mlgrt‘ziﬁmners

Using JRuby

Bringing Ruby to Java !—
*‘ Charles O Nutter,
Nick Sieger.
4 Thomas Enebo,
- Ola Bini, and

Ian Dees

Forewords by
Yukihiro Matsumoto
and Bruce Tate

Edited by Jacquelyn Carter

of Ruby Series

What Readers Are Saying About Using JRuby

I was very happy to discover the JRuby project, my favorite program-
ming language running on what’s probably the best virtual machine
in the world. This book really covers every in and out of this fantastic
project.

» Peter Lind
Technical consultant, Valtech

I was floored by the amount of technical detail the authors managed
to cram in here! And they did it with such an approachable and read-
able tone that this book was both easy and fun to read. I can’t remem-
ber the last technical book that did that for me. The breadth of cover-
age is astounding, too.

» Kent R. Spillner

My JRuby apps will go live in two weeks. Without your book and the
Ruby community, I would never have gotten this far.

» Pinit Asavanuchit
Intersol Consulting Co., Ltd.

I really liked the clear structure of the book and all the covered
libraries/dependencies (like Rake, Ant, Maven, testing frameworks).
This clearly outlines the whole JRuby universe so that new users will
immediately see what's available and how to start using it.

» Vladimir Sizikov
Senior engineer, Oracle

This book will open the eyes of any Java programmer who wants to
take their art to the next level. Read it.

» Geoff Drake
Owner, Managed Design

This is one of those books that you don’t want to put down and you
can’t wait to get back to. For a technical publication, that is extremely
rare. Usually I find myself having a hard time trying to stay awake.
After reading this book, I can say I have a very good understanding of
what JRuby is, how it interacts with Java, and a working knowledge
of many of the supporting tools to accomplish a wide range of tasks.
The way this book is organized, it makes a great reference for future
development.

> Gale Straney
Senior software design engineer, Tektronix

This book makes a compelling case for JRuby. A must-have to bring
some Ruby goodness to your Java powerhouse.

» Fred Daoud
Author, Stripes...and Java Web Development Is Fun Again, and
Getting Started with Apache Click

This book is an excellent resource for JRuby and will without a doubt
facilitate JRuby adoption in Java-centric enterprises.

» Bharat Ruparel
Senior information architect, America’s Test Kitchen

UsingJRuby

Bringing Ruby to Java

Charles O Nutter
Nick Sieger
Thomas Enebo
Ola Bini

[an Dees

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2011 The Pragmatic Programmers LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-65-4
ISBN-13: 978-1-934356-65-4
Printed on acid-free paper.
P1.0 printing, January 2011
Version: 2011-1-26

http://www.pragprog.com

— Contents

Foreword by Matz 11
Foreword by Bruce Tate 12
Preface 14
WhyJRuby? 14
What'sinThisBook 15
Who This BookIsFor. 16
Online Resources 16
Conventions 17
Acknowledgments L oL 18
I JRuby Core 19
1 Getting to Know JRuby 20
1.1 InstallingJRuby 21
1.2 KickingtheTires 23
1.3 The Interactive Shell 24
1.4 TheCommandLine 24
1.5 IDEs. i 26
1.6 TheCompiler. 28
1.7 Javalntegration 29
1.8 WrappingUp 30
2 Driving Java from Ruby 31
2.1 Seeing Java Through Ruby Glasses. 31
2.2 Dealing with the Classpath 38
2.3 LoadingClasses 41
2.4 UsingObjects 43
2.5 Passing Parameters, 45

2.6 Calling Overloaded Methods 50

CONTENTS <« 8

2.7 Implementing a Java Interface 54
2.8 Troubleshooting 55
29 WrappingUp 58
3 Ruby from Java: Embedding JRuby 60
3.1 A Real-Life Example: Source Control 61
3.2 The Nitty-Gritty v v v ve oo ettt 70
3.3 Embedding Strategies. 74
34 WrappingUp 77
4 The JRuby Compiler 78
4.1 Compiler 101o oL 78
4.2 A Simple Compiled Example 85
43 TheDetails 91
44 WrappingUpo o o oo 96
II JRuby and the World 97
5 Introduction to Rails 98
5.1 WhatlIsRails? 98
52 GoingRouge 105
5.3 Building Our Models 111
5.4 Restaurant Administration 101 118
5.5 Open tothe Public 122
56 WrappingUp 132
6 JRuby and Relational Databases 133
6.1 Ruby Database Frameworks 133
6.2 Ribs o 154
6.3 JDBC e 161
6.4 WrappingUp 164
7 Building Software for Deployment 165
7.1 Rake. 165
7.2 Ant 173
7.3 Maven it 180
7.4 Packaging for Deployment 183
75 WrappingUp oo 198

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=8

CONTENTS «d 9

8 Testing Your Code with JRuby 199
8.1 Ruby Test Frameworks 200
8.2 Going to the Next Level with ZenTest 212
8.3 Mocking and Stubbing 212
84 WrappingUp 217
9 Beyond Unit Tests 218
9.1 Writing High-Level Tests with Cucumber 218
9.2 Acceptance Testing 221
9.3 PluggingIntodJdava. 229
94 WrappingUp 239
10 Building GUIs with Swing 240
10.1 JRuby tothe Rescue! 240
10.2 Swingo 241
10.3 Rubeus 246
10.4 Monkeybarso 250
10.5 Limelight 260
10,6 WrappingUp 268
III Reference 271
A Ruby 101 272
Al MeetRuby 272
A2 ACloserLook, 275
A3 GettingthedobDone 289
B Ruby/Java Interoperability 290
B.1 How Method Selection Works 290
B.2 Parameter Types. 291
B.3 ReturnValues 292
C Configuring JRuby 294
C.1 Command-Line Options 294
C.2 Properties. 306
D Calling External C Code 309
D.1 Foreign-Function Interface 309

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=9

CONTENTS <« 10

E JRuby for Sysadmins 315
E.1 AutomatingTasks 315
E.2 Monitoring Applications 316
E3 WrappingUp 321
F Limelight Example Source 322
G Bibliography 330
Index 332

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=10

I love the term diversity. Di-ver-si-ty. Doesn’t that sound great? JRuby
surely embodies the value of diversity.

Some might think we can utilize our resources more efficiently without
diversity. But in the open source world, the number of resources (that
is, contributors) is not really limited. If a project is really attractive, we
can get more people interested in it. If we had a less diverse ecosystem
without projects like JRuby, I don’t think we would get more resources.
Instead, a lot of existing contributors would have dismissed Ruby for
lack of diversity.

I created Ruby to make my programming happier. Since its creation, it
has helped other programmers as well. I am proud that my masterpiece
has made the world of programming a little bit better. JRuby made
the Ruby language reach the Java world. JRuby made it possible to
run Ruby on platforms like Google App Engine and Android. For this
one thing, I will appreciate JRuby forever. Long live JRuby. Long live
diversity in the Ruby world.

I hope you will enjoy Ruby on the JVM. Ruby will be with you. Enjoy
programming, on whatever platform you love.

Yukihiro “Matz” Matsumoto
August 2010

In late 2004, I was a Java author riding on an airport bus with Dave
Thomas. At the time, I was frustrated with the increasing complexity of
the Java language but thinking it was the only game in town. Dave con-
vinced me to give Ruby a try. When I finally did, I found a language that
was more expressive and productive than anything I'd ever used before.
In a short year, I completed my first and second commercial Ruby appli-
cations and knew, beyond a shadow of a doubt, that Ruby was a better
language for the types of applications I was writing. I wanted to share
that idea with managers like the ones I encountered in my consulting
practice, so I wrote From Java to Ruby |] to emphasize that Ruby
wasn't just a smart move for programmers. Ruby made business sense.

Thankfully, I didn’'t have to lean solely on my own thin experience. To
make the most critical points, I interviewed some important experts
in complex areas such as design, adoption, and deployment. Among
these people were Thomas Enebo and Charles Nutter, two of the earliest
committers of the JRuby project. In those interviews, they elegantly
made the case that a mature Ruby implementation on the JVM would
lead to a powerful set of advantages.

You see, Ruby, the beautiful language, is only part of the story. Even
this powerful, productive language needs a story that goes beyond the
ideas embedded in the syntax and semantics. Real applications will
have requirements encompassing performance, politics, and deploy-
ment. Truth be told, in 2006, Ruby was sometimes difficult to sell into
the back office for some of these reasons.

What a difference four years makes. Thomas, Charles, and I have
leaned hard on Ruby for these four years, supported by a growing com-
munity of many thousands of Ruby developers and customers. We've

FOREWORD BY BRUCE TATE <« 13

regularly run into each other in places like Austin, Texas, and Matsue,
Japan. Each time, I've delightfully followed the progress of JRuby. This
platform has delivered on every promise. Consider the following:

¢ JRuby is no longer a hobby. Though it holds fast to its open source
foundations, it now has aggressive corporate sponsorship. Engine
Yard has proven to be a wonderful steward, and several employees
are dedicated to its success.

* Big customers have deployed major applications on JRuby, open-
ing up the enterprise to Ruby. By allowing the back office to rely
on the robust, reliable JVM, deploying Ruby is no longer the risk it
once was. Each Ruby application becomes just bytecode, virtually
indistinguishable from other Java applications.

¢ JRuby supports the Java frameworks that you need to support.
Sure, the lower-level APIs are there, such as JDBC. But you can
also build your nimble Ruby user interface directly on your Hiber-
nate back end the way you want.

* ThoughtWorks, the dynamic consultancy that aggressively pushes
the boundaries of developer productivity in the context of difficult
problems, has used JRuby to deliver both products and customer
applications on far more aggressive schedules than they could
have with conventional languages.

So, JRuby is delivering on the promise of a marriage between the beau-
tiful language on the robust and reliable JVM, and we've come full cir-
cle. Now, I'm writing a foreword for Thomas and Charles, and I could not
be more thrilled. You see, the last missing piece of the JRuby puzzle is
effective documentation. That’s where Using JRuby steps in. This book
tells the perfect story at the right time. This team of authors is uniquely
positioned to give you the tips and tricks from the inside. They've nur-
tured this project from its infancy to where it is today. They've used
JRuby to deliver real value to paying customers. And they're gifted com-
municators who can effectively tell this story.

I've been waiting for this day for a long time, and I could not recom-
mend this book more highly. Congratulations, Charles, Thomas, Nick,
Ola, and Ian. You've created something amazing and described it in a
beautiful book.

Bruce Tate (Author, From Java to Ruby, 2006)
Austin, Texas, 2010

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=13

_ Dreface

You know all the stereotypes of the Java and Ruby programming lan-
guages. The enterprise vs. the upstart. The staid, corporate safe choice
against the free-wheeling new kid in town.

Look a little deeper, though, at what the languages have in common.
They're about the same age (both had their 1.0 releases in 1996). Both
their respective inventors were inspired by their favorite object-oriented
language features. And both Java and Ruby have touched off an ava-
lanche of Internet love-ins and flame-fests.

So, maybe it was inevitable that someone would try to combine the two.
JRuby is an implementation of the Ruby programming language written
in 100 percent Java.

Why JRuby?

JRuby is just another Ruby interpreter. It runs the same Ruby code
you've been writing all along. But it’s also a better Ruby interpreter. You
get true multithreading that can use all your computer’s cores from one
process, plus a virtual machine that’s been tuned for a decade and a
half. All of this book’s authors have seen our Ruby programs speed up
just by moving them to JRuby.

JRuby is also just another .jor file. You don’t need to install anything
on your Java workstation to try it. And you don’t need to do anything
special to deploy your Ruby code to your production server. Just hand
your sysadmin a .jar like you always do, and they might not even notice
you used Ruby—except that you delivered your app in half the time and
encountered fewer bugs down the road.

WHAT’S IN THIS Book <« 15

‘ég lan Says. ..

R in_Real Lif

At work, we needed to sift through a mound of engineering
data. Ruby was a natural fit for this task, and we had working
code in minutes. But sharing this program with colleagues was
a different story.

With regular Ruby, we ran info trouble getting the code from
one machine to another—even though they were both run-
ning Windows XP We had to direct people to install a particu-
lar outdated version of MySQL, manually copy DLLs into Ruby’s
installation path, and then install another Ruby library. Even if
they got all that right, they’d still encounter error messages like
“msvert-ruby18.dll was not found.”

Enter JRuby. Its database drivers don’t have to be compiled
for each specific operating system and build environment, so
things just worked out of the box. The installation procedure
shrank to “copy the file, and then type java -jar ourprogram.jar.”

What’s in This Book

The first half of this book is about JRuby. In Chapter 1, Getting to
Know JRuby, on page 20, we'll hit the ground running with a few quick
examples that showcase JRuby’s main features. In Chapter 2, Driv-
ing Java from Ruby, on page 31, we’ll show you how to call into Java
libraries from Ruby code. Then we’ll go the other direction in Chapter 3,
Ruby from Java: Embedding JRuby, on page 60 and extend a Java pro-
gram using Ruby. Finally, Chapter 4, The JRuby Compiler, on page 78
will answer the question, “Isn’t JRuby just a Ruby compiler for Java?”
(Short answer: no.)

In the second half, we’ll discuss how JRuby relates to the outside world
of libraries, tools, and legacy code. We'll start with Chapter 5, Intro-
duction to Rails, on page 98, in which you’ll build a database-backed
website in Ruby’s most famous framework. Web development leads nat-
urally to databases and deployment.Chapter 6, JRuby and Relational

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=15

WHO THIS Book Is ForR < 16

Databases, on page 133 and Chapter 7, Building Software for Deploy-
ment, on page 165 will cover several Java and Ruby libraries in these
areas.

In Chapter 8, Testing Your Code with JRuby, on page 199 and Chap-
ter 9, Beyond Unit Tests, on page 218, you'll find out how to use Java
tools to run Ruby tests and how to use Ruby frameworks to exercise
Java code. You'll finish off the main part of the book in Chapter 10,
Building GUIs with Swing, on page 240, where you’ll find what many
Rubyists have long sought: a cross-platform GUI toolkit.

Who This Book Is For

This book is for people looking to bring the Ruby and Java worlds
together. Some of you are seasoned Java developers who are interested
in seeing what the Ruby language can do for you. Others are familiar
with Ruby and wondering what they need to know about running their
code on the Java platform.

If your primary language has been Java up until now, you may want
to start with the quick crash course on Ruby syntax in Appendix A, on
page 272. If you're a Rubyist who’s new to Java, a book like Core Java
[] can help fill in the gaps, without bogging you down in “how to
program” lessons.

Online Resources

We encourage you to try the code samples you see in this book by typing
them in by hand. If you get stuck or need a little more context, the
source for the examples is available at http://pragprog.com/titles/jruby/
source_code.

We designed these programs to run on JRuby version 1.5.5, with spe-
cific versions of various libraries we mention in the text. If you want to
use a newer version of JRuby or one of the libraries, see http://github.
com/jruby/using_jruby to track our updates to the example code.

If something isn’t working or you have a question about JRuby that we
haven’t covered here, please let us know in the forums at http://forums.
pragprog.com/forums/125. We’d love to hear from you.

Report erratum

this copy is (P1.0 printing, January 2011)

http://pragprog.com/titles/jruby/source_code
http://pragprog.com/titles/jruby/source_code
http://github.com/jruby/using_jruby
http://github.com/jruby/using_jruby
http://forums.pragprog.com/forums/125
http://forums.pragprog.com/forums/125
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=16

CONVENTIONS <« 17

Conventions

Let’s skip the description of which fonts we're using for code and em-
phasis, shall we? You'll pick that up from context. But there are a cou-
ple of situations that your typical tech book doesn’t have to face. It's
probably worth adopting a few new conventions for those.

