.1 and 2.2 perform so much better. If you are interested in
GC architecture, there’s no better description than Sasada’s blog post or the
recordings of his talks that I mentioned earlier.

While Ruby became faster out of the box in versions 2.1 and 2.2, it might still
not perform optimally in your case. Depending on your object and memory
allocation patterns, it might make sense to tweak Ruby GC for performance.
Let’s see how.

Tune Up GC Settings
We can change some of Ruby GC parameters with environment variables.
Let’s see what’s available.

Ruby 2.1, 2.2, and Later
RUBY_GC_HEAP_INIT_SLOTS

Initial number of object slots on the Ruby heap. Default value is 10000.

You might want to change this number if you know that your application
will allocate lots of objects right from the start.

4. https://engineering.heroku.com/blogs/2015-02-04-incremental-gc

report erratum • discuss

Tune Up GC Settings • 169

https://engineering.heroku.com/blogs/2015-02-04-incremental-gc
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

But on the other hand, we saw that Ruby is quite good at growing the
heap space. It usually grows faster than we need. So there’s little need to
change this parameter in practice.

RUBY_GC_HEAP_FREE_SLOTS
Minimum number of free slots that must be free after GC. If this condition
is not met, Ruby might grow the heap space. Default value is 4096.

As we discussed in GC Triggered by Heap Usage, on page 162, the heap
growth rule is more complicated. This value is used only once at runtime
during the first heap growth after the initial one. So there’s absolutely no
need to change it.

RUBY_GC_HEAP_GROWTH_FACTOR
Heap growth factor. Default value is 1.8.

Ruby is already aggressive enough at heap growth, so you should not
increase this number. Decreasing it also makes little sense. Heaps are
allocated on demand in modern interpreters, so decreasing this number
will not reduce the total memory consumption.

RUBY_GC_HEAP_GROWTH_MAX_SLOTS
Maximum number of slots Ruby can add to the heap space at a time. The
default value is 0, meaning that there’s no maximum.

If your application needs to allocate millions of objects during its lifetime,
you might want to cap the heap growth increments by setting this value.

However, it will not help to reduce the GC time for such an application.
Ruby is not the right tool to process lots of objects, and you should con-
sider using other tools rather than trying to tweak Ruby.

RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR
This forces Ruby to do major GC when the number of old objects is more
than RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR * <number of old objects after the last full
GC>. The default value is 2.0.

In theory, you might want to increase this number if you expect that too
many of your objects will become unused after getting into the old gener-
ation (surviving one GC in Ruby 2.1 and three in Ruby 2.2).

In practice, this is very rarely needed, and the default setting is good
enough for most people.

Chapter 10. Tune Up the Garbage Collector • 170

report erratum • discuss

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

RUBY_GC_MALLOC_LIMIT, RUBY_GC_MALLOC_LIMIT_MAX, RUBY_GC_MALLOC
_LIMIT_GROWTH_FACTOR

Minimum and maximum malloc limits for the new generation, and the
limit’s growth factor. The default values are 16 MB minimum, 32 MB
maximum, 1.4 growth factor.

These are the parameters you might want to change. If your application
uses more memory than average, then increase the minimum and maxi-
mum values. If your application allocates memory in chunks, consider
increasing the growth factor. There’s little sense in decreasing these values.

You might find advice on the Internet to set the minimum limit to 64 MB,
or even 128 MB (that Twitter used at some point). But be careful. Larger
limits lead to higher peak memory consumption.

Increase the limits incrementally, adding, for example, 8 MB at a time,
and measuring the outcome. Be even more careful changing the growth
factor.

I personally find that these days 50% of applications run just fine with
the default settings, and another 50% benefit from a two times increase
of minimum and maximum limits.

RUBY_GC_OLDMALLOC_LIMIT, RUBY_GC_OLDMALLOC_LIMIT_MAX, RUBY_
GC_OLDMALLOC_LIMIT_GROWTH_FACTOR

Minimum and maximum malloc limits for the old generation, and the
limit’s growth factor. The default values are 16 MB minimum, 128 MB
maximum, 1.2 growth factor.

These are also candidates for tweaking. It’s a good idea to change them
together with the limits for new generation, and in the same manner.

Ruby 2.0, 1.9, and Earlier
Older Ruby versions require recompilation to change all their settings except
these three:

RUBY_HEAP_MIN_SLOTS
Same as RUBY_GC_HEAP_INIT_SLOTS in newer Ruby.

RUBY_FREE_MIN
Same as RUBY_GC_HEAP_FREE_SLOTS in newer Ruby.

RUBY_GC_MALLOC_LIMIT
One malloc limit for non-generational GC. The default value is 8,000,000
bytes.

report erratum • discuss

Tune Up GC Settings • 171

http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

You absolutely must change this value. 8 MB limit is too small, and will
lead to more GC runs than necessary. Increase it to at least 16 MB. Then,
continue adding 8 MB and testing the outcomes until you find your sweet
spot.

There’s no way to change GC parameters without recompilation in Ruby 1.8.
If you still use that version, consider switching to the more configurable Ruby
Enterprise Edition.5 Just like Ruby 1.9 and 2.0, Ruby 1.8 needs a larger
malloc limit for better performance.

Let’s quickly review. The only parameter that makes a difference in perfor-
mance is the malloc limit. You must change it for older Ruby versions, and
consider a slight increase for newer versions. Other parameters have either
good default values for most cases, or make no sense to change.

Takeaways
Ruby GC is not a black box. Once you understand how it works, you can
either change your code to put less strain on it, or you can tune GC up for
better performance. Here’s what you need to keep in mind:

• Ruby allocates objects on a dedicated heap space, which it manages itself.

• Each object has the fixed amount of storage (40 bytes on 64-bit comput-
ers). If the object needs more memory, it allocates that on the operating
system heap.

• Ruby runs GC when it decides that it allocated too many objects or its
objects allocated too much memory. Correspondingly, there are two criteria
for this decision. First, Ruby heap space doesn’t have enough free slots.
Second, the current memory allocation (malloc) limit has been exceeded.

• You can tweak most GC parameters for optimal performance. In practice,
however, it makes sense to change only memory allocation limits. If you
use Ruby 2.0 or earlier, you must increase RUBY_GC_MALLOC_LIMIT at least
twice. If you use Ruby 2.1 and later, you may not need to change anything.
In any case, make sure you measure the performance after the change.

5. http://www.rubyenterpriseedition.com

Chapter 10. Tune Up the Garbage Collector • 172

report erratum • discuss

http://www.rubyenterpriseedition.com
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Onward!
Performance optimization is a never-ending battle. New code will slow down
the old code. And even the old code you can make faster and faster if you
spend enough time on it.

I’ve found that the same applies to this book. I could always add more tech-
niques and best practices. There’s always one more optimization tool that I
didn’t cover. That’s why I created a wiki page6 with additional resources other
readers and I found useful for optimization. You’re welcome to use and con-
tribute to it.

Now it’s time for you to optimize your code.

First, find and fix all performance blunders. We talked about many of them
in the first three chapters, so now you’ll spot them just by looking at the code.

Then, see what your logging and monitoring tools report as slow. Isolate the
underperforming parts, and profile them. Understand what makes them slow,
optimize, measure. Rinse and repeat as necessary. Write a test that will ensure
your optimization will not vanish as you change the code.

Finally, step back and rethink how your code runs. You’ll be surprised how
fine-tuning your application’s environment makes things faster.

And remember, always measure the effect of any change you make. Not only
will you know whether the optimization worked, but you’ll have something
to be proud of.

Wouldn’t it be so cool to report 74 times speedup in the commit log? Go ahead
and optimize. I’m sure you’ll do that, and even better!

6. https://github.com/ruby-performance-book/resources/wiki

report erratum • discuss

Onward! • 173

https://github.com/ruby-performance-book/resources/wiki
http://pragprog.com/titles/adrpo/errata/add
http://forums.pragprog.com/forums/adrpo

Index

SYMBOLS
! character, adding for opti-

mization, 17

<< (shift operator), 16

DIGITS
1-second response time, 49

1024 bytes, 7

1X dyno, 146

2X dyno, 146

32-bit architecture, object
sizes in, 149

64-bit architecture, object
size in, 149

80-20 rule, of Ruby optimiza-
tion, 10, 85

A
abstraction, going one layer

of, 84

ActionSupport::LogSubscriber, 49

ActionView, making faster,
46–50

ActiveRecord
convenience of coming at

a steep price, 42
functions not instantiat-

ing models, 46
making faster, 39–46
memory efficiency of, 40
models expensive to in-

stantiate, 44
optimizing memory taken

by, 50
using 3.5 times more

memory than the size
of the data, 42

ActiveRecord::Base.connection.exe-
cute function, 46

ActiveRecord::Base.connection.se-
lect_values function, 46

ActiveSupport::Notifications, 129

Acunote
built with Ruby on Rails,

49
deployment infrastruc-

ture, 136
PostgreSQL config for,

143
query test, 129
working on, 115

additional_object_memory.rb, 160

after.rb, 110

algorithmic complexity, of
code, 2

algorithmic efficiency, of code,
5

all? iterator, 29

allocations, profiling, 97

ALLOCATIONS mode, of ruby-
prof, 94

ALLOCATIONS_optimized_profile.txt,
98

ALLOCATIONS_profile.txt, 97

annotated.rb example, 8

anonymous block to Proc con-
version, case of, 23

anonymous blocks, not stor-
ing execution context, 23

any? iterator, 29

API, ruby-prof coming with,
54

app.rb, 59, 74–75

app/app/controllers/application_con-
troller.rb, 130

app/app/models/thing.rb, 40

app/config/application.rb, 41

app/db/mi-
grate/20140722140429_large_ta-
bles.rb, 39

app/db/migrate/20140724142101_min-
ions.rb, 42

app/lib/measure.rb, 40

app/test/integration/query_test.rb,
129, 131

app_call_stack_profile.html, 60

app_call_stack_profile.txt, 65

app_flat_profile.txt, 60

app_graph_profile.txt, 60, 62

app_optimized1.rb, 76, 78

app_optimized3.rb, 80

app_optimized4.rb, 82, 86

app_optimized_stackprof.rb, 90

applications
internals affecting mea-

surements, 103
slowing down, 106

Array class
iterators of, 29
methods of, 25

Array#map function, 68

Array#map! date lines, in the
graph report, 64

array_agg feature, of Post-
greSQL, 44

arrays, 17, 46

assert_performance function,
119–121, 124

assert_performance.rb, 119

assert_value gem, 130

assertion, in performance
testing, 115

attributes, loading only need-
ed, 42

average performance, calculat-
ing and reporting, 117

B
background jobs, supporting,

140

Balanced power plan, 105

“bang!” functions
for in-place modification,

16
not guaranteeing in-place

modifications, 17
not guaranteeing memory

savings, 97

:batch_size option, for ^find_
each^ functions, 44

before.rb, 109

belongs_to relationship, query-
ing into, 42

benchmark function, writing,
116–119

benchmark results, saving in
a predefined hard-coded lo-
cation, 120

Benchmark#realtime, using the
operating system clock, 111

Benchmark.realtime, 13, 81

benchmarking
before optimization, 75
measuring code’s perfor-

mance, 73
Rails, 125–128
without the profiler, 83

benchmarking function, sim-
plifications in, 118

big picture, never forgetting,
84

BigDecimal, 32

block, creating, 23

&block argument, 23

BlueCloth gem, 38

bundle, updating, 130

bundle exec ruby app.rb, 60, 78

bundler, installing required
gems, 35

C
C, rewriting in, 36–38

C#, garbage collection in, 6

C++, garbage collection in, 6

cache key, getting more gran-
ular, 2

caching
hitting a limit with, 2
resorting to, 1
turning on for perfor-

mance tests, 125
using Rails page or frag-

ment, 58

call graph, looking in the bot-
tom-right view, 76

Call Graph view, in
KCachegrind, 71

call stack profile, 65

call stack report, 65

call tree, showing, 65

callbacks, 20–23

callbacks2.rb, 22

callee maps, 69

callees, for Global#nomethod, 63

Caller Map, in KCachegrind
window, 70

caller time, 66

callgrind, recording execution
times, 86

callgrind format, 66–67, 70

Calls column, for Array#map!, 64

calls column, in the flat report,
61

CallTreePrinter, 66

child column, in the flat report,
61

child functions, time spent in,
61

child process, executing
memory-heavy code in, 139

class_check1.rb, 31

class_check2.rb, 31

code
as a white box versus a

black box, 134
changing to use anony-

mous blocks, 23
a higher abstraction level,

82
making faster, 1
profiling, 53
reviewing down the stack,

24

running from the Ruby
console, 81

under a specific Ruby
version, 4

understanding which
parts are slow, 62

“cold” state, 105–106

collect iterator, 29

column parsing, 75

columns, restricting the
number selected, 44

combined_in_place1.rb, 17

combined_in_place2.rb, 17

command-line tool, with ru-
by-prof, 54, 56

concatenation, allocating ex-
tra memory to store, 16

confidence interval, 108
of optimization, 109,

112–113
tweaking, changing the

test outcome, 123

config unicorn.rb, 137

config.log_level = :info, 48

config.log_level = :warn, 49

config.ru, for Unicorn, 141

constructor calls, for arrays
of strings, 89

count, in Ruby 2.1, 155

CPU
frequency scaling, 104
optimization, 54
profiling, 54
usage, 53

cpupower tool, 104

craft, profiling as a, 53

CSV
files, reading, 19
generating random, 60
parser, memory required

for, 18

current measurement, report-
ing, 119

current memory allocation
(malloc) limit, exceeded,
161, 172

current memory usage, 95,
100, 102

cycle iterator, 29

cycling, by restarting, 136

Index • 176

D
daily cycling, on Heroku, 136

data, storing into memory,
159

data files, reading and pars-
ing line by line, 19

data rejection, techniques of,
113

database performance tests,
128

database queries, testing,
129–134

database server, data manip-
ulation by, 50

database table, 39

database-related performance
problems, kinds of, 128

databases
configuration of a deploy-

ment stack, 145
offloading work to, 34–36
performance for Rails ap-

plications, 128, 134
storing, 40
tuning for optimal perfor-

mance, 143–145, 147

dataset processing, Ruby not
good at, 11

Date, in Ruby 1.8, 37

date format, defined, 82

date parsing
as traditionally slow, 30
optimized, 78

date parts, extracting by posi-
tion, 82

Date#parse calls, 30, 55

Date::Performance gem, 36

date_parsing1.rb, 30

date_parsing2.rb, 30

date_parsing3.rb, 31

date_with_date_performance.rb, 37

date_without_date_performance.rb,
37

:debug log level, 125

debugger, 150

delayed_job gem, 140

delete_if iterator, 29

deployment stack, 145, 147

detect iterator, 29

development log, 129

development mode, 58

disk I/O, 105, 145

dispersion, in measurements,
113

dot tool, from the GraphViz
package, 71

double counting, 70–72

downcase! function, 16

dynamic CPU frequency scal-
ing, disabling, 104

dynos (virtual machines), on
Heroku, 145

E
each, implementation of, 28

each iterator, 29, 45

each! iterator, simplest, 27

Each! pattern, 27, 44–46

each_bang.rb, 25

each_with_index function, 28–29

each_with_index_i function, 29

eden, occupied heap pages in,
156

eden pages (heap_eden_pages),
159

elsif statement, 76

empty pages, reusing, 156

enough slots rule, 162

Enumerable module, 29

Enumerator, not returning, 27

environment, fine-tuning, 173

error reporting, in perfor-
mance testing, 115

evaluation, in performance
testing, 115

events, triggering GC, 161

examples, running before and
after ten times, 110

execution environment, set-
ting up, 3

execution path, finding slow-
est, 65

execution time, 13, 71

expected level of performance,
116

external factors
causing measurement is-

sues, 103
minimizing, 104, 113

F
fake column parsing function,

adding for testing, 80

file_reading1.rb, 18

file_reading3.rb, 18

file_reading4.rb, 19

files
parsing, 18
reading line by line, 18–

20
reading line by line bene-

fits, 20
splitting into lines and

columns, 18

filesystem cache, cleaning,
106

fill iterator, 29

find iterator, 29

find_all iterator, 29

find_each function, 44

find_in_batches function, 44

fixed-size pages, in Ruby 1.9
not likely to be freed, 156

flame graph, in Stackprof, 92

Flat Printer report, from ruby-
prof, 55

flat profile
examining, 78
in ruby-prof, 95
selecting Date#parse in, 76
sorted by Incl. time: in

KCachegrind, 67

flat report
finding slow functions,

60–62
sorted by self time, 61
starting with, 66

fork-and-run approach, 139

forked process, 127, 146

forked_process_io_pipe_example.rb,
139

forking, 107, 117, 139–141

free object slots, in the heap,
153

free space, estimating in the
heap in Ruby 2.1, 155

fstat() implementation, slow in
GFS, 146

function callers, listing of, 63

function calls, 62, 80

functions
avoiding iterator unsafe,

50
replacing slow, 29–33
returning values from, 80
selecting to optimize, 61
showing as nested

blocks, 69

Index • 177

taking the most time, 55
time spent in, 61
total number of calls to,

61

G
GB, 7

GC (garbage collection)
architecture, sources for,

169
as adaptive, 99
calls, measuring the

number of, 13
code triggering, 106
collecting objects from

previous batches, 45
disabled, 5
disabling, 58, 95, 106
doing out-of-band, 141
execution time in, 6
forcing, 106, 117, 142,

167
increasing with more allo-

cations, 97
kicking off during execu-

tion, 15
knowing what triggers,

162–168
making behave, 113
memory usage of Ruby

processes and, 161
minimizing by upgrading

to most recent Ruby,
168

no effect on memory pro-
files, 95

not a black box, 172
in optimized CSV parsing,

21
overhead, 9
parameters, 172
reclaiming memory, 90
running before each itera-

tion, 27
running faster in Ruby

2.1 and later, 168
slowness of, 6
statistics, 101–102
time, measuring, 14
time, optimizing, 141
triggered by heap usage,

162–163
tuning for optimal perfor-

mance, 149–173
tuning up settings, 169–

172
turning off, 54
turning off for CPU profil-

ing, 72, 102

turning off profile execu-
tion time, 103

turning off, increasing
peak memory consump-
tion, 8

turning on to compare
before and after num-
bers, 20

tweaking for perfor-
mance, 169–172

waiting for an iterator, 25

GC#disable, 57

GC#stat function, 13
calling in several places,

101
numbers returned by,

152
output, 166
in Ruby 2.1, 154, 166
understanding numbers

reported by, 101

GC.disable statement, 5

GC.enable_stats function, 94

GC::Profiler, 14, 101

GC_HEAP_FREE_SLOTS, 162

GC_HEAP_FREE_SLOTS/FREE_MIN,
162

GC_HEAP_GROWTH_FACTOR, 154

GC_HEAP_GROWTH_MAX_SLOTS, 154

GC_HEAP_INIT_SLOTS, 154, 162

GC_MALLOC_LIMIT constant, in
Ruby 2.0 and earlier, 163

GC_MALLOC_LIMIT_GROWTH_FACTOR,
165

GC_MALLOC_LIMIT_MAX, 165–166

GC_MALLOC_LIMIT_MIN, 165–166

GC_OLDMALLOC_LIMIT_GROWTH_FAC-
TOR, 165

GC_OLDMALLOC_LIMIT_MAX, 165

GC_OLDMALLOC_LIMIT_MIN, 165–
166

GC_RUNS mode, of ruby-prof,
94

GC_RUNS_profile.txt, 98

GC_TIME _profile.txt, 98

GC_TIME mode, of ruby-prof,
94

gctools gem, adding to Gemfile,
141

gctools library, 142

gdb debugger, on 64-bit Linux,
149

Gemfile, 34, 57, 60, 130

gems
hiding database opera-

tions in Rails, 129
implementing a specific

task in C, 38
ruby-prof, 54
written in C, 36

generate_series function, in
PostgreSQL, 39

get_memory_size function, 138

GFS network filesystem, 146

Global#nomethod function, 63,
71

Goldstein, Alexander, 27

granular cache, hitting, 2

graph profile, in plain text
format, 63

graph report, 62, 66

GraphViz package, dot tool from,
71

grep iterator, 29

group_rank/Gemfile, 34

group_rank/group_rank.rb, 34

growth factor, 165

gsub, Ruby suboptimal imple-
mentation of, 97

Gupta, Aman, 165

H
has_many relationship, query-

ing into, 42

Hash class, 25, 29

hashes, modifying in place,
17

heap allocation, in Ruby 2.1,
155

heap growth
capping increments, 170
forcing to become linear,

154
much slower in 1.9 than

in 1.8, 151
observing, 154
in Ruby 2.1, 154

heap memory, consumption,
152

heap pages
determining number of,

to free, 157
increment, calculating in

Ruby 2.1, 154
Ruby allocating, 150
size of in Ruby 1.9 and

later, 151

Index • 178

smaller reducing memory
fragmentation, 151

total number of, 152

heap space
adding more in Ruby 1.9,

151
growing, 150, 155
not enough free slots in,

161
reclaiming unused, 151
Ruby growing, 170
Ruby increasing, 162
Ruby interpreters before

2.1 not shrinking, 156
shrinking in Ruby 2.1,

157

heap usage, GC triggered by,
162–163

heap_allocatable_pages, in Ruby
2.2, 158

heap_allocated_pages, in Ruby
2.2, 158

heap_available_slots, in Ruby 2.2,
158

heap_eden_page_length, in Ruby
2.1, 155

heap_eden_pages, in Ruby 2.2,
159

heap_final_num, returned by
GC#stat, 153

heap_final_slot, in Ruby 2.1, 155

heap_final_slots, in Ruby 2.2,
158

heap_free_num, 153

heap_free_slot, in Ruby 2.1, 155

heap_free_slots, in Ruby 2.2, 158

heap_increment, 152, 155

heap_length, 152, 155

heap_live_num, returned by
GC#stat, 152

heap_live_slot, in Ruby 2.1, 155

heap_live_slots, in Ruby 2.2, 158

heap_marked_slots, in Ruby 2.2,
159

HEAP_MIN_SLOTS slots constant,
in Ruby 1.8, 150

HEAP_OBJ_LIMIT constant, 151

heap_page_allocate, representing
Ruby object creation, 89

heap_sorted_pages, in Ruby 2.2,
158

heap_swept_slot, in Ruby 2.1,
155

heap_swept_slots, in Ruby 2.2,
159

heap_tomb_page_length, in Ruby
2.1, 155

heap_tomb_pages, in Ruby 2.2,
159

heap_used, 152, 155

heavy tasks, running in an
isolated forked environ-
ment, 146

helpers, avoiding iterator un-
safe, 50

Heroku
automated scaling solu-

tion for, 1
cycling “dynos” daily, 136
memory metric chart, 86
offering two kinds of

dynos, 145
PostgreSQL configured

reasonably well, 143

High performance power plan,
105

Hirefire, 1

Homebrew, installing
QCachegrind, 66

Homebrew KDE tap, 86

hosting platform, cycling Ru-
by applications, 136

hosting providers, emphasiz-
ing number of CPU cores,
145

hot-start profile, 58

HTML page, for visualization
in Stackprof, 92

HTML report, 63

human-readable reports,
generated by ruby-prof, 58

hypothesis tests, applying,
109

I
I/O, 107, 145

I/O pipe, sending data via,
139

idle time, in web applications
and services, 141

img_tag, 50

in-place modification func-
tions, 17

Incl. time, 68

:info log level, running at, 125

inject iterator, 29, 110

inline:true, appending, 50

insert statement, in Post-
greSQL, 34

instances, cycling long-run-
ning, 135–139

integration test, for Rails, 124

Intel CPUs, with Turbo Boost
technology, 105

intermediate results, 9, 143

internals, making behave,
106

interval size, increasing, 123

irb
calling GC, 162
GC#stat in, 151
heap pages allocated after

startup, 153

iterator_each1.rb, 27

iterator_each2.rb, 27

iterators
as functions of objects,

25
creating additional ob-

jects, 27–29
creating temporary ob-

jects, 25
optimizing, 25–33
replacing explicit, 50
sensitive to algorithmic

complexity, 25

J
Java, garbage collection in, 6

JavaScript file, generating
with flame graph data, 92

Jeremy, Jashank, 38

K
Kaes, Stephan, 93

kB, 7

KCachegrind (QCachegrind),
54

flat profile in, 75, 81–82
looking inside source

code, 70
no double counting pre-

vention, 68
opening, 67
opening the new profile,

78
profile visualization with,

72
unoptimized app memory

profile in, 99
visualizing memory pro-

files, 99
visualizing with, 66–72

Index • 179

Kernel#gem_original_require, 57

kind memory limit, 138

Kramdown gem, 38

L
large string, 160

level of confidence, 108

lib directory, adding to Rails’
autoload_paths, 41

library functions, cannot be
further optimized, 61

link_to, 50

Linux
cpupower tool setting the
performance governor,
104

developing and testing
on, 127

forking code before mea-
surement, 107

setting RLIMIT_AS, 137

list modification, inside the
loop, 27

list of objects, iterating over,
25

live objects, in a heap, 152

lldb, on Mac OS X, 149

loadavg variable, checking in
monit, 137

Logger class, 22

logger object, recording object
creation, 20

Logger#log function, 22

logging, 48
tools, 173

long-lived objects, 165

long-running Ruby instances,
cycling, 136

long-running processes,
restarting, 146

loop
rendering partials in

faster, 47–50
within a nested loop, 5

lowercase, changing a string
to, 16

M
Mac OS, 105

Mac OS X, 107, 137

MacPorts, installing
QCachegrind, 66

Major GC, 169

malloc limit
GC triggered by, 163–168
making a difference in

performance, 172
tweaking in Ruby 2.0 or

earlier, 164

malloc limit-related parame-
ters, in Ruby 2.1 and Ruby
2.2, 166

malloc_increase (Ruby 2.1), 166

malloc_increase_bytes (Ruby 2.2),
166

malloc_increase_bytes_limit (Ruby
2.2), 166

malloc_limit (Ruby 2.1), 166

manual measurements, of
memory, 100

map iterator, 29

map! function, 17

mark and sweep (M&S) algo-
rithm, 168

mark phases, 168–169

Markdown gems, 38

markdown libraries, 38

Maruku gem, 38

Massif
looking at memory con-

sumption, 90
recording heap usage, 86
telling when and where

memory gets used, 92

Massif Visualizer, 86–90

MB, 7

mean
estimating, 108
of optimization, 112

measure_memory.rb example, 7

measurements, 13
analyzing and comparing

using statistics, 107–
113

forking code before, 107
hardcoded repetitions,

120
interpreting, 53
issues with, 103
minimizing external fac-

tors, 104
obtaining statistically

correct, 4
organizing in a tabular

format, 5
reducing variability in,

112

rounding to significant
figures, 111

storing, 117
taking as many as practi-

cal, 113
taking more than 30, 110
visualizing, 54
wrapping into a transac-

tion and rolling back,
127

measuring, as a pure engi-
neering task, 53

Memcheck, recording memory
leaks, 86

memory
allocated growing with

time, 136
allocated outside heap

space, 161
allocating extra, trigger-

ing GC, 161
amount of available, 145
extra on a 2X dyno, 146
footprint, 8
fragmentation, 156
letting a database use as

much as possible, 143
measurements, with and

without GC, 14
measuring, 53
new allocated and used

in any given function,
95

optimizing, 8–10
paying for more, 145
profiling, 85–102
risk of running out of, 46
saving, 15–24

memory allocation
changing only limits, 172
extra, 9

memory consumption
chart, 87
getting total, 14
high intrinsic to Ruby, 6
reducing, 11

memory copying, 9

memory leaks, 14, 20–23, 100

memory limit, size of, 138

MEMORY mode, of ruby-prof,
94

memory profiles, visualizing
with KCachegrind, 99

memory profiling
an app under 2.0, 93
exploring, 94

Index • 180

harder than CPU profil-
ing, 102

patches, 92–93

memory size, before and after
a benchmark, 7

memory usage, 41, 85–92

memory-efficient code, no
improvement from Ruby
2.1, 10

memory_app_optimized.rb, 96

MEMORY_optimized_profile.txt, 96

microseconds of execution
time, not important, 118

middleware, profiling, 57

milliseconds, 113, 118

MinGW, including the gdb de-
bugger, 149

minitest gem, installing, 120

Minor GC, 169

monit, configuring to cycle
Ruby processes, 137

monitoring tool, 85

ms_print visualization tool, 86

Munin tool, 85

N
Nagios tool, 85

named blocks, 23–24

native code gems, types of, 36

nested calls, visualizing as
recursive, 69

nested function calls, time of,
61

network latency and
throughput, 145

new generation, 165

New Relic monitoring tool, 85

NewRelic report, 128

--no-gc command-line option,
13

no_gc.rb example, 5

nodes, in a call tree, 65

none? iterator, 29

numbers, rounding off, 111

numeric array values, calcu-
lating the product of, 109

O
object allocations, profiling

with Stackprof, 90–92

object memory, 159–161

object preallocation, in Ruby
1.9, 151

object size, seeing in the de-
bugger, 149

object#class call, 31

object#is_a? call, 31

object#kind_of? call, 31

Object#parse_col, 61, 80

Object#parse_data caller line, 64

Object#parse_row, 91

objects
freeing from collections

during iteration, 25–27
having a fixed amount of

storage, 172
iterators creating addition-

al, 27–29
keeping references to all

created, 22
leaving one large behind,

24
in Ruby, 149

ObjectSpace, sharing, 141

ObjectSpace#memsize_of, 159

Observer pattern, Rails imple-
menting logger using, 49

old generation, 165

oldmalloc_increase (Ruby 2.1),
166

oldmalloc_increase_bytes (Ruby
2.2), 166

oldmalloc_increase_bytes_limit (Ruby
2.2), 166

oldmalloc_limit (Ruby 2.1), 166

ondemand governor, 104

one? iterator, 29

OOBGC (Out-of-Band
Garbage Collection), 141,
146

operating system
killing an application ex-

ceeding a memory lim-
it, 136

measuring memory, 100
setting a memory limit,

137

optimization
as a craft, not engineer-

ing, 84
deciding when to stop, 83
finding the confidence in-

terval of, 108
of functions, 61

GC runs and time useless
for, 99

goal of, 114
interval within which true

lies, 108
low-hanging fruit during,

75–82
mean of, 109
outside Ruby code, 135
reporting, 123
requiring complex archi-

tectural changes, 73
test reporting, 122

optimization interval, confi-
dence level for, 123

optimization mean, algorithm
getting, 111

optimized.rb example, 9

OS gem, 7

OS.rss function, on Windows,
7

Out-of-Band Garbage Collec-
tion (OOBGC), 141, 146

outliers, 113, 122

outputs, limiting with ruby-prof
command, 56

overhead, for ActiveRecord, 39

P
parent process, returning da-

ta to, 139

parse_col function, low-hanging
fruit in, 75

parsing
changing to object cre-

ation, 77
a file, 18, 161
size of the data after, 19
using results of our own,

76

partials, rendering faster in a
loop, 47–50

patched Ruby, for memory
profiling, 92, 102

peak memory consumption,
20

performance
blunders, 173
declining with increased

memory usage, 136
expected level of, 116
improved by RGenGC

and RIncGC, 165
improvements, 85
measurements, 107, 112
mind-set, 10

Index • 181

problems, fixing common,
13–38

testing for, 115
writing function to assert,

119–121

performance program, optimiz-
ing, 121

performance tests
for Acunote, 115
generating enough data

for, 128
getting measurements

and comparisons right,
134

measuring the number of
queries, 129

reporting results of, 124
steps in, 116
writing, 121, 134

performance_benchmark function
adapting to work with

Rails, 124
code from, 139
modifying, 126

performance_benchmark.rb, 117

plain-text report, in Stack-
prof, 91

PostgreSQL
configuration options,

143
configuration snippet,

143
faster and scalable, 36
relying on filesystem

cache, 105
storing data efficiently,

40
tuning for optimal perfor-

mance, 143–145

PostgreSQL 9.x database, 39

PostgreSQL database, 127,
147

PostgreSQL database server,
34, 105

predefined column order, 82

preloading, 42–44, 130

problems, solving with non-
Ruby code, 33

Proc callback, 23

Proc object, 22

process management tools,
cycling Ruby applications,
136

process memory limit, enforc-
ing, 137

production, buying enough
resources for, 145

production environment, 129

production mode, profiling in,
58

profile–optimize–profile cycle,
80

profiler
adding up to 10 times to

the Ruby function call
cost, 82

concentrating optimiza-
tion effort, 84

internal upkeep cost of,
84

learning to optimize with,
73–84

obscuring measurements,
84

reporting a large self
time, 61

profiles
comparing before and af-

ter optimization, 77
obtaining two with and

without caching, 58
walking through top-

down, 64

profiling
allocations with ruby-

prof, 97
as a craft, 53, 73
determining what is

slowing down code, 53
memory, 85–102
mixing with performance

testing, 124
more sophisticated exam-

ple for, 59
not telling you how to op-

timize, 72
in production mode, 58
tools for, 85

programs
pausing for the duration

of GC, 169
representing data as Ru-

by objects, 6

ps command, on Linux and
Mac OS X, 7

Puma web server, not support-
ing OOBGC, 142

Q
QCachegrind, 66, 72

queries
testing, 129–134
too many, 128–129

query assert, updating, 133

query test
executing a snippet of

code, 129
running, 132
writing, 131

R
R language, 11

Rack adapter, inserting into
middleware stack, 57

Rack::RubyProf middleware, 58

Rails
as a complex stack of

software, 124
benchmarking, 125–128
loading only data needed,

42
performance testing, 134
performing database

queries, 43
profiling best practices,

58
selecting a subset of

columns, 44
template rendering perfor-

mance characteristics,
47

Rails 2.x, no render collection
in, 49

Rails 3, performance testing
framework, 124

Rails 3.0 and greater, gather-
ing a list of queries, 129

Rails 4.x, with a database
connection, 39

Rails applications
allocating half a million

objects at startup, 150
getting the complete re-

quest profile, 54
memory limit for, 138
need to render partials,

49
optimization strategies

for, 39
running on Unicorn web

server, 137
testing database perfor-

mance, 128–134

Index • 182

testing performance of,
124–134

working with a database,
125

Rails developers, 20, 34

Rails middleware, 57

Rails performance test, 124

Rails stack, testing, 124, 132

Rails view helpers, 47

rails-perftest gem, 124

Rails_ENV=production bundle exec
rake db:migrate, 43

rails_performance_benchmark.rb,
126

RailsExpress memory patch-
es, 95

RailsExpress patch set, 93

RailsExpress patches, 100

RAM, for a deployment stack,
145

rb_profile_frames(), 92

rbenv, 4, 93

rbenv install -l, 93

rbenv which, 150

rbenv wrapper script, 87

RDiscount gem, 38

realloc() C library function, 17

RedCarpet gem, 38

RedHat GFS network filesys-
tem, 146

reduce iterator, 29

regexp matches, 79

regular expression matcher,
79

regular expressions, eliminat-
ing altogether, 83

reject iterator, 29

render collection, 47–50

render_partial.action_view event, 49

rendering, 46–47

rendering helpers, 50

restricted generational GC, 6

reverse iterator, 29

reverse_each iterator, 29

RGenGC (restricted genera-
tional GC), 165, 169

RIncGC (incremental GC),
165, 169

round function, 118

rounding, rules for, 111

row parsing, examining, 82

rows, processing, 35

RSS (Resident Set Size), of a
process, 7

Ruby
allocating additional ob-

ject memory, 160
allocating objects in the

heap space, 150, 172
as a general purpose pro-

gramming language, 11
as an interpreted lan-

guage, 80
call stack, 90
closures, 20
compiling with RailsEx-

press patches, 93
criteria for running GC,

172
growing heap space, 155
implementing GC using

mark and sweep (M&S),
168

internals stack, 88
looking for free space in

eden pages first, 156
memory use by, 149–161
not a system program-

ming language, 118
object heap, 88
preallocating memory,

150
triggering GC by a memo-

ry limit, 163–168
versions, 3
writing less, 33–38

Ruby 1.8
changing GC parameters,

172
each subsequent heap

page bigger, 156
executing code via the

syntax tree, 6
heap pages in, 150
performance characteris-

tics of, 3

Ruby 1.9
enough slots rule, 162
heap growth algorithm,

151–154
object preallocation, 151

Ruby 1.9.3
performance characteris-

tics of, 3
supported by RailsEx-

press memory patches,
95

Ruby 2.0
heap growth algorithm,

151–154
performance characteris-

tics of, 3

Ruby 2.1
creating one heap page at

startup, 154
faster GC runs in, 168
freeing up heap space,

156
improved GC, 6
making default Ruby ap-

plication performance
acceptable, 10

not a silver performance
bullet, 10

ObjectSpace#memsize_of and,
160

performance characteris-
tics of, 3

reducing heap size, 157
renaming the
HEAP_MIN_SLOTS constant,
154

RGenGC (restricted gener-
ational GC), 165, 169

Stackprof working with,
90

Ruby 2.2
changing GC#stat parame-

ters, 158–159
faster GC runs in, 168
growing heap space, 159
improved GC, 6
incremental GC, 21, 141
making default Ruby ap-

plication performance
acceptable, 10

parameters relevant to
heap space, 158

performance characteris-
tics of, 3

RIncGC (incremental GC)
on top of generational
GC, 165

with RIncGC optimizing
pause time, 169

running examples, 15

Ruby applications
cycling, 136
deploying, 146
long-running becoming

faster after restart, 135
running in the cloud, 145

Ruby code
making slow, 2–7
rewriting into SQL, 143

Index • 183

Ruby Enterprise Edition, of
Ruby 1.8, 172

Ruby GC, see GC (garbage
collection)

Ruby interpreters
installing with the -k op-

tion, 4
not shrinking heap space,

156
raw performance of, 6

Ruby Performance Mind-set,
10

Ruby process, 135, 157

ruby-prof
API, 55, 57
command-line tool, 56
double counting preven-

tion in, 68
flat profile, 67
gem, 55, 57, 60, 93
inserting as middleware,

57
looking inside source

code, 70
measuring number of GC

runs and the amount
of time, 98

measuring with, 54–58
memory profiling modes,

94
memory profiling without,

100
printers, 58–66
printing tools, 54
profiler, for memory opti-

mization, 92
Rack adapter, inserting

into the middleware
stack, 57

tool, 54
using for profiling, 72

ruby-prof command, running,
56

RUBY_FREE_MIN, in Ruby 2.0 and
earlier, 171

RUBY_GC_HEAP_FREE_SLOTS, 170

RUBY_GC_HEAP_GROWTH_FACTOR,
170

RU-
BY_GC_HEAP_GROWTH_MAX_SLOTS,
170

RUBY_GC_HEAP_INIT_SLOTS, 169

RUBY_GC_HEAP_OLDOBJECT_LIMIT_FAC-
TOR, 170

RUBY_GC_MALLOC_LIMIT, 171–172

RUBY_GC_MALLOC_LIM-
IT_GROWTH_FACTOR, 171

RUBY_GC_MALLOC_LIMIT_MAX, 171

RUBY_GC_OLDMALLOC_LIMIT, 171

RUBY_GC_OLDMALLOC_LIM-
IT_GROWTH_FACTOR, 171

RUBY_GC_OLDMALLOC_LIMIT_MAX,
171

RUBY_HEAP_MIN_SLOTS, in Ruby
2.0 and earlier, 171

ruby_prof_example_api1.rb, 55

ruby_prof_example_api1_profile.txt,
55

ruby_prof_example_command.rb, 56

ruby_prof_example_command_pro-
file.txt, 56

RVALUE, 149

rvm, 4

RY_profile.txt, 95

S
samples, of random indepen-

dent variables, 108

Sasada, Koichi, 165, 169

scaling, 1

select iterator, 29

selective attribute loading,
combining with preloading,
44

%self column, in the flat re-
port, 61

self column, in the flat report,
61

Self time
in microseconds, 68
sorting the flat profile by,

75

self time, 61, 64

shift operator (<<), using, 16

Sidekiq, 141

signal1.rb, 24

slots
calculating maximum

number of, 157
in heap pages, 150
not enough free, 172
Ruby defining enough,

162

slow queries, 128, 143

slowdowns, reporting, 123

snapshots, in a memory con-
sumption chart, 87

socket hack, needing, 127

software, rarely limited by
CPU, 145

source code, in Ruby, 24

SQL databases, 143

SQL queries, 46, 129

stack, benchmarking the
complete Rails, 124

Stackprof, 90, 92

standard deviation
calculating, 108, 117
of measurements, 112
of optimization, 109, 112

standard error, of the differ-
ence, 109

standard library functions,
iterator-unsafe, 29–33

statistical computations, with
R language, 11

statistics, analyzing and
comparing measurements,
107–113

str_gsub_test.rb, 97

String, converting a BigDecimal
to, 33

string manipulations, doing
in place, 16

string replacement, memory
overhead of, 97

String#+=, replacing with
String#<<, 121

String#downcase call, 16

String#gsub!, 97

String::<< function, 16

string_in_place1.rb, 16

strings
concatenating, 16
modifying in place, 16–17
storing 23 bytes in the
RSTRING object, 159

strings creation, array of, 89

success scenario, outcomes
of, 119

sweep phase, 168

system calls, minimizing ef-
fect on measurement, 107

T
t-test, 109

T_NODE objects, created by
an iterator, 29

tables, joining, 42

template, work required to
initialize, 48

Index • 184

template code, rendering a set
of objects, 47

template inliner plug-in, in
Rails 2.x, 49

template rendering, taking
longer than controller code,
46

temporary storage, between
forked process and its par-
ent, 139

--test command, 74

test_assert_performance1.rb, 121

test_performance_benchmark.rb, 118

tests
embedding directly into

applications, 74
ensuring that code

works, 115
maintaining application

performance, 134
running, 75, 77
runs leaving no byprod-

ucts, 126
storing previous results,

116
success and failure sce-

narios for, 119
use of, 73
writing before profiling,

84

Thing.all.pluck function, 46

Thing.where function, 46

threads
background job imple-

mentations using, 141
GC with, 142
spent waiting for other,

61

tie-breaking rule, for round-
ing, 111, 118

timing columns, for the caller
lines, 64

tomb, empty heap pages in,
156

total column, in the flat report,
61

total memory usage, profiling,
95–96

total time
as sum of time inside all

caller functions, 68
a program spends in the
map iterator, 64

total_allocated_object, in Ruby
2.1, 155

total_allocated_objects, in Ruby
2.2, 159

total_allocated_pages, in Ruby
2.2, 159

total_freed_object, in Ruby 2.1,
155

total_freed_objects, in Ruby 2.2,
159

total_freed_pages, in Ruby 2.2,
159

totalmem variable, checking in
monit, 137

track_queries block, changing
code inside, 133

track_queries function, writing,
129

trap implementation, 24

tunnel vision syndrome, vul-
nerability to, 135

Turbo Boost technology, 105

type checking, 32

U
Unicorn, 138, 141

unit test, writing for a func-
tion, 115

Unix systems
forking code before mea-

surement, 107
measuring memory, 101
setrlimit system call, 137

unoptimized application,
running on a properly con-
figured software stack, 146

unoptimized code example,
running, 15

unoptimized test, slowdown
error from, 122

unoptimized.rb, example, 3

unused memory, GC deallocat-
ing during program execu-
tion, 20

unused objects, collecting, 22

upcase! function, 17

url_for, 50

use call, 57

V
Valgrind

not digging into Ruby
code, 87

profiler for C and C++
programs, 86

profiler, format used by,
66

running only native exe-
cutables, 87

Valgrind Massif, showing
heap usage, 86

variation, in measurements,
107

virtual machine (VM), Ruby
implementations running
on, 105

visualization tools, 66

W
wait column, 61, 63

warm state, getting to, 106

warm-up effects, reducing,
116

while loop, 26

wiki page, on optimization,
173

Windows
installing QCachegrind,

66
power plan, 105
setting CPU speed, 105

workers, 137–138

wrapper, as a basic measure-
ment tool, 15

wrapper function, creating,
13

wrapper.rb, 13

wrapper.rb measurement
helper, 40

wrapper_example.rb, 15

X
Xcode command-line tools,

149

Z
z-test, 109

Index • 185

Facets of Ruby
Definitive Ruby information for all developers.

Programming Ruby 1.9 & 2.0 (4th edition)
Ruby is the fastest growing and most exciting dynamic
language out there. If you need to get working pro-
grams delivered fast, you should add Ruby to your
toolbox.

This book is the only complete reference for both Ruby
1.9 and Ruby 2.0, the very latest version of Ruby.

Dave Thomas, with Chad Fowler and Andy Hunt
(888 pages) ISBN: 9781937785499. $50
https://pragprog.com/book/ruby4

Metaprogramming Ruby 2
Write powerful Ruby code that is easy to maintain and
change. With metaprogramming, you can produce ele-
gant, clean, and beautiful programs. Once the domain
of expert Rubyists, metaprogramming is now accessible
to programmers of all levels. This thoroughly revised
and updated second edition of the bestselling
Metaprogramming Ruby explains metaprogramming in
a down-to-earth style and arms you with a practical
toolbox that will help you write your best Ruby code
ever.

Paolo Perrotta
(278 pages) ISBN: 9781941222126. $38
https://pragprog.com/book/ppmetr2

https://pragprog.com/book/ruby4
https://pragprog.com/book/ppmetr2

Applying Ruby in the Real World
Use the power of Ruby to get the job done.

Agile Web Development with Rails 4
Rails just keeps on changing. Both Rails 3 and 4, as
well as Ruby 1.9 and 2.0, bring hundreds of improve-
ments, including new APIs and substantial perfor-
mance enhancements. The fourth edition of this award-
winning classic has been reorganized and refocused
so it’s more useful than ever before for developers new
to Ruby and Rails.

Rails 4 introduces a number of user-facing changes,
and the book has been updated to match all the latest
changes and new best practices in Rails. This includes
full support for Ruby 2.0, controller concerns, Russian
Doll caching, strong parameters, Turbolinks, new test
and bin directory layouts, and much more.

Sam Ruby
(456 pages) ISBN: 9781937785567. $43.95
https://pragprog.com/book/rails4

Build Awesome Command-Line Applications in Ruby 2
Speak directly to your system. With its simple com-
mands, flags, and parameters, a well-formed command-
line application is the quickest way to automate a
backup, a build, or a deployment and simplify your
life. With this book, you’ll learn specific ways to write
command-line applications that are easy to use, deploy,
and maintain, using a set of clear best practices and
the Ruby programming language. This book is designed
to make any programmer or system administrator more
productive in their job. This is updated for Ruby 2.

David Copeland
(224 pages) ISBN: 9781937785758. $30
https://pragprog.com/book/dccar2

https://pragprog.com/book/rails4
https://pragprog.com/book/dccar2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/adrpo
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/adrpo

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/adrpo
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/adrpo
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Preface
	The Need for Speed
	How to Read This Book
	Acknowledgments

	1. What Makes Ruby Code Fast
	What Makes Ruby Code Slow
	Optimize Memory
	Get Into the Performance Mind-set

	2. Fix Common Performance Problems
	Save Memory
	Optimize Your Iterators
	Write Less Ruby
	Takeaways

	3. Make Rails Faster
	Make ActiveRecord Faster
	Make ActionView Faster
	Takeaways

	4. Profile
	Measure with Ruby-Prof
	Visualize with Ruby-Prof Printers
	Visualize with KCachegrind (QCachegrind)
	Takeaways

	5. Learn to Optimize with the Profiler
	Optimize but Don't Break
	Pick Low-Hanging Fruit
	Take a Step Back
	Takeaways

	6. Profile Memory
	Detect Excessive Memory Usage
	Profile Memory with Ruby-Prof
	Measure Memory Yourself with GC#stat and GC::Profiler
	Takeaways

	7. Measure
	Minimize External Factors
	Make Internals Behave Predictably
	Analyze and Compare Measurements Using Statistics
	Takeaways

	8. Test Performance
	Benchmark
	Assert Performance
	Report Slowdowns and Optimizations
	Test Rails Application Performance
	Takeaways

	9. Think Outside the Box
	Cycle Long-Running Instances
	Fork to Run Heavy Jobs
	Do Out-of-Band Garbage Collection
	Tune Your Database
	Buy Enough Resources for Production
	Takeaways

	10. Tune Up the Garbage Collector
	Understand How Ruby Uses Memory
	Know What Triggers GC
	Understand Why GC in Ruby 2.1 and 2.2 Is So Much Faster
	Tune Up GC Settings
	Takeaways
	Onward!

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Z –

