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Foreword

In the winter of 2013–14, the United Kingdom was battered by an extended series of
exceptionally violent winter storms. These storms uncovered shipwrecks and some
amazing archaeology, especially in my home county of Cornwall. One of the most
striking discoveries was a petrified forest, dating back to the end of the last Ice Age,
now covered by the sea and sand. Before the sea claimed it again, I was lucky
enough to visit it at very low tide and spend some hours exploring it.

Among the remaining roots and tree stumps and beds of organic matter on their
way to becoming peat, I could still make out pieces of trunk branch and bark. As I
wandered along the shore with the tide coming in, I came across a single hemi‐
sphere from a nut—from a tree that no longer grows in these latitudes. Despite
being embedded in the organic layer, the shape of the nutshell and its ability to sur‐
vive over long periods of time was still unmistakable.

In working on this new edition of David’s classic text, I hope to have embodied the
spirit of that prehistoric tree. If I have preserved the tenacious form and, crucially,
the feel of Java in a Nutshell, while bringing it to the attention of a new generation of
developers, with the important parts emphasized, then I shall be well satisfied.

—Ben Evans, 2014
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Preface

This book is a desktop Java reference, designed to sit faithfully by your keyboard
while you program. Part I of the book is a fast-paced, “no-fluff ” introduction to the
Java programming language and the core runtime aspects of the Java platform.
Part II is a reference section that blends elucidation of core concepts with examples
of important core APIs. The book covers Java 8, but we recognize that some shops
may not have adopted it yet—so where possible we call out if a feature was intro‐
duced in Java 8 (and sometimes Java 7). We use Java 8 syntax throughout, including
using lambda expressions in code that would previously have used a trivial anony‐
mous nested class.

Changes in the Sixth Edition
The fifth edition of this book covers Java 5, whereas this edition covers Java 8. The
language, and the working environment of the programmer, have both changed
considerably since the last edition was published nearly a decade ago. This new edi‐
tion has, accordingly, changed a vast amount as well. One very important aspect is
that this book does not attempt to be as complete a description of the core platform
APIs as was possible in earlier editions.

For one thing, the sheer size of the core APIs render this utterly impractical for a
printed book. A more compelling reason is the continued rise of fast, always-on
Internet. The amount of Java programmers who regularly work without Internet
access is now vanishingly small. The proper place for detailed reference API docs is
online, not printed out.

Accordingly, the reference section, which occupied two-thirds of the fifth edition, is
gone. In the space we’ve recovered, we have tried to update the concept of what it
means to be a “Nutshell” guide. The modern Java developer needs to know more
than just syntax and APIs. As the Java environment has matured, such topics as
concurrency, object-oriented design, memory, and the Java type system have all
gained in importance—even among mainstream developers.
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In this edition, we have tried to reflect this changed world, and have largely aban‐
doned the historical approach of earlier editions. In particular, the exhaustive
attempt to detail exactly which version of Java particular features arrived with has
mostly been abandoned—only the most recent versions of Java are likely to be of
interest to the majority of Java developers.

Contents of This Book
The first six chapters of this book document the Java language and the Java platform
—they should all be considered essential reading. The book is biased toward the
Oracle/OpenJDK (Open Java Development Kit) implementation of Java, but not
greatly so—developers working with other Java environments will still find plenty to
occupy them. Part I includes:

Chapter 1, Introduction
This chapter is an overview of the Java language and the Java platform. It
explains the important features and benefits of Java, including the lifecycle of a
Java program. We also touch on Java security and answer some criticisms of
Java.

Chapter 2, Java Syntax from the Ground Up
This chapter explains the details of the Java programming language, including
the Java 8 language changes. It is a long and detailed chapter that does not
assume substantial programming experience. Experienced Java programmers
can use it as a language reference. Programmers with substantial experience
with languages such as C and C++ should be able to pick up Java syntax
quickly by reading this chapter; beginning programmers with only a modest
amount of experience should be able to learn Java programming by studying
this chapter carefully, although it is best read in conjunction with a second text
(such as O’Reilly’s Head First Java by Bert Bates and Kathy Sierra).

Chapter 3, Object-Oriented Programming in Java
This chapter describes how the basic Java syntax documented in Chapter 2 is
used to write simple object-oriented programs using classes and objects in Java.
The chapter assumes no prior experience with OO programming. It can be
used as a tutorial by new programmers or as a reference by experienced Java
programmers.

Chapter 4, The Java Type System
This chapter builds on the basic description of object-oriented programming in
Java, and introduces the other aspects of Java’s type system, such as generic
types, enumerated types, and annotations. With this more complete picture, we
can discuss the biggest change in Java 8—the arrival of lambda expressions.

Chapter 5, Introduction to Object-Oriented Design in Java
This chapter is an overview of some basic techniques used in the design of
sound object-oriented programs, and briefly touches on the topic of design pat‐
terns and their use in software engineering.
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Chapter 6, Java’s Approach to Memory and Concurrency
This chapter explains how the Java Virtual Machine manages memory on
behalf of the programmer, and how memory and visibility is intimately
entwined with Java’s support for concurrent programming and threads.

These first six chapters teach you the Java language and get you up and running
with the most important concepts of the Java platform. The second part of the book
is all about how to get real programming work done in the Java environment. It
contains plenty of examples and is designed to complement the cookbook approach
found in some other texts. Part II includes:

Chapter 7, Programming and Documentation Conventions
This chapter documents important and widely adopted Java programming con‐
ventions. It also explains how you can make your Java code self-documenting
by including specially formatted documentation comments.

Chapter 8, Working with Java Collections and Arrays
This chapter introduces Java’s standard collections libraries. These contain data
structures that are vital to the functioning of virtually every Java program—
such as List, Map, and Set. The new Stream abstraction and the relationship
between lambda expressions and the collections is explained in detail.

Chapter 9, Handling Common Data Formats
This chapter discusses how to use Java to work effectively with very common
data formats, such as text, numbers, and temporal (date and time) information.

Chapter 10, File Handling and I/O
This chapter covers several different approaches to file access—from the more
classic approach found in older versions of Java, through to more modern and
even asynchronous styles. The chapter concludes with a short introduction to
networking with the core Java platform APIs.

Chapter 11, Classloading, Reflection, and Method Handles
This chapter introduces the subtle art of metaprogramming in Java—first intro‐
ducing the concept of metadata about Java types, then turning to the subject of
classloading and how Java’s security model is linked to the dynamic loading of
types. The chapter concludes with some applications of classloading and the
relatively new feature of method handles.

Chapter 12, Nashorn
This chapter describes Nashorn, an implementation of JavaScript running atop
the Java Virtual Machine. Nashorn ships with Java 8, and provides an alterna‐
tive to other JavaScript implementations. Toward the end of the chapter, we
discuss Avatar.js—a server-side technology compatible with Node.

Chapter 13, Platform Tools and Profiles
Oracle’s JDK (as well as OpenJDK) includes a number of useful Java
development tools, most notably the Java interpreter and the Java compiler.
This chapter documents those tools. The second part of the chapter covers
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Compact Profiles—a new feature in Java 8 allowing cut-down Java Runtime
Environments (JREs) with a significantly reduced footprint.

Related Books
O’Reilly publishes an entire series of books on Java programming, including several
companion books to this one. The companion books are:

Learning Java by Pat Niemeyer and Daniel Leuck
This book is a comprehensive tutorial introduction to Java, and includes topics
such as XML and client-side Java programming.

Java 8 Lambdas by Richard Warburton
This book documents the new Java 8 feature of lambda expressions in detail,
and introduces concepts of functional programming that may be unfamiliar to
Java developers coming from earlier versions.

Head First Java by Bert Bates and Kathy Sierra
This book uses a unique approach to teaching Java. Developers who think visu‐
ally often find it a great accompaniment to a traditional Java book.

You can find a complete list of Java books from O’Reilly at http://java.oreilly.com/.

Examples Online
The examples in this book are available online and can be downloaded from the
home page for the book at http://www.oreilly.com/catalog/javanut6. You may also
want to visit this site for any important notes or errata that have been published
there.

Conventions Used in This Book
We use the following formatting conventions in this book:

Italic
Used for emphasis and to signify the first use of a term. Italic is also used for
commands, email addresses, websites, FTP sites, and file and directory names.

Constant Width
Used for all Java code as well as for anything that you would type literally when
programming, including keywords, data types, constants, method names, vari‐
ables, class names, and interface names.

Constant Width Italic
Used for the names of function arguments and generally as a placeholder to
indicate an item that should be replaced with an actual value in your program.
Sometimes used to refer to a conceptual section or line of code as in
statement.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Request for Comments
You can send comments, fixes and suggestions directly to the authors by using the
email address javanut6@gmail.com.

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/java_nutshell_6e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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I
Introducing Java

Part I is an introduction to the Java language and the Java platform. These chapters
provide enough information for you to get started using Java right away:

Chapter 1, Introduction
Chapter 2, Java Syntax from the Ground Up 
Chapter 3, Object-Oriented Programming in Java 
Chapter 4, The Java Type System 
Chapter 5, Introduction to Object-Oriented Design in Java
Chapter 6, Java’s Approach to Memory and Concurrency





1
Introduction to the Java

Environment

Welcome to Java 8. We may be welcoming you back. You may be coming to this eco‐
system from another language, or maybe this is your first programming language.
Whatever road you may have traveled to get here: welcome. We’re glad you’ve
arrived.

Java is a powerful, general-purpose programming environment. It is one of the most
widely used programming languages in the world, and has been exceptionally suc‐
cessful in business and enterprise computing.

In this chapter, we’ll set the scene by describing the Java language (which program‐
mers write their applications in), the Java Virtual Machine (which executes those
applications), and the Java ecosystem (which provides a lot of the value of the pro‐
gramming environment to development teams).

We’ll briefly cover the history of the Java language and virtual machine, before mov‐
ing on to discuss the lifecycle of a Java program and clear up some common ques‐
tions about the differences between Java and other environments.

At the end of the chapter, we’ll introduce Java security, and discuss some of the
aspects of Java which relate to secure coding.

The Language, the JVM, and the Ecosystem
The Java programming environment has been around since the late 1990s. It com‐
prises the Java language, and the supporting runtime, otherwise known as the Java
Virtual Machine (JVM).

At the time that Java was initially developed, this split was considered novel, but
recent trends in software development have made it more commonplace. Notably,
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Microsoft’s .NET environment, announced a few years after Java, adopted a very
similar approach to platform architecture.

One important difference between Microsoft’s .NET platform and Java is that Java
was always conceived as a relatively open ecosystem of multiple vendors. Through‐
out Java’s history, these vendors both cooperated and competed on aspects of Java
technology.

One of the main reasons for the success of Java is that this ecosystem is a standar‐
dized environment. This means there are specifications for the technologies that
comprise the environment. These standards give the developer and consumer confi‐
dence that the technology will be compatible with other components, even if they
come from a different technology vendor.

The current steward of Java is Oracle Corporation (who acquired Sun
Microsystems, the originator of Java). Other corporations, such as Red Hat, IBM,
Hewlett-Packard, SAP, Apple, and Fujitsu are also heavily involved in producing
implementations of standardized Java technologies.

There is also an open source version of Java, called OpenJDK, which many of these
companies collaborate on.

Java actually comprises several different, but related environments and specifica‐
tions—Java Mobile Edition (Java ME), Java Standard Edition (Java SE), and Java
Enterprise Edition (Java EE). In this book, we’ll only cover Java SE, version 8.

We will have more to say about standardization later, so let’s move on to discuss the
Java language and JVM as separate, but related concepts.

What Is the Java Language?
Java programs are written as source code in the Java language. This is a human-
readable programming language, which is class based and object oriented. It is
considered to be relatively easy to read and write (if occasionally a bit verbose).

Java is intended to be easy to learn and to teach. It builds on industry experience
with languages like C++ and tries to remove complex features as well as preserving
“what works” from previous programming languages.

Overall, Java is intended to provide a stable, solid base for companies to develop
business-critical applications.

As a programming language, it has a relatively conservative design and a slow rate
of change. These properties are a conscious attempt to serve the goal of protecting
the investment that businesses have made in Java technology.

The language has undergone gradual revision (but no complete rewrites) since its
inception in 1996. This does mean that some of Java’s original design choices, which
were expedient in the late 1990s, are still affecting the language today—see Chapters
2 and 3 for more details.
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Java 8 has added the most radical changes seen in the language for almost a decade
(some would say since the birth of Java). Features like lambda expressions and the
overhaul of the core Collections code will change forever the way that most Java
developers write code.

The Java language is governed by the Java Language Specification (JLS), which
defines how a conforming implementation must behave.

What Is the JVM?
The JVM is a program that provides the runtime environment necessary for Java
programs to execute. Java programs cannot run unless there is a JVM available for
the appropriate hardware and OS platform we wish to execute on.

Fortunately, the JVM has been ported to run on a large number of environments—
anything from a set-top box or Blu-ray player to a huge mainframe will probably
have a JVM available for it.

Java programs are typically started by a command line, such as:

java <arguments> <program name>

This brings up the JVM as an operating system process that provides the Java run‐
time environment, and then executes our program in the context of the freshly
started (and empty) virtual machine.

It is important to understand that when the JVM takes in a Java program for execu‐
tion, the program is not provided as Java language source code. Instead, the Java
language source must have been converted (or compiled) into a form known as Java
bytecode. Java bytecode must be supplied to the JVM in a format called class files—
which always have a .class extension.

The JVM is an interpreter for the bytecode form of the program—it steps through
one bytecode instruction at a time. However, you should also be aware that both the
JVM and the user program are capable of spawning additional threads of execution,
so that a user program may have many different functions running simultenously.

The design of the JVM built on many years of experience with earlier programming
environments, notably C and C++, so we can think of it as having several different
goals—which are all intended to make life easier for the programmer:

• Comprise a container for application code to run inside
• Provide a secure execution environment as compared to C/C++
• Take memory management out of the hands of developers
• Provide a cross-platform execution environment

These objectives are often mentioned together when discussing the platform.

We’ve already mentioned the first of these goals, when we discussed the JVM and its
bytecode interpreter—it functions as the container for application code.
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We’ll discuss the second and third goals in Chapter 6, when we talk about how the
Java environment deals with memory management.

The fourth goal, sometimes called “write once, run anywhere” (WORA), is the
property that Java class files can be moved from one execution platform to another,
and they will run unaltered provided a JVM is available.

This means that a Java program can be developed (and converted to class files) on
an Apple Mac machine running OS X, and then the class files can be moved to
Linux or Microsoft Windows (or other platforms) and the Java program will run
without any further work needed.

The Java environment has been very widely ported, including
to platforms that are very different from mainstream plat‐
forms like Linux, Mac, and Windows. In this book, we use the
phrase “most implementations” to indicate those platforms
that the majority of developers are likely to encounter. Mac,
Windows, Linux, Solaris, BSD Unix, AIX, and the like are all
considered “mainstream platforms” and count within “most
implementations.”

In addition to these four primary goals, there is another aspect of the JVM’s design
that is not always recognized or discussed—it makes use of runtime information to
self-manage.

Software research in the 1970s and 1980s revealed that the runtime behavior of pro‐
grams has a large amount of interesting and useful patterns that cannot be deduced
at compile time. The JVM was the first truly mainstream platform to make use of
this research.

It collects runtime information to make better decisions about how to execute code.
That means that the JVM can monitor and optimize a program running on it in a
manner not possible for platforms without this capability.

A key example is the runtime fact that not all parts of a Java program are equally
likely to be called during the lifetime of the program—some portions will be called
far, far more often than others. The Java platform takes advantage of this fact with a
technology called just-in-time (JIT) compilation.

In the HotSpot JVM (which was the JVM that Sun first shipped as part of Java 1.3,
and is still in use today), the JVM first identifies which parts of the program are
called most often—the “hot methods.” Then, the JVM compiles these hot methods
directly into machine code—bypassing the JVM interpreter.

The JVM uses the available runtime information to deliver higher performance than
was possible from purely interpreted execution. In fact, the optimizations that the
JVM uses now in many cases produce performance which surpasses compiled C
and C++ code.
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The standard that describes how a properly functioning JVM must behave is called
the JVM Specification.

What Is the Java Ecosystem?
The Java language is easy to learn and contains relatively few abstractions, com‐
pared to other programming languages. The JVM provides a solid, portable, high-
performance base for Java (or other languages) to execute on. Taken together, these
two connected technologies provide a foundation that businesses can feel confident
about when choosing where to base their development efforts.

The benefits of Java do not end there, however. Since Java’s inception, an extremely
large ecosystem of third-party libraries and components has grown up. This means
that a development team can benefit hugely from the existence of connectors and
drivers for practically every technology imaginable—both proprietary and open
source.

In the modern technology ecosystem it is now rare indeed to find a technology
component that does not offer a Java connector. From traditional relational databa‐
ses, to NoSQL, to every type of enterprise monitoring system, to messaging systems
—everything integrates with Java.

It is this fact that has been a major driver of adoption of Java technologies by enter‐
prises and larger companies. Development teams have been able to unlock their
potential by making use of preexisting libraries and components. This has promo‐
ted developer choice and encouraged open, best-of-breed architectures with Java
technology cores.

A Brief History of Java and the JVM
Java 1.0 (1996)

This was the first public version of Java. It contained just 212 classes organized
in eight packages. The Java platform has always had an emphasis on backward
compatibility,  and code written with Java 1.0 will still run today on Java 8
without modification or recompilation.

Java 1.1 (1997)
This release of Java more than doubled the size of the Java platform. This
release introduced “inner classes” and the first version of the Reflection API.

Java 1.2 (1998)
This was a very significant release of Java; it tripled the size of the Java plat‐
form. This release marked the first appearance of the Java Collections API
(with sets, maps, and lists). The many new features in the 1.2 release led Sun to
rebrand the platform as “the Java 2 Platform.” The term “Java 2” was simply a
trademark, however, and not an actual version number for the release.
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Java 1.3 (2000)
This was primarily a maintenance release, focused on bug fixes, stability, and
performance improvements. This release also brought in the HotSpot Java Vir‐
tual Machine, which is still in use today (although heavily modified and
improved since then).

Java 1.4 (2002)
This was another fairly big release, adding important new functionality such as
a higher-performance, low-level I/O API; regular expressions for text handling;
XML and XSLT libraries; SSL support; a logging API; and cryptography
support.

Java 5 (2004)
This large release of Java introduced a number of changes to the core language
itself including generic types, enumerated types (enums), annotations, varargs
methods, autoboxing, and a new for loop. These changes were considered sig‐
nificant enough to change the major version number, and to start numbering
as major releases. This release included 3,562 classes and interfaces in 166
packages. Notable additions included utilities for concurrent programming, a
remote management framework, and classes for the remote management and
instrumentation of the Java VM itself.

Java 6 (2006)
This release was also largely a maintenance and performance release. It intro‐
duced the Compiler API, expanded the usage and scope of annotations, and
provided bindings to allow scripting languages to interoperate with Java. There
were also a large number of internal bugfixes and improvements to the JVM
and the Swing GUI technology.

Java 7 (2011)
The first release of Java under Oracle’s stewardship included a number of major
upgrades to the language and platform. The introduction of try-with-resources
and the NIO.2 API enabled developers to write much safer and less error-prone
code for handling resources and I/O. The Method Handles API provided a
simpler and safer alternative to reflection—and opened the door for invokedy
namic (the first new bytecode since version 1.0 of Java).

Java 8 (2014)
This latest release of Java introduces potentially the most significant changes to
the language since Java 5 (or possibly ever). The introduction of lambda
expressions promises the ability to significantly enhance the productivity of
developers; the Collections have been updated to make use of lambdas, and the
machinery required to achieve this provides a fundamental change in Java’s
approach to object orientation. Other major updates include an implementa‐
tion of JavaScript that runs on the JVM (Nashorn), new date and time support,
and Java profiles (which provide for different versions of Java that are especially
suitable for headless or server deployments).

8 | Chapter 1: Introduction to the Java Environment



The Lifecycle of a Java Program
To better understand how Java code is compiled and executed, and the difference
between Java and other types of programming environments, consider the pipeline
in Figure 1-1.

Figure 1-1. How Java code is compiled and loaded

This starts wth Java source, and passes it through the javac program to produce
class files—which contain the source code compiled to Java bytecode. The class file
is the smallest unit of functionality the platform will deal with, and the only way to
get new code into a running program.

New class files are onboarded via the classloading mechanism (see Chapter 10 for a
lot more detail on how classloading works). This makes the new type available to
the interpreter for execution.

Frequently Asked Questions
In this section, we’ll discuss some of the most frequently asked questions about Java
and the lifecycle of programs written in the Java environment.

What is bytecode?
When developers are first introduced to the JVM, they sometimes think of it as “a
computer inside a computer.” It’s then easy to imagine bytecode as “machine code
for the CPU of the internal computer” or “machine code for a made-up processor.”

In fact, bytecode is not very similar to machine code that would run on a real hard‐
ware processor. Computer scientists would call bytecode a type of “intermediate
representation”—a halfway house between source code and machine code.

The whole aim of bytecode is to be a format that can be executed efficiently by the
JVM’s interpreter.
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Is javac a compiler?
Compilers usually produce machine code, but javac produces bytecode, which is not
that similar to machine code. However, class files are a bit like object files (like Win‐
dows .dll files, or Unix .so files)—and they are certainly not human readable.

In theoretical computer science terms, javac is most similar to the “front half ” of a
compiler—it creates the intermediate representation that can then be used to pro‐
duce (emit) machine code.

However, because creation of class files is a separate build-time step that resembles
compilation in C/C++, many developers consider running javac to be compilation.
In this book, we will use the terms “source code compiler” or “javac compiler” to
mean the production of class files by javac.

We will reserve “compilation” as a standalone term to mean JIT compilation—as it’s
JIT compilation that actually produces machine code.

Why is it called “bytecode”?
The instruction code (opcode) is just a single byte (some operations also have
parameters that follow them in the bytestream)—so there are only 256 possible
instructions. In practice, some are unused—about 200 are in use, but some of them
aren’t emitted by recent versions of javac.

Is bytecode optimized?
In the early days of the platform, javac produced heavily optimized bytecode. This
turned out to be a mistake. With the advent of JIT compilation, the important meth‐
ods are going to be compiled to very fast machine code. It’s therefore very important
to make the job of the JIT compiler easier—as there are much bigger gains available
from JIT compilation than there are from optimizing bytecode, which will still have
to be interpreted.

Is bytecode really machine independent? What about things like endianness?
The format of bytecode is always the same, regardless of what type of machine it
was created on. This includes the byte ordering (sometimes called “endianness”) of
the machine. For readers who are interested in the details, bytecode is always big-
endian.

Is Java an interpreted language?
The JVM is basically an interpreter (with JIT compilation to give it a big perfor‐
mance boost). However, most interpreted languages (such as PHP, Perl, Ruby, and
Python) directly interpret programs from source form (usually by constructing an
abstract syntax tree from the input source file). The JVM interpreter, on the other
hand, requires class files—which, of course, require a separate source code compila‐
tion step with javac.
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Can other languages run on the JVM?
Yes. The JVM can run any valid class file, so this means that non-Java languages can
run on the JVM in one of two ways. Firstly, they could have a source code compiler
(similar to javac) that produces class files, which would run on the JVM just like
Java code (this is the approach taken by languages like Scala).

Alternatively, a non-Java language could implement an interpreter and runtime in
Java, and then interpret the source form of their language. This second option is the
approach taken by languages like JRuby (but JRuby has a very sophisticated runtime
that is capable of “secondary JIT compilation” in some circumstances).

Java Security
Java has been designed from the ground up with security in mind; this gives it a
great advantage over many other existing systems and platforms. The Java security
architecture was designed by security experts and has been studied and probed by
many other security experts since the inception of the platform. The consensus is
that the architecture itself is strong and robust, without any security holes in the
design (at least none that have been discovered yet).

Fundamental to the design of the security model is that bytecode is heavily restric‐
ted in what it can express—there is no way, for example, to directly address mem‐
ory. This cuts out entire classes of security problems that have plagued languages
like C and C++. Furthermore, the VM goes through a process known as bytecode
verification whenever it loads an untrusted class, which removes a further large class
of problems (see Chapter 10 for more about bytecode verification).

Despite all this, however, no system can guarantee 100% security, and Java is no
exception.

While the design is still theoretically robust, the implementation of the security
architecture is another matter, and there is a long history of security flaws being
found and patched in particular implementations of Java.

In particular, the release of Java 8 was delayed, at least partly, due to the discovery of
a number of security problems that required considerable effort to fix.

In all likelihood, security flaws will continue to be discovered (and patched) in Java
VM implementations.

However, it is also worth noting that the majority of Java’s recent security issues have
been closely linked to Java as a desktop technology. For practical server-side coding,
Java remains perhaps the most secure general-purpose platform currently available.

Comparing Java to Other Languages
In this section, we’ll briefly highlight some differences between the Java platform
and other programming environments you may be familiar with.
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Java Compared to C

• Java is object oriented; C is procedural.
• Java is portable as class files; C needs to be recompiled.
• Java provides extensive instrumentation as part of the runtime.
• Java has no pointers and no equivalent of pointer arithmetic.
• Java provides automatic memory management via garbage collection.
• Java has no ability to lay out memory at a low level (no structs).
• Java has no preprocessor.

Java Compared to C++

• Java has a simplified object model compared to C++.
• Java’s dispatch is virtual by default.
• Java is always pass-by-value (but one of the possibilities for Java’s values are

object references).
• Java does not support full multiple inheritance.
• Java’s generics are less powerful (but also less dangerous) than C++ templates.
• Java has no operator overloading.

Java Compared to PHP

• Java is statically typed; PHP is dynamically typed.
• Java has a JIT; PHP does not (but might in version 6).
• Java is a general-purpose language; PHP is rarely found outside of websites.
• Java is multithreaded; PHP is not.

Java Compared to JavaScript

• Java is statically typed; JavaScript is dynamically typed.
• Java uses class-based objects; JavaScript is prototype based.
• Java provides good object encapsulation; Javascript does not.
• Java has namespaces; JavaScript does not.
• Java is multithreaded; JavaScript is not.
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Answering Some Criticisms of Java
Java has had a long history in the public eye and, as such, has attracted its fair share
of criticism over the years. Some of this negative press can be attributed to some
technical shortcomings combined with rather overzealous marketing in the first
versions of Java.

Some criticisms have, however, entered technical folklore despite no longer being
very accurate. In this section, we’ll look at some common grumbles and the extent
to which they’re true for modern versions of the platform.

Overly Verbose
The Java core language has sometimes been criticized as overly verbose. Even simple
Java statments such as Object o = new Object(); seem to be repetitious—the type
Object appears on both the left and right side of the assignment. Critics point out
that this is essentially redundant, that other languages do not need this duplication
of type information, and that many support features (e.g., type inference) that
remove it.

The counterpoint to this argument is that Java was designed from the start to be
easy to read (code is read more often than written) and that many programmers,
especially novices, find the extra type information helpful when reading code.