The first is function names. Books seem to have a tradition of spelling
functions and methods with trailing parentheses, as in a Java class’s
main() method. In Ruby, though, parentheses tend to be optional—and
there are some contexts where they’re almost never used. So, we’ll fol-
low that dual convention in the print and PDF versions of this book.
When we mention function names in the text, you'll see parentheses
after someJavaMethod() but not after some_ruby_method.

The next convention we've adopted is a single notation for the command
line, for the most part. Windows command prompts use something
like C:\> as your cue to begin typing, while Mac and Linux machines
typically use $ or %. Windows uses backslashes to separate directory
names, while other platforms uses forward slashes. Other than that,
there’s little difference between invoking JRuby on one operating sys-
tem or the other.

Accordingly, we're going to use the notation from bash, the default shell
on the Mac and on many Linux distributions. When you see this:

$ jruby some_directory/program.rb

...you'll know not to type the dollar sign and to use whatever kind of
slashes your system requires. (Actually, the latter is a bit of a moot
point, because JRuby does fine with forward slashes on Windows.) For
the few specific cases where the syntax is significantly different between
Windows’s cmd.exe and UNIX’s bash, we’ll spell out both cases.

Speaking of differences between systems, many UNIX-like systems re-
quire you to log in as the root user before installing software. Others
have you preface any administration-level commands with sudo. Most
of your authors run JRuby from regular (nonadministrator) directories
in our own home directories, making sudo unnecessary. Accordingly,
the commands to install software in this book will typically just say
gem install some_library, rather than sudo gem install some_library.

Finally, a word on program output. We use three variations of the tradi-
tional Ruby “hash rocket” sign (which looks like this: # =>) to show the

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=17

ACKNOWLEDGMENTS <« 18

result of running a particular piece of code. These marks are just Ruby
comments. JRuby ignores them, and you don’t need to type them. But
they come in handy for documenting how a function works.

This line doesn't print

anything, but the expression

has a return value
result = 2 + 2 # =>4

This Tine prints a message
when you run the program:
puts 'hello'.capitalize # >> Hello

This Tine causes an error
message to appear:
Foo # ~> Uninitialized constant Foo

This way, we can show you what the values of different variables are in
the middle of a code excerpt, without having to scatter a bunch of print
functions all over.

Acknowledgments

To our initial tech reviewers—Fred Daoud, Steven Deobald, Geoff
Drake, Yoko Harada, Peter Lind, David Rupp, Vladimir Sizikov, Kent
Spillner, and Gale Straney—thank you for helping us sand down the
rough edges. To folks who joined the beta release process and wrote
to us in the forums—Matt Smith, David Mitchell, Arkadiy Kraportov,
Sam Goebert, Robert Dober, Pinit Asavanuchit, Bharat Ruparel, Hans-
Georg, and Paul Sideleau—the book is better because of your com-
ments, and we thank you.

To our wonderful editor, Jackie Carter—thank you for being equal parts
project champion, product manager, writing coach, and cheerleader.
To Dave and Andy, the Pragmatic Programmers—thank you for giv-
ing this book a long runway and a chance to fly. To our ever-patient
families—thank you for enduring our absence, obsession, and distrac-
tion. To Matz—thank you for creating Ruby, our favorite programming
language. To Matz and Bruce—thank you for your support of this pro-
ject and for the lovely forewords. To the entire community of JRuby
fans, contributors, and users—thank you for your support of this, our
favorite implementation of Ruby.

Ready to jump into JRuby? Let’s go!

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=18

Part 1

JRuby Core

Chapter 1

You're now standing on the threshold of the JRuby universe, where
you’ll have your pick of the world’s best Ruby and Java libraries. With
the techniques in this book and the tools available to you, you’ll be able
to do amazing things with JRuby. Here are just a few possibilities:

* Deploy a Ruby on Rails web application to Google’s App Engine
service.!

 Target the latest Android smartphones with your Ruby code.?
* Create dazzling, cross-platform GUIs with clean, elegant code.?

* Build your project on solid libraries written in Java, Scala, Clojure,
or other JVM languages.

Do these sound like intriguing projects? They’ll all be within your grasp
by the time you reach the end of this book. You'll see how to code,
test, and package web applications for easy employment. You'll learn
the nuances of compiling code and how to adjust to the limitations
of mobile platforms. You'll design user interfaces using both graphical
layout tools and straightforward code.

Before we get into those specific uses, we’d like to take you on a tour of
the best of JRuby in this chapter. We'll start by showing you a couple
of easy ways to get JRuby onto your system (including a hassle-free,
no-installation option) and what to do with it once you have it.

1. http://rails-primer.appspot.com
2. http://ruboto.org
3. http://www.infog.com/presentations/martin-jruby-limelight

http://rails-primer.appspot.com
http://ruboto.org
http://www.infoq.com/presentations/martin-jruby-limelight

INSTALLING JRUBY < 21

When you have JRuby running, you'll see firsthand how JRuby is a
top-notch Ruby environment. You'll try out code interactively in a live
interpreter, which is a great way to learn the language and its libraries.
You'll write a stand-alone script just like the ones you use for everyday
system automation tasks.

We'll also show you how JRuby does a few things other Rubies can’t do.
You'll compile a Ruby program to a Java .class file. You'll call seamlessly
into Java libraries just as easily as calling Ruby code.

Ready to begin your journey?

1.1 Installing JRuby

JRuby is built for easy deployment. After all, it needs to fit in envi-
ronments ranging from your development laptop to a tightly controlled
production server. Accordingly, there are a lot of ways to get it onto
your system. We'll look at a couple of the more common ones here.

Using an Installer

The easiest way to install JRuby is to use one of the prebuilt installers
available from the official download site.* These will take care of the
“fit and finish” level of detail, such as setting up your PATH environment
variable to make finding JRuby easier.

The JRuby team currently maintains installers for Windows and Mac
machines. If youre on Linux, your distribution may package its own
JRuby build. For example, on Ubuntu you can type this:

$ sudo apt-get install jruby
Most Linux distributions don’t upgrade to the latest JRuby release the
instant it comes out. If you want to stay with the latest and greatest,

you might prefer installing from an archive instead; we’ll describe how
to do this later.

Using the Ruby Version Manager

The Ruby Version Manager (RVM) is a tool for Mac and Linux that can
automatically install and switch among several different versions of

4, http://jruby.org/download

Report erratum

this copy is (P1.0 printing, January 2011)

http://jruby.org/download
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=21

INSTALLING JRUBY < 22

Ruby at once.® A large part of its audience consists of Ruby library
developers, who need to test their software in many different Ruby
environments.

Even if JRuby is the only Ruby you plan on using, you may want to
take a look at RVM. As of this writing, here are the JRuby versions
RVM knows about:

$ rvm Tist known | grep jruby

jruby-1.2.0

jruby-1.3.1

jruby-1.4.0

jruby(-1.5.5)
jruby-head

The last item, jruby-head, is a build from the latest bleeding-edge source
code. The one before it, jruby-1.5.5 (or just jruby), is the latest stable
release as of this writing. Here’s how you’d install and start using 1.5.5:

$ rvm dinstall jruby
$ rvm use jruby

If you're a long-time RVM user, you'll want to upgrade to the latest RVM
version before using it to install JRuby.

From an Archive

If you have a heavily customized setup or just like doing things your-
self, you can get a .zip or .tar.gz archive from the same download page.
Extract the archive somewhere convenient on your system, such as C:\
or /opt. You can run JRuby straight from its own bin subdirectory, but
you’ll probably find it more convenient to add it to your PATH.

On UNIX (including Mac OS X), you can do the following:
$ export PATH=$PATH:/opt/jruby/bin

On Windows, you’ll need to set both the PATH and JAVA_HOME variables:

C:\> SET PATH=%PATH%;C:\jruby\bin
C:\> SET JAVA_HOME="C:\Program Files\Java\jdkl.5.0_19"

You'll also need a recent version of the Java runtime, at least version
1.5.6

5. http://rvm.beginrescueend.com
6. http://java.com/en/download

Report erratum

this copy is (P1.0 printing, January 2011)

http://rvm.beginrescueend.com
http://java.com/en/download
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=22

KICKING THE TIRES < 23

From Source Code

If you're never satisfied with anything less than the latest features and
bug fixes, you may want to try your hand at building JRuby from
source. You'll need the following in addition to the Java runtime men-
tioned earlier:

* The Ant build system, version 1.7 or newer’
* The Git source control system®

First, grab the latest code with Git:

$ git clone git://github.com/jruby/jruby.git

Next, jump into the jruby directory that just got created:

$ cd jruby

If you want to compile the source of a specific release, such as JRuby
1.5.5, run the git checkout command:®

$ git checkout 1.5.5

Finally, build the software:

$ ant clean
$ ant
$ ant test

Assuming the tests pass, you're ready to run JRuby. It’s perfectly valid
to specify a full path to jruby or jruby.exe every time you run it—JRuby
will automatically figure out where its support libraries are relative to
the executable. But from here on out, the examples in this book will
be written as if you've put the bin directory directly in your PATH, as
described earlier.

1.2 Kicking the Tires

Ready to try it? First, make sure you have a good executable:

$ jruby --version
jruby 1.5.5 (ruby 1.8.7 patchlevel 249) (2010-11-10 4bd4200) (Java HotSpot(TM) ...)

If you have any problems getting to this point, check your PATH, and
make sure you're running the latest release version of JRuby.

7. http://ant.apache.org
8. http://www.git-scm.com
9. To get out of building a specific release, type git checkout master.

Report erratum

this copy is (P1.0 printing, January 2011)

http://ant.apache.org
http://www.git-scm.com
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=23

THE INTERACTIVE SHELL < 24

It's time to run some code. The simplest way to try a simple Ruby
excerpt, whether you're using plain Ruby or JRuby, is to pass the -e
option to the interpreter:

$ jruby -e "puts 'This is a short program'"
This is a short program

Now that you're up and running, let’s look at some more useful ways to
execute JRuby.

1.3 The Interactive Shell

Just as Ruby ships with irb for trying code interactively, JRuby has jiro:

$ jirb

irb(main):001:0> ['Hello', 'world'].join " '
=> "Hello world"

irb(main):002:0> "ybuRJ morf".reverse

=> "from JRuby"

irb(main):003:0>

As with the REPL!? from any other dynamic language, jib gives you
instant feedback on the results of each command you type into it.
Although this technique is a great way to explore the language, we're
guessing that you're interested in running some actual programs, too.

1.4 The Command Line

To get a feel for running interpreted and compiled programs in JRuby,
we're going to write a really trivial program and run it in a couple of
different ways.

The Simple Case
Put the following code into a file called example.rb:
DownToad infroduction/example.rb
puts "So, how are you liking the pace so far?"
pace = loop do

puts "(1) Move it along"

puts "(2) Just right"”
puts "(3) Not so fast!"”

10. Read-eval-print loop, an interactive environment for programming

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction/example.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=24

THE COMMAND LINE <« 25

res = gets.to_i
break res if (1..3).include? res
end

puts (pace == 2) ?
"Great; see you in the next section" :
"Thanks; we'll see what we can do"

Now, run it from the command line like so:

$ jruby example.rb

Go ahead and give us an answer; we can take it.

= So, how are you Tiking the pace so far?
(1) Move it along
(2) Just right
(3) Not so fast!

= 1

= Thanks; we'll see what we can do
jruby takes a wide range of command-line parameters to customize the
way your programs run. A full discussion is outside the scope of this
chapter, but it’'s worth talking about one of the more important ones.

Running Common Ruby Programs

If you've been coding Ruby for a while, youre used to having certain
tools available as executables, such as gem and rake. A typical Ruby
program will install itself into your Ruby distribution’s bin directory.
You may be tempted just to make sure JRuby’s bin is at the front of
your PATH and then run these commands directly just by typing in their
names.

But it’s best to invoke command-line tools through JRuby, rather than
directly. In particular, Ruby’s package manager, RubyGems, may not
know whether to use plain Ruby or JRuby if you just type gem on the
command line.

A much more reliable approach is to use Ruby’s standard -S option for
launching stand-alone scripts.!! Instead of typing this:

$ gem install rspec

...you’d type the following:

$ jruby -S gem install rspec

11. For more information about this option, see Appendix C, on page 294.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=25

1.5

‘ég lan Says. ..

What Do We Use?

With all this talk of development environments, what do we
the authors use to write code for our JRuby projects? By some
strange cosmic coincidence, four out of the five of us are heavy
users of the Emacs text editor.* The odd man out hops between
Vim and TextMate.t-* All three of these editors have great sup-
port for Ruby, and all three of them stay out of our way while
we're coding.

*. http://www.gnu.org/software/emacs/
t. http://vim.org
t. http://macromates.com

This approach works for any Ruby command-line tool, including gem,
rake, spec, and others.

There are a ton of other useful JRuby options; for more information,
type jruby —-help, or see Appendix C, on page 294.

IDEs

JRuby is easy to use from the command line—so much so that we’ll
be giving many examples of it in this book. But using an integrated
development environment has its merits. In addition to the code com-
pletion features most people think of, IDEs can manage your JRuby
installation and classpath for you.

Nearly every popular IDE has some support for Ruby, either directly or
through a plug-in. If you're asking us for a recommendation, though,
we have two.

RubyMine

RubyMine is a Ruby-specific IDE created by the JetBrains company.'?
It has the level of sophistication you’d expect from the folks who created
IntelliJ IDEA, the beloved Java development environment.

12. http://www.jetbrains.com/ruby/index.htmi

IDEs «d 26

Report erratum

this copy is (P1.0 printing, January 2011)

http://www.gnu.org/software/emacs/
http://vim.org
http://macromates.com
http://www.jetbrains.com/ruby/index.html
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=26

™ ™ M |w) [Usersfundees/src/using-jruby/Book/code/introduction._to_rails/rouge ~ .../test/unit/restaurant_test.rh - JetBrains Ruby...
EE 5G| iEBR |'~__‘;g ‘@\5‘ 1 & H__gDevelopmem:rouge v‘Di P | a B & S fﬁ‘f‘w?)

T CENE== ‘ # [[2, restaurant_test.rb |
3
2| view as: =l] = o def test_can_instantiate_and_save_a_restaurant r
- restaurant = Restaurant.new
IR = public] restaurant.name = "Mediterraneo”
i : restaurant.description = <<DESC
L‘E*_“r o0ne of the best Italian restaurants in the Kings Cross area,
P IS &Mediterraneo will never leave you disappointed
» [functional i
» [integration :—DESC
T restaurant.address = “1244 Kings Cross Road, London WC1X 8CC”
= restaurant.phone = "+44 1432 3434" .
» [performance
¥ & unit 3
» Tt helpers v ||l restaurant.save| 1
[, arminisrearar recr 1 & SaVe ActiveRecord: :Base
E— o ActiveRecord: :Base
Soinmw save_with_transactions(perform_validatio.. ActiveRecord: : Transactions
* = v [Found 1 TODO ite, iM% save_with_transactions! ActiveRecord::Transactions
| = T Boomwdsis Gy save with_validation(perform_validation=... ActiveRecord::Validations
i3 E782,38 0 o save with_validation! ActiveRecord: :Validations
é o Choosing item with ~ will overwrite the rest of identifier after caret
2l @
5 i
~l [
o
["
| 8 9: Changes || = 0: Messages I[D6 TODO]

26:20 Insert MacRoman 2 @5 BIMof 127M

Figure 1.1: The RubyMine IDE
I

As you can see in Figure 1.1, there’s a lot to RubyMine. We'll just men-
tion a couple of points that are hard to show in a screenshot. For one
thing, the tool is aware of popular test and directory naming conven-
tions for Ruby projects so you can jump automatically between a piece
of code and its tests. It also supports several refactoring techniques on
Ruby code.

NetBeans

NetBeans is an open source development environment with support for
several different programming languages.!'® You can download a Ruby-
specific build of the IDE and have everything you need to start coding.

With NetBeans, you can do some of the many things in Ruby that
you're used to doing in less dynamic languages: automatically com-
pleting code, stepping through a program in a debugger, designing a
GUI, and performing simple refactorings.

13. http://www.netbeans.org

IDEs «d 27

Report erratum

this copy is (P1.0 printing, January 2011)

http://www.netbeans.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=27

THE COMPILER <« 28

Because NetBeans is cross-language, its level of Ruby-specific integra-
tion is not quite as deep or polished as RubyMine’s. But it’s a close
second.

1.6 The Compiler

Throughout most of this book, we're going to run JRuby programs the
same way people run programs in plain Ruby: hand the text of the pro-
gram over to an interpreter. The interpreter walks through the program
piece by piece, translating and running code as it encounters it.

If you spend time in the Java universe, you're probably wondering
whether JRuby allows you to compile your Ruby code into .class files
up front and treat them like compiled Java code.

The answer is yes. Here’s how you'd compile the previous example:

$ jrubyc example.rb
Compiling example.rb to class example

The compiler supplies a main() method for you, so you can now run the
program straight from the jova command (adjust the path here to point
to your JRuby installation):

$ java -cp .:/opt/jruby/1ib/jruby.jar example

Note that your compiled program still depends on some JRuby-defined
support routines, so jrubyjor needs to be on your CLASSPATH.!* Also, the
compiler compiles only the files you specifically pass to it. If you refer-
ence some_ruby_library.rb, you’ll have to compile that extra .rb file yourself
or ship it in source form alongside your .closs file.

When you look at compilation in detail, there are a lot more shades
of distinction between “no compilation at all” and “compile everything
up front.” JRuby may compile parts of your program to Java bytecode
at runtime to improve performance. You’'ll find a detailed discussion of
this and other aspects of compilation in Chapter 4, The JRuby Compiler,
on page 78.

14. There’s more on how JRuby uses the Java classpath in Chapter 2, Driving Java from
Ruby, on page 31

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=28

JAVA INTEGRATION < 29

1.7 Java Integration

JRuby can use Java objects much as if they were Ruby objects. Here’s
a simple example that exercises Java’'s Arraylist class:

Download introduction/interop.rb

require 'java'
Tist = java.util.ArraylList.new

Tist << 'List of'
Tist << 3
Tist << :assorted_items

Tist.each do |item]|

puts "#{item.class}: #{item}"
end
As you can see, we can add a variety of objects, including native Ruby
types like Symbols, to the list. JRuby even provides appropriate Ruby
iteration idioms for Java collections, which is why we can call each() on
the list in this example.

Of course, Ruby has its own perfectly respectable collection classes.

Unless you're calling a Java library function expecting an Arraylist, it’'s

usually better just to use a Ruby Array instead. But bear with us and try

our slightly stilted example in jirb; you should see something like this:
= String: List of

Fixnum: 3
Symbol: assorted_items

Now, let’s try something we couldn’t have done in plain Ruby. Let’s hook
into some Java platform-specific functions and query a few properties
of the JVM:

DownToad introduction/jvm.rb

require 'java'

os = java.lang.System.get_property 'os.name'
home = java.lang.System.get_property 'java.home'
mem = java.lang.Runtime.get_runtime.free_memory

puts "Running on #{os}"
puts "Java home is #{home}"
puts "#{mem} bytes available in JVM"

= Running on Mac 0S X
Java home is /System/Library/Frameworks/JavaVM. framework/Versions/1.5.0/Home
1592320 bytes available in JVM

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/introduction/interop.rb
http://media.pragprog.com/titles/jruby/code/introduction/jvm.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=29

WRAPPING UP < 30

As you can see, we can access native Java classes, such as java.lang.
Runtime and java.lang.System, using a dot notation similar to Java’s import
syntax. One thing to note is that JRuby gives you the option of call-
ing Java functions like getProperty() by more Ruby-fitting names like
get_property.

1.8 Wrapping Up

Now that you have JRuby installed and have taken it for a spin, it’s
time to get some real work done. In the upcoming chapters, we’ll tackle
some of the most common ways people bring the Java and Ruby worlds
together.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=30

2.1

Chapter 2

It might be tempting to think of Java/Ruby integration as nothing more
than calling from one language to another. But that’s selling JRuby
short. In a typical project, you're really interacting with both platforms.
You might construct a Ruby object, pass it to a Java function, and
watch the Java code call other Ruby methods you've defined.

In this chapter, we’ll look at cases where the interaction starts in Ruby:
calling Java methods from Ruby code, implementing Java interfaces in
Ruby, and so on. In the next chapter, we’ll start with a Java program
and work our way back to Ruby.

Seeing Java Through Ruby Glasses

The first use case for JRuby, and still the most common one today, is
calling a Java method from Ruby. Why would someone want to do this?
There are thousands of reasons. Here are just a few of the things you
can do with this interoperability:

* Visualize geographic data with NASA’s World Wind project.! In Fig-
ure 2.1, on the following page, you can see a map of our home-
towns that we put together with just a few lines of Ruby.

¢ Render beautiful SVG graphics with the Apache Batik project, like
the folks at Atomic Object did for their cross-platform simulation
app.? The elegant visuals they achieved are shown in Figure 2.2,
on page 33. (Image used with permission of the Avraham Y. Gol-
dratt Institute, LP.)

1. http://worldwind.arc.nasa.gov
2. http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

http://worldwind.arc.nasa.gov
http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

SEEING JAVA THROUGH RUBY GLASSES <« 32

A0 JRuby Authors

T
Arctic Ocean

EUROPE

North Atiantic Ocean

South P3gific Ocean
South Atiantic Ocean

SOUTH AMERICA

—
2000 Km

o

Figure 2.1: Locating JRuby authors with World Wind
I

¢ Handle a protocol or data format for which a Java library is the
best fit. For example, you might choose the Java-based iText li-
brary to add PDF support to your Ruby program—especially if you
need digital signatures or some other feature specific to iText.>

¢ Slay the “cross-platform Ruby GUI” dragon by writing a Swing or
SWT program in Ruby.

* Boost the performance of a Ruby program. For example, the team
behind the Redcar text editor knows they will always have the
option of dropping down into Java for any performance-critical
parts.*

3. http://www.itextpdf.com
4. http://redcareditor.com

Report erratum

this copy is (P1.0 printing, January 2011)

http://www.itextpdf.com
http://redcareditor.com
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=32

SEEING JAVA THROUGH RUBY GLASSES <« 33

Simulation Schedule View Application Help
110 More Quality Problems (option 1) Launch view: [ETTYFTI Buffer
Wesks: 1. Weskly Expenes: $11000 TR ST T

Auto Resource Product A Product C Product E

Lt Blue

Yellow (]

I
idis

) purple 10

l [
dle Processing

[orange

[Blue

| |
Idie

) Green

||
Idie

B —————]
Hour 7 of 40 Day 1 of 5

Figure 2.2: Simulating industrial processes with Batik

e Tame a legacy Java project by walling off the old spaghetti code
behind a clean Ruby interface.

* Sneak Ruby into a Java shop; after all, JRuby is “just another .jar
file.”

* Write great tests for your Java code, using one of Ruby’s outstand-
ing test frameworks.

¢ Index and search huge amounts of text with the Lucene search

engine.5

* Write a database-backed web application in the Rails framework.
Behind the scenes, Rails’s database adapters call into Java’s data-
base libraries to do the heavy SQL lifting.

http://lucene.apache.org

Report erratum

this copy is (P1.0 printing, January 2011)

http://lucene.apache.org
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=33

SEEING JAVA THROUGH RUBY GLASSES <« 34

All of these scenarios are the bread and butter of JRuby and are well
supported. But as in any domain where two languages meet, there are
some subtleties, gotchas, and impedance mismatches.® This chapter
will address many of these edge cases.

First things first, though. We’ll lead off with the basics of accessing
Java classes from JRuby, starting with how your Ruby code can load
and interact with Java libraries. Then we’ll explore the details of param-
eter passing and automatic type conversions. Finally, we’ll show a few
tips and tricks to make Java classes and objects a natural part of your
Ruby programs.

A Simple Example: Wrapping a Library

Let’s start with a working program to drive a Java library. We’ll expand
on one of the examples we described earlier: using the iText library
to generate a PDF file. This will be just enough to give a hint of the
flavor of driving Java, without having to bang our heads against the
more obscure edge cases (yet). Download the latest .jar (for example,
iText-6.0.1.jar) from the official site, and copy it into the directory where
you're following along in code.” Next, add this snippet to a file called
pdf_demo.rb:

Download java_from_ruby/pdf_demo.rb
require 'java'
pdf = com.itextpdf.text.Document.new

para = com.itextpdf.text.Paragraph.new 'Brought to you by JRuby'
file java.io.FileOutputStream.new 'pdf_demo.pdf’

com.itextpdf.text.pdf.PdfWriter.get_instance pdf, file

pdf.open
pdf.add para
pdf.close

In the spirit of walking before we run, let’'s walk through the source
before we run the program. In the opening lines, we create a few Java

6. The term impedance mismatch comes from electrical engineering. It refers to the
power lost to reflection when two circuits are connected. It’s also a poetic way to describe
the conceptual losses between two different software domains.

7. http://sf.net/projects/itext/files

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/pdf_demo.rb
http://sf.net/projects/itext/files
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=34

SEEING JAVA THROUGH RUBY GLASSES <« 35

oo [*| pdf demo.pdf (1 page)

Brought to you by JRuby

-
W
Fs
v

Figure 2.3: The generated PDF in all its glory
I

objects the same way we’d create Ruby ones—by calling the class’s new
method. We use a typical full-package name for each class (for example,
com.itextpdf.text.Document).

In JRuby, Java methods look and act like Ruby ones. All the method
names you see in this snippet—open, add, and close—belong to Java
classes. That includes get_instance, an alias JRuby has created for
getinstance() to make it fit better in the Ruby universe.

Some Ruby types get converted into their Java counterparts automati-
cally for you, such as the “Brought to you...” string. Others need a little
hand holding; you'll see a few of those cases later.

Now that you've had a chance to look through the code, let’s run it.
You'll need to tell JRuby where the external iText library lives by setting
the classpath. Java provides the -cp option for this purpose. JRuby will
forward any option to the underlying Java runtime if you preface it
with -J. Go ahead and try the following command, adjusting the version
number of iText to match what you downloaded:

$ jruby -J-cp iText-5.0.1.jar pdf_demo.rb

That'll create a PDF file called pdf_demo.pdf in the same directory. If
you open it, you should see something like Figure 2.3. It’s not the most
visually breathtaking use of the format, but you get the idea.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=35

SEEING JAVA THROUGH RUBY GLASSES <«

Another Simple Example: Extending a Ruby Program

Let’'s consider another big use case: taking an existing Ruby program
and rewriting part of it in Java for speed. Just for fun, we’ll make this
one a GUI app, albeit a trivial one. We're going to build a calculator for
the famous stack-busting Ackermann function.® The Ruby code for this
reads like the official mathematical definition:

Download java_from_ruby/ackerizer.rb

class Ackermann
def self.ack(m, n)

return n + 1 ifm==20
return ack(m - 1, 1) if n =20
return ack(m - 1, ack(m, n - 1))

end

end

This implementation is far too slow for a production app, as will become
painfully clear after we wrap a Swing user interface around it. To build
our GUI, we're going to use a Ruby helper called Rubeus.® Go ahead
and install that now:

$ jruby -S gem install rubeus

We'll talk more about Rubeus in Chapter 10, Building GUIs with Swing,

on page 240. For this short example, the code is simple enough to show
without much explanation. It’s just a couple of text inputs and a button:

Download java_from_ruby/ackerizer.rb

require 'rubygems'
require 'java'
require 'rubeus’'

include Rubeus::Swing

JFrame.new('Ackerizer') do |frame|
frame.layout = java.awt.FlowLayout.new

@m
@n

JTextField.new '3’
JTextField.new '9’

JButton.new('->") do
@result.text = Ackermann.ack(@m.text.to_i,
@n.text.to_i).to_s
end

8. http://en.wikipedia.org/wiki/Ackermann_function
9. http://code.google.com/p/rubeus/

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://en.wikipedia.org/wiki/Ackermann_function
http://code.google.com/p/rubeus/
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=36

SEEING JAVA THROUGH RUBY GLASSES <« 37

@result = JTextField.new 10

frame.pack
frame.show
end

Throw those two code snippets into a file called ackerizerrb, and then
launch the app. Youll most likely need to increase the JVM’s stack
size, using Java’s standard -Xss setting together with JRuby’s -J “pass-
through” option:

$ jruby -J-Xss64m ackerizer.rb

You should see something like Figure 2.4, on the following page. Try
clicking the button to calculate ack(3, 9). The results will probably take
several seconds to appear in the window. Because our app is a one-trick
pony, there’s only one suspect worth investigating: the ack method.!?

There’s a lot we could try in Ruby before jumping into Java. At the very
least, we should be storing our intermediate values so that we don’t
have to calculate them over and over. But let’'s say you've done all that,
and you still need faster results. Here’s how you’d move the calculation
into a Java class:

Download java_from_ruby/Ackermann.java

public class Ackermann {
public static 1int ack(int m, int n) {
if (m == 0)
return n + 1;

if (n == 0)
return ack(m - 1, 1);

return ack(m - 1, ack(m, n - 1));

}
...which you can then compile like so:

$ javac Ackermann.java

We need to make only one change to the Ruby code to use the new Java
class. In the middle of the button’s on_click handler, add the text Java::
to the beginning of the Ackermann.ack call.

10. On any nontrivial project, you'll want to profile your code, rather than relying on
inspection and guesswork. See Appendix C, on page 294, for how to do that with JRuby.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/Ackermann.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=37

DEALING WITH THE CLASSPATH < 38

Figure 2.4: The Ackermann calculator

@result.text = Java::Ackermann.ack(@m.text.to_i,
@n.text.to_i).to_s

When you rerun the program and click the button, the result should
appear immediately. Now that we've seen examples of the most common
ways people use JRuby, let’s look at each step of the process in more
detail.

2.2 Deadling with the Classpath

Before you can use that piece of external library wizardry, you have
to find it. When you bring Java code into your app, you're playing by
Java’s rules. Rubyists are used to saying require ‘some_file_name’ and
counting on the file to show up inside one of Ruby’s search paths. By
contrast, Java looks for each class by its fully specified package name;
the physical location of the file isn’t as important.

For readers coming from the Ruby world, the classpath is the list of
directories and .jor files where Java (and therefore JRuby) will look
for external libraries. If you're doing a java_import (see Section 2.3, By
Importing, on page 42) and JRuby can’t find the class you're asking for,
the classpath is usually the first place to make adjustments.

A lot of people code in an IDE that sets up their classpath for them
and deploy to a server that has its own notions of where things should
be; they’ll never touch the classpath themselves. But if you're using
the command line a lot on your own, you’ll need to set the path up
yourself. JRuby supports several ways of doing this to ensure that both
Ruby developers and Java developers will find familiar ground.

From the Command Line

There’s a strong parallel between the Ruby and Java ways of passing
extra search paths on the command line. Ruby uses the -I switch:

$ ruby -I/path/to/1ibrary my_program.rb

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=38

DEALING WITH THE CLASSPATH

;, Charlie Says. ..

“ The Default Package

Notice here we’re using the Java: prefix. In this case, it's
because our Java-based Ackermann class is in the default
package. Such classes can be accessed immediately under
the Java namespace.

JRuby supports -l for Ruby code, naturally, but also understands Java’s
-cp/-classpath option for Java classes:

$ jruby -J-cp /path/to/library.jar
C:\> jruby -J-cp C:\path\to\library.jar

Remember that -J specifies that JRuby should pass the -cp option to
the underlying Java runtime.

With an Environment Variable

As we did with the command-line arguments, we're going to draw a
parallel between the ways Ruby and Java use environment variables.
If you're a lazy typist like we are, you're probably used to storing your
most commonly used Ruby search paths in the RUBYOPT environment
variable:

$ export RUBYOPT=-I/path/to/common/1ibraries

C:\> set RUBYOPT=-IC:\path\to\common\libraries

JRuby supports RUBYOPT for finding Ruby code, and the Java equivalent
(CLASSPATH) for finding Java classes:

$ export CLASSPATH=$CLASSPATH:/path/to/1ibrary.jar

C:\> set CLASSPATH=%CLASSPATH%;C:\path\to\library.jar

If you have both a CLASSPATH and a -J-cp option, the latter will take

priority. Of course, you can always combine them by referencing the
environment variable from inside the search path:

$ jruby -J-cp $CLASSPATH:/path/to/11ibrary.jar
C:\> jruby -J-cp %CLASSPATH%;C:\path\to\library.jar

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=39

DEALING WITH THE CLASSPATH <«

;, Charlie Says. ..
" _A Gentle Reminder

Make sure you have called require ‘java’ before using the
SCLASSPATH variable. JRuby doesn’t prepare that variable unless
it sees you're planning to use Java libraries.

Once JRuby has loaded your program, you can further manipulate the
classpath from within Ruby.

In the Source Code

As an alternative or a supplement to the command-line classpath, you
can add a .jor or directory to the SCLASSPATH variable inside Ruby itself
(much as you're used to doing with SLOAD_PATH or $: for Ruby libraries):

Download java_from_ruby/classpath.rb

$CLASSPATH << '/usr/local/1ib/jemmy/jemmy.jar"'

To sum up what we've seen so far: in JRuby, you use Java techniques
to find Java code, and you use Ruby techniques to find Ruby code.
Now, we're going to do something a little different. We're going to cross
the language barrier and use a Ruby technique to find Java code. The
simplest way to do this is to use Ruby’s require method to add a .jar to
the search path:

Download java_from_ruby/classpath.rb

require 'Jusr/local/lib/jemmy/jemmy.jar'
You may be wondering whether other Ruby mechanisms can load Java
code. Indeed, they can. Both the -| argument and the SLOAD_PATH vari-
able work on both Ruby and Java libraries in JRuby:

$ jruby -I/path/to -e "require 'library.jar' ...
C:\> jruby -IC:\path\to -e "require 'library.jar' ..."

Download java_from_ruby/classpath.rb

$LOAD_PATH << '/usr/local/1ib/jemmy’
require 'jemmy.jar'

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/classpath.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=40

LOADING CLASSES < 41

Now that JRuby knows where on disk to look for external libraries, how
do we crack them open and get at the classes inside?

2.3 Loading Classes

Your Ruby code will see Java packages as Ruby modules. This is not
surprising, because these are the fundamental namespace mechanisms
of the two languages. Let’s take a closer look at how this works.

By Namespace

The most reliable way to refer to a Java class in JRuby is by tacking
Java:: onto the beginning of the full package name:

Download java_from_ruby/loading_classes.rb

Java::clojure.lang.Rep]l

=> Java::ClojurelLang: :Repl

Notice JRuby has translated the Java-like clojure.lang.Repl syntax into
an internal name, Java::ClojureLang::Repl. It may be tempting to “cut out
the middleman” and use the latter name directly in your code, but we
don’t recommend it. Internal formats are subject to change, but the
package-name syntax will always work.

For the most commonly used namespaces, JRuby provides top-level
functions like com, org, java, and javax. To use these, you have to require
‘java’ first:

Download java_from_ruby/loading_classes.rb

require 'java'

java.lang.StringBuffer
=> Java::Javalang::StringBuffer

If the class you want to access lives in the default package (that is, no
package specifier at all), just prepend Java:: directly to the class name:

Download java_from_ruby/loading_classes.rb

Java: :MyTopLevelClass
=> Java::MyTopLevelClass

It's worth noting that the module/namespace for a given package is just
another Ruby object.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=41

LOADING CLASSES <« 42

You can stash it in a variable or pass it around at will:

Download java_from_ruby/loading_classes.rb

swing = javax.swing
swing.JFrame
=> Java::JavaxSwing: :JFrame

The techniques in the next section will build on this idea of treating
module and class names like regular data.

By Importing

For classes nested deeply inside namespaces, you may get tired of typ-
ing out the full module or package name every time. A common con-
vention is to define a new constant consisting of just the class name:

Download java_from_ruby/loading_classes.rb
StringBuffer = java.lang.StringBuffer
JRuby provides a handy java_import shortcut that does exactly this kind

of assignment. You can indicate the class you want using a Ruby con-
stant, a Java package name, or a string:

Download java_from_ruby/loading_classes.rb

java_import java.lang.StringBuffer
java_import 'java.lang.StringBuffer'

The latter is handy for importing a bunch of similarly named packages

together:
Download java_from_ruby/loading_classes.rb
['Frame', 'Dialog', 'Button'].each do |name|
java_import "org.netbeans.jemmy.operators.J#{name}Operator"
end

You can also pass a block to java_import in case you need to do some-
thing else to the package name, such as renaming it to avoid a conflict
with some existing Ruby class:

Download java_from_ruby/loading_classes.rb

java_import 'java.lang.String' do |pkg, cls|

puts "#{cls} Tlives in #{pkg}"

"JString' # don't clobber Ruby's String class
end
You may encounter code in the wild that uses the shorter import alias.
We recommend sticking with java_import to avoid conflicts with libraries
such as Rake that define their own import method.

Finally, we can move on to actually calling external code.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/loading_classes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=42

USING OBJECTS <« 43

2.4 Using Objects

It’s taken a bit of housekeeping to get to this point. We've had to find
libraries, load classes, and resolve names. Now comes the payoff: driv-
ing a Java object from Ruby.

Static Methods

Let’s start with the easiest kind of Java method to invoke: static meth-
ods. Since these aren’t attached to any particular class instance, we
can punt on the whole issue of object creation for now. You can call a
static Java method directly from JRuby:

Download java_from_ruby/static.rb

java_import java.lang.System
System.currentTimeMillis # => 1251075795138

But the Java convention of using camelCase looks out of place among
Ruby’s snake_case names. Your code will look more Ruby-like if you
take advantage of JRuby’s automatic mapping between Ruby names
and Java names:

Download java_from_ruby/static.rb

java_import java.lang.System
System.current_time_millis # => 1251075795172

The mapping also knows how to deal with function names containing
capitalized abbreviations, like “URL.”

Download java_from_ruby/static.rb

java_import java.net.URL

assume you've initialized some object "factory" here
URL.setURLStreamHandlerFactory(factory)
URL.set_urlstream_handler_factory(factory)

Static Fields

Static fields of Java classes are typically used to implement either sin-
gleton objects, such as Logger.global, or constants, such as Level SEVERE.
For the former case, you'll just treat the field like a Ruby class-level
method, calling it with dot notation and a Ruby-style snake_case name.
For the latter case, you'll treat the field like a Ruby constant, accessing
it with double-colon notation and matching the Java capitalization.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=43

USING OBJECTS «d 44

Here’s an example that shows both situations:
Download java_from_ruby/static.rb
java_import java.util.logging.Logger

java_import java.util.logging.Level

Logger.global.log Level::SEVERE, "It Tooks 1ike you're writing a letter!"

Object Construction

JRuby adapts many Java idioms to “the Ruby way.” Constructing Java
objects falls right into this aesthetic; you just use the normal Ruby new
class method. You might wonder how this is possible, since Java sup-
ports overloaded methods (including constructors) and Ruby doesn’t.
But JRuby sweeps this difference under the rug for you, looking at the
parameters you pass to new and selecting the constructor that best
matches those arguments. We’ll see more detail on argument matching
in a minute.

First, let’s look at a concrete example. Java’s URL class has several
constructors, including these two:

new URL(String spec)
new URL(String protocol, String host, String file)

JRuby will choose the best match when you call new:
Download java_from_ruby/instances.rb

URL.new 'http://pragprog.com/titles’
URL.new 'http', 'pragprog.com', '/titles'

Instance Methods

Just as with static methods, JRuby maps instance methods to nice
snake_case ones for you:

Download java_from_ruby/instances.rb
url.get_protocol # => "http"
As an added bonus, Java-style getters and setters are callable as Ruby-

style attribute accessors. In other words, the following two lines are
equivalent:

Download java_from_ruby/attributes.rb

car.setPrice(20_000)
car.price = 20_000

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/static.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/instances.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/instances.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/attributes.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=44

PASSING PARAMETERS <« 45

Instance Fields

On its own, JRuby doesn’t seek out a class’s fields and try to map them
to Ruby attributes. After all, most fields are private—there’s usually
no need to get at them from outside the class, let alone outside the
language. Still, there may be times when you really need this capability.
If you have the following Java class:

Download java_from_ruby/FieldDemo.java

public class FieldDemo

{

private int somePrivateField = 0;

public FieldDemo() {}
b

...you can reopen (that is, modify) the class in JRuby and specify a
Java-to-Ruby mapping for the field:

Download java_from_ruby/field_demo.rb

class FieldDemo
field_accessor :somePrivateField => :some_field
end

obj = FieldDemo.new

obj.some_field = 1

obj.some_field

=1

This will always work for public fields of a particular Java type, and if
your JVM’s security settings are lenient enough (most default configu-
rations are), it will work for protected, package-visible and private fields
as well.

2.5 Passing Parameters

Even the simple method calls in the past few sections are the result of
careful choreography on JRuby’s part. As we saw with the URL construc-
tors, JRuby seems to “know” which among several overloaded versions
of a Java method is the best fit for the way you're calling it in Ruby.

What about method parameters? Unless it was written specifically for
JRuby, a Java method will not expect to be passed a bunch of Ruby
objects. So, JRuby will automatically convert certain parameters from
the original Ruby types to the Java types needed by the method.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/FieldDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/field_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=45

PASSING PARAMETERS <« 46

We're as mistrustful of magical thinking in programming as you are.
Fortunately, there’s no magic here, just some straightforward mappings
between Java and Ruby types. Once you understand why and how
JRuby selects methods and converts parameters, you'll always know
how your code will behave.

Simple Type Conversion

For meat-and-potatoes types like numbers and strings, JRuby will copy
each Ruby parameter into a reasonable Java equivalent. Consider this
Java class:

Download java_from_ruby/BigintDemo.java

import java.math.BigInteger;

public class BigIntDemo {
public static final BigInteger GOOGOL =
new BigInteger("10").pow(100);

public static boolean biggerThanGoogol(BigInteger i) {
return (GOOGOL.compareTo(i) < 0);
}
}

...and the Ruby code that calls it:
Download java_from_ruby/big_int_demo.rb

a_big_number = 10 =+ 100 + 1
BigIntDemo.bigger_than_googol(a_big_number)
=> true

Ruby’s Bignum class and Java’s java.math.Biginfeger are distinct types,
but JRuby seamlessly converts the Ruby data into its Java counterpart.

Arrays
Although JRuby adds a few conveniences to Java arrays to make them

feel a little more at home in the Ruby world, Ruby arrays and Java
arrays are actually distinct types:

Download java_from_ruby/ArrayDemo.java

public class ArrayDemo {
public static String whatTypeIsIt(Object o) {
return o.getClass().getName();
}

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/BigIntDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/big_int_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/ArrayDemo.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=46

PASSING PARAMETERS <« 47

;, Charlie Says. ..

Ruby Arrays in Java

JRuby’s implementation of the Ruby Aray class provides a
java.util.List interface for the Java world to use. So, there’s really
no expensive data conversion happening until some piece of
Java code starts extracting individual elements from the Ruby
array you passed in.

Download java_from_ruby/array_demo.rb
ArrayDemo.what_type_is_it(['a’', 'b', 'c'])
=> "org.jruby.RubyArray"

ArrayDemo.what_type_is_it(['a’', 'b', 'c'].to_java)
=> "[Ljava.lang.Object;"

JRuby can convert Ruby arrays to Java ones for you, so this difference
isn’t much of an inconvenience in practice.

Plain OI' Java Objects

When you've obtained a Java object from some API call, you can freely
pass that object around in the Ruby world and hand it back to Java
undisturbed. For example, let’s say you wanted to construct a Java URL
object, stash it in a Ruby variable, and then pass it into a Java method
later:

Download java_from_ruby/url_demo.rb

url = URL.new 'http://pragprog.com/titles'
add_url_to_some_ruby_Tlist(url)

URLDemo.retrieve_url url
=> "big 1ist of book titles"

There’s no conversion going on in this case; the Java URL object is simply
kept intact throughout its stay in Ruby-land.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/array_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/url_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=47

PASSING PARAMETERS <« 48

Variable Arguments
JRuby can call Java methods with variable argument lists:
Download java_from_ruby/variable_args_demo.rb

VariableArgsDemo.longest_string "foo", "bazzles", "schnozzberry"
=> "schnozzberry"

The syntax is exactly like what you’d use for any other function.

Explicit Coercion

Though JRuby’s mapping between Ruby and Java types will cover most
of the cases you’ll encounter, you may occasionally want to coerce Ruby
types explicitly to specific Java ones. For instance, if JRuby’s auto-
matic conversion is likely to be time-consuming, you might want to
pre-convert the object:

Download java_from_ruby/string_demo.rb

ruby_string = "This is a large string we don't want to convert frequently"

java_string = ruby_string.to_java

StringDemo.method_taking_a java_string

When you require ‘java’, every Ruby object gains a to_jova method. Either
you can call it with no parameters to get the nearest Java type or you
can specify a particular Java class you want to convert to.

The Extra Mile

The Ruby/Java conversions we've seen so far have been like the sim-
ple translations in a tourist’s phrasebook. They're fine for rudimentary
communication. But as a seasoned traveler, you enjoy speaking in a
more fluent, idiomatic way.

JRuby includes tons of extra conveniences for using Ruby idioms with

Java classes, and vice versa. Here are a few of the most common ones.

Strings and Regular Expressions

Ruby’s to_s and Java’s toString() are a natural fit for each other. Define
fo_s on your Ruby object, pass it into Java, and any Java code expecting
to find toString() in your class will be able to call it.

Java regular expressions can be used with Ruby’s =~ operator:
Download java_from_ruby/special_cases.rb

java_import java.util.regex.Pattern

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/variable_args_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/string_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=48

PASSING PARAMETERS <« 49

simple_us_phone = Pattern.compile "\\d{3}-\\d{3}-\\d{4}"
"Call 503-555-1212" =~ simple_us_phone # => 5

You can still match strings the Java way, through the various methods
of Pattern and Matcher. But the Ruby syntax is much more convenient.

Collections

If you're accustomed to indexing Ruby Array and Hash objects with the
[] operator, you'll find that the same technique works on Java Map and
List objects as well:

Download java_from_ruby/special_cases.rb

assume this came from some Java function
java_list.entries # => ["Tock"™, "stock", "barrel"]
first_item = java_list[0] # => "lock"

Moreover, all Java Collection objects gain the traditional Ruby array
operators: +, -, <<, length, and join.

JRuby mixes the Ruby Enumerable interface into Java Collections and
lterables. So, you can use Ruby’s functional programming idioms
directly on Java classes:

Download java_from_ruby/special_cases.rb

assume this came from some Java function
java_list_of_urls.entries
=> [#<Java::JavaNet::URL:0xacecf3>, #<Java::JavaNet::URL:0xf854bd>]

protocols = java_list_of _urls.map do |url|
url.protocol

end

=> ["http", "ftp"]

Java and Ruby each have a notion of Comparable objects:

Download java_from_ruby/special_cases.rb

uris = [URI.new('/uploads'),
URI.new('/images'),
URI.new('/stylesheets')]

uris.sort.map {|u| u.to_string}

=> ["/images", "/stylesheets", "/uploads"]

JRuby maps the two concepts together so that you can sort Java objects
inside Ruby collections.

Report erratum

y is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=49

CALLING OVERLOADED METHODS <« 50

Edge Cases

Before we move on, let's dip our toes into a few of the more obscure
conversions. JRuby adds the fo_proc Ruby method to Java Runnables so
they can be passed around as blocks of code in Ruby. Here’s a rather
contrived example that hands off a Java thread to a Ruby one:!!

Download java_from_ruby/special_cases.rb

runnable = java.lang.Thread.new
run_it = runnable.to_proc
Thread.new &run_it

Java InputStreams and OutputStreams can be converted to Ruby IO ob-
jects with the to_io method:

Download java_from_ruby/special_cases.rb

java_out = java.lang.System.out.to_io
java_out << 'Hello from JRuby!'

You can catch Java exceptions in a Ruby rescue clause:
Download java_from_ruby/special_cases.rb

begin
java.text.SimpleDateFormat.new(nil)

rescue java.lang.NullPointerException
puts 'Ouch!'

end

Believe it or not, there is an overall theme to this parade of examples:
simplicity. JRuby supports so many different ways of passing data into
Java, precisely so that your Ruby code can be as lucid as possible.
Rather than trying to memorize every edge case, we recommend you
take one more glance over the most common uses described earlier and
then just let JRuby delight you. For those rare times when you really
need to know exactly what's happening inside the machinery, you can
turn to Appendix B, on page 290.

2.6 Calling Overloaded Methods

There are two reasons JRuby looks so closely at the parameters you
pass into Java methods. The first, as we've just seen, is to expose your

11. Speaking of threads, we should mention that JRuby is not subject to the “Global
Interpreter Lock” shared by some Ruby implementations. Your Ruby threads can run
simultaneously on multiple cores.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/special_cases.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=50

CALLING OVERLOADED METHODS <« 51

Ruby data to Java in the most convenient way possible. The second is
to select the best match for an overloaded method.

Automatic Resolution

The simplest case to consider is a set of overloads based on a single
parameter, where the differences among types are obvious:

Download java_from_ruby/OverloadDemo.java

import java.util.List;

public class OverloadDemo {
public static String whatTypeIs(long value) {
return "Jong";

}

public static String whatTypeIs(String value) {
return "string";

}

public static String whatTypeIs(Object value) {
return "object";
}
b

Here, the Java types are radically different from one another, and
JRuby is able to choose appropriate overloads with no assistance:

Download java_from_ruby/overload_demo.rb

OverloadDemo.what_type_is 42 # => "long"
OverloadDemo.what_type_is "Fun!" # => "string"
OverloadDemo.what_type_is Hash.new # => "object"

Sometimes, though, things get a little hairier. In the following Java
class, the overloaded methods both take integer types:

Download java_from_ruby/HowManyBits.java

public class HowManyBits {
public 1int neededFor(int i) {
return 32;

}

public int neededFor(long 1) {
return 64;

}

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/OverloadDemo.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/overload_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/HowManyBits.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=51

CALLING OVERLOADED METHODS <« 52

When we try to call the version that takes a 32-bit integer, JRuby ends
up promoting our parameter to a long instead:

Download java_from_ruby/how_many_bits.rb

bits = HowManyBits.new

bits.needed_for 1_000_000
=> 64

How do we tell JRuby, “No, I really mean the int version?”

Forcing a Specific Overload

In Java, you can choose which overload you want by casting arguments
to specific types. For instance, you might use System.out.printin((char)70)
to call the version of printin that takes a character, rather than the one
that takes an int. But Ruby has no casting syntax...are we stuck? For-
tunately not. We can use JRuby’s java_send method to specify the int
version of the neededFor() method from earlier:

Download java_from_ruby/how_many_bits.rb

bits.java_send :neededFor, [Java::int], 1_000_000
=> 32

If you've used Ruby’s built-in send method, the notation should look
familiar. Notice that this is a bit more cumbersome than a plain method
call. For this reason, JRuby provides a couple of shortcuts. The sim-
plest is java_alias, which lets you choose a new name for the Java over-
load:

Download java_from_ruby/how_many_bits.rb

class HowManyBits
java_alias :needed_for_int, :neededFor, [Java::int]
end

puts bits.needed_for_int(1_000_000)

The other alternative is to use java_method to get a reference to an
overload. You can pass this reference around your program and call it
at any time:

Download java_from_ruby/how_many_bits.rb

bits_needed_for = bits.java_method :neededFor, [Java::int]
bits_needed_for.call 1_000_000
=> 32

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/how_many_bits.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=52

CALLING OVERLOADED METHODS <« 53

Not only will java_alias and java_method clean up your code, they’ll also
make it a little faster, since JRuby won’'t have to keep looking up the
same Java overload.

Annotated Classes

Some Java methods expect the objects handed to them to have specific
annotations. Assume we've defined a custom PerformedBy annotation
containing the name of someone who performs a feat of skill:

Download java_from_ruby/Sorcery.java

@PerformedBy(name="Charlie")
public class Sorcery {

// Nothing up my sleeve...
}

If we wanted to describe the feat of skill at runtime, we could do so by
reading the annotation:

Download java_from_ruby/Chronicler.java

import java.lang.annotation.Annotation;

public class Chronicler {
public static void describe(Class<?> c) {
PerformedBy p = (PerformedBy)c.getAnnotation(PerformedBy.class);
System.out.printin(p.name() + " performs + c.getName());

}

How do we call this method from JRuby? There’s no primitive Java
type we can convert the parameter to. It's expecting a full-on Java class
name with a runtime annotation attached. Fortunately, JRuby can cre-
ate a Java class for us on the fly, based on our Ruby class:

Download java_from_ruby/mischief.rb

require 'java'

require 'jruby/core_ext'

java_import 'PerformedBy'
java_import 'Chronicler'
java_import 'Sorcery’

class Mischief
... more mischief here ...

end

Mischief.add_class_annotation PerformedBy => {'name' => 'Ian'}
Mischief.become_java!

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/Sorcery.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/Chronicler.java
http://media.pragprog.com/titles/jruby/code/java_from_ruby/mischief.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=53

IMPLEMENTING A JAVA INTERFACE < 54

Chronicler.describe Sorcery
>>> Charlie performs Sorcery

Chronicler.describe Mischief
>>> Ian performs ruby.Mischief

The add_class_annotation method, imported from JRuby’s core_ext exten-
sions, decorates the Ruby class with the necessary annotation. By it-
self, this doesn’t mean much, since the Ruby universe won't know to
look for this information. But when we use the become_java! method
to “promote” Mischief to a real Java class, the Chronicler is able to see the
PerformedBy annotation.

2.7 Implementing a Java Interface

What do you do when the function you're calling expects you to pass
in a Java object implementing some specific interface? Consider Execu-
tors.callable, which wraps a Runnable up inside an object:

static Callable<Object> callable(Runnable task);

There are two main ways to pass an interface into a Java function.

Implementing the Methods

You can implement the Java interface completely in Ruby code. Just
include it in your class definition, and any calls to the interface’s meth-
ods become calls to your Ruby class. Runnable has just one required
method, run:

Download java_from_ruby/runnable_demo.rb

lnel require 'java'
java_import java.lang.Runnable

class Foo
5 include Runnable
def run
puts "foo"
end
10 end

callable = java.util.concurrent.Executors.callable(Foo.new)
callable.call

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=54

TROUBLESHOOTING < 55

Technically, you don’t have to include the interface name at line 5.
JRuby can detect that this instance of Foo implements Runnable’s meth-
ods. But we like being explicit here.

Passing a Block

For single-method interfaces, there’s an even more direct path from
Ruby to Java. Instead of going through the mental overhead of creating
and naming a Ruby class, you can just pass a block of Ruby code
straight to the Java method:

Download java_from_ruby/runnable_demo.rb

callable = java.util.concurrent.Executors.callable do
puts "foo"
end

callable.call

This also works with Proc objects, which are like blocks of code that can
be stored in variables:

Download java_from_ruby/runnable_demo.rb

myproc = Proc.new { puts "foo" }
callable = java.util.concurrent.Executors.callable(myproc)

callable.call

This approach is suitable only for simple interfaces. If an interface has
ten different methods in it, that poor little Ruby block is going to have
to understand ten different ways in which Java might call it. In those
cases, you're best off using the class approach described earlier.

One other thing to note about the block approach is that the interface
passed into the Java world isn’t quite a first-class citizen. For instance,
the code on the other side of the wall won't be able to use features like
introspection to interrogate your Ruby code.

2.8 Troubleshooting

It happens to the best of us. You're ready to tie together your master-
piece, and instead of passing tests, you get a 20-line stack trace. Here
are some of the errors you might see on your path to JRuby bliss.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/runnable_demo.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=55

TROUBLESHOOTING < 56

NameéError
If your import fails with a NamekError, like this:
Download java_from_ruby/name_error.rb

require 'java'

java_import 'com.example.Foo'
~> (eval):1l:in “include_class': cannot load Java class com.example.Foo (NameError)

...there are a couple of things you can check. First, try the obvious:
make sure your classpath contains the directories where your Java
classes live. Next, make sure the directory structure matches the Java
package structure. If your Java class is part of the com.example pack-
age, the .closs file needs to be nested in a com/example subdirectory.

Wrong Version of a Class

Maybe it’s happened to you. You make a change to a Java class to fix a
bug, and it doesn’t work. You throw in some printin() statements to find
out what’s going on, and nothing shows up on the console. Is JRuby
even calling your code? Perhaps not. If some other implementation of
that class, inside some other directory or .jar, is ahead in the classpath,
JRuby might be loading that and not even seeing your work.

Errors at Construction Time

Sometimes JRuby will import a class just fine but will raise a NoClassD-
efFfoundError or LinkageError when you try to instantiate it. This can hap-
pen when the class you need is in your classpath but one of its depen-
dencies isn’'t. For example, imagine you have a file named consumer.jar
containing a Consumer class. Even after JRuby finds the .jor, things can
still go wrong:

Download java_from_ruby/producer_consumer.rb

consumer = Consumer.new
~> Consumer.java:2:in “<init>': java.lang.NoClassDefFoundError:

~> Producer (NativeException)
~> A
~> from -:7

Here, the backtrace provides a clue: Java couldn’t find a Producer class,
which Consumer apparently requires. Adding producerjar (or wherever
the class lives) to your classpath should fix the problem. If the back-

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/name_error.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/producer_consumer.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=56

TROUBLESHOOTING < 57

trace doesn’t give enough clues to figure out which .jor is missing, it’'s
time to hit the documentation for the Java libraries you're using.

This kind of problem can also happen if a class you're directly or indi-
rectly depending on was compiled for an incompatible JVM version.

Can’t Find the Method

A lot of things can go wrong at method invocation time. The most obvi-
ous thing to check is the method name; if you can call a method by
its original Java camelCase() name but not by its Ruby-style snake_case
name, you may be looking at an edge case in the mapping between the
two (like setURLForPage() — set_urlfor_page).

After spelling quirks, the most common cause of “vanishing methods” is
type coercion. If JRuby can’t automatically map your Ruby parameters
to Java ones, it won’t call the method. You'll need to convert some of
the parameters yourself.

Wrong Method

A less frequent case, but no less baffling when it happens, is when
JRuby invokes a different method than the one you want. As we saw
earlier, JRuby tries to pick the closest match among overloaded func-
tions. But some distinctions simply do not exist on the Ruby side.

Similar situations can come up when multiple overloads are all equally
valid—such as when a Ruby object implements two interfaces and there
are overloads for each. In cases like these, you’ll need to use java_send
or one of its cousins from Section 2.6, Forcing a Specific Overload, on
page 52.

JRuby can also end up making the wrong call if your Java method
names clash with common Ruby ones. Say you have the following class
that just happens to have a method called initialize(), which is the name
Ruby uses for constructors:

Download java_from_ruby/MethodClash.java

public class MethodClash {
public void initialize(String data) {
System.out.printin("Now we're set up with " + data);

}

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/MethodClash.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=57

WRAPPING UPp < 58

If you try to call this method the usual way, JRuby will think you want
the no-argument Ruby initialize constructor:

Download java_from_ruby/method_clash.rb

the_clash = MethodClash.new

the_clash.initialize 'everything'
~> -:8: wrong # of arguments(l for 0) (ArgumentError)

Actually, we got lucky this time. If the Java method had taken zero
arguments instead of one, Ruby would have silently called the wrong
method instead of reporting an error. Again, java_send comes to the
rescue:

Download java_from_ruby/method_clash.rb
the_clash = MethodClash.new

the_clash.java_send :initialize, [java.lang.String], 'everything'
>> Now we're set up with everything

Fortunately, there are very few cases like this one. object id, _id__, and
_send__ come to mind, but they are not likely to appear in a typical
Java class.

Lost Monkeypatches

JRuby lets you monkeypatch Java classes, with a catch.!? The Java
side will be unaware of any new attributes or methods you define in
Ruby. In fact, your additions will evaporate completely if Ruby lets go
of all its references to the object. (The original Java part of the object
will of course live on as long as the Java side holds a reference.)

If you've tried the techniques we've described here and are still stuck,
you may want to peek at the relevant section of the JRuby wiki.!3

2.9 Wrapping Up

We've been all over the map this chapter, from the basics of loading
libraries to the minutiae of parameter passing. We've seen how JRuby

12. Monkeypatching (from a malapropism of “guerrilla patching”) means modifying a class
at runtime.
13. http://wiki.jruby.org/CallingJavaFromJRuby

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/java_from_ruby/method_clash.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/method_clash.rb
http://wiki.jruby.org/CallingJavaFromJRuby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=58

WRAPPING UP < 59

sands off some of the rough spots where the two languages meet and
how to steer around the remaining ones. And we've discussed what to
do when things go wrong.

This broad set of topics might seem scattershot at first glance. But
we've striven to show a common theme among them. The examples
we've presented have all focused on the case where you're starting with
a Ruby script that’s calling into a Java library. Of course, there’s been
some back-and-forth, with Java occasionally calling back into a Ruby
object we gave it.

We're about to shift the emphasis in the Java direction. In the next
chapter, we'll start with a Java project and add Ruby to it. As with this
chapter, there will still be plenty of places where the two worlds are
calling back and forth to each other.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=59

Chapter 3

Ruby from Java

We've just seen several ways for Ruby to call into Java libraries. Now
let’s consider the other side of the coin: embedding Ruby code in a Java
project.

There are several situations where this capability comes in handy. Here
are a few examples:

* A Java program might need to perform some task for which there
is no Java library (or for which the Ruby libraries are easier to use
than their Java counterparts). For example, Ruby’s image_voodoo
library exposes a simpler API than the native Java2D framework.!

* Users might want to extend your Java game or animation program
with their own scripts. With JRuby, you can use Ruby as your
project’s extension language.

* You might be deploying a Ruby program into an otherwise Java-
heavy environment, where your team wants to test your Ruby code
using their JUnit or TestNG harness.

¢ If you're wrestling with an existing Java code base, you might want
to get the benefits of Ruby’s flexibility by rewriting parts of your
program in Ruby.

All these uses look the same from the Java side, so we're going to con-
centrate on the first case: using a Ruby library from a Java program.

1. http://rubyforge.org/projects/jruby-exiras

http://rubyforge.org/projects/jruby-extras

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 61

3.1 A Readl-Life Example: Source Control

Over the next several pages, we're going to build a Java app that calls
into Ruby with increasing sophistication. We’'ll start with a simple “Hello
world”-like program and end up performing a useful task.

What useful task? Glad you asked. We're going to build a source code
history viewer in Java. The program—Ilet’s call it Historian—will use a
Ruby library to peer into a Git repository and print patches.? In a deli-
cious bit of recursion, we’ll view the history of Historian’s own source
code.

Setting Up Your Workspace

Before we get started, let’s quickly examine the layout of the Historian
project. You can create this structure from scratch, but we strongly
recommend following along with the book’s source code.

* src/book/embed contains the Java source to our program, which is
what we’ll be spending most of our time looking at.

¢ lib contains the Ruby glue code we’ll write to connect the Java
world to the Ruby library we’'re wrapping.

¢ lib/git.rb and lib/git comprise a local copy of a popular Ruby Git
library.? This library requires you to have Git installed on your
system, so grab that if you don’t already have it.*

* bin/get-jruby-libs downloads jruby-complete jar, a bundle containing
the parts of JRuby needed by our Java program, into the lib direc-
tory.? You’ll need to run this script once at the beginning of the
project or build your own .jar from source.®

* bin/make-history sets up a new Git repository in the current direc-
tory and adds a couple of revisions for Historian to play with. As
with the previous script, you should run this once before you dive
into the code.

¢ git contains the history of the project’s own source code. If you're
creating this project from scratch, you’ll need to create this history
yourself by doing a git init, plus a few commits.

2. Java already has a library for accessing Git repositories, JGit. But let’s say you were
itching to use one of the many Ruby bindings to Git instead.

http://repo.or.cz/w/rubygit.git

4. http://git-scm.com

5. http://jruby.org.s3.amazonaws.com/downloads/1.5.5/jruby-complete-1.5.5.jar

6. http://wikijruby.org/DownloadAndBuildJRuby

w

Report erratum

this copy is (P1.0 printing, January 2011)

http://repo.or.cz/w/rubygit.git
http://git-scm.com
http://jruby.org.s3.amazonaws.com/downloads/1.5.5/jruby-complete-1.5.5.jar
http://wiki.jruby.org/DownloadAndBuildJRuby
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=61

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 62

As we proceed, you'll notice that we're building up this project in stages,
from Historian1.java up to Historian8.java. You might find it slightly ironic
that we’re using such an old-school naming convention with such an
advanced revision control system. We want the filenames on the printed
pages of this book to be explicit about what stage of the process we’re in.

We'll give instructions for building the project on the command line with
Ant (see Chapter 7, Building Software for Deployment, on page 165).
If you prefer the IDE experience, we've also included project files for
NetBeans.

Getting the Two Worlds Talking

Let’s start with the basics. Within the project structure we’ve described,
create a file called Historian1.java in the src/book/embed folder. Put the
following imports at the top (we won’t need some of these classes until
later, but let’s go ahead and import them now):

Download ruby_from_java/historian/src/book/embed/Historian1.java

package book.embed;

import java.util.Arrays;

import java.util.List;

import org.jruby.embed.InvokeFailedException;
import org.jruby.embed.ScriptingContainer;

Now, add the bare minimum connection to Ruby:

Download ruby_from_java/historian/src/book/embed/Historian1.java

public class Historianl {
public static void main(String[] args) {
ScriptingContainer container = new ScriptingContainer();

container.runScriptlet("puts 'TODO: Make history here.'");

}

This is the simplest way to drive Ruby from Java: pass in a chunk of
Ruby code as a String, and let JRuby handle the rest (including output).
The ScriptingContainer class is part of JRuby’s core embedding API.”
You can compile the script using Ant:

$ ant

7. Embed Core is part of a collection of JRuby embedding APIs, known together as
JRuby Embed or Red Bridge.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian1.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian1.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=62

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 63

...and run it using the launcher we've provided:

$./bin/historianl
TODO: Make history here.

There’s nothing mysterious going on inside this launcher. We're just
setting up the classpath to contain both Historian and jruby-complete.jar.
If you prefer, you can do this manually:

$ java -cp 1ib/jruby-complete.jar:build/classes book.embed.Historianl

Now that Java is at least able to run a trivial JRuby program, let’s
put some actual behavior in there. Here’s the new body of the main()
function. If you're using the same filenames as we are, make sure you
name your new class Historian2 to match the file.

Download ruby_from_java/historian/src/book/embed/Historian2.java

ScriptingContainer container = new ScriptingContainer();
container.setlLoadPaths(Arrays.asList("1ib"));

String expr = "require 'git'\n" +
"puts Git.open('.').diff('HEADA', 'HEAD')";

container.runScriptlet(expr);

The call to setLoadPaths() adds the project’s lio directory to the scripting
container’s Ruby search path so that the require line in Ruby can find
the git.ro library. Next, we do a Git diff on our project home (which
happens to be a Git repository) to see what has changed since the last
commit.

Go ahead and run the new version of the app. The results should look
something like this:

$./bin/historian2

diff --git a/lib/archive8.rb b/1ib/archive8.rb
new file mode 100644

index 0000000..1d5967f

--- /dev/null

+++ b/1ib/archive8.rb

@@ -0,0 +1,12 @@

+require 'git'

+

Our first real result! Let’s ride this momentum as we charge into some
of the details of the embedding API.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian2.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=63

A REAL-LIFE EXAMPLE: SOURCE CONTROL < 64

Passing Strings In and Out

Ruby is still in charge of the output, via its puts function. Let’s get rid of
that call and just have our script return the result to Java as a string:

Download ruby_from_java/historian/src/book/embed/Historian3.java

ScriptingContainer container = new ScriptingContainer();
container.setlLoadPaths(Arrays.asList("1ib"));

String expr = "require 'git'\n" +
"Git.open('.').diff('"HEADA', 'HEAD')";

System.out.printin(container.runScriptlet(expr));

You may be wondering how this works. Let’s examine the signature of
JRuby’s runScriptlet() first:

java.lang.0Object runScriptlet(String expression);

The return value is the result of the last expression in the Ruby code
we passed in, converted to a Java Object. But what is the value of the
following line?

Git.open('.").diff('"HEAD', 'HEADA')

It's a Ruby Array with one Git::Diff::Difffile element per file in the Git
changeset. How is Java supposed to work with this Ruby object?

Luckily, all we're doing is passing the result to printin(), which doesn’t
care about the underlying type—as long as it implements toString(). As
we discussed in Chapter 2, Driving Java from Ruby, on page 31, JRuby
defines this method for us as a wrapper around the Ruby equivalent,
to_s.

This example should produce the same output as the previous one; all
we're doing is shifting the printing burden from Ruby to Java. Even-
tually, we’ll be handing that data back in a format that Java can pick
apart. But first, let’s add a little flexibility.

It would be nice to be able to see the difference between any two revi-
sions, not just the two most recent ones. So, we’ll have the user supply
two Git revision identifiers on the command line, and we’ll pass them
into Ruby together as a single Java object. As we’'ve seen in the previous
chapter, Ruby will have no problem calling methods on this Java object
to extract the arguments.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian3.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=64

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 65

First, create a very simple Revisions Java class, representing a pair of
version identifiers:

Download ruby_from_java/historian/src/book/embed/Revisions.java

package book.embed;

public class Revisions {
private String start, finish;

public Revisions(String start, String finish) {
this.start = start;
this.finish = finish;

}

public String getStart() {
return start;

}

public String getFinish() {
return finish;

}
}
Now, add Ruby code to extract these fields and perform the diff. We
could build this code up in Java as one big string like we've been doing.
In the name of brevity, though, let’s put this glue code in a separate
file, lib/archived.rb, which we’ll later require:

Download ruby_from_java/historian/lib/archive4.rb

require 'git'

def history
git = Git.open('.")
git.diff($revisions.start, $revisions.finish)
end

The history function refers to a global variable, Srevisions, which holds a

Revisions object from the Java side. We'll soon see how that value gets
passed in.

First, though, note that we're calling the Revisions object’s getStart() and
getFinish() methods using the shorter start and finish names. We encoun-
tered this shortcut in Section 2.4, Instance Methods, on page 44; it's
nice to be able to use it to keep our code clean here.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Revisions.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive4.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=65

A REAL-LIFE EXAMPLE: SOURCE CONTROL < 66

How does the assignment to the Srevisions variable happen? Via the
scripting container’s put() method:

Download ruby_from_java/historian/src/book/embed/Historian4.java

ScriptingContainer container = new ScriptingContainer();
container.setLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive4'");

container.put("$revisions", new Revisions(args[0], args[1]));
System.out.printin(container.runScriptlet("history"));

Notice that the ScriptingContainer object remembers what’s happened to
it from one invocation of runScriplet() to another. The call to history works
because it remembered the previous require of archive.

This continuity is incredibly useful. You can do expensive setup opera-
tions once at the beginning of a program and then later just consume
those loaded Ruby features without having to reload them for every call
to runScriptlet().

Go ahead and try the new Historian by passing in a couple of revision
identifiers on the command line:

$./bin/historian4 HEAD~2 HEAD

diff --git a/lib/archive7.rb b/1ib/archive7.rb
new file mode 100644

index 0000000..1d5967f

--- /dev/null

+++ b/1ib/archive7.rb

@@ -0,0 +1,12 @@

+require 'git'

+

Our use of the embedding API is starting to look less like a “throw it
over the wall and cross your fingers” approach and more like a real
interaction between Java and Ruby. We're still using the blunt instru-
ment of raw strings to pass data back and forth, though. Let’s change
that.

Real Java Data

Odds are that in any nontrivial application, you’ll want something more
substantial to chew on than just an Object you call toString() on. Let’s
change our example to return something useful to Java.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian4.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=66

A REAL-LIFE EXAMPLE: SOURCE CONTROL < 67

First, we’ll make a Java interface to represent a diff for each file in a Git
changeset:

Download ruby_from_java/historian/src/book/embed/GitDiff.java

package book.embed;

public interface GitDiff {
public String getPath(Q);
public String getPatch();
}

Of course, the Ruby Git library’s DiffFile class was written long before
the GitDiff Java interface. But we can reopen the Ruby class and male
it implement the interface, using the techniques in Section 2.7, Imple-
menting the Methods, on page 54:

DownTload ruby_from_java/historian/lib/archive5.rtb

require 'git'

class Git::Diff::DiffFile
include Java::book.embed.GitDiff
end

def history

git = Git.open('.")

git.diff($revisions.start, $revisions.finish).to_a
end

The DiffFile class in Ruby already has path and patch methods defined.
When we implement GitDiff by include-ing it in DiffFile, Java will automat-
ically have access to the existing path and pafch methods via getPath()
and getPatch(). No need to write any wrappers or define any mappings!

As we saw earlier, the diff method will return a Ruby Array of DiffFiles—
which are now also Java GitDiffs. Recall from Section 2.5, Arrays, on
page 46 that Ruby Arrays are also java.util.List instances. Together, these
two facts mean that our return value is now castable to List<GitDiff>.
Here’s how the Java code will process the results now:

Download ruby_from_java/historian/src/book/embed/Historian5.java

ScriptingContainer container = new ScriptingContainer();
container.setLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive5'");

container.put("$revisions"”, new Revisions(args[0], args[1]));

List<GitDiff> files = (List<GitDiff>) container.runScriptlet("history");

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/GitDiff.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive5.rb
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian5.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=67

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 68

for (GitDiff file: files) {
System.out.printin("FILE: " + file.getPath());
System.out.printin(file.getPatch());

B

Cool. One cast, and we are using the result like any other POJO.

Notice the sequence we're using now: stash the input arguments in a
global and then call a top-level function that takes no parameters. That
may do for BASIC programs written in the 1980s, but Ruby provides
better abstractions. Let’s pass the revision information into history as a
parameter, instead of using a global. While we're at it, we’ll move the
function into a class:

Download ruby_from_java/historian/lib/archiveé.rb
require 'git'

class Git::Diff::DiffFile
include Java::book.embed.GitDiff
end

class Archive
def history(revisions)
git = Git.open '.'
git.diff(revisions.start, revisions.finish).to_a
end
end

So far, we've been calling the history method by building up a string in
Java with the word history in it. But JRuby can actually call the method
directly, using the calMethod() operation.

callMethod() takes the Ruby object whose method we're calling (the
receiver), the method name, and whatever parameters you're passing
in.

Download ruby_from_java/historian/src/book/embed/Historiané.java

ScriptingContainer container = new ScriptingContainer();
container.setlLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive6'");

Object archive = container.runScriptlet("Archive.new");
List<GitDiff> files = (List<GitDiff>)
container.callMethod(archive,

"history",
new Revisions(args[0], args[1]));

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/lib/archive6.rb
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian6.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=68

A REAL-LIFE EXAMPLE: SOURCE CONTROL <« 69

for (GitDiff file: files) {
System.out.printin("FILE: " + file.getPath());
System.out.printin(file.getPatch());

B

This is more like it! We're passing a parameterized list straight into a
Ruby method. There’s just one more thing we need to do before we call
it a day.

So far, we have been running our program with valid Git revision iden-
tifiers like HEAD~2. What happens when we give it an invalid revision?

$./bin/historian6 PASTA NOODLES
ruby_from_java/historian/Tib/git/1ib.rb:700:in “command':
git diff "-p" "PASTA" "NOODLES" 2>&1:fatal: ambiguous argument 'PASTA':
. 28 lines of errors, including things Tike:
at org.jruby.embed.internal.EmbedRubyObjectAdapterImpl.call(...)
at org.jruby.embed.internal.EmbedRubyObjectAdapterImpl.callMethod(...)
at org.jruby.embed.ScriptingContainer.callMethod(...)
at book.embed.Historian6.main(Historian6.java:16)

OK, it got the job done, but...yuck! Fortunately, we can catch Ruby
exceptions in Java, using JRuby’s InvokeFailedException:

Download ruby_from_java/historian/src/book/embed/Historian7.java

ScriptingContainer container = new ScriptingContainer();
container.setLoadPaths(Arrays.asList("1ib"));
container.runScriptlet("require 'archive7'");

Object archive = container.runScriptlet("Archive.new");

try {
List<GitDiff> files = (List<GitDiff>)
container.callMethod(archive,
"history",
new Revisions(args[0], args[1]));

for (GitDiff file : files) {
System.out.printin("FILE: " + file.getPath());
System.out.printin(file.getPatch());
}
} catch (InvokeFailedException e) {
// doSomethingSensibleWith(e);
System.out.printin("Couldn't generate diff; please see the log file.");

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian7.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=69

THE NITTY-GRITTY <d 70

Here are the results:

$./bin/historian7 PASTA NOODLES
ruby_from_java/historian/1lib/git/1ib.rb:700:in “command':

git diff "-p" "PASTA" "NOODLES" 2>&1:fatal: ambiguous argument 'PASTA':
unknown revision or path not in the working tree. (Git::GitExecuteError)

Use '--' to separate paths from revisions
from ruby_from_java/historian/1ib/git/1ib.rb:249:in “diff_full"'
from ruby_from_java/historian/1lib/git/diff.rb:100:in “cache_full'
from ruby_from_java/historian/1ib/git/diff.rb:106:in “process_full'
from ruby_from_java/historian/1ib/git/diff.rb:64:in “each'
from ruby_from_java/historian/lib/archive7.rb:10:in “history'
from <script>:1

Couldn't generate diff; please see the log file.

So, there you have it: a program written in Java that calls a Ruby
method to inspect the source code of...the program itself. We will be cov-
ering some more details for the rest of this chapter, but you largely have
all the skills you need now. Go forth and make some simple embedded
Ruby applications, or read on for the nitty-gritty details.

3.2 The Nitty-Gritty

There are always special circumstances and strange little details that
a project runs into. If you find yourself wanting more control knobs for
the embedding API than we've shown you so far, then read on.

Other Embedding Frameworks

All the examples we've seen so far have used Embed Core, the main
embedding API that ships with JRuby. This API offers a great deal of
interoperability. You can call a Ruby method, crunch the results in
Java, and hand data back into Ruby. What makes this deep integration
possible is that Embed Core was created just for JRuby.

There are times, however, when a general scripting API is a better fit
than a Ruby-specific one. For instance, if your Java project already
includes other scripting languages, you probably don’t want to use a
separate API for each language.

JRuby supports the two most popular Java embedding APIs. Bean
Scripting Framework, the older of the two, began at IBM and is now

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=70

THE NITTY-GRITTY «d 71

hosted by the Apache Jakarta project. javax.scripting, also known as JSR
223, is part of the official JDK. Both have a similar flavor: you connect a
general-purpose script manager to a language-specific scripting engine.

In case youre curious, here’s how the final Historian example from
earlier would look in JSR 223, minus the exception code. First, the
imports at the top need to change a little:
Download ruby_from_java/historian/src/book/embed/Historian8.java

package book.embed;
import java.lang.NoSuchMethodException;
import java.util.List;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

Now for the Ruby embedding code:
Download ruby_from_java/historian/src/book/embed/Historian8.java
public static void main(String[] args)

throws ScriptException, NoSuchMethodException {

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("jruby™);
Invocable invocable (Invocable)engine;

engine.eval ("$LOAD_PATH << 'Tib'");
engine.eval("require 'archive8'");

Object archive = engine.eval("Archive.new");

List<GitDiff> diffs = (List<GitDiff>)
invocable.invokeMethod(archive,
"history",
new Revisions(args[0], args[1]));

for (GitDiff diff : diffs) {

System.out.printin("FILE: " + diff.getPath());
System.out.printin(diff.getPatch());

}

JSR 223 is able to perform the same tasks for Historian that Embed
Core does, in a slightly less expressive notation. BSF has a similar feel

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=71

THE NITTY-GRITTY d 72

to what you saw previously, so we won’t show a detailed example for it.
Instead, we recommend you use JSR 223 for non-Ruby-specific embed-
ding projects, because of its official position as part of the JDK.

Containers and Contexts

Each ScriptingContainer object that you create for embedding Ruby code
has an associated context object, which JRuby uses for internal book-
keeping. By “bookkeeping,” we mean things like the Ruby interpreter
instance, I/O streams, a special variable store, and configuration
options.

The simplest ScriptingContainer constructor creates a context implicitly
for you. In case you want a little more control, you can specify the kind
of context you want:

new ScriptingContainer(); // defaults to SINGLETON

new ScriptingContainer(LocalContextScope.SINGLETON) ;
new ScriptingContainer(LocalContextScope.THREADSAFE) ;
new ScriptingContainer(LocalContextScope.SINGLETHREAD) ;

Singleton

SINGLETON, the default choice, creates one Ruby runtime shared by the
entire JVM. No matter how many ScriptingContainers you create, they’ll
all share the same context if you use this option. You can either specify
this type explicitly or use the no-argument form of the constructor.

Singleton contexts are simple to use, because you don’t have to pass
ScriptingContainer references all around your program. But they also
have a big drawback: they're not thread-safe. Try to run two chunks
of Ruby code in different Java threads, and...kaboom!

Thread-Safe

If you know multiple threads will be accessing the same ScriptingCon-
tainer (or if you're just feeling paranoid), then you should use a THREAD-
SAFE context. This type synchronizes all access to the Ruby runtime so
that multiple threads can safely call into it without crashing.

This mode is certainly safer than SINGLETON, but it doesn’t automati-
cally make your concurrency problems go away. Under a heavy load,
you may end up with a lot of waiting threads. It’s even possible to run
into a deadlock situation. For instance, if an embedded script returns
a Ruby object that, in turn, calls back into the embedding API, you

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=72

THE NITTY-GRITTY <d 73

Tom Says. ..

What T f Context Should Y ?

Even though it’s a bit of extra work up front, | recommend start-
ing your project off with THREADSAFE containers. This keeps you
in the habit of passing around the ScriptingContainer reference,
in case you later decide to switch to using to one of the other
two modes. It also makes it harder to accidentally kill your Ruby
runtime.

can end up with a call that never returns. Fortunately, this is a bit
of an extreme case. Just keep in mind the hazards of multithreaded
programs as you're writing your code.®

Single-Threaded

So, the first mode guaranteed a single Ruby runtime, and the sec-
ond introduced some thread safety. The third mode does...none of the
above. Each time you create a ScriptingContainer with the SINGLETHREAD
option, you actually create a new context. This new context is com-
pletely unconcerned with concurrent access. Everything rides on you,
the programmer, to access the container from one thread at a time.

In truth, this kind of context is not such a dangerous beast if used in a
controlled environment. For example, if you are running a servlet that
spins up multiple threads, you can safely spawn one SINGLETHREAD-ed
ScriptingContainer per servlet thread in Servlet.init(). Some configurations
of the jruby-rack project use this strategy.

Ruby Version

JRuby supports both Ruby 1.8 and Ruby 1.9 syntax and semantics. By
default, a new ScriptingContainer uses Ruby 1.8 mode, but it’s quite easy
to use 1.9 instead:

container.setCompatVersion(org.jruby.CompatVersion.RUBY1_9);

8. For more information on what some of these hazards are, see Ousterhout’s “Why
Threads Are a Bad Idea (for most purposes)” at http://home.pacbell.net/ouster/threads.pdf.

Report erratum

this copy is (P1.0 printing, January 2011)

http://home.pacbell.net/ouster/threads.pdf
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=73

EMBEDDING STRATEGIES < 74

Compile Mode

We hesitate even to bring up this option but have decided to give it
a passing mention in case you encounter it in the wild or in docu-
mentation. In practice, we strongly recommend leaving it at the default
setting.

The compile mode determines when, if ever, your ScriptingContainer ob-
ject compiles individual Ruby methods down to JVM bytecode. It is
tempting to set this option to force, meaning “always compile.” After all,
compiling just sounds faster, doesn’t it?

Of course, real life is never so simple. The act of compilation takes time,
so it only makes sense to compile a Ruby method if it's going to be
called often enough for the time savings (if any!) to outweigh the initial
delay. That's exactly what the default option, jit, tries to do.® There are
times when compiling Ruby code makes sense but not when you're
embedding a JRuby runtime in a Java project.

There are a few more options beyond these basic ones. You can control
how an embedded JRuby runtime finds Ruby code, how it finds Java
classes, how local variables are remembered from one invocation to the
next, and more. Our goal, however, isn’'t to present a laundry list of
every possible setting but to show you the ones you're most likely to
encounter in the real world. For the rest, you may want to peek at the
reference documentation.!©

3.3 Embedding Strategies

In our Historian example, we saw several different ways to stitch the
Java and Ruby sides together. You can pass a Java class into your
Ruby script, make a Ruby class that implements/extends a Java type,
or just use simple, coercible types such as strings.

There is no single best approach that applies in all situations. This
section will break down some of the reasons why you may consider
picking one strategy over another.

9. http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/
10. http://wiki.jruby.org/RedBridge#Configurations

Report erratum

this copy is (P1.0 printing, January 2011)

http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/
http://wiki.jruby.org/RedBridge#Configurations
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=74

EMBEDDING STRATEGIES < 75

Passing Java Data Into Ruby

How do you get data into your embedded Ruby script? Passing in a Java
object is the easiest approach. The embedded script can call the object’s
methods just as if they were written in Ruby. You can even decorate the
object with additional, easier-to-use methods that actually are written
in Ruby.

When is passing data into Ruby as plain Java objects not a good fit? It
depends on how often the Ruby script ends up calling back into Java.
Calling from Ruby to Java is a little slower than staying inside the Ruby
universe. In many cases the difference is unnoticeable, but in others,
the type coercion cost (for example, copying a java.lang.String to a Ruby
String) makes this approach too slow.

So if your Ruby code needs to call a string-returning Java method in
a tight loop, consider reshaping your solution a bit. Perhaps the Java
side could assemble a Ruby object with the data preconverted and pass
that in instead. Or you could move that time-sensitive loop into your
Java code.

We don’t mean to scare you away from the direct approach. Start out by
passing a Java object into Ruby. If this doesn’t meet your performance
goals, then measure and rework.

Returning Data to Java

Getting data back into Java-land is a little more involved; Java knows
less about JRuby than JRuby knows about Java. In general, there are
three options:!!

* Return a Ruby object that implements a Java interface

* Return a Ruby object that extends a Java class (concrete or
abstract)

* Construct a Java object in Ruby and return it

11. Technically, there’s a fourth option: calling become_javal on a Ruby class. But we
don’t recommend it.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=75

EMBEDDING STRATEGIES < 76

The first two options are similar, in that you are returning a Ruby object
that is tied to the JRuby runtime it came from. If your Java code calls
methods on the object, these invocations will land back in the same
JRuby runtime.

As we saw in Section 3.2, Containers and Contexts, on page 72, this
reuse of runtimes can have interesting consequences for multithreaded
Java programs. If you are passing objects between threads without
using THREADSAFE mode, you can crash the Ruby runtime.

The third option is much less prone to threading issues than the other
two choices. It can also be slightly faster, since you're not dispatching
function calls from one language to another.

The obvious downside is inelegance. If you have a small, clean Ruby
script, then the extra step of constructing a Java class for the sole
purpose of returning results will feel like makework.!? If, on the other
hand, you can build a simple Java class that doesn’t look too out of
place alongside your Ruby code, then go for it.

Type Coercion Pitfalls

JRuby strives to do the right thing with type coercions. As you call
into Ruby code and as that Ruby code returns data back to Java, many
types will get implicitly converted to similar types in the other language.

This approach is not, however, immune to mishaps. Once an object is
coerced to another type, no matter how similar, it really is a different
object. Code that relies on object identity will not work right. For exam-
ple, Maps may not work as you expect.

We've discussed a lot of “doom and gloom” scenarios in this section.
While these are important to keep in mind, remember that, for the most
part, things will just work. If you go about your project armed with the
knowledge of which subtleties can bite you and what to do about them,
you’ll be fine.

12. Anyone remember the original EJB specification?

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=76

WRAPPING Up < 77

3.4 Wrapping Up

In this chapter, we looked at the various ways to call from Java into
Ruby, all in the context of a real-life example. We then highlighted a
couple of specific features of JRuby embedding that may help you in
your own projects. Finally, we zoomed out to discuss the general trade-
offs among embedding approaches.

We hope this discussion has whet your appetite to introduce Ruby into
your Java project. In the next chapter, we're going to take the next
logical step and compile Ruby programs down to JVM bytecode.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=77

4.1

Chapter 4

By now, you've had the chance to run a few Ruby applications on the
JVM. You've tried a few of the many Ruby libraries available in the wild.
You're probably becoming a whiz at calling from Ruby into Java, and
vice versa.

We hope you're getting the feel for how a JRuby application fits into the
Java ecosystem and how you can start using it for your applications
today.

Ready to take the next step toward JRuby mastery?

Compiler 101

A common theme in this book is that JRuby offers both sensible de-
faults and advanced control. For quick scripts where you don’t care
what’s going on under the hood, you can just jump in and treat JRuby
like a faster Ruby. But when you have to plug into a legacy system
or squeeze a little more performance into a complex system, JRuby
rewards further exploration.

The compiler is no exception. JRuby ships with a compiler that’s always
looking for chances to optimize your code, without any explicit instruc-
tions from you. When the need arises, you can override the defaults
and tap into this power directly.

We'll talk about how this happens in a moment. But first, we need to
get into a bit of compiler-nerd theory.

COMPILER 101 < 79

Running Without a Compiler

Most implementations of the Ruby programming language run pro-
grams directly from the source code, by following a series of steps:

1. Read the text of the program from an .rb file on disk.

2. Parse the source code into an in-memory form called an abstract
syntax tree (AST).!

3. Execute (interpret) the AST directly by walking through its struc-
ture and performing the instructions at each node.

The first two steps happen when the application first starts. The third
happens continually while the program is running.

This is how nearly all Ruby development happens. Most Ruby gems
ship as a collection of .rb files, which remain in their unaltered source
form straight through deployment. Most Ruby developers never need to
write or run anything but .rb files.

JRuby supports this method of running programs, of course. Interpret-
ing code works just fine for most applications, and it’s the most direct
route from source code sitting on disk to a running program.

However, interpreters are generally not the fastest way to execute code.
At each node of the AST, JRuby’s runtime must make a decision about
how to react, make several calls to the Java runtime, and eventually
perform the requested action. Is there a better way?

Introducing the Compiler

Most interpreted languages that need to perform well eventually incor-
porate a compiler. A compiler generally takes some intermediate inter-
preted form (like JRuby’s AST) and converts it to a faster, more direct
representation.

The textbook definition of a compiler is somewhat more specific than
we have time or space for here. For now, it’s fine to think of a compiler
as a tool for converting code from one form into another form.

Compiling a Ruby program is conceptually similar to compiling a Java
program.

1. http://en.wikipedia.org/wiki/Abstract_syntax_free

Report erratum

this copy is (P1.0 printing, January 2011)

http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=79

COMPILER 101 < 80

The process involves several stages of compilation:

1. From .rb source to JVM bytecode—the resulting bytecode may live
in memory or in a .class file

2. From JVM bytecode to a VM-specific internal representation
3. From the internal representation to native machine code
4. ...and conceptually several smaller phases at each level

The compilers used at each stage can be roughly classified into two
kinds: just-in-time (JIT) and ahead-of-time (AOT).

Just-in-Time Compilation

You've probably had more exposure to JIT-compiled languages than
you realize. Just-in-time compilation is the act of taking executable
code (often code that’s already running in an interpreter) and compiling
it quietly behind the scenes, without any user intervention.

Some platforms, such as Microsoft’s .NET runtime, have no interpreter.
Their JIT compilers run immediately before the program is executed.
Other platforms, including many JVM implementations, perform JIT
compilation only as code becomes “hot,” in other words, gets called
frequently. This approach can speed up application startup. It can also
boost performance down the road, because the compiler can use live
runtime information to make optimization decisions.

JRuby includes a JIT compiler that optimizes your application as it
executes. Later, we’ll see how to make the most of its power.

Ahead-of-Time Compilation

If you've ever manually run a compiler against a piece of source code
to create an executable file, you've performed ahead-of-time (AOT) com-
pilation. AOT compilers often represent the first phases of a program’s
life cycle—especially if the program’s source code form is not generally
executable on its own (as is the case for languages like C or Java).

Most Ruby implementations (including the standard implementation)
do not incorporate AOT compilers into their life cycle. Instead, they
either walk through an AST at runtime (as Ruby 1.8 does) or run a
lower-level intermediate form of the code (as Ruby 1.9 does).

AOT compilers often do less to optimize code than their JIT cousins,
since they can only use information available at compile time. They are

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=80

COMPILER 101 <« 81

useful for languages that don’t have interpreters or that need to expose
a standard compiled form to other libraries and languages. They are
also sometimes used for code obfuscation, since the compiled form is
usually not human-readable.

JRuby also includes an AOT compiler usable for obfuscation, for gener-
ating “real” Java classes from Ruby code, or for deployment to environ-
ments that don’t support the JIT compiler. (The Android mobile plat-
form is an example of such an environment.) We'll explore JRuby’s AOT
compiler later in the chapter.

JRuby’s Compiler

In JRuby, almost all code starts out interpreted. But as the program
runs, JRuby looks for functions that would benefit from being compiled
—and compiles them. (Readers used to the HotSpot JVM will find this
approach familiar.)

Let's look at an example. Here’s a simple benchmark that iterates
through all the permutations of a string:

Download compiler/jit/permute.rb

require 'benchmark'

def do_something_with(data)
Your favorite operation here
end

5.times do
timing = Benchmark.measure do
letters = ['f', 'a', 'c', 'e', 't', 's']
Tetters.each_permutation do |p]|
do_something_with(p)
end
end

puts timing
end

The implementation uses Ruby’s blocks to perform the iteration.?

2. For more on how blocks work, see Appendix A, on page 272.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=81

COMPILER 101 <« 82

Download compiler/jit/permute.rb

class Array
Calls the attached block of code once for each permutation.
def each_permutation(&block)
We'll need to permute the array L! times.
factorial = (1..length).inject(1) { |p, n| p = n }

Make a copy, so we don't modify the original array.
copy = clone
block.call copy

(factorial - 1).times do
copy.permute!
block.call copy

end

end
end

For each iteration, we permute the array once using an algorithm from
Dijkstra’s The Problem of the Next Permutation [1:

Download compiler/jit/permute.rb

class Array
Generate one permutation by Dijkstra's algorithm.
def permute!
i = length - 1

i -= 1 while at(i - 1) >= at(i)

j = length

j -= 1 while at(j - 1) <= at(i - 1)
swap(i - 1, j - 1)

i+=1
j = length

while i < j
swap(i - 1, j - 1

i+=1
j-=1
end
end

def swap(a, b)
self[a], self[b] = [self[b], self[a]]
end
end

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://media.pragprog.com/titles/jruby/code/compiler/jit/permute.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=82

COMPILER 101 < 83

Here are the results of running the benchmark:
Download compiler/sessions/jit.txt

$ jruby permute.rb

0.381000 0.000000 0.381000 (0.255000)
0.117000 0.000000 0.117000 (0.117000)
0.017000 0.000000 0.017000 (0.017000)
0.017000 0.000000 0.017000 (0.017000)
0.010000 0.000000 0.010000 (0.011000)

You can immediately see one very noticeable result: the numbers get
faster over time. Where the initial run takes around 0.255s of real time,
the subsequent runs take anywhere from 0.011s to 0.117s. What you
are seeing is the effect of JRuby’s JIT (and the JVM’s JIT, too) compiling
code as it runs to improve performance.

Getting the Best Out of JIT

Most JRuby users will never need to think about the JIT. It will run qui-
etly behind the scenes, optimizing hot code and leaving cold code alone.
Over time, JRuby will incorporate more runtime information into those
optimizations, and long-running programs well seem to “magically” get
faster.

With a little insider information on JRuby, though, you can write code
that will get the best performance out of the JIT.

Avoid Generating Code at Runtime

For JRuby’s JIT to run, code needs to get “hot.” If you're repeatedly call-
ing the same method, for example, JRuby will notice that and switch
from interpreting the AST to running real JVM bytecode. This will gen-
erally improve the performance of that piece of code, many times over.

On the other hand, if you are constantly generating new Ruby code (for
example, by passing a string to eval or one of its cousins), there will be
no hot spots for JRuby to optimize.

If you need the flexibility of runtime Ruby code generation, try to limit it
to the early phases of your application’s life cycle. Keep evaluated code
out of the critical path.

Prefer Smaller Methods
JRuby’s JIT operates on method boundaries. It makes decisions about
whether to JIT-compile a piece of code only when it is about to be called.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/sessions/jit.txt
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=83

COMPILER 101 < 84

This works well for code with many moderately sized methods. How-
ever when you have a few very large methods instead, optimization gets
trickier. A large method might get called infrequently but do perform-
ance-critical work in a loop. A complicated method might get called
frequently but have many cold paths through the code. An extremely
long method can exceed limits set by JRuby or the JVM itself.

In all these situations, a method will remain interpreted forever. Both
JRuby’s JIT compiler and the principles of good software design favor
breaking large algorithms into smaller methods.

Moving On to AOT

As we've seen, JRuby usually runs in “full auto” mode. You don’t have
to decide when to interpret or compile a particular section of your code.

There are, however, times when you want to invoke JRuby’s ahead-of-
time compiler yourself and generate bytecode. Just as Java program-
mers are used to typing jovac SomeJavaProgram.java to generate Some-
JavaProgram.class, you can type jrubyc some_ruby_program.rb to generate
some_ruby_program.class.

Why would you want to do this? There are a few different situations
where this technique comes in handy:

* You're deploying to a system that requires your code to be in .class
files.

* You don’t want your original Ruby source code to appear in your
finished program.

* You're writing a plug-in for a tool that isn’t sophisticated enough
to call the Ruby Embed API.

* You're looking at one of those rare cases when AOT compilation
really is faster, such as the Android platform.

It’s not difficult to take an existing Ruby library, compile it, and call
it from Java. In fact, it’s only a short step beyond the techniques you
used in Chapter 3, Ruby from Java: Embedding JRuby, on page 60. In
the next section, we’ll get to know the AOT compiler by trying it on a
simple project.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=84

A SIMPLE COMPILED EXAMPLE < 85

4.2 A Simple Compiled Example

Over the course of this section, we’ll start with a simple Ruby example
and explore different ways to compile it for the JVM.

Compiling a Single JRuby Class

Let’s say you're a home audio enthusiast and want to make some basic
measurements of your setup. In particular, you may be interested in
the root-mean-square (RMS) voltage of a signal you've captured:

Download compiler/waveform/waveform.rb

class Waveform
def initialize(points)
@points = points
end

def rms
raise 'No points' unless @points.length > 0
squares = @points.map {|p| p * p}

sum = squares.inject {|s, p| s + p}
mean = sum / squares.length
Math.sqrt(mean)

end

end

What does it mean, exactly, to ask JRuby to compile this code?

$ jrubyc waveform.rb
Compiling waveform.rb to class waveform

This will place a waveform.class file in your project directory. This file
can be used in place of the original .rb file. Go ahead and try it. Rename
your Ruby file to backup.rb or something, and then run the following:
Download compiler/waveform/waveform_test.rb
require 'waveform'
sine_wave = (0..360).map do |degrees|

radians = degrees * Math::PI / 180.0

Math.sin radians
end

waveform = Waveform.new sine_wave

puts waveform.rms
>> 0.706126729736776

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform.rb
http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_test.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=85

A SIMPLE COMPILED EXAMPLE < 86

What else can we do with the compiled .closs file? Not much. It might
be tempting to try to drive this code from Java, like this:
public class WaveformNaiveTest {
public static void main(String[] args) {
double[] triangleWave = {0.0, 1.0, 0.0, -1.0, 0.0};

waveform w = new waveform(triangleWave);
System.out.printin(w.rms());

}

Unfortunately, that doesn’t work:

$ javac -cp jruby.jar:. WaveformNaiveTest.java
WaveformNaiveTest.java:4: cannot find symbol
symbol : constructor waveform(double[])
Tocation: class waveform

waveform w = new waveform(triangleWave);
A

WaveformNaiveTest.java:5: cannot find symbol
symbol : method rms()
location: class waveform

System.out.printin(w.rms());
A

2 errors

Java was able to find the waveform class (note that the capitalization
follows the Ruby filename), but none of its methods. Consider the con-
structor. Java will be looking for a constructor taking an array of dou-
bles. Ruby parameters can be anything, and we haven't yet discussed
how to tell JRuby what parameter types to write into the .closs file.

The mismatch doesn’t stop at the constructor. This Java code is expect-
ing the waveform class to have an rms() method taking no parameters
and returning a double. But the .class file has no such method. If you
use javap to look at the waveform class, you get a long list of methods—
including this one:

$ javap waveform

public static org.jruby.runtime.builtin.IRubyObject
method__2$RUBYS$rms (waveform, org.jruby.runtime.ThreadContext,
org.jruby.runtime.builtin.IRubyObject, org.jruby.runtime.Block);

As you can see, these methods are meant for JRuby’s consumption
only. It would be possible to whip up all those private data structures
and pass them in. But as we’ll soon see, there are much more pleasant
ways to accomplish this task.

Report erratum

this copy is (P1.0 printing, January 2011)

http://books.pragprog.com/titles/jruby/errata/add?pdf_page=86

A SIMPLE COMPILED EXAMPLE < 87

‘ ,, Charlie Says. . .
¥ Word to the Wise

When you compile several Ruby classes with the -java option,
the generated Java classes all share one instance of the Ruby
runtime. This is similar o the SINGLETON context we discussed in
Chapter 3, Ruby from Java: Embedding JRuby, on page 60, so
the same warnings about thread safety apply.

Calling Compiled Ruby from Java

Let’s back up for a second. The purpose of the regular jrubyc command
is to compile Ruby code so that Ruby can use it. Trying to call that
Ruby-specific compiled class from Java is cutting against the grain.

In Chapter 3, Ruby from Java: Embedding JRuby, on page 60, we saw
a much more straightforward way of calling Ruby from Java: JRuby
Embed. If we insisted on doing everything by hand (there’s no need, as
we’ll soon see), here’s how we might use the embedding API to drive our
Ruby class:

Download compiler/waveform/WaveformWrapper.java

import org.jruby.embed.ScriptingContainer;

public class WaveformWrapper {
static ScriptingContainer rubyContainer;
Object waveform;

static {
rubyContainer = new ScriptingContainer();
rubyContainer.runScriptlet("require 'waveform'");

}

public WaveformWrapper(double[] points) {
Object waveformClass = rubyContainer.runScriptlet("Waveform");

" "

waveform = rubyContainer.callMethod(waveformClass, "new", points);

}
public double rms() {

return (Double)rubyContainer.callMethod(waveform, "rms");

}

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/WaveformWrapper.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=87

A SIMPLE COMPILED EXAMPLE < 88

This code requires you to have a definition of the Waveform Ruby class
sitting around, either in waveform.rb or in waveform.class. What if you
want all the waveform-related code in a single .class file? The simplest
way to do that is just embed the Ruby code straight in the .java file, by
replacing the static section with something like this:

Download compiler/waveform/WaveformComplete.java

static {
String source = new StringBuilder(
"class Waveform\n" +
def initialize(points)\n" +
@points = points\n" +
end\n" +
\n" +
def rms\n" +
raise 'No points' unless @points.length > 0\n" +
squares = @points.map {[p| p * p}\n" +

" sum = squares.inject {|s, p| s + p}\n" +
" mean = sum / squares.length\n" +

" Math.sqrt(mean)\n" +

" end\n" +

"end\n") .toString(Q;

rubyContainer = new ScriptingContainer();
rubyContainer.runScriptlet(source);

}

The advantage of this approach is that it’s simple and reliable. The
disadvantage is that it takes a lot of manual work. You have to paste
your tested Ruby code into the .jova file, write a bunch of methods with
names matching the Ruby ones, and possibly add a bunch of conver-
sion code to get your Java data into Ruby-compatible structures.

Fortunately, JRuby’s compiler makes all those manual steps unneces-
sary. If you pass the --java option to jrubyc, it will generate a .java file
instead of a .class file. You can then fall back on familiar Java tools to
finish the job.

$ jrubyc --java waveform.rb

Generating Java class Waveform to Waveform.java
$ javac -cp jruby.jar:. Waveform.java

As you can see, we generated a file called Waveform.jova and then com-
piled this file like any normal Java source code. But it's not obvious
how to call it.

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/WaveformComplete.java
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=88

A SIMPLE COMPILED EXAMPLE

Look at the signatures of the generated methods:

public Waveform(Object points) {
// ..
}

public Object rms() {
// ...
}

Recall that Ruby function definitions don’t specify argument types.
Without this information, jrubyc has to fall back on Object for the
parameters and return values. The Ruby code to initialize a Waveform
instance is expecting an array of numbers. How do we inform the com-
piler of that expectation?

All we have to do is tag the Ruby functions with java_signature, followed
by a string containing a Java function declaration. Here’s how that
would look for the Waveform class:

Download compiler/waveform/waveform_with_sigs.rb

require 'java'

class Waveform
java_signature 'Waveform(double[] points)'
def initialize(points)
@points = points
end

java_signature 'double rms()'

def rms
raise 'No points' unless @points.length > 0
squares = @points.map {|p| p * p}

sum = squares.inject {|s, p| s + p}
mean = sum / squares.length
Math.sqrt(mean)

end

end

At this point, you could retry the compilation step from earlier, by run-
ning jrubyc -java to generate a .java file and then running jovac to com-
pile that to a .class. Or you could combine the two steps into one. The
-javac option will compile the generated Java code for you.

$ jrubyc --javac waveform.rb

Generating Java class Waveform to Waveform.java
javac -d . -cp jruby.jar:. Waveform.java

Report erratum

this copy is (P1.0 printing, January 2011)

D

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_sigs.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=89

A SIMPLE COMPILED EXAMPLE < 90

Charlie Says. ..
€ Lq
iﬁé Filenames and Case Sensitivity

The java_require directive has an interesting quirk on non-case-
sensitive file systems (the default on Mac and Windows). These
systems can’t tell the difference between Waveform.class (which
is a generated Java wrapper around Ruby code) and wave-
form.class (which is just compiled Ruby code). When some piece
of Ruby code tries to require ‘waveform’, JRuby will try to load
Waveform.class instfead—which will throw an error.

The solution to this is easy: make sure your generated Java class
has a different name than your Ruby source file. For example,
we placed the Ruby source for the Waveform class into a file
called waveform_with_sigs.rb (instead of just waveform.ro).

\ J
If you look inside Waveform java, you’ll see something similar to the
JRuby Embed example we cooked up earlier. A simple Java wrapper
class contains the full Ruby source embedded as a string, plus a few
methods that hand off their implementation to the Ruby class.

This approach has the advantage of being self-contained: a single .java
file is all you need to throw at your build system. But there may be
times when you don’t want your Ruby source pasted into your Java
class. For these situations, add the text java_require plus the Ruby file-
name (minus extension) anywhere in your .rb file. For this example,
you might put something like this right before the start of the Waveform
class definition:

Download compiler/waveform/waveform_with_sigs.rb

require 'java'

java_require 'waveform_with_sigs'

Now, when you recompile, the generated Java code will have method
signatures easier to call from Java:

public Waveform(double[] points) {
// ...
}

public double rms() {

// ...
}

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_sigs.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=90

THE DETAILS <« 91

iy Charlie Says. ..
"_Why Does the Class Name Need to B tring?

Remember that the jrubyc -java command first generates a
Java source file and then compiles that to bytecode. JRuby
just copies the class name as a string from your Ruby file into
the generated text. In other words, this requirement is just a side
effect of the way JRuby generates source code.

. J

And there you have it: one Ruby class compiled to JVM bytecode, in a
form that’s easy to use from Java. We're sure you have lots of questions
about where to go from here: how to use other Java classes, implement
interfaces, and so on. In the next section, we’ll get into several of these
details.

4.3 The Details

Now that you have some simple Ruby code compiled into a Java project,
let’'s explore a few things you might do to help this code fit into the
broader Java universe.

Importing Classes

If your compiled Ruby code is going to be part of a larger system, you’ll
probably want to import other Java classes into your Ruby code. To
do this, you’ll use the same java_import syntax from Chapter 2, Driving
Java from Ruby, on page 31, with a twist. You'll need to use a string,
rather than a Java-style package name, to refer to the class:

Original style:
java_import com.example.MyClass

Compiler style:
java_import 'com.example.MyClass'

Here’s an example of how to apply this technique to the Waveform class:
Download compiler/waveform/waveform_with_import.rb

require 'java'

java_import 'java.io.PrintStream'

Report erratum

this copy is (P1.0 printing, January 2011)

http://media.pragprog.com/titles/jruby/code/compiler/waveform/waveform_with_import.rb
http://books.pragprog.com/titles/jruby/errata/add?pdf_page=91

THE DETAILS < 92

class Waveform
... other methods here ...

java_signature 'void print(PrintStream)'
def print(stream)
stream.write("The RMS is #{rms}")
end
end

This new print method can write out the RMS voltage to a standard Java
PrintStream.

Specifying a Package

It's standard Java practice to avoid name clashes by putting compiled
code into packages. JRuby has you covered here. Since most of the
other compiler hints have names that start with java_..., perhaps you've
guessed that the way to specify a Java package name is to use the
java_package directive:

Download compiler/waveform/waveform_with_package.rb

java_package 'com.example'

If you add the previous line to your Ruby file, the resulting Java class
will be generated into the com.example package.

Implementing an Interface

Most Java-based systems will eventually need to implement an inter-
face. For jrubyc, you can do this by specifyi