

Early Praise for Deploying JRuby

Deploying with JRuby is the definitive text on getting JRuby applications up and
running. Joe has pulled together a great collection of deployment knowledge, and
the JRuby story is much stronger as a result.

➤ Charles Oliver Nutter
JRuby Core team member and coauthor, Using JRuby

Deploying with JRuby answers all of the most frequently asked questions regarding
real-world use of JRuby that I have seen, including many we were not able to
answer in Using JRuby. Whether you’re coming to JRuby from Ruby or Java, Joe
fills in all the gaps you’ll need to deploy JRuby with confidence.

➤ Nick Sieger
JRuby Core team member and coauthor, Using JRuby

This book is an excellent guide to navigating the various JRuby deployment op-
tions. Joe is fair in his assessment of these technologies and describes a clear
path for getting your Ruby application up and running on the JVM.

➤ Bob McWhirter
TorqueBox team lead at Red Hat

Essential reading to learn not only how to deploy web applications on JRuby but
also why.

➤ David Calavera
Creator of Trinidad

Deploying with JRuby is a must-read for anyone interested in production JRuby
deployments. The book walks through the major deployment strategies by providing
easy-to-follow examples that help the reader take full advantage of the JRuby
servers while avoiding the common pitfalls of migrating an application to JRuby.

➤ Ben Browning
TorqueBox developer at Red Hat

Deploying with JRuby is an invaluable resource for anyone planning on using
JRuby for web-based development. For those who have never used JRuby, Joe
clearly presents its many advantages and few disadvantages in comparison to
MRI.

➤ Toby Crawley
TorqueBox developer at Red Hat

Within half an hour of picking up this book I found a solution to a deployment
problem I’ve had for months. Loaded with solid insight and relevant examples,
this book is a must-have if you’re looking for an approach to deployment that
doesn’t involve holding your breath.

➤ Bryan Powell
Founder of Metabahn, creator of Pakyow

Deploying with JRuby
Deliver Scalable Web Apps Using the JVM

Joe Kutner

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-97-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2012

http://pragprog.com

Contents

Acknowledgments ix

Preface xi

1. Getting Started with JRuby 1
What Makes JRuby So Great? 21.1

1.2 Introducing Warbler 4
1.3 Preparing Twitalytics for JRuby 7
1.4 Configuring Warbler for Twitalytics 13
1.5 Wrapping Up 18

2. Creating a Deployment Environment 19
Creating a Virtual Server 192.1

2.2 Provisioning with Puppet 22
2.3 Packaging the Deployment Environment 33
2.4 Using Alternative Platforms 33
2.5 Wrapping Up 35

3. Deploying an Archive File 37
Provisioning a Server 383.1

3.2 Installing Apache Tomcat 39
3.3 Creating the Deployment Script 43
3.4 Using Precompiled Assets with Warbler 48
3.5 Deploying to the Cloud 50
3.6 Wrapping Up 54

4. Creating a Trinidad Application 57
What Is Traditional Deployment? 584.1

4.2 Getting Started with Trinidad 58
4.3 Adding Trinidad Extensions 60
4.4 Choosing Alternatives to Trinidad 73
4.5 Wrapping Up 74

5. Deploying a Trinidad Application 75
Provisioning a Server 755.1

5.2 Installing Trinidad as a Service 78
5.3 Hot-Deploying with Capistrano 82
5.4 Configuring Apache 90
5.5 Choosing Alternative Deployment Strategies 94
5.6 Wrapping Up 100

6. Creating a TorqueBox Application 103
What Is an Application Server? 1046.1

6.2 Getting Started with TorqueBox 106
6.3 Creating a Deployment Descriptor 109
6.4 Using the Management Console 111
6.5 Scheduling a Recurring Job 111
6.6 Creating a Long-Running Daemon 115
6.7 Running Background Jobs 118
6.8 Pushing to the Browser with Stomplets 125
6.9 Testing a TorqueBox Application 131
6.10 Wrapping Up 132

7. Deploying a TorqueBox Application 133
Choosing a Deployment Strategy 1347.1

7.2 Creating a Deployment Environment 135
7.3 Installing TorqueBox 138
7.4 Deploying an Archive File 142
7.5 Wrapping Up 147

8. Clustering a TorqueBox Application 149
Creating the Cluster 1518.1

8.2 Installing the Apache Cluster Module 153
8.3 Deploying to the Cluster 155
8.4 Using High-Availability Jobs and Services 155
8.5 Using Session Replication 158
8.6 Running in Domain Mode 160
8.7 Wrapping Up 161

9. Managing a JRuby Deployment 163
Configuring the Runtime 1639.1

9.2 Inspecting the Runtime with JMX 167
9.3 Managing the Runtime with JMX 170
9.4 Creating a Management Bean 173

Contents • vi

9.5 Profiling an Application 175
9.6 Wrapping Up 179

10. Using a Continuous Integration Server 181
Installing Jenkins 18210.1

10.2 Creating a Git Depot 182
10.3 Creating a Jenkins Job 184
10.4 Archiving Artifacts with Jenkins 187
10.5 Wrapping Up 188

Index 191

vii • Contents

Acknowledgments
It’s a remarkable feeling to have other people offer their time and energy to
help improve a project that is your own creation. I have been fortunate enough
to experience this feeling multiple times over the course of writing this book,
so it is important that I try to thank the people who helped make it possible.

I must first thank the reviewers of my book who do not know me. I was
shocked by the attention to detail and wise feedback they provided in making
my book a finished product. Thank you to Jeff Holland, Matt Margolis, Stephen
Wolff, Sam Rose, Tibor Simic, Frederico Tomassetti, Charley Stran, Ian Dees,
Kevin Gisi, Wil Moore III, and the dozens of people who reported errata while
this book was in beta. I consider you all to be my friends!

Thank you to my wonderful colleagues for their experience, wisdom, and
editorial feedback as I worked on this project. They helped me in both the
proposal process and the review process: Lyle Johnson, Matt Blackmon,
Joshua Rufer, Bryan Powell, Bret Young, Matt Smith, and Robert Miller. This
paragraph does not do our friendship justice. Thank you.

I would also like to thank the staff at the Pragmatic Bookshelf: Susannah
Pfalzer, Dave Thomas, Andy Hunt, and probably a whole bunch of other
people I don’t know about. Above all, thank you to Brian P. Hogan, my editor.
You have been fair and kind in dealing with much of the crude prose I’ve
thrown your way. Thank you for helping me with this book and to become a
better writer.

It is also important that I thank the creators of the technologies I have written
about. This book would not have been possible without their hard work.
Thank you to Charles Nutter, Thomas Enebo, Nick Seiger, and the rest of the
JRuby team. You are the most amazing group in all of the open source world.
Thank you to David Calavera and Karol Bucek of the Trinidad project. Even
during the holiday season, these brilliant programmers made themselves
available to answer my questions. Thank you to Ben Browning, Toby Crawley,
Bob McWhirter, Lance Ball, Jim Crossley, Marek Goldmann, and the rest of

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

the TorqueBox team. Of this group, I must especially thank Ben and Toby,
who also provided me with extremely insightful reviews. I hope that I have
done justice to the effort these people have put into the technologies covered
by this book. I owe them all my deepest gratitude and a free beverage.

Finally, I would like to thank my wife and son. I could not have completed
this project without your love and support.

x • Acknowledgments

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Preface
Your website has just crashed, and you’re losing money. The application is
built on Rails, runs on MRI, and is served up with Mongrel and Apache.
Having this kind of infrastructure means that you’re managing more processes
than you can count on two hands.

The background jobs are run with Resque,1 the scheduled jobs are run with
cron, and the long-running jobs use Ruby daemons,2 which are monitored by
monit.3 It’s going to take some time to figure out which component is the
culprit because you have no centralized management interface. Standing up
a new server will take almost as long because the infrastructure is so complex.
But the website has to get back online if you are going to stay in business.

The problem I’ve just described is all too common. It has happened to everyone
from small start-ups to large companies that use Rails to serve millions of
requests. Their infrastructure is complex, and the myriad components are
difficult to manage because they are heterogeneous and decentralized in
nature. Even worse, Rubyists have become comfortable with this way of doing
things, and many think it is the only way of doing things. But that is not the
case.

The recent growth and increased adoption of the Java Virtual Machine (JVM)
as a platform for Ruby applications has opened many new doors. Deployment
strategies that were not possible with MRI Ruby are now an option because
of the JVM’s built-in management tools and support for native operating
system threads. Ruby programmers can leverage these features by deploying
their applications on JRuby.

It’s common for Ruby programmers to think that JRuby deployment will look
identical to deployment with MRI Ruby (that is, running lots of JVM processes

1. https://github.com/defunkt/resque
2. http://daemons.rubyforge.org/
3. http://mmonit.com/monit/

https://github.com/defunkt/resque
http://daemons.rubyforge.org/
http://mmonit.com/monit/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

behind a load balancer and putting any asynchronous background jobs in a
separate process). On the other hand, Java programmers tend to deploy
JRuby applications the same way they deploy Java applications. This often
requires lots of XML and custom build configurations, which negate many of
the benefits of a more dynamic language such as Ruby. But there are much
better options than both Ruby and Java programmers are used to.

In this book, we’ll explore the most popular and well-supported methods for
deploying JRuby. There is a surprising amount of flexibility in the processes
and platforms that can be used, which allows Ruby and Java programmers
to tailor their deployments to suit many different environments.

What’s in This Book?

Over the course of this book, we’re going to rescue the application that was
described at the beginning of the chapter. We’ll do this by porting it to JRuby
and deploying it in a way that will simplify its infrastructure and improve its
ability to scale.

The application’s name is Twitalytics, and it’s a powerful Twitter client. (As
you probably know, Twitter is a social networking website that’s used to post
short status updates, called tweets.) Twitalytics tracks public tweets about
an organization and performs analytic computations against data captured
in those tweets in order to discover trends and make predictions. But it can’t
handle its current load.

Twitalytics has several background jobs that are used to stream tweets into
the application, perform analytics, and clean up the database as it grows. In
addition, it receives a large volume of HTTP requests for traditional web traffic.
But doing this on MRI means running everything in separate processes, which
consumes more resources than our systems can handle.

We’ll begin rescuing Twitalytics in Chapter 1, Getting Started with JRuby, on
page 1. We’ll discuss what makes JRuby a better deployment platform and
why we want to use it for our application. Then we’ll port Twitalytics to JRuby
and package it into an archive file with the Warbler gem. But before we can
deploy it, we’ll need to create an environment where it can run.

In Chapter 2, Creating a Deployment Environment, on page 19, we’ll set up a
virtual production server that will simulate a real deployment target. We’ll
provision it with the essential components of any production JRuby environ-
ment, which means these steps will apply not only to Twitalytics but to any
JRuby deployment. You’ll also learn how to automate this process to make

xii • Preface

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

it more reliable. We’ll create a new server for each deployment strategy we
use in this book, and the automated scripts will save us from having to re-
create this environment each time.

Once we’ve completed the setup of our production server, we’ll be ready to
deploy. In Chapter 3, Deploying an Archive File, on page 37, we’ll write a script
that deploys the archive file we created earlier. You’ll learn how this process
differs from the more common practice of deploying a Ruby application as a
directory of loose files. The script we’ll write will be more portable than tools
like Capistrano. We’ll also deploy Twitalytics to the cloud with the CloudBees
platform.

The Warbler gem gives us a quick way to get started with JRuby. But it’s just
a stepping stone on our path to better performance. As the book progresses,
we’ll improve our deployment by running Twitalytics on some JRuby web
servers.

The next two chapters of the book will be dedicated to the lightweight Trinidad
web server. Trinidad lets us deploy applications much like we would with
MRI-based Rails applications using tools like Capistrano. But we’ll find that
JRuby allows us to reduce the complexity of this kind of deployment environ-
ment while increasing its reliability and portability. In Chapter 4, Creating a
Trinidad Application, on page 57, we’ll port not only the part of Twitalytics
that handles web requests but also its background jobs to Trinidad. Then
we’ll set up our virtual server and deploy our application in Chapter 5,
Deploying a Trinidad Application, on page 75. The resulting architecture will
be friendly and familiar to Rubyists.

But we still won’t be making the most of what the JVM has to offer. To do
that, we’ll need a new kind of container.

In Chapter 6, Creating a TorqueBox Application, on page 103, we’ll introduce
the concept of an application server. This kind of deployment is unique when
compared to traditional Ruby deployments because it provides a complete
environment to run any kind of program, not just a web application. We’ll
show how this eliminates the need for external processes and provides a
centralized management interface. In Chapter 7, Deploying a TorqueBox
Application, on page 133, we’ll push to a production server running TorqueBox.
But ultimately, we’ll deploy our application to a TorqueBox cluster in Chapter
8, Clustering a TorqueBox Application, on page 149. This will give us the most
advanced deployment environment available to any Ruby application.

An overview of each strategy covered in this book is listed in the following
table:

What’s in This Book? • xiii

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

TorqueBoxTrinidadWarbler

JBoss ASApache TomcatWinstoneBuilt-in web server

Knob fileWAR fileWAR fileArchive file deployment

YesYesNoCapistrano deployment

YesYesNoBackground jobs

YesNoNoClustering support

Deciding on the right platform for each application is a function of these
attributes. But getting an application up and running on one of these platforms
is just part of the job. We also need to keep it running. To do that, we’ll use
some built-in JVM tools to inspect our new platform.

Chapter 9, Managing a JRuby Deployment, on page 163 will present some tools
for monitoring, managing, and configuring a deployed JRuby application.
These tools are independent of any deployment strategy and can be used to
monitor the memory consumption, performance, and uptime of any Java
process. Finally, Chapter 10, Using a Continuous Integration Server, on page
181 will introduce a tool for producing reliable and consistent deployments.

Twitalytics is a Rails application, and we’ll use this to our advantage as we
deploy it. But all of the server technologies we’ll use work equally well with
any Rack-compliant framework (such as Sinatra4 or Merb5). In fact, the steps
we’ll use to package and deploy Twitalytics would be identical for these other
frameworks. Warbler, Trinidad, and TorqueBox provide a few hooks that make
deploying a Rails application more concise in some cases (such as automati-
cally packaging bundled gems). But the workflow is the same.

When you encounter Rails-specific features in this book, be aware that this
is only for demonstration purposes and not because the frameworks are
pigeonholed to work with Rails. In fact, Rails works with these servers because
it is Rack-based.

Who Is This Book For?

This book is for programmers, system administrators, and DevOps6 profes-
sionals who want to use JRuby to power their applications but are not
familiar with how this new platform will change their infrastructure.

4. http://www.sinatrarb.com/
5. http://www.merbivore.com/
6. http://en.wikipedia.org/wiki/DevOps

xiv • Preface

http://www.sinatrarb.com/
http://www.merbivore.com/
http://en.wikipedia.org/wiki/DevOps
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

It is not required that you have any experience with JRuby. This book is
written from the perspective of someone who is familiar with MRI-based Ruby
deployments but wants a modern deployment strategy for their applications.
Some of the concepts we’ll discuss may be more familiar to programmers with
Java backgrounds, but it is not required that you have any experience with
Java or its associated technologies.

The No-Java-Code Promise

You will not have to write any Java code as you work your way through this
book. That’s not what this book is about. It is about deploying Ruby applica-
tions on the JVM. The technologies and tools that you will be introduced to
in this book hide the XML and Java code from you. As the TorqueBox devel-
opers like to say, “[They] write Java so you don’t have to.”7

You may want to include some Java code in your application. Or you may
want to make calls to some Java libraries. That is entirely your choice. If you
want to write your programs exclusively in Ruby and deploy them on the Java
Virtual Machine—like so many of us do—then go ahead.

There are many reasons to deploy Ruby applications on the JVM, and using
Java libraries and APIs is just one of them. In this book, you’ll learn how to
get the most out of the JVM without writing any Java code.

Conventions

The examples in this book can be run on Linux, Mac, Windows, and many
other operating systems. But some small changes to the command-line
statements may be required for certain platforms.

We’ll be using notation from bash, the default shell on Mac OS X and many
Linux distributions, so the $ prompt will be used for all command-line
examples. Windows command prompts typically use something like C:\>
instead, so when you see a command like this:

$ bundle install

you’ll know not to type the dollar sign and to read it like this:

C:\> bundle install

The commands we’ll use are mostly compatible between Windows and bash
systems (such as cd and mkdir). In the cases where they are not compatible,

7. http://vimeo.com/27494052

The No-Java-Code Promise • xv

http://vimeo.com/27494052
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

the appropriate commands for both systems will be spelled out. One in par-
ticular is the rm command, which will look like this:

$ rm temp.txt
$ rm -rf tmp/

On Windows this should be translated to these two commands, respectively:

C:\> del temp.txt
C:\> rd /s /q tmp/

Another Unix notation that is used in this book is the ~ (tilde) to represent a
user’s home directory. When you see a command like this:

$ cd ~/code/twitalytics

you can translate it to Windows 7 as this command:

C:\> cd C:\Users\yourname\code\twitalytics

On earlier versions of Windows, the user’s home directory can be found in
the Documents and Settings directory. You can also use the %USERPROFILE% environ-
ment variable. Its value is the location of the current user’s profile directory.

Other than these minor notation changes, the examples in this book are
compatible with Windows by virtue of the Java Virtual Machine.

Preparing Your Environment

Four software packages are required to run the examples in the book. They
are listed here along with the version that is needed:

• Java Development Kit (JDK) 6 (aka 1.6)
• JRuby 1.6.7
• Git 1.7
• Bundler 1.0

Java 7 was released in July 2011 and is supported by JRuby 1.6.7, but this
newer version of the JVM is not readily available on all operating systems.
To ensure the consistency of the steps in this book, we will use Java 6.
However, you are encouraged to try Java 7 if your platform supports it.8

Java is supported in one form or another on a wide range of operating systems
including Linux, Mac, Windows, and more, but the installation process will
be different for each.

8. http://www.engineyard.com/blog/2011/getting-started-with-jruby-and-java-7/

xvi • Preface

http://www.engineyard.com/blog/2011/getting-started-with-jruby-and-java-7/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Installing Java

On Debian-based Linux platforms, such as Ubuntu, the JVM can be installed
with APT, like this:

$ sudo apt-get install openjdk-6-jdk

On Fedora, Oracle Linux, and Red Hat, the JVM can be install with the yum
command, like this:

$ su -c "yum install java-1.6.0-openjdk"

For Mac OS X systems, Apple provides a JDK version 6, and versions of Mac
OS X prior to 10.7 (Lion) ship with the JDK. If you are running Lion, you can
install the JDK by opening the Java Preferences application under the /Appli-
cations/Utilities/ directory. The first time this program is opened, we’ll see a dialog
like the one in Figure 1, Mac OS X prompt to install Java, on page xviii. Follow
its instructions to install the Java runtime. If the dialog does not appear, then
the JDK is already installed.

For Windows systems, we’ll need to use the Oracle JDK. Download and run
the binary installer from the Oracle website.9 After the installation completes,
we’ll need to set the JAVA_HOME variable. (The exact path may vary).

C:\> SET JAVA_HOME="C:\Program Files\Java\jdk1.6.0_27"

In all cases, we can check that the JVM was installed correctly by running
this command:

$ java -version
java version "1.6.0_07"
Java(TM) SE Runtime Environment (build 1.6.0_07-b06-153)
Java HotSpot(TM) 64-Bit Server VM (build 1.6.0_07-b06-57, mixed mode)

Now that the JVM is ready, we can put JRuby on our machine.

Installing JRuby

The preferred method for installing JRuby on Unix and Linux systems requires
the Ruby Version Manager (RVM). It’s preferred not only because it makes
JRuby easy to install but also because it treats JRuby just like any other
Ruby platform. This allows us to use the ruby and gem commands without
putting the j character in front of them or prefixing every other command with
the jruby -S command. RVM is compatible only with bash systems, which does
not include Windows. Installing JRuby on Windows will be described in a
moment, but if you are using a bash system, run this command to install RVM:

9. http://www.oracle.com/technetwork/java/javase/downloads/index.html

Preparing Your Environment • xvii

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 1—Mac OS X prompt to install Java

$ bash < <(curl http://rvm.beginrescueend.com/releases/rvm-install-head)

You’ll also have to reload your shell. The most dependable way to do this is
to close the current terminal and open a new one. Now we can use RVM to
install JRuby with this command:

$ rvm install jruby
jruby-1.6.7 - #fetching
jruby-1.6.7 - #extracted to ~/.rvm/src/jruby-1.6.7 (already extracted)
Building Nailgun
jruby-1.6.7 - #installing to ~/.rvm/rubies/jruby-1.6.7
jruby-1.6.7 - #importing default gemsets (/home/vagrant/.rvm/gemsets/)
Copying across included gems
Building native extensions. This could take a while...
Successfully installed jruby-launcher-1.0.12-java
1 gem installed

We’ll also need to set JRuby as the default Ruby.

$ rvm --default use jruby
Using ~/.rvm/gems/jruby-1.6.7

If you are using a system that does not support RVM, such as Windows, then
JRuby can be installed manually with these three steps:

1. Download the JRuby binaries from the official website.10

2. Unpack the downloaded file, which will create a jruby-<version> directory.
3. Add jruby-<version>/bin to the PATH.

Without RVM, we’ll have to modify the commands that are used in this book.
RVM allows us to invoke JRuby without using the jruby or jgem command, so
we’ll have to change all ruby commands in this book to jruby commands. We’ll
also need to prefix any other commands (such as bundle, gem, and rails) with
the jruby -S prefix, like this:

10. http://jruby.org/download

xviii • Preface

http://jruby.org/download
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ jruby -S bundle install

We can check that JRuby was installed correctly with this command:

$ ruby -v
jruby 1.6.7 (ruby-1.8.7p357) (2012-02-22 3e82bc8) ...

You will never be asked to run any of the examples in this book with MRI
Ruby, so remember that when you see the ruby, gem, rake, or similar commands,
you are expected to be running them with JRuby.

Next, we need to install Git.

Installing Git

Git is a source control management tool that allows us to track versions of
our code. We’ll be using Git to switch between different versions of Twitalytics
as we deploy it to new platforms. Follow the instructions for downloading and
installing Git from the official website.11

It’s OK to use some other form of version control if you’d prefer, but the
examples in this book will be specific to Git. The examples will even work
without version control software, but that is not recommended. The source
code for each branch we’ll create is available from http://pragprog.com/titles/jkdepj/
source_code, so instead of switching branches, you can change to the directory
that corresponds to the chapter you’re reading.

Getting the Source Code

Now we’re ready to set up the Twitalytics application. We’ll start by download-
ing the source code from http://pragprog.com/titles/jkdepj/source_code. Unpack the
downloaded file and put it in your home directory. This will create a code
directory and inside of that will be a twitalytics directory, which contains the
baseline code for the application (in other words, the MRI-based code).

We need to change directories into this location and initialize it as a Git
repository.

$ cd twitalytics
$ git init
$ git add .
$ git commit -m "initial commit"

Next, we need to install Bundler, a dependency management tool for Ruby,
by running the following command:

11. http://git-scm.com/download

Preparing Your Environment • xix

http://pragprog.com/titles/jkdepj/source_code
http://pragprog.com/titles/jkdepj/source_code
http://pragprog.com/titles/jkdepj/source_code
http://git-scm.com/download
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ gem install bundler

Now we can use Bundler to install Twitalytics’ dependencies by running this
command:

$ bundle install --without production

We’ve added the --without production option to exclude the pg gem, which requires
that PostgreSQL be installed. We’ll take care of this later in the book by
switching to some JRuby database adapters that are just as fast and don’t
rely on native code.

Our development environment is ready, but we won’t be able to run Twitalytics
with JRuby yet; it works only under MRI. We’ll port it to JRuby in Chapter
1, Getting Started with JRuby, on page 1.

Online Resources

Several online resources can help if you’re having trouble setting up your
environment or running any of the examples in this book.

For Java-related problems, the Java.net community has forums12 and
numerous Java-related articles.

For JRuby-related problems, the official JRuby website13 has links to several
community outlets. The most useful of these are the mailing list14 and the
#jruby IRC channel on FreeNode.15

For Trinidad-related problems, there is a mailing list16 and a wiki.17

For TorqueBox-related problems, there is a mailing list,18 extensive documen-
tation,19 and the #torquebox IRC channel on FreeNode.

12. http://www.java.net/forum
13. http://jruby.org/community
14. http://xircles.codehaus.org/projects/jruby/lists
15. http://freenode.net/
16. http://groups.google.com/group/rails-trinidad
17. https://github.com/trinidad/trinidad/wiki
18. http://torquebox.org/community/mailing_lists/
19. http://torquebox.org/documentation/

xx • Preface

http://www.java.net/forum
http://jruby.org/community
http://xircles.codehaus.org/projects/jruby/lists
http://freenode.net/
http://groups.google.com/group/rails-trinidad
https://github.com/trinidad/trinidad/wiki
http://torquebox.org/community/mailing_lists/
http://torquebox.org/documentation/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 1

Getting Started with JRuby
JRuby is a high-performance platform that can scale to meet demand without
the headaches of an MRI-based deployment. Those headaches are often the
result of running a dozen or more processes on a single server that all need
to be monitored, balanced, and occasionally restarted. JRuby avoids these
problems by simplifying the architecture that’s required to run an application.
In this chapter, we’re going to port our application to JRuby so that we can
take advantage of this simplicity and the scalability that results from it. But
in order to run the application in production, we’ll need a way to deploy it.
For this, we’ll use Warbler.1

Warbler is a gem that can package our source code into an archive file that
we can deploy without the need for tools like Capistrano. This makes the
process more flexible, portable, and faster.

We’ll be able to get started with Warbler quickly, but we’ll eventually outgrow
it. Warbler is primarily a tool for deploying the part of an application that
handles web requests, so it won’t help us with things like background jobs.
It also makes it difficult to run the same web server we use in production on
our development machines. But it’s the quickest way to get an application
running on JRuby, and that’s why we’ll use Warbler as our first step to saving
Twitalytics.

In Preface, on page xi, you were introduced to Twitalytics, which needs help.
Its infrastructure is too complex, and it can’t handle the volume of requests
the site is receiving. We don’t have time to port the daemons and background
jobs to a new framework, but we need to get the part of the application that
handles HTTP requests deployed on JRuby. If we can do that, we’ll be able
to handle lots of concurrent requests without hogging our system’s memory.

1. https://github.com/jruby/warbler

https://github.com/jruby/warbler
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

These time constraints make Warbler a great solution. It won’t maximize our
use of the JVM, but it will allow us to take advantage of the most important
parts. We’ll be able to service all of our site’s web requests from a single pro-
cess without changing much of our code. The drawback is that we will have
to make changes to our deployment process, so there is much to learn. Let’s
begin by discussing why we want to use JRuby in the first place.

1.1 What Makes JRuby So Great?

A production JRuby environment has fewer moving parts than traditional
Ruby environments. This is possible because of the JVM’s support for native
operating system threads. Instead of managing dozens of processes, JRuby
can use multiple threads of execution to do work in parallel. MRI has threads,
but only one thread can execute Ruby code at a time. This has led to some
complex workarounds to achieve concurrency.

Deployment with MRI usually requires a type of architecture that handles
HTTP requests by placing either Apache2 or a similar web server in front of a
pool of application instances that run in separate processes. An example of
this using Mongrel is illustrated in Figure 2, Traditional MRI web application
architecture, on page 3. There are many problems with this kind of architec-
ture, and those problems have been realized by Twitter, GitHub, and countless
others. They include the following:

Stuck processes
Sometimes the processes will get into a stuck state and need to be killed
by an external tool like god or monit.

Slow restarts
There is a lot of overhead in starting a new process. Several instances
may end up fighting each other for resources if they are restarted at the
same time.

Memory growth
Each of the processes keeps its own copy of an application, along with
Rails and any supporting gems, in memory. Each new instance means
we’ll also need more memory for the server.

Several frameworks, such as Unicorn, Passenger, and Thin, have been created
that try to improve upon this model. But they all suffer from the same
underlying constraint. MRI cannot handle multiple requests in the same

2. http://httpd.apache.org/

2 • Chapter 1. Getting Started with JRuby

http://httpd.apache.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

MRI

Mongrel

Apache/Nginx

HTTP
Request

MRI

Mongrel

Figure 2— Traditional MRI web application architecture

runtime concurrently. If you want to handle ten requests at the same time,
then you need to have ten instances of your application running. No matter
how you do it, deploying with MRI means managing lots of processes.

JRuby allows us to use a very similar model but with only one JVM process.
Inside this JVM process is a single application instance that handles all of
our website’s traffic. This works by allowing the platform to create many
threads that run against the same application instance in parallel. We can
create far more JVM threads than we could MRI processes because they are
much lighter weight. This model is illustrated in Figure 3, Architecture of a
JRuby web application, on page 4, and we can use it to serve many more
concurrent requests than an MRI-based system.

We’ve included Apache in the architecture, but its role on a single instance
is greatly reduced. We’ll use it to serve up static content and load balance a
distributed cluster, but it won’t need to distribute requests across multiple
processes on a single machine.

What Makes JRuby So Great? • 3

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

JVM

Twitalytics

Thread

Apache/Nginx

HTTP
Request

Figure 3—Architecture of a JRuby web application

In the coming chapters, we’ll build an architecture like the one we’ve just
described with each of the technologies we use. We’ll start with Warbler, which
will get us up and running quickly. Let’s begin by using Warbler to package
a simple Rack application.

1.2 Introducing Warbler

Warbler is a gem that can create a web application archive (WAR) file from a
Rails, Merb, or Rack-based application.

A WAR file is a zip file that follows a few conventions, but we don’t have to
worry about those conventions because Warbler takes care of them for us.
What we do need to know is how to use the Warbler commands to package
our application.

The WAR file that Warbler creates will be completely self-contained and ready
to be deployed to a Java web server. Warbler bundles JRuby, your web

4 • Chapter 1. Getting Started with JRuby

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Joe asks:

What’s in a WAR File?
A WAR file is a special case of Java archive (JAR) file; both are really just zip files.
But a WAR file is structured according to a standard that is recognized by all Java
web servers. We can take a closer look at this by extracting the WAR file we created
in this chapter with any unzipping tool. Inside of it, we find these essential components
(among many other things):

twitalytics.war
|-- index.html
|-- META-INF/

`-- MANIFEST.MF
`-- WEB-INF/

|-- lib/
`-- web.xml

The top-level directory contains all client-accessible content, which is equivalent to
the public directory in a Rails application. This is where we’ll find all of the HTML files,
images, and other static content. The WEB-INF directory contains all the dynamic content
for our web application. This includes our Ruby scripts, and the Java libraries need
to run a JRuby application. The META-INF directory contains basic metadata about the
WAR file, such as who created it and when it was created.

Inside the WEB-INF directory is the web.xml file, which is the most important part of the
archive. It contains a description of how the components in the web application are
put together at runtime. It’s similar to the config/application.rb, config/environment.rb, and
config/routes.rb files of a Rails application all put together into a single descriptor. For-
tunately, Warbler handles the creation of this file for us based on the settings in our
config/warbler.rb file.

A WAR file can be digitally signed, which creates a checksum for each file contained
in the archive. This is used by a web server to ensure that no one has tampered with
it or that it has not been corrupted in some way. If the checksums do not match,
then the server won’t load the files.

framework, and all of the dependencies needed to adapt a Ruby web applica-
tion to a Java-based container.

To demonstrate Warbler, let’s create the simplest web application we can.
First, we’ll create a directory called myapp. In that directory, we’ll create a
config.ru file and put the following code into it:

Warbler/myapp/config.ru
run lambda { |env|

[200, {'Content-Type' => 'text/html'}, 'Hello, World']
}

Introducing Warbler • 5

http://media.pragprog.com/titles/jkdepj/code/Warbler/myapp/config.ru
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Next, we need to install the Warbler gem to our JRuby gem path with this
command:

$ gem install warbler
Successfully installed jruby-jars-1.6.7
Successfully installed jruby-rack-1.1.4
Successfully installed rubyzip-0.9.6.1
Successfully installed warbler-1.3.4
4 gems installed

Warbler has two JRuby-specific dependencies. The jruby-jars gem includes the
core JRuby code and standard library files. This allows other gems to depend
on JRuby without freezing to a specific version. The other dependency, the
jruby-rack gem, is responsible for adapting the Java web server specification to
the Rack specification.

Next, let’s use the warble command to create our archive file. In the same
directory as the config.ru file we created earlier, we’ll run it with the war option.

$ warble war

This will create a myapp.war file. In Chapter 3, Deploying an Archive File, on
page 37, we will discuss all the different ways we can deploy this WAR file.
For now, we just want to be able to run it so we can demonstrate how Warbler
works. To do this, we’ll create an executable WAR file. Let’s build the WAR
file again by running the same command with the executable option.

$ warble executable war

This will create a WAR file that is capable of running on its own, without the
need for a free-standing Java web server. You probably won’t want to use this
in production, but it will help us test our archive file. We can run it with this
command:

$ java -jar myapp.war

When the server is started, you’ll be able to access the application at
http://localhost:8080.

That’s all you need to know to get started with Warbler. Now let’s make some
adjustments to the Twitalytics application. It wasn’t built to run on JRuby,
so it has some code that’s specific to MRI. We’re going to fix these parts so
they work on our new platform.

6 • Chapter 1. Getting Started with JRuby

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

1.3 Preparing Twitalytics for JRuby

In the previous section, we packaged a simple Rack application that was
compatible with JRuby, but Twitalytics is more complex. Before we can
package Twitalytics with Warbler, we need to make sure the application is
ready for JRuby. In doing so, we’ll need to make some changes to our code,
so let’s branch our Git repository with the following command:

$ cd ~/code/twitalytics
$ git checkout -b jruby
Switched to a new branch 'jruby'

We’ll use this branch to commit our JRuby-specific changes to Twitalytics.
But how do we know what changes to make? Fortunately, there is an app
that can help us with that. The JRuby-Lint3 tool can detect most JRuby
incompatibilities in an application. It runs through the code base and looks
for common gotchas. Let’s start by installing the gem.

$ gem install jruby-lint
Successfully installed jruby-lint-0.3.1
1 gem installed

Next, we’ll run the tool from our project’s root directory.

$ jrlint
JRuby-Lint version 0.3.1
For more on gem compatibility see http://wiki.jruby.org/C-Extension-Alternatives
./Gemfile:19: [gems, warning] Found gem 'therubyracer' which is reported to ...
Try using therubyrhino instead.
./Gemfile:36: [gems, warning] Found gem 'sqlite3' which is reported to have ...
Use activerecord-jdbc-adapter instead along with jdbc-sqlite3.
./app/controllers/company_controller.rb:13: [fork, error] Kernel#fork is not...
Processed 37 files in 1.07 seconds
Found 4 items

JRuby-Lint found three problems for us (it says it “Found 4 items” because
it will take two changes to fix one of them). The first two problems are the
result of gems that are incompatible with JRuby. Our database adapters and
therubyracer gem contain native code that cannot run on the JVM. Fixing this
will require that we switch to some new libraries. We need to open the Gemfile
and look for these lines:

twitalytics/Gemfile
platform :ruby do

gem 'therubyracer'
end

3. https://github.com/jruby/jruby-lint

Preparing Twitalytics for JRuby • 7

http://media.pragprog.com/titles/jkdepj/code/twitalytics/Gemfile
https://github.com/jruby/jruby-lint
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

This gem provides an embedded JavaScript interpreter for Ruby that uses
the V8 engine, which can’t run on the JVM. Fortunately, there is an alternative
gem called therubyrhino, which embeds a JVM-friendly engine. It’s even main-
tained by the same person.4 To use it, we need to replace the platform block
shown previously with this code:

JRuby/twitalytics/Gemfile
platform :jruby do
gem 'therubyrhino'

end

Now we’ll run Bundler again (continuing to use the --without production flag that
we discussed in Preface, on page xi).

$ bundle install --without production

Our new JavaScript engine has been installed. Next, we’ll fix the problem
with our database adapters. Look for these lines in the Gemfile:

twitalytics/Gemfile
group :production do
gem 'pg'

end

group :development, :test do
gem 'sqlite3'

end

Database adapters also use a lot of native code that doesn’t work with JRuby.
Because of this, JRuby provides a set of replacement adapters that are built
upon the extremely mature, secure, and robust Java Database Connectivity
(JDBC) libraries. Let’s replace the earlier groups with this code:

JRuby/twitalytics/Gemfile
gem 'activerecord-jdbc-adapter', :require => false

group :production do
gem 'jdbc-postgres'

end

group :development, :test do
gem 'jdbc-sqlite3'

end

This will load the ActiveRecord-JDBC adapters for SQLite3 and Postgres,
which are JRuby compatible. Furthermore, installing the JDBC adapters
won’t require the physical database to be present, which means we can

4. https://github.com/cowboyd

8 • Chapter 1. Getting Started with JRuby

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/Gemfile
https://github.com/cowboyd
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

eliminate the Bundler --without production option that we used earlier. Bundler
remembers the --without option, so we need to run the following command to
clear the configuration:

$ bundle install --without none

The none group is a dummy that clears our previous configuration. Subsequent
runs of Bundler won’t require any flags.

Now let’s give the new adapter a simple test by running our migrations.

$ rake db:migrate
JRuby limited openssl loaded. http://jruby.org/openssl
gem install jruby-openssl for full support.
== CreateStatuses: migrating ===
-- create_table(:statuses)

-> 0.0050s
-> 0 rows

== CreateStatuses: migrated (0.0050s) ==

== CreateAnalytics: migrating ==
-- create_table(:analytics)

-> 0.0030s
-> 1 rows

== CreateAnalytics: migrated (0.0040s) =======================================

Our database configuration and local databases are ready. Let’s run jrlint again
and see how we are doing.

$ jrlint
JRuby-Lint version 0.3.1
./app/controllers/company_controller.rb:13: [fork, error] Kernel#fork is not ...
Processed 38 files in 1.07 seconds
Found 1 items

Uh-oh, Twitalytics is using the Kernel#fork() method, which is not supported
on JRuby. Let’s open the app/controllers/company_controller.rb file and take a look.

twitalytics/app/controllers/company_controller.rb
def update

child = fork do
post_update(params[:status_text])

end
Process.detach(child)

flash[:notice] = "Status updated!"
redirect_to company_path

end

private

Preparing Twitalytics for JRuby • 9

http://media.pragprog.com/titles/jkdepj/code/twitalytics/app/controllers/company_controller.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

def post_update(text)
We won't actually update because that requires an OAuth token.
Twitter.update(text)
sleep 10
puts "update posted successfully"

end

It appears that sending the status update to Twitter was often hanging or
taking too long. This caused our users to wait excessively for the browser to
respond. After a few seconds, they probably just closed the window. We don’t
want our customers to leave the Twitalytics site, so it’s important that the
Twitter updates happen in the background.

Using Kernel#fork() isn’t the healthiest way to fire and forget a process. If things
don’t go right, the child process can become a zombie. Too many zombies can
eventually bring down our system. Furthermore, there is no constraint around
how many child processes the application can spawn. A denial-of-service
attack or even an innocent heavy load could easily flood our OS with processes.

It would be wise to fix this problem regardless of porting to JRuby. Fortunately,
with JRuby we can still achieve the parallelism that Kernel#fork() gave us
without pushing the job to Resque or some other message queue.

We could replace the call to Kernel#fork() with a call to Thread.new(). That would
make the code compatible with JRuby and allow it to run in parallel. But it
would not prevent an unbounded number of threads from being created in
the same way that forking allowed an unbounded number of processes to be
created.

A better solution uses a thread pool. Fortunately, several libraries can make
this easy for us. We’ll use get_back,5 a Ruby gem for making any method run
asynchronously. Add the following code to the :jruby platform block in our
Gemfile and run bundle install:

JRuby/twitalytics/Gemfile
gem 'get_back'

Now we can declaratively make the post_udpate(text) method run from a thread
pool. First, we’ll modify the CompanyController so that it extends the GetBack::JoJo
module.

JRuby/twitalytics/app/controllers/company_controller.rb
class CompanyController < ApplicationController
include TwitterUtil
extend GetBack::JoJo

5. https://github.com/jkutner/get_back

10 • Chapter 1. Getting Started with JRuby

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/app/controllers/company_controller.rb
https://github.com/jkutner/get_back
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Then, we’ll remove the call to the Kernel#fork() and tell the post_update(text) method
to get back.

JRuby/twitalytics/app/controllers/company_controller.rb
def update

post_update(params[:status_text])
flash[:notice] = "Status updated!"
redirect_to company_path

end

private

def post_update(text)
We won't actually update because that requires an OAuth token.
Twitter.update(text)
sleep 10
puts "update posted successfully"

end

get_back :post_update, :pool => 10

The :pool option creates a fixed-size thread pool with ten threads, which means
that only ten updates can be posted simultaneously. If an eleventh post comes
along and the ten threads are still busy, it will wait until one becomes
available.

The get_back gem is ideal for simple tasks such as posting a Twitter status.
But if your application does a lot of background processing, you’ll probably
benefit from a platform that provides features such as durability, monitoring,
and clustering. We’ll introduce one like this in Chapter 6, Creating a TorqueBox
Application, on page 103.

The status update doesn’t require advanced monitoring, so we’ve fixed the
forking problem. Let’s run jrlint one last time to make sure everything is OK.

$ jrlint
JRuby-Lint version 0.3.0
Processed 34 files in 2.84 seconds
OK

Now let’s make sure everything is working by migrating our test database
and running our unit tests (note that you may need to prefix the rspec com-
mand with bundle exec depending on your system configuration).

$ RAILS_ENV=test rake db:migrate
...
$ rspec spec/
JRuby limited openssl loaded. http://jruby.org/openssl
gem install jruby-openssl for full support.

Preparing Twitalytics for JRuby • 11

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/app/controllers/company_controller.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

FF.....

Failures:

...

Finished in 0.551 seconds
7 examples, 2 failures

Failed examples:

rspec ./spec/controllers/company_controller_spec.rb:6 # CompanyController GET ...
rspec ./spec/controllers/customers_controller_spec.rb:6 # CustomersController ...

Oops, we have a couple failures. As you can see from the first line in the
RSpec output, we have limited support for OpenSSL. Ruby OpenSSL is a
native library, which JRuby can’t use. Fortunately, JRuby alerts us to this
as soon as the runtime starts and suggests that we install the jruby-openssl
gem. Let’s do that by adding the following line to the platform :jruby block of our
Gemfile and running bundle install:

JRuby/twitalytics/Gemfile
gem 'jruby-openssl'

Now we can run the tests again and see whether that fixed the problem.

$ rspec spec/
.......

Finished in 4.02 seconds
7 examples, 0 failures

Excellent. Let’s boot the application with WEBrick.

$ rails server
=> Booting WEBrick
=> Rails 3.2.1 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
[2011-10-21 15:56:25] INFO WEBrick 1.3.1
[2011-10-21 15:56:25] INFO ruby 1.8.7 (2011-08-23) [java]
[2011-10-21 15:56:25] INFO WEBrick::HTTPServer#start: pid=9083 port=3000

Now browse to http://localhost:3000, and you’ll see the page pictured in Figure 4,
The Twitalytics dashboard, on page 13.

Let’s follow the Company link so we can test the changes we made to the
update() action. It will open a page with our account’s updates and a text box
for posting a status, as pictured in Figure 5, The Twitalytics status update
page, on page 14. Fill the text box with something and click the Post button

12 • Chapter 1. Getting Started with JRuby

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/Gemfile
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 4—The Twitalytics dashboard

(don’t worry, it won’t actually post). The browser will return immediately, and
ten seconds later you’ll see this line in your log file:

update posted successfully

Congratulations. You ported an application to JRuby. Before we move on,
let’s commit our changes to the Git repository with the following commands:

$ git add .
$ git commit -m "Ported to JRuby"

Now we’re ready to package it with Warbler.

1.4 Configuring Warbler for Twitalytics

OK, we don’t have to configure Warbler for production. It knows Twitalytics
is a Rails application and will package it with a nice set of defaults, but we
are going to elect to make a few small configuration changes. Before we do,
let’s branch our Git repository again.

$ git checkout -b warbler
Switched to a new branch 'warbler'

Now we can safely configure Warbler while preserving our jruby branch.

Warbler does not package a Rails application’s db directory into the WAR file
by default. But we need to tell Warbler to include it because the path to our
development SQLite database in config/database.yml is relative. First, we’ll create
a config/warble.rb file by running this command:

$ warble config

Configuring Warbler for Twitalytics • 13

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 5—The Twitalytics status update page

Now let’s edit the new file. It contains a wealth of instructions and examples
for the different configuration options, which are helpful to read. You never
know what you might need to change. Don’t worry about preserving its con-
tents. You can always re-create it by running warble config again. Given that
safety net, let’s replace the contents of config/warble.rb file with this code:

Warbler/twitalytics/config/warble.rb
Warbler::Config.new do |config|
config.jar_name = "twitalytics"
config.dirs << "db"
config.excludes = FileList["**/*/*.box"]
config.bundle_without = []

end

The configuration shown previously sets the name that will be used for the
archive file to twitalytics, which ensures it’s the same in every environment
(the default value is the name of the root directory). Then it adds the db
directory to our package. We need to do this only because we’re using a SQLite
database. As a side effect, we’ll have an easy way to run our database
migrations against the PostgreSQL database on the production server.

We’ve cleared the bundle_without list because the defaults exclude development
and test from our WAR file. But we’ll need these to test our WAR and also

14 • Chapter 1. Getting Started with JRuby

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/config/warble.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

run some Rake tasks later. We’ve also excluded all .box files, which you’ll learn
about in Chapter 2, Creating a Deployment Environment, on page 19.

Let’s test it by creating our first Twitalytics WAR file.

$ warble executable war
Creating twitalytics.war

Great! Now let’s run it. The WAR file executes in production mode by default,
so we’ll have to be explicit about our RAILS_ENV.

$ RAILS_ENV=development java -jar twitalytics.war
[Winstone 2011/10/22 17:37:11] - Beginning extraction from war file
[Winstone 2011/10/22 17:37:13] - WARNING: The Servlet 2.4/2.5 spec XSD was ...
[Winstone 2011/10/22 17:37:13] - No webapp classes folder found - /private/...
[webapp 2011/10/22 17:37:13] - Warning: no max runtimes specified.
[webapp 2011/10/22 17:37:13] - jruby 1.6.7 (ruby-1.8.7-p357) (2012-02-22 3e...
[webapp 2011/10/22 17:37:13] - Info: using runtime pool timeout of 30 seconds
[webapp 2011/10/22 17:37:13] - Warning: no min runtimes specified.
[webapp 2011/10/22 17:37:13] - Warning: no max runtimes specified.
[Winstone 2011/10/22 17:37:13] - Listener winstone.ajp13.Ajp13Listener not ...
[Winstone 2011/10/22 17:37:13] - Listener winstone.ssl.HttpsListener not fo...
[Winstone 2011/10/22 17:37:13] - Winstone Servlet Engine v0.9.10 running: c...
[Winstone 2011/10/22 17:37:13] - HTTP Listener started: port=8080

Now point a browser to http://localhost:8080, and you should see the Twitalytics
dashboard again. The first time will take a while to load because Rails has
some precompilation to do, but it will warm up after that.

Let’s take a closer look at the console output from shortly after we started
the WAR file. In particular, take a look at these three lines:

[webapp 2011/10/22 17:37:13] - Info: using runtime pool timeout of 30 seconds
[webapp 2011/10/22 17:37:13] - Warning: no min runtimes specified.
[webapp 2011/10/22 17:37:13] - Warning: no max runtimes specified.

Warbler is using a pool of application instances to prevent multiple threads
from executing against Twitalytics in parallel. This is illustrated in Figure 6,
Architecture of a JRuby runtime pool, on page 16. The runtime pool is helpful
if our application is not thread-safe, but it severely limits the concurrency of
our web server. It also requires more memory.

We can configure the size of the runtime pool in the config/warble.rb file. Increas-
ing the maximum number of runtime instances will increase the concurrency
of our web server. Reducing the minimum number of instances will improve
our server’s start-up time. The number of runtimes you should use depends
on your server hardware. Each additional runtime will require another in-
memory copy of your program. Because each runtime is single-threaded, it’s

Configuring Warbler for Twitalytics • 15

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

JVM

Twitalytics

Twitalytics

Twitalytics

Thread

Apache/Nginx

HTTP
Request

Figure 6— Architecture of a JRuby runtime pool

unlikely that you’ll want more instances than you have CPU cores. Let’s
assume your server hardware has eight cores. A sensible configuration in our
config/warbler.rb file might be the following:

config.webxml.jruby.min.runtimes = 4
config.webxml.jruby.max.runtimes = 8

This is still suboptimal, though. Ideally, we should have one instance of our
application in memory with threads running against it in parallel, as illustrated
in Figure 3, Architecture of a JRuby web application, on page 4. For our
application to run correctly in this mode, we have to make sure it is thread-
safe.

We can consider our code thread-safe if it behaves correctly when accessed
from multiple threads without any synchronization or other coordination on
the part of the calling code. That’s a mouthful, but thread safety is difficult
to define. Formal attempts in academia are complicated and don’t provide
much practical guidance. Fortunately, there are some good heuristics for
making our code thread-safe. The most important is to avoid sharing mutable

16 • Chapter 1. Getting Started with JRuby

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

state between threads. The most common way to accidentally do this in a
Ruby program is with class variables.

There is no way to positively ensure that any application is thread-safe. But
we’ve taken a look at Twitalytics’ code, so we have confidence that it’s correct.
Now we need to configure Rails to run in thread-safe mode by uncommenting
the following line in our config/environments/production.rb file:

Warbler/twitalytics/config/environments/production.rb
config.threadsafe!

Warbler is Rails-aware, so it will detect this configuration and implicitly create
a single runtime instance of our application.

Because a development server has only one user, we’ll leave it in non-thread-
safe mode, but we’ll set the maximum runtimes to 1 by adding the following
line to the config/warbler.rb file. This will allow our application to start up faster.

Warbler/twitalytics/config/warble.rb
config.webxml.jruby.max.runtimes = 1

Let’s repackage Twitalytics and run it again so we can see this in action.

$ warble executable war
rm -f twitalytics.war
Creating twitalytics.war
$ RAILS_ENV=development java -jar twitalytics.war
[Winstone 2012/01/12 19:47:58] - Beginning extraction from war file
[Winstone 2012/01/12 19:48:00] - WARNING: The Servlet 2.4/2.5 spec XSD was u...
[Winstone 2012/01/12 19:48:00] - No webapp classes folder found - /private/v...
[webapp 2012/01/12 19:48:00] - Info: received max runtimes = 1
[webapp 2012/01/12 19:54:44] - jruby 1.6.7 (ruby-1.8.7-p357) (2012-02-22 3e8...
[Winstone 2012/01/12 19:54:59] - Listener winstone.ajp13.Ajp13Listener not f...
[Winstone 2012/01/12 19:54:59] - Listener winstone.ssl.HttpsListener not fou...
[Winstone 2012/01/12 19:54:59] - Winstone Servlet Engine v0.9.10 running: co...
[Winstone 2012/01/12 19:54:59] - HTTP Listener started: port=8080

We can tell by the following line in the console output that Warbler is using
a single runtime instance of our application:

[webapp 2012/01/12 19:48:00] - Info: received max runtimes = 1

We’re all done! Before we move on, let’s commit our changes to the warbler
branch with the git add and git commit commands.

$ git add config/warble.rb
$ git add config/environments/production.rb
$ git commit -m "Added Warbler configuration"

Twitalytics is now ready to be deployed to production with Warbler.

Configuring Warbler for Twitalytics • 17

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/config/environments/production.rb
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/config/warble.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

1.5 Wrapping Up

We packaged Twitalytics into an archive file. That’s a huge step for our
application because it means we can deploy it to any Java servlet container.
There are many possibilities, including containers that run in the cloud,
containers that run on embedded devices, and containers that run on a
dedicated server.

You’ve also learned how the JVM can simplify a Ruby architecture no matter
what JRuby web framework we use. This will be important as we work our
way through the book and as you continue to develop new applications on
your own.

Finally, we ported Twitalytics to JRuby. The problems we solved for this
application were typical of those you might see on any application you port
to JRuby. You now have the knowledge you need to do this again on your
own projects.

Having a JRuby application packaged into a WAR file is a good first step, but
we still need to deploy it. In the coming chapters, we’ll explore how to get this
WAR file to our customers. But first, we need to create a production environ-
ment for it to run on.

18 • Chapter 1. Getting Started with JRuby

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 2

Creating a Deployment Environment
In this chapter, we’re going to build an environment that will be used to run
JRuby applications in production. The steps we’ll follow are essential in
preparing any server for a JRuby deployment, so you’ll probably repeat them
every time you set up an environment for a new customer or employer.

The environment we create will be equipped with a complete web stack
including an HTTP server, a database, and the Java Virtual Machine.
Deploying applications on JRuby doesn’t mean we have to turn our world
upside-down, so the tools we’ll use to create this server may be familiar.

In Chapter 1, Getting Started with JRuby, on page 1, we ported Twitalytics
to JRuby, and now it needs an environment to run on. At the end of this
chapter, we’ll have a deployment environment that’s ready to take advantage
of everything that JRuby has to offer. Let’s get started.

2.1 Creating a Virtual Server

Deployment is the process of taking code or binaries from one environment
and moving them to a another environment where they can be executed. In
our case, we’ll be moving code from our development machine to a production
server. We already have a development environment configured, but we still
need to create a production environment that can be used as the target of
our deployments. To do this, we’ll use Vagrant1 and VirtualBox.2 These tools
reduce the process of provisioning a virtual server to just a few steps.

The instructions in this chapter will describe how to build an Ubuntu Linux
virtual machine on a Linux or Unix host system. But you can build your

1. http://vagrantup.com/
2. https://www.virtualbox.org/

http://vagrantup.com/
https://www.virtualbox.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

deployment environment with any platform you want. We’ll try to address a
few variations in Section 2.4, Using Alternative Platforms, on page 33. It’s best
to practice on an environment that is typical of the ones you will use in pro-
duction, so you should pick one that makes sense. But the following steps
will be specific to Ubuntu, VirtualBox, and Vagrant.

Let’s get started by installing VirtualBox. Go to virtualbox.org,3 and download
and run the installer now. The VirtualBox user interface will open at the end
of the installation, but you can close it. We’re going to drive VirtualBox with
Vagrant. To install Vagrant, download the binary installer for your operating
system from the official website4 and run it. The installer adds a vagrant com-
mand to our path, so we can check that both Vagrant and its connection to
VirtualBox are working by running the following:

$ vagrant --version
Vagrant version 1.0.1

We could have installed the Vagrant gem, but that is not the preferred method
of installation, since certain Vagrant commands do not work on JRuby. These
include vagrant ssh and vagrant reload. It is possible to work around these deficien-
cies by running the vagrant-ssh script provided with the source code and by
running vagrant halt && vagrant up, respectively, but using the binary distribution
saves us a lot of time.

Now we’re ready to build our deployment environment. The following command
will create a fully functioning virtual machine running Ubuntu:

$ vagrant box add base-jruby http://files.vagrantup.com/lucid64.box
[vagrant] Downloading with Vagrant::Downloaders::HTTP...
[vagrant] Downloading box: http://files.vagrantup.com/lucid64.box
[vagrant] Copying box to temporary location...
[vagrant] Extracting box...
[vagrant] Verifying box...
[vagrant] Cleaning up downloaded box...

Note that the lucid64.box file is very large (about 250MB), so the previous com-
mand may take some time to run.

Next, we’ll move into the twitalytics directory, which contains the Git repository
we created in Preface, on page xi. This is where we’ll keep an image of our
box along with some configuration files that we want under version control.
To create these configuration files, we need to run the vagrant init command
with the base-jruby argument.

3. https://www.virtualbox.org/wiki/Downloads
4. http://downloads.vagrantup.com/tags/v1.0.1

20 • Chapter 2. Creating a Deployment Environment

https://www.virtualbox.org/wiki/Downloads
http://downloads.vagrantup.com/tags/v1.0.1
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ cd ~/code/twitalytics
$ vagrant init base-jruby

This creates a Vagrantfile, which tells Vagrant the box that we want to interact
with it when we use the vagrant command. Now we can boot our virtual machine
like this:

$ vagrant up
[default] Importing base box 'base-jruby'...
[default] The guest additions on this VM do not match the install version of
VirtualBox! This may cause things such as forwarded ports, shared
folders, and more to not work properly. If any of those things fail on
this machine, please update the guest additions and repackage the
box.

Guest Additions Version: 4.1.0
VirtualBox Version: 4.1.8
[default] Matching MAC address for NAT networking...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant

The VM is running! Let’s log into it with the following command:

$ vagrant ssh
Linux lucid64 2.6.32-33-server #70-Ubuntu SMP ...
Ubuntu 10.04.3 LTS

Welcome to the Ubuntu Server!
* Documentation: http://www.ubuntu.com/server/doc
Last login: Mon Oct 17 14:24:10 2011 from 10.0.2.2
vagrant@lucid64:~$

The vagrant@lucid64:~$ prompt means that we are inside our virtual box.

Next, we need to update the system’s package manager. Ubuntu is a Debian-
based environment that uses the Advanced Packaging Tool (APT) to install
software, which we can update with the following command:

vagrant@lucid64:~$ sudo apt-get update

Finally, we need to exit the virtual machine and add everything we’ve created
to our Git repository. We’ll put these changes in a new deployment branch and
merge them in later, so run these commands:

Creating a Virtual Server • 21

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ git checkout -b deployment jruby
$ git add .
$ git commit -m "Added Vagrant configuration"

Our configuration is now under version control, and our virtual operating
system is ready! Now we need to install some software on it.

2.2 Provisioning with Puppet

Puppet is a configuration management tool for Linux and Unix systems that
automates the steps for building any kind of server environment. We’ll be
using it to provision our virtual machine with the infrastructure necessary
to run a JRuby application, but it’s capable of much more. In fact, Puppet is
capable of automating nearly every aspect of a system administrator’s job
including managing user permissions, installing software, and even configuring
services such as FTP and LDAP.

With Puppet, we can declaratively define the building blocks of our system.
These blocks can be software, services, users, and many other things. Puppet
calls each of these building blocks a resource and provides a domain-specific
language (DSL) for defining them. The resources we create will be contained
in manifest files that Puppet interprets into system commands.

The advantage of using Puppet over manually executing the system commands
is that the Puppet DSL makes our configuration more portable and repeatable.
Throughout this book, we’ll be rebuilding our deployment environment more
than once, and having our infrastructure defined in code will save us a lot of
time. In this book, we’ll only scratch the surface of how to use Puppet. If you
want to learn more, the best place to start is the official documentation.5

Let’s start by creating a directory for Puppet and our manifests.

$ mkdir -p puppet/manifests

Next, let’s create a puppet/manifests/site.pp file, which will contain our primary
configuration. Let’s edit that file and add our first resource.

JRuby/twitalytics/puppet/manifests/site.pp
group { "puppet":

ensure => "present",
}

The previous code ensures that a puppet group will be present on our system.
If it’s not present, Puppet will create it. Now let’s add the site.pp manifest to

5. http://docs.puppetlabs.com/

22 • Chapter 2. Creating a Deployment Environment

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/manifests/site.pp
http://docs.puppetlabs.com/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

our Vagrant configuration so that we can run it. Open the Vagrantfile and add
the following code to the Vagrant::Config.run() block (you can delete all of the
comments in it, too):

JRuby/twitalytics/Vagrantfile
config.vm.provision :puppet do |puppet|

puppet.manifests_path = "puppet/manifests"
puppet.manifest_file = "site.pp"

end

The previously shown configuration tells Vagrant to run Puppet after starting
our virtual machine and provides the location of our manifest file. Let’s test
this by running the Vagrant reload command.

$ vagrant reload
[default] Attempting graceful shutdown of VM...
[default] VM already created. Booting if it's not already running...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Group[puppet]/ensure: created
notice: Finished catalog run in 0.05 seconds

Puppet created the new group. Let’s add some more configuration. Open the
site.pp again, and add the following exec resource, which updates our system’s
package manager:

JRuby/twitalytics/puppet/manifests/site.pp
exec { "apt-update" :

command => "/usr/bin/apt-get update",
require => Group[puppet]

}
Exec["apt-update"] -> Package <| |>

This tells Puppet to execute the provided command argument, which updates
the cache for Ubuntu’s Advanced Packaging Tool (APT).

The previous resource also declares a dependency on the Group resource we
created earlier, which ensures that the puppet group will be created before this

Provisioning with Puppet • 23

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/Vagrantfile
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/manifests/site.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Joe asks:

Is Puppet Running on JRuby?
Puppet is written in Ruby. But as you may have noticed, we are using it to install
JRuby. That means Puppet is executing on the MRI runtime that was included with
our Linux distribution.

We ported our application to JRuby because MRI wasn’t scaling well, but that doesn’t
apply to our configuration management. MRI is still an excellent replacement for shell
scripts as a system administration tool because it comes preloaded on many systems
and the work is primarily single-threaded.

Furthermore, we’ve been running Puppet in stand-alone mode, which means that we
simply run the Puppet scripts against our server each time it boots up. Stand-alone
mode does not work on JRuby because it uses the unsupported Kernel.fork() method.

In most real-world environments, Puppet is run in a master-agent mode where a
centralized management daemon (puppetmasterd) runs on a master node and the agent
daemons (puppetd) run on other servers that need to use the Puppet configuration
provided by the master.

Master Node

puppetmasterd

SCM Server

puppetd

CI Server

puppetd

DB Server

puppetd

Web Server

puppetd

A Puppet master can be run on JRuby to improve its performance,a which is valuable
in a large organization that needs to scale its support infrastructure. But the agents
must still be run with MRI. In this book, we’ll run only on MRI because we won’t be
using a master node.

a. http://www.masterzen.fr/2009/05/24/puppet-and-jruby-a-love-story/

resource runs. Puppet manifests are declarative, so there is no guarantee on
the order in which our resources will run unless we define explicit dependen-
cies. In the last line, we declare that this resource must execute before any
Package resources. We’ll be adding a few of these resources in a moment. For
now, let’s run our provisioning process again. Because we’ve already reloaded
the box, we can use the provision command to avoid restarting the whole system.

24 • Chapter 2. Creating a Deployment Environment

http://www.masterzen.fr/2009/05/24/puppet-and-jruby-a-love-story/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ vagrant provision
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully

notice: Finished catalog run in 1.13 seconds

The system is up-to-date. Now we’re ready to install our most significant
resource, the Java Virtual Machine.

Installing the Java Virtual Machine

When we discuss the Java Virtual Machine, we are usually referring to a
specification that defines a core component of the Java Platform. There are
many JVM implementations, but in almost every case you will want to use
the HotSpot JVM. It is the most robust, well-rounded, and well-supported
implementation.

To install HotSpot, you’ll need to install the Java Development Kit (JDK).
When doing so, be careful that you are not actually installing the Java Runtime
Environment (JRE).

The JRE is a consumer environment used to run Java programs. It includes
a Java Virtual Machine (JVM) but does not include a compiler or debugger.
It’s intended for lightweight, production-ready Java applications.

The JDK includes everything in the JRE, as well as some other tools that
allow you to write, compile, monitor, and debug Java applications. It’s a much
bigger package as a result. You will need to install a JDK on your development
machine as well as on your production server. Even though you won’t be
doing any actual Java development, the JDK includes components that allow
server applications to run faster than if they ran on the JRE. In fact, some
server frameworks actually require a JDK be present.

We can install a few different JDK packages, but in most cases we’ll want to
use OpenJDK. OpenJDK is an open source project that is the reference
implementation for the Java Standard Edition.

Let’s install OpenJDK in our virtual machine by adding it to our Puppet
configuration in the puppet/manifest/site.pp file.

JRuby/twitalytics/puppet/manifests/site.pp
package { "openjdk-6-jdk" :

ensure => present
}

Provisioning with Puppet • 25

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/manifests/site.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

This tells the system’s package manager to install a package with the name
of openjdk-6-jdk if it’s not already present. Let’s add this resource to our system
by running the provisioning process again.

$ vagrant provision
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully

notice: /Stage[main]//Package[openjdk-6-jdk]/ensure: ensure changed 'purge...
notice: Finished catalog run in 173.83 seconds

Puppet has installed the JDK on our virtual machine. Let’s log into our box
and take a look at the new platform by running these commands:

$ vagrant ssh
Linux lucid64 2.6.32-33-server #70-Ubuntu SMP Thu Jul 7 22:28:30 UTC 2011 ...
Ubuntu 10.04.3 LTS

Welcome to the Ubuntu Server!
* Documentation: http://www.ubuntu.com/server/doc

Last login: Fri Feb 10 11:36:28 2012 from 10.0.2.2
vagrant@lucid64:~$ java -version
java version "1.6.0_20"
OpenJDK Runtime Environment (IcedTea6 1.9.10) (6b20-1.9.10-0ubuntu1~10.04.3)
OpenJDK 64-Bit Server VM (build 19.0-b09, mixed mode)

Excellent! Now we’re ready to install JRuby.

Installing JRuby

Having JRuby installed on our production server is not necessarily a
requirement. Only one of the three deployment strategies we’ll discuss in this
book requires the installation of a JRuby runtime. The others provide it for
us. But JRuby is a powerful tool that’s helpful to have around, so we’ll include
it in our base environment.

The simplest way to get JRuby onto our virtual machine is by using the sys-
tem’s package manager, just as we did for the JVM. Unfortunately, most
Linux distributions don’t upgrade to the latest JRuby release the moment it
comes out, which will leave us a few versions behind. To get the most recent
version of JRuby, we’ll create a Puppet module that installs it for us.

Puppet modules are used to encapsulate resources that apply to the same
component. In this case, it will take a few resources to get JRuby installed
on our system. So, let’s create the JRuby module and its manifests directory.

$ mkdir -p puppet/modules/jruby/manifests

26 • Chapter 2. Creating a Deployment Environment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Next, let’s add this new directory to our Vagrant configuration. Open the
Vagrantfile and set the module_path attribute in our Puppet configuration.

JRuby/twitalytics/Vagrantfile
config.vm.provision :puppet do |puppet|

puppet.manifests_path = "puppet/manifests"
puppet.module_path = "puppet/modules"
puppet.manifest_file = "site.pp"

end

Now let’s build our JRuby manifest. Create an init.pp file in the puppet/modules/jru-
by/manifests/ directory, and add the following declaration to it:

JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
class jruby {

$jruby_home = "/opt/jruby"
}

The previous code defines a class for our JRuby module. Puppet classes are
collections of resources that can be applied as a unit. We’ll be adding to this
class, but for now we’ve defined a variable that contains the location where
we want to install our JRuby runtime. Now let’s add a resource to the class
that downloads JRuby.

JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
exec { "download_jruby":

command => "wget -O /tmp/jruby.tar.gz http://bit.ly/jruby-167",
path => $path,
unless => "ls /opt | grep jruby-1.6.7",
require => Package["openjdk-6-jdk"]

}

This executes the wget command to download the JRuby binary distribution
from the official JRuby website. It also checks for the /opt/jruby-1.6.7 directory,
and it won’t run if it already exists. Finally, it declares a dependency on the
openjdk-6-jdk package resource we created earlier.

Next, we need to explode our JRuby package by adding this resource:

JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
exec { "unpack_jruby" :

command => "tar -zxf /tmp/jruby.tar.gz -C /opt",
path => $path,
creates => "${jruby_home}-1.6.7",
require => Exec["download_jruby"]

}

This extracts the contents of the file and creates the /opt/jruby-1.6.7 directory.
It also declares dependencies on the earlier resources to ensure the correct
order during execution.

Provisioning with Puppet • 27

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/Vagrantfile
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

The JRuby package contains the binaries we need, so our installation is
complete. But before we move on, let’s create a symbolic link to our version-
specific JRuby directory.

JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
file { $jruby_home :

ensure => link,
target => "${jruby_home}-1.6.7",
require => Exec["unpack_jruby"]

}

This will let us reference the JRuby directory without specifying the version.

Before we can run our new configuration, we need to include the module in
our puppet/manifests/site.pp manifest. Let’s open it and add this statement:

include jruby

Now we can provision our virtual machine again. We’ll have to reload the
system because we added the modules directory.

$ vagrant reload
[default] Attempting graceful shutdown of VM...
[default] VM already created. Booting if it's not already running...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests
[default] -- v-pp-m0: /tmp/vagrant-puppet/modules-0
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully

notice: /Stage[main]/Jruby/Exec[download_jruby]/returns: executed successfully
notice: /Stage[main]/Jruby/Exec[unpack_jruby]/returns: executed successfully
notice: /Stage[main]/Jruby/File[/opt/jruby]/ensure: created

notice: Finished catalog run in 13.35 seconds

Excellent. We have a JRuby runtime on our machine. Let’s configure the rest
of the infrastructure required to run our application.

28 • Chapter 2. Creating a Deployment Environment

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/modules/jruby/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Installing the Apache HTTP Server

Throughout this book, we’ll be using the Apache HTTP Server as a proxy for
the web applications we deploy. There are alternatives to Apache, such as
Nginx. But we’ve selected Apache to serve up our JRuby application because
it provides some very powerful ways to integrate with the JVM web servers
we’ll be using. We’ll demonstrate this later in the book. For now, let’s create
an Apache Puppet module. First, we need to create a directory for the module
by running this command:

$ mkdir -p puppet/modules/apache2/manifests

Then we create an init.pp file in the new directory and add the following Apache
class to it:

JRuby/twitalytics/puppet/modules/apache2/manifests/init.pp
class apache2 {

package { "apache2":
ensure => present,

}

service { "apache2":
ensure => running,
require => Package["apache2"],

}
}

This will install the apache2 package and ensure that the service it creates is
started.

We add the Apache module to our puppet/manifests/site.pp manifest by including
this statement:

JRuby/twitalytics/puppet/manifests/site.pp
include apache2

Now we’re ready to run our provisioning process again, but before we do, let’s
forward port 80 on our virtual machine to a port on our host. Open the
Vagrantfile and add this statement to the configuration block:

JRuby/twitalytics/Vagrantfile
config.vm.forward_port 80, 8000

This will allow us to use the browser on our desktop to view Apache.

Let’s run our new provisioning script and enable our forwarded port by
reloading the server again.

$ vagrant reload
[default] Attempting graceful shutdown of VM...

Provisioning with Puppet • 29

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/modules/apache2/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/manifests/site.pp
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/Vagrantfile
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

[default] VM already created. Booting if it's not already running...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] -- 80 => 8000 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests
[default] -- v-pp-m0: /tmp/vagrant-puppet/modules-0
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Apache2/Package[apache2]/ensure: ensure changed 'purg...
notice: Finished catalog run in 16.04 seconds

Apache is running on our box. Let’s point our browser to http:/localhost:8000,
and we’ll see the page shown in Figure 7, The Apache splash page, on page
31.

That takes care of our infrastructure’s front end; now let’s configure the back
end.

Installing PostgreSQL

Like many web applications, Twitalytics is backed by a relational database.
We’ll be using PostgeSQL6 for this book, so let’s add it to our Puppet configu-
ration by creating a new module.

There are several open source Puppet modules that install and configure
PostgreSQL.7 These modules will allow us to adjust many advanced PostgreSQL
options such as security and network settings. But our installation will be
very basic, so we’ll define it ourselves.

Let’s start by creating the module directories.

$ mkdir -p puppet/modules/postgres/manifests

Now we need to add an init.pp file to the new directory and edit it to contain
the following class:

6. http://www.postgresql.org/
7. https://github.com/KrisBuytaert/puppet-postgres

30 • Chapter 2. Creating a Deployment Environment

http://www.postgresql.org/
https://github.com/KrisBuytaert/puppet-postgres
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 7—The Apache splash page

JRuby/twitalytics/puppet/modules/postgres/manifests/init.pp
class postgres {

package { 'postgresql':
ensure => present,

}

user { 'postgres':
ensure => 'present',
require => Package['postgresql']

}

group { 'postgres':
ensure => 'present',
require => User['postgres']

}
}

This will install the postgresql package and create the matching system user
and group.

Now we need to add a vagrant user to PostgreSQL and give it permissions to
create databases and tables. Let’s add the following two resources to the
postgres class:

JRuby/twitalytics/puppet/modules/postgres/manifests/init.pp
exec { "createuser" :

command => "createuser -U postgres -SdRw vagrant",
user => 'postgres',
path => $path,
unless => "psql -c \

\"select * from pg_user where usename='vagrant'\" | grep -c vagrant",
require => Group['postgres']

}

exec { "psql -c \"ALTER USER vagrant WITH PASSWORD 'Passw0rd'\"":
user => 'postgres',
path => $path,
require => Exec["createuser"]

}

Provisioning with Puppet • 31

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/modules/postgres/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/modules/postgres/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

The first resource creates the database user, and the second resource sets
its password. You can use any value you prefer for the password, but
remember it because we’ll need it when we run our application’s database
settings.

Now let’s include the new module in our configuration by adding the following
statement to our puppet/manifests/site.pp file:

JRuby/twitalytics/puppet/manifests/site.pp
include postgres

Finally, let’s provision our virtual machine again. This time we don’t need to
reload the system, so we can use the provision command.

$ vagrant provision
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Package[postgresql]/ensure: ensure changed '...
notice: /Stage[main]/Postgres/Exec[createuser]/returns: executed successfu...
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWO...
notice: Finished catalog run in 33.45 seconds

When the provisioning process completes, the PostgreSQL instance will be
running on our box. Let’s check it out.

Log into the box with the vagrant ssh command. When you get the
vagrant@lucid64:~$ prompt, run the following command to check that PostgreSQL
installed correctly:

vagrant@lucid64:~$ psql postgres
psql (8.4.10)
Type "help" for help.

postgres=>

The psql command connects the local PostgreSQL client to the database. When
we see the postgres=# prompt, it means that PostgreSQL is running. You can
exit the psql client by entering \q at the prompt.

Our deployment environment is now complete, but before we move on, we
need to save all the work we’ve done. After exiting the virtual machine, we
can add our configuration to the Git repository with these commands:

$ git add puppet
$ git add Vagrantfile
$ git commit -m "Added Puppet configuration"

Now we’ll merge these changes into our jruby and warbler branches.

32 • Chapter 2. Creating a Deployment Environment

http://media.pragprog.com/titles/jkdepj/code/JRuby/twitalytics/puppet/manifests/site.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ git checkout jruby
Switched to branch 'jruby'
$ git merge deployment
...
create mode 100644 Vagrantfile
create mode 100644 puppet/manifests/site.pp
create mode 100644 puppet/modules/apache2/manifests/init.pp
create mode 100644 puppet/modules/jruby/manifests/init.pp
create mode 100644 puppet/modules/postgres/manifests/init.pp

$ git checkout warbler
Switched to branch 'warbler'
$ git merge jruby
...
create mode 100644 Vagrantfile
create mode 100644 puppet/manifests/site.pp
create mode 100644 puppet/modules/apache2/manifests/init.pp
create mode 100644 puppet/modules/jruby/manifests/init.pp
create mode 100644 puppet/modules/postgres/manifests/init.pp

Our configuration has been saved and propagated to our other branches. But
we also want to save our virtual machine. Let’s use Vagrant to do that.

2.3 Packaging the Deployment Environment

Vagrant allows us to package the environment we’ve created into a reusable
image by running the following command:

$ vagrant package --output base-jruby.box
[default] Clearing any previously set forwarded ports...
[default] Creating temporary directory for export...
[default] Exporting VM...
[default] Compressing package to: ~/code/twitalytics/base-jruby.box

This will create a base-jruby.box file in the current directory that contains an
image of the virtual machine. We won’t commit this to version control because
it’s too big. That’s why the .gitignore file in our source code already has it listed.

In this book, you’ll learn about three deployment techniques. For each tech-
nique, we’ll use base-jruby.box as the basis for creating a new deployment target.

2.4 Using Alternative Platforms

The steps in this chapter are specific to the Vagrant box we created. They
also assume that they are being followed on a Linux or Unix machine. As a
result, many of the previous commands are specific to Linux, Unix, and even
Ubuntu.

Packaging the Deployment Environment • 33

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

But one of the advantages of JRuby is its portability. That means we could
build a system very similar to the one we built in this chapter with many
different platforms, including Windows. In fact, the recommended way to use
Vagrant on Windows without a binary installer is with JRuby.

In this section, we’ll try to address a few common scenarios you might
encounter when creating an alternative environment.

Accessing the Server

Some of the steps described earlier require shell access to the guest operating
system. As long as your guest operating system is based on Linux or Unix,
then these steps should remain the same. But if the host operating system
is Windows, we’ll need to use a different method to access our guest.

Fortunately, Vagrant provides special support for PuTTY, a free Telnet and
SSH client for Windows. You’ll need to download and install PuTTY from the
official website8 and follow the instructions for configuring it on the Vagrant
website.9

By accessing the guest with PuTTY, a Windows host should be able to execute
all of the regular Vagrant steps in this chapter.

Installing the JVM

One of the steps in this chapter required that we install a JDK. We chose
OpenJDK for Ubuntu, but that may not be the best choice for other systems.

For Macs, Apple distributes its own JDK with a Mac OS X port of the HotSpot
JVM. If you’re using a Windows environment, you’ll want to install the Oracle
JDK. The Oracle JDK is a commercial packaging of OpenJDK that includes
a few closed source components. You can download and run the binary
installer from the Oracle website.10 After the installation has completed, you’ll
need to set the JAVA_HOME variable like this (note that the exact path will vary
based on the version you installed):

C:\> SET JAVA_HOME="C:\Program Files\Java\jdk1.6.0_27"

Portability is one of Java’s strong points, so you should be able to find a JVM
for any environment you need to deploy to, even if it’s a phone.11

8. http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
9. http://vagrantup.com/v1/docs/getting-started/ssh.html
10. http://www.oracle.com/technetwork/java/javase/downloads/index.html
11. http://www.dalvikvm.com/

34 • Chapter 2. Creating a Deployment Environment

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://vagrantup.com/v1/docs/getting-started/ssh.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.dalvikvm.com/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Creating a Machine Image

Vagrant allowed us to package our virtual machine in a reusable file. If your
alternative environment does not have a similar feature, then you may want
to create a machine image. A machine image is a snapshot of a virtual
environment that can be reloaded without reinstalling or configuring its
components. For this reason it’s often called a software appliance.

One popular deployment environment is Amazon’s Elastic Compute Cloud
(EC2). Amazon provides detailed instructions for how to create and restore
EC2 machine images.12

If creating a machine image is not possible, you can always repeat these steps
for each of the deployment strategies that will be presented in this book. As
another option, you can clean up after each of the deployment techniques.
That will require you to uninstall or reconfigure any software that may have
been used in a particular chapter.

2.5 Wrapping Up

We’ve created an environment that can be used to run Twitalytics and other
JRuby applications in production. We’ve prepared it with the essential com-
ponents of a web stack, so it’s likely that we’ll repeat these steps each time
we encounter a new customer or employer.

We’ve also set up Puppet, which will allow us to add new components to our
infrastructure without running a bunch of commands. When we create a
second instance of this environment, maybe for a cluster, we won’t have to
do much work. We’ll start with our base box, and Puppet will provision the
rest of it for us.

Let’s move on and deploy a JRuby application.

12. http://aws.amazon.com/amis

Wrapping Up • 35

http://aws.amazon.com/amis
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 3

Deploying an Archive File
Wouldn’t it be nice if we could deploy an entire application as a single file?
That’s exactly what Warbler does by packaging our code into a web archive
(WAR) file. In Chapter 1, Getting Started with JRuby, on page 1, you learned
how to create this package, but now we need to deploy it.

Traditional Ruby application deployment usually involves a step where a
repository or directory of source files is copied to a server. Tools like Capistra-
no1 were built to help with this task, but they have their drawbacks.

Copying a directory of source files onto a server means that the owner of the
target machine is exposed to your application files and directory structure.
This is particularly problematic when the owner isn’t you. Permissions can
be set wrong if a file extension or directory was missed by a command. In the
worst case, parts of the application can be deleted or overwritten accidentally.
At the very least, you may not want the owner of the target machine to have
access to your source code for reasons of propriety.

WAR files are a simple solution to these problems. They provide a modular,
portable, and easy-to-distribute package for our applications. But they can’t
run inside traditional Ruby web servers. Instead, WAR files need to run inside
Java-based containers that understand their format. In Getting Started with
JRuby, we embedded a server like this into our archive file so that we could
run it in stand-alone mode. This was convenient for testing our archive, but
that isn’t how we want to deploy our application to production. Instead, we
want to deploy our WAR file to a free-standing container, which will provide
more flexibility and better performance than our embedded container.

1. https://github.com/capistrano/capistrano

https://github.com/capistrano/capistrano
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

In this chapter, you’ll learn about the Apache Tomcat2 web server, which is
one of the most mature and widely adopted web servers available.3 We’ll install
Tomcat on a production server and write a script that deploys the WAR file
we created in the previous chapter to this new container.

Deploying a WAR file does not require special tools like Capistrano, which
reduce the portability and flexibility of the deployment process. We’ll use SSH
to deploy the Twitalytics WAR file to a Linux server, but we could just as
easily deploy it to a Windows server using FTP. In fact, we can deploy a WAR
file using any remote file transfer protocol.

But before we can deploy, we’ll need to create an environment for Twitalytics
to run on.

3.1 Provisioning a Server

We’re going to create a virtual server based on the one we started in Chapter
2, Creating a Deployment Environment, on page 19. Let’s change our location
to the twitalytics directory and use the vagrant box command to add a new
instance.

$ cd ~/code/twitalytics
$ git checkout warbler
$ vagrant box add warbler base-jruby.box
[vagrant] Downloading with Vagrant::Downloaders::File...
[vagrant] Copying box to temporary location...
[vagrant] Extracting box...
[vagrant] Verifying box...
[vagrant] Cleaning up downloaded box...

This created a new virtual machine that we can execute our Puppet scripts
against. But first, we need to reconfigure our Vagrantfile. Open the file and
adjust the config.vm.box attribute so the code looks like this:

Warbler/twitalytics/Vagrantfile
Vagrant::Config.run do |config|
config.vm.box = "warbler"
config.vm.forward_port 80, 8000
config.vm.provision :puppet do |puppet|

puppet.manifests_path = "puppet/manifests"
puppet.module_path = "puppet/modules"
puppet.manifest_file = "site.pp"

end
end

2. http://tomcat.apache.org/
3. http://wiki.apache.org/tomcat/PoweredBy

38 • Chapter 3. Deploying an Archive File

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/Vagrantfile
http://tomcat.apache.org/
http://wiki.apache.org/tomcat/PoweredBy
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Now the configuration references the warbler instance we created earlier.

Next, let’s boot and provision the server.

$ vagrant up
[default] Importing base box 'warbler'...
...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
...
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with site.pp...
...
[default] notice: Finished catalog run in 56.23 seconds

Now that our warbler virtual machine is ready, we can install our web server.

3.2 Installing Apache Tomcat

As we discussed earlier in the chapter, we’re going to use Tomcat to serve up
our WAR file. Tomcat provides an implementation of the Java Servlet API,
which is why it’s often called a servlet container. The Servlet API defines a
protocol for receiving and responding to requests (usually from the Web). This
makes its role very similar to Rack.

But Twitalytics isn’t written against the Java Servlet API. It’s a Rails applica-
tion that is designed to run on Rack. That’s where jruby-rack comes in. The jruby-
rack gem is an adapter between the Rack interface and the Servlet interface.
This allows our Rack-based application to run within a Java servlet container.

Warbler has already bundled the jruby-rack gem into our WAR file, so we can
take advantage of it without any additional configuration. The resulting
architecture is pictured in Figure 8, Architecture of a JRuby Rack application,
on page 40.

Apache Tomcat is one of the best servlet containers out there. It’s well-sup-
ported, is stable, and is in widespread use by hundreds of organizations.4

We’re going to use Puppet to install Tomcat for the same reasons we installed
Apache and PostgreSQL with Puppet in Chapter 2, Creating a Deployment
Environment, on page 19. Let’s start by creating a new module directory.

$ mkdir -p puppet/modules/tomcat6/manifests

In the new directory, let’s create an init.pp file and add this class to it:

4. http://wiki.apache.org/tomcat/PoweredBy

Installing Apache Tomcat • 39

http://wiki.apache.org/tomcat/PoweredBy
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Tomcat (Servlet Container)

Java Servlet API

jruby-rack

Rack API

Request

Response

Translate

Translate

Rails

Twitalytics

Figure 8—Architecture of a JRuby Rack application

Warbler/twitalytics/puppet/modules/tomcat6/manifests/init.pp
class tomcat6 {
package { "tomcat6" :

ensure => present
}

service { "tomcat6" :
ensure => running,
require => Package["tomcat6"]

}
}

40 • Chapter 3. Deploying an Archive File

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/puppet/modules/tomcat6/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

The previous code installs the tomcat6 package with the operating system’s
package manager. In our case, it’s using APT because we’re running Ubuntu.
Then, it starts Tomcat as a background service.

Next, we need to include this module in our puppet/manifests/site.pp manifest by
adding the following statement:

Warbler/twitalytics/puppet/manifests/site.pp
include tomcat6

Now we’re ready to provision the server again. But first, let’s forward port
8080 on our guest OS to a port on our host OS. This will allow us to access
Tomcat from the browser on our host system. Edit the Vagrantfile again, and
add this line to the configuration block:

Warbler/twitalytics/Vagrantfile
config.vm.forward_port 8080, 8888

Finally, let’s reload the virtual machine.

$ vagrant reload
[default] Attempting graceful shutdown of VM...
[default] VM already created. Booting if it's not already running...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] -- 80 => 8000 (adapter 1)
[default] -- 8080 => 8888 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests
[default] -- v-pp-m0: /tmp/vagrant-puppet/modules-0
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Tomcat6/Package[tomcat6]/ensure: ensure changed 'purged...
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWORD...
notice: Finished catalog run in 30.78 seconds

The output shown earlier tells us that Puppet successfully installed the
Tomcat service. Let’s verify it by pointing a browser to http://localhost:8888, where
we’ll see a page that looks like Figure 9, The Tomcat splash page, on page 42.

Installing Apache Tomcat • 41

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/puppet/manifests/site.pp
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/Vagrantfile
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 9—The Tomcat splash page

When we installed Tomcat, a few directories were created. The following is
how they appear on our Vagrant machine:

/var/lib/tomcat6/
|-- common/
|-- conf/
|-- logs/
|-- shared/
|-- webapps/
`-- work/

We’re mainly interested in three of these directories. The first is the conf
directory. It contains a server.xml file, which is used to configure nearly every-
thing about our container. We can use it to set the hostname and port that
Tomcat will listen on. Or we can specify how the server shuts down and add
life-cycle listeners. If you want to become a Tomcat power user, this is the
place to start. But for Twitalytics, and most applications, we won’t need to
change any of it.

Another important directory is /var/lib/tomcat6/logs, which contains the server
and application log files. Inside that directory is a file called catalina.out that
contains information of the container and the status of any deployments.
Next to that file will be a localhost-<date>.log file that contains the logging output
of our application.

A more important location is the webapps/ directory. This is where we will drop
our WAR file. Tomcat listens to this directory and immediately deploys any
web applications it finds.

Let’s write a deployment script that moves our WAR file from the machine it
was created on to the webapps/ directory.

42 • Chapter 3. Deploying an Archive File

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Installing Tomcat Without Puppet

If you’re not using Vagrant and Puppet with us, you’ll need to install Tomcat manu-
ally. To do this, download the binary package from the Tomcat website,a unpack it,
and run the $TOMCAT_HOME/bin/startup.sh script. This will start the server in the same way
as our Puppet configuration did.

Tomcat even includes a binary installer for Windows that creates a service for you.

a. http://tomcat.apache.org/download-60.cgi

3.3 Creating the Deployment Script

A deployment script is the part of any configuration that will probably differ
the most from system to system. For Twitalytics, we’re going to create a Rake
task that packages the WAR file and copies it to the production server. In our
example, we’ll run it from our development machine. This isn’t perfect, but
it will demonstrate the essential steps in any WAR file deployment strategy,
which are as follows:

1. Transfer the archive file to the production server.
2. Optionally run migrations against the production database.
3. Deploy the archive file to the web server.

Because our code is packaged into a single file, the first and third steps don’t
require much effort. We don’t have to use Capistrano or Git, so there is
nothing to configure. But having an archive file makes the second step more
difficult.

Unlike Capistrano, Warbler doesn’t mirror our development environment on
the production server. As we discussed in Chapter 1, Getting Started with
JRuby, on page 1, this might be a good feature. But it means that we have
to execute migrations in a different way.

One approach is to create a Tomcat life-cycle listener that runs migrations
from the exploded WAR file before starting the application. But this requires
some Java code and a custom web.xml file (the deployment descriptor for a
WAR file). A better strategy for us is to manually explode the WAR file and
run migrations before deploying it. We’ll do this as part of our Rake task.

Before we can build our Rake task, we need to include some new dependencies.
Let’s open the project’s Gemfile and add this group:

Creating the Deployment Script • 43

http://tomcat.apache.org/download-60.cgi
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Warbler/twitalytics/Gemfile
group :deploy do
gem "net-ssh", :require => "net/ssh"
gem "net-scp", :require => "net/scp"
gem "warbler", "1.3.4"

end

Save the file and run bundle install to fetch the new dependencies.

Next, let’s create a lib/tasks/deploy.rake file and edit it. We’ll add the following
statements, which load the gem group we just added:

Warbler/twitalytics/lib/tasks/deploy.rake
require 'bundler'
Bundler.require(:deploy)

Next, we need to add some helpers that will be used by our deployment script.
The first helper will serve the same purpose as our vagrant ssh command, but
in a cross-platform friendly way (including Windows). To create it, add the
following code to the end of the script:

Warbler/twitalytics/lib/tasks/deploy.rake
SSH_KEY = "~/.vagrant.d/insecure_private_key"

def with_ssh
Net::SSH.start("localhost", "vagrant", {

:port => 2222, :keys => [SSH_KEY]
}) do |ssh|

yield ssh
end

end

The with_ssh() method will allow us to execute commands on the remote server.
It uses the vagrant user and the SSH key provided by Vagrant to log into the
box.

The next helper method will allow us to copy files to the remote server. To
create it, add the following code to the end of the script:

Warbler/twitalytics/lib/tasks/deploy.rake
def scp_upload(local_file, remote_file)
Net::SCP.upload!("localhost", "vagrant", local_file, remote_file, {

:ssh => {:port => 2222, :keys => [SSH_KEY]}
}) do |ch, name, sent, total|

print "\rCopying #{name}: #{sent}/#{total}"
end; print "\n"

end

The scp_upload(local_file, remote_file) method uses the Secure Copy (SCP) protocol
to transfer files to the Vagrant box.

44 • Chapter 3. Deploying an Archive File

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

In practice, these helpers should be more robust. They would probably con-
figure the host and username based on the RAILS_ENV we pass to the script.
But we’re going to live on the edge. We’ll only be deploying directly from
development to production.

Next, we need to create a deployment task that will package our code into a
WAR file and push it to our server. We’ll start by creating the WAR file. Add
the following code to the script:

Warbler/twitalytics/lib/tasks/deploy.rake
namespace :deploy do

desc "Package the application into a WAR file and deploy it"
task :war do

Warbler::Task.new(:warble)
Rake::Task['warble'].invoke

end
end

This task creates a warble task on the fly and invokes it. This allows us to
seamlessly switch between the warble command we’ve been using and our new
Rake task without having the two mechanism conflict. We can test it by saving
the file and running the following command from the project’s root directory:

$ rake deploy:war
rm -f twitalytics.war
Creating twitalytics.war

Good. But our task isn’t doing any more than the warble command was doing.
We need to fill it out by adding the following code after the line that invokes
the warble task:

Warbler/twitalytics/lib/tasks/deploy.rake
with_ssh do |ssh|

ssh.exec! "mkdir -p deploy/"
ssh.exec! "rm -rf deploy/*"

end

This will prepare a deploy directory on our production server by creating it if
it doesn’t exist and removing any residual files if it does exist. We’ll be copying
our WAR file to this directory before deploying it. To do that, add this statement
immediately after the last one:

Warbler/twitalytics/lib/tasks/deploy.rake
scp_upload("twitalytics.war", "deploy/")

To test this, we need to make sure our virtual server is running by executing
this command:

Creating the Deployment Script • 45

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ vagrant status
Current VM states:

default running

The VM is running. To stop this VM, you can run `vagrant halt` to
shut it down forcefully, or you can run `vagrant suspend` to simply
suspend the virtual machine. In either case, to restart it again,
simply run `vagrant up`.

If the status is different from the previous output, run the vagrant up command.
With the server running, we can execute our Rake task again.

$ rake deploy:war
rm -f twitalytics.war
Creating twitalytics.war
Copying twitalytics.war: 81839088/81839088

At this point, the twitalytics.war file has been copied to the deploy directory on
our server, but now we need the ability to run Rake tasks from within our
WAR file. To do that, we’ll use the warbler-exec gem.

The warbler-exec gem5 is a simple tool that extracts the contents of a WAR file
and allows us to run a command within the context of those contents. We
can do this with a command in the following form:

$ warbler-exec <war-file> <command> <command-args>

We’re going to use this tool to run our Rake migrations task, so we’ll need to
include both our Rakefile and the rake executable in our WAR file. To do this,
we’ll first need to run Bundler with the --binstubs option, like this:

$ bundle install --binstubs

This will create a bin directory in our application that contains all the exe-
cutable scripts from our gem files. Running these scripts is analogous to
running bundle exec <script>.

Warbler won’t include our bin directory or Rakefile in the WAR by default, so
we’ll need to add these lines to our config/warble.rb file:

Warbler/twitalytics/config/warble.rb
config.dirs << "bin"
config.includes = FileList["Rakefile"]

Next, we need to use the warbler-exec tool in our deploy process to run the
migrations. We can do that by adding this code to the task:

5. https://github.com/jkutner/warbler-exec

46 • Chapter 3. Deploying an Archive File

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/config/warble.rb
https://github.com/jkutner/warbler-exec
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Warbler/twitalytics/lib/tasks/deploy.rake
with_ssh do |ssh|

ssh.exec <<-SH do |ch, stream, data|
cd deploy
export PATH=$PATH:/opt/jruby/bin
export RAILS_ENV=production
sudo jgem install warbler-exec
jruby -S warbler-exec twitalytics.war bin/rake db:migrate

SH
print data

end
end

This will install the warbler-exec gem and use it to run the application’s Rake
migrate task.

Let’s see how we’re doing by running the Rake task again.

$ rake deploy:war
rm -f twitalytics.war
Creating twitalytics.war
Copying twitalytics.war: 81839088/81839088
Successfully installed rubyzip-0.9.6.1
Successfully installed warbler-exec-0.1.0
2 gems installed
== CreateStatuses: migrating ===
-- create_table(:statuses)

-> 0.0040s
-> 0 rows

== CreateStatuses: migrated (0.0060s) ==

== CreateAnalytics: migrating ==
-- create_table(:analytics)

-> 0.0040s
-> 1 rows

== CreateAnalytics: migrated (0.0040s) =======================================

Excellent. The database has been migrated. Now we can deploy the WAR file
to Tomcat by adding this command:

Warbler/twitalytics/lib/tasks/deploy.rake
with_ssh do |ssh|

ssh.exec! "sudo mv deploy/twitalytics.war /var/lib/tomcat6/webapps/"
puts 'Deployment complete!'

end

Tomcat will detect that a new WAR file has been dropped into its webapps
directory. Then it will automatically undeploy the old application, if one exists,
and replace it with the new one.

Let’s test it. Save the file and run the task again.

Creating the Deployment Script • 47

http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/lib/tasks/deploy.rake
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ rake deploy:war
rm -f twitalytics.war
Creating twitalytics.war
Copying twitalytics.war: 81839088/81839088
Successfully installed warbler-exec-0.1.0
1 gem installed
Deployment complete!

Point your browser to http://localhost:8888/twitalytics, and you’ll see the Twitalytics
dashboard. Tomcat deployed our application under the twitalytics/ context path
because that was the name of our WAR file. This is a configurable option, but
we’ll stick with the default. However, that will have an impact on the Rails
asset pipeline.

3.4 Using Precompiled Assets with Warbler

Ruby on Rails version 3.1 introduced a feature called the asset pipeline. An
asset is a style sheet, JavaScript file, or image that is served as part of the
static content for a website. The asset pipeline is a framework to concatenate,
minify, and compress these assets so they can be loaded faster.

When we use our Rails application in development, it compiles assets as
needed. In production, we don’t want to incur this overhead, so we’ll want to
precompile our assets prior to deployment. Traditional Ruby applications
have the choice of precompiling assets on the production server or precompil-
ing them locally and deploying them with the rest of the application. With
Warbler, we can precompile the assets locally and package them into our
WAR file with the rest of our content.

Twitalytics has disabled the asset pipeline by default, so we need to enable
it by opening the config/application.rb file and replacing the statement that sets
config.assets.enabled to false with these lines of code:

Warbler/assetpipeline/config/application.rb
config.assets.enabled = true
config.assets.initialize_on_precompile = false

The first statement enables the asset pipeline, and the second statement
prevents Rails from initializing during the compilation process. This is neces-
sary because precompilation is done in the production Rails environment,
and it will fail if it does not have access to the production database, which
we have not made available to our development environment.

Next, we’ll open the config/environments/production.rb file and set the asset host by
adding this line to it:

48 • Chapter 3. Deploying an Archive File

http://media.pragprog.com/titles/jkdepj/code/Warbler/assetpipeline/config/application.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Warbler/assetpipeline/config/environments/production.rb
config.action_controller.asset_host = "/twitalytics"

This is necessary because we are deploying our application under the /twitalytics
context (that’s why we accessed the application at http://localhost:8888/twitalytics).
But Rails looks for our assets under the /assets path by default. Setting the
asset host will force it to look for them under the /twitalytics/assets path.

We also need to replace this line in the app/views/layout/application.html.erb file:

Warbler/twitalytics/app/views/layouts/application.html.erb
<%= javascript_include_tag "jquery", "rails" %>

with the following line, which includes the JavaScript from the asset pipeline
instead of the previous static JavaScript files:

Warbler/assetpipeline/app/views/layouts/application.html.erb
<%= javascript_include_tag "application" %>

Now we can precompile our assets with the Rake task from Rails.

$ rake assets:precompile
~/.rvm/rubies/jruby-1.6.7/bin/jruby ~/.rvm/gems/jruby-1.6.7/bin/rake assets:pre
compile:all RAILS_ENV=production RAILS_GROUPS=assets

The assets will be compiled using our embedded JavaScript interpreter,
therubyrhino, which we added to our Gemfile in Chapter 1, Getting Started with
JRuby, on page 1. The resulting artifacts will be placed in the public/assets
directory, which will be packaged into the WAR file when we run our deploy-
ment task again.

$ rake deploy:war
rm -f twitalytics.war
Creating twitalytics.war
Copying twitalytics.war: 82170669/82170669
Successfully installed warbler-exec-0.1.0
1 gem installed
Deployment complete!

The only evidence of our configuration change will be the size of the WAR file.
You’ll notice that it’s slightly larger than it was before.

Now let’s commit all of the changes we’ve made in this chapter to our warbler
branch by running these commands:

$ git add .
$ git commit -m "prepared for war file deployment"

Our deployment of the Twitalytics web application on JRuby is complete.
We’ve packaged the application into a WAR file, and we are running it on a

Using Precompiled Assets with Warbler • 49

http://media.pragprog.com/titles/jkdepj/code/Warbler/assetpipeline/config/environments/production.rb
http://media.pragprog.com/titles/jkdepj/code/Warbler/twitalytics/app/views/layouts/application.html.erb
http://media.pragprog.com/titles/jkdepj/code/Warbler/assetpipeline/app/views/layouts/application.html.erb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

dedicated server. But there are other components of Twitalytics that have not
been incorporated.

Twitalytics has some tasks that need to run in the background, and some of
them need to run at regular intervals. We haven’t included these in the
deployment steps because their setup will remain entirely the same as the
MRI version of Twitalytics. We would probably use Resque or DelayedJob for
the background tasks and cron to schedule the recurring ones. Warbler can’t
help us there.

But serving all of our site’s web requests with a single process is still a huge
improvement over the old infrastructure. Unfortunately, setting up the dedi-
cated server is a lot of work. You may find that you don’t have the time or
resources to support this kind of deployment. If that’s the case, then a man-
aged cloud platform might be a better solution.

3.5 Deploying to the Cloud

This chapter has focused exclusively on deployment to a dedicated server up
to this point. But there are many deployment options that don’t require us
to configure everything from the operating system up. In this section, you’ll
learn how to deploy a WAR file to a managed shared host. There are many
candidates that could host our application, including Google AppEngine and
Heroku. But we’ll be using CloudBees, a Java-based host that is JRuby
friendly.6

CloudBees is a platform as a service (PaaS) for building, testing, and running
Java-based applications. We’ll use only the part that runs applications in this
book, but you could build and test Twitalytics with the platform, too.

Let’s begin by creating a CloudBees account. Browse to the sign-up page,7

and fill in some basic information. Once we finish signing up, it will bring us
to the CloudBees dashboard.

From the dashboard, we need to subscribe our account to the RUN@Cloud
application and database services, which can be enabled from the subscrip-
tions page.8 Both of these services have free offerings that will be sufficient
for our usage.

6. http://www.cloudbees.com/
7. https://grandcentral.cloudbees.com/account/signup
8. https://grandcentral.cloudbees.com/subscriptions

50 • Chapter 3. Deploying an Archive File

http://www.cloudbees.com/
https://grandcentral.cloudbees.com/account/signup
https://grandcentral.cloudbees.com/subscriptions
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Now that we are subscribed to the appropriate services, we can use the
CloudBees command-line tool to finish our configuration. The tool is part of
the CloudBees SDK, so let’s install that next. For Linux and Unix systems
(including Mac OS X), we need to run these commands:

$ curl -L cloudbees-downloads.s3.amazonaws.com/sdk/cloudbees-sdk-0.7.3-dist.zip
$ unzip cloudbees-sdk-0.7.3-dist.zip -d ~/bees_sdk

Now we need to set the BEES_HOME environment variable and add its bin direc-
tory to our path. We can do this by adding the following lines to our .profile
file:

export BEES_HOME=~/bees_sdk/cloudbees-sdk-0.7.3
export PATH=$PATH:$BEES_HOME

Finally, test it by running the bees command.

$ bees help deploy
CloudBees SDK version: 0.7.3
usage: bees deploy [options]
-a,--appid <arg> CloudBees application ID
-b,--baseDir <arg> Base directory (default: '.')
-d,--delta <arg> true to enable, false to disable delta upload

(default: true)
-e,--environment <arg> Environment configurations to deploy
-k,--key <arg> CloudBees API key
-m,--message <arg> Message describing the deployment
-s,--secret <arg> CloudBees API secret
-t,--type <arg> deployment container type
-v,--verbose verbose output

We’ll be using the bees deploy command in just a moment, but first we need to
create a database. To do this, we’ll use the bees db:create command and provide
it the name of our database, which we’ll call twitalytics.

$ bees db:create twitalytics
CloudBees SDK version: 0.7.3
Database Username (must be unique): twitalytics123
Database Password: ********
database created: twitalytics

The command will prompt us for a username and password, which will be
used to create an account for our database. The username must be universally
unique, so you’ll have to pick something other than the one shown earlier.

Next, let’s configure our application to use the new database. To do this, we’ll
need the address of the instance we created. We can get this by running the
bees db:list command and specifying the verbose option:

Deploying to the Cloud • 51

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ bees db:list -v
CloudBees SDK version: 0.7.3
API call: https://api.cloudbees.com/api?timestamp=1322016054&v=1.0&api_key=...
xml response: <?xml version="1.0" encoding="UTF-8"?>
<DatabaseListResponse>
<databases>

<DatabaseInfo>
<name>twitalytics</name>
<owner>twitalytics123</owner>
<username>twitalytics123</username>
<created>2011-11-07T22:26:23+00:00</created>
<status>active</status>
<master>ec2-0-0-0-0.compute-1.amazonaws.com</master>
<slaves/>
<port>3306</port>

</databases>
</DatabaseListResponse>
Databases:
twitalytics123/twitalytics

The previous command has returned an XML response with the connection
parameters for our database. We’ll be using the <master> element and the
<port> element, so make note of them.

Next, let’s open the config/database.yml file and replace the production: element with
something like the following code. Your username and password will be the
same as the ones you entered when creating the earlier database. The host-
name and port will be the values from the <master> element and the <port>
element, respectively.

Warbler/cloudbees/config/database.yml
production:
adapter: mysql
host: ec2-0-0-0-0.compute-1.amazonaws.com
port: 3306
database: yourDatabaseName
username: yourAccount
password: ********

As you probably noticed, we’re using MySQL instead of PostgreSQL, so we’ll
have to update our gem dependencies. Let’s replace the :production group in
our Gemfile with the following code and run bundle install:

Warbler/cloudbees/Gemfile
group :production do
gem 'jdbc-mysql'

end

Now we can run our migrations.

52 • Chapter 3. Deploying an Archive File

http://media.pragprog.com/titles/jkdepj/code/Warbler/cloudbees/config/database.yml
http://media.pragprog.com/titles/jkdepj/code/Warbler/cloudbees/Gemfile
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ rake db:migrate RAILS_ENV=production
== CreateStatuses: migrating ===
-- create_table(:statuses)

-> 0.0040s
-> 0 rows

== CreateStatuses: migrated (0.0060s) ==

== CreateAnalytics: migrating ==
-- create_table(:analytics)

-> 0.0040s
-> 1 rows

== CreateAnalytics: migrated (0.0040s) =======================================

That means our database is working!

We’re ready to deploy our application. Let’s rebuild the twitalytics.war file using
the warble command.

$ warble war
rm -f twitalytics.war
Creating twitalytics.war

Next, let’s deploy the application by using the bees deploy command instead of
our custom Rake task.

$ bees deploy twitalytics.war -appid yourAccount/twitalytics
CloudBees SDK version: 0.7.3
Deploying application yourAccount/twitalytics (environment:): twitalytics.war
........................uploaded 25%
........................uploaded 50%
........................uploaded 75%
........................upload completed
deploying application to server(s)...
Application yourAccount/twitalytics deployed: http://yourAccount.twitalytics ...

The first time we run the previous command, it will create a new application
with the appid we provide. Subsequent runs will deploy the new version of the
application in place of the existing version.

The last line of the console output shown previously contains a URL to the
application. Point a browser to that location, and you’ll see Twitalytics.

Those are the essentials of the CloudBees SDK. There are other tools that
allow you to see the server’s log file, run the application locally, and more.
Run the bees help to get a complete list.

Before we move on, let’s commit these changes to a cloudbees Git branch by
running these commands:

Deploying to the Cloud • 53

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ git checkout -b cloudbees
M Gemfile
M config/database.yml
Switched to a new branch 'cloudbees'
$ git add .
$ git commit -m "ported to cloudbees"

CloudBees is a great solution if you are open to a managed shared host. You
don’t have to configure a dedicated server environment and make sure it’s
administered correctly. But deploying a WAR file to the cloud doesn’t solve
all of our problems. We still need to run background tasks and scheduled
jobs.

Because CloudBees is first and foremost a Java platform, it doesn’t have
direct support for external processes that run jobs and tasks because Java
applications don’t usually need that. We could sidestep this by wrapping our
external processes in their own web application and deploying it to CloudBees.
But we would have to fight with frameworks like Resque, which naively assume
they are the only thing in the process.

If your application needs to make heavy use of background tasks and
scheduled jobs, like Twitalytics does, then you’ll find that WAR file deployment
is not the best solution. In Creating a Trinidad Application and Creating a
TorqueBox Application, you’ll learn about two JRuby servers that provide tools
for these kinds of asynchronous tasks. There are even cloud-based platforms
to host the deployment of these other solutions, which we’ll discuss later in
the book.

3.6 Wrapping Up

In this chapter, we’ve configured our deployment environment and created
deployment scripts so that we can deploy the WAR file we created in Chapter
1, Getting Started with JRuby, on page 1. We deployed it to a dedicated
server but also showed how it could be deployed to a cloud server. This was
the most direct way to get Twitalytics running on JRuby.

Unfortunately, there are downsides to this style of deployment. Our develop-
ment environment is very different from our production environment. We’re
probably using WEBrick as we write our code to get instant feedback after
our changes. We could set up a servlet container on our development machines
and deploy the WAR file as we write and test code. But we would lose the
instant feedback that Rubyists are so familiar with.

54 • Chapter 3. Deploying an Archive File

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Even worse, we haven’t helped our background tasks and scheduled jobs.
They still have to run in a separate process (even if they are running on
JRuby). We are eventually going to outgrow Warbler.

Fortunately, there are other options for JRuby deployment. Now that we’ve
proven our application can work with JRuby, it’s time to go a step further.
Let’s deploy Twitalytics to an environment that gives us most of the advantages
that Warbler gave us but uses a more traditional deployment strategy.

Wrapping Up • 55

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 4

Creating a Trinidad Application
To make our JRuby deployment feel more natural to Rubyists, we’re going to
port our application to Trinidad.1 Trinidad is a lightweight server that runs
Rails and Rack applications within an embedded Apache Tomcat2 container
without requiring a WAR file.

Trinidad works much like other Ruby web servers, so if you are familiar with
Mongrel,3 Thin,4 or Unicorn,5 you’ll find that Trinidad fits right into your
workflow. For an existing application like Twitalytics, this will help developers
who are already working on it and want to continue using the tools they are
familiar with.

But Trinidad differs from traditional Ruby web servers in its ability to embed
many kinds of background processes into our application runtime. Message
queues and scheduled jobs won’t require dozens of processes like they do
with MRI-based applications. This will further improve the infrastructure we
began to simplify in the previous chapter.

In Chapter 1, Getting Started with JRuby, on page 1, we ported Twitalytics
to JRuby, but we were packaging everything into an archive file rather than
deploying with Capistrano or pushing from a Git repository. There are
advantages to deploying an archive file, but we would like to keep the Twit-
alytics deployment as traditional as possible in order to keep the productivity
of our development team high. Let’s discuss what this means.

1. https://github.com/trinidad/trinidad
2. http://tomcat.apache.org/
3. http://rubyforge.org/projects/mongrel/
4. http://code.macournoyer.com/thin/
5. https://github.com/defunkt/unicorn

https://github.com/trinidad/trinidad
http://tomcat.apache.org/
http://rubyforge.org/projects/mongrel/
http://code.macournoyer.com/thin/
https://github.com/defunkt/unicorn
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

4.1 What Is Traditional Deployment?

Traditional Ruby deployment uses a type of runtime architecture that handles
HTTP requests by placing a proxy in front of a pool of application instances.
In Section 1.1, What Makes JRuby So Great?, on page 2, we discussed some
of the deficiencies of this architecture and showed how JRuby can improve
it. But the way we ran our application and deployed our code was not very
traditional.

With traditional deployment, new versions of an application are released by
using a tool like Capistrano or whiskey_disk6 to pull the code from a repository
and push it to a production server. Once the code has been pushed, each
application process is restarted. With JRuby, we can reduce the number of
processes to one (as we saw in Figure 3, Architecture of a JRuby web applica-
tion, on page 4), which makes it faster to get back online after a deployment.

But the architecture we built in Chapter 3, Deploying an Archive File, on page
37 with Warbler and Tomcat greatly impacted the way we deployed code to
the server. Instead of pulling code from a repository, we packaged everything
into an archive file. Furthermore, we didn’t run our application. We dropped
the archive file into a container that was already running. There are advan-
tages to this kind of deployment, but it diverges from what traditional Rubyists
expect.

Trinidad can help us bridge this gap by providing all the advantages of JRuby
with a more traditional framework. We can use it to create an architecture
that is similar to the one we set up with Warbler and Tomcat but without
creating a WAR. This will complete our picture of traditional deployment on
JRuby.

4.2 Getting Started with Trinidad

We don’t have to modify Twitalytics at all to start handling web requests with
Trinidad. We already prepared it for JRuby in Chapter 1, Getting Started with
JRuby, on page 1, and Trinidad doesn’t require any additional configuration.
But we will make changes to the parts of Twitalytics that don’t handle web
requests, so let’s create a new branch based on the jruby branch we started
in the aforementioned chapter.

$ git checkout -b trinidad jruby

6. https://github.com/flogic/whiskey_disk

58 • Chapter 4. Creating a Trinidad Application

https://github.com/flogic/whiskey_disk
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Next, we’ll add trinidad to our Gemfile and run bundle install.

Trinidad/twitalytics/Gemfile
gem 'trinidad', '1.3.4'

Now we can use the trinidad command to control our server. Let’s test it by
asking what version is installed.

$ trinidad -v
trinidad 1.3.4 (tomcat 7.0.23)

This displays both the Trinidad version and the embedded Tomcat version.
As we mentioned earlier, Trinidad is a wrapper around the Apache Tomcat
container. Tomcat is the same server we used to run our Warbler WAR file in
Chapter 3, Deploying an Archive File, on page 37, so we’ve already discussed
its many advantages.

Let’s boot the server.

$ trinidad
Jan 12, 2012 8:25:59 PM org.apache.coyote.AbstractProtocol init
INFO: Initializing ProtocolHandler ["http-bio-3000"]
Jan 12, 2012 8:25:59 PM org.apache.catalina.core.StandardService startInternal
INFO: Starting service Tomcat
Jan 12, 2012 8:25:59 PM org.apache.catalina.core.StandardEngine startInternal
INFO: Starting Servlet Engine: Apache Tomcat/7.0.23
2012-01-13 02:25:59 INFO: No global web.xml found
2012-01-13 02:26:00 INFO: Info: received max runtimes = 5
2012-01-13 02:26:00 INFO: jruby 1.6.7 (ruby-1.8.7-p357) (2012-02-22 3e82bc8)...
2012-01-13 02:26:00 INFO: Info: using runtime pool timeout of 30 seconds
2012-01-13 02:26:00 INFO: Info: received min runtimes = 1
2012-01-13 02:26:00 INFO: Info: received max runtimes = 5
2012-01-13 02:26:11 INFO: Info: add application to the pool. size now = 1
2012-01-13 02:26:11 INFO: Starting ProtocolHandler ["http-bio-3000"]

Congratulations. Twitalytics is running on Trinidad. We can see it by pointing
our browser to http://localhost:3000.

But let’s take a closer look at what was printed to the console when the
server was booting. You may have noticed these lines:

2012-01-13 02:26:00 INFO: Info: using runtime pool timeout of 30 seconds
2012-01-13 02:26:00 INFO: Info: received min runtimes = 1
2012-01-13 02:26:00 INFO: Info: received max runtimes = 5
2012-01-13 02:26:11 INFO: Info: add application to the pool. size now = 1

Trinidad is using a pool of runtimes because our application is not configured
to run in thread-safe mode. In Chapter 1, Getting Started with JRuby, on page
1, we discussed the implications of this and configured Warbler to use a

Getting Started with Trinidad • 59

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Gemfile
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

single runtime instance. Now we’ll do the same for Trinidad. Open the
config/environments/production.rb file and uncomment this statement:

Trinidad/twitalytics/config/environments/production.rb
config.threadsafe!

Trinidad is Rails-aware, so this will let it know to use a single instance of our
application instead of using a runtime pool, but only in our production envi-
ronment. For our development environment, we still want to run a single
instance to make things start up faster, but we’ll configure this by providing
the --threadsafe option on the trinidad command. First, kill the currently running
Trinidad process by pressing Ctrl+C in that terminal. Then restart it like this:

$ trinidad --threadsafe

Now when the server is done booting, we’ll see this in the console:

2012-01-13 02:26:00 INFO: Info: received max runtimes = 1

Having one runtime in development helps make start-up time faster. But
adding the --threadsafe option every time we run the trinidad command would be
cumbersome. Instead, we’ll set this in a static configuration file to make it
easier.

Let’s create a config/trinidad.yml file and add the following attribute to it:

Trinidad/twitalytics/config/trinidad.yml
jruby_max_runtimes: 1

This will have the same effect as our --threadsafe command-line option.

If the chapter ended here, we’d be right on par with Warbler. But Trinidad
has a lot more to offer. Let’s move on and add a Trinidad extension that will
check our application’s compatibility with JRuby every time we start it.

4.3 Adding Trinidad Extensions

Trinidad provides an extension mechanism that allows us to plug in many
kinds of features. There are a number of Trinidad extensions that are main-
tained by the Trinidad developers, but we can also create extensions ourselves.
This is particularly useful if we need to hook into the Trinidad life cycle, hook
into the application’s life cycle, or get a handle to the command-line options
the container started up with.

Let’s add some extensions to Twitalytics that will improve our infrastructure
and development process.

60 • Chapter 4. Creating a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/environments/production.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/trinidad.yml
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Checking for JRuby Compatibility

Some features of MRI Ruby are not compatible with JRuby. In Chapter 1,
Getting Started with JRuby, on page 1, we set up the JRuby-Lint tool and
ran it manually to inspect Twitalytics for these incompatibilities. But the
trinidad_diagnostics_extension extension allows us to run JRuby-Lint inline with
our Trinidad application. This will help us keep Twitalytics compatible with
JRuby as we continue to develop the application.

To include any Trinidad extension, we start by adding its gem as a dependency.
Let’s open our Gemfile and add the following statement to it:

Trinidad/twitalytics/Gemfile
gem 'trinidad_diagnostics_extension'

We then install the gem with Bundler.

$ bundle install
...
Installing trinidad_diagnostics_extension (0.1.0)
...
Your bundle is complete! Use `bundle show [gemname]` to see where a bundled ...

Now we need to configure Trinidad to load the extension. We could do this
by providing the command-line option --load diagnostics. But we’ll put this option
in our configuration file because we want it to run every time.

Let’s open the config/trinidad.yml file we created earlier and add the following
attributes to it (be sure to put a line break after the last line):

Trinidad/twitalytics/config/trinidad.yml
extensions:

diagnostics:

The previous entry tells Trinidad to load the Diagnostics extension. All Trinidad
extensions are named in the form trinidad_<name>_extension. So, loading an
extension requires only specifying the <name> part.

Now our server will validate Twitalytics’ compatibility with JRuby every time
we run the trinidad command. It won’t find anything at first, because we already
fixed the incompatibilities in Chapter 1, Getting Started with JRuby, on page
1. But we can test it by sneaking an Easter egg into our code. Add this
statement anywhere in the app/controllers/company_controller.rb file:

Kernel.fork {puts "Forking!"}

Now let’s shut down the server with Ctrl+C and start it up again like this:

Adding Trinidad Extensions • 61

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/trinidad.yml
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ trinidad
...
INFO: Starting Servlet Engine: Apache Tomcat/7.0.23
./app/controllers/company_controller.rb:8: [fork, error] Kernel#fork is not ...
...
2011-11-11 14:45:01 INFO: Starting ProtocolHandler ["http-bio-3000"]

Trinidad caught our incompatibility. Now, be sure to remove the fork() call!
Rails will reload the controller, so there is no need to restart. The next time
we boot the server, the diagnostic extension won’t find any problems with our
code.

That’s all there is to loading a Trinidad extension. In the next section, we’ll
add an extension that does more than inspect our code; it will run it.

Scheduling Recurring Jobs

As we’ve eluded to in previous chapters, Twitalytics has some background
jobs, and one of them runs at recurring intervals. With MRI, we had to run
it in a separate process. But with JRuby and the trinidad_scheduler_extension, we
can run it in the same process as the rest of our application without locking
up the runtime.

The Scheduler extension allows us to schedule background jobs for execution
at a recurring intervals. This allows it to replace tools like crontab7 or Whenever.8

But unlike those other tools, it runs in the same process as our application.

At the core of this extension is the very powerful Java-based Quartz Sched-
uler.9 But we’ll be able to adapt our existing scheduled job to this Java
framework with pure Ruby. Before we do that, let’s explain what the job does.

Twitalytics collects public tweets that reference a company or product and
then provides reports based on its analysis of trends in those tweets. You can
see this feature by following the Customers link on the Twitalytics dashboard,
which will open the web page illustrated in Figure 10, The Customers page of
Twitalytics, on page 63.

For Twitalytics to do its analysis, it must store the tweets in the database.
Thus, it creates a Status object for each tweet in the feed. In this way, it avoids
having to pull the tweets from Twitter for every report and to keep them all
in memory.

7. http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
8. https://github.com/javan/whenever
9. http://quartz-scheduler.org/

62 • Chapter 4. Creating a Trinidad Application

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
https://github.com/javan/whenever
http://quartz-scheduler.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 10—The Customers page of Twitalytics

Unfortunately, creating a new database record for each tweet will cause the
database to grow very quickly, especially if the company or product is popular.
That is why Twitalytics has a scheduled job that deletes Status records more
than thirty days old. The application runs its analytics only against recent
tweets, so removing these old statuses won’t degrade its reports.

The cleanup job is located in the lib/jobs/delete_old_statuses.rb file, and it looks like
this:

twitalytics/lib/jobs/delete_old_statuses.rb
class DeleteOldStatuses

def run
ids = Status.where("created_at < ?", 30.days.ago)
if ids.size > 0

Status.destroy(ids)
puts "#{ids.size} statuses have been deleted!"

else
puts "No statuses have been deleted."

end
end

end
DeleteOldStatuses.new.run

Adding Trinidad Extensions • 63

http://media.pragprog.com/titles/jkdepj/code/twitalytics/lib/jobs/delete_old_statuses.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We can test the earlier script by using the rails runner command. But first, we
need to shut down our Trinidad server if it’s still running and clean out our
development database by running these commands:

$ rake db:drop
$ rake db:migrate

Now we can test the job by running this:

$ rails runner lib/jobs/delete_old_statuses.rb
No statuses have been deleted.

No Status records were deleted this time because we haven’t persisted any yet.
We’ll get to that in a moment.

When Twitalytics was running on MRI, this background job was scheduled
by adding a crontab entry and having the cron daemon run the previous com-
mand. But this increased the complexity of our infrastructure (since cron
became another dependency) and made it less portable (it didn’t work on
Windows).

Fortunately, we can simplify the infrastructure required to run this job. First,
let’s add the trinidad_scheduler_extension gem to our Gemfile below the other Trinidad
dependencies and run bundle install.

Trinidad/twitalytics/Gemfile
gem 'trinidad_scheduler_extension'

Next, we need to add the scheduler extension to the Trinidad configuration.
Open the config/trinidad.yml file and add the scheduler: attribute thusly:

Trinidad/twitalytics/config/trinidad.yml
extensions:
diagnostics:
scheduler:

Now we can modify the delete_old_statuses.rb file to fit the new scheduler’s
expectations. First remove this line from the end of the script:

twitalytics/lib/jobs/delete_old_statuses.rb
DeleteOldStatuses.new.run

This statement was instantiating a new DeleteOldStatuses object and calling its
run() method. We no longer need it because the Trinidad scheduler will execute
those steps as necessary.

We also need to modify the class definition so that DeleteOldStatuses gets regis-
tered with the scheduler.

64 • Chapter 4. Creating a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/trinidad.yml
http://media.pragprog.com/titles/jkdepj/code/twitalytics/lib/jobs/delete_old_statuses.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Trinidad/twitalytics/lib/jobs/delete_old_statuses.rb
class DeleteOldStatuses < TrinidadScheduler.Cron "0 0/5 * * * ?"

The TrinidadScheduler.Cron method takes a cron expression as an argument and
returns an anonymous class that our job extends. The anonymous class
knows how to register our job with the scheduler. The cron expression we
provided schedules the job to run every five minutes (if you don’t feel like
waiting that long, you can change it to something like 0 * * * * ?, which will
cause it to run every minute).

The next change we’ll make to the DeleteOldStatuses class involves the
ActiveRecord connection. We have to ensure that it is returned to the pool.
When the job ran on MRI, it ran in its own process and had its own connection
pool, which disappeared at the end of the job. The pool was really a false pool.

But the trinidad_scheduler_extension instantiates our class once and keeps it around
for the life of the application. This allows the connection pool to live beyond
each run of the job.

We can ensure that the connection is returned to the pool by wrapping our
run() method in a with_connection() block as follows:

Trinidad/twitalytics/lib/jobs/delete_old_statuses.rb
def run

ActiveRecord::Base.connection_pool.with_connection do
ids = Status.where("created_at < ?", 30.days.ago)

if ids.size > 0
Status.destroy(ids)
puts "#{ids.size} statuses have been deleted!"

else
puts "No statuses have been deleted."

end
end

end

The last step is to load the job into the application. The cron daemon used rails
runner to execute the script explicitly. But we’ll have to load the script file into
Rails with an initializer. Let’s create a config/initializers/jobs.rb file and add this
code to it:

Trinidad/twitalytics/config/initializers/jobs.rb
if $servlet_context

require 'lib/jobs/delete_old_statuses.rb'
end

Adding Trinidad Extensions • 65

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/lib/jobs/delete_old_statuses.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/lib/jobs/delete_old_statuses.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/initializers/jobs.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Anatomy of a cron Expression

The cron tool is a job-scheduling program that is available on most Unix and Linux
operating systems. The technologies in this book don’t use cron directly, but they rely
on cron expressions for their job configuration.

A cron expression is a string composed of seven fields separated by whitespace. Each
field can contain any of the allowed values, along with certain combinations of special
characters. The seven fields and their allowed values are as follows:

YearDay of WeekMonthDay of
Month

HoursMinutesSeconds

1970-2099
(optional)

1-7 or SUN-SAT1-12 or JAN-DEC1-310-230-590-59

A few of the special characters include the following:

The asterisk is used to select all values within a field. For example, * in the
Minute field means every minute.

*

The question mark represents no specific value. For example, if we want a job
to fire on a particular day of the month but don’t care what day of the week that

?

happens to be, we can put 10 in the Day of Month field and put ? in the Day of
Week field.

The forward slash is used to specific increments. For example, 0/15 in the
Seconds field means the seconds 0, 15, 30, and 45.

/

The dash is used to specific ranges. For example, 4-6 in the Hours field means
the hours 4, 5 and 6.

-

The comma is used to specific multiple values. For example, MON,FRI in the
Day of Week field means Monday and Friday.

,

A cron expression can be as simple as the following string, which schedules a job to
run once a year on midnight of January 1:

0 0 1 1 * ?

Or it can be more complex like this one, which schedules a job to run at 2:10 p.m.
and 2:44 p.m. every Monday through Friday in March:

0 10,44 14 ? 3 MON-FRI ?

cron expressions can be confusing, but they are very powerful. In addition, the cron
tool has been around for such a long time that this expression language has proven
itself to be very effective.

The guard clause prevents the job from being loaded if Rails is running outside
of the Trinidad server. Without this, commands like rails console and rake db:migrate
would not work.10

10. https://github.com/trinidad/trinidad_scheduler_extension/issues/2

66 • Chapter 4. Creating a Trinidad Application

https://github.com/trinidad/trinidad_scheduler_extension/issues/2
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Now we can test the job by creating a dummy Status record that is ready to be
deleted. We’ll use the rails console command to execute the following statement:

Status.create(:status_text => 'test',
:creator => 'tester',
:created_at => 31.days.ago)

The complete command will look like this:

$ rails console
Loading development environment (Rails 3.2.1)
jruby-1.6.7 :001 > Status.create(:status_text => 'test',
jruby-1.6.7 :002 > :creator => 'tester',
jruby-1.6.7 :003 > :created_at => 31.days.ago)

SQL (1.0ms) INSERT INTO "statuses" ("created_at", "creator", "followers_coun
t", "positivity_score", "remote_id", "status_text", "updated_at") VALUES ('20
12-01-15 23:23:32.502000', 'tester', NULL, NULL, NULL, 'test', '2012-02-15 23
:23:32.874000')
=> #<Status id: 23, status_text: "test", creator: "tester", remote_id: nil, fo
llowers_count: nil, positivity_score: nil, created_at: "2012-01-15 23:23:32",
updated_at: "2012-02-15 23:23:32">

Good. Let’s terminate rails console with the exit statement, which will return us
to the command prompt. Now we can run the application and watch the
console output for a message from our job.

$ trinidad
Feb 15, 2012 5:12:49 PM org.apache.coyote.AbstractProtocol init
INFO: Initializing ProtocolHandler ["http-bio-3000"]
Feb 15, 2012 5:12:49 PM org.apache.catalina.core.StandardService startInte...
INFO: Starting service Tomcat
Feb 15, 2012 5:12:49 PM org.apache.catalina.core.StandardEngine startInternal
INFO: Starting Servlet Engine: Apache Tomcat/7.0.23
2012-02-15 23:12:50 INFO: No global web.xml found
2012-02-15 17:12:52,122 INFO [pool-2-thread-1] ApplicationContext - Info: ...
2012-02-15 17:12:52,130 INFO [pool-2-thread-1] ApplicationContext - jruby ...
2012-02-15 17:13:00,199 INFO [pool-2-thread-1] SimpleThreadPool - Job exec...
2012-02-15 17:13:00,225 INFO [pool-2-thread-1] SchedulerSignalerImpl - Ini...
2012-02-15 17:13:00,227 INFO [pool-2-thread-1] QuartzScheduler - Quartz Sc...
2012-02-15 17:13:00,230 INFO [pool-2-thread-1] RAMJobStore - RAMJobStore i...
2012-02-15 17:13:00,232 INFO [pool-2-thread-1] QuartzScheduler - Scheduler...

Scheduler class: 'org.quartz.core.QuartzScheduler' - running locally.
NOT STARTED.
Currently in standby mode.
Number of jobs executed: 0
Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 10 threads.
Using job-store 'org.quartz.simpl.RAMJobStore' - which does not support ...

2012-02-15 17:13:00,232 INFO [pool-2-thread-1] StdSchedulerFactory - Quart...
2012-02-15 17:13:00,233 INFO [pool-2-thread-1] StdSchedulerFactory - Quart...
2012-02-15 17:13:00,239 INFO [pool-2-thread-1] QuartzScheduler - JobFactor...

Adding Trinidad Extensions • 67

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

2012-02-15 17:13:01,248 INFO [pool-2-thread-1] QuartzScheduler - Scheduler...
2012-02-15 23:13:01 INFO: Starting ProtocolHandler ["http-bio-3000"]
2012-02-15 17:13:03,599 INFO [Timer-0] UpdateChecker - New Quartz update(s...

This output tells us that the scheduler has started a thread pool that it will
use to run our jobs. After a few minutes, we’ll see this output:

2012-02-15 17:37:01,355 INFO [Quartz::Default::Application_Worker-1] Applicat
ionContext - (1.0ms) SELECT COUNT(*) FROM "statuses" WHERE (created_at <
'2012-01-16 23:37:01.266000')

2012-02-15 17:37:01,361 INFO [Quartz::Default::Application_Worker-1] Applicat
ionContext - Status Load (1.0ms) SELECT "statuses".* FROM "statuses" WHERE
(created_at < '2012-01-16 23:37:01.266000')

2012-02-15 17:37:01,416 INFO [Quartz::Default::Application_Worker-1] Applicat
ionContext - Status Load (0.0ms) SELECT "statuses".* FROM "statuses" WHERE
"statuses"."id" = 2 LIMIT 1

2012-02-15 17:37:01,425 INFO [Quartz::Default::Application_Worker-1] Applicat
ionContext - SQL (0.0ms) DELETE FROM "statuses" WHERE "statuses"."id" = 2

1 statuses have been deleted!

This means the scheduler has run the job and found our dummy Status
instance. A few minutes later, we should see this message again:

No statuses have been deleted.

Our scheduled job is working.

By using the trinidad_scheduler_extension to run our database-cleaning job instead
of cron, we’ve simplified our production and development infrastructures.
We’ve also made our solution more portable because it now works on Windows.

Next, we need to integrate the background jobs that cannot be scheduled.
For example, jobs that run as the result of an external action or user action
need to be queued up for processing as the actions occur. Let’s use a message
queue to do this.

Running Background Jobs with Resque

The next extension we’ll add to Twitalytics is the trinidad_resque_extension, which
will seamlessly integrate Resque11 into our application. It will also simplify
our infrastructure by running Resque workers as threads inside of our JRuby
runtime instead of separate processes.

11. https://github.com/defunkt/resque

68 • Chapter 4. Creating a Trinidad Application

https://github.com/defunkt/resque
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Resque is a Ruby library for creating background tasks and placing them on
a message queue so they can be executed at a later time. We then start a
number workers, which pull jobs off the queue and process them. With MRI,
these workers have to run in their own process, but with Trinidad they can
run in separate threads of a JRuby runtime. There are some good resources
on the Web if you want to learn more about Resque.12

Twitalytics already uses Resque, so we have some task scripts in the lib/workers
directory. But we won’t have to modify them at all. We only need to add them
to our Trinidad configuration.

But first, we need to install Redis13 on our development machine. Redis is the
persistent storage mechanism behind Resque. To install it on Unix and Linux
environments, we can run the following commands:

$ curl -O redis.googlecode.com/files/redis-2.4.2.tar.gz
$ tar xzf redis-2.4.2.tar.gz
$ cd redis-2.4.2
$ make

Redis can’t be run on Windows in its native form, but if that’s your OS, you
can run Redis on the base-jruby virtual machine we created in Chapter 2, Cre-
ating a Deployment Environment, on page 19. Log into the box with the vagrant
ssh command, and run the previous commands. Then map port 6379 on the
virtual machine to port 6379 on the host with the config.vm.forward_port(guest_port,
host_port) method in our Vagrantfile file. In Chapter 6, Creating a TorqueBox
Application, on page 103, you’ll learn about an even more powerful message
queue that TorqueBox provides for us. Unlike Resque and Redis, it’s Java-
based, so it works on Windows.

After the Redis install completes, the binaries will be available in the src
directory of the Redis installation root. We can run the Redis server with this
command:

$ src/redis-server
[6113] 08 Dec 14:56:07 # Warning: no config file specified, using the ...
[6113] 08 Dec 14:56:07 * Server started, Redis version 2.2.12
[6113] 08 Dec 14:56:07 * The server is now ready to accept connection ...
[6113] 08 Dec 14:56:07 - 0 clients connected (0 slaves), 922160 bytes ...

Good. We’ll leave Redis running for the duration of the chapter and use it as
we test Resque. Next, we need to add the trinidad_resque_extension gem to our
Gemfile and run bundle install.

12. https://github.com/blog/542-introducing-resque
13. http://redis.io/

Adding Trinidad Extensions • 69

https://github.com/blog/542-introducing-resque
http://redis.io/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Using Resque to Integrate C Extensions

Having Resque and Redis available to our JRuby application gives us an excellent
integration point for bringing an MRI Ruby process back into our architecture. A good
use case for doing this is the need to add Ruby-based C extensions to an application.
For example, you may need RMagicka to interface with the ImageMagickb and
GraphicsMagickc image-processing libraries.

JRuby

Redis

Resque

MRI

Resque

C Extensions

Rails

Java Libraries

The figure illustrates how this architecture might look. If we need some image pro-
cessing done, we can queue up jobs from the JRuby process and have our MRI-based
Resque workers pull from that queue.

a. http://rmagick.rubyforge.org/
b. http://www.imagemagick.org/script/index.php
c. http://www.graphicsmagick.org/

Trinidad/twitalytics/Gemfile
gem 'trinidad_resque_extension'

Next, we open the config/trinidad.yml file and add a resque: attribute along with
our other extensions. But this time, we need to provide configuration options.

Trinidad/twitalytics/config/trinidad.yml
extensions:
diagnostics:
scheduler:
resque:

queues: critical, normal, low
count: 1
path: 'lib/workers'
redis_host: 'localhost:6379'
work_dir: 'work/resque'

70 • Chapter 4. Creating a Trinidad Application

http://rmagick.rubyforge.org/
http://www.imagemagick.org/script/index.php
http://www.graphicsmagick.org/
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/trinidad.yml
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

First, we specify the queues that our workers will pull jobs from. Next, we set
the number of workers that we’ll run and the location of our worker jobs.
Then, we specify the hostname and port for the Redis server we started earlier.
Finally, we define the working directory that Trinidad will use for the Resque
log files.

Next, let’s enable one of our Resque jobs. We left them disabled in the previous
chapters because we were not yet running Redis on our development machine.
Now that Redis is running, we need to uncomment the following statement
in the find_or_create_from(tweets) method of the app/models/status.rb file:

Trinidad/twitalytics/app/models/status.rb
Resque.enqueue(UpdateAnalytics, r.map(&:id))

This statement will enqueue a Resque job each time a set of new Status records
are created from a Twitter feed. The job that gets enqueued is defined in the
lib/workers/update_analytics.rb file.

Now we can test it. Start Twitalytics with the trinidad command, and point a
browser to http://localhost:3000/resque. You will see Figure 11, The Resque overview
console, on page 72. The extension has started both the Resque workers and
the console for us. Because of a bug, the Trinidad server may fail to shut
down with the Ctrl+C keystroke if it cannot connect to the Redis server.14 If
that happens, we’ll have to kill the process with kill -9, Windows Task Manager,
or some other platform-specific mechanism.

Now we’ll follow the Stats tab in the console, and we’ll see that no jobs have
been processed and no jobs are pending.

Let’s enqueue a Resque job by browsing to the Customers page at http://local-
host:3000/customers/index. This will pull new tweets from the customers feed and
persist them, which will cause the Resque job to be enqueued.

After the Customers page has loaded, let’s return to the Stats page on the
Resque console. It should now show that one job has been processed (Figure
12, The Resque console's Statistics page, on page 72), and that number should
increase each time you reload the Customers page.

Our background job is working! Before we move on, let’s commit our changes
to the Git repository by running these commands:

$ git add .
$ git commit -m "Ported to Trinidad"

14. https://github.com/trinidad/trinidad_resque_extension/issues/3

Adding Trinidad Extensions • 71

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/app/models/status.rb
https://github.com/trinidad/trinidad_resque_extension/issues/3
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 11—The Resque overview console

Figure 12—The Resque console’s Statistics page

We now have our web server, schedule jobs, and message queue broker all
running in the same JRuby process. Trinidad has helped us in making this
happen, but it’s important to be aware of other solutions that can help facili-
tate a traditional deployment. We’ll discuss a few of them in a moment. But
first, we’ll take a quick look at a few more extensions.

72 • Chapter 4. Creating a Trinidad Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Exploring Some Other Extensions

There are many Trinidad extensions other than the ones we’ve already used.
A complete list can be found under the Trinidad organization on GitHub.15

The following is an overview of a few useful ones:

Database connection pooling extension
One of the disadvantages of having multiple processes in a traditional
MRI deployment is that each process has its own connection pool. As you
create new processes, you create new pools. As a result, the number of
connections is bound to the number of processes and not the size of the
pool. Most deployment environments solve this problem by running some
kind of middleware that sits between the database and its clients, such
as pgpool for PostgreSQL.16 But this kind of solution further complicates
your infrastructure. That’s why Trinidad provides a database connection
pool that can be shared not only between instances of your application
but also by other applications in the container.

Life-cycle extension
This extension allows you to add life-cycle listeners written in Ruby to
the Trinidad’s server context as well as each application context that runs
on top of Trinidad. It will also allow us to enable the Java Management
Extensions (JMX) monitoring capabilities of Tomcat, which we’ll discuss
in Chapter 9, Managing a JRuby Deployment, on page 163.

Sandbox extension
Having an entire application run in a single process means that you can
use a centralized tool to manage and monitor it. The Trinidad sandbox
extension provides access to your application through a management
console and a REST API. It even runs in the same process as your appli-
cation, so it won’t further complicate your infrastructure.

In Chapter 5, Deploying a Trinidad Application, on page 75, we’ll add the
sandbox extension to our production application. But we’ve added all the
extensions we need for development purposes, so let’s move on.

4.4 Choosing Alternatives to Trinidad

Trinidad is one of the best supported platforms for the deployment of JRuby
web applications. It’s also one of the few commercially supported JRuby web

15. https://github.com/trinidad
16. http://pgpool.projects.postgresql.org/

Choosing Alternatives to Trinidad • 73

https://github.com/trinidad
http://pgpool.projects.postgresql.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

frameworks (via Engine Yard).17 There are other options for traditional
deployment of your JRuby web applications, but none has emerged as a direct
competitor to Trinidad. The most promising appears to be Kirk.18

Kirk provides a pure Ruby layer on top of the Jetty web server.19 This is sim-
ilar to the way Trinidad wraps Tomcat. Kirk gives you all the same advantages
of concurrency, garbage collection, and more. But it also provides a mechanism
for zero-downtime deploys, which means you can deploy new versions of your
application without missing a single request.

If you run a quick Google search for JRuby web servers, you will likely find
the GlassFish gem. This project was initially backed by Sun Microsystems
but was abandoned after its acquisition by Oracle in early 2010. If you decide
to use this gem, be aware that it is not moving forward.

In Chapter 6, Creating a TorqueBox Application, on page 103, we’ll discuss
TorqueBox, a framework that can be used for traditional deployment. But it
is a more comprehensive solution that could increase the complexity of your
deployments. The increase in complexity may be tolerable only when you are
using the platform’s advanced features.

4.5 Wrapping Up

This chapter has provided an overview of Trinidad’s capabilities. But it has
also introduced you to how we can make use of the JVM in general. Incorpo-
rating the scheduled jobs and message broker into our application has reduced
the complexity of our infrastructure by handling web requests, recurring jobs,
and background jobs with a single process.

You’ve learned more than just how to use Trinidad. You’ve learned how to
adapt your thinking to the JVM. This skill will be important as we continue
to deploy, monitor, and manage Twitalytics. You’ll have a better understanding
of what’s under the hood, which will help you diagnosis problems.

In the next chapter on page 75, we’ll deploy Trinidad and Twitalytics to a
production server.

17. http://www.engineyard.com/
18. https://github.com/strobecorp/kirk
19. http://jetty.codehaus.org/jetty/

74 • Chapter 4. Creating a Trinidad Application

http://www.engineyard.com/
https://github.com/strobecorp/kirk
http://jetty.codehaus.org/jetty/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 5

Deploying a Trinidad Application
Deploying an application on JRuby doesn’t mean that we have to change our
tools and processes. In this chapter, we’ll be using familiar technologies such
as Capistrano and Git to deploy our code. We’ll also run and configure Trinidad
in a way that is similar to traditional Ruby web servers like Mongrel, Thin,
or Unicorn. As a result, our deployment targets will look very similar to
MRI-based environments.

The first deployment target we’ll use is a dedicated server. We’ll base it on
the virtual machine we began in Chapter 2, Creating a Deployment Environ-
ment, on page 19, and then we’ll prepare it the same way we would prepare
a traditional MRI deployment. Even though this environment will resemble
an MRI-based environment, it will make many improvements to the traditional
model. We’ll use faster protocols that are not available in MRI, and we’ll need
to keep only a single runtime instance of our application in memory because
of the JVM’s native threads. We can also hot-deploy our application, which
means we won’t have to restart the web server each time we deploy a new
version and hog our system’s resources. These are all ways in which a JRuby
deployment improves upon MRI-based deployments.

In this chapter, we’ll also use a managed cloud server as a deployment target.
This won’t require the maintenance and configuration of a dedicated server,
but it will be less flexible. Like the dedicated server, the cloud deployment
will closely resemble a cloud-based MRI deployment.

Let’s begin by provisioning a dedicated server.

5.1 Provisioning a Server

A dedicated server could be rented from a hosting provider, or it could run
on a physical device in a server closet. In either case, it’s an environment that

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

requires us to be responsible for all configuration from the operating system
up to the application.

The advantage of a dedicated server is that we can tailor our infrastructure
to suit the application’s needs. The disadvantage is that we have to do more
work—so much work, in fact, that you may need to hire more people. A system
administrator is often required to keep these kinds of environments running.

In this section, we’ll create a virtual environment to use as a deployment
target for Twitalytics, which we ported to Trinidad in the previous chapter on
page 57. Let’s move to our twitalytics directory, which contains the Git repository
we created in Preface, on page xi, and use the vagrant command to add a new
box.

$ cd ~/code/twitalytics
$ vagrant box add trinidad base-jruby.box
[vagrant] Downloading with Vagrant::Downloaders::File...
[vagrant] Copying box to temporary location...
[vagrant] Extracting box...
[vagrant] Verifying box...
[vagrant] Cleaning up downloaded box...

Next, we need to edit the Vagrantfile and adjust the config.vm.box attribute so it
points to the newly created trinidad box.

Trinidad/twitalytics/Vagrantfile
config.vm.box = "trinidad"

We’ll also forward Trinidad’s default port of 3000 on the guest to port 8888
on the host.

Trinidad/twitalytics/Vagrantfile
config.vm.forward_port 3000, 8888

Our Vagrantfile is ready. Let’s boot the machine before we move on.

$ vagrant up
[default] Importing base box 'trinidad'...
...
[default] The guest additions on this VM do not match the install version of
VirtualBox! This may cause things such as forwarded ports, shared
folders, and more to not work properly. If any of those things fail on
this machine, please update the guest additions and repackage the
box.

Guest Additions Version: 4.1.0
VirtualBox Version: 4.1.8
[default] Matching MAC address for NAT networking...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...

76 • Chapter 5. Deploying a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Vagrantfile
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Vagrantfile
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

[default] -- 22 => 2222 (adapter 1)
[default] -- 80 => 8000 (adapter 1)
[default] -- 3000 => 8888 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests
[default] -- v-pp-m0: /tmp/vagrant-puppet/modules-0
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWORD...
notice: Finished catalog run in 9.79 seconds

Now let’s add some new components to our server configuration.

Installing Redis with Puppet

You’ll recall that we installed Redis on our development machine in Chapter
4, Creating a Trinidad Application, on page 57 so Resque could run our
background jobs. Now we must do the same on our production server, but
we’ll use Puppet instead of running the commands manually.

First, let’s create a module directory for Redis.

$ mkdir -p puppet/modules/redis/manifests

We also need to create an init.pp manifest file in the new directory. Now we’ll
open the file and add a redis class that installs the redis-server package and
starts the redis-server service.

Trinidad/twitalytics/puppet/modules/redis/manifests/init.pp
class redis {

package { "redis-server":
ensure => present,

}

service { "redis-server":
ensure => running,
require => Package["redis-server"],

}
}

Finally, we’ll include the new module in our site.pp file.

Provisioning a Server • 77

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/redis/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Trinidad/twitalytics/puppet/manifests/site.pp
include redis

Excellent. Let’s run the provisioning process again.

$ vagrant provision
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWO...
notice: /Stage[main]/Redis/Package[redis-server]/ensure: ensure changed 'p...
notice: /Stage[main]/Redis/Service[redis-server]/ensure: ensure changed 's...
notice: Finished catalog run in 6.56 seconds

Redis is ready! Now we can add Trinidad to our configuration.

5.2 Installing Trinidad as a Service

On our development machine, we installed the Trinidad gem and used the
trinidad command to start the server. But that’s not how we want to run
Trinidad on our production server. Instead, we want Trinidad to run as a
service that is controlled by the operating system’s init daemon. Fortunately,
the trinidad_init_services gem can do this for us, even on Windows.

To use the trinidad_init_services gem, we’ll need to install it on our production
server and run the configuration script it provides for us. We’ll do this with
Puppet so the setup becomes part of the portable, reproducible infrastructure
scripts we began in Chapter 2, Creating a Deployment Environment, on page
19.

Let’s start by creating a Puppet module for Trinidad.

$ mkdir -p puppet/modules/trinidad/manifests

We also need to create an init.pp manifest file to the new directory. Now we’ll
open this file and add a trinidad class. Inside the class, we’ll define a few
variables.

Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
class trinidad {
$jruby_home = "/opt/jruby"
$trinidad_home = "/opt/trinidad"

}

The $jruby_home variable references the location of the JRuby runtime we
installed in Chapter 2, Creating a Deployment Environment, on page 19. The
$trinidad_home variable references the location where we’ll put our application.

78 • Chapter 5. Deploying a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/manifests/site.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Next, we need to add a resource that installs the trinidad_init_services gem’s only
native dependency. Add the following configuration immediately after the
variables in the trinidad class:

Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
package { jsvc :

ensure => present
}

The Java Service (JSVC) package contains a set of libraries that allow Java
applications to run more naturally on Unix and Linux systems. The
trinidad_init_services gem includes this library (and even a port for Windows), but
its version is not compatible with the version of Ubuntu we’re running. That’s
why we are installing it ourselves.

Now we’re ready to install the trinidad gem. Let’s add the following resource to
our class:

Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
exec { install_trinidad :

command => "jruby -S gem install trinidad -v 1.3.4",
path => "${jruby_home}/bin:${path}",
creates => "${jruby_home}/bin/trinidad",
require => File[$jruby_home]

}

This resource adds the ${jruby_home}/bin directory to the path and runs the gem
install command. It also declares that this resource creates a ${jruby_home}/
bin/trinidad file, so it won’t run if that file already exists.

Now we can install the trinidad_init_services gem by adding this resource to our
class.

Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
exec { install_trinidad_init_services :

command => "jruby -S gem install trinidad_init_services -v 1.1.3",
path => "${jruby_home}/bin:${path}",
creates => "${jruby_home}/bin/trinidad_init_service",
require => [Package[jsvc], Exec[install_trinidad], File[$jruby_home]]

}

This installs the trinidad_init_services gem in the same way the previous resource
installed Trinidad. It also defines explicit dependencies on the jsvc, install_trinidad,
and $jruby_home resources. Puppet manifests are declarative, so the order of
resources in a file doesn’t guarantee execution order by default. One way to
guarantee that a given resource executes before another is with the require
attribute.

Installing Trinidad as a Service • 79

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

This is a good point to save our init.pp file and test things. But first, we need
to include the Trinidad module in our puppet/manifest/site.pp manifest. Open it,
and add this line:

Trinidad/twitalytics/puppet/manifests/site.pp
include trinidad

Now we can provision the box.

$ vagrant provision
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWORD...
notice: /Stage[main]/Trinidad/Package[jsvc]/ensure: ensure changed 'purged' ...
notice: /Stage[main]/Redis/Service[redis-server]/ensure: ensure changed 'sto...
notice: /Stage[main]/Trinidad/Exec[install_trinidad]/returns: executed succe...
notice: /Stage[main]/Trinidad/Exec[install_trinidad_init_services]/returns: ...
notice: Finished catalog run in 17.87 seconds

Great. We’ve created our application directory and installed JSVC, and most
importantly we’ve installed the trinidad_init_services gem. But before we can use
the gem, we need to create a configuration file that’s specific to our environ-
ment. We can do this by creating a Puppet template file.

Let’s add a templates directory to our module, which will contain our template
file.

$ mkdir -p puppet/modules/trinidad/templates/

Now we need to create a trinidad_config.yml.erb file in this new directory. We’ve
named it this way because when the template is turned into a real file on the
production server, it will be called trinidad_config.yml. We’ve added the .erb
extension because Puppet will run our template through ERb. That will allow
us to use the $jruby_home and $trinidad_path variables.

Let’s edit the trinidad_config.yml.erb file and add the following code to it:

Trinidad/twitalytics/puppet/modules/trinidad/templates/trinidad_config.yml.erb
app_path: "<%= trinidad_home %>/current"
trinidad_options: "-e production"
jruby_home: "<%= jruby_home %>"
ruby_compat_version: RUBY1_8
trinidad_name: Trinidad
jsvc_path: "/usr/bin/jsvc"
java_home: "/usr/lib/jvm/java-6-openjdk/jre"
output_path: "/etc/init.d"
pid_file: "<%= trinidad_home %>/shared/pids/trinidad.pid"
log_file: "<%= trinidad_home %>/shared/log/trinidad.log"

80 • Chapter 5. Deploying a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/manifests/site.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/templates/trinidad_config.yml.erb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Most of the previous configuration options are boilerplate. But notice that
we’ve used ERb tags to inject the variables. We’ve also specified the path to
the JSVC executable, our Java home directory, and the location of our init.d
directory.

Now we need to create a resource that will process our template into a real
file. Open the init.pp file, and add this element to its class:

Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
file { "${trinidad_home}/trinidad_config.yml":

content => template("trinidad/trinidad_config.yml.erb"),
require => Exec[install_trinidad_init_services]

}

Now we’ll add a resource that creates the service by passing this file to the
trinidad_init_service command, which is provided by the trinidad_init_services gem.
Open the init.pp file, and add this code:

Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
exec { trinidad_init_service :

command => "jruby -S trinidad_init_service ${trinidad_home}/trinidad_config.yml",
path => "${jruby_home}/bin:${path}",
creates => "/etc/init.d/trinidad",
require => File["${trinidad_home}/trinidad_config.yml", $jruby_home]

}

This resource runs the trinidad_init_service command with the trinidad_config.yml
file. It also defines that it will create a /etc/init.d/trinidad file, so it won’t run if
that file already exists.

Next, we need to add a couple of resources that adjust the access rights of
the files created by the trinidad_init_service command. Add this code to the class:

Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
file { "${trinidad_home}/shared" :

owner => vagrant,
ensure => directory,
recurse => true,
require => Exec[trinidad_init_service]

}

file { "/etc/init.d/trinidad" :
owner => "vagrant",
require => Exec[trinidad_init_service]

}

The first resource changes the owner of the $trinidad_home/shared directory to
the vagrant user. The second resource does the same for our init.d script, so our
vagrant user can run the script.

Installing Trinidad as a Service • 81

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/trinidad/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Finally, we need to run the provisioning process again.

$ vagrant provision
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWORD...
notice: /Stage[main]/Redis/Service[redis-server]/ensure: ensure changed 'sto...
notice: /Stage[main]/Trinidad/File[/opt/trinidad/trinidad_config.yml]/ensure...
notice: /Stage[main]/Trinidad/Exec[trinidad_init_service]/returns: executed ...
notice: /Stage[main]/Trinidad/File[/etc/init.d/trinidad]/owner: owner change...
notice: /File[/opt/trinidad/shared]/owner: owner changed 'root' to 'vagrant'
notice: /File[/opt/trinidad/shared/log]/owner: owner changed 'root' to 'vagr...
notice: /File[/opt/trinidad/shared/pids]/owner: owner changed 'root' to 'vag...
notice: Finished catalog run in 6.61 seconds

We’ve successfully installed Trinidad as a service! But the service isn’t running.
We’ll leave that to Capistrano.

5.3 Hot-Deploying with Capistrano

Capistrano is a tool for running commands and scripts on remote servers,
which makes it an excellent tool for deploying code from one machine to
another. In the earlier chapters, we eliminated the need for Capistrano by
using Warbler to create an archive file, but that may not work for every
organization. If your team is already familiar with Capistrano, then there may
not be a need to change. Furthermore, Trinidad works well with Capistrano
because it is designed to behave like a traditional Ruby web server.

We’ll be deploying from our development environment to our virtual production
server, but we could deploy from one remote server to another or one Git
repository to a remote server. The deployment pattern you should use in the
real world depends on your organization and the processes that drive a release.

We’re going to use Capistrano to hot-deploy Twitalytics. This means that once
Trinidad is running, we can boot new versions of our application without
restarting the web server. As a result, each deployment will require fewer
resources, and the application can start serving requests quicker.

Let’s deploy our application to Trinidad. We’re going to create a custom
Capistrano recipe, which is a script that tells Capistrano how to push our
code.

82 • Chapter 5. Deploying a Trinidad Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Creating a Deployment Recipe

We’ll start by adding Capistrano to our dependencies. Open the Twitalytics
Gemfile, and add the following code to the end of it:

Trinidad/twitalytics/Gemfile
gem 'capistrano'
gem 'ffi-ncurses'

The first dependency is Capistrano. The second dependency, ffi-ncurses,1 is a
pure-Ruby wrapper for the ncurses tool.2 JRuby can’t use the native C-exten-
sions that MRI relies on, so we often have to include these pure-Ruby
dependencies to get things done. But it’s not necessarily a bad thing. Using
pure-Ruby instead of native code makes our tools more portable.

Before we move on, let’s run Bundler.

$ bundle install
...
Installing capistrano (2.9.0)
...
Installing ffi-ncurses (0.4.0)
...
Your bundle is complete! Use `bundle show [gemname]` to see where ...

Now we need to make our application Capistrano-ready. Run the following
command from the Twitalytics root directory:

$ capify .
[add] writing './Capfile'
[add] writing './config/deploy.rb'
[done] capified!

The capify command created two files for us. The Capfile contains boilerplate
code that sets up our root directory for Capistrano. But the config/deploy.rb file
contains the code for our recipe. Let’s open it and replace its contents with
the following statement:

Trinidad/twitalytics/config/deploy.rb
require 'bundler/capistrano'

This require statement loads Bundler’s Capistrano support into our script. This
will cause Capistrano to run bundle install on our production server.

Next, we’ll configure our server’s domain name and tell Capistrano what roles
it plays.

1. https://github.com/seanohalpin/ffi-ncurses
2. http://invisible-island.net/ncurses/

Hot-Deploying with Capistrano • 83

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
https://github.com/seanohalpin/ffi-ncurses
http://invisible-island.net/ncurses/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Trinidad/twitalytics/config/deploy.rb
server "localhost", :app, :db, :primary => true

The virtual machine we’ve created will act as both our application server and
our database server. We’ve added those Capistrano roles to it and set it as
the primary server.

Now we need to configure how Capistrano will connect to this server. Capis-
trano uses SSH, and as you’ll recall from Chapter 2, Creating a Deployment
Environment, on page 19, we’re using port 2222 with the Vagrant-provided
SSH key to connect to our server. Let’s tell Capistrano about these connection
parameters.

Trinidad/twitalytics/config/deploy.rb
ssh_options[:port] = 2222
ssh_options[:keys] = "~/.vagrant.d/insecure_private_key"

Great, now Capistrano can connect in the same way as our vagrant ssh
command.

We also need to set the username Capistrano will log in as and run our
deployment with.

Trinidad/twitalytics/config/deploy.rb
set :user, "vagrant"
set :group, "vagrant"
set :use_sudo, false

The previous statements tell Capistrano to connect to our virtual machine as
the vagrant user and not to use the sudo command as it deploys our code.

Next, we’ll configure our application settings. We need to tell Capistrano how
and where to deploy Twitalytics.

Trinidad/twitalytics/config/deploy.rb
set :deploy_to, "/opt/trinidad"
set :application, "twitalytics"
set :repository, "."
set :scm, :none
set :deploy_via, :copy
set :copy_exclude, [".git","log","tmp","*.box","*.war",".idea",".DS_Store"]

The first two statements tell Capistrano the deployment directory and the
name of our application. Then, we set the :repository attribute to our root
directory and the source control management (SCM) attribute to :none. This
configuration is slightly uncharacteristic of most Capistrano deployments,
which use Git. But we haven’t set up a globally accessible SCM repository,
so the deployment we’ve configured is more typical of a strategy that uses a

84 • Chapter 5. Deploying a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

continuous integration (CI) server to push code updates. A CI server is a tool
for continuously building and deploying code, and we’ll use one in Chapter
10, Using a Continuous Integration Server, on page 181. That’s why we’ve set
the :deploy_to attribute to :copy. This will package our source code into a tarball
and push it to the server.

Next, we need to configure how Capistrano will run commands on our server.

Trinidad/twitalytics/config/deploy.rb
set :default_environment,

'PATH' => "/opt/jruby/bin:$PATH",
'JSVC_ARGS_EXTRA' => "-user vagrant"

set :bundle_dir, ""
set :bundle_flags, "--system --quiet"

We’re adding the JRuby home directory we created in Chapter 2, Creating a
Deployment Environment, on page 19 to our path. We also set an environment
variable that will cause the Trinidad service to run as our vagrant user. Then
we tell Bundler not to use its own directory and to install gems to the system
instead. By default, Capistrano will tell Bundler to puts its gems in the
shared/bundler directory. But in Section 5.2, Installing Trinidad as a Service, on
page 78, we set up Trinidad to run from our system gem directory. Normally,
this wouldn’t matter, but because we’re using Trinidad extensions, we need
the application gems to be on the system gem path.

Now we can set up a few deployment tasks. We’ll need to create a :deploy
namespace and add a task to install Bundler. We’ll also add an instruction
to invoke this task before the deploy:setup task, which we’ll be using in the next
section.

Trinidad/twitalytics/config/deploy.rb
before "deploy:setup", "deploy:install_bundler"

namespace :deploy do
task :install_bundler, :roles => :app do

run "sudo gem install bundler"
end

end

Next, we need to add a task that tells Capistrano how to start our server using
the /etc/init.d/trinidad script that was created in Section 5.2, Installing Trinidad
as a Service, on page 78. Add the following code to the :deploy namespace
block:

Trinidad/twitalytics/config/deploy.rb
task :start, :roles => :app do

run "/etc/init.d/trinidad start"
end

Hot-Deploying with Capistrano • 85

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We also need to create a :stop task in the same namespace. But this task won’t
do anything.

Trinidad/twitalytics/config/deploy.rb
task :stop, :roles => :app do end

This task is empty because we don’t want to stop Trinidad. Instead, we want
to hot-deploy our application when the :restart task is invoked. To do this, we’ll
add the following task to the :deploy namespace:

Trinidad/twitalytics/config/deploy.rb
task :restart, :roles => :app do
run "touch #{current_release}/tmp/restart.txt"

end

Trinidad supports hot deployment, which means we can update our application
code and redeploy without restarting the Trinidad server. It does this by
monitoring a tmp/restart.txt file in our application directory. When the monitored
file is modified, Trinidad redeploys the application. This is illustrated by the
two phases in Figure 13, Trinidad hot deployment, on page 87. Hot deployment
is a huge improvement over traditional Ruby servers because it reduces the
time and resources required to deploy updates.

Great, we’re done writing the config/deploy.rb configuration. Now let’s deploy
Twitalytics.

Running the Deployment Script

The Capistrano gem provides a number of deployment tasks that we can use.
Let’s get a list of them by running the following command:

$ cap -T
cap bundle:install # Install the current Bundler environment.
cap deploy # Deploys your project.
cap deploy:check # Test deployment dependencies.
cap deploy:cleanup # Clean up old releases.
cap deploy:cold # Deploys and starts a `cold' application.
cap deploy:migrate # Run the migrate rake task.
cap deploy:migrations # Deploy and run pending migrations.
cap deploy:pending # Displays the commits since your last deploy.
cap deploy:pending:diff # Displays the `diff' since your last deploy.
cap deploy:rollback # Rolls back to a previous version and restarts.
cap deploy:rollback:code # Rolls back to the previously deployed version.
cap deploy:setup # Prepares one or more servers for deployment.
cap deploy:symlink # Updates the symlink to the most recently deployed ...
cap deploy:update # Copies your project and updates the symlink.
cap deploy:update_code # Copies your project to the remote servers.
cap deploy:upload # Copy files to the currently deployed version.
cap deploy:web:disable # Present a maintenance page to visitors.

86 • Chapter 5. Deploying a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/deploy.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Trinidad

Twitalytics
(version 1)

Twitalytics
(version 2)

Trinidad

Twitalytics
(version 1)

Twitalytics
(version 2)

Deploy Undeploy

HTTP
Requests

HTTP
Requests

Figure 13—Trinidad hot deployment

cap deploy:web:enable # Makes the application web-accessible again.
cap invoke # Invoke a single command on the remote servers.
cap shell # Begin an interactive Capistrano session.
...

All of these are useful, especially the invoke task, which we’ll be using in a
moment. But first we need to prepare our server environment. Let’s make
sure our the virtual machine is still running by executing this command:

$ vagrant status
Current VM states:

default running

The VM is running. To stop this VM, you can run `vagrant halt` to
shut it down forcefully, or you can run `vagrant suspend` to simply
suspend the virtual machine. In either case, to restart it again,
simply run `vagrant up`.

If the status is different from what is shown here, then boot the server with
the vagrant up command. Now we can use the cap deploy:setup task, which prepares
our environment.

$ cap deploy:setup
* executing `deploy:setup'

triggering before callbacks for `deploy:setup'
* executing `deploy:install_bundler'
* executing "sudo gem install bundler"

Hot-Deploying with Capistrano • 87

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

servers: ["localhost"]
[localhost] executing command

** [out :: localhost] Successfully installed bundler-1.0.22
** [out :: localhost]
** [out :: localhost] 1 gem installed
** [out :: localhost]

command finished in 9787ms
* executing "mkdir -p /opt/trinidad /opt/trinidad/releases /opt/trinidad...

servers: ["localhost"]
[localhost] executing command
command finished in 28ms

* executing "chmod g+w /opt/trinidad /opt/trinidad/releases /opt/trinida...
servers: ["localhost"]
[localhost] executing command
command finished in 28ms

Let’s examine the output. As you’ll recall from our deployment script, we
defined the deploy:install_bundler task to run before the deploy:setup task, so that’s
the first thing that happens. Next, the task creates the application directories
on the server and sets their permissions accordingly. The resulting structure
looks like this:

/opt/trinidad/
|-- releases/
`-- shared/
|-- log/
|-- system/
`-- pids/

The shared directory is where we’ve configured the Trinidad service to put its
log and PID files. The releases directory is where Capistrano will put a copy of
our application each time we push new code.

Let’s push our first release by running the deploy:cold task. This one command
will invoke a number of tasks. It will update our code, which creates a new
directory under the releases directory that represents our release. It also creates
a current symlink to our release directory. Finally, it migrates our database
and starts the Trinidad service.

$ cap deploy:cold
* executing `deploy:cold'

triggering before callbacks for `deploy:cold'
* executing `deploy:update'

** transaction: start
...
** transaction: commit
* executing `deploy:migrate'
* executing "cd /opt/trinidad/releases/20120216203509 && bundle exec rake...

servers: ["localhost"]

88 • Chapter 5. Deploying a Trinidad Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

[localhost] executing command
** [out :: localhost] == CreateStatuses: migrating ======================...
** [out :: localhost] -- create_table(:statuses)
** [out :: localhost] -> 0.0340s
** [out :: localhost] -> 0 rows
** [out :: localhost] == CreateStatuses: migrated (0.0450s) =============...
** [out :: localhost]
** [out :: localhost] == CreateAnalytics: migrating =====================...
** [out :: localhost]
** [out :: localhost] -- create_table(:analytics)
** [out :: localhost]
** [out :: localhost] -> 0.0160s
** [out :: localhost]
** [out :: localhost] -> 0 rows
** [out :: localhost]
** [out :: localhost] == CreateAnalytics: migrated (0.0190s) ============...
** [out :: localhost]
** [out :: localhost]

command finished in 30657ms
* executing `deploy:start'
* executing "/etc/init.d/trinidad start"
servers: ["localhost"]
[localhost] executing command

** [out :: localhost] Starting trinidad daemon...
** [out :: localhost] Daemon exited with status: 1. Check pidfile and log

command finished in 4070ms

Let’s check the server’s log file by using Capistrano to invoke a remote
command.

$ cap invoke COMMAND="tail /opt/trinidad/shared/log/trinidad.log"
* executing `invoke'
* executing "tail -f /opt/trinidad/shared/log/trinidad.log"

servers: ["localhost"]
[localhost] executing command
[localhost] env PATH=/opt/jruby/bin:$PATH sh -c 'tail -f /opt/trinidad...

** [out :: localhost] Number of jobs executed: 0
** [out :: localhost] Using thread pool 'org.quartz.simpl.SimpleThreadPoo...
** [out :: localhost] Using job-store 'org.quartz.simpl.RAMJobStore' - wh...
** [out :: localhost]
** [out :: localhost] 2012-02-22 08:59:55,813 INFO [pool-2-thread-1] StdS...
** [out :: localhost] 2012-02-22 08:59:55,814 INFO [pool-2-thread-1] StdS...
** [out :: localhost] 2012-02-22 08:59:55,822 INFO [pool-2-thread-1] Quar...
** [out :: localhost] 2012-02-22 08:59:59,156 INFO [pool-2-thread-1] Quar...
** [out :: localhost] 2012-02-22 16:59:59 INFO: Starting ProtocolHandler ...
** [out :: localhost] 2012-02-22 09:00:01,101 INFO [Timer-0] UpdateChecke...
** [out :: localhost] No statuses have been deleted.
command finished in 187ms

Hot-Deploying with Capistrano • 89

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We need to run the deploy:cold task only the first time we deploy. For subsequent
releases, we can use the deploy task. We can try it by pushing another release.

$ cap deploy
* executing `deploy'
...
* executing `deploy:restart'
* executing "touch /opt/trinidad/releases/20111128140150/tmp/...
servers: ["localhost"]
[localhost] executing command
command finished in 27ms

We’ll be using this command to update the server as we make changes to
Twitalytics in this chapter.

Finally, we’ll point a browser to http://localhost:8888. Twitalytics is running in
production. Now we need to open it up to the world by running Apache in
front of it.

5.4 Configuring Apache

Most Ruby deployments use an HTTP server as a proxy for the Ruby servers
that handle dynamic content. The HTTP server’s job is to handle security,
routing, load balancing, and static content. Of these jobs, load balancing is
particularly important because a single machine will run multiple application
instances. Thus, load balancing is the only means by which parallelism can
be achieved in an MRI deployment.

In our JRuby deployment, Trinidad uses a single application instance per
machine, which eliminates the need for load balancing on a single machine.
But we’ll still need an HTTP server for load balancing if we want to use that
machine as part of a distributed cluster. We also need an HTTP server to
provide support for implementing Secure Sockets Layer (SSL) on top of our
HTTP layer. As a result, we’ll enhance our deployment architecture by
including the Apache HTTP Server as a proxy for the Trinidad server.

The Apache HTTP Server is an extremely mature and well-supported piece of
software that is the most popular of its kind.3 Many Ruby deployments use
Apache, but there are numerous others that use alternatives such as Ngnix.
We’ve chosen Apache because it pairs well with the Apache Tomcat server.

Because Trinidad is a wrapper around Tomcat, it gives us access to some
powerful tools that integrate with the Apache HTTP Server. In particular, the

3. http://httpd.apache.org/ABOUT_APACHE.html

90 • Chapter 5. Deploying a Trinidad Application

http://httpd.apache.org/ABOUT_APACHE.html
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Apache JServ Protocol (AJP) connector can greatly improve how Apache
communicates with our application.

The AJP connector creates a very fast connection between an Apache HTTP
Server and Java servlet container (such as Tomcat). In addition to being fast,
the connection is also secure. This is accomplished with two mechanisms:

Binary protocol
AJP is a packet-oriented protocol. This means that the web server com-
municates with its connector in binary format instead of a more readable
plain-text format. This is also what makes it possible to secure the
connection without incurring overhead.

Persistent TCP connections
The Apache HTTP server is able to keep a connection open across multiple
requests/response cycles. This cuts down on the expensive process of
socket creation. The AJP protocol supports a ping request that can be
sent to connectors, allowing the web server to monitor its connections.

Let’s configure Trinidad to listen with the AJP connector by adding the follow-
ing entry to our config/trinidad.yml file:

Trinidad/twitalytics/config/trinidad.yml
ajp:

port: 8099

Now when we start the server with the trinidad command, we’ll see this in the
console:

2011-11-30 06:45:17 INFO: Starting ProtocolHandler ["ajp-bio-8099"]
2011-11-30 06:45:17 INFO: Starting ProtocolHandler ["http-bio-3000"]

Tools like curl and our web browser don’t support the AJP protocol, so we can’t
test the new connector with our regular methods. Instead, we’ll need to connect
Apache to our AJP port.

Apache can’t connect with AJP out of the box. So, we’ll have to install the
mod_proxy_ajp extension. As with all of our other infrastructure, we’ll configure
this with Puppet. Open the puppet/modules/apache2/manifests/init.pp file, and add
the following resource to it:

Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
exec { "a2enmod proxy_ajp" :

command => "a2enmod proxy_ajp",
path => $path,
require => Package["apache2"],
unless => "apache2ctl -M | grep proxy_ajp"

}

Configuring Apache • 91

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/trinidad.yml
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Next, we’ll need to modify the /etc/apache2/httpd.conf file on our virtual machine.
This is where we will configure the proxy settings for Apache. We’ll use a
Puppet template to do this, so we’ll need to create a templates directory.

$ mkdir puppet/modules/apache2/templates

Now let’s create a puppet/modules/apache2/templates/httpd.conf.erb file and put the
following content in it:

Trinidad/twitalytics/puppet/modules/apache2/templates/httpd.conf.erb
<VirtualHost *:80 >

ProxyPass / ajp://<%= hostname %>:<%= port %>/
ProxyPassReverse / ajp://<%= hostname %>:<%= port %>/

</VirtualHost>

We’ve configured our hostname and port with ERb tags so that the values
can be passed into the template generator.

Now we’ll add a resource to our manifest that turns the template into a real
file on our virtual machine, but this time we’ll wrap it in a function instead
of making it freestanding. This will give us a little more flexibility in how we
define the hostname and port values.

Open the puppet/modules/apache2/manifests/init.pp file, and add the following function
to the apache2 class:

Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
define apache2::httpd_conf($hostname="localhost", $port="8099") {
file { $name :

content => template("apache2/httpd.conf.erb")
}

}

Now we can add a resource that invokes the previous function and declare a
dependency on the "a2enmod proxy_ajp" resource.

Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
apache2::httpd_conf { "/etc/apache2/httpd.conf":
require => Exec["a2enmod proxy_ajp"]

}

That completes our httpd.conf setup, but we also need to make some changes
to the security settings in the /etc/apache2/mods-enabled/proxy.conf file. We’ll use a
template for this, too. Create a proxy.conf.erb file in the templates directory, and
add the following content to it:

Trinidad/twitalytics/puppet/modules/apache2/templates/proxy.conf.erb
<IfModule mod_proxy.c>

ProxyRequests Off
<Proxy *>

92 • Chapter 5. Deploying a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/templates/httpd.conf.erb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/templates/proxy.conf.erb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

AddDefaultCharset off
Order deny,allow
#Deny from all
#Allow from .example.com

</Proxy>
ProxyVia On

</IfModule>

The majority of this template is boilerplate. The one significant change we’re
making is to comment out the following line:

Trinidad/twitalytics/puppet/modules/apache2/templates/proxy.conf.erb
#Deny from all

This enables unrestricted access to our proxy, which is fine in our local
environment. In the real world, we would probably use ERb tags to inject
some more detailed configuration like we did with the httpd.conf file. But that
configuration would be specific to each environment, so we’ll leave it wide
open for now.

Next, we’ll need a resource for this template. Add the following code to the
puppet/modules/apache2/manifests/init.pp file:

Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
file { "/etc/apache2/mods-enabled/proxy.conf":

content => template("apache2/proxy.conf.erb"),
require => File["/etc/apache2/httpd.conf"]

}

Finally, we need to add a new dependency to our Apache service resource.
This will ensure that it’s started after we’ve replaced the configuration files.

Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
service { "apache2":

ensure => running,
require => [Package["apache2"], File["/etc/apache2/mods-enabled/proxy.conf"]]

}

Great, now we’re ready to run the provisioning process again.

$ vagrant provision
...
[default] notice: /Stage[main]/Apache2/Exec[a2enmod proxy_ajp]/returns: executed ...
...
[default] notice: Finished catalog run in 168.07 seconds

Next, we’ll deploy the Trinidad configuration changes and test things again.

$ cap deploy
...

Configuring Apache • 93

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/templates/proxy.conf.erb
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/puppet/modules/apache2/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Now point a browser to http://localhost:8000, and we’ll see Twitalytics through the
Apache AJP proxy.

In this simple example, the AJP connector doesn’t provide a large amount of
value over a traditional HTTP connector because we are running Apache and
Trinidad on the same machine. The two servers are communicating with the
loopback interface, which means there is little security risk and latency, so
an encrypted binary protocol doesn’t bring much to the party.

But if we needed to expand our deployment into a distributed cluster, the
benefits of the AJP connector would start to be realized. This architecture for
such a system is illustrated Figure 14, A Trinidad cluster using the AJP con-
nector, on page 95. To implement this architecture, we would need to install
the mod_proxy_balancer extension and modify our httpd.conf to look something like
this:

<Proxy balancer://trinidad>
BalancerMember ajp://server1:8099
BalancerMember ajp://server2:8099
BalancerMember ajp://server3:8099

</Proxy>

ProxyPass / balancer://trinidad/

We’re really starting to take advantage of JRuby now, but we’ve put a lot of
effort into setting up infrastructure components like Apache, Capistrano,
Redis, and more. Before we move on to a new framework that simplifies our
infrastructure, let’s explore some alternative Trinindad deployment options
that don’t require us to be responsible for all of these tools.

5.5 Choosing Alternative Deployment Strategies

The deployment strategy we’ve used in this chapter packages the code in our
environment and pushes it out to a production server. This pattern could be
used from a CI server that checks out the code, runs the unit tests, integration
tests, and finally deploys. But many shops prefer to deploy directly from a
Git repository.

We could modify the Capistrano script we wrote earlier to deploy from a Git
repository by changing the :scm and :repository attributes to something like this:

set :scm, :git
set :repository, "git://github.com/deployingjruby/twitalytics.git"

But some other deployment strategies become available to us when we start
using Git. Let’s take a look at two of them.

94 • Chapter 5. Deploying a Trinidad Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Server 2

Trinidad

Server 1

Apache

Server 3

Trinidad

Server 4

Trinidad

mod_proxy_ajp
mod_proxy_balancer

AJP Protocol

Figure 14—A Trinidad cluster using the AJP connector

Using the Management Console

As we discussed in Chapter 4, Creating a Trinidad Application, on page 57,
the trinidad_sandbox_extension extension provides a management console, which
gives us a little insight into our Trinidad configuration and a new mechanism
for deploying applications. In particular, it allows us to deploy to a running
Trinidad instance directly from a Git repository.

Let’s install the trinidad_sandbox_extension by adding the gem to our application’s
configuration. Append the following statement to our Gemfile, and run bundle
install.

Trinidad/twitalytics/Gemfile
gem 'trinidad_sandbox_extension'

Next, add the extension to the config/trinidad.yml file under the extensions: attribute.

Trinidad/twitalytics/config/trinidad.yml
sandbox:

username: admin
password: Passw0rd
work_dir: 'work/sandbox'

Choosing Alternative Deployment Strategies • 95

http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/Trinidad/twitalytics/config/trinidad.yml
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

The sandbox extension supports basic HTTP authentication, so we’ve set the
username and password it will use.

Let’s test it locally by starting the server with the trinidad command and
browsing to http://localhost:3000/sandbox. Once we provide the username and
password set earlier, we’ll see the web page illustrated in Figure 15, The
Trinidad management console, on page 97.

The management console gives us some basic information about the running
state of each application deployed to Trinidad. It also gives us a REST API for
querying, restarting, and stopping each application.

Now we need to deploy our changes to the production server with the cap deploy
command. When it’s completed, point your browser to http://localhost:8888/sandbox,
and you’ll see the same web page we saw on our development environment.

Next, follow the Deploy link, which will take us to the form shown in Figure
16, Trinidad sandbox extension, on page 98. Fill in the fields with the URL
git://github.com/deployingjruby/twitalytics.git, the master branch, and assign it to the
twitalytics context path. Click the Deploy button, and the application will be
pulled from the Git repo.

We could choose to statically configure Trinidad, rather than provide a
trinidad.yml file with our application. If we did, the trinidad_sandbox_extension would
allow us to eliminate our Capistrano scripts. But we would still need to con-
figure our deployment environment with numerous components and make
sure all required gems had been installed. If we really want to simplify things,
then we need to deploy our application to the cloud.

Deploying to the Cloud

There are very few cloud-based services that support JRuby applications. In
Chapter 3, Deploying an Archive File, on page 37, you learned about one of
the Java-based cloud services that supports JRuby WAR files. In this section,
we’ll deploy Twitalytics to Engine Yard,4 which provides excellent support for
both JRuby and Trinidad.

Engine Yard has been a major JRuby proponent for a number of years. When
Oracle acquired Sun in 2010, Engine Yard took advantage of the project’s
uncertainty by offering jobs to the JRuby core team. Since then, JRuby and
many of its related libraries have been able to flourish because of the commer-
cial support.

4. http://www.engineyard.com/

96 • Chapter 5. Deploying a Trinidad Application

http://www.engineyard.com/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 15—The Trinidad management console

Let’s test Engine Yard’s platform by deploying Twitalytics to it. But before
doing so, we’ll need to create a Git repository that Engine Yard can access.
You may choose from a number of platforms to host it, including GitHub5

and Bitbucket.6 Once the remote repository has been created, we’ll have to
make a few changes to our application to get it ready for Engine Yard.

Engine Yard’s Cloud Managed Trinidad service is relatively new, but it supports
most Trinidad features. One feature that it does not support is running mul-
tiple applications in the same container. That means we won’t be able to run
our Resque console or the Sandbox console in the same runtime as Twitalytics.
We’ll need to remove the sandbox: attribute from the trinidad.yml file, and we can
disable the Resque console by adding the disable_web: attribute to the Resque
extensions configuration in the same file. We also need to remove the AJP
configuration. Engine Yard uses Nginx and the Tomcat HTTP connector, so
the AJP connector will interfere with our stack. After these changes, our
complete trinidad.yml file should look like this:

5. https://github.com/
6. https://bitbucket.org/

Choosing Alternative Deployment Strategies • 97

https://github.com/
https://bitbucket.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 16—Trinidad sandbox extension

Trinidad/ey/config/trinidad.yml
jruby_max_runtimes: 1
extensions:
diagnostics:
scheduler:
resque:

path: 'lib/workers'
queues: critical, normal, low
count: 1
redis_host: 'localhost:6379'
work_dir: 'work/resque'
disable_web: true

Now we’re ready to set up our Engine Yard instance. Browse to the Engine
Yard website and create a new account and a new application. When creating
the application, be sure to select JRuby as the runtime and Trinidad as the
platform.

Now we’ll use the Engine Yard gem to deploy our code, but we need to install
it first.

98 • Chapter 5. Deploying a Trinidad Application

http://media.pragprog.com/titles/jkdepj/code/Trinidad/ey/config/trinidad.yml
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Traditional Deployment with Heroku

Heroku is a cloud deployment platform that provides support for Java web applications
as part of its Cedar stack,a which means it’s possible to run any Rack-based JRuby
application.b

Heroku does not use Trinidad, Warbler, or any of the frameworks we’ll discuss in
this book. Instead, you’ll have to add a little bit of XML to your application’s configu-
ration in the form of a Maven pom.xml file. But other than that, a basic Rails or Rack
application can remain pretty much the same.

Instead of using Capistrano, Heroku pulls code from a Git repository. Once an
application has been created, you can deploy to it by pushing to the Heroku repository
with a command like this:

$ git push heroku master

The Heroku server will use a post-receive hook to deploy the application after your
push. Other than the additional XML configuration, this is basically the same as
deploying an MRI-based application.

Because Heroku is a heavily managed platform, the benefits of the JVM are somewhat
hidden. A Heroku application is scaled up by adding new dynos, which are something
like operating system processes. The main advantage is that you can use Java libraries
and threading.

a. http://devcenter.heroku.com/articles/java
b. http://blog.heroku.com/archives/2011/8/25/java/

$ gem install engineyard
Fetching: engineyard-serverside-adapter-1.5.21.gem (100%)
Fetching: engineyard-1.4.15.gem (100%)

Welcome to Engine Yard!

Deploying for the first time? The Engine Yard Pandas want to help you!

Email pandas@engineyard.com with your questions or queries.
(Panda = 1. Polite Agent of Non-Destructive Assimilation; 2. Cute fluffy animal.)

We wish you every success with your business!

- The Pandas

Successfully installed engineyard-serverside-adapter-1.5.21
Successfully installed engineyard-1.4.15
2 gems installed

Choosing Alternative Deployment Strategies • 99

http://devcenter.heroku.com/articles/java
http://blog.heroku.com/archives/2011/8/25/java/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

This will add the ey command to our path. To use it, change directories to the
checked-out copy of the application from the Git repository. Then run the
deploy command.

$ ey deploy
Loading application data from EY Cloud...
Beginning deploy of ref 'ey' for 'twitalytics' in 'twitalytics_dev' on server...
Triggering deploy on deploy@ec2-0-0-0-0.compute-1.amazonaws.com.
Successfully installed engineyard-serverside-1.5.21
1 gem installed
Triggering deploy on deploy@ec2-0-0-0-0.compute-1.amazonaws.com.
...
Successful deployment recorded in EY Cloud
Deploy complete
Now you can run `ey launch' to open the application in a browser.

The first time we run this command, it will ask for our username and password
so it can fetch our API token. But it will save this, and subsequent runs won’t
need the credentials. When the command completes, we can view the appli-
cation by running this command:

$ ey launch

Great. Twitalytics has been deployed on the Engine Yard stack, and all of the
system configuration was handled for us. If cloud deployment is an option
for your organization, it can save a great number of maintenance headaches.

5.6 Wrapping Up

We’ve created an environment that is similar to traditional Ruby deployment
environments, but it has come at a cost. Our setup is complex, and we still
have multiple processes because of our Redis server.

We’re using Capistrano, which is helpful because it’s familiar. But Capistrano
is a tool that works around the problems created by traditional deployment.
We’re not actually solving them. We have no standard packaging format for
deploying our application, so we have to use outside tools to push our changes
(such as Git and tar). We also have a lot of infrastructure to control, which
complicates our recipe.

In Chapter 1, Getting Started with JRuby, on page 1, we saw how Warbler
fixed the packaging problem by using a WAR file, but it left our background
tasks and scheduled jobs out of the application. They had to be supported
by external processes and tools. Trinidad incorporated those external parts
into our application, but we are still cobbling our application together from
disparate parts.

100 • Chapter 5. Deploying a Trinidad Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We want a more cohesive application that’s easy to deploy. It would make our
infrastructure less complex and more manageable. In the next chapter, you’ll
learn about a platform that provides not only a web server but an entire
application server. It will eliminate our need for external tools like Redis,
which make it difficult to monitor the health of our system.

Let’s finish our JRuby deployment by running Twitalytics on an application
server.

Wrapping Up • 101

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 6

Creating a TorqueBox Application
Traditional deployment with Trinidad has been a great solution for Twitalytics
thus far. It simplified our infrastructure and deployment. But as our website
continues to grow in popularity, our need to scale has grown too. Running
Twitalytics on a single server is not sufficient anymore; we need a cluster.

We can already run Twitalytics on multiple servers with Trinidad and Warbler
by using Apache to load balance them. But this is not a true cluster because
each of the nodes is unaware of the other nodes. This is a problem when we
have lots of asynchronous jobs like Twitalytics does. We need these back-
ground jobs to coordinate with each other. Fortunately for us, TorqueBox can
do this.

TorqueBox is the most powerful deployment environment available to any
Ruby application. It’s capable of boosting performance without even changing
a single line of code.1 But it also has features that can improve the way an
application is composed.

TorqueBox provides built-in support for clustering, which allows distributed
servers to replicate session data, coordinate jobs, and send messages to each
other. This will help Twitalytics scale up without incurring the overhead of
additional infrastructure. In this chapter, we’ll port Twitalytics onto TorqueBox
and start taking advantage of this power. But we’ll also leverage TorqueBox’s
support for bidirectional communication between a client and server to add
some new features to the application. Then we’ll use TorqueBox’s centralized
management console to monitor each of these moving parts. In the coming
chapters, we’ll put this all together and deploy Twitalytics to a working cluster.

Because of its built-in support for features such as clustering, TorqueBox is
often distinguished as enterprise-grade software. But it does this without any

1. http://torquebox.org/news/2011/10/06/torquebox-2x-performance/

http://torquebox.org/news/2011/10/06/torquebox-2x-performance/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

of the drawbacks we programmers often associate with “enterprisey” things.
These built-in features include the following:

• Long-running services (daemons)
• Scheduled jobs (like cron)
• Background jobs
• Session replication across a cluster
• Distributed caching across a cluster
• Distributed transactions

The Twitalytics application is not enterprise software, but it has a need for
all of the features we listed earlier. In fact, any application that is successful
will eventually need these capabilities. Having them integrated into our plat-
form results in a more cohesive, reliable, and manageable environment. This
kind of platform is called an application server.

6.1 What Is an Application Server?

An application server is a different kind of platform from what most Rubyists
are familiar with. Traditionally, a Ruby application is responsible for gathering
together the libraries and tools it needs to run. For example, if our application
needs to listen on port 3000, then it pulls in a library to handle HTTP listening.
This kind of architecture is illustrated in Figure 17, Traditional Ruby applica-
tion architecture, on page 105. But why should our application care that it lis-
tens on port 3000? Shouldn’t our application be focused on solving the
problem it was created for?

In Chapter 3, Deploying an Archive File, on page 37, we solved this problem
by using Apache Tomcat to invert the way we deployed. Instead of running
our application, we ran the Tomcat container and deployed an archive file
into it. This decoupled our application from the job of listening on an HTTP
port. But there many other problems in our architecture like this one, and
they can’t be solved by Tomcat alone.

Ruby applications deal with many concerns like HTTP listening that are out-
side the scope of their business requirements. Messaging is another example.
When Twitalytics needed to run a process asynchronously in the background,
we pulled in Resque and integrated with it. Even worse, our application
needed to manage and monitor the Resque processes!

The cumbersome chore of assembling our infrastructure this way doesn’t
conform to traditional Ruby principles. Ruby is designed to be productive and
fun. That’s why libraries like Rails are designed to get low-level details out of

104 • Chapter 6. Creating a TorqueBox Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Port
3000

Twitalytics
Web

Mongrel Resque daemons

monit

Twitalytics
Jobs

cron

Redis

listens

Resque
Console

Figure 17—Traditional Ruby application architecture

the way—so we can focus on writing business logic. But why do we still have
to set up, integrate, and monitor a framework that runs background process-
es? We need a container with an attitude.

A container could handle these things for us by isolating the infrastructure
components from our application and moving them into a cohesive platform
layer beneath our business logic. Tomcat began to do this for us, but it han-
dled only web requests. We need something more comprehensive that can
provide the infrastructure for an entire application. This kind of container,
which is illustrated in Figure 18, Ruby application server architecture, on page
106, is called an application server.

TorqueBox is a Ruby application server, and it’s the only one of its kind. Let’s
port Twitalytics onto this platform as the last step in rescuing it.

What Is an Application Server? • 105

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

TorqueBox

Jobs

Daemons

Monitoring

Messaging

Web

Twitalytics

Other Apps

Deploy

Port
8080

listens

Figure 18—Ruby application server architecture

6.2 Getting Started with TorqueBox

TorqueBox is distributed as both a gem and a binary file. We’ll use the gem
on our development machines, so we’ll need to install it with the following
command:

$ gem install torquebox-server
...

This will add the torquebox executable to our path. We can run it without any
arguments to get a list of available tasks.

106 • Chapter 6. Creating a TorqueBox Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ torquebox
Tasks:

torquebox deploy ROOT # Deploy an application to TorqueBox
torquebox undeploy ROOT # Undeploy an application from TorqueBox
torquebox run # Run TorqueBox (binds to localhost, use -b to ov...
torquebox rails ROOT # Create a Rails application at ROOT using the To...
torquebox archive ROOT # Create a nice self-contained application archive
torquebox cli # Run the JBoss AS7 CLI
torquebox env [VARIABLE] # Display TorqueBox environment variables
torquebox help [TASK] # Describe available tasks or one specific task
torquebox list # List applications deployed to TorqueBox and the..

Let’s use the env task to display the location where TorqueBox is installed.

$ torquebox env TORQUEBOX_HOME
~/.rvm/gems/jruby-1.6.7/gems/torquebox-server-2.0.2-java

Before we use any other tasks, let’s create and check out a torquebox branch
that’s based on the jruby branch we created in Chapter 1, Getting Started with
JRuby, on page 1.

$ cd ~/code/twitalytics
$ git checkout -b torquebox jruby

We don’t need to make any changes to the code to run the basic web applica-
tion, so let’s start the TorqueBox server with the run task.

$ torquebox run
...

This will generate a lot of console output. When TorqueBox boots, it initializes
all the components that support the features we described at the beginning
of the chapter. But amazingly, it does this in a relatively short time.

TorqueBox is running, but our application has not been deployed. Because
TorqueBox is an application server, it can run independently of any applica-
tion. This differs from traditional Ruby web servers, which are booted to run
a single application and start it up immediately. We’ll leave the TorqueBox
server running as we deploy Twitalytics and other applications to it, so we’ll
need to open a new terminal and move to the Twitalytics directory. We can
deploy Twitalytics to TorqueBox with the following command:

$ torquebox deploy
Deployed: twitalytics-knob.yml

into: ~/.rvm/gems/jruby-1.6.7/gems/torquebox-server-2.0.2-java/...

Now we’ll see the application running when we browse to http://localhost:8080,
and we’ll also see some information in the TorqueBox console (the first terminal
session) that lets us know the deployment was successful.

Getting Started with TorqueBox • 107

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Let’s take a closer look at the output of the deploy task. It tells us that
TorqueBox created a twitalytics-knob.yml file and deployed it into the jboss/stan-
dalone/deployments directory under TORQUEBOX_HOME. This YAML file is the
deployment descriptor for our application, which tells TorqueBox where our
application is located on the file system. In Section 6.3, Creating a Deployment
Descriptor, on page 109, we’ll create a custom descriptor and add some
advanced configuration to it, but the default descriptor will work for now.

We have a Rails application running on TorqueBox, and it’s nice that we didn’t
need to modify the code from our JRuby branch to do this. But we’ll need to
add some configuration if we want to take advantage of the more advanced
TorqueBox features such as background jobs and distributed session caching.
Fortunately, TorqueBox provides a Rails template that can create this config-
uration in one command.

$ rake rails:template \
LOCATION=`torquebox env TORQUEBOX_HOME`/share/rails/template.rb

gemfile torquebox-rake-support
gemfile torquebox
remove config/initializers/session_store.rb

initializer session_store.rb
initializer active_record_backgroundable.rb

rakefile torquebox.rake

This added two dependencies to our Gemfile. The first provides a set of Rake
tasks that can be used to deploy the application in lieu of the torquebox com-
mand. The configuration of those tasks is contained in the torquebox.rake file.
The second new dependency is the torquebox gem, which is actually very
lightweight but has dependencies on several other gems that provide
TorqueBox’s messaging and clustering features.

The template also removed our existing session_store.rb initializer and replaced
it with a file that enables the server-based, in-memory, cluster-compatible
TorqueBox session store.

Finally, the template added an active_record_backgroundable.rb initializer, which
adds some new capabilities to ActiveRecord::Base. We’ll use this later, too.

Let’s run Bundler so it can install our new dependencies.

$ bundle install
...
Using torquebox-core (2.0.2)
Using torquebox-transactions (2.0.2)
Using torquebox-cache (2.0.2)
Using torquebox-configure (2.0.2)
Using torquebox-messaging (2.0.2)

108 • Chapter 6. Creating a TorqueBox Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Using torquebox-naming (2.0.2)
Using torquebox-rake-support (2.0.2)
Using torquebox-security (2.0.2)
Using torquebox-stomp (2.0.2)
Using torquebox-web (2.0.2)
Using torquebox (2.0.2)
...

Now let’s enhance our configuration with a custom descriptor that will allow
us to tailor how the components in our system work together.

6.3 Creating a Deployment Descriptor

A TorqueBox deployment descriptor is a configuration file that defines how
the components of the application server get wired together at deployment
time. Earlier in the chapter, we saw how TorqueBox used a YAML-based
deployment descriptor to notify the server of our application. This external
descriptor contained the default configuration for a TorqueBox application.
But we can override these defaults by creating a descriptor that is internal
to our application.

An internal deployment descriptor can be in either YAML or Ruby format.
We’ll use the Ruby format because it provides a more expressive DSL. In the
config directory of our application, we’ll create a torquebox.rb file and add the
following code to it:

TorqueBox.configure do
TODO add some configuration

end

TorqueBox will look for this file when it boots our application and use the
configure block to override its default settings. We can specify a number of
directives within this block that will be applied to the various TorqueBox
subsystems. These subsystems include the following:

Web
Configures the part of the application that handles web requests

Jobs
Allows us to schedule recurring jobs

Messaging
Configures how background messages are distributed and processed

Services
Defines long-running background jobs

Creating a Deployment Descriptor • 109

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

In addition to the subsystems, we can also configure environment variables,
Ruby runtime options, and how application runtimes are pooled. We’ll start
by configuring a runtime pool.

TorqueBox pools application instances just like the ones we described for
Warbler and Trinidad. Because Twitalytics is thread-safe, we want to use a
shared pool. A shared pool is a false pool, which means that it contains a
single instance of our application that is shared between threads. We can do
this by adding a call to the pool directive.

TorqueBox/twitalytics/config/torquebox.rb
TorqueBox.configure do
pool :web, :type => :shared

end

A shared pool is the TorqueBox default for any environment other than
development, so this configuration won’t actually change much. It’s also
important to point out that this pool applies only to the web subsystem. As
we add more subsystems to our application, we can define their pools inde-
pendently. This provides a good way to isolate potentially non-thread-safe
code.

Because our application is running on Rails, we have to do more than config-
ure TorqueBox to use a shared pool. We also need to configure Rails to run
in thread-safe mode, as we did for Warbler and Trinidad. We do this by
uncommenting the following line in our config/environments/production.rb file:

TorqueBox/twitalytics/config/environments/production.rb
config.threadsafe!

TorqueBox is aware of this Rails configuration, so setting both the pool value
and config.threadsafe! is actually redundant.

Now we can deploy Twitalytics again with the torquebox deploy command. When
the application boots, it will be using a shared pool (single instance) for the
web runtime. But how do we know that is what it’s actually doing? At the
least, it would be nice to inspect the pool to ensure it’s configured correctly
without depending on the log file. This is important when using a shared pool,
but it’s especially important when using a pool containing multiple application
instances. If TorqueBox hits our pool’s ceiling too quickly, it may be a sign
that we need to increase our maximum value. It’s difficult to identify the pool’s
growth rate from a log file, so let’s install a tool that will provide some visibil-
ity into our server.

110 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/environments/production.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

6.4 Using the Management Console

The TorqueBox project includes a management console called BackStage that
we can deploy alongside our applications to provide visibility into all compo-
nents of the server.

BackStage is distributed as a gem, so we can use the following command to
install it:

$ gem install torquebox-backstage
...

This adds a backstage executable to our path that we can use to deploy the
console application like this:

$ TORQUEBOX_HOME=`torquebox env torquebox_home` backstage deploy
>> WARNING: deploying BackStage with no security - use the --secure=username ...
>> Deployed torquebox-backstage-knob.yml to ~/.rvm/gems/jruby-1.6.7/gems/tor ...

The warning message tells us that BackStage is running without any security.
That’s OK for our development machine, but we’ll lock it down when we deploy
to production. The second line tells us that the BackStage application deployed
successfully. When we browse to http://localhost:8080/backstage, we’ll see Figure
19, The BackStage dashboard, on page 112.

Next, we can follow the Runtime Pools link to get some more detailed informa-
tion on our web runtime. The page will display a list of runtime pools, as
pictured in Figure 20, The BackStage Runtime Pools page, on page 112.

There are two web pools: one for Twitalytics and one for BackStage. Both of
them are running in the same container but are completely isolated. Even if
the two applications have conflicting gem dependencies, they can still run
alongside each other. We can even deploy an application that uses Ruby 1.8
alongside an application that uses Ruby 1.9. This is all possible because of
the separate runtimes.

In addition to inspecting the runtime pools, we can use BackStage to check
each of the subsystems. Let’s move on and start making use of these.

6.5 Scheduling a Recurring Job

Jobs are components that execute on a schedule instead of in response to
user action. In the case of Twitalytics, the schedule is recurring, but other
jobs could be a one-time event. With TorqueBox, jobs like this run asyn-
chronously in the background, but they still execute within the same JVM
process as the rest of the application.

Using the Management Console • 111

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 19—The BackStage dashboard

Figure 20—The BackStage Runtime Pools page

The Twitalytics recurring job removes old status updates from the database.
In Chapter 4, Creating a Trinidad Application, on page 57, we ported this job
to Trinidad. Now, we’ll port it to TorqueBox.

The job is located in the lib/jobs/delete_old_statuses.rb file, and it looks like this:

twitalytics/lib/jobs/delete_old_statuses.rb
class DeleteOldStatuses

112 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/twitalytics/lib/jobs/delete_old_statuses.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

def run
ids = Status.where("created_at < ?", 30.days.ago)
if ids.size > 0

Status.destroy(ids)
puts "#{ids.size} statuses have been deleted!"

else
puts "No statuses have been deleted."

end
end

end
DeleteOldStatuses.new.run

When Twitalytics was running on MRI, this background job was scheduled
by adding a crontab entry and having the cron daemon run the script with the
rails runner command. But that increased the complexity of our infrastructure
(since cron became another dependency) and made it less portable because
there is no cron on Windows. We improved this with Trinidad by using the
Scheduler extension, which uses the same Quartz2 library as TorqueBox’s
scheduler. But neither Trinidad’s scheduled jobs nor cron can scale like
TorqueBox schedule jobs. We’ll see this in more detail in Chapter 8, Clustering
a TorqueBox Application, on page 149, but we’ll begin by getting our jobs run-
ning on TorqueBox.

First, we’ll move this job to a new location under the app/jobs directory. We’ll
use the git mv command so the repository stays in sync with our changes.

$ git mv lib/jobs/delete_old_statuses.rb app/jobs/

TorqueBox will pick up any jobs located in the app/jobs directory and run them
with the full context of the application. That means it will have access to our
ActiveRecord models without relying on rails runner or anything like that.

Next, we need to remove the following statement that instantiates the Delete-
OldStatuses class.

twitalytics/lib/jobs/delete_old_statuses.rb
DeleteOldStatuses.new.run

TorqueBox will do this for us as long as we have a no-argument constructor.
It also expects our job class to have a no-argument run() method, which will
perform the job’s work when invoked. Our class already has both of these,
so we are all set.

2. http://quartz-scheduler.org/

Scheduling a Recurring Job • 113

http://media.pragprog.com/titles/jkdepj/code/twitalytics/lib/jobs/delete_old_statuses.rb
http://quartz-scheduler.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Next, we need to schedule the job by adding an entry to the config/torquebox.rb
file. We’ll use the job() directive and pass it the class name and a crontab-like
value.

TorqueBox/twitalytics/config/torquebox.rb
job DeleteOldStatuses do
cron "0 0/5 * * * ?"

end

Let’s deploy the application to the TorqueBox server again. If it isn’t already
running, we’ll need to start it in a separate terminal with the torquebox run task.
Then we can deploy with the torquebox deploy task.

After the application has booted, we’ll see some output in the console like
this:

21:17:05,112 INFO [stdout] ... No statuses have been deleted.
21:17:10,080 INFO [stdout] ... No statuses have been deleted.

Our job is running on a schedule. Now let’s enhance its configuration.

The DeleteOldStatuses class has the age threshold hard-coded to 30.days.ago, but
it would be better if this value were defined as part of our job configuration.
We can do this by adding a config() directive to our job() block.

TorqueBox/twitalytics/config/torquebox.rb
job DeleteOldStatuses do
cron "0 0/5 * * * ?"
config do

max_age 30
end

end

Next, we need to add an initialize(options={}) method to our class that accepts a
Hash of options as an argument.

TorqueBox/twitalytics/app/jobs/delete_old_statuses.rb
def initialize(options = {})
@max_age = options["max_age"]
@max_age ||= 30

end

Now we can use the @max_age variable in our run() method.

TorqueBox/twitalytics/app/jobs/delete_old_statuses.rb
ids = Status.where("created_at < ?", @max_age.days.ago)

When we deploy the application again, it will use the configuration option.

Having the recurring job deployed as part of our TorqueBox configuration
means not only that it runs as part of our application process but that we

114 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/jobs/delete_old_statuses.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/jobs/delete_old_statuses.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

can use the same TorqueBox clustering, monitoring, and management tools
for it as we will for the rest of the application.

Let’s take a look at the job in our management console. Browse to the Back-
Stage dashboard at http://localhost:8080/backstage, and then click the Jobs link.
We’ll see an entry for the DeleteOldStatuses job like in Figure 21, The BackStage
Jobs page, on page 116.

We can see that our job is being scheduled, and we can even use the Stop
button to unschedule it. Go ahead and try it. The Stop button will be replaced
by a Start button that you can use to bring the job back up.

Our job is all set to delete old Status records. Now let’s use some of the other
TorqueBox subsystems to create Status records.

6.6 Creating a Long-Running Daemon

TorqueBox provides a built-in framework for executing long-running daemons,
which it calls services. Like scheduled jobs, services run within the same
process as the rest of the application, and they get access to the full applica-
tion environment.

Twitalytics doesn’t have any long-running jobs, but that’s primarily because
they would have complicated our infrastructure. In most MRI application
environments, it’s common to leverage the operating system’s support for
daemons or use some third-party library. This results in a need for more
tools, such as god and monit, to monitor these processes. Now that we are
using TorqueBox, adding a service to Twitalytics won’t require any new tools
or libraries.

Because Twitalytics didn’t have any long-running jobs, it used a lazy strategy
for creating statuses. Each time the Customers page was loaded, a request
was made to Twitter to get the latest tweets. This can be seen in the index()
action of the CustomersController.

Lazily loading tweets meant that the application missed a lot of tweets if no
one loaded the page. It also made the page take longer to load because it had
to hit the remote service synchronously with the HTTP request.

We can fix these problems by eagerly fetching tweets from Twitter in the
background with a service. This will effectively create a stream of near-real-
time tweets into the Twitalytics database.

Let’s begin by creating a directory for the service.

$ mkdir app/services

Creating a Long-Running Daemon • 115

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 21—The BackStage Jobs page

Next, we’ll create a twitter_stream_service.rb file in the new directory and add the
basic framework for our service class to it.

TorqueBox/twitalytics/app/services/twitter_stream_service.rb
class TwitterStreamService

def initialize(opts={})
end

def start
@thread = Thread.new do
end

end

def stop
end

end

All of these methods need to return quickly, which is why the start method
will typically spawn another thread or start an event loop to accomplish the
long-running tasks.

Next, we need to add an instance variable to the initialize() method that will be
used as a flag to stop our service.

TorqueBox/twitalytics/app/services/twitter_stream_service.rb
def initialize(opts={})
@done = false

end

Now we can get into the meat of the service. We’re going to use the TwitterUtil
module in our lib directory, so we’ll need to include this in our service class.

TorqueBox/twitalytics/app/services/twitter_stream_service.rb
class TwitterStreamService
include TwitterUtil

We also need to add the code that uses the Twitter API to the start() method.

116 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/services/twitter_stream_service.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/services/twitter_stream_service.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/services/twitter_stream_service.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

TorqueBox/twitalytics/app/services/twitter_stream_service.rb
def start

@thread = Thread.new do
begin

Status.find_or_create_from(
fetch_tweets_since(since_id ||= nil) do |status|

since_id = status["id"]
end

)
end until @done

end
end

The fetch_tweets_since(since_id) method will collect all the new tweets since the
one provided as an argument. We’re returning all of those to the Status.find_or_cre-
ate_from(statuses) method, which will create new database records.

Next, we need to add the proper calls to clean up when our service terminates.
We can do this by adding the following statements to the stop() method:

TorqueBox/twitalytics/app/services/twitter_stream_service.rb
def stop

@done = true
@thread.join

end

Now we’re ready to add the service to our configuration. Open the config/torque-
box.rb file, and add the following service() directive to the configure() block:

TorqueBox/twitalytics/config/torquebox.rb
service TwitterStreamService

Let’s deploy our configuration changes with the torquebox deploy task. If the
TorqueBox server is not already running, then we’ll also need to start with
the torquebox run task. We can look at BackStage to see whether it’s running.
In Figure 22, The BackStage Services page, on page 118, we can see how
BackStage will list our long-running daemon and its status.

Our service is running, and it’s streaming real tweets from Twitter. Because
the service creates statuses in the database, there isn’t any need for our
CustomersController to fetch statuses each time we load the page. We’ll replace
this call in the index() action with a query to get the latest twenty records.

TorqueBox/twitalytics/app/controllers/customers_controller.rb
def index

@statuses = Status.find(:all, :order => "created_at desc", :limit => 20)
end

Creating a Long-Running Daemon • 117

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/services/twitter_stream_service.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/services/twitter_stream_service.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/controllers/customers_controller.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 22—The BackStage Services page

Fetching the records from our local database will be much faster than pulling
from Twitter, so the Customer page will load quicker than it did before. Point
a browser to http://localhost:8080/customers/index, and you’ll see the most recent
tweets.

As you’ll recall from Chapter 4, Creating a Trinidad Application, on page 57,
each time we create new Status objects, a background job is supposed to run
some analytics against them. Our existing implementation of this background
job uses Resque, but now that we are running on TorqueBox, we can use the
built-in messaging subsystem to execute this job.

6.7 Running Background Jobs

TorqueBox provides several tools for running background jobs, all of which
leverage TorqueBox’s messaging subsystem. This subsystem is backed by the
JBoss HornetQ3 message broker, which is a robust, open source technology
that comes ready for clustering, load balancing, failover, and other advanced
features.

TorqueBox hides the underlying details of messaging system from us with
varying levels of abstraction. This allows us to run jobs asynchronously
without ever dealing with the components of a messaging system. But the
more advanced constructs it provides give us the power of enterprise-class
messaging.

Before we port our Resque tasks to TorqueBox, let’s take a look at a simpler
example of asynchronous processing.

Using Backgroundable Methods

The quickest way to create a background job in TorqueBox is with the Back-
groundable class, which provides an interface that’s similar to the get_back gem

3. http://www.jboss.org/hornetq

118 • Chapter 6. Creating a TorqueBox Application

http://www.jboss.org/hornetq
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

we used in Chapter 1, Getting Started with JRuby, on page 1. But its mech-
anism for executing background jobs is markedly different.

The get_back gem created a pool of threads that our background job borrowed
from to do its work. As a result, there wasn’t a good way to monitor the job
or ensure its durability (that is, provide a guarantee that it would actually
run in the event of a system crash during the job). TorqueBox’s Backgroundable
class ensures durability and allows us to configure how the job will be run
and monitored.

To do this, we’ll modify the Twitalytics feature for retweeting a public tweet
so that it executes in the background. Retweeting is a Twitter term for
reposting another user’s status on our account so that our followers will see
it. A Twitalytics user can retweet a customer’s status by clicking one of the
Retweet links on the Customers page. The existing implementation invokes
the Twitter service synchronously, which blocks the user’s browser. Because
Twitter is an external and remote interface, this can often take long enough
that the user closes the browser. We don’t want users closing the browser
that contains our website, so running the retweet function in the background
is important.

We’ll start by opening the file app/controllers/customers_controller.rb and looking at
the retweet() action.

TorqueBox/twitalytics/app/controllers/customers_controller.rb
def retweet

Status.find(params[:id]).retweet
redirect_to customers_path

end

It fetches the Status resource corresponding to the status the user clicked and
invokes the retweet() method on it. Let’s take a look at that method, which can
be found in the app/models/status.rb file.

TorqueBox/twitalytics/app/models/status.rb
def retweet

sleep(10)
Twitter.update("RT @#{creator}: {status_text}")
puts "Retweeting Status{id=#{id}}"

end

The application is only simulating the slow interaction with Twitter by sleeping
the thread for ten seconds. To perform a real retweet, it would need an OAuth
token, so this will have to suffice. We can demonstrate what happens by
running the TorqueBox server, browsing to the http://localhost:8080/customers/index

Running Background Jobs • 119

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/controllers/customers_controller.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/models/status.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

page, and following one of the Retweet links. The browser hangs for ten sec-
onds. After it returns, we’ll see something like this in the TorqueBox console:

16:53:04,134 INFO [stdout] ... Retweeting Status{id=1234}

To fix this, we’ll use the always_background() method, which is available in all
ActiveRecord::Base subclasses by virtue of the config/initializers/active_record_background-
able.rb file. This initializer was added to our project by the TorqueBox Rails
template, and because of it, we can add the following statement to the Status
class immediately after the retweet() method (adding it after the method is not
required; it can be added anywhere within the class definition):

TorqueBox/twitalytics/app/models/status.rb
always_background :retweet

Now, when the retweet() method is invoked, it will immediately return control
to the caller and run the method asynchronously in the background.

The always_background() method does not accept a pool size argument like the
get_back() method. Instead, we can configure this globally in our config/torquebox.rb
file by adding the following statement to the configure() block:

TorqueBox/twitalytics/config/torquebox.rb
options_for Backgroundable, :concurrency => 10

The :concurrency option defines the maximum number of Backgroundable jobs that
can run in parallel, effectively throttling the volume of retweets.

We can test this by running the server and following a Retweet link again.
The browser will return immediately, and ten seconds later a statement will
appear in the console. We’ll also see some console output on the first invoca-
tion as the messaging subsystem initializes itself.

The always_background() method is convenient for cases where we want a partic-
ular method to always run asynchronously. But it’s also possible to allow the
caller to determine whether a method will run in the background. For example,
we could have modified the retweet() action in the CustomersController as follows:

def retweet
Status.find(params[:id]).background.retweet
redirect_to customers_path

end

In this case, we have inserted a call to the background() method prior to invoking
retweet(). This has the same effect as the always_background() method but on a
per-invocation basis.

120 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/models/status.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

The Backgroundable methods for running background jobs are convenient but
not terribly flexible. Furthermore, all background methods share the same
runtime pool, so it’s difficult to separate them from one another. For example,
if we wanted to limit the concurrency of a method so that only one job ran at
a time, it would limit the concurrency of all background methods using
Backgroundable. As a result, Backgroundable won’t be sufficient for running our
analytics engine. Instead, we’ll use a lower-level messaging abstraction called
a message processor.

Creating a Message Processor

Message processors are Ruby classes that run in a separate thread of execu-
tion from the main runtime. Their job is to encapsulate any logic that needs
to be run against messages that match a given pattern.

Message processors can be considered lower level than Backgroundable because
they require that we explicitly define how they receive messages and how
messages are sent to them. As a result, we’ll need to understand the compo-
nents of the messaging system in order to explain how message processors
work.

The TorqueBox messaging subsystem is composed of the following compo-
nents, as illustrated in Figure 23, Components of the TorqueBox messaging
system, on page 122.

Messages
A message is the unit of communication in the messaging system. It can
be anything from a BLOB of octets to a serialized instance of an application
model.

Producers and consumers
Producers and consumers are the actors in a messaging system. They
send and receive messages, respectively. In general, producers and
consumers are unaware of each other, so they communicate through
destinations. Message processors are primarily consumers, but they can
also be producers.

Destinations
Destinations are mailboxes for messages. Producers put messages in a
mailbox, and consumers take them out. There are two kinds of destina-
tions: queues and topics. Messages in a queue will be received by only
one consumer, and messages in a topic will be received by all consumers
listening to that mailbox. This is illustrated in Figure 24, Queues vs. topics,
on page 123.

Running Background Jobs • 121

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Broker

Queue Topic

Producer Producer

Consumer Consumer

Figure 23—Components of the TorqueBox messaging system

Broker
The broker is the component in a messaging system that knows how to
route messaging from a destination to one or more consumers. The
TorqueBox message broker is provided by the JBoss HornetQ framework.

To use the messaging system for our analytics engine, we’ll need to identify
each of these components. We’ll begin by defining our messages.

Because the analytics engine will be triggered by the creation of new statuses,
we’ll use the status objects as the body of each message. That’s all we need
to know about our message format for now.

Next, we’ll create a destination for our messages. Open the config/torquebox.rb
file, and add this statement to the configure() block:

topic "/topics/statuses"

We’re using a topic because all of the consumers listening to this kind of
destination will receive each message that is published to it. This is important
because eventually we want to have more than just the analytics engine
consume from this topic.

122 • Chapter 6. Creating a TorqueBox Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

QueueProducer

Consumer

Consumer

Consumer

TopicProducer

Consumer

Consumer

Consumer

Figure 24—Queues vs. topics

Now we can use our destination by creating a producer. Because we want to
publish this message each time new status objects are created, we’ll use the
Status class as a producer. This makes sense because it’s also where we pro-
duced messages for our Resque workers. We’ll start by providing the class
with a handle to our destination. Open the app/models/status.rb file, and modify
the beginning of the class so it looks like this:

TorqueBox/twitalytics/app/models/status.rb
class Status < ActiveRecord::Base

extend TorqueBox::Injectors

def self.topic
@@topic ||= inject('/topics/statuses')

end

The TorqueBox::Injectors module allows us to connect various components of our
application together using a pattern called injection. This is common software
architectural strategy because it moves the responsibility of finding and
connecting components into the container, but it’s not used very often in
Ruby because the language is so dynamic that meta-programming techniques
are favored instead. Injection provides many benefits over meta-programming,

Running Background Jobs • 123

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/models/status.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

however. It allows the container to manage how and when the components
become connected, which avoids problems like cyclic dependencies and
components starting up in the wrong order.

Now that the Status class has a handle to the topic, we can replace the com-
mented-out call to Resque.enqueue(UpdateAnalytics, r.map(&:id)) with the following
code:

TorqueBox/twitalytics/app/models/status.rb
topic.publish r.to_json

This statement publishes a JSON message to our destination. We’re using
JSON because we’ll need that format later, but TorqueBox does not require
it. We could just pass the object as is, and TorqueBox would serialize it for
us. We can even configure the encoding it uses.4

We’ve now defined the destination, messages, and producer for our job. We’ve
discussed the HornetQ broker in sufficient detail, so that means we’re ready
to create our consumer.

Our message processor will consume messages from the topic in much the
same way as our Resque workers consumed jobs from a queue, so they will
look similar. Let’s start by creating a new location for our processor.

$ mkdir app/processors

TorqueBox will look for message processors in this directory by default, but
they can be added anywhere on the load path.

Next, we need to create an app/processors/analytics_processor.rb file and give it the
following contents:

TorqueBox/twitalytics/app/processors/analytics_processor.rb
class AnalyticsProcessor < TorqueBox::Messaging::MessageProcessor
def on_message(body)

receive messages from broker
end

end

The on_message(body) method of our processor will be invoked by the broker
each time a new message is published and pass the JSON message we created
earlier as the body argument. The AnalyticsProcessor will do essentially the same
job as the UpdateAnalytics Resque task, so we can fill in the on_message(body)
method with code that is similar to the UpdateAnalytics.perform(statuses) method.

4. http://torquebox.org/documentation/2.0.2/messaging.html#message-encodings

124 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/models/status.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/processors/analytics_processor.rb
http://torquebox.org/documentation/2.0.2/messaging.html#message-encodings
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

TorqueBox/twitalytics/app/processors/analytics_processor.rb
def on_message(body)

statuses = JSON.parse(body).map do |s|
status = Status.find(s['id'])
status.preprocess!
status

end
Analytics.refresh(statuses)

end

The details of this method are not important to JRuby deployment in general
(the Analytics.refresh(statuses) will calculate some Pearson Correlation and Standard
Deviation values). But it is important to understand that calculations like
these could take more than a few seconds, and that’s why we want them to
run asynchronously.

Finally, we need to configure the message processor in our config/torquebox.rb
file to be a consumer of our topic.

topic "/topics/statuses" do
processor AnalyticsProcessor

end

Now we can test it by deploying Twitalytics to the running server. After the
application boots up, we’ll see this in the console each time a new set of tweets
is published:

21:13:35,300 INFO [stdout] ... Updating analytics

Our analytics engine is running in the background using TorqueBox’s
messaging subsystem! We’ve created a producer that sends messages to a
consumer through a destination, as illustrated in Figure 25, Message flow to
the analytics engine, on page 126.

A message processor requires us to write quite a bit more code than we did
with the Backgroundable methods. But we’ll take advantage of this extra effort
in the next section by pushing messages from the topic to the user interface.

6.8 Pushing to the Browser with Stomplets

TorqueBox provides a Ruby API for Stomplets, which are classes that facilitate
bidirectional communication between a server and a client. That means we
can send messages from a Stomplet to a web browser that has already loaded
a page, as illustrated in Figure 26, Architecture using Stomplets for asyn-
chronous messaging, on page 126.

Pushing to the Browser with Stomplets • 125

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/processors/analytics_processor.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Status

/topics/statuses
publish

AnalyticsProcessor

TweetStreamService

Twitter

Figure 25—Message flow to the analytics engine

Server

Stomplet Message
Queue

Web-Browser

STOMP
Javascript

Figure 26— Architecture using Stomplets for asynchronous messaging

The Customer page of Twitalytics provides a good use case for Stomplets. The
existing view displays a static list of tweets that is updated only when the
page is refreshed. It would be better if the page displayed a live feed, which
would require that tweets be pushed to the browser from the server.

Let’s create a Stomplet that pushes tweets to any browser that has the Cus-
tomer page open. To start, we’ll need to make Twitalytics Stomplet-ready.
This requires a few small additions to our project.

First, we’ll inject the TorqueBox::Stomp::StompJavascriptClientProvider Rack middleware
into our stack. Open the config.ru, and add these statements right before the
run() call:

TorqueBox/twitalytics/config.ru
require 'torquebox-stomp'
use TorqueBox::Stomp::StompJavascriptClientProvider

126 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config.ru
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

The middleware contains the JavaScript that’s needed for our web pages to
communicate with the Stomplets on the server.

Next, we need to configure the STOMP server. Stomplets communicate with
the browser using the Stream-Oriented Messaging Protocol (STOMP), so they
need a STOMP server just like our Rails controllers need an HTTP server. The
STOMP server will run within the same process as the rest of our application,
but it will use a different protocol and port than our HTTP server. Add the
following code to the configure() block in the config/torquebox.rb file:

TorqueBox/twitalytics/config/torquebox.rb
stomp do

host 'localhost'
end

We also need to explicitly require the torquebox-stomp gem. It was included in
our dependencies by the torquebox gem, but it isn’t loaded by default because
it can cause problems if our code is running outside of the TorqueBox server
(we’ll cover this in more detail in Section 6.9, Testing a TorqueBox Application,
on page 131). We want to use an initializer file to load it conditionally, so we
need to create a config/initializers/stomp.rb file and put following contents in it:

TorqueBox/twitalytics/config/initializers/stomp.rb
begin

require 'torquebox-stomp'
rescue NameError

cannot load Java class javax.jms.MessageListener
end

Next, we’ll add a helper that gives us access to the URL of our STOMP server.
Open the app/helpers/application_helper.rb file, and replace its contents with this:

TorqueBox/twitalytics/app/helpers/application_helper.rb
module ApplicationHelper

include TorqueBox::Injectors

def stomp_url
inject('stomp-endpoint')

end
end

The stomp_url() method uses TorqueBox’s dependency injection mechanism to
get the STOMP endpoint from our configuration. We’ll use this method later
in the section. Next, we need to create a directory to put our Stomplets in.

$ mkdir app/stomplets

Twitalytics is ready for Stomplets! Let’s build one. In the directory we added
earlier, create a status_stomplet.rb file, and put the following code in it:

Pushing to the Browser with Stomplets • 127

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/initializers/stomp.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/helpers/application_helper.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

TorqueBox/twitalytics/app/stomplets/status_stomplet.rb
class StatusStomplet < TorqueBox::Stomp::JmsStomplet
def on_subscribe(subscriber)

topic = destination_for('/topics/statuses', :topic)
subscribe_to(subscriber, topic)

end
end

The body of the on_subscribe(subscriber) method retrieves a handle to the topic
and connects us to it. Once this connection is made, messages that are
published to the topic will be forwarded to the browser. Subclassing Torque-
Box::Stomp::JmsStomplet is optional, but we’re doing it because we need to integrate
with the topic we created in Creating a Message Processor, on page 121.

The Stomplet API defines five methods that we can implement in our class.

• configure(config) configures the Stomplet with a set of name-value pairs.
• destroy() is called when the Stomplet is destroyed.
• on_subscribe(subscriber) is called when a client subscribes to a receive message

from a Stomplet.
• on_unsubscribe(subscriber) is called when a client unsubscribes from a Stomplet.
• on_message(message) is called when a client sends a message to a Stomplet.

Our communication with the browser will be one-directional. We won’t be
sending messages from the browser to the server, so we need to implement
only the on_subscribe(subscriber) method.

Next, we need to configure the Stomplet in our config/torquebox.rb file. Add the
following code to the configure() block:

TorqueBox/twitalytics/config/torquebox.rb
stomplet StatusStomplet do
route '/stomp/status'

end

This registers our Stomplet with a STOMP route, which is similar to how we
connected Rails routes to Rails controllers. In this case, we’ve routed the
'/stomp/status' path to our StatusStomplet, so requests targeting that URI will be
forwarded to our Stomplet.

Our server-side Stomplet work is done. Now we need to modify our client code
so that it subscribes to the Stomplet. We’ll start by including the JavaScript
from our Rack middleware to the app/views/layouts/application.html.erb file. Add the
following code to the <head> element:

TorqueBox/twitalytics/app/views/layouts/application.html.erb
<%= yield :head %>
<%= javascript_include_tag "/stilts-stomp.js" %>

128 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/stomplets/status_stomplet.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/views/layouts/application.html.erb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We’ll use the :head tag to provide connection-specific values for each page.
Open the app/views/customers/index.html.erb file, and add the following code to the
top of it:

TorqueBox/twitalytics/app/views/customers/index.html.erb
<% content_for :head do %>

<script type="text/javascript">
var stompUrl = "<%= stomp_url %>";

</script>
<% end %>

This sets the stompUrl variable in our JavaScript to the value provided by the
ApplicationHelper.stomp_url() method we created earlier.

Next, we’ll add the JavaScript that subscribes our browser to the Stomplet.
Create a app/assets/javascripts/statuses.js file, and add the following code to it:

TorqueBox/twitalytics/app/assets/javascripts/statuses.js
$(function() {

if (stompUrl) {
var client = Stomp.client(stompUrl);

}
});

The Stomp class is part of the JavaScript from Rack middleware we included
earlier. We’re using it to create a client based on the stompUrl if it’s set.

Now we can connect to the server by adding the following code after the client
variable is initialized but still within the guard clause:

TorqueBox/twitalytics/app/assets/javascripts/statuses.js
client.connect(null, null, function() {

client.subscribe('/stomp/status', function(message) {
var s = $.parseJSON(message.body);
$.each(s, function() {

onNewStatus(this)
});

});
});

We’re passing a callback function to the connect(null, null, function) method that
subscribes the client to the Stomplet we defined earlier. Within that callback,
we’re invoking the subscribe('/stomp/status', function) method and passing it a callback
function as well. The function passed to the subscribe('/stomp/status', function)
method will be invoked each time a message is sent from the server to the
browser.

In the subscription callback, we’re parsing the message.body, which will contain
the JSON payload we created in Creating a Message Processor, on page 121.

Pushing to the Browser with Stomplets • 129

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/views/customers/index.html.erb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/assets/javascripts/statuses.js
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/assets/javascripts/statuses.js
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Once the JSON is parsed, the function passes each status record to the
onNewStatus(status) function, which we have yet to create.

Let’s define an onNewStatus(status) function after the call to connect the client.

TorqueBox/twitalytics/app/assets/javascripts/statuses.js
var onNewStatus = function(status) {
$('#statusTable > tbody > tr:first').before(

'<tr>' +
'<td>'+status.creator+'</td>' +
'<td>'+status.created_at+'</td>' +
'<td>' +

'<a href="/customers/retweet/'+status.id+'" ' +
'data-method="post" rel="nofollow">Retweet' +

'</td>' +
'<td>'+status.status_text+'</td>' +

'</tr>');
};

This function uses JavaScript to insert a new table row containing the data
from our status into the document model.

Our live feed is ready to be tested. Let’s deploy it and browse to http://local-
host:8080/customers/index. We’ll see new tweets stream onto the page without
refreshing.

When a tweet is pulled from Twitter by the TwitterStreamService service, a new
Status object is created. This causes a message to be published to the /topics/sta-
tuses destinations, which has two consumers: AnalyticsProcessor and StatusStomplet.
This flow is illustrated below:

StatusStomplet

Status

/topics/statuses
publish

AnalyticsProcessor

TweetStreamService

Twitter

130 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/app/assets/javascripts/statuses.js
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Using the lower-level messaging abstraction instead of the Backgroundable
methods required us to write more code, but we’re able to do a lot more with
our message.

6.9 Testing a TorqueBox Application

An application server decouples our infrastructure from our application. This
is generally a good thing, but it can make some traditionally easy things a
little more complicated. One of these is testing. Let’s run our specs, and you’ll
see why.

$ rpsec spec/
NoMethodError: undefined method `always_background' for #<Class:0x5000cc80>

The always_background() method has not been added to the ActiveRecord::Base class.
The problem is that we’re running outside of the TorqueBox environment, so
many of the things we expect to be in place are not. But even if we hacked
around and wired up the method, we still wouldn’t have background jobs at
test time because there is no message queue running! The message queue is
a component of the TorqueBox server that is running in another process.
Fortunately, there are two testing tools that solve this problem.

TorqueSpec5 is an integration testing framework that allows you to run Rspec
tests within a running TorqueBox server. But it’s actually a more inclusive
solution than we need to run our specs. Its purpose is to integrate the
TorqueBox-based components of our application at test time, but our specs
are testing cohesive units of the program. It should be OK to run them inde-
pendently of each other.

Instead of using TorqueSpec, we’ll use the torquebox-no-op gem, which creates
stubs of all the TorqueBox methods like always_background() and wires them into
our framework. Because the method are stubs, they won’t work the way they
are supposed to work. But they will allow us to execute the code we are testing.

Let’s add this gem to the :test group of our Gemfile:

TorqueBox/twitalytics/Gemfile
group :test do

gem 'rspec-rails'
gem 'torquebox-no-op', '2.0.2'

end

5. https://github.com/torquebox/torquespec

Testing a TorqueBox Application • 131

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/Gemfile
https://github.com/torquebox/torquespec
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We’ll also create a new group for :development and :production to put our other
TorqueBox gems in. This will keep them from redefining our stubs at test
time.

TorqueBox/twitalytics/Gemfile
group :development, :production do
gem 'torquebox-rake-support', '2.0.2'
gem 'torquebox', '2.0.2'

end

Now we need to run Bundler to install our gems. When it’s complete, we can
run the specs again.

$ rspec spec/
.......

Finished in 3.09 seconds
7 examples, 0 failures

Our specs are working! We just need to be careful as we continue to write
tests that we don’t rely on TorqueBox methods for them to work. But those
cases are usually a code smell, anyway. They let us know that we need to
break things down into smaller units. But in the event we really do need some
TorqueBox infrastructure to test our code, we can always use TorqueSpec.

6.10 Wrapping Up

We made a number of changes to Twitalytics in this chapter. In addition to
porting our existing components to TorqueBox, we also created some new
components that use the advanced features provided by our new application
server. The result is a robust product that runs all of its asynchronous jobs
in a single process.

We’re using the messaging subsystem to stream live Twitter updates into our
application, and the message broker is distributing these updates to multiple
consumers. This has allowed us to run our analytics engine asynchronously
and push tweets to the browser at the same time.

We’ve also gained a centralized management console that allows us to inspect
and control each of these jobs. This kind of tool is unparalleled in the Ruby
market.

We’ve reached the goal of simplifying our infrastructure, but we’ve just barely
scratched the surface of what TorqueBox can do. One of TorqueBox’s key
features is its ability to scale. In the next chapter, we’ll deploy Twitalytics to
a cluster of production servers.

132 • Chapter 6. Creating a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/Gemfile
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 7

Deploying a TorqueBox Application
TorqueBox runs the gamut of deployment options by supporting traditional
deployment tools, deployment as an archive file, and even a built-in web
interface for deploying from a Git repository. With TorqueBox, we can choose
the deployment strategy that best fits our environment. But which one is
right for us?

We’ll explore each of the TorqueBox deployment options in this chapter and
select the best one for Twitalytics. We’ll also define the criteria that should
be used when selecting a deployment strategy in any particular environment.
Capistrano may be a good fit for one team, but that does not mean it’s a good
fit for every team.

The criteria we define will ultimately lead us to deploy Twitalytics as a
TorqueBox application archive, called a Knob file. This is the fastest, most
flexible, and most portable solution for a TorqueBox deployment. In this
chapter, we’ll create and deploy a Knob file to a dedicated server.

But before we deploy Twitalytics, we’ll need to deploy TorqueBox. TorqueBox’s
defining characteristic as an application server is that it packages all of the
components our application needs into a single distribution, which makes it
the only piece of infrastructure we need to add to our system. This will sim-
plify our configuration by eliminating the need to install components like
Redis and even JRuby.

At the end of the chapter, we’ll also deploy a TorqueBox application to the
cloud. Unfortunately, the options for cloud deployment of TorqueBox are
limited and haven’t reached their full potential yet. But the service we’ll use
is still an improvement over traditional Ruby cloud deployments.

Let’s figure out which way of deploying a TorqueBox application is the right
one for Twitalytics.

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

7.1 Choosing a Deployment Strategy

There are three ways in which a TorqueBox application can be deployed, and
each method has its own advantages and disadvantages. We can either
package and distribute it as a Knob file, push to a directory of loose files with
Capistrano, or use Git hooks and the StompBox1 web application.

Deploying an application as a Knob file is similar to deploying with Warbler.
A Knob file is actually a Java archive (JAR) file, which is similar to a WAR
file. But a Knob file is specific to TorqueBox, so we can package our entire
application into it, not just the web portion.

But deploying as a Knob file might not feel very natural to traditional Ruby
programmers who have experience with tools like Capistrano. Capistrano has
the advantage of being familiar, but it’s far from perfect. It’s very opinionated
software, which makes it less flexible. Furthermore, its assumptions about
deployment make it less portable. For many developers, the appeal of Capis-
trano is that it integrates with version control software like Git. In these cases,
StompBox may be a better and more portable alternative.

StompBox is a deployment application that runs alongside other TorqueBox
applications similar to how we deployed BackStage in Chapter 6, Creating a
TorqueBox Application, on page 103. It has many of the same advantages as
using Capistrano, but it works on more platforms, including Windows, and
has a web interface. But StompBox is even less flexible since it works only
with Git and expects either a post-commit notification or the click of a button
in its web interface.

As we select the best method of deployment for our environment, we need to
ask ourselves some questions.

What platform will we use?
If we are deploying to the cloud, we may need to deploy from a Git repos-
itory. If we are deploying to a cluster of dedicated servers, we may want
to deploy as an archive file so our application can be distributed quickly.
Our choice of operating system might also affect our decision because
tools like Capistrano will negate the portability provided by TorqueBox
and JRuby.

Who are the people on our team?
If our team has a background with MRI-based Ruby applications, then
we’ll benefit from traditional deployment techniques that use Capistrano.

1. https://github.com/torquebox/stompbox

134 • Chapter 7. Deploying a TorqueBox Application

https://github.com/torquebox/stompbox
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

If our team has a Java background, then using an archive file will be more
familiar. But most programmers are good at learning about new technolo-
gies, so we shouldn’t limit our deployment based on this criteria alone.

What release processes will we use?
Do we need a staging server? Do we need a test server? Do we need a
continuous integration (CI) server? These are all important questions in
selecting a deployment strategy. They can determine how our application
migrates from one environment to the next. If we have a CI server, we can
use it to build an archive file that is pushed to our production servers. If
we deploy from development to a test environment, then we may want to
use Capistrano to ease the deployment of small changes. We can even
combine techniques by deploying to a staging environment with Capistrano
and then deploying an archive file to production.

In this chapter, we’ll be deploying from our development environment to a
dedicated production server, which will be simulated by the Vagrant virtual
machine we used in the previous chapters. This will drive many of our deci-
sions about how we deploy, but we don’t want to lock ourselves into a solution
that’s specific to this environment.

TorqueBox provides excellent support for Capistrano. Adding just these two
lines to our config/deploy.rb would allow us to control the life cycle of our produc-
tion TorqueBox server and deploy to it:

require 'torquebox-capistrano-support'
set :torquebox_home, '/opt/torquebox'

But Capistrano is notorious for its poor Windows support, and we want to
leverage the portability gained by switching to JRuby, so we won’t use
Capistrano.

We want a solution that’s portable, fast, and repeatable. The strategy that
best fits this criteria is Knob file deployment. It will also help us deploy to a
cluster of TorqueBox servers in Chapter 8, Clustering a TorqueBox Application,
on page 149. But before we can create and deploy a Knob file, we need to get
our production server ready.

7.2 Creating a Deployment Environment

We need to create a virtual environment to use as a deployment target for
Twitalytics. We already prepared the application for TorqueBox in Chapter 6,
Creating a TorqueBox Application, on page 103, so we’re ready to push it to the
server. Let’s move to our twitalytics directory and use the vagrant command to

Creating a Deployment Environment • 135

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

add a new box from the image we created in Chapter 2, Creating a Deployment
Environment, on page 19.

$ cd ~/code/twitalytics
$ vagrant box add torquebox base-jruby.box
[vagrant] Downloading with Vagrant::Downloaders::File...
[vagrant] Copying box to temporary location...
[vagrant] Extracting box...
[vagrant] Verifying box...
[vagrant] Cleaning up downloaded box...

Next, we need to edit our Vagrantfile and adjust the config.vm.box attribute so it
points to the newly created torquebox instance.

TorqueBox/twitalytics/Vagrantfile
config.vm.box = "torquebox"

We also need to forward port 8080 on the guest, which TorqueBox uses, to
port 8888 on the host.

TorqueBox/twitalytics/Vagrantfile
config.vm.forward_port 8080, 8888

Next, we’ll increase the memory setting for the virtual machine to 1024MB
by adding this statement to the Vagrantfile:

TorqueBox/twitalytics/Vagrantfile
config.vm.customize ["modifyvm", :id, "--memory", 1024]

Increasing the memory is necessary because TorqueBox is a much heavier
platform than the other web servers we’ve used thus far. If your computer is
low on memory, you can probably get away with a value as small as 512MB,
but that’s not suitable for production.

Our Vagrantfile is ready, but now we need to make some changes to our pup-
pet/manifests/site.pp file before we boot the server.

In Chapter 2, Creating a Deployment Environment, on page 19, we provisioned
our base image with JRuby. But we won’t need this anymore because
TorqueBox provides a JRuby runtime for us. We’ll discuss this in the next
section, but for now we can remove JRuby from our site.pp. The complete recipe
should look like this:

TorqueBox/twitalytics/puppet/manifests/site.pp
group { "puppet":

ensure => "present",
}

exec { "apt-update" :
command => "/usr/bin/apt-get update",

136 • Chapter 7. Deploying a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/Vagrantfile
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/Vagrantfile
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/Vagrantfile
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/manifests/site.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

require => Group[puppet]
}
Exec["apt-update"] -> Package <| |>

package { "openjdk-6-jdk" :
ensure => present

}

include apache2
include postgres
include torquebox

Our base configuration is ready; let’s boot the server.

$ vagrant up
[default] Importing base box 'torquebox'...
[default] The guest additions on this VM do not match the install version of
VirtualBox! This may cause things such as forwarded ports, shared
folders, and more to not work properly. If any of those things fail on
this machine, please update the guest additions and repackage the
box.

Guest Additions Version: 4.1.0
VirtualBox Version: 4.1.8
[default] Matching MAC address for NAT networking...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] -- 80 => 8000 (adapter 1)
[default] -- 8080 => 8888 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests
[default] -- v-pp-m0: /tmp/vagrant-puppet/modules-0
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWORD...
...
[default] notice: Finished catalog run in 43.38 seconds

Now that the server is running, we’re ready to install our new infrastructure.
But TorqueBox is an application server, so it’s the only thing we need to add.

Creating a Deployment Environment • 137

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

7.3 Installing TorqueBox

TorqueBox is distributed as both a gem and a binary file. We installed the
gem on our development machines because it allowed us to use our existing
JRuby installation. But on our production server, we want to use the JRuby
runtime provided by TorqueBox, so we’ll install the binary file. The TorqueBox
binary distribution includes an embedded JRuby runtime, which simplifies
the deployment process and ensures a degree of compatibility between our
server and its platform. But that’s the only difference between the binary
distribution and the gem.

We could install the TorqueBox gem on our production server; it’s a perfectly
acceptable approach. But in addition to requiring that a JRuby runtime be
present, the gem also inserts a layer of abstraction between the TorqueBox
installation and how we interact with it. This was helpful in development, but
in production we want to interact directly with TorqueBox by adjusting its
configuration and manually deploying to it.

Let’s begin by creating a TorqueBox module in our Puppet configuration.

$ mkdir -p puppet/modules/torquebox/manifests

Next, we’ll create an init.pp file in the new directory. Open this file, and add
the following content to it:

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
class torquebox {

}

This class will contain all of the configuration for our TorqueBox installation.
Let’s add some resources to it.

We need to define the location where we’ll install TorqueBox. Add this variable
definition to the torquebox class:

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
$tb_home = "/opt/torquebox"
$tb_version = "2.0.2"

Next, we need to ensure that the unzip package is installed, because TorqueBox
is distributed as a zip file. Add this resource to the class:

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
package { unzip:
ensure => present

}

138 • Chapter 7. Deploying a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Now we can download and unzip the TorqueBox binaries by adding the follow-
ing resource:

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
exec { "download_tb":

command => "wget -O /tmp/torquebox.zip http://bit.ly/torquebox-2_0_2",
path => $path,
creates => "/tmp/torquebox.zip",
unless => "ls /opt | grep torquebox-${tb_version}",
require => [Package["openjdk-6-jdk"], User[torquebox]]

}

Next, we’ll add a resource that unzips the file we just downloaded.

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
exec { "unpack_tb" :

command => "unzip /tmp/torquebox.zip -d /opt",
path => $path,
creates => "${tb_home}-${tb_version}",
require => [Exec["download_tb"], Package[unzip]]

}

We’ve extracted the zip file into a version-specific directory under /opt. But we
also need to define a symlink that points to the current version of TorqueBox
by adding this resource:

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
file { $tb_home:

ensure => link,
target => "${tb_home}-${tb_version}",
require => Exec["unpack_tb"]

}

Now we’re ready to provision our server by reloading the box.

$ vagrant reload
[default] Attempting graceful shutdown of VM...
[default] VM already created. Booting if it's not already running...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] -- 80 => 8000 (adapter 1)
[default] -- 8080 => 8888 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant
[default] -- manifests: /tmp/vagrant-puppet/manifests

Installing TorqueBox • 139

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

[default] -- v-pp-m0: /tmp/vagrant-puppet/modules-0
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWORD ...
notice: /Stage[main]/Torquebox/User[torquebox]/ensure: created
notice: /Stage[main]/Torquebox/Exec[copy_ssh_key]/returns: executed successfully
notice: /Stage[main]/Torquebox/Package[unzip]/ensure: ensure changed 'purged'...
notice: /Stage[main]/Torquebox/Exec[download_tb]/returns: executed successfully
notice: /Stage[main]/Torquebox/Exec[unpack_tb]/returns: executed successfully
notice: /Stage[main]/Torquebox/File[/opt/torquebox]/ensure: created
notice: Finished catalog run in 273.57 seconds

TorqueBox is installed, but it’s not running yet. Let’s log into the box with
the vagrant ssh command and take a closer look at what we’ve done.

vagrant@lucid64:~$ ls /opt/torquebox
jboss jruby Rakefile share

The installation contains three directories and a Rake script. The jboss direc-
tory contains all of the underlying infrastructure for the JBoss server that
TorqueBox is built on. The jruby directory contains the JRuby runtime that
TorqueBox will use to execute our application. The share directory contains
some scripts and configuration files (including the stilts-stomp.js file we imported
in the previous chapter). The Rake script contains tasks that we can use to
control the life cycle of the server. We can get a list of them by running the
following command:

vagrant@lucid64:~$ cd /opt/torquebox && jruby/bin/jruby -S rake --tasks
(in /opt/torquebox-2.0.2)
rake torquebox:check # Check your installation of the TorqueBox ...
rake torquebox:launchd:check # Check if TorqueBox is installed as a laun...
rake torquebox:launchd:install # Install TorqueBox as an launchd daemon
rake torquebox:launchd:restart # Restart TorqueBox when running as an laun...
rake torquebox:launchd:start # Start TorqueBox when running as a launchd...
rake torquebox:launchd:stop # Stop TorqueBox when running as an launchd...
rake torquebox:run # Run TorqueBox server
rake torquebox:upstart:check # Check if TorqueBox is installed as an ups...
rake torquebox:upstart:install # Install TorqueBox as an upstart service
rake torquebox:upstart:restart # Restart TorqueBox when running as an upst...
rake torquebox:upstart:start # Start TorqueBox when running as an upstar...
rake torquebox:upstart:stop # Stop TorqueBox when running as an upstart...

The torquebox:launchd tasks are used to install TorqueBox as a service on Mac
OS X systems, so they won’t be useful in this example. But the torquebox:upstart
tasks can be used to install TorqueBox as an init service on Linux systems.
We’ll add these to our Puppet configuration.

140 • Chapter 7. Deploying a TorqueBox Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Close the connection to the virtual machine with the exit command, and we’ll
return to the twitalytics directory on our host. Now we can edit the puppet/mod-
ules/torquebox/manifests/init.pp file again and add this resource to the torquebox class.

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
user { "torquebox":

ensure => present,
managehome => true,
system => true

}

The upstart tasks require that a torquebox user be present on the system so it
can run the server process as this user. In addition to creating the account,
we also need to change the privileges on the TorqueBox home directory by
making the torquebox user its owner.

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
exec { "chown_tb_home":

command => "chown -RH torquebox:torquebox ${tb_home}",
path => $path,
require => [File[$tb_home], User[torquebox]]

}

In a little while, we’ll be logging in as this user with SSH, so we’ll need to
create a public key for it. To make things easier, we’ll copy the existing key
from the vagrant user’s home directory (we should use the ssh-keygen tool to
generate a new key for each user, but this will save us some time in working
through the example).

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
exec { copy_ssh_key :

command => "cp -R /home/vagrant/.ssh /home/torquebox/.ssh",
path => $path,
creates => "/home/torquebox/.ssh",
require => User[torquebox]

}

file { "/home/torquebox/.ssh":
ensure => directory,
owner => torquebox,
group => torquebox,
recurse => true,
require => Exec[copy_ssh_key]

}

This will copy the /home/vagrant/.ssh directory and apply the new permissions
recursively.

Now we’re ready to add a resource that invokes the torquebox:upstart:install task.

Installing TorqueBox • 141

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
exec { "upstart_install":

cwd => $tb_home,
command => "${tb_home}/jruby/bin/jruby -S rake torquebox:upstart:install",
environment => ["JBOSS_HOME=${tb_home}/jboss", "TORQUEBOX_HOME=${tb_home}",

'SERVER_OPTS="-b=0.0.0.0"'],
creates => "/etc/init/torquebox.conf",
require => [File[$tb_home], User["torquebox"]]

}

This task creates the /etc/init/torquebox.conf file on the server with the configuration
for our service. In addition to setting the JBOSS_HOME and TORQUEBOX_HOME
environment variables, we’ve also set the SERVER_OPTS variable to -b=0.0.0.0. This
will bind the server to the default route, which will allow us to view it from
the host browser.

Next, we’ll ensure that the service is started by adding the following resource:

TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
exec { "upstart_start":

cwd => $tb_home,
command => "${tb_home}/jruby/bin/jruby -S rake torquebox:upstart:start",
environment => ["JBOSS_HOME=${tb_home}/jboss", "TORQUEBOX_HOME=${tb_home}"],
require => Exec["upstart_install"]

}

Now we’re ready to provision the server again.

$ vagrant provision
[default] Running provisioner: Vagrant::Provisioners::Puppet...
[default] Running Puppet with /tmp/vagrant-puppet/manifests/site.pp...
stdin: is not a tty
notice: /Stage[main]//Exec[apt-update]/returns: executed successfully
notice: /Stage[main]/Postgres/Exec[psql -c "ALTER USER vagrant WITH PASSWORD ...
notice: /Stage[main]/Torquebox/Exec[chown_tb_home]/returns: executed successf...
notice: /Stage[main]/Torquebox/Exec[upstart_install]/returns: executed succes...
notice: /Stage[main]/Torquebox/Exec[upstart_start]/returns: executed successf...
notice: Finished catalog run in 12.34 seconds

TorqueBox is installed and running. Let’s deploy our application to it.

7.4 Deploying an Archive File

We decided earlier in the chapter that deploying Twitalytics as a Knob file is
the best strategy for our environment. It will give us most of the advantages
that Warbler gave us in Chapter 3, Deploying an Archive File, on page 37, but
it also solves many of the problems Warbler created.

142 • Chapter 7. Deploying a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/puppet/modules/torquebox/manifests/init.pp
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We can package Twitalytics into a Knob archive with the torquebox:archive task.
We’ll run it with the exclude option to keep it from packing our virtual machine
and development database.

$ rake torquebox:archive exclude=puppet,.box,.war,.sqlite3
Creating archive: twitalytics.knob
added manifest
...
Created archive: ~/code/twitalytics/twitalytics.knob

Knob files use the .knob extension, but they are really just JAR files. This
makes them similar to the WAR file we created with Warbler. But WAR files
cater to Java-based servers. We can do much more with Knob files because
they are specific to TorqueBox. With Warbler, there was not a good way of
incorporating our background Resque workers into the archive. A Knob file
can contain all of the code for our TorqueBox subsystems, including messag-
ing, services, and jobs.

Warbler also made it difficult to have a development environment that was
similar to our production environment. If we ran a servlet container in
development, we lost the instant feedback that’s expected in a Rails applica-
tion. We had to either deploy each time we made a change or run WEBrick.

TorqueBox can handle both archive files and a directory of loose source code
files, which gives us instant feedback in development by running the server
against the project directory on the filesystem (as we did in Chapter 6, Creating
a TorqueBox Application, on page 103). But we can also deploy to an identical
container in production. We get the best of both worlds this way.

Now that we’ve created an archive file, we have a self-contained bundle that
can be distributed however we’d like. Knob files are completely portable; they
don’t require SSH, Git, or any other specific technology. We only need to place
them in the TorqueBox home directory of our production server.

We’ll use a tool called torquebox-remote-deployer2 to move the Twitalytics Knob file
onto our Vagrant box. It provides a few Rake tasks that simplify the deploy-
ment process. We’ll start by adding it as a dependency to our project’s Gemfile.

TorqueBox/twitalytics/Gemfile
gem 'torquebox-remote-deployer', '0.1.1'

After we run Bundler’s install command, we’ll have some new Rake tasks
available to us.

2. https://github.com/jkutner/torquebox-remote-deployer

Deploying an Archive File • 143

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/Gemfile
https://github.com/jkutner/torquebox-remote-deployer
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ rake --tasks
...
rake torquebox:remote:deploy # Deploy the archive file to the remot...
rake torquebox:remote:exec[cmd] # Execute Ruby commands against the re...
rake torquebox:remote:stage # Upload the archive file to the remot...
rake torquebox:remote:undeploy # Undeploy the archive file to the rem...

To use these tasks, we need to create a config/torquebox_remote.rb file. We’ll use
this file to configure how the deployer connects to our remote server. Let’s
edit the file and add the following code to it:

TorqueBox/twitalytics/config/torquebox_remote.rb
TorqueBox::RemoteDeploy.configure do
torquebox_home "/opt/torquebox"
hostname "localhost"
port "2222"
user "torquebox"
key "~/.vagrant.d/insecure_private_key"

end

We set the torquebox_home attribute to the location that we extracted the zip file
with our Puppet scripts. The rest of the configuration is similar to how we
connected to the server with our vagrant ssh command, except that we’re using
the torquebox user instead of the vagrant user. That’s why we copied the public
key.

Before we use the deployer, we need to configure Bundler for deployment by
running this command:

$ bundle install --deployment

This will copy all of our gem dependencies into the vendor/bundle directory.
When the Knob file is created, it will package this directory with the rest of
our application in the same way that Warbler packaged our gems into the
WAR file in Chapter 1, Getting Started with JRuby, on page 1. Having the
gems in our archive file ensures that we are running the same code in every
location we deploy to. There will be no need to run bundle install on the produc-
tion server and thus no chance of downloading a gem that is corrupted or
has been tampered with.

Now let’s invoke the torquebox:remote:stage task, which will rebuild our archive
and push it to the server.

$ rake torquebox:remote:stage exclude=puppet,.box,.war,.sqlite3
Creating archive: twitalytics.knob
...
Copying twitalytics.knob: 474925/474925

144 • Chapter 7. Deploying a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/config/torquebox_remote.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

This stages the Knob file by copying it to the server but does not actually
deploy it. This step is important because we need to run our migrations before
starting the application. Since we’ll be repeating this each time we deploy,
we’ll put it in a lib/tasks/deploy.rake script with a single task that will do everything.
Create that file, and add the following code to it:

TorqueBox/twitalytics/lib/tasks/deploy.rake
namespace :deploy do

task :knob do
ENV["exclude"] = "puppet,.box,.war,.sqlite3"
Rake::Task["torquebox:remote:stage"].invoke

end
end

The deploy task will do exactly what the torquebox:remote:stage earlier did. Let’s
try it.

$ rake deploy:knob
Creating archive: twitalytics.knob
...
Copying twitalytics.knob: 474925/474925

The Knob file has been copied to the server. Now we need to invoke a task
that runs our migrations. Add the following code after the previous invocation:

TorqueBox/twitalytics/lib/tasks/deploy.rake
Rake::Task["torquebox:remote:exec"].

invoke("bundle exec rake db:migrate")
puts "Migrations Complete..."

This will ensure that the production database schema is up-to-date. The
bundle exec command will run the Rake task within the context of the gems we
packaged into the Knob file earlier. Let’s run the process again to test it:

$ rake deploy:knob
Creating archive: twitalytics.knob
...
Copying twitalytics.knob: 474925/474925
== CreateStatuses: migrating ===
-- create_table(:statuses)

-> 0.0040s
-> 0 rows

== CreateStatuses: migrated (0.0060s) ==

== CreateAnalytics: migrating ==
-- create_table(:analytics)

-> 0.0040s
-> 1 rows

== CreateAnalytics: migrated (0.0040s) =======================================
Migrations Complete...

Deploying an Archive File • 145

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/lib/tasks/deploy.rake
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/lib/tasks/deploy.rake
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Deploying TorqueBox to the Cloud

TorqueBox can be run in the cloud using Red Hat’s OpenShift cloud service.a Open-
Shift provides two cloud solutions: Express and Flex. OpenShift Express is a free
service with some memory and feature constraints. OpenShift Flex is more fully fea-
tured but is not free. Unfortunately, TorqueBox is supported only on the Express
platform as of this writing.

Despite the memory constraints, OpenShift still supports powerful TorqueBox features
such as background jobs, caching, and messaging. But it does not yet support STOMP
or clustering. Even with these limitations, running TorqueBox on OpenShift provides
many advantages over a traditional Ruby deployment. We can still integrate the
scheduler and long-running services with the rest of our application, and our ability
to grow to meet increased demand will improve.

We won’t try deploying Twitalytics to the cloud because we would need to remove our
Stomplet and tweak some other configuration. Furthermore, the OpenShift support
for TorqueBox is fairly new and subject to change, but some excellent resources on
the Web describe how it can be done.b

As TorqueBox and OpenShift mature, they will become the most robust and scalable
cloud-based platform for a JRuby application.

a. https://openshift.redhat.com/
b. http://torquebox.org/news/2012/03/28/torquebox-opensh ft/

The task rebuilt the Knob file, copied it to the server, and migrated the
database. Now we can deploy the Knob file that is already on the server to
the running TorqueBox instance. We’ll do this by adding the following invoca-
tion to the deploy:knob block:

TorqueBox/twitalytics/lib/tasks/deploy.rake
Rake::Task["torquebox:remote:stage:deploy"].invoke

Let’s run our task one last time.

$ rake deploy:knob
Creating archive: twitalytics.knob
...
Copying twitalytics.knob: 474925/474925
Migrations Complete...
Deployment Complete!

The process ran a tad faster because the migrations did not need to make
any changes to our schema. The application will take a few seconds to start
up, and we can check its progress by logging into the Vagrant box with vagrant
ssh and running this command to view the log file:

vagrant@lucid64:~$ tail -f /opt/torquebox/jboss/standalone/log/server.log

146 • Chapter 7. Deploying a TorqueBox Application

https://openshift.redhat.com/
http://torquebox.org/news/2012/03/28/torquebox-openshift/
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/twitalytics/lib/tasks/deploy.rake
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

When we see the following message in the log, we’ll know it’s ready:

10:47:04,693 INFO [org.jboss.as.server] (DeploymentScanner-threads - 2) JBAS018
559: Deployed "twitalytics-knob.yml"

The next time we need to deploy, we can run rake deploy:knob again, and
TorqueBox will hot-deploy our application. This is not the same as zero-
downtime deployment, however. Hot deployment loads a new version of our
application without shutting down the server process, but there is still a short
gap where requests can be missed. This should be sufficient for most applica-
tions because the overhead of deploying an application is much lower than
restarting and entire server, so it happens relatively quickly. In Chapter 8,
Clustering a TorqueBox Application, on page 149, we’ll use a proxy that can
handle zero-downtime deployment for us when running in a cluster.

Now we can exit the virtual machine and point a browser to http://localhost:8888,
where we’ll see the application running. That means our deployment was
successful. Let’s commit our changes to the repository.

$ git add .
$ git commit -m "added torquebox deployment script"

Finally, let’s return our Bundler configuration to its nondeployment state by
running this command:

$ bundle install --no-deployment

One of the advantages of a Knob file is that we can distribute it in many dif-
ferent ways. We’ve deployed Twitalytics directly to our production machine
from development, but we could have built it on a continuous integration
server and pushed it only after our integration tests pass. We could also store
it on a service like Amazon S33 and have our Puppet scripts pull it when the
server is ready for maintenance. Packaging our application into a single neat
and tidy file makes our deployment process extremely flexible.

7.5 Wrapping Up

TorqueBox has immensely simplified our infrastructure. With this single
software package, we are able to run recurring jobs, background jobs, and
long-running jobs in the same runtime. We didn’t even need to install JRuby!
But TorqueBox’s biggest contribution is our simplified deployment strategy.

We chose to deploy Twitalytics as a Knob file because it gave us all the benefits
of archive file deployment without the headaches of Warbler. TorqueBox

3. http://aws.amazon.com/s3/

Wrapping Up • 147

http://aws.amazon.com/s3/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

provides support for other tools, such as Capistrano and Git hooks. But
archive file deployment is best suited for our environment because it’s fast,
portable, repeatable, and dependable.

In the next chapter, you’ll learn how deploying our application as a Knob file
will improve its ability to scale. We’ll create a cluster of TorqueBox servers
and push this single file to all of them in one step.

148 • Chapter 7. Deploying a TorqueBox Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 8

Clustering a TorqueBox Application
TorqueBox’s most powerful feature is scalability, which is something Ruby
applications have traditionally struggled with. TorqueBox is different because
of its built-in mechanisms that allow a group of distributed servers to
communicate and coordinate with each other. We can leverage these commu-
nication paths to build applications that become smarter when deployed to
a cluster.

A cluster is set of connected computers that work together as a single system.
Each computer in the cluster is referred to as a node, and the degree to which
these nodes are connected depends on the cluster’s topology. A topology
describes the different communication paths between nodes and determines
how each node communicates (or does not communicate) with the other
nodes.

In its simplest form, a cluster could include a set of distributed Mongrel
instances that are load balanced by an HTTP server like Apache. But without
any interconnections between the Mongrel nodes, the cluster doesn’t have
much power.

To increase the communication between nodes, most clusters introduce shared
storage like a SQL database, Redis (with Resque), and Memcache. But these
frameworks add more components to an already complicated infrastructure.
With TorqueBox, we can create a cluster that has all the capabilities of a
complex topology like this, without the infrastructure headaches.

A TorqueBox cluster provides many levels of communication between nodes,
which allows it to scale unlike any other Ruby platform. In this chapter, we’ll
create a TorqueBox cluster like the one pictured in Figure 27, Levels of com-
munication in a TorqueBox cluster, on page 150 that leverages session replication

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Apache

mod_cluster

TorqueBox

Messaging

Sessions

Jobs

Services

TorqueBox

Messaging

Sessions

Jobs

Services

Replication

High Availability

High Availability

Distribution

Web Web
Load Factors

Figure 27—Levels of communication in a TorqueBox cluster

and high-availability jobs to increase its processing power and uptime. These
features will help us avoid common clustering problems.

Without TorqueBox, a cluster may introduce concerns that did not exist when
the application was a single instance. As an example, consider a website with
a shopping cart that is stored in a user’s session. When users add something
to their cart, they expect it to be there even if their requests are redirected to
another node in the cluster. It’s common to solve this problem by storing the
session data in a SQL database. But that can slow down the entire site if
constant session access interferes with the database’s normal activities.
Another solution is to use an object caching system like Memcache.1 But
Memcache adds additional infrastructure, such as Redis and the SQL
database, that has to be managed and monitored.

1. http://memcached.org/

150 • Chapter 8. Clustering a TorqueBox Application

http://memcached.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

TorqueBox solves the distributed session problem with a built-in storage
mechanism called a data grid. This grid, which is powered by Infinispan,2 can
replicate itself across the cluster without the need for additional infrastructure.
In this chapter, we’ll enhance Twitalytics to use this clusterable storage
mechanism for its user sessions. We’ll also coordinate our background jobs
so they won’t duplicate each other as we stand up new nodes in the cluster.

But before we use these new TorqueBox features, we’ll need to set up a cluster.

8.1 Creating the Cluster

We’re going to simulate a TorqueBox cluster by running multiple instances
of the server on the same machine. We could run TorqueBox on a cluster of
Vagrant boxes, but not all computers can handle that kind of load. Further-
more, the networking bridge of the virtual machine and the increase in the
communication demands of TorqueBox do not play well together on all plat-
forms. To demonstrate TorqueBox’s clustering in a way that works on all
kinds of hardware and operating systems, we’ll run the two TorqueBox
instances on our development machine.

Before we get started, let’s remove all of our earlier deployments (this isn’t
completely necessary, but it will ensure that you see the same output as
described in this chapter). The quick and dirty way to do this is with the fol-
lowing command:

$ rm -rf `torquebox env torquebox_home`/jboss/standalone/deployments/*

Now we’re ready to boot our cluster. We can start the first server by using
the same torquebox run command we used in the previous chapters, but we’ll
add two options.

$ torquebox run --clustered -b <ip-address>

The --clustered option initializes a few extra components that use the multicast
channel to discover and be discovered by other nodes. The -b option binds
the instance to an IP address. You’ll have to replace <ip-address> with the
actual address of your network interface.

To start our second node, we need to open a new terminal and run the follow-
ing command, which is similar to the previous command but with some
additional JBoss options (replace <ip-address> with your actual IP address
again):

2. http://www.jboss.org/infinispan

Creating the Cluster • 151

http://www.jboss.org/infinispan
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Joe asks:

What Is Multicast?
Multicast is a routing protocol for sending IP packets to multiple receivers in a single
transmission. It is most commonly used for streaming video and music across the
Internet, but it’s an excellent solution for clusters where a node needs to communicate
with all other nodes at the same time.

The nodes in our TorqueBox cluster are listening to a multicast address, which must
be in the range of 224.0.0.0 through 239.255.255.255 (TorqueBox uses 230.0.0.4 by
default). When a new node starts up, it sends a message to this address that notifies
the other nodes of its presence. This allows the cluster to scale dynamically because
the addresses of other nodes do not have to be predefined.

$ torquebox run --clustered -b <ip-address> --node-name=node2 \
--data-directory=/tmp/node2 --port-offset=100

We gave this server a distinct node name and its own temporary directory
with the --data-directory option. This will prevent it from conflicting with the first
node.3 We’re also offsetting the ports it will use. TorqueBox listens on several
ports, including 8080 for HTTP traffic, 8443 for HTTPS, 8675 for STOMP, and
5445 for messaging. But only one of our servers will be able to bind to each
of these. The --port-offset options allows the second server to have a distinct set
of ports.

When the second node is started, we’ll see the following output in the console
of both nodes:

13:19:55,229 INFO [org.hornetq.core.server.cluster.impl.BridgeImpl]
(Thread-1 (group:HornetQ-server-threads1087933741-133488826)) Connecting
bridge sf.default-cluster-connection.59237021-4398-11e1-908b-0a0027000000
to its destination
[4dad9355-3b32-11e1-96d7-c82a144c0ae1]
13:19:55,340 INFO [org.hornetq.core.server.cluster.impl.BridgeImpl]
(Thread-1 (group:HornetQ-server-threads1087933741-133488826)) Bridge
sf.default-cluster-connection.59237021-4398-11e1-908b-0a0027000000 is
connected [4dad9355-3b32-11e1-96d7-c82a144c0ae1-> sf.default-cluster-
connection.59237021-4398-11e1-908b-0a0027000000]

This lets us know that the nodes have bridged their messaging subsystems,
which means that TorqueBox is now providing automatic web session
replication, distributed caching, load balancing of messages, and intelligent
distribution of background jobs.

3. https://issues.jboss.org/browse/AS7-2493

152 • Chapter 8. Clustering a TorqueBox Application

https://issues.jboss.org/browse/AS7-2493
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

In the following sections, we’ll enhance Twitalytics to use these features. But
first, we need to put a proxy in front of our cluster so that web requests can
be distributed across it.

8.2 Installing the Apache Cluster Module

We’re going to proxy our cluster with the Apache HTTP Server and the JBoss
mod_cluster module.4 This module will forward requests from Apache to one of
the cluster nodes behind it and balance the load that each node receives.
Unlike other Apache balancing modules, mod_cluster leverages an additional
communication link that transmits life-cycle events and balancing factors
from the nodes to the proxy. This allows the module to make more informed
decisions about where to send each request.

Let’s start by downloading the mod_cluster binaries from the official website.5

There are packages for just about every platform (including Windows), but
the following examples will reference the Mac OS X package. The steps for
other platforms will be essentially the same.

Once the binary package is downloaded, put it in your home directory and
extract it with this command:

$ tar xvzf mod_cluster-1.2.0.Final-macosx-x86-ssl.tar.gz

This will create a opt/jboss directory, which includes a complete Apache HTTP
Server. We’ll use this server as our proxy, but we need to configure the server
so that it can run from our home directory. We can do this by running the
following command:

$./opt/jboss/httpd/sbin/installhome.sh

Running : installhome.sh : 2010-05-04 18:26:40 +0200 (Tue, 04 May 2010) $

Installing in ~/opt/jboss/httpd
~/opt/jboss/httpd/sbin/apachectl
~/opt/jboss/httpd/httpd/conf/httpd.conf
~/opt/jboss/httpd/sbin/envvars
~/opt/jboss/httpd/sbin/apxs
~/opt/jboss/httpd/htdocs/build/config_vars.mk

On Windows, we would need to run the httpd-2.2\bin\installconf.bat file instead.

Now we can start the Apache HTTP Server by running the apachectl command:

4. http://www.jboss.org/mod_cluster
5. http://www.jboss.org/mod_cluster/downloads/1-1-3

Installing the Apache Cluster Module • 153

http://www.jboss.org/mod_cluster
http://www.jboss.org/mod_cluster/downloads/1-1-3
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$./opt/jboss/httpd/sbin/apachectl start
httpd: Could not reliably determine the server's fully qualified domain name...

The proxy is running. We can verify this by pointing a browser to http://local-
host:8000, where we’ll see the “It works!” splash page. Because we are running
from our home directory (and not as the root user), the server is listening on
port 8000 instead of 80.

Next, ensure that the TorqueBox servers we started earlier in the chapter are
still running. If they are, then they have already registered themselves with
the proxy. There is no additional configuration needed. We can see Twitlaytics
by browsing to http://localhost:8000/dashboard/index (the default Apache index page
hasn’t been routed to our application’s root).

The nodes in our cluster are communicating with the Mod-Cluster Manage-
ment Protocol (MCMP) on port 6666. The server also provides a web interface
on this port that allows us to view the status of this communication. We can
see it by pointing a browser to http://localhost:6666/mod_cluster_manager. Unfortunate-
ly, many browsers will block this port by default, so we may encounter an
error with the message “Not allowed to use restricted network port.” Getting
around this error depends on the browser and system being used. For Chrome
on Mac OS X, we can start the browser with this command:

$ open /Applications/Google\ Chrome.app --args --explicitly-allowed-ports=6666

Because the mod_cluster-manager page contains simple HTML, it may also
be sufficient to use a tool like curl or wget to view its contents.

If you are able to view the manager, you’ll see that the servers running have
registered themselves as nodes in the cluster, as pictured in Figure 28, The
mod_cluster-manager web interface, on page 155. They are also using the AJP
protocol to connect to the proxy, which we discussed when we used it to
connect Trinidad and Apache in Chapter 5, Deploying a Trinidad Application,
on page 75.

Our cluster is ready. We’ve set it up locally by running two servers on the
same host, but the steps would be mostly the same if we were running on a
LAN with multicast support. It’s still possible to set up a cluster without
multicast enabled, but it’s not as configuration-free. We would have to
explicitly tell each server where the other nodes are located. This is most
commonly needed in a cloud environment such as Amazon’s EC2.6

Next, let’s deploy Twitalytics to our cluster.

6. http://aws.amazon.com/vpc/faqs/#R4

154 • Chapter 8. Clustering a TorqueBox Application

http://aws.amazon.com/vpc/faqs/#R4
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 28—The mod_cluster-manager web interface

8.3 Deploying to the Cluster

Deploying to a cluster isn’t much different from deploying to a single
TorqueBox instance. The torquebox-remote-deployer gem can help us with remote
cluster deployments, but our cluster nodes are running locally and have
access to the same filesystem, so we won’t use the gem.

We can deploy to both TorqueBox instances with the torquebox deploy command,
as we did in Chapter 6, Creating a TorqueBox Application, on page 103. Be sure
you return to the ~/code/twitalytics directory that contains our application code
and run the following command:

$ torquebox deploy
Deployed: twitalytics-knob.yml

into: ~/.rvm/gems/jruby-1.6.7/gems/torquebox-server-2.0.2-java/jboss...

Because these nodes are sharing the same TorqueBox home directory, the
deployment will be picked up by both of them. Let’s test this by pointing one
browser to http://<ip-address>:8080 and another browser to http://<ip-address>:8180,
where <ip-address> should be replaced by the IP address you passed to the
torquebox command. The 8180 port in the second URL is the offset HTTP port
of the second TorqueBox node. We’ll see Twitalytics running in both places.

We’ve deployed our application to the cluster, but we aren’t making the most
of it yet. Let’s enhance Twitalytics so that each node interacts with the other
nodes.

8.4 Using High-Availability Jobs and Services

Nodes in a TorqueBox cluster have the ability to communicate with each
other, which is important when an application needs to retain session state
or when background jobs need to coordinate with other background jobs.

Deploying to the Cluster • 155

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

The most common case is when two jobs need to coordinate so that they do
not perform duplicate tasks.

For example, you may have noticed that both of our TorqueBox instances are
logging this statement to the console:

14:35:11,414 INFO [stdout] (JobScheduler$twitalytics-knob.yml_Worker-1) No
statuses have been deleted.

This means that both of our instances are running the recurring DeleteOldSta-
tuses job. But it’s necessary for only one of our nodes to run this job because
they are both accessing the same database. In this example, it’s unlikely that
anything bad would happen because of the job being duplicated, but there
are many cases where it could.

We need to modify this job’s configuration so that it runs on only one node.
A naive approach to doing this might involve a custom configuration for each
node. But this would be fragile and difficult to maintain. Furthermore, it
would not protect against the very likely case that the node running the job
crashes or is shut down; the cluster would no longer have a node that can
run the job.

With TorqueBox, we can configure the job to be a high-availability singleton,
which means that the nodes in the cluster will coordinate with each other to
ensure that only one instance of the job is run at a time. But if the node that
is running the job crashes, another node will start running the job in its place.

The communication needed to establish a singleton in our cluster has already
started without us even configuring anything. You may have noticed this in
the console output of one of the TorqueBox servers.

14:33:24,099 INFO [org.projectodd.polyglot.hasingleton] (AsynchViewChangeHandl
er Thread) Becoming HASingleton master.
14:33:24,112 INFO [org.projectodd.polyglot.hasingleton] (AsynchViewChangeHandl
er Thread) inquire if we should be master

The node that logged these statements detected that another node with the
same application was started. It then determined that it should become the
master node and notified the other nodes of its role. This is good, but we still
need to configure our job so it leverages this link. Let’s open the config/torque-
box.rb file and find the configuration for our DeleteOldStatuses job. We’ll add a
statement that sets the singleton attribute to true like this:

TorqueBox/cluster/config/torquebox.rb
job DeleteOldStatuses do
cron "0 0/5 * * * ?"
singleton true

156 • Chapter 8. Clustering a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/cluster/config/torquebox.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

config do
max_age 30

end
end

Now we can deploy the application again with the torquebox command.

$ torquebox deploy

After both nodes boot Twitalytics, we’ll find that the cleanup job is running
on only one of them (the node that claimed the HASingleton master role).

Next, let’s kill the master node by pressing Ctrl+C in the console of the server
running the job. After doing so, we should see that the other node picks up
the role of master and starts logging the following statement to the console:

14:55:11,414 INFO [stdout] (JobScheduler$twitalytics-knob.yml_Worker-1) No
statuses have been deleted.

Our singleton job is working! Before we move on, be sure to restart the node
we killed.

In addition to scheduled jobs, we can also configure long-running TorqueBox
services as singletons. This will be useful in the case of the TwitterStreamService,
which we do not want to run on more than one node because it could cause
us to exceed our Twitter API rate and connection limits. To make it a singleton,
open the config/torquebox.rb file again, and look for the service directive. We need
to add a block to this definition that contains the singleton attribute. The con-
figuration should look like this:

TorqueBox/cluster/config/torquebox.rb
service TwitterStreamService do

singleton true
end

Now we can deploy with the torquebox deploy command again, and the service
will be running on only one node. We can verify this by browsing to the
BackStage console for each node at http://<ip-address>:8080/backstage and http://<ip-
address>:8180/backstage. Only one instance will have the service running, and it
will fail over like our scheduled job did when the master node is stopped.

High-availability singletons are just one example of how TorqueBox cluster
nodes can communicate with each other. In this case, the purpose is to
coordinate two background jobs so that they are not duplicate. But there are
cases where we want to use this communication link for the purpose of
duplication, such as when we want to store state on the server. That’s when
we need to use session replication.

Using High-Availability Jobs and Services • 157

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/cluster/config/torquebox.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

8.5 Using Session Replication

Having a cluster means that each of a single user’s requests may be processed
on a separate node. There is no guarantee that a value stored in memory
during one request cycle will be accessible during the next request cycle. This
is especially problematic when we need to remember something a user did.

For example, if our application had a shopping cart, we would want to
remember what the user had put in it from page request to page request.
Many Rails applications work around this problem by putting session data
in an instance of ActiveRecord::SessionStore, which persists user sessions to the
database. But putting users’ sessions in the database is generally not an
optimal solution. In addition to being slow, there is an impedance mismatch
between the transience of a user’s session and the persistence of a database.

That’s why TorqueBox provides a clusterable session store that does require
a database. Instead, it uses the Infinispan7 data grid, which offers a noSQL
key-value store that can be replicated across the cluster.

Let’s use this session store by adding a new feature to Twitalytics. When a
user chooses to retweet a public status, we’ll put that tweet into a shopping
cart of tweets that lives as long as the session. Then the user can view a list
of the status updates they have recently retweeted.

The TorqueBox session store has already been enabled for us by the Rails
template we ran in Chapter 6, Creating a TorqueBox Application, on page 103.
It modified the config/initializers/session_store.rb file by adding this statement:

TorqueBox/cluster/config/initializers/session_store.rb
Twitalytics::Application.config.session_store :torquebox_store

Now we need to modify the app/controllers/customers_controller.rb so that the retweet()
action adds the status object to the session. It should look like this:

TorqueBox/cluster/app/controllers/customers_controller.rb
def retweet
status = Status.find(params[:id])
status.retweet
session[:retweets] ||= []
session[:retweets] << status
redirect_to customers_path

end

Now we can add the code that gets them out of the session and displays them
to the user. We’ll do this in the dashboard.

7. http://www.jboss.org/infinispan

158 • Chapter 8. Clustering a TorqueBox Application

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/cluster/config/initializers/session_store.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/cluster/app/controllers/customers_controller.rb
http://www.jboss.org/infinispan
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Open the app/controllers/dashboard_controller.rb file, and modify the index() action so
that it creates a @retweets variable containing the statuses from the session.

TorqueBox/cluster/app/controllers/dashboard_controller.rb
def index

@retweets = session[:retweets] || []
end

Now we need to display the retweets. Open the app/views/dashboard/index.html.erb
file, and add this code to the end of the file:

TorqueBox/cluster/app/views/dashboard/index.html.erb
<p>

<% if @retweets.any? %>
Recent Retweets:

<% @retweets.each do |retweet| %>
<%= retweet.status_text %>

<% end %>

<% end %>
</p>

This will iterate over the items in the @retweets variable we created earlier and
display a list item for each one. If the list is empty, it will display nothing.

Let’s test this. Make sure that both TorqueBox nodes are running and the
Apache HTTP Server has been started. There shouldn’t be any need to redeploy
the Twitalytics because Rails will pick up these changes.

Browse through the proxy to http://<ip-address>:8000/customers/index, and click the
Retweet link for one of the statuses. Then look in the consoles of the two
TorqueBox nodes and find this statement:

12:35:53,959 INFO [stdout] ... Retweeting Status{id=21}

Kill that server by pressing Ctrl+C . Then return to the same browser and go
to http://<ip-address>:8000/dashboard/index. We’ll see our retweet displayed at the
bottom of the page even though our request is clearly being processed by the
other node.

Session replication is just the tip of the iceberg that is TorqueBox caching.
We could use this same mechanism to cache data in our analytics engine
and have it distributed across the cluster (even though there is no session
associated with the background job). This function could greatly improve the
performance of a component that performs calculations and needs to keep
indexes or partially computed values on hand.

Using Session Replication • 159

http://media.pragprog.com/titles/jkdepj/code/TorqueBox/cluster/app/controllers/dashboard_controller.rb
http://media.pragprog.com/titles/jkdepj/code/TorqueBox/cluster/app/views/dashboard/index.html.erb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We’ve done a lot with our cluster, but we are still managing each node inde-
pendently. Let’s take a look at a feature that allows us to manage the entire
cluster from a single controller.

8.6 Running in Domain Mode

The cluster we have set up in this chapter is running in stand-alone mode,
which means the life cycle and configuration of each node are independent
from the other nodes. But TorqueBox can also run in a more robust domain
mode, which introduces a centralized domain controller to the cluster.

In domain mode, we can control the nodes in our cluster from a management
interface. We can also simplify our deployment script so that it deploys the
application only once (to the domain controller) rather than to multiple hosts.
The domain controller then distributes the application across the host nodes
for us.

While domain mode is far more powerful, it also involves more setup and a
deeper understanding of the underlying JBoss architecture. In its simplest
form, we can start a cluster of this type with the following command (make
sure you kill the other servers before running this):

$ JRUBY_HOME=~/.rvm/rubies/jruby-1.6.7 \
`torquebox env torquebox_home`/jboss/bin/domain.sh

The default configuration for domain mode starts two TorqueBox servers in
addition to the domain controller. We can deploy to this cluster through the
TorqueBox command-line interface, which can be started with the following
command:

$ torquebox cli
[domain@<ip-address>:9999 /]

The [domain@<ip-address>:9999 /] prompt lets us know that we’ve connected to
the controller. There are a number of commands that can be used with this
prompt, but we’re interested in deploy and undeploy. We can deploy our Knob
file thusly:

[domain@<ip-address>:9999 /] deploy twitalytics.knob --all-server-groups

This pushes the archive to all nodes in the cluster. Then we can undeploy it
with this command:

[domain@<ip-address>:9999 /] undeploy twitalytics.knob

Domain mode is the most powerful way to run a TorqueBox cluster. But you’ll
probably want to get started with stand-alone mode and work your way up.

160 • Chapter 8. Clustering a TorqueBox Application

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Getting serious with domain mode requires modification of the XML files
underneath the TORQUEBOX_HOME/jboss/domain/configuration directory and a deeper
understanding of how this architecture works.

You can also browse the configuration by visiting the domain console on your
local server at http://<ip-address>:9990/]].

8.7 Wrapping Up

We’ve built a cutting-edge cluster that can power the most demanding work-
loads imaginable, and it’s running a Ruby application!

Our cluster nodes are running behind a proxy that balances the distribution
of requests between them by collecting load factors. We’re caching our users’
session information in a distributed data grid. Our jobs and services are
coordinating with each other to ensure maximum performance and data
integrity. Best of all, we’ve done this without any additional infrastructure.

Not only has TorqueBox provided a web server for our JRuby deployment,
but it’s provided a complete application server. This is as good as performance
gets for a Ruby application, and it’s how Twitalytics will scale to meet the
demands of any workload. But in order for it to perform well, we have to keep
it running.

In the next chapter, we’ll use some new tools and configuration options to
ensure the good health of our JRuby deployment. These techniques will apply
not only to TorqueBox but to any of the frameworks covered in this book.

Wrapping Up • 161

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 9

Managing a JRuby Deployment
Deploying an application is only the first step in creating a successful produc-
tion environment. Keeping it running is the real challenge.

To support any JRuby deployment, it’s important that we understand the
underlying JVM platform and how it can be configured. In this chapter, you’ll
learn about the most common start-up options that are needed when booting
a JRuby application. They’ll help improve both the performance and uptime
of our deployment.

To understand how these start-up options affect our runtime, we’ll need to
gain some insight into the running JVM. To do this, we’ll use Java’s built-in
management console, which provides a graphical tool for tracking resource
usage over time.

Configuring runtime options and understanding the management console
are important steps in deploying Twitalytics to the wild. With these tools, we’ll
have everything we need to investigate and diagnose problems on our produc-
tion server.

Let’s begin by booting Twitalytics with these new options.

9.1 Configuring the Runtime

When starting up a JVM, we can configure many different options that affect
memory, logging, debugging, profiling, and other runtime characteristics. In
this section, we’ll take a look at the most commonly used of these options
and show how they can be defined for each of the frameworks we’ve used in
this book. Despite the differences in how they are defined, the underlying
effects of these options will remain the same across frameworks.

Let’s begin with an option that is essential to how JRuby interprets our code.

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Setting the Compatibility Version

Every JRuby installation includes both a 1.8 and 1.9 Ruby interpreter. This
differs from MRI, which couples a single version of the Ruby language to its
runtime. Having both interpreters in one package allows us to choose the
version our code will execute against each time we run a program. This option
is referred to as the compatibility version.

We can set the compatibility version by using the --1.8 and --1.9 options on the
ruby command, like this:

$ ruby --1.9 -S trinidad

Or we can set it globally with the JRUBY_OPTS environment variable.

$ export JRUBY_OPTS=--1.9
$ trinidad

Either of these two methods is acceptable for running Trinidad or a command-
line JRuby application. But TorqueBox allows us to define this value in our
config/torquebox.rb with the ruby directive.

TorqueBox.configure do
ruby do

version "1.9"
end

end

For Warbler, the version can be defined in the config/warbler.rb file with the fol-
lowing statement:

config.webxml.jruby.compat.version = "1.9"

The effect of setting the version is the same whether we run on Warbler,
Trinidad, or TorqueBox. When running in 1.9 mode, we have access to all the
latest standard libraries and syntax features. In 1.8 mode, we’ll be restricted
to the 1.8 standard libraries and syntax.

The default compatibility mode for JRuby 1.6 is version 1.8, but this will be
changing to version 1.9 with JRuby 1.7 (see if you can keep that straight).

Let’s move on to an option that doesn’t have such an obvious impact on how
our code is run but is just as important.

Setting the Heap Size

When a JVM starts up, it reserves a chunk of system memory called the heap.
Each time a new object is created in a JRuby program, the platform allocates
a piece of heap memory for it, which is reserved until the garbage collector

164 • Chapter 9. Managing a JRuby Deployment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

decides to reclaim the object. At that time, the associated piece of memory is
returned to the heap. This process is called dynamic memory allocation, and
MRI uses a similar strategy. But the JVM gives us more control over how
memory is managed.

When we start a JVM, we can configure several parameters that determine
how heap memory grows. We can set its initial size, maximum size, and what
algorithm the runtime uses for garbage collection. The values we use for these
options can greatly affect the performance of our applications. Manually
configuring the garbage collection algorithm is an esoteric and rarely needed
process because the default JVM collector is almost always sufficient. But
it’s very common to use the command-line options for setting the heap’s size,
which are very straightforward.

-J-Xms
This sets the initial size of the heap. The JVM will reserve this amount of
memory at start-up. The flag should be followed by a positive integer value
followed by either k, m, or g (for KB, MB, and GB, respectively). Here’s an
example: -J-Xms64m.

-J-Xmx
This sets the maximum size of the heap. It should be followed by a positive
integer value followed by either k, m, or g (for KB, MB, and GB, respective-
ly). Here’s an example: -J-Xmx512m.

The default maximum heap size is 256MB, but most web servers typically
run with at least a 512MB cap. If the maximum is set too low, it can cause
the JVM to crash. We can demonstrate this by starting up Twitalytics with a
ridiculously low maximum of 16MB. Using Trinidad, the command would
look like this:

$ ruby -J-Xmx16m -S trinidad
...
Error: Your application used more memory than the safety cap of 16m.
Specify -J-Xmx####m to increase it (#### = cap size in MB).
Specify -w for full OutOfMemoryError stack trace

With reasonable memory settings, we might run into this error if Twitalytics
started leaking memory. But with a stable application, it is not something we
should ordinarily see.

The memory options we’ll use with TorqueBox are similar to the command
shown previously, but we pass them to the torquebox command as a single
string. A reasonable configuration might look like this:

$ torquebox run -J="\-Xmx1024m \-Xms256m"

Configuring the Runtime • 165

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Using these options with Warbler and the java command is also different
because we no longer need the -J prefix, which is specific to JRuby. It would
look like this:

$ java -Xmx1024m -Xms256m -jar twitalytics.war

The JVM’s cap on memory consumption may seem like a frustrating antifea-
ture, but it protects against the JVM reserving every last bit of system memory
at runtime. Having a JVM crash is much more pleasant than having an entire
system crash. Once we know the amount of memory an application needs,
the cap becomes a safety net instead of a road block.

Determining the best maximum and minimum sizes for the heap is an iterative
process. After running Twitalytics in a staging environment, we’ll learn where
its memory consumption tops out, and we can set the our boundaries
accordingly. The JVM provides some excellent tools that can help us with this
by displaying memory consumption over time. We’ll discuss these in Section
9.2, Inspecting the Runtime with JMX, on page 167. But first, we have one more
command option to add.

Setting the Execution Mode

Most JVM implementations can run in two execution modes, which are con-
figured at start-up time by setting either the --client or --server flag to enable
client and server execution modes, respectively. Each mode determines, among
other things, how the JVM will optimize bytecode at execution. Each mode
is described next:

--client
In client mode, a program’s start-up time and memory usage are mini-
mized. This is particularly good in the case of a local desktop application
where you usually want to start it up fast and it won’t be left running for
days on end. Client mode is also the default execution mode on most
32-bit JVMs.

--server
In server mode, the JVM optimizes itself for runtime speed. This results
in a slightly slower start-up time and higher memory consumption. The
advantage is that the JVM will dynamically optimize bytecode during
execution. For example, it will optimize inner loops. Thus, an application
will become faster after running for while—after it has warmed up. This
process is called just-in-time (JIT) compilation.

In almost all cases where we are running a web application, we’ll want to use
the --server mode. We can start Twitalytics and any other JRuby application

166 • Chapter 9. Managing a JRuby Deployment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

in this mode by passing the option directly to the ruby or java command. For
Trinidad, the command is this:

$ ruby --server -S trinidad

With TorqueBox, the command is this:

$ torquebox run -J="\-server"

But for the executable WAR file we created with Warbler, the command is
this (note that there is one less hyphen when passing the option directly to
the java command):

$ java -server -jar twitalytics.war

It’s also important to note that the JRE does not include a server mode. This
is one of the reasons it’s usually beneficial to install the JDK on a production
server.

All of the options we’ve discussed in this section can improve the health of a
JRuby application. But we still need a way to keep an eye on how the runtime
is doing. That’s why the JVM provides built-in management extensions.

9.2 Inspecting the Runtime with JMX

Java Management Extensions (JMX) is a set of tools that support the manage-
ment and monitoring of system objects, devices, networking, and applications.
All of these tools are exposed through a service interface that can be controlled
by scripts and even other applications. But the JDK comes packaged with a
general-purpose console that provides a graphical interface for quickly
inspecting a runtime through these extensions.

Before we start the JMX console, let’s boot our application. When doing so,
we’ll provide the --manage option, which turns on JRuby’s own management
extensions. Using Trinidad, the command is this:

$ ruby --manage -S trinidad

But when running from a WAR file created by Warbler, there is no option to
pass because we are invoking Java directly. Instead, we need to add two
options to the java command, which are the same options the --manage flag
adds behind the scenes.

$ java -Dcom.sun.management.jmxremote -Djruby.management.enabled=true \
-jar twitalytics.war

With TorqueBox, this option isn’t necessary because the JMX services are
exposed by default.

Inspecting the Runtime with JMX • 167

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

No matter which framework we choose to run Twitalytics on, we can open
the management console with the following command:

$ jconsole

This command is provided by the JDK we installed in Preface, on page xi.
When the JConsole starts up, it will give us the choice of connecting to a local
JVM or a remote JVM. In the list of local JVMs, we’ll see the process we
started earlier. This is shown in Figure 29, The JConsole start-up screen, on
page 169. When we select this process, JConsole will connect to the JVM.

The JConsole Overview page, which is pictured in Figure 30, The JConsole
Overview page, on page 170, provides near-real-time graphical views of heap
usage, CPU usage, active threads, and the number of classes loaded in the
runtime. These views are useful when trying to track down memory leaks,
misbehaving threads, and many other problems. There is a vast amount of
information in this console—so much so that entire books are written about
it. But it’s not necessary to be an expert from the start.

Let’s take a look at the Memory screen, which is pictured in Figure 31, The
JConsole Memory page, on page 171. While the Overview screen showed us
only heap usage, the Memory screen gives us complete insight into the different
categories of JVM memory usage. There is even a button that allows us to
invoke the garbage collector directly. Go ahead and click it. You’ll see a dip
in the memory usage graph shortly after you do. The garbage collector
reclaimed all the objects on the heap that were not referenced by the applica-
tion. This released the memory associated with those objects, which caused
the graph of heap usage to dip.

Let’s move on to the MBean screen. An MBean, or managed bean, is an object
that represents a resource in the JVM that can be managed. Each MBean
will have attributes that tell us about the resource and the operations we can
invoke on it.

If we explore the directorylike structure in the left panel of the screen, we’ll
find MBeans that represent the different components of Tomcat and the
JRuby runtime. Let’s browse to the Tomcat/ThreadPool/http-bio-3000 bean, which
represents the thread pool that is listening for HTTP requests on port 3000
of our localhost. Even though the MBean’s name gives this information away,
we can make certain of this by selecting the Attributes node under it. The port
attribute defines the port number, and the running attribute tells us that it is
working.

168 • Chapter 9. Managing a JRuby Deployment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 29—The JConsole start-up screen

Next, let’s select the Operations node. We’ll see buttons that represent the
management operations we can execute against this MBean, as pictured in
Figure 32, The JConsole MBean page, on page 172. Click the unbind() button,
which fittingly unbinds this thread pool from its port. Now when we point a
browser to http://localhost:3000, we won’t see Twitalytics. We’ll also find that the
value of the running attribute of the MBean has changed to false.

We can rebind the thread pool to the port if we invoke the bind() operation and
then the start() operation by clicking their respective buttons. We’ll find that
the value of the running attribute of the MBean has returned to true, and
Twitalytics is available again at http://localhost:3000.

JMX provides an excellent mechanism for managing our application, but
clicking buttons in a GUI may not be your preferred tool. In the next section,
we’ll invoke an MBean programmatically.

Inspecting the Runtime with JMX • 169

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 30—The JConsole Overview page

9.3 Managing the Runtime with JMX

JConsole is just one way to use the JMX services that are exposed by the
JVM. We can also build our own clients that consume JMX services. This is
a handy way to write tools that we can use to manage our applications.

To create a JMX client, we’ll need to use some tools that can speak to the
JMX interfaces. Fortunately, the jmx4r gem provides a Ruby wrapper for this
Java-based protocol.

Let’s install the jmx4r gem with the following command:

$ gem install jmx4r

Before using this gem, we’ll need to make sure a JRuby server is running.
Let’s use Trinidad again.

$ ruby --manage -S trinidad

170 • Chapter 9. Managing a JRuby Deployment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 31—The JConsole Memory page

Now we can connect to the JMX services in the Trinidad process from the
shell. We’ll begin by starting an IRB session and requiring the jmx4r gem.

$ irb
jruby-1.6.7 :001 > require 'rubygems'
=> true
jruby-1.6.7 :002 > require 'jmx4r'
=> true

Next, we’ll create a connection to the Trinidad process with the following
command:

jruby-1.6.7 :004 > JMX::MBean.establish_connection \
:command => "org/jruby/Main -S trinidad"

=> #<JMX::MBeanServerConnectionProxy:0x7e64cfe0 @connection=#<#<Class:0x5...

The :command argument matches the connection string we saw in the initial
JConsole dialog. But the gem also supports connecting to remote JVM pro-
cesses with the :host, :port, :username, and :password arguments.

Managing the Runtime with JMX • 171

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 32—The JConsole MBean page

Now that we’ve created a connection, we can get a handle to one of the
MBeans. We’ll use the Memory manager:

jruby-1.6.7 :005 > memory = JMX::MBean.find_by_name "java.lang:type=Memory"
=> #<JMX::MBean:0x1916a3de>

Now we can invoke some operations on the MBean. We’ll use the gc() method,
which performs the same action as when we click the Perform GC button in
the JConsole. Execute this statement:

jruby-1.6.7 :007 > memory.gc
=> nil

If the JConsole is still open, we’ll see another dip in the graph of heap memory
usage. Running the garbage collector is a nice example, but it’s not something
we’ll usually need in the JVM. It’s possible that we might want to unbind and
rebind our HTTP connector, as we did in the previous section. But a more
useful example would invoke our own custom MBean. Let’s create one and
invoke it from a Rake task.

172 • Chapter 9. Managing a JRuby Deployment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

9.4 Creating a Management Bean

The purpose of an MBean is to help manage our application. Many Ruby
applications provide this same kind of interface with RESTful services, but
those tend to get in the way of the real application. MBeans provide a better
interface because they are separated from the rest of the application, which
means they have their own security, port, and graphical interface. As a result,
there is less of a chance that an ordinary user will accidentally (or intention-
ally) gain access to the management services.

Let’s create an MBean that we can use to manage the logging level of our
Rails application. We’ll start by adding the jmx4r gem to our Gemfile and running
Bundler.

Management/twitalytics/Gemfile
gem 'jmx4r'

Next, we’ll create a lib/logging_bean.rb file and add the following code to it:

Management/twitalytics/lib/logging_bean.rb
class LoggingBean < JMX::DynamicMBean

operation "Set the Rails log level"
parameter :int, "level", "the new log level"
returns :string
def set_log_level(level)

Rails.logger.level = level
"Set log level to #{Rails.logger.level}"

end
end

This class inherits from the JMX::DynamicMBean class, which hides all of the Java
code that goes into creating an MBean. Then it defines a set_log_level(level)
operation and declares its argument type and return value type. Unlike Ruby,
Java is a strongly typed language, so it expects these things. In the body of
the set_log_level(level) operation, we’re setting Rails.logger.level to the value that
was passed in as an argument.

Next, we need to register this MBean with the platform’s MBean server, which
is part of the JVM runtime. We’ll do this by creating an mbeans.rb initializer
file in the config/initializers directory and putting the following code in it:

Management/twitalytics/config/initializers/mbeans.rb
java_import "javax.management.ObjectName"
java_import "java.lang.management.ManagementFactory"

This is the closest we’ll come to writing Java code in this book. We’ve
imported two Java classes that will give us access to the MBean server.

Creating a Management Bean • 173

http://media.pragprog.com/titles/jkdepj/code/Management/twitalytics/Gemfile
http://media.pragprog.com/titles/jkdepj/code/Management/twitalytics/lib/logging_bean.rb
http://media.pragprog.com/titles/jkdepj/code/Management/twitalytics/config/initializers/mbeans.rb
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Next, we’ll add the code that instantiates our bean and registers it with the
server. Put these lines of code after the java_import statements:

Management/twitalytics/config/initializers/mbeans.rb
mbean = LoggingBean.new
object_name = ObjectName.new("twitalytics:name=LoggingBean")

mbean_server = ManagementFactory.platform_mbean_server
mbean_server.register_mbean mbean, object_name

Let’s run Trinidad again and look for our MBean in the JConsole (reboot the
server if it’s already running).

$ ruby --manage -S trinidad

Run jconsole and navigate to the MBeans screen. We’ll see a twitlaytics MBean
with the operation we defined. When we enter a value in the text field of the
set_log_level(level) method and click the button, we’ll see a result as pictured in
Figure 33, Invoking a custom MBean, on page 175.

Now let’s write a Rake task that invokes this MBean service for us. Create a
lib/tasks/mbean.rake file, and add the following code to it:

Management/twitalytics/lib/tasks/mbean.rake
namespace :log do
task :debug do

JMX::MBean.establish_connection :command => "org/jruby/Main -S trinidad"
logging = JMX::MBean.find_by_name "twitalytics:name=LoggingBean"
puts logging.set_log_level(0)

end
end

The steps in this task are similar to the steps we executed in our IRB session
earlier in the chapter. But instead of getting a handle to the Memory MBean,
we’re retrieving our custom MBean.

Let’s try our new task. If the server is still running, we can execute this
command:

$ rake log:debug
Set log level to 0

That should feel a little more natural to a Rubyist than using the GUI. But
the graphical choice is always there, and it can be useful when someone
other than you is managing your application (such as an operations team).

Let’s move on and use some other tools to get even more insight into our
running application.

174 • Chapter 9. Managing a JRuby Deployment

http://media.pragprog.com/titles/jkdepj/code/Management/twitalytics/config/initializers/mbeans.rb
http://media.pragprog.com/titles/jkdepj/code/Management/twitalytics/lib/tasks/mbean.rake
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 33—Invoking a custom MBean

9.5 Profiling an Application

Most of the third-party profiling and performance management tools that we
use with MRI-based deployments will also work with JRuby. But in addition
to these external tools, JRuby provides an internal profiler that can be used
to inspect the runtime characteristics of our applications. We’ll look at both
kinds of profilers in this section, but we’ll start with one of the most powerful
third-party tools.

Using the New Relic Gem

New Relic1 is a popular Ruby profiling tool that is compatible with JRuby. It
works by running an agent on a host server that reports information back to
the New Relic servers. We can then log into the New Relic dashboard to view
an analysis of the data that was collected.

To use New Relic with Twitalytics, we need to create a New Relic account2

and include the newrelic_rpm gem in our Gemfile.

gem "newrelic_rpm"

Then, we’ll create a config/newrelic.yml configuration file, which contains the
license key and configuration for how the New Relic agent will monitor each
environment. It should look something like this:

1. http://newrelic.com/
2. http://newrelic.com/signup

Profiling an Application • 175

http://newrelic.com/
http://newrelic.com/signup
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Management/twitalytics/config/newrelic.yml
common: &default_settings
license_key: '*******************************'
app_name: Twitalytics

staging:
<<: *default_settings
monitor_mode: true

production:
<<: *default_settings
monitor_mode: false

Once the application is deployed, the agent will begin to report back to the
New Relic server. The dashboard will provide us with insight and analysis of
trends in the data. This will help us diagnosis memory leaks, pages that load
slowly, database queries that need to be optimized, and many other things.

New Relic is a powerful, production-grade tool. But in development, it may
be helpful to use something simpler.

Using the JRuby Profiler

Let’s play around with JRuby’s built-in profiler. Move to the ~/code/twitalytics
directory, and check out the trinidad branch. Then run the following command:

$ ruby --profile -S trinidad

Make a few page requests, and then kill the process by pressing Ctrl+C . This
will dump some statistics to the console that look like this:

main thread profile results:
Total time: 57.00

total self children calls method
--

53.50 0.00 53.50 2 Kernel#load
48.49 0.00 48.49 1 Trinidad::Server#start
26.83 26.83 0.00 1 Java::OrgApacheCatalinaCore:...
21.65 21.65 0.00 1 Java::OrgApacheCatalinaStart...
5.38 0.10 5.28 716 Kernel#require
4.99 0.00 4.99 7499 Class#new
4.52 0.00 4.52 320 Kernel#require
4.08 0.31 3.77 30174 Array#each
3.74 0.00 3.74 1 Trinidad::Server#initialize
3.72 0.00 3.72 1 Trinidad::Server#load_tomcat_...
3.58 0.00 3.58 11 Hash#each
3.56 0.00 3.56 1 Trinidad::Extensions.configur...
3.56 0.01 3.55 856 Gem::Specification.each
3.27 0.00 3.27 8 Trinidad::Extensions.extension
3.27 0.00 3.27 6 Trinidad::Extensions.load_ext...

...

176 • Chapter 9. Managing a JRuby Deployment

http://media.pragprog.com/titles/jkdepj/code/Management/twitalytics/config/newrelic.yml
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

We can tell from this dump that the main program loop is controlled by the
Trinidad::Server#start() method. We can also see from the line corresponding to
the Trinidad::Extensions.load_extension() method that loading our extensions takes
about three seconds. This kind of information can be useful when things get
stuck. But using the profiler with a complete application usually leaves us
swimming in irrelevant data. In some cases, this may be what you want, but
it’s usually better to isolate the code we want to profile. For example, we can
profile just the standard_dev(values) method from the Twitalytics AnalyticsUtil module
because it processes a big array like this:

$ ruby -r lib/analytics_util.rb --profile \
-e "AnalyticsUtil.standard_dev(Array.new(10**4) {1})"
Profiling enabled; ^C shutdown will now dump profile info

main thread profile results:
Total time: 0.46

total self children calls method
--

0.44 0.00 0.44 15 Kernel#require
0.12 0.11 0.01 12 JavaUtilities#get_proxy_or_p...
0.11 0.00 0.11 5 Java::Java.method_missing
0.09 0.01 0.08 53 Object.method_added
0.08 0.00 0.08 111 Object.method_added

...

That still generates a lot of information, but it’s a little more tractable. Let’s
break things down even more. The built-in profiler also includes a graph
mode, which separates the execution times of callers and callees. We can
demonstrate this by running the previous example with the --profile.graph option:

$ ruby -r lib/analytics_util.rb --profile.graph \
-e "AnalyticsUtil.standard_dev(Array.new(10**4) {1})"
Profiling enabled; ^C shutdown will now dump profile info

Total time: 0.55

%total %self total self children calls name

0.60 0.00 0.60 1/1 JRuby::Profiler.profile
108% 0% 0.60 0.00 0.60 1 JRuby::Profiler.prof...

0.36 0.00 0.36 2/2 Enumerable#inject
0.25 0.17 0.08 1/1 Array#collect
0.00 0.00 0.00 1/1 Math#sqrt
0.00 0.00 0.00 2/4 Array#length
0.00 0.00 0.00 2/2 Fixnum#/
0.00 0.00 0.00 1/20 Array#empty?

...

Profiling an Application • 177

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Graph mode gives us a better picture of why certain methods are taking up
time and which callers are contributing the most to that time. But it displays
a list of every method that gets called, which means we are still pretty inun-
dated with information. Let’s keep breaking things down.

The JRuby profiler also includes an API that we can use to instrument our
code and narrow down the part of our application that gets profiled. Let’s try
this in our AnalyticsUtil. Open the lib/analytics_util.rb file and modify the standard_dev()
method so it looks like this:

def self.standard_dev(vals)
profile_data = JRuby::Profiler.profile do

if vals.empty?
0

else
avg = (vals.inject(0) {|sum, s| sum + s}) / vals.size
diffs = vals.map {|s| (s-avg)**2}
Math.sqrt((diffs.inject(0) {|sum, s| sum + s}) / vals.size)

end
end
profile_printer = JRuby::Profiler::GraphProfilePrinter.new(profile_data)
profile_printer.printProfile(STDOUT)

end

We’re wrapping the body of the standard_dev() method in a block that gets passed
to the JRuby::Profiler.profile() method. This returns some profiler data, which we
pass to the JRuby::Profiler::GraphProfilePrinter class so it can be printed in graph mode.

Now let’s run our example with the --profile.api option, which will turn on the
API mode. We’ll also need to require the jruby/profiler package, which contains
the classes we added to the AnalyticsUtil. The command will look like the code
shown in Figure 34, Example command with --profile.api, on page 179.

Now we’ve isolated our profiling down to just the code that’s relevant, and
we’re getting a more concise picture of the performance metrics for our stan-
dard deviation method.

With TorqueBox, we can enable the profiling API by setting the profile_api
directive to true in our config/torquebox.rb file like this:

TorqueBox.configure do
profile_api true

end

Both the New Relic gem and the JRuby profiler are tools that can help us
solve problems as well as prevent them, but they aren’t the only options.
Because Twitalytics is running on JRuby, we have access to a massive collec-
tion of performance analysis tools. As with our deployment tools, using JRuby

178 • Chapter 9. Managing a JRuby Deployment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

$ ruby -r lib/analytics_util.rb -r jruby/profiler --profile.api \
-e "AnalyticsUtil.standard_dev(Array.new(10**4) {1})"
Profiling enabled; ^C shutdown will now dump profile info

Total time: 0.68

%total %self total self children calls name

100% 0% 0.68 0.00 0.68 1 (top)
0.40 0.00 0.40 2/2 Enumerable#inject
0.28 0.18 0.11 1/1 Array#collect
0.00 0.00 0.00 1/1 Math#sqrt
0.00 0.00 0.00 2/4 Array#length
0.00 0.00 0.00 2/2 Fixnum#/
0.00 0.00 0.00 1/1 Array#empty?

0.40 0.00 0.40 2/2 (top)

58% 0% 0.40 0.00 0.40 2 Enumerable#inject
0.40 0.40 0.00 2/2 Array#each

0.40 0.40 0.00 2/2 Enumerable#inject

58% 58% 0.40 0.40 0.00 2 Array#each

0.28 0.18 0.11 1/1 (top)
41% 25% 0.28 0.18 0.11 1 Array#collect

0.11 0.11 0.00 10000/10000 Fixnum#**

0.11 0.11 0.00 10000/10000 Array#collect
15% 15% 0.11 0.11 0.00 10000 Fixnum#**

Figure 34—Example command with –profile.api

doesn’t mean we have to dramatically change the way we do things. But if
we are willing to embrace some new tools, we’ll gain a lot of power.

9.6 Wrapping Up

Keeping an application running is difficult. But the tools and techniques we’ve
used in this chapter will help us diagnose and resolve problems when our
application starts misbehaving. In this chapter, you’ve learned about the
essential configuration options required to run a JRuby application in produc-
tion. There are many other options we did not discuss, and they are worth
exploring. But the ones we’ve covered will get you well on your way to a suc-
cessful production JRuby deployment.

Wrapping Up • 179

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

You’ve also learned about the Java Management Extensions, which helped
us inspect and control our production runtime. You may choose not to use
this tool, but it still helped us gain a better understanding of the JVM’s
innards.

Finally, we used some profiling tools to get a snapshot of Twitalytics’ perfor-
mance characteristics. Every application has its slow spots, but with a basic
understanding of these tools, you’ll be able to track down those pain points
without much trouble.

Deploying Twitalytics on JRuby has simplified our infrastructure, which
enables these tools to give us a better picture of the health of our system. We
no longer have to monitor dozens of processes that have their own memory
footprints and CPU utilization. Instead, we can use the robust tools and ser-
vices provided by the JVM to capture the entire picture of our application’s
performance.

In the next chapter, we’ll move away from our production runtime and take
a look at the bigger picture of how we get our code out to customers. We’ll
explore a deployment technique that’s been alluded to in some of the earlier
chapters.

180 • Chapter 9. Managing a JRuby Deployment

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

CHAPTER 10

Using a Continuous Integration Server
Continuous integration (CI) is the process of applying quality control valida-
tions to a code base every time it changes. In the case of Twitalytics and most
Ruby applications, this means running RSpec after each commit. But it’s not
enough to rely on developers to run these tests because their local environ-
ments may differ from our production environment. Developers do lots of
stuff on their computers that can affect a test run (such as installing software
and setting environment variables). To ensure the reliability of our tests, we
need to run them the same way every time. This principle also applies to our
deployments.

When we deploy from our development machines to production, we run the
risk of our local configuration affecting the artifacts we published. But a CI
server can provide a static environment that resembles the production server.
The result will be a more consistent and reliable process for publishing
releases of our software.

At the very least, we should be deploying Twitalytics to a staging server before
we send it on to production. This would give us an opportunity to validate
any changes we’ve made to the application and our deployment process before
going live. But even with a staging server, we should not deploy directly from
our development machines. We need to deploy from an environment that
won’t be affected by local configuration changes. This is the role a continuous
integration server plays.

In this chapter, we’ll introduce continuous integration into our process by
using the Jenkins CI server1 to run our tests and deploy Twitalytics to a
staging server. This will give us not only continuous integration but also
continuous deployment. Let’s begin by getting to know Jenkins.

1. http://jenkins-ci.org/

http://jenkins-ci.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

10.1 Installing Jenkins

Jenkins is an open source application for continuously building and testing
software. An excellent publicly available example of a running Jenkins instance
is the TorqueBox CI service,2 which is hosted by the same CloudBees platform
we set up for Warbler in Chapter 3, Deploying an Archive File, on page 37.

We’ll use Jenkins to test our application and deploy it each time changes are
pushed to our repository. But rather than setting up a cloud-based or virtual
CI server, we’ll run Jenkins on our development machine. There are several
binary distributions of Jenkins for specific platforms, but we’ll use the
executable WAR file distribution. It is similar to the executable WAR file we
created for Twitalytics in Chapter 1, Getting Started with JRuby, on page 1.
This will ensure that the steps in the chapter are the same on all platforms.

We’ll start by downloading the WAR file from the official Jenkins website.3

Put the downloaded file into your home directory and run it with the following
command (but make sure you don’t already have Warbler or TorqueBox
running because they use the same ports):

$ java -jar jenkins.war

Our Jenkins server is running. We can browse to http://localhost:8080, and we’ll
see the Jenkins dashboard, as pictured in Figure 35, The Jenkins dashboard,
on page 183. There is a Manage Jenkins link in the left navigation pane of that
page. Follow it and then click the Manage Plugins link on the next page. On
the plug-ins page, select the Available tab. This will bring up a list of plug-
ins that we can install to our Jenkins server.

Look for the Jenkins GIT plug-in and check the box next to it. Then click the
“Install without restart” button at the bottom of the page. When the installation
completes, return to the Jenkins dashboard at http://localhost:8080.

Our CI server is ready do some work. But before we can add a job that runs
our tests, we’ll need to tell Jenkins how to access our code. To do this, we’ll
create a depot for our Git repository.

10.2 Creating a Git Depot

A Git depot is a bare clone of a Git repository, which means it’s a repository
that does not have a staging area where edits can be made and committed.

2. https://projectodd.ci.cloudbees.com/
3. http://mirrors.jenkins-ci.org/war/latest/jenkins.war

182 • Chapter 10. Using a Continuous Integration Server

https://projectodd.ci.cloudbees.com/
http://mirrors.jenkins-ci.org/war/latest/jenkins.war
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 35—The Jenkins dashboard

Instead, it can only be pushed to and pulled from. A depot is usually used to
share changes between distributed copies of the repository. The best example
of this is a GitHub project.

We need to create a depot for our Twitalytics repository so that Jenkins can
check out our code and run the tests against it. We could do this by pushing
our code to GitHub or a similar service, but we’ll use a local depot for this
example.

We need to clone our Twitalytics repository with the --bare option to create our
depot. We’ll direct it to the ~/depot/twitalytics.git directory like this:

$ git clone --bare ~/code/twitalytics ~/depot/twitalytics.git

Next, we’ll add the clone as the remote origin in our Twitalytics repository.

$ cd ~/code/twitalytics
$ git remote add origin ~/depot/twitalytics.git/

This allows us to push to the depot thusly:

$ git push depot
Everything up-to-date

Everything is already up-to-date because we haven’t made any changes since
we cloned the repository.

Our Git depot is ready. Now we’ll set up Jenkins to use it.

Creating a Git Depot • 183

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

10.3 Creating a Jenkins Job

Jenkins uses the concept of a job to represent any kind of user-defined task.
A job can run our tests, migrate a database, push a WAR file out to a server,
or run static analysis tools like Brakeman4 that provide reports on code cor-
rectness. A job can even do things that are unrelated to our application, such
as installing software packages on the host. The possibilities are basically
endless.

We’re going to create a job that runs the steps we used to deploy Twitalytics
in Chapter 3, Deploying an Archive File, on page 37. This will automate our
build process and make it more consistent. Let’s browse to the Jenkins
dashboard at http://localhost:8080 and follow the Create New Jobs link on the
front page. This will bring us to the page pictured in Figure 36, Creating a
Jenkins job, on page 185. We need to enter twitalytics for the name of the job,
select “Build a free-style software project,” and then click the OK button (as
shown in the figure).

This takes us to a page containing a form we can use to configure our job.
Scroll down to the Source Code Management section and fill in the Git
repository with the location of our Twitalytics depot, as pictured in Figure 37,
Connecting Jenkins to a Git repository, on page 185 (note that you’ll need to
replace the ~ with the full path to your depot). We also fill in the branch
specifier with warbler because that’s the version of Twitalytics we are going to
build and deploy. Each time this job runs, it will check out a fresh copy of
our warbler branch to ensure that it’s testing and deploying the latest code.

Next, we need to scroll down to the Build section. Select the “Add build step”
drop-down and choose “Execute shell” or “Execute Windows batch command”
depending on your platform. This will reveal a Command textbox that we
need to fill in with the steps for running our tests and deployment, like this:

bundle install
RAILS_ENV=test bundle exec rake db:drop
RAILS_ENV=test bundle exec rake db:setup
RAILS_ENV=test bundle exec rspec spec/
bundle exec rake deploy:war

These commands will install our dependencies, create a fresh database, and
run our tests. If the tests succeed, Jenkins will run the deploy:war task we
created in Chapter 3, Deploying an Archive File, on page 37, which creates a
new WAR file and pushes it out to our virtual server.

4. http://brakemanscanner.org/

184 • Chapter 10. Using a Continuous Integration Server

http://brakemanscanner.org/
http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 36—Creating a Jenkins job

Figure 37—Connecting Jenkins to a Git repository

Next, we need to scroll to the bottom of the page and click the Save button.
Our job is ready to be run, but we first need to ensure that our deployment
target is running. Let’s move to the Twitalytics repository, check out the
Warbler branch, and start Vagrant like this:

$ cd ~/code/twitalytics
$ git checkout warbler
$ vagrant up

Now we can execute our Jenkins job. We’ll do this manually for now and
automate it later. Browse to the Jenkins dashboard, and click the “twitalytics”

Creating a Jenkins Job • 185

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

link for our job. Then click the Build Now link on the page that follows.
Shortly after clicking this, we’ll see the job show up in the build queue on the
bottom left of the page.

When the job finishes, the gray dot next to its entry in the queue will turn
blue. This means the job was successful. We can check this out by pointing
a browser to http://localhost:8888, where we’ll see Twitalytics running on the vir-
tual machine.

Let’s take a closer look at what happened. Click the entry for the most recent
build in the queue on the “twitalytics” job page. Then, we’ll follow the Console
Output link, which will take us to a page with the full output of job, as pic-
tured below (if the production database has already been migrated, we won’t
see the schema changes):

Our CI job is working! Now we’ll set it up to run automatically so we don’t
have click the Build Now link every time we want it to run. On the Configura-
tion page for the job, scroll down to the Build Triggers section, and select the
Poll SCM box. In the text field below it, enter the cron string * * * * *, as
pictured in Figure 38, Configuring Jenkins to poll the SCM repository for
changes, on page 187. This will schedule the server to poll the Git depot for
changes every minute. If it finds that new changes have been checked in since
the last build, it will run the job again. Click the Save button to make sure
our change is remembered.

Before we wrap things up, let’s make sure we save the WAR file artifact that
is generated for each successful execution of the job.

186 • Chapter 10. Using a Continuous Integration Server

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 38—Configuring Jenkins to poll the SCM repository for changes

10.4 Archiving Artifacts with Jenkins

One of the advantages of using an archive file for deployment is that we can
use it to easily store, validate, and redeploy versions of our application. That’s
why Jenkins allows us to archive the artifacts that are generated from a
successful build. Let’s configure our CI job to make use of this.

Browse to the configuration page for the Twitalytics job, and scroll down to
the bottom. Under the section Post-build Actions, select the Archive Artifacts
box. In the textbox below it, enter twitalytics.war, as pictured in Figure 39,
Archiving artifacts generated by a successful build, on page 188. Click the Save
button, and return to the job page.

Next, we need to click the Build Now link to force the job to run again (since
no changes have been made to our repository). After the job has completed,
a new artifact will be created under the ~/.jenkins/jobs/twitalytics/lastSuccessful/
directory. We can see it like this:

$ ls ~/.jenkins/jobs/twitalytics/lastSuccessful/archive/
twitalytics.war

The lastSuccessful directory is actually a symlink to a directory named for a
particular build number. When new builds run, we’ll still be able to access
our old artifacts like this:

$ ls ~/.jenkins/jobs/twitalytics/builds/2/archive/
twitalytics.war

Now that we have this artifact stored on our CI server, we can use it to do a
number of things. We have the ability to create Jenkins jobs that use it. We
can create jobs that deploy it to different environments, and we can have a

Archiving Artifacts with Jenkins • 187

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Figure 39—Archiving artifacts generated by a successful build

job validate its MD5 hash to make sure it hasn’t been tampered with or cor-
rupted. We can also roll back to previous successful versions of our application
or ship the archive off to an operations team that deploys the artifact for us.

We’ve used a WAR file in this example, but we could follow the same steps
with a TorqueBox Knob file. Unfortunately, Trinidad does not support any
kind of standard packaging, so there is no artifact we can archive. But we
could still use Jenkins to deploy Trinidad with Capistrano.

There are many different kinds of jobs that can be created in Jenkins. Any
task that requires a centralized and consistent environment for execution
should be run on a CI server.

10.5 Wrapping Up

We’ve turned our development environment into a CI server. But setting up
Jenkins on a dedicated CI server or cloud-based server would require the
same process and configuration. Once we’ve moved CI into its own environ-
ment, we can begin to change the way we manage our infrastructure.

If all deployments are run from the CI server, we no longer need to give
developers access to the staging or production server. We can lock them down
so that deployments come from only a single source. This can improve the
consistency and reliability of our application.

Building and deploying from a CI server is an essential part of an effective
deployment process. It ensures that our code is reliable by testing it in an
isolated and consistent environment before sending it out to the world.

But adopting continuous integration is more than just using new tools. It can
also change the end-to-end process we use to deliver software to our cus-
tomers. It’s the first step on the path to continuous deployment, which can

188 • Chapter 10. Using a Continuous Integration Server

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

greatly improve a development team’s ability to respond to bugs and failures.
This can relieve many of our deployment problems but not all.

The most difficult part of deployment is that every environment is different.
Technologies, processes, and team expertise all play a role in determining
how an application will be delivered to customers. This makes it difficult to
reuse and create reusable deployment tools. As a result, the individuals
responsible for a deployment have to be intimately familiar with the technolo-
gies they are working with.

This book has provided a survey of the frameworks and tools that can be used
to support a JRuby deployment. But as you go forth and build more advanced
and complex applications, you’ll need to dig deeper into the particular tech-
nologies you’ve chosen for your product. There is nothing more helpful to this
task than the support of the community.

The communities that surround the JRuby technologies are some of the most
helpful and supportive in the industry. The JRuby core team actively
addresses issues on the mailing list and on IRC. The TorqueBox and Trinidad
teams are equally helpful. The technologies covered in this book are all in
their infancy, but the number of users adopting them is growing rapidly. As
a result, there are many developers who have worked through some of the
problems you’ll encounter, and they’ll often share their wisdom on the mailing
lists.

Likewise, it is important that you share what you learn with the community.
As you grow in your ability to run and manage a JRuby application, be sure
to help others, because they may one day help you.

Wrapping Up • 189

http://pragprog.com/titles/jkdepj/errata/add
http://forums.pragprog.com/forums/jkdepj

Index
A
ActiveRecord-JDBC adapters,

for SQLite3 and Postgres, 8

Advanced Packaging Tool
(APT), 21, 23, 41

AJP (Apache JServ Protocol)
connector, 90, 94–95

always_background() method,
120

Amazon, Elastic Compute
Cloud (EC2), 35

Apache HTTP Server
configuring, 90–94
installing, 29–31
proxy TorqueBox cluster

with, 153–155

Apache JServ Protocol (AJP)
connector, 90, 94–95

Apache Tomcat servlet con-
tainer

about, 39
accessing from browser,

41
architecture of JRuby

rack application, 40
deploying WAR file to,

47–48
HTTP connector, 97
installing manually, 43
installing with Puppet,

39–41
integrating with, Apache

HTTP Server, 90–94
testing installation of, 41

Apache web server
in JRuby architecture, 3–

4
in MRI architecture, 2–3

apachectl command, 153–154

application server
about, 104–105
Ruby application architec-

ture, 105

application, profiling, 175–
179

APT (Advanced Packaging
Tool), 21, 23, 41

archive file, deploying Knob,
142–147

archive file (WAR), deploying
creating deployment

script, 41–47
creating virtual server,

37–38
installing Tomcat, 39–41
provisioning server, 38–

39
to Tomcat, 47–48
using precompiled assets

with Warbler, 48–50

asset pipeline, 48

B
background jobs, running

with Resque, 68–72
using TorqueBox, 118–

125

Backgroundable methods
creating background jobs

in TorqueBox using,
118–121

vs. message processors,
121

BackStage management con-
sole

BackStage dashboard,
112

BackStage Jobs page,
116

BackStage runtime pools
pag, 112

BackStage Services page,
117–118

in TorqueBox, 111

base-jruby virtual machine
creating, 19–22
running Redis on, 69

bash notation, Windows
command substitute for,
xv–xvi

bash system, installing JRuby
on, xvii

binary file, installing Torque-
Box on production server
as, 138–142

binary protocol, 91

bind() button, in MBean page,
169

Bitbucket, 97

browser
accessing Tomcat from,

41
AJP protocol and, 91
pushing with Stomplets

to, 125–131

Bundler
--without production option,

xx, 8
command prefixes on

Windows systems, xviii
installing Capistrano and

ffi-ncurses gems, 83
installing Rake tasks in

TorqueBox, 143–144
installing TorqueBox de-

pendencies, 108

installing trinidad_diag-
nostics_extension gem
using, 61

running bundle install
command, 8

running deployment
command, 144

C
C extensions, using Resque

to integrate, 70

Capistrano
cap deploy command, 86–

88, 90, 93, 96
capify command, 83
deploying TorqueBox us-

ing, 135
hot-deploying with, 82–90
in traditional deployment,

58
using Jenkins to deploy,

188
vs. Knob file, 134
vs. Warbler, 43

Cedar stack, 99

checksums, in WAR file, 5

--client option, 166

Client execution mode, set-
ting, 166

Cloud Managed Trinidad ser-
vice, Engine Yard’s, 97

cloud service, Red Hat’s
OpenShift, 146

CloudBees
as platform for Jenkins,

182
deploying to, 50–54

cluster, TorqueBox
about, 149–151
creating, 151–153
deploying Twitalytics to,

155
nodes in, 155–157
proxy, 153–155
running in domain mode,

160
running in stand-alone

mode, 160
support for, 103
using high-availability

jobs and services, 155–
157

using session replication
in, 155–160

--clustered option option>, 151

command-line options, for
setting size of heap, 165

:concurrency option, 120

configuration management
tool, for Linux and Unix
systems, 22

configure() method, 128

connect(null, null, function)
method, 129

continuous integration (CI),
135, 181–188

cron, 65–66, 105, 113

curl, AJP protocol and, 91

D
daemons

creating long-running
TorqueBox, 115–118

in Ruby application archi-
tecture, 105

in TorqueBox, 106

data grid, 151

database connection pooling
extension, 73

dedicated servers, provision-
ing, 75–78

deploying web archive (WAR)
file

about, 37–38
architecture of JRuby

rack application, 40
creating deployment

script, 41–47
installing Tomcat, 39–42
provisioning server, 38–

39
to Tomcat, 47–48
using precompiled assets

with Warbler, 48–50

deployment
about, 19
descriptor, creating

TorqueBox, 108–110
with Heroku, 99
selecting method of

TorqueBox, 134–135
to cloud, 50–54, 96–100
traditional, 58

deployment environment
creating TorqueBox, 135–

137
creating virtual server,

19–22
packaging, 33
provisioning with Puppet,

22–33
using alternative plat-

forms, 33–35

destroy() method, 128

development machine
installing Redis on, 69
running Jenkins, 182–

188
turning into CI server,

181–188
Warbler on, 1–2, 13–17

development machine, adding
Trinidad extensions

about, 60
checking for JRuby com-

patibility, 61–62
database connection

pooling extension, 73
life-cycle extension, 73
running background

jobs, 68–72
sandbox extension, 73
scheduling recurring

jobs, 62–68

development machine, deploy-
ing Trinidad

about, 75
with Capistrano, 82–90
configuring Apache, 90–

94
creating Puppet module

for, 78
installing as service, 78–

82
provisioning dedicated

server, 75–78
strategies using Git, 95–

97
to Engine Yard, 96–100
using management con-

sole, 96–97, 99

development machines, in-
stalling JDK on, 25

diagnostics extension, 61

dollar sign ($), Windows com-
mand substitute for, xv–xvi

domain mode, TorqueBox
cluster running in, 160

Dynos, 99

E
EC2 (Elastic Compute Cloud),

35

Elastic Compute Cloud (EC2),
35

Engine Yard, 73
deploying to, 96–100

192 • Index

executable option, for creating
executable WAR file, 6

Execution Mode, setting, 166

F
fetch_tweets_since() method,

117

ffi-ncurses gem, 83

find_or_create_from() method,
69

G
garbage collector, invoking,

168

gc() method, 172

gem commands
prefixes on Windows sys-

tems, xviii
running with JRuby, xix

get_back gem, 10–11, 119

Git
add repository files to

virtual machine, 21
branching repository, 7,

13
command for committing

Warbler changes, 49
configuring Jenkins to

poll repository for
changes, 186–187

connecting Jenkins to
repository, 185

deploying Trinidad appli-
cation using, 95–97

Heroku using, 99
installing, xix

git add command, 17

git commit command, 17

Git depot, creating, 182–183

GitHub, 97

GlassFish gem, 73

god tool, 115

H
:head tag, 128

heap
graphical views of usage

of, 168, 170
setting size of, 164–166

Heroku, traditional deploy-
ment with, 99

high-availability singleton,
configuring TorqueBox job
to be, 155–157

hot-deploying
applications, 75
Capistrano, 82–90

HotSpot JVM, 23, 34

HTML files, in WAR file, 5

HTTP connector, Tomcat, 97

HTTP Server, Apache
configuring, 90–94
installing, 29–31
proxy TorqueBox cluster

with, 153–155

I
index() action, 117

Infinispan, 151

initialize() method, 116

J
Java, portability of, 34

Java 7, xi–xvi

Java archive (JAR) file
Knob file as, 134, 143
WAR file as special case

of, 5

Java Database Connectivity
(JDBC) libraries, adapters,
8

Java Development Kit (JDK)
for Macs, 34
Oracle, 34

Java Development Kit (JDK)
6, installing, xvii, 23

(Java Development Kit) JDK
6, online resources for set-
ting up, xx

Java Management Extensions
(JMX)

inspecting runtime with,
167–169

managing runtime with,
170–172

Java programmers, deploying
JRuby, xii

Java Runtime Environment
(JRE), 25

Java Service (JSVC) package,
79

Java Servlet API (Servlet
Container)

architecture of Tomcat,
40

implementation of, 39–42

Java Virtual Machine (JVM)
graphical views of cate-

gories, 171

graphical views of usage
of heap, 168, 170

HotSpot, 23, 34
installing, 23–26
leveraging features of, xi
process in JRuby, 3
representation of manage-

able resources in, 168
setting size of heap, 164–

166
starting up, 163–167
web servers and in-

stalling Apache HTTP
Server, 29

Java-based container, Ruby
web application adapting
to, 4

Java-based Quartz Scheduler,
62

JAVA_HOME variable, setting
in Windows, 34

JBoss mod_cluster module,
proxy TorqueBox cluster
with, 153–155

JConsole
connecting to JVM from,

168
MBean page, 168, 172
Memory page, 171
Overview page, 170
start-up screen, 169

JDBC (Java Database Connec-
tivity) libraries, adapters, 8

JDK (Java Development Kit)
for Macs, 34
Oracle, 34

JDK (Java Development Kit)
6

installing, 23
online resources for set-

ting up, xx

Jenkins application
archiving artifacts with,

186–188
configuring Jenkins to

poll SCM repository for
changes, 187

connecting to Git reposi-
tory, 185

console output for Jenk-
ins job, 186

creating Git depot, 182–
183

creating job, 184–186
installing, 182
Jenkins dashboard, 183

Index • 193

JMX (Java Management Ex-
tensions)

inspecting runtime with,
167–169

managing runtime with,
170–172

jmx4r gem, 170–171, 173

jobs, about, 111

Jobs TorqueBox subsystem,
110

JRE (Java Runtime Environ-
ment), 25

jrlint
detecting incompatibili-

ties in applications, 7,
11

detecting incompatibili-
ties in applications
running, 9

JRuby, 84
about, 1
architecture of runtime

pool, 16
architecture of web appli-

cation, 3–4
detecting incompatibili-

ties in applications, 7
installing JRuby runtime,

26–28
portability of, 33–35
production environment,

2
profiling applications,

175–179
setting the compatibility

version, 164

JRuby 1.6.7
installing, xvii–xix
online resources for set-

ting up, xx

JRuby runtime
configuring, 163–167
installing TorqueBox, 138

jruby-jars gem, 4

JRuby-Lint tool
detecting incompatibili-

ties in applications, 7,
9, 11

using trinidad_diagnos-
tics_extension, 61

jruby-openssl gem, 11

jruby-rack gem, 6, 39–40

JSVC (Java Service) package,
79

JVM (Java Virtual Machine)
graphical views of cate-

gories, 171
graphical views of usage

of heap, 168, 170
HotSpot, 23, 34
installing, 23–26
leveraging features of, xi
process in JRuby, 3
representation of manage-

able resources in, 168
setting size of heap, 164–

166
starting up, 163–167
web servers and in-

stalling Apache HTTP
Server, 29

K
Kernel#fork() method, 9–11

Kernel.fork() method, 24

Kirk platform, 73

Knob file
deploying TorqueBox

archive, 133
deploying TorqueBox

archive file using, 142–
147

L
libraries

Java Database Connectiv-
ity (JDBC) libraries, 8

Java Service (JSVC)
package, 79

Quartz, 113
Rails, 104
Resque, 68

life-cycle extension, 73

Linux systems
configuration manage-

ment tool for, 22
deploying to CloudBees,

50–54
installing JRuby on, xvii–

xviii
installing Java on, xvii
installing Redis, 69

--load diagnostics option, 61

logging level, managing, 173–
174

M
Mac OS X systems

Java on, xvii–xviii
port of HotSpot JVM, 34

machine image, creating, 35

Macs, JDK for, 34

--manageoption, 167

managed shared hosts, de-
ploying to, 50–54

management console
BackStage, in TorqueBox,

111
deploying using Trinidad,

96–97

managing JRuby deployment
configuring runtime,

163–167
creating MBean, 173–174
inspecting runtime with

JMX, 167–169
managing runtime with

JMX, 170–172
profiling application,

175–179

MBean (Managed Bean)
creating, 173–174
invoking custom, 175
Operations node, 169,

172
representing manageable

resources in JVM, 168

Memcache caching system,
TorqueBox cluster and, 150

Merb-based application, creat-
ing WAR files from, 4

message processors
creating, 121–126
vs. Backgroundable

methods, 121

messaging system
architecture using Stom-

plets for asynchronous,
125–126

components of, 121–123
message flow to analytics

engine, 126

Messaging TorqueBox subsys-
tem, 110, 121

META-INF directory, in WAR
file, 5

mod_cluster module, JBoss,
proxy TorqueBox cluster
with, 153–155

Mongrel
as cluster, 149
in MRI architecture, 2–3
in Ruby application archi-

tecture, 105

monit tool, 115
in Ruby application archi-

tecture, 105

194 • Index

MRI-based Ruby deployment
architecture require-

ments for, 2–3
complications of, 1
problems with architec-

ture, 2–3
profiling JRuby applica-

tions, 175
Puppet Master and, 24

multicast, routing protocol,
152

MySQL database, deploying
to CloudBees, 50–54

N
New Relic gem, 175–176

Nginx, 29, 97

nodes, in TorqueBox cluster,
155–157

none group, 9

O
OAuth tokens, 119

on_message() method, 124,
128

on_subscribe() method, 128

on_unsubscribe() method,
128

OpenJDK, 25–26, 34

Operations node, in MBean
page, 168–169

option, --manage option, 167

options
--client option, 166
--clustered option, 151
--load diagnostics option, 61
--server option, 166
--threadsafe option, 60
--without production option

(Bundler), xx, 8
command-line options for

setting size of heap,
165

Oracle JDK, 34

P
packet-oriented protocols, 91

Passenger framework, 2

persistent TCP connections,
91

platform as a service (PaaS),
CloudBees as, 50

:pool option, 11

portability
of Java, 34
of JRuby, 33–35

post_udpate(text) method, 10

Postgres database, ActiveRe-
cord-JDBC adapters for, 8

PostgreSQL database
installing, 30–33
running database migra-

tions against, 14

production environment,
JRuby, 2

production server
creating virtual server,

19–22
deploying Knob archive

file to, 133
deploying archive file to,

142–147
deploying management

console changes to,
96, 99

installing TorqueBox on,
138–142

packaging deployment
environment, 33

provisioning with Puppet,
22–33

profiling application, 175–179

provisioning with Puppet
about, 22
configuring Puppet, 23–

25
creating directory for

Puppet, 22
installing Apache HTTP

Server, 29–31
installing JRuby runtime,

26–28
installing PostgreSQL

database, 30–33

psql command, 29

Puppet
about, 22
classes, 27
configuring, 23–25
creating a TorqueBox

module in, 138
creating directory for, 22
creating module for

Trinidad, 78
installing Redis with, 77–

78
modules, 26
provisioning with, in-

stalling JVM, 23–26
in standalone mode, 24

Puppet Master (puppetmas-
terd), 24

PuTTY, 34

Q
Quartz library, 104, 113

queues vs. topics destina-
tions, 122–123

R
Rack-based application

architecture of JRuby
rack application, 40

creating WAR files from,
4

Twitalytics as, 39

Rails application
architecture of JRuby

rack application, 40
configuring in threadsafe

mode, 110
managing logging level of,

173–174
precompile assets with

Rake task from, 49
Twitalytics as, 39

rails commands, prefixes on
Windows systems, xviii

rails console command, 66–
67

Rails libraries, 104

rails runner command, 63–65

Rails-based application, creat-
ing WAR files from, 4

rake commands, running
with JRuby, xix

Rake script, for TorqueBox
installation, 140

Rake tasks
precompile assets from

rails using, 49
running within WAR file,

46–47
in TorqueBox, 143–144

Red Hat’s OpenShift cloud
service, deploying Torque-
Box to, 146

Redis server
installing, 69
installing with Puppet,

77–78
in Ruby application archi-

tecture, 105
vagrant-ssh, 20

require statement, 83

Index • 195

Resque
console statistics page,

72
overview console, 72
in Ruby application archi-

tecture, 105
running background jobs

with, 68–72
using to integrate C exten-

sions, 70

REST API, in Trinidad, 96

retweet() method, 120

routing protocol, multicast,
152

RSpec
controlling validations to

code-base for changes,
181

using TorqueSpec to run
on TorqueBox server,
131–132

Ruby
application architecture,

105
application server archi-

tecture, 106
format as internal deploy-

ment, 108–110

Ruby API, for Stomplets, 125–
126

Ruby commands, running
with JRuby, xix

Ruby on Rails version 3.1,
asset pipeline, 48

Ruby web application, adapt-
ing to Java-based contain-
er, 4

run() method, 64, 104

runtime
configuring, 163–167
inspecting with JWX,

167–169
managing with JMX,

170–172

runtimes, configuring number
of, 15–17

RVM (Ruby Version Manager),
for installing JRuby on Lin-
ux and Unix systems, xvii

S
sandbox extension, 73, 95–

96, 99

scalability, of TorqueBox, 149

scheduler extension, 62

scheduling recurring jobs
TorqueBox application,

111–115
in Trinidad application,

62–68

SCM repository, configuring
Jenkins to poll for changes,
186–187

scripts
creating deployment, 41–

48
Rake, for TorqueBox in-

stallation, 140

Secure Sockets Layer (SSL),
90

--server option, 166

Server execution mode, set-
ting, 166

Services TorqueBox subsys-
tem, 110

Servlet API (Servlet Container)
architecture of Tomcat,

40
implementation of, 39–42

session replication, using in
TorqueBox cluster, 155–
160

set_log_level() operation, 173

shared pools, 110–112

software appliance, creating,
35

SQLite database, setting
archive file for, 14

SQLite3 database, ActiveRe-
cord-JDBC adapters for, 8

SSH
ssh_options, 84
vagrant-ssh, 21

ssh_options, 84

SSL (Secure Sockets Layer),
90

stand-alone mode, TorqueBox
cluster running in, 160

standalone mode, in Puppet,
24

start() button, in MBean page,
169

start() method, 116

Status records, cleaning up,
62–64, 67

Status.find_or_create_ from()
method, 117

STOMP (Stream-Oriented
Messaging Protocol) server,
configuring, 127

stomp_url() method, 127, 129

StompBox, 134

Stomplet API, 128

Stomplets, pushing to brows-
er with, 125–131

stop() method, 117

T
TCP connections, persistent,

91

therubyracer gem, 7–8

therubyrhino gem, 7–8, 49

Thin framework, 2

thread pool
bind() button, 169
configuring number of

runtimes, 15–17
creating fixed-sized, 11
post_udpate(text) method

run from, 10
start() button, 169
unbind() button, 169

thread-safe, ensuring applica-
tion is, 17

tilde (~) in Unix notation,
translated to Windows
command, xv–xvi

Tomcat servlet container,
Apache, 105

accessing from browser,
41

architecture of JRuby
rack application, 40

as servlet container, 39
deploying WAR file to,

47–48
HTTP connector, 97
installing manually, 43
installing with Puppet,

39–41
integrating with, Apache

HTTP Server, 90–94
testing installation of, 41

topics vs. queues destina-
tions, 122–123

TorqueBox application
about, 103
as Ruby application serv-

er, 105–106
BackStage Jobs page,

116
BackStage management

console in, 111–112

196 • Index

BackStage Services page,
118

components of TorqueBox
messaging system, 122

components of Torquebox
messaging system,
121–123

configuring STOMP serv-
er, 127

creating background jobs
in, using background-
able methods, 118–121

creating deployment de-
scriptor, 108–110

creating long-running
daemons, 115–118

creating message proces-
sors, 121–126

getting started with, 106–
109

inspecting runtime with
JMX, 167

installing for production
server, 138–142

message flow to analytics
engine, 126

online resources for
problems with, xx

running in domain mode,
160

scheduling recurring
jobs, 111–116

setting Server execution
mode with, 167

setting the compatibility
version of JRuby, 164

testing, 131–132
YAML as deployment de-

scriptor, 108

TorqueBox application, clus-
ter

about, 149–151
creating, 151–153
deploying Twitalytics to,

155
levels of communication

in, 150
multicast routing proto-

col, 152
proxy, 153–155
running in stand-alone

mode, 160
support for, 103
using high-availability

jobs and services, 155–
157

using session replication
in, 155–160

TorqueBox application, deploy-
ing

about, 134
archive file, 133, 142–147
choosing strategy, 134–

135
creating deployment envi-

ronment, 135–137
to Red Hat’s OpenShift

cloud service, 146

torquebox run command, 151

TorqueBox server, using
TorqueSpec to run Rspec
tests, 131–132

torquebox-no-op gem, 131–
132

torquebox-stomp gem, load-
ing, 127

TorqueBoxDeploy, deploying
Knob, 133

TorqueSpec, 131–132

traditional deployment, 58

--threadsafe option, 60

Trinidad application
about, 57
creating, checking for

JRuby compatibility,
61

creating, getting started,
58–60

creating, naming form of
Trinidad extensions, 61

creating, running back-
ground jobs with
Resque, 68–72

creating, scheduling re-
curring jobs, 62–68

extensions, 61–62, 69,
73, 95–96, 99

hot-deploying, 82–90
keyboard shortcut for

shutting down server,
61

online resources for
problems with, xx

setting Server execution
mode with, 167

Trinidad cluster using
AJP connector, 95

using Jenkins to deploy,
188

Trinidad application, deploy-
ing

about, 75
with Capistrano, 82–90
configuring Apache, 90–

94

creating Puppet module
for, 78

installing as service, 78–
82

provisioning dedicated
server, 75–78

strategies using Git, 95–
97

to Engine Yard, 96–100
using management con-

sole, 96–97, 99

trinidad_diagnostics_exten-
sion, 61

trinidad_diagnostics_exten-
sion gem, 61

trinidad_init_services gem,
78–79, 82

trinidad_resque_extension, 69

trinidad_sandbox_extension,
73, 95–96, 99

trinidad_scheduler_extension,
62

TrinidadScheduler.Cron
method, 64

Twitalytics
about, xii, 1
architecture of JRuby

runtime pool, 15–16
collecting public tweets,

62–63
configuring Warbler, 13–

17
controlling validations to

code-base, 182–188
customer page of, 63
dashboard, 13, 15
deploying Knob archive

file, 133, 142–147
deploying Trinidad to,

strategies using Git, 97
packaging into WAR file,

15–17
preparing for JRuby, 7–

13
production server, pack-

aging deployment envi-
ronment, 33

running background
jobs, 68–72, 118–125

running on Rack, 39
scheduling recurring

jobs, 62–68
server, provisioning with

Puppet, 22–33
server, creating virtual

server, 19–22
setting up, xix–xx

Index • 197

status update page, 14
TorqueBox cluster, 155–

160
web server, 39–42

Twitalytics, deploying
Trinidad to

about, 75
with Capistrano, 82–90
configuring Apache, 90–

94
creating Puppet module

for, 78
installing as service, 78–

82
provisioning dedicated

server, 75–78
strategies using Git, 95–

96
to Engine Yard, 96–100
using management con-

sole, 96–97, 99

Twitalytics, deploying WAR
archive file to

creating deployment
script, 41–47

creating virtual server,
37–38

installing Tomcat, 39–41
provisioning server, 38–

39
to Tomcat, 47–48
using precompiled assets

with Warbler, 48–50

Twitter
about, xii
fetching records from,

117

Twitter API, to start() method,
116

U
Ubuntu

about, 21
Advanced Packaging Tool,

23

Ubuntu Linux, creating virtu-
al machine, 19

unbind() button, in MBean
page, 169

Unicorn framework, 2

Unix systems
about, xvii
configuration manage-

ment tool, 22
deploying to CloudBees,

50–54

installing Redis, 69
tilde (~), translated to

Windows command,
xv–xvi

unzip package, installing, 139

UpdateAnalytics.perform()
method, 124

%USERPROFILE% variable,
in Windows, xvi

V
Vagrant

installing, 20
running Puppet using, 22

Vagrant commands
about commands on

JRuby, 20
vagrant init, 20
vagrant package com-

mand, 33
vagrant provision, 23,

29, 78–79, 91, 93, 142
vagrant reload, 23, 29,

139
vagrant up, 21, 39, 46,

87, 137
vagrant-ssh, 20–21

vagrant reload, 28

version control software, Git,
xvii

virtual machine (VM)
creating, 19–22
restarting, 46

virtual server
creating, 19–22
packaging deployment

environment, 33
provisioning with Puppet,

22–33

VirtualBox, installing, 20

VM (virtual machine)
creating, 19–22
restarting, 46

W
WAR (web application archive)

file
about, 4
creating executable, 6
creating with Warbler, 4
inspecting runtime with

JMX, 167
running Rake tasks with-

in, 46–47
structure of, 5

WAR (web application archive)
file, deploying

about, 37–38
creating script, 41–47
creating virtual server,

37–38
installing Tomcat, 39–41
steps in strategy for, 41–

43
to Tomcat, 47–48
to cloud, 50–54
using precompiled assets

with Warbler, 48–50

warble command, 6

Warbler
about, 1–2
command for committing

changes, 49
configuring, 13–17
creating WAR files with,

4
creating and configuring

instance of, 38–39
JRuby specific dependen-

cies for, 6
setting Server execution

mode with, 167
setting size of heap, 166
setting the compatibility

version of JRuby, 164
using precompiled assets

with, 48–50
vs. Capistrano, 43

warbler-exec gem, 46–47

web browser
accessing Tomcat from,

41
AJP protocol and, 91
pushing with Stomplets

to, 125–131

web server
architecture of JRuby

rack application, 40
installing, 39–42

Web TorqueBox subsystem,
110

WEB-INF directory, in WAR
file, 5

web.xml, custom, 43

web.xml file, in WAR file, 5

WEBrick
booting application with,

12
using, 54, 143

websites, assets on, 48

wget command, 27

198 • Index

Windows command substi-
tutes

for bash notation, xv–xvi
for tilde (~) in Unix nota-

tion, xvi

Windows systems
command prompt substi-

tutes for bash notation,
xv–xvi

creating environment in,
33–35

installing JRuby on, xviii–
xix

installing Java on, xvii
running Redis with, 69
setting JAVA_HOME

variable, 34
using %USERPROFILE%

variable, xvi

with_ssh() method, 44–45

--without production option,
Bundler, xx, 8

Y
YAML format, as deployment

descriptor, 108

Z
zip files, WAR files and, 5

Index • 199

Ruby on the JVM and More Languages
Want to integrate Ruby within your Enterprise JVM environment? JRuby is the answer.
And when you’re ready to expand your horizons, we’ve got seven major languages worthy
of your study.

Now you can bring the best of Ruby into the world of
Java, with Using JRuby. Come to the source for the
JRuby core team’s insights and insider tips. You’ll
learn how to call Java objects seamlessly from Ruby,
and deal with Java idioms such as interfaces and
overloaded functions. Run Ruby code from Java, and
make a Java program scriptable in Ruby. See how to
compile Ruby into .class files that are callable from
Java, Scala, Clojure, or any other JVM language.

Charles O Nutter, Thomas Enebo, Nick Sieger, Ola Bini,
and Ian Dees
(300 pages) ISBN: 9781934356654. $34.95
http://pragprog.com/titles/jruby

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(328 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/titles/btlang

http://pragprog.com/titles/jruby
http://pragprog.com/titles/btlang

Testing is only the beginning
Start with Test Driven Development, Domain Driven Design, and Acceptance Test Driven
Planning in Ruby. Then add Shoulda, Cucumber, Factory Girl, and Rcov for the ultimate
in Ruby and Rails development.

Behaviour-Driven Development (BDD) gives you the
best of Test Driven Development, Domain Driven De-
sign, and Acceptance Test Driven Planning techniques,
so you can create better software with self-document-
ing, executable tests that bring users and developers
together with a common language.

Get the most out of BDD in Ruby with The RSpec Book,
written by the lead developer of RSpec, David Chelim-
sky.

David Chelimsky, Dave Astels, Zach Dennis, Aslak
Hellesøy, Bryan Helmkamp, Dan North
(448 pages) ISBN: 9781934356371. $38.95
http://pragprog.com/titles/achbd

Rails Test Prescriptions is a comprehensive guide to
testing Rails applications, covering Test-Driven Devel-
opment from both a theoretical perspective (why to
test) and from a practical perspective (how to test effec-
tively). It covers the core Rails testing tools and proce-
dures for Rails 2 and Rails 3, and introduces popular
add-ons, including RSpec, Shoulda, Cucumber, Factory
Girl, and Rcov.

Noel Rappin
(368 pages) ISBN: 9781934356647. $34.95
http://pragprog.com/titles/nrtest

http://pragprog.com/titles/achbd
http://pragprog.com/titles/nrtest

Welcome to the New Web
The world isn’t quite ready for the new web standards, but you can be. Get started with
HTML5, CSS3, and a better JavaScript today.

CoffeeScript is JavaScript done right. It provides all of
JavaScript’s functionality wrapped in a cleaner, more
succinct syntax. In the first book on this exciting new
language, CoffeeScript guru Trevor Burnham shows
you how to hold onto all the power and flexibility of
JavaScript while writing clearer, cleaner, and safer
code.

Trevor Burnham
(160 pages) ISBN: 9781934356784. $29
http://pragprog.com/titles/tbcoffee

HTML5 and CSS3 are the future of web development,
but you don’t have to wait to start using them. Even
though the specification is still in development, many
modern browsers and mobile devices already support
HTML5 and CSS3. This book gets you up to speed on
the new HTML5 elements and CSS3 features you can
use right now, and backwards compatible solutions
ensure that you don’t leave users of older browsers
behind.

Brian P. Hogan
(280 pages) ISBN: 9781934356685. $33
http://pragprog.com/titles/bhh5

http://pragprog.com/titles/tbcoffee
http://pragprog.com/titles/bhh5

Advanced Ruby and Rails
What used to be the realm of experts is fast becoming the stuff of day-to-day development.
Jump to the head of the class in Ruby and Rails.

Rails 3 is a huge step forward. You can now easily ex-
tend the framework, change its behavior, and replace
whole components to bend it to your will, all without
messy hacks. This pioneering book is the first resource
that deep dives into the new Rails 3 APIs and shows
you how to use them to write better web applications
and make your day-to-day work with Rails more pro-
ductive.

José Valim
(184 pages) ISBN: 9781934356739. $33
http://pragprog.com/titles/jvrails

As a Ruby programmer, you already know how much
fun it is. Now see how to unleash its power, digging
under the surface and exploring the language’s most
advanced features: a collection of techniques and tricks
known as metaprogramming. Once the domain of expert
Rubyists, metaprogramming is now accessible to pro-
grammers of all levels—from beginner to expert.
Metaprogramming Ruby explains metaprogramming
concepts in a down-to-earth style and arms you with
a practical toolbox that will help you write great Ruby
code.

Paolo Perrotta
(296 pages) ISBN: 9781934356470. $32.95
http://pragprog.com/titles/ppmetr

http://pragprog.com/titles/jvrails
http://pragprog.com/titles/ppmetr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/titles/jkdepj
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/titles/jkdepj

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/jkdepj
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/jkdepj
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Preface
	What's in This Book?
	Who Is This Book For?
	The No-Java-Code Promise
	Conventions
	Preparing Your Environment
	Online Resources

	1. Getting Started with JRuby
	What Makes JRuby So Great?
	Introducing Warbler
	Preparing Twitalytics for JRuby
	Configuring Warbler for Twitalytics
	Wrapping Up

	2. Creating a Deployment Environment
	Creating a Virtual Server
	Provisioning with Puppet
	Packaging the Deployment Environment
	Using Alternative Platforms
	Wrapping Up

	3. Deploying an Archive File
	Provisioning a Server
	Installing Apache Tomcat
	Creating the Deployment Script
	Using Precompiled Assets with Warbler
	Deploying to the Cloud
	Wrapping Up

	4. Creating a Trinidad Application
	What Is Traditional Deployment?
	Getting Started with Trinidad
	Adding Trinidad Extensions
	Choosing Alternatives to Trinidad
	Wrapping Up

	5. Deploying a Trinidad Application
	Provisioning a Server
	Installing Trinidad as a Service
	Hot-Deploying with Capistrano
	Configuring Apache
	Choosing Alternative Deployment Strategies
	Wrapping Up

	6. Creating a TorqueBox Application
	What Is an Application Server?
	Getting Started with TorqueBox
	Creating a Deployment Descriptor
	Using the Management Console
	Scheduling a Recurring Job
	Creating a Long-Running Daemon
	Running Background Jobs
	Pushing to the Browser with Stomplets
	Testing a TorqueBox Application
	Wrapping Up

	7. Deploying a TorqueBox Application
	Choosing a Deployment Strategy
	Creating a Deployment Environment
	Installing TorqueBox
	Deploying an Archive File
	Wrapping Up

	8. Clustering a TorqueBox Application
	Creating the Cluster
	Installing the Apache Cluster Module
	Deploying to the Cluster
	Using High-Availability Jobs and Services
	Using Session Replication
	Running in Domain Mode
	Wrapping Up

	9. Managing a JRuby Deployment
	Configuring the Runtime
	Inspecting the Runtime with JMX
	Managing the Runtime with JMX
	Creating a Management Bean
	Profiling an Application
	Wrapping Up

	10. Using a Continuous Integration Server
	Installing Jenkins
	Creating a Git Depot
	Creating a Jenkins Job
	Archiving Artifacts with Jenkins
	Wrapping Up

	Index