Java is widely used in enterprise environments, which often have separate dev and
ops teams. The extra verbosity can often be a blessing when responding to an out‐
age call, or when needing to maintain and patch code that was written by developers
who have long since moved on.

In recent versions of Java (7 and later), the language designers have attempted to
respond to some of these points, by finding places where the syntax can become less
verbose and by making better use of type information. For example:

// Files helper methods
byte[] contents =
  Files.readAllBytes(Paths.get("/home/ben/myFile.bin"));

// Diamond syntax for repeated type information
List<String> l = new ArrayList<>();

// Lambda expressions simplify Runnables
ExecutorService threadPool = Executors.newScheduledThreadPool(2);
threadPool.submit(() -> { System.out.println("On Threadpool"); });

However, Java’s overall philosophy is to make changes to the language only very
slowly and carefully, so the pace of these changes may not satsify detractors
completely.
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Slow to Change
The original Java language is now well over 15 years old, and has not undergone a
complete revision in that time. Many other languages (e.g., Microsoft’s C#) have
released backwards-incompatible versions in the same period—and some develop‐
ers criticize Java for not doing likewise.

Furthermore, in recent years, the Java language has come under fire for being slow
to adopt language features that are now commonplace in other languages.

The conservative approach to language design that Sun (and now Oracle) have dis‐
played is an attempt to avoid imposing the costs and externalities of misfeatures on
a very large user base. Many Java shops have made major investments in the tech‐
nology, and the language designers have taken seriously the responsibility of not
affecting the existing user and install base.

Each new language feature needs to be very carefully thought about—not only in
isolation, but in terms of how it will interact with all the existing features of the lan‐
guage. New features can sometimes have impacts beyond their immediate scope—
and Java is widely used in very large codebases, where there are more potential
places for an unexpected interaction to manifest.

It is almost impossible to remove a feature that turns out to be incorrect after it has
shipped—Java has a couple of misfeatures (such as the finalization mechanism) and
it has never been possible to remove them safely without impacting the install base.
The language designers have taken the view that extreme caution is required when
evolving the language.

Having said that, the new language features present in Java 8 are a significant step
towards addressing the most common complaints about missing features, and
should cover many of the idioms that developers have been asking for.

Performance Problems
The Java platform is still sometimes criticized as being slow—but of all the criti‐
cisms that are leveled at the platform, this is probably the one that is least justified.

Release 1.3 of Java brought in the HotSpot Virtual Machine and its JIT compiler.
Since then, there has been almost 15 years of continual innovation and improve‐
ment in the virtual machine and its performance. The Java platform is now blaz‐
ingly fast, regularly winning performance benchmarks on popular frameworks, and
even beating native-compiled C and C++.

Criticism in this area appears to be largely caused by a folk memory that Java used
to be slow at some point in the past. Some of the larger and more sprawling archi‐
tectures that Java has been used within may also have contributed to this impres‐
sion.

The truth is that any large architecture will require benchmarking, analysis, and
performance tuning to get the best out of it—and Java is no exception.
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The core of the platform—language and JVM—is and remains one of the fastest
general-use environments available to the developer.

Insecure
During 2013 there were a number of security vulnerabilities in the Java platform,
which caused the release date of Java 8 to be pushed back. Even before this, some
people had criticized Java’s record of security vulnerabilities.

Many of these vulnerabilities involved the desktop and GUI components of the Java
system, and wouldn’t affect websites or other server-side code written in Java.

All programming platforms have security issues at times—and many other lan‐
guages have a comparable history of security vulnerabilities that have been signifi‐
cantly less well publicized.

Too Corporate
Java is a platform that is extensively used by corporate and enterprise developers.
The perception that it is too corporate is therefore an unsurprising one—Java has
often been perceived as lacking the “free-wheeling” style of languages that are
deemed to be more community oriented.

In truth, Java has always been, and remains, a very widely used language for com‐
munity and free or open source software development. It is one of the most popular
languages for projects hosted on GitHub and other project hosting sites.

Finally, the most widely used implementation of the language itself is based on
OpenJDK—which is itself an open source project with a vibrant and growing com‐
munity.
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2
Java Syntax from the Ground Up

This chapter is a terse but comprehensive introduction to Java syntax. It is written
primarily for readers who are new to the language but have some previous pro‐
gramming experience. Determined novices with no prior programming experience
may also find it useful. If you already know Java, you should find it a useful lan‐
guage reference. The chapter includes some comparisons of Java to C and C++ for
the benefit of programmers coming from those languages.

This chapter documents the syntax of Java programs by starting at the very lowest
level of Java syntax and building from there, covering increasingly higher orders of
structure. It covers:

• The characters used to write Java programs and the encoding of those
characters.

• Literal values, identifiers, and other tokens that comprise a Java program.
• The data types that Java can manipulate.
• The operators used in Java to group individual tokens into larger expressions.
• Statements, which group expressions and other statements to form logical

chunks of Java code.
• Methods, which are named collections of Java statements that can be invoked

by other Java code.
• Classes, which are collections of methods and fields. Classes are the central

program element in Java and form the basis for object-oriented programming.
Chapter 3 is devoted entirely to a discussion of classes and objects.

• Packages, which are collections of related classes.
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• Java programs, which consist of one or more interacting classes that may be
drawn from one or more packages.

The syntax of most programming languages is complex, and Java is no exception. In
general, it is not possible to document all elements of a language without referring
to other elements that have not yet been discussed. For example, it is not really pos‐
sible to explain in a meaningful way the operators and statements supported by Java
without referring to objects. But it is also not possible to document objects thor‐
oughly without referring to the operators and statements of the language. The pro‐
cess of learning Java, or any language, is therefore an iterative one.

Java Programs from the Top Down
Before we begin our bottom-up exploration of Java syntax, let’s take a moment for a
top-down overview of a Java program. Java programs consist of one or more files, or
compilation units, of Java source code. Near the end of the chapter, we describe the
structure of a Java file and explain how to compile and run a Java program. Each
compilation unit begins with an optional package declaration followed by zero or
more import declarations. These declarations specify the namespace within which
the compilation unit will define names, and the namespaces from which the compi‐
lation unit imports names. We’ll see package and import again later in this chapter
in “Packages and the Java Namespace” on page 88.

The optional package and import declarations are followed by zero or more refer‐
ence type definitions. We will meet the full variety of possible reference types in
Chapters 3 and 4, but for now, we should note that these are most often either class
or interface definitions.

Within the definition of a reference type, we will encounter members such as fields,
methods, and constructors. Methods are the most important kind of member. Meth‐
ods are blocks of Java code comprised of statements.

With these basic terms defined, let’s start by approaching a Java program from the
bottom up by examining the basic units of syntax—often referred to as lexical
tokens.

Lexical Structure
This section explains the lexical structure of a Java program. It starts with a discus‐
sion of the Unicode character set in which Java programs are written. It then covers
the tokens that comprise a Java program, explaining comments, identifiers, reserved
words, literals, and so on.

The Unicode Character Set
Java programs are written  using Unicode. You can use Unicode characters any‐
where in a Java program, including comments and identifiers such as variable
names. Unlike the 7-bit ASCII character set, which is useful only for English, and
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the 8-bit ISO Latin-1 character set, which is useful only for major Western European
languages, the Unicode character set can represent virtually every written language
in common use on the planet.

If you do not use a Unicode-enabled text editor, or if you do
not want to force other programmers who view or edit your
code to use a Unicode-enabled editor, you can embed Unicode
characters into your Java programs using the special Unicode
escape sequence \uxxxx, in other words, a backslash and a
lowercase u, followed by four hexadecimal characters. For
example, \u0020 is the space character, and \u03c0 is the
character π.

Java has invested a large amount of time and engineering effort in ensuring that its
Unicode support is first class. If your business application needs to deal with global
users, especially in non-Western markets, then the Java platform is a great choice.

Case Sensitivity and Whitespace
Java is a case-sensitive language. Its keywords are written in lowercase and must
always be used that way. That is, While and WHILE are not the same as the while
keyword. Similarly, if you declare a variable named i in your program, you may not
refer to it as I.

In general, relying on case sensitivity to distinguish identifiers
is a terrible idea. Do not use it in your own code, and in par‐
ticular never give an identifier the same name as a keyword
but differently cased.

Java ignores spaces, tabs, newlines, and other whitespace, except when it appears
within quoted characters and string literals. Programmers typically use whitespace
to format and indent their code for easy readability, and you will see common
indentation conventions in the code examples of this book.

Comments
Comments are natural-language text intended for human readers of a program.
They are ignored by the Java compiler. Java supports three types of comments. The
first type is a single-line comment, which begins with the characters // and contin‐
ues until the end of the current line. For example:

int i = 0;   // Initialize the loop variable

The second kind of comment is a multiline comment. It begins with the charac‐
ters /* and continues, over any number of lines, until the characters */. Any text
between the /* and the */ is ignored by javac. Although this style of comment is
typically used for multiline comments, it can also be used for single-line comments.
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This type of comment cannot be nested (i.e., one /* */ comment cannot appear
within another). When writing multiline comments, programmers often use extra *
characters to make the comments stand out. Here is a typical multiline comment:

/*
 * First, establish a connection to the server.
 * If the connection attempt fails, quit right away.
 */

The third type of comment is a special case of the second. If a comment begins
with /**, it is regarded as a special doc comment. Like regular multiline comments,
doc comments end with */ and cannot be nested. When you write a Java class you
expect other programmers to use, use doc comments to embed documentation
about the class and each of its methods directly into the source code. A program 
named javadoc extracts these comments and processes them to create online docu‐
mentation for your class. A doc comment can contain HTML tags and can use addi‐
tional syntax understood by javadoc. For example:

/**
 * Upload a file to a web server.
 *
 * @param file The file to upload.
 * @return <tt>true</tt> on success,
 *         <tt>false</tt> on failure.
 * @author David Flanagan
 */

See Chapter 7 for more information on the doc comment syntax and Chapter 13 for
more information on the javadoc program.

Comments may appear between any tokens of a Java program, but may not appear
within a token. In particular, comments may not appear within double-quoted
string literals. A comment within a string literal simply becomes a literal part of that
string.

Reserved Words
The following words are reserved in Java (they are part of the syntax of the language
and may not be used to name variables, classes, and so forth):

abstract   const      final        int         public        throw
assert     continue   finally      interface   return        throws
boolean    default    float        long        short         transient
break      do         for          native      static        true
byte       double     goto         new         strictfp      try
case       else       if           null        super         void
catch      enum       implements   package     switch        volatile
char       extends    import       private     synchronized  while
class      false      instanceof   protected   this

We’ll meet each of these reserved words again later in this book. Some of them are
the names of primitive types and others are the names of Java statements, both of
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which are discussed later in this chapter. Still others are used to define classes and
their members (see Chapter 3).

Note that const and goto are reserved but aren’t actually used in the language, and
that interface has an additional variant form—@interface, which is used when
defining types known as annotations. Some of the reserved words (notably final
and default) have a variety of different meanings depending on context.

Identifiers
An identifier is simply a name given to some part of a Java program, such as a class,
a method within a class, or a variable declared within a method. Identifiers may be
of any length and may contain letters and digits drawn from the entire Unicode
character set. An identifier may not begin with a digit. In general, identifiers may
not contain punctuation characters. Exceptions include the ASCII underscore (_)
and dollar sign ($) as well as other Unicode currency symbols such as £ and ¥.

Currency symbols are intended for use in automatically gener‐
ated source code, such as code produced by javac. By avoid‐
ing the use of currency symbols in your own identifiers, you
don’t have to worry about collisions with automatically gener‐
ated identifiers.

Formally, the characters allowed at the beginning of and within an identifier are
defined by the methods isJavaIdentifierStart() and isJavaIdentifierPart()
of the class java.lang.Character.

The following are examples of legal identifiers:

i    x1    theCurrentTime    the_current_time    獺

Note in particular the example of a UTF-8 identifier—獺. This is the Kanji character
for “otter” and is perfectly legal as a Java identifier. The usage of non-ASCII identifi‐
ers is unusual in programs predominantly written by Westerners, but is sometimes
seen.

Literals
Literals are values that appear directly in Java source code. They include integer and
floating-point numbers, single characters within single quotes, strings of characters
within double quotes, and the reserved words true, false, and null. For example,
the following are all literals:

1    1.0    '1'    "one"    true    false    null

The syntax for expressing numeric, character, and string literals is detailed in
“Primitive Data Types” on page 22.

Java Syntax

Lexical Structure | 21



Punctuation
Java also uses a number of punctuation characters as tokens. The Java Language
Specification divides these characters (somewhat arbitrarily) into two categories,
separators and operators. The twelve separators are:

(   )   {   }   [   ]

... @ ::

;  ,   .

The operators are:

+   —   *    /    %    &   |    ^    <<   >>   >>>
+=   -=   *=   /=   %=   &=  |=   ^=   <<=  >>=  >>>=
=    ==   !=   <    <=   >    >=
!    ~    &&  ||   ++   --   ?    :   ->

We’ll see separators throughout the book, and will cover each operator individually
in “Expressions and Operators” on page 30.

Primitive Data Types
Java supports eight basic data types known as primitive types as described in Table
2-1. The primitive types include a Boolean type, a character type, four integer types,
and two floating-point types. The four integer types and the two floating-point types
differ in the number of bits that represent them and therefore in the range of num‐
bers they can represent.

Table 2-1. Java primitive data types

Type Contains Default Size Range

boolean true or false false 1 bit NA

char Unicode character \u0000 16 bits \u0000 to \uFFFF

byte Signed integer 0 8 bits -128 to 127

short Signed integer 0 16 bits -32768 to 32767

int Signed integer 0 32 bits -2147483648 to 2147483647

long Signed integer 0 64 bits -9223372036854775808 to 9223372036854775807

float IEEE 754 floating point 0.0 32 bits 1.4E-45 to 3.4028235E+38

double IEEE 754 floating point 0.0 64 bits 4.9E-324 to 1.7976931348623157E+308
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The next section summarizes these primitive data types. In addition to these primi‐
tive types, Java supports nonprimitive data types known as reference types, which
are introduced in “Reference Types” on page 84.

The boolean Type
The boolean type represents truth values. This type has only two possible values,
representing the two Boolean states: on or off, yes or no, true or false. Java reserves
the words true and false to represent these two Boolean values.

Programmers coming to Java from other languages (especially JavaScript) should
note that Java is much stricter about its Boolean values than other languages—in
particular, a boolean is neither an integral nor an object type, and incompatible val‐
ues cannot be used in place of a boolean. In other words, you cannot take shortcuts
such as the following in Java:

Object o = new Object();
int i = 1;

if (o) {
  while(i) {
    //...
  }
}

Instead, Java forces you to write cleaner code by explicitly stating the comparisons
you want:

if (o != null) {
  while(i != 0) {
    // ...
  }
}

The char Type
The char type represents Unicode characters. Java has a slightly unique approach to
representing characters—javac accepts identifiers as UTF-8 (a variable-width
encoding) in input, but represents chars internally as a fixed-width encoding that is
16 bits wide.

These distinctions do not normally need to concern the developer, however. In most
cases, all that is required is to remember the rule that to include a character literal in
a Java program, simply place it between single quotes (apostrophes):

char c = 'A';

You can, of course, use any Unicode character as a character literal, and you can use
the \u Unicode escape sequence. In addition, Java supports a number of other
escape sequences that make it easy both to represent commonly used nonprinting
ASCII characters such as newline and to escape certain punctuation characters that
have special meaning in Java. For example:
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char tab = '\t', nul = '\000', aleph = '\u05D0', slash = '\\';

Table 2-2 lists the escape characters that can be used in char literals. These charac‐
ters can also be used in string literals, which are covered in the next section.

Table 2-2. Java escape characters

Escape
sequence

Character value

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\ xxx The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number
between 000 and 377. The forms \ x and \ xx are also legal, as in \0, but are not
recommended because they can cause difficulties in string constants where the escape
sequence is followed by a regular digit. This form is generally discouraged in favor of the
\uXXXX form.

\u xxxx The Unicode character with encoding xxxx, where xxxx is four hexadecimal digits.
Unicode escapes can appear anywhere in a Java program, not only in character and string
literals.

char values can be converted to and from the various integral types, and the char
data type is a 16-bit integral type. Unlike byte, short, int, and long, however, char
is an unsigned type. The Character class defines a number of useful static
methods for working with characters, including isDigit(), isJavaLetter(), isLo
werCase(), and toUpperCase().

The Java language and its char type were designed with Unicode in mind. The
Unicode standard is evolving, however, and each new version of Java adopts a new
version of Unicode. Java 7 uses Unicode 6.0 and Java 8 uses Unicode 6.2.

Recent releases of Unicode include characters whose encodings, or codepoints, do
not fit in 16 bits. These supplementary characters, which are mostly infrequently
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1 Technically, the minus sign is an operator that operates on the literal, but is not part of the literal
itself.

used Han (Chinese) ideographs, occupy 21 bits and cannot be represented in a sin‐
gle char value. Instead, you must use an int value to hold the codepoint of a sup‐
plementary character, or you must encode it into a so-called “surrogate pair” of two
char values.

Unless you commonly write programs that use Asian languages, you are unlikely to
encounter any supplementary characters. If you do anticipate having to process
characters that do not fit into a char, methods have been added to the Character,
String, and related classes for working with text using int codepoints.

String literals
In addition to the char type, Java also has a data type for working with strings of 
text (usually simply called strings). The String type is a class, however, and is not
one of the primitive types of the language. Because strings are so commonly used,
though, Java does have a syntax for including string values literally in a program. A
String literal consists of arbitrary text within double quotes (as opposed to the sin‐
gle quotes for char literals). For example:

"Hello, world"
"'This' is a string!"

String literals can contain any of the escape sequences that can appear as char liter‐
als (see Table 2-2). Use the \" sequence to include a double quote within a String
literal. Because String is a reference type, string literals are described in more detail
later in this chapter in “Object Literals” on page 74. Chapter 9 contains more details
on some of the ways you can work with String objects in Java.

Integer Types
The integer types in Java are byte, short, int, and long. As shown in Table 2-1,
these four types differ only in the number of bits and, therefore, in the range of
numbers each type can represent. All integral types represent signed numbers; there
is no unsigned keyword as there is in C and C++.

Literals for each of these types are written exactly as you would expect: as a string of
decimal digits, optionally preceded by a minus sign.1 Here are some legal integer 
literals:

0
1
123
-42000

Integer literals can also be expressed in hexadecimal, binary, or octal notation. A lit‐
eral that begins with 0x or 0X is taken as a hexadecimal number, using the letters A
to F (or a to f) as the additional digits required for base-16 numbers.
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Integer binary literals start with 0b and may, of course, only feature the digits 1 or 0.
As binary literals can be very long, underscores are often used as part of a binary
literal. The underscore character is ignored whenever it is encountered in any
numerical literal—it’s allowed purely to help with readability of literals.

Java also supports octal (base-8) integer literals. These literals begin with a leading 0
and cannot include the digits 8 or 9. They are not often used and should be avoided
unless needed. Legal hexadecimal, binary, and octal literals include:

0xff              // Decimal 255, expressed in hexadecimal
0377              // The same number, expressed in octal (base 8)
0b0010_1111       // Decimal 47, expressed in binary
0xCAFEBABE        // A magic number used to identify Java class files

Integer literals are 32-bit int values unless they end with the character L or l, in
which case they are 64-bit long values:

1234        // An int value
1234L       // A long value
0xffL       // Another long value

Integer arithmetic in Java never produces an overflow or an underflow when you
exceed the range of a given integer type. Instead, numbers just wrap around. For
example:

byte b1 = 127, b2 = 1;        // Largest byte is 127
byte sum = (byte)(b1 + b2);   // Sum wraps to -128, the smallest byte

Neither the Java compiler nor the Java interpreter warns you in any way when this
occurs. When doing integer arithmetic, you simply must ensure that the type you
are using has a sufficient range for the purposes you intend. Integer division by zero
and modulo by zero are illegal and cause an ArithmeticException to be thrown.

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and
Long. Each of these classes defines MIN_VALUE and MAX_VALUE constants that
describe the range of the type. The classes also define useful static methods, such as
Byte.parseByte() and Integer.parseInt(), for converting strings to
integer values.

Floating-Point Types
Real numbers in Java are represented by the float and double data types. As shown
in Table 2-1, float is a 32-bit, single-precision floating-point value, and double is a
64-bit, double-precision floating-point value. Both types adhere to the IEEE
754-1985 standard, which specifies both the format of the numbers and the behav‐
ior of arithmetic for the numbers.

Floating-point values can be included literally in a Java program as an optional
string of digits, followed by a decimal point and another string of digits. Here are
some examples:
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123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a
number is followed by the letter e or E (for exponent) and another number. This
second number represents the power of 10 by which the first number is multiplied.
For example:

1.2345E02    // 1.2345 * 10^2 or 123.45
1e-6         // 1 * 10^-6 or 0.000001
6.02e23      // Avogadro's Number: 6.02 * 10^23

Floating-point literals are double values by default. To include a float value literally
in a program, follow the number with f or F:

double d = 6.02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal, binary, or octal notation.

Floating-Point Representations
Most real numbers, by their very nature, cannot be represented exactly in any finite
number of bits. Thus, it is important to remember that float and double values are
only approximations of the numbers they are meant to represent. A float is a 32-bit
approximation, which results in at least six significant decimal digits, and a double
is a 64-bit approximation, which results in at least 15 significant digits. In Chapter 9,
we will cover floating-point representations in more detail.

In addition to representing ordinary numbers, the float and double types can also
represent four special values: positive and negative infinity, zero, and NaN. The
infinity values result when a floating-point computation produces a value that
overflows the representable range of a float or double. When a floating-point com‐
putation underflows the representable range of a float or a double, a zero value
results.

The Java floating-point types make a distinction between positive zero and negative
zero, depending on the direction from which the underflow occurred. In practice,
positive and negative zero behave pretty much the same. Finally, the last special
floating-point value is NaN, which stands for “Not-a-number.” The NaN value
results when an illegal floating-point operation, such as 0.0/0.0, is performed. Here
are examples of statements that result in these special values:

double inf = 1.0/0.0;             // Infinity
double neginf = -1.0/0.0;         // Negative Infinity
double negzero = -1.0/inf;        // Negative zero
double NaN = 0.0/0.0;             // Not-a-number
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Because the Java floating-point types can handle overflow to infinity and underflow
to zero and have a special NaN value, floating-point arithmetic never throws excep‐
tions, even when performing illegal operations, like dividing zero by zero or taking
the square root of a negative number.

The float and double primitive types have corresponding classes, named Float
and Double. Each of these classes defines the following useful constants: MIN_VALUE,
MAX_VALUE, NEGATIVE_INFINITY, POSITIVE_INFINITY, and NaN.

The infinite floating-point values behave as you would expect. Adding or subtract‐
ing any finite value to or from infinity, for example, yields infinity. Negative zero
behaves almost identically to positive zero, and, in fact, the == equality operator
reports that negative zero is equal to positive zero. One way to distinguish negative
zero from positive, or regular, zero is to divide by it: 1.0/0.0 yields positive infinity,
but 1.0 divided by negative zero yields negative infinity. Finally, because NaN is Not-
a-number, the == operator says that it is not equal to any other number, including
itself! To check whether a float or double value is NaN, you must use the
Float.isNaN() and Double.isNaN() methods.

Primitive Type Conversions
Java allows conversions between integer values and floating-point values. In addi‐
tion, because every character corresponds to a number in the Unicode encoding,
char values can be converted to and from the integer and floating-point types. In
fact, boolean is the only primitive type that cannot be converted to or from another
primitive type in Java.

There are two basic types of conversions. A widening conversion occurs when a
value of one type is converted to a wider type—one that has a larger range of legal
values. For example, Java performs widening conversions automatically when you
assign an int literal to a double variable or a char literal to an int variable.

Narrowing conversions are another matter, however. A narrowing conversion occurs
when a value is converted to a type that is not wider than it is. Narrowing conver‐
sions are not always safe: it is reasonable to convert the integer value 13 to a byte,
for example, but it is not reasonable to convert 13,000 to a byte, because byte can
hold only numbers between -128 and 127. Because you can lose data in a narrowing
conversion, the Java compiler complains when you attempt any narrowing conver‐
sion, even if the value being converted would in fact fit in the narrower range of the
specified type:

int i = 13;
byte b = i;    // The compiler does not allow this

The one exception to this rule is that you can assign an integer literal (an int value)
to a byte or short variable if the literal falls within the range of the variable.

If you need to perform a narrowing conversion and are confident you can do so
without losing data or precision, you can force Java to perform the conversion using
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a language construct known as a cast. Perform a cast by placing the name of the
desired type in parentheses before the value to be converted. For example:

int i = 13;
byte b = (byte) i;   // Force the int to be converted to a byte
i = (int) 13.456;    // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to inte‐
gers. When you do this, the fractional part of the floating-point value is simply trun‐
cated (i.e., the floating-point value is rounded toward zero, not toward the nearest
integer). The static methods Math.round(), Math.floor(), and Math.ceil() per‐
form other types of rounding.

The char type acts like an integer type in most ways, so a char value can be used
anywhere an int or long value is required.  Recall, however, that the char type is
unsigned, so it behaves differently than  the short type, even though both are 16 bits
wide:

short s = (short) 0xffff; // These bits represent the number -1
char c = '\uffff';        // The same bits, as a Unicode character
int i1 = s;               // Converting the short to an int yields -1
int i2 = c;               // Converting the char to an int yields 65535

Table 2-3 shows which primitive types can be converted to which other types and
how the conversion is performed. The letter N in the table means that the conver‐
sion cannot be performed. The letter Y means that the conversion is a widening
conversion and is therefore performed automatically and implicitly by Java. The let‐
ter C means that the conversion is a narrowing conversion and requires an explicit
cast.

Finally, the notation Y* means that the conversion is an automatic widening conver‐
sion, but that some of the least significant digits of the value may be lost in the con‐
version. This can happen when converting an int or long to a floating-point type—
see the table for details. The floating-point types have a larger range than the integer
types, so any int or long can be represented by a float or double. However, the
floating-point types are approximations of numbers and cannot always hold as
many significant digits as the integer types (see Chapter 9 for some more detail
about floating-point numbers).

Table 2-3. Java primitive type conversions

 Convert to:        

Convert from: boolean byte short char int long float double

boolean - N N N N N N N

byte N - Y C Y Y Y Y

short N C - C Y Y Y Y
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 Convert to:        

Convert from: boolean byte short char int long float double

char N C C - Y Y Y Y

int N C C C - Y Y* Y

long N C C C C - Y* Y*

float N C C C C C - Y

double N C C C C C C -

Expressions and Operators
So far in this chapter, we’ve learned about the primitive types that Java programs can
manipulate and seen how to include primitive values as literals in a Java program.
We’ve also used variables as symbolic names that represent, or hold, values. These
literals and variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java inter‐
preter evaluates an expression to compute its value. The very simplest expressions
are called primary expressions and consist of literals and variables. So, for example,
the following are all expressions:

1.7         // A floating-point literal
true        // A Boolean literal
sum         // A variable

When the Java interpreter evaluates a literal expression, the resulting value is the lit‐
eral itself. When the interpreter evaluates a variable expression, the resulting value
is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions are made
by using operators to combine primary expressions. For example, the following
expression uses the assignment operator to combine two primary expressions—a
variable and a floating-point literal—into an assignment expression:

sum = 1.7

But operators are used not only with primary expressions; they can also be used
with expressions at any level of complexity. The following are all legal expressions:

sum = 1 + 2 + 3 * 1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)

Operator Summary
The kinds of expressions you can write in a programming language depend entirely
on the set of operators available to you. Java has a wealth of operators, but to work
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effectively with them, there are two important concepts that need to be understood:
precedence and associativity. These concepts—and the operators themselves—are
explained in more detail in the following sections.

Precedence
The P column of Table 2-4 specifies the precedence of each operator. Precedence
specifies the order in which operations are performed. Operations that have higher
precedence are performed before those with lower precedence. For example, con‐
sider this expression:

a + b * c

The multiplication operator has higher precedence than the addition operator, so a
is added to the product of b and c, just as we expect from elementary mathematics.
Operator precedence can be thought of as a measure of how tightly operators bind
to their operands. The higher the number, the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses that
explicitly specify the order of operations. The previous expression can be rewritten
to specify that the addition should be performed before the multiplication:

(a + b) * c

The default operator precedence in Java was chosen for compatibility with C; the
designers of C chose this precedence so that most expressions can be written natu‐
rally without parentheses. There are only a few common Java idioms for which
parentheses are required. Examples include:

// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

Associativity
Associativity is a property of operators that defines how to evaluate expressions that
would otherwise be ambiguous. This is particularly important when an expression
involves several operators that have the same precedence.

Most operators are left-to-right associative, which means that the operations are
performed from left to right. The assignment and unary operators, however, have
right-to-left associativity. The A column of Table 2-4 specifies the associativity of
each operator or group of operators. The value L means left to right, and R means
right to left.
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The additive operators are all left-to-right associative, so the expression a+b-c is
evaluated from left to right: (a+b)-c. Unary operators and assignment operators are
evaluated from right to left. Consider this complex expression:

a = b += c = -~d

This is evaluated as follows:

a = (b += (c = -(~d)))

As with operator precedence, operator associativity establishes a default order of
evaluation for an expression. This default order can be overridden through the use
of parentheses. However, the default operator associativity in Java has been chosen
to yield a natural expression syntax, and you should rarely need to alter it.

Operator summary table
Table 2-4 summarizes the operators available in Java. The P and A columns of the
table specify the precedence and associativity of each group of related operators,
respectively. You should use this table as a quick reference for operators (especially
their precedence) when required.

Table 2-4. Java operators

P A Operator Operand type(s) Operation performed

16 L . object, member Object member access

  
[ ] array, int Array element access

  
( args ) method, arglist Method invocation

  
++, -- variable Post-increment, post-decrement

15 R ++, -- variable Pre-increment, pre-decrement

  
+, - number Unary plus, unary minus

  
~ integer Bitwise complement

  
! boolean Boolean NOT

14 R new class, arglist Object creation

  
( type ) type, any Cast (type conversion)

13 L \*, /, % number, number Multiplication, division, remainder

12 L +, - number, number Addition, subtraction
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P A Operator Operand type(s) Operation performed

  
+ string, any String concatenation

11 L << integer, integer Left shift

  
>> integer, integer Right shift with sign extension

  
>>> integer, integer Right shift with zero extension

10 L <, <= number, number Less than, less than or equal

  
>, >= number, number Greater than, greater than or equal

  
instanceof reference, type Type comparison

9 L == primitive, primitive Equal (have identical values)

  
!= primitive, primitive Not equal (have different values)

  
== reference, reference Equal (refer to same object)

  
!= reference, reference Not equal (refer to different objects)

8 L & integer, integer Bitwise AND

  
& boolean, boolean Boolean AND

7 L ^ integer, integer Bitwise XOR

  
^ boolean, boolean Boolean XOR

6 L | integer, integer Bitwise OR

  
| boolean, boolean Boolean OR

5 L && boolean, boolean Conditional AND

4 L || boolean, boolean Conditional OR

3 R ? : boolean, any Conditional (ternary) operator

2 R = variable, any Assignment

  
*=, /=, %=, variable, any Assignment with operation

Java Syntax

Expressions and Operators | 33



P A Operator Operand type(s) Operation performed

  
+=, -=, <<=,   

  
>>=, >>>=,   

  
&=, ^=, |=   

1 R → arglist, method body lambda expression

Operand number and type
The fourth column of Table 2-4 specifies the number and type of the operands
expected by each operator. Some operators operate on only one operand; these are
called unary operators. For example, the unary minus operator changes the sign of a
single number:

-n             // The unary minus operator

Most operators, however, are binary operators that operate on two operand values.
The - operator actually comes in both forms:

a – b          // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is like
an if statement inside an expression. Its three operands are separated by a question
mark and a colon; the second and third operands must be convertible to the same
type:

x > y ? x : y  // Ternary expression; evaluates to larger of x and y

In addition to expecting a certain number of operands, each operator also expects
particular types of operands. The fourth column of the table lists the operand types.
Some of the codes used in that column require further explanation:

Number
An integer, floating-point value, or character (i.e., any primitive type except
boolean). Autounboxing (see “Boxing and Unboxing Conversions” on page 87)
means that the wrapper classes (such as Character, Integer, and Double) for
these types can be used in this context as well.

Integer
A byte, short, int, long, or char value (long values are not allowed for the
array access operator [ ]). With autounboxing, Byte, Short, Integer, Long,
and Character values are also allowed.

Reference
An object or array.
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Variable
A variable or anything else, such as an array element, to which a value can be
assigned.

Return type
Just as every operator expects its operands to be of specific types, each operator pro‐
duces a value of a specific type. The arithmetic, increment and decrement, bitwise,
and shift operators return a double if at least one of the operands is a double. They
return a float if at least one of the operands is a float. They return a long if at
least one of the operands is a long. Otherwise, they return an int, even if both 
operands are byte, short, or char types that are narrower than int.

The comparison, equality, and Boolean operators always return boolean values. 
Each assignment operator returns whatever value it assigned, which is of a type
compatible with the variable on the left side of the expression. The conditional
operator returns the value of its second or third argument (which must both be of
the same type).

Side effects
Every operator computes a value based on one or more operand values. Some oper‐
ators, however, have side effects in addition to their basic evaluation. If an expression
contains side effects, evaluating it changes the state of a Java program in such a way
that evaluating the expression again may yield a different result.

For example, the ++ increment operator has the side effect of incrementing a vari‐
able. The expression ++a increments the variable a and returns the newly incremen‐
ted value. If this expression is evaluated again, the value will be different. The vari‐
ous assignment operators also have side effects. For example, the expression a\*=2
can also be written as a=a\*2. The value of the expression is the value of a multi‐
plied by 2, but the expression has the side effect of storing that value back into a.

The method invocation operator () has side effects if the invoked method has side
effects. Some methods, such as Math.sqrt(), simply compute and return a value
without side effects of any kind. Typically, however, methods do have side effects.
Finally, the new operator has the profound side effect of creating a new object.

Order of evaluation
When the Java interpreter evaluates an expression, it performs the various opera‐
tions in an order specified by the parentheses in the expression, the precedence of
the operators, and the associativity of the operators. Before any operation is per‐
formed, however, the interpreter first evaluates the operands of the operator. (The
exceptions are the &&, ||, and ?: operators, which do not always evaluate all their
operands.) The interpreter always evaluates operands in order from left to right.
This matters if any of the operands are expressions that contain side effects. Con‐
sider this code, for example:
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int a = 2;
int v = ++a + ++a * ++a;

Although the multiplication is performed before the addition, the operands of the +
operator are evaluated first. As the operands of ++ are both a+, these are evaluated
to 3 and 4, and so the expression evaluates to 3 + 4 * 5, or 23.

Arithmetic Operators
The arithmetic operators can be used with integers, floating-point numbers, and
even characters (i.e., they can be used with any primitive type other than boolean).
If either of the operands is a floating-point number, floating-point arithmetic is
used; otherwise, integer arithmetic is used. This matters because integer arithmetic
and floating-point arithmetic differ in the way division is performed and in the way
underflows and overflows are handled, for example. The arithmetic operators are:

Addition (+)
The + operator adds two numbers. As we’ll see shortly, the + operator can also
be used to concatenate strings. If either operand of + is a string, the other one is
converted to a string as well. Be sure to use parentheses when you want to com‐
bine addition with concatenation. For example:

System.out.println("Total: " + 3 + 4);    // Prints "Total: 34", not 7!

Subtraction (-)
When the - operator is used as a binary operator, it subtracts its second
operand from its first. For example, 7-3 evaluates to 4. The - operator can also
perform unary negation.

Multiplication (*)
The * operator multiplies its two operands. For example, 7*3 evaluates to 21.

Division (/)
The / operator divides its first operand by its second. If both operands are inte‐
gers, the result is an integer, and any remainder is lost. If either operand is a
floating-point value, however, the result is a floating-point value. When divid‐
ing two integers, division by zero throws an ArithmeticException. For 
floating-point calculations, however, division by zero simply yields an infinite
result or NaN:

7/3          // Evaluates to 2
7/3.0f       // Evaluates to 2.333333f
7/0          // Throws an ArithmeticException
7/0.0        // Evaluates to positive infinity
0.0/0.0      // Evaluates to NaN

Modulo (%)
The % operator computes the first operand modulo the second operand (i.e., it
returns the remainder when the first operand is divided by the second operand
an integral number of times). For example, 7%3 is 1. The sign of the result is
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the same as the sign of the first operand. While the modulo operator is typically
used with integer operands, it also works for floating-point values. For exam‐
ple, 4.3%2.1 evaluates to 0.1. When operating with integers, trying to compute
a value modulo zero causes an ArithmeticException. When working with
floating-point values, anything modulo 0.0 evaluates to NaN, as does infinity
modulo anything.

Unary minus (-)
When the - operator is used as a unary operator—that is, before a single
operand—it performs unary negation. In other words, it converts a positive
value to an equivalently negative value, and vice versa.

String Concatenation Operator
In addition to adding numbers, the + operator (and the related += operator) also
concatenates, or joins, strings. If either of the operands to + is a string, the operator
converts the other operand to a string. For example:

// Prints "Quotient: 2.3333333"
System.out.println("Quotient: " + 7/3.0f);

As a result, you must be careful to put any addition expressions in parentheses
when combining them with string concatenation. If you do not, the addition opera‐
tor is interpreted as a concatenation operator.

The Java interpreter has built-in string conversions for all primitive types. An object
is converted to a string by invoking its toString() method. Some classes define
custom toString() methods so that objects of that class can easily be converted to
strings in this way. An array is converted to a string by invoking the built-in
toString() method, which, unfortunately, does not return a useful string represen‐
tation of the array contents.

Increment and Decrement Operators
The ++ operator increments its single operand, which must be a variable, an element
of an array, or a field of an object, by 1. The behavior of this operator depends on its
position relative to the operand. When used before the operand, where it is known
as the pre-increment operator, it increments the operand and evaluates to the incre‐
mented value of that operand. When used after the operand, where it is known as
the post-increment operator, it increments its operand, but evaluates to the value of
that operand before it was incremented.

For example, the following code sets both i and j to 2:

i = 1;
j = ++i;

But these lines set i to 2 and j to 1:

i = 1;
j = i++;
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Similarly, the -- operator decrements its single numeric operand, which must be a
variable, an element of an array, or a field of an object, by one. Like the ++ operator,
the behavior of -- depends on its position relative to the operand. When used
before the operand, it decrements the operand and returns the decremented value.
When used after the operand, it decrements the operand, but returns the undecre‐
mented value.

The expressions x++ and x-- are equivalent to x=x+1 and x=x-1, respectively, except
that when using the increment and decrement operators, x is only evaluated once. If
x is itself an expression with side effects, this makes a big difference. For example,
these two expressions are not equivalent:

a[i++]++;             // Increments an element of an array
// Adds 1 to an array element and stores new value in another element
a[i++] = a[i++] + 1;

These operators, in both prefix and postfix forms, are most commonly used to
increment or decrement the counter that controls a loop.

Comparison Operators
The comparison operators consist of the equality operators that test values for
equality or inequality and the relational operators used with ordered types (num‐
bers and characters) to test for greater than and less than relationships. Both types
of operators yield a boolean result, so they are typically used with if statements and
while and for loops to make branching and looping decisions. For example:

if (o != null) ...;           // The not equals operator
while(i < a.length) ...;      // The less than operator

Java provides the following equality operators:

Equals (==)
The == operator evaluates to true if its two operands are equal and false
otherwise. With primitive operands, it tests whether the operand values them‐
selves are identical. For operands of reference types, however, it tests whether
the operands refer to the same object or array. In other words, it does not test
the equality of two distinct objects or arrays. In particular, note that you cannot
test two distinct strings for equality with this operator.

If == is used to compare two numeric or character operands that are not of the
same type, the narrower operand is converted to the type of the wider operand
before the comparison is done. For example, when comparing a short to a
float, the short is first converted to a float before the comparison is per‐
formed. For floating-point numbers, the special negative zero value tests equal
to the regular, positive zero value. Also, the special NaN (Not-a-number) value
is not equal to any other number, including itself. To test whether a floating-
point value is NaN, use the Float.isNan() or Double.isNan() method.
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Not equals (!=)
The != operator is exactly the opposite of the == operator. It evaluates to true if
its two primitive operands have different values or if its two reference operands
refer to different objects or arrays. Otherwise, it evaluates to false.

The relational operators can be used with numbers and characters, but not with
boolean values, objects, or arrays because those types are not ordered. Java pro‐
vides the following relational operators:

Less than (<)
Evaluates to true if the first operand is less than the second.

Less than or equal (<=)
Evaluates to true if the first operand is less than or equal to the second.

Greater than (>)
Evaluates to true if the first operand is greater than the second.

Greater than or equal (>=)
Evaluates to true if the first operand is greater than or equal to the second.

Boolean Operators
As we’ve just seen, the comparison operators compare their operands and yield a
boolean result, which is often used in branching and looping statements. In order
to make branching and looping decisions based on conditions more interesting
than a single comparison, you can use the Boolean (or logical) operators to combine
multiple comparison expressions into a single, more complex expression. The
Boolean operators require their operands to be boolean values and they evaluate to
boolean values. The operators are:

Conditional AND (&&)
This operator performs a Boolean AND operation on its operands. It evaluates
to true if and only if both its operands are true. If either or both operands are
false, it evaluates to false. For example:

if (x < 10 && y > 3) ... // If both comparisons are true

This operator (and all the Boolean operators except the unary ! operator) have
a lower precedence than the comparison operators. Thus, it is perfectly legal to
write a line of code like the one just shown. However, some programmers pre‐
fer to use parentheses to make the order of evaluation explicit:

if ((x < 10) && (y > 3)) ...

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates its
second operand. If the first operand evaluates to false, the value of the expres‐
sion is false, regardless of the value of the second operand. Therefore, to
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increase efficiency, the Java interpreter takes a shortcut and skips the second
operand. The second operand is not guaranteed to be evaluated, so you must
use caution when using this operator with expressions that have side effects.
On the other hand, the conditional nature of this operator allows us to write
Java expressions such as the following:

if (data != null && i < data.length && data[i] != -1)
    ...

The second and third comparisons in this expression would cause errors if the
first or second comparisons evaluated to false. Fortunately, we don’t have to
worry about this because of the conditional behavior of the && operator.

Conditional OR (||)
This operator performs  a Boolean OR operation on its two boolean operands.
It evaluates to true if either or both of its operands are true. If both operands
are false, it evaluates to false. Like the && operator, || does not always evalu‐
ate its second operand. If the first operand evaluates to true, the value of the
expression is true, regardless of the value of the second operand. Thus, the
operator simply skips the second operand in that case.

Boolean NOT (!)
This unary operator changes the boolean value of its operand. If applied to a
true value, it evaluates to false, and if applied to a false value, it evaluates to
true. It is useful in expressions like these:

if (!found) ...          // found is a boolean declared somewhere
while (!c.isEmpty()) ... // The isEmpty() method returns a boolean 

Because ! is a unary operator, it has a high precedence and often must be used
with parentheses:

if (!(x > y && y > z))

Boolean AND (&)
When used with boolean operands, the & operator behaves like the && operator,
except that it always evaluates both operands, regardless of the value of the first
operand. This operator is almost always used as a bitwise operator with integer
operands, however, and many Java programmers would not even recognize its
use with boolean operands as legal Java code.

Boolean OR (|)
This operator performs a Boolean OR operation on its two boolean operands.
It is like the || operator, except that it always evaluates both operands, even if
the first one is true. The | operator is almost always used as a bitwise operator
on integer operands; its use with boolean operands is very rare.

Boolean XOR (^)
When used with boolean operands, this operator computes the exclusive OR
(XOR) of its operands. It evaluates to true if exactly one of the two operands is
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true. In other words, it evaluates to false if both operands are false or if both
operands are true. Unlike the && and || operators, this one must always evalu‐
ate both operands. The ^ operator is much more commonly used as a bitwise
operator on integer operands. With boolean operands, this operator is equiva‐
lent to the != operator.

Bitwise and Shift Operators
The bitwise and shift operators are low-level operators that manipulate the individ‐
ual bits that make up an integer value. The bitwise operators are not commonly
used in modern Java except for low-level work (e.g., network programming). They
are used for testing and setting individual flag bits in a value. In order to understand
their behavior, you must understand binary (base-2) numbers and the two’s comple‐
ment format used to represent negative integers.

You cannot use these operators with floating-point, boolean, array, or object
operands. When used with boolean operands, the &, |, and \^ operators perform a
different operation, as described in the previous section.

If either of the arguments to a bitwise operator is a long, the result is a long. Other‐
wise, the result is an int. If the left operand of a shift operator is a long, the result is
a long; otherwise, the result is an int. The operators are:

Bitwise complement (~)
The unary ~ operator is known as the bitwise complement, or bitwise NOT,
operator. It inverts each bit of its single operand, converting 1s to 0s and 0s to
1s. For example:

byte b = ~12;           // ~00001100 =  => 11110011 or -13 decimal
flags = flags & ~f;     // Clear flag f in a set of flags

Bitwise AND (&)
This operator combines its two integer operands by performing a Boolean
AND operation on their individual bits. The result has a bit set only if the cor‐
responding bit is set in both operands. For example:

10 & 7                   // 00001010 & 00000111 =  => 00000010 or 2
if ((flags & f) != 0)    // Test whether flag f is set

When used with boolean operands, & is the infrequently used Boolean AND
operator described earlier.

Bitwise OR (|)
This operator combines its two integer  operands by performing a Boolean OR
operation on their individual bits. The result has a bit set if the corresponding
bit is set in either or both of the operands. It has a zero bit only where both
corresponding operand bits are zero. For example:

10 | 7                   // 00001010 | 00000111 =  => 00001111 or 15
flags = flags | f;       // Set flag f
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When used with boolean operands, | is the infrequently used Boolean OR
operator described earlier.

Bitwise XOR (^)
This operator combines its two integer operands by performing a Boolean
XOR (exclusive OR) operation on their individual bits. The result has a bit set
if the corresponding bits in the two operands are different. If the correspond‐
ing operand bits are both 1s or both 0s, the result bit is a 0. For example:

10 ^ 7               // 00001010 ^ 00000111 =  => 00001101 or 13

When used with boolean operands, ^ is the seldom used Boolean XOR
operator.

Left shift (<<)
The << operator shifts the bits of the left operand left by the number of places
specified by the right operand. High-order bits of the left operand are lost, and
zero bits are shifted in from the right. Shifting an integer left by n places is
equivalent to multiplying that number by 2n. For example:

10 << 1    // 00001010 << 1 = 00010100 = 20 = 10*2
7 << 3     // 00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2    // 0xFFFFFFFF << 2 = 0xFFFFFFFC = -4 = -1*4

If the left operand is a long, the right operand should be between 0 and 63.
Otherwise, the left operand is taken to be an int, and the right operand should
be between 0 and 31.

Signed right shift (>>)
The >> operator shifts the bits of the left operand to the right by the number of
places specified by the right operand. The low-order bits of the left operand are
shifted away and are lost. The high-order bits shifted in are the same as the
original high-order bit of the left operand. In other words, if the left operand is
positive, 0s are shifted into the high-order bits. If the left operand is negative,
1s are shifted in instead. This technique is known as sign extension; it is used to
preserve the sign of the left operand. For example:

10 >> 1      // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3      // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2     // 11001110 >> 2 = 11110011 = -13 != -50/4

If the left operand is positive and the right operand is n, the >> operator is the
same as integer division by 2n.

Unsigned right shift (>>>)
This operator is like the >> operator, except that it always shifts zeros into the
high-order bits of the result, regardless of the sign of the left-hand operand.
This technique is called zero extension; it is appropriate when the left operand
is being treated as an unsigned value (despite the fact that Java integer types are
all signed). These are examples:
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0xff >>> 4    // 11111111 >>> 4 = 00001111 = 15  = 255/16
-50 >>> 2     // 0xFFFFFFCE >>> 2 = 0x3FFFFFF3 = 1073741811

Assignment Operators
The assignment operators store, or assign, a value into some kind of variable. The
left operand must evaluate to an appropriate local variable, array element, or object
field. The right side can be any value of a type compatible with the variable. An
assignment expression evaluates to the value that is assigned to the variable. More
importantly, however, the expression has the side effect of actually performing the
assignment. Unlike all other binary operators, the assignment operators are right-
associative, which means that the assignments in a=b=c are performed right to left,
as follows: a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, ==.
In order to keep these two operators distinct, we recommend that you read = as “is
assigned the value.”

In addition to this simple assignment operator, Java also defines 11 other operators
that combine assignment with the 5 arithmetic operators and the 6 bitwise and shift
operators. For example, the += operator reads the value of the left variable, adds the
value of the right operand to it, stores the sum back into the left variable as a side
effect, and returns the sum as the value of the expression. Thus, the expression x+=2
is almost the same as x=x+2. The difference between these two expressions is that
when you use the += operator, the left operand is evaluated only once. This makes a
difference when that operand has a side effect. Consider the following two expres‐
sions, which are not equivalent:

a[i++] += 2;
a[i++] = a[i++] + 2;

The general form of these combination assignment operators is:

var op= value

This is equivalent (unless there are side effects in var) to:

var = var op value

The available operators are:

+=    -=    *=    /=    %=    // Arithmetic operators plus assignment

&=    |=    ^=                // Bitwise operators plus assignment

<<=   >>=   >>>=              // Shift operators plus assignment

The most commonly used operators are += and -=, although &= and |= can also be
useful when working with boolean flags. For example:

i += 2;          // Increment a loop counter by 2
c -= 5;          // Decrement a counter by 5
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flags |= f;      // Set a flag f in an integer set of flags
flags &= ~f;     // Clear a flag f in an integer set of flags

The Conditional Operator
The conditional operator ?: is a somewhat obscure ternary (three-operand) opera‐
tor inherited from C. It allows you to embed a conditional within an expression.
You can think of it as the operator version of the if/else statement. The first and
second operands of the conditional operator are separated by a question mark (?)
while the second and third operands are separated by a colon (:). The first operand
must evaluate to a boolean value. The second and third operands can be of any
type, but they must be convertible to the same type.

The conditional operator starts by evaluating its first operand. If it is true, the oper‐
ator evaluates its second operand and uses that as the value of the expression. On
the other hand, if the first operand is false, the conditional operator evaluates and
returns its third operand. The conditional operator never evaluates both its second
and third operand, so be careful when using expressions with side effects with this
operator. Examples of this operator are:

int max = (x > y) ? x : y;
String name = (name != null) ? name : "unknown";

Note that the ?: operator has lower precedence than all other operators except the
assignment operators, so parentheses are not usually necessary around the operands
of this operator. Many programmers find conditional expressions easier to read if
the first operand is placed within parentheses, however. This is especially true
because the conditional if statement always has its conditional expression written
within parentheses.

The instanceof Operator
The instanceof operator is intimately bound up with objects and the operation of
the Java type system. If this is your first look at Java, it may be preferable to skim
this definition and return to this section after you have a decent grasp of Java’s
objects.

instanceof requires an object or array value as its left operand and the name of a
reference type as its right operand. It evaluates to true if the object or array is an
instance of the specified type; it returns false otherwise. If the left operand is null,
instanceof always evaluates to false. If an instanceof expression evaluates to
true, it means that you can safely cast and assign the left operand to a variable of
the type of the right operand.

The instanceof operator can be used only with reference types and objects, not
primitive types and values. Examples of instanceof are:

// True: all strings are instances of String
"string" instanceof String      
// True: strings are also instances of Object
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"" instanceof Object            
// False: null is never an instance of anything
null instanceof String          

Object o = new int[] {1,2,3};
o instanceof int[]   // True: the array value is an int array
o instanceof byte[]  // False: the array value is not a byte array
o instanceof Object  // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {
   Point p = (Point) object;
}

Special Operators
Java has six language constructs that are sometimes considered operators and some‐
times considered simply part of the basic language syntax. These “operators” were
included in Table 2-4 in order to show their precedence relative to the other true
operators. The use of these language constructs is detailed elsewhere in this book,
but is described briefly here so that you can recognize them in code examples:

Object member access (.)
An object is a collection of data and methods that operate on that data; the data
fields and methods of an object are called its members. The dot (.) operator
accesses these members. If o is an expression that evaluates to an object refer‐
ence, and f is the name of a field of the object, o.f evaluates to the value con‐
tained in that field. If m is the name of a method, o.m refers to that method and
allows it to be invoked using the () operator shown later.

Array element access ([])
An array is a numbered list of values. Each element of an array can be referred
to by its number, or index. The [ ] operator allows you to refer to the individ‐
ual elements of an array. If a is an array, and i is an expression that evaluates to
an int, a[i] refers to one of the elements of a. Unlike other operators that
work with integer values, this operator restricts array index values to be of type
int or narrower.

Method invocation (())
A method is a named collection of Java code that can be run, or invoked, by fol‐
lowing the name of the method with zero or more comma-separated expres‐
sions contained within parentheses. The values of these expressions are the
arguments to the method. The method processes the arguments and optionally
returns a value that becomes the value of the method invocation expression. If
o.m is a method that expects no arguments, the method can be invoked with
o.m(). If the method expects three arguments, for example, it can be invoked
with an expression such as o.m(x,y,z). Before the Java interpreter invokes a
method, it evaluates each of the arguments to be passed to the method. These
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expressions are guaranteed to be evaluated in order from left to right (which
matters if any of the arguments have side effects).

Lambda expression (→)
A lambda expression is an anonymous collection of executable Java code, essen‐
tially a method body. It consists of a method argument list (zero or more
comma-separated expressions contained within parentheses) followed by the
lambda arrow operator followed by a block of Java code. If the block of code
comprises just a single statement, then the usual curly braces to denote block
boundaries can be omitted.

Object creation (new)
In Java, objects (and arrays) are created with the new operator, which is fol‐
lowed by the type of the object to be created and a parenthesized list of argu‐
ments to be passed to the object constructor. A constructor is a special block of
code that initializes a newly created object, so the object creation syntax is simi‐
lar to the Java method invocation syntax. For example:

new ArrayList();
new Point(1,2)

Type conversion or casting (())
As we’ve already seen, parentheses can also be used as an operator to perform
narrowing type conversions, or casts. The first operand of this operator is the
type to be converted to; it is placed between the parentheses. The second
operand is the value to be converted; it follows the parentheses. For example:

(byte) 28          // An integer literal cast to a byte type
(int) (x + 3.14f)  // A floating-point sum value cast to an integer
(String)h.get(k)   // A generic object cast to a string

Statements
A statement is a basic unit of execution in the Java language—it expresses a single
piece of intent by the programmer. Unlike expressions, Java statements do not have
a value. Statements also typically contain expressions and operators (especially
assignment operators) and are frequently executed for the side effects that they
cause.

Many of the statements defined by Java are flow-control statements, such as condi‐
tionals and loops, that can alter the default, linear order of execution in well-defined
ways. Table 2-5 summarizes the statements defined by Java.
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Table 2-5. Java statements

Statement Purpose Syntax

expression side effects var = expr ; expr ++; method (); new Type ( );

compound group statements { statements }

empty do nothing ;

labeled name a statement label : statement

variable declare a variable [final] type name [= value ] [, name [= value ]] …;

if conditional if ( expr ) statement [ else statement ]

switch conditional switch ( expr ) { [ case expr : statements ] …
[ default: statements ] }

while loop while ( expr ) statement

do loop do statement while ( expr );

for simplified loop for ( init ; test ; increment ) statement

foreach collection iteration for ( variable : iterable ) statement

break exit block break [ label ] ;

continue restart loop continue [ label ] ;

return end method return [ expr ] ;

synchronized critical section synchronized ( expr ) { statements }

throw throw exception throw expr ;

try handle exception try { statements } [ catch ( type name ) { state
ments } ] ... [ finally { statements } ]

assert verify invariant assert invariant [ : error ];

Expression Statements
As we saw earlier in the chapter, certain types of Java expressions have side effects.
In other words, they do not simply evaluate to some value; they also change the
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program state in some way. Any expression with side effects can be used as a state‐
ment simply by following it with a semicolon. The legal types of expression state‐
ments are assignments, increments and decrements, method calls, and object cre‐
ation. For example:

a = 1;                             // Assignment
x *= 2;                            // Assignment with operation
i++;                               // Post-increment
--c;                               // Pre-decrement
System.out.println("statement");   // Method invocation

Compound Statements
A compound statement is any number and kind of statements grouped together
within curly braces. You can use a compound statement anywhere a statement is
required by Java syntax:

for(int i = 0; i < 10; i++) {
   a[i]++;           // Body of this loop is a compound statement.
   b[i]--;           // It consists of two expression statements
}                    // within curly braces.

The Empty Statement
An empty statement in Java is written as a single semicolon. The empty statement
doesn’t do anything, but the syntax is occasionally useful. For example, you can use
it to indicate an empty loop body in a for loop:

for(int i = 0; i < 10; a[i++]++)  // Increment array elements
     /* empty */;                 // Loop body is empty statement

Labeled Statements
A labeled statement is simply a statement that has been given a name by prepending
an identifier and a colon to it. Labels are used by the break and continue state‐
ments. For example:

rowLoop: for(int r = 0; r < rows.length; r++) {        // Labeled loop
   colLoop: for(int c = 0; c < columns.length; c++) {  // Another one
     break rowLoop;                                    // Use a label
   }
}

Local Variable Declaration Statements
A local variable, often simply called a variable, is a symbolic name for a location to
store a value that is defined within a method or compound statement. All variables 
must be declared before they can be used; this is done with a variable declaration
statement. Because Java is a statically typed language, a variable declaration specifies
the type of the variable, and only values of that type can be stored in the variable.

In its simplest form, a variable declaration specifies a variable’s type and name:
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int counter;
String s;

A variable declaration can also include an initializer: an expression that specifies an
initial value for the variable. For example:

int i = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are discussed later

The Java compiler does not allow you to use a local variable that has not been ini‐
tialized, so it is usually convenient to combine variable declaration and initialization
into a single statement. The initializer expression need not be a literal value or a
constant expression that can be evaluated by the compiler; it can be an arbitrarily
complex expression whose value is computed when the program is run.

A single variable declaration statement can declare and initialize more than one
variable, but all variables must be of the same type. Variable names and optional ini‐
tializers are separated from each other with commas:

int i, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response;

Variable declaration statements can begin with the final keyword. This modifier
specifies that once an initial value is specified for the variable, that value is never
allowed to change:

final String greeting = getLocalLanguageGreeting();

We will have more to say about the final keyword later on, especially when talking
about the immutable style of programming.

C programmers should note that Java variable declaration statements can appear
anywhere in Java code; they are not restricted to the beginning of a method or block
of code. Local variable declarations can also be integrated with the initialize portion
of a for loop, as we’ll discuss shortly.

Local variables can be used only within the method or block of code in which they
are defined. This is called their scope or lexical scope:

void method() {            // A method definition
   int i = 0;              // Declare variable i
   while (i < 10) {        // i is in scope here
     int j = 0;            // Declare j; the scope of j begins here
     i++;                  // i is in scope here; increment it
   }                       // j is no longer in scope;
   System.out.println(i);  // i is still in scope here
}                          // The scope of i ends here
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The if/else Statement
The if statement is a fundamental control statement that allows Java to make deci‐
sions or, more precisely, to execute statements conditionally. The if statement has
an associated expression and statement. If the expression evaluates to true, the
interpreter executes the statement. If the expression evaluates to false, the inter‐
preter skips the statement.

Java allows the expression to be of the wrapper type Boolean
instead of the primitive type boolean. In this case, the wrap‐
per object is automatically unboxed.

Here is an example if statement:

if (username == null)         // If username is null,
   username = "John Doe";     // use a default value

Although they look extraneous, the parentheses around the expression are a
required part of the syntax for the if statement. As we already saw, a block of state‐
ments enclosed in curly braces is itself a statement, so we can write if statements
that look like this as well:

if ((address == null) || (address.equals(""))) {
   address = "[undefined]";
   System.out.println("WARNING: no address specified.");
}

An if statement can include an optional else keyword that is followed by a second
statement. In this form of the statement, the expression is evaluated, and, if it is
true, the first statement is executed. Otherwise, the second statement is executed.
For example:

if (username != null)
   System.out.println("Hello " + username);
else {
   username = askQuestion("What is your name?");
   System.out.println("Hello " + username + ". Welcome!");
}

When you use nested if/else statements, some caution is required to ensure that
the else clause goes with the appropriate if statement. Consider the following
lines:

if (i == j)
   if (j == k)
     System.out.println("i equals k");
else
   System.out.println("i doesn't equal j");    // WRONG!!
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In this example, the inner if statement forms the single statement allowed by the
syntax of the outer if statement. Unfortunately, it is not clear (except from the hint
given by the indentation) which if the else goes with. And in this example, the
indentation hint is wrong. The rule is that an else clause like this is associated with
the nearest if statement. Properly indented, this code looks like this:

if (i == j)
   if (j == k)
     System.out.println("i equals k");
   else
     System.out.println("i doesn't equal j");    // WRONG!!

This is legal code, but it is clearly not what the programmer had in mind. When
working with nested if statements, you should use curly braces to make your code
easier to read. Here is a better way to write the code:

if (i == j) {
   if (j == k)
     System.out.println("i equals k");
}
else {
   System.out.println("i doesn't equal j");
}

The else if clause
The if/else statement is useful for testing a condition and choosing between two
statements or blocks of code to execute. But what about when you need to choose
between several blocks of code? This is typically done with an else if clause, which
is not really new syntax, but a common idiomatic usage of the standard if/else
statement. It looks like this:

if (n == 1) {
    // Execute code block #1
}
else if (n == 2) {
    // Execute code block #2
}
else if (n == 3) {
    // Execute code block #3
}
else {
    // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where
each if is part of the else clause of the previous statement. Using the else if idiom
is preferable to, and more legible than, writing these statements out in their fully
nested form:

if (n == 1) {
   // Execute code block #1
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}
else {
   if (n == 2) {
     // Execute code block #2
   }
   else {
     if (n == 3) {
       // Execute code block #3
     }
     else {
       // If all else fails, execute block #4
     }
   }
}

The switch Statement
An if statement causes a branch in the flow of a program’s execution. You can use
multiple if statements, as shown in the previous section, to perform a multiway
branch. This is not always the best solution, however, especially when all of the
branches depend on the value of a single variable. In this case, it is inefficient to
repeatedly check the value of the same variable in multiple if statements.

A better solution is to use a switch statement, which is inherited from the C pro‐
gramming language. Although the syntax of this statement is not nearly as elegant
as other parts of Java, the brute practicality of the construct makes it worthwhile.

A switch statement starts with an expression whose type is an
int, short, char, byte (or their wrapper type), String, or an
enum (see Chapter 4 for more on enumerated types).

This expression is followed by a block of code in curly braces that contains various
entry points that correspond to possible values for the expression. For example, the
following switch statement is equivalent to the repeated if and else/if statements
shown in the previous section:

switch(n) {
   case 1:                         // Start here if n == 1
     // Execute code block #1
     break;                        // Stop here
   case 2:                         // Start here if n == 2
     // Execute code block #2
     break;                        // Stop here
   case 3:                         // Start here if n == 3
     // Execute code block #3
     break;                        // Stop here
   default:                        // If all else fails...
     // Execute code block #4
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     break;                        // Stop here
}

As you can see from the example, the various entry points into a switch statement
are labeled either with the keyword case, followed by an integer value and a colon,
or with the special default keyword, followed by a colon. When a switch statement
executes, the interpreter computes the value of the expression in parentheses and
then looks for a case label that matches that value. If it finds one, the interpreter
starts executing the block of code at the first statement following the case label. If it
does not find a case label with a matching value, the interpreter starts execution at
the first statement following a special-case default: label. Or, if there is no default:
label, the interpreter skips the body of the switch statement altogether.

Note the use of the break keyword at the end of each case in the previous code. The
break statement is described later in this chapter, but, in this case, it causes the
interpreter to exit the body of the switch statement. The case clauses in a switch
statement specify only the starting point of the desired code. The individual cases
are not independent blocks of code, and they do not have any implicit ending point.
Therefore, you must explicitly specify the end of each case with a break or related
statement. In the absence of break statements, a switch statement begins executing
code at the first statement after the matching case label and continues executing
statements until it reaches the end of the block. On rare occasions, it is useful to
write code like this that falls through from one case label to the next, but 99% of the
time you should be careful to end every case and default section with a statement
that causes the switch statement to stop executing. Normally you use a break state‐
ment, but return and throw also work.

A switch statement can have more than one case clause labeling the same state‐
ment. Consider the switch statement in the following method:

boolean parseYesOrNoResponse(char response) {
   switch(response) {
     case 'y':
     case 'Y': return true;
     case 'n':
     case 'N': return false;
     default: 
       throw new IllegalArgumentException("Response must be Y or N");
   }
}

The switch statement and its case labels have some important restrictions. First,
the expression  associated with a switch statement must have an appropriate type—
either byte, char, short, int (or their wrappers), or an enum type or a String. The
floating-point and boolean types are not supported, and neither is long, even
though long is an integer type. Second, the value associated with each case label
must be a constant value or a constant expression the compiler can evaluate. A case
label cannot contain a runtime expression involving variables or method calls, for
example. Third, the case label values must be within the range of the data type used
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for the switch expression. And finally, it is not legal to have two or more case labels
with the same value or more than one default label.

The while Statement
The while statement is a basic statement that allows Java to perform repetitive
actions—or, to put it another way, it is one of Java’s primary looping constructs. It has
the following syntax:

while (expression)
   statement

The while statement works by first evaluating the expression, which must result in
a boolean or Boolean value. If the value is false, the interpreter skips the state
ment associated with the loop and moves to the next statement in the program. If it
is true, however, the statement that forms the body of the loop is executed, and the
expression is reevaluated. Again, if the value of expression is false, the inter‐
preter moves on to the next statement in the program; otherwise, it executes the
statement again. This cycle continues while the expression remains true (i.e.,
until it evaluates to false), at which point the while statement ends, and the inter‐
preter moves on to the next statement. You can create an infinite loop with the syn‐
tax while(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {
   System.out.println(count);
   count++;
}

As you can see, the variable count starts off at 0 in this example and is incremented
each time the body of the loop runs. Once the loop has executed 10 times, the
expression becomes false (i.e., count is no longer less than 10), the while state‐
ment finishes, and the Java interpreter can move to the next statement in the pro‐
gram. Most loops have a counter variable like count. The variable names i, j, and k
are commonly used as loop counters, although you should use more descriptive
names if it makes your code easier to understand.

The do Statement
A do loop is much like a while loop, except that the loop expression is tested at the
bottom of the loop rather than at the top. This means that the body of the loop is
always executed at least once. The syntax is:

do
   statement
while (expression);

Notice a couple of differences between the do loop and the more ordinary while
loop. First, the do loop requires both the do keyword to mark the beginning of the

54 | Chapter 2: Java Syntax from the Ground Up



loop and the while keyword to mark the end and introduce the loop condition.
Also, unlike the while loop, the do loop is terminated with a semicolon. This is
because the do loop ends with the loop condition rather than simply ending with a
curly brace that marks the end of the loop body. The following do loop prints the
same output as the while loop just discussed:

int count = 0;
do {
   System.out.println(count);
   count++;
} while(count < 10);

The do loop is much less commonly used than its while cousin because, in practice,
it is unusual to encounter a situation where you are sure you always want a loop to
execute at least once.

The for Statement
The for statement provides a looping construct that is often more convenient than
the while and do loops. The for statement takes advantage of a common looping
pattern. Most loops have a counter, or state variable of some kind, that is initialized
before the loop starts, tested to determine whether to execute the loop body, and
then incremented or updated somehow at the end of the loop body before the test
expression is evaluated again. The initialization, test, and update steps are the three
crucial manipulations of a loop variable, and the for statement makes these three
steps an explicit part of the loop syntax:

for(initialize; test; update) {
    statement
}

This for loop is basically equivalent to the following while loop:

initialize;
while (test) {
   statement;
   update;
}

Placing the initialize, test, and update expressions at the top of a for loop
makes it especially easy to understand what the loop is doing, and it prevents mis‐
takes such as forgetting to initialize or update the loop variable. The interpreter dis‐
cards the values of the initialize and update expressions, so to be useful, these
expressions must have side effects. initialize is typically an assignment expression
while update is usually an increment, decrement, or some other assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and do
loops have done:
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int count;
for(count = 0 ; count < 10 ; count++)
   System.out.println(count);

Notice how this syntax places all the important information about the loop variable
on a single line, making it very clear how the loop executes. Placing the update
expression in the for statement itself also simplifies the body of the loop to a single
statement; we don’t even need to use curly braces to produce a statement block.

The for loop supports some additional syntax that makes it even more convenient
to use. Because many loops use their loop variables only within the loop, the for
loop allows the initialize expression to be a full variable declaration, so that the
variable is scoped to the body of the loop and is not visible outside of it. For
example:

for(int count = 0 ; count < 10 ; count++)
   System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing loops that use
only a single variable. Both the initialize and update expressions of a for loop
can use a comma to separate multiple initializations and update expressions. For
example:

for(int i = 0, j = 10 ; i < 10 ; i++, j--)
     sum += i * j;

Even though all the examples so far have counted numbers, for loops are not
restricted to loops that count numbers. For example, you might use a for loop to
iterate through the elements of a linked list:

for(Node n = listHead; n != null; n = n.nextNode())
   process(n);

The initialize, test, and update expressions of a for loop are all optional; only
the semicolons that separate the expressions are required. If the test expression is
omitted, it is assumed to be true. Thus, you can write an infinite loop as for(;;).

The foreach Statement
Java’s for loop works well for primitive types, but it is needlessly clunky for han‐
dling collections of objects. Instead, an alternative syntax known as a foreach loop is
used for handling collections of objects that need to be looped over.

The foreach loop uses the keyword for followed by an opening parenthesis, a vari‐
able declaration (without initializer), a colon, an expression, a closing parenthesis,
and finally the statement (or block) that forms the body of the loop:

for( declaration : expression )
     statement

Despite its name, the foreach loop does not have a keyword foreach—instead, it is
common to read the colon as “in”—as in “foreach name in studentNames.”
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For the while, do, and for loops, we’ve shown an example that prints 10 numbers.
The foreach loop can do this too, but it needs a collection to iterate over. In order to
loop 10 times (to print out 10 numbers), we need an array or other collection with
10 elements. Here’s code we can use:

// These are the numbers we want to print
int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them
for(int n : primes)
     System.out.println(n);

What foreach cannot do
Foreach is different from the while, for, or do loops, because it hides the loop
counter or Iterator from you. This is a very powerful idea, as we’ll see when we
discuss lambda expressions, but there are some algorithms that cannot be expressed
very naturally with a foreach loop.

For example, suppose you want to print the elements of an array as a comma-
separated list. To do this, you need to print a comma after every element of the array
except the last, or equivalently, before every element of the array except the first.
With a traditional for loop, the code might look like this:

for(int i = 0; i < words.length; i++) {
     if (i > 0) System.out.print(", ");
     System.out.print(words[i]);
}

This is a very straightforward task, but you simply cannot do it with foreach. The
problem is that the foreach loop doesn’t give you a loop counter or any other way to
tell if you’re on the first iteration, the last iteration, or somewhere in between.

A similar issue exists when using foreach to iterate through
the elements of a collection.  Just as a foreach loop over an
array has no way to obtain the array index of the current ele‐
ment, a foreach loop over a collection has no way to obtain the
Iterator object that is being used to itemize the elements of
the collection.

Here are some other things you cannot do with a foreach style loop:

• Iterate backward through the elements of an array or List.
• Use a single loop counter to access the same-numbered elements of two dis‐

tinct arrays.
• Iterate through the elements of a List using calls to its get() method rather

than calls to its iterator.
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The break Statement
A break statement causes the Java interpreter to skip immediately to the end of a
containing statement. We have already seen the break statement used with the
switch statement. The break statement is most often written as simply the keyword
break followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the inner‐
most containing while, do, for, or switch statement. For example:

for(int i = 0; i < data.length; i++) {
    if (data[i] == target) {  // When we find what we're looking for,
        index = i;              // remember where we found it
        break;                  // and stop looking!
    }
}   // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing labeled state‐
ment. When used in this form, break causes the Java interpreter to immediately exit
the named block, which can be any kind of statement, not just a loop or switch. For
example:

TESTFORNULL: if (data != null) {
   for(int row = 0; row < numrows; row++) {
     for(int col = 0; col < numcols; col++) {
       if (data[row][col] == null)           
         break TESTFORNULL;           // treat the array as undefined.
     }
   }
}  // Java interpreter goes here after executing break TESTFORNULL

The continue Statement
While a break statement exits a loop, a continue statement quits the current itera‐
tion of a loop and starts the next one. continue, in both its unlabeled and labeled
forms, can be used only within a while, do, or for loop. When used without a label,
continue causes the innermost loop to start a new iteration. When used with a label
that is the name of a containing loop, it causes the named loop to start a new itera‐
tion. For example:

for(int i = 0; i < data.length; i++) {  // Loop through data.
   if (data[i] == -1)                   // If a data value is missing,
     continue;                          // skip to the next iteration.
   process(data[i]);                    // Process the data value.
}

while, do, and for loops differ slightly in the way that continue starts a new
iteration:
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• With a while loop, the Java interpreter simply returns to the top of the loop,
tests the loop condition again, and, if it evaluates to true, executes the body of
the loop again.

• With a do loop, the interpreter jumps to the bottom of the loop, where it tests
the loop condition to decide whether to perform another iteration of the loop.

• With a for loop, the interpreter jumps to the top of the loop, where it first eval‐
uates the update expression and then evaluates the test expression to decide
whether to loop again. As you can see from the examples, the behavior of a for
loop with a continue statement is different from the behavior of the “basically
equivalent” while loop presented earlier; update gets evaluated in the for loop
but not in the equivalent while loop.

The return Statement
A return statement tells the Java interpreter to stop executing the current method.
If the method is declared to return a value, the return statement must be followed
by an expression. The value of the expression becomes the return value of the
method. For example, the following method computes and returns the square of a
number:

double square(double x) {      // A method to compute x squared
   return x * x;               // Compute and return a value
}

Some methods are declared void to indicate that they do not return any value. The
Java interpreter runs methods like this by executing their statements one by one
until it reaches the end of the method. After executing the last statement, the inter‐
preter returns implicitly. Sometimes, however, a void method has to return explic‐
itly before reaching the last statement. In this case, it can use the return statement
by itself, without any expression. For example, the following method prints, but
does not return, the square root of its argument. If the argument is a negative num‐
ber, it returns without printing anything:

// A method to print square root of x
void printSquareRoot(double x) {
   if (x < 0) return;                // If x is negative, return
   System.out.println(Math.sqrt(x)); // Print the square root of x
}                                    // Method end: return implicitly

The synchronized Statement
Java has always provided support for multithreaded programming. We cover this in
some detail later on (especially in “Java’s Support for Concurrency” on page 208)—
but the reader should be aware that concurrency is difficult to get right, and has a
number of subtleties.

Java Syntax

Statements | 59



In particular, when working with multiple threads, you must often take care to pre‐
vent multiple threads from modifying an object simultaneously in a way that might
corrupt the object’s state. Java provides the synchronized statement to help the pro‐
grammer prevent corruption. The syntax is:

synchronized ( expression ) {
   statements
}

expression is an expression that must evaluate to an object or an array. statements
constitute the code of the section that could cause damage and must be enclosed in
curly braces.

Before executing the statement block, the Java interpreter first obtains an exclusive
lock on the object or array specified by expression. It holds the lock until it is fin‐
ished running the block, then releases it. While a thread holds the lock on an object,
no other thread can obtain that lock.

The synchronized keyword is also available as a method modifier in Java, and when
applied to a method, the synchronized keyword indicates that the entire method is
locked. For a synchronized class method (a static method), Java obtains an exclu‐
sive lock on the class before executing the method. For a synchronized instance
method, Java obtains an exclusive lock on the class instance. (Class and instance
methods are discussed in Chapter 3.)

The throw Statement
An exception is a signal that indicates some sort of exceptional condition or error
has occurred. To throw an exception is to signal an exceptional condition. To catch
an exception is to handle it—to take whatever actions are necessary to recover from
it. In Java, the throw statement is used to throw an exception:

throw expression;

The expression must evaluate to an exception object that describes the exception
or error that has occurred. We’ll talk more about types of exceptions shortly; for
now, all you need to know is that an exception is represented by an object, which
has a slightly specialized role. Here is some example code that throws an exception:

public static double factorial(int x) {
   if (x < 0)
     throw new IllegalArgumentException("x must be >= 0");
   double fact;
   for(fact=1.0; x > 1; fact *= x, x--)
     /* empty */ ;          // Note use of the empty statement
   return fact;
}

When the Java interpreter executes a throw statement, it immediately stops normal
program execution and starts looking for an exception handler that can catch, or
handle, the exception. Exception handlers are written with the try/catch/finally
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statement,  which is described in the next section. The Java interpreter first looks at
the enclosing block of code to see if it has an associated exception handler. If so, it
exits that block of code and starts running the exception-handling code associated
with the block. After running the exception handler, the interpreter continues exe‐
cution at the statement immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the
interpreter checks the next higher enclosing block of code in the method. This con‐
tinues until a handler is found. If the method does not contain an exception handler
that can handle the exception thrown by the throw statement, the interpreter stops
running the current method and returns to the caller. Now the interpreter starts
looking for an exception handler in the blocks of code of the calling method. In this
way, exceptions propagate up through the lexical structure of Java methods, up the
call stack of the Java interpreter. If the exception is never caught, it propagates all the
way up to the main() method of the program. If it is not handled in that method,
the Java interpreter prints an error message, prints a stack trace to indicate where
the exception occurred, and then exits.

The try/catch/finally Statement
Java has two slightly different exception-handling mechanisms. The classic form is
the try/catch/finally statement. The try clause of this statement establishes a
block of code for exception handling. This try block is followed by zero or more
catch clauses, each of which is a block of statements designed to handle specific
exceptions. Each catch block can handle more than one different exception—to
indicate that a catch block should handle multiple exceptions, we use the | symbol
to separate the different exceptions a catch block should handle. The catch clauses
are followed by an optional finally block that contains cleanup code guaranteed to
be executed regardless of what happens in the try block.

try Block Syntax
Both the catch and finally clauses are optional, but every try block must be
accompanied by at least one or the other. The try, catch, and finally blocks all
begin and end with curly braces. These are a required part of the syntax and cannot
be omitted, even if the clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/finally
statement:

try {
   // Normally this code runs from the top of the block to the bottom
   // without problems. But it can sometimes throw an exception,
   // either directly with a throw statement or indirectly by calling
   // a method that throws an exception.
}
catch (SomeException e1) {
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   // This block contains statements that handle an exception object
   // of type SomeException or a subclass of that type. Statements in
   // this block can refer to that exception object by the name e1.
}
catch (AnotherException | YetAnotherException e2) {
   // This block contains statements that handle an exception of
   // type AnotherException or YetAnotherException, or a subclass of
   // either of those types. Statements in this block refer to the
   // exception object they receive by the name e2.
}
finally {
   // This block contains statements that are always executed
   // after we leave the try clause, regardless of whether we leave it:
   //   1) normally, after reaching the bottom of the block;
   //   2) because of a break, continue, or return statement;
   //   3) with an exception that is handled by a catch clause above;
   //   4) with an uncaught exception that has not been handled.
   // If the try clause calls System.exit(), however, the interpreter
   // exits before the finally clause can be run.
}

try
The try clause simply establishes a block of code that either has its exceptions han‐
dled or needs special cleanup code to be run when it terminates for any reason. The
try clause by itself doesn’t do anything interesting; it is the catch and finally clau‐
ses that do the exception-handling and cleanup operations.

catch
A try block can be followed by zero or more catch clauses that specify code to han‐
dle various types of exceptions. Each catch clause is declared with a single argu‐
ment that specifies the types of exceptions the clause can handle (possibly using the
special | syntax to indicate that the catch block can handle more than one type of
exception) and also provides a name the clause can use to refer to the exception
object it is currently handling. Any type that a catch block wishes to handle must be
some subclass of Throwable.

When an exception is thrown, the Java interpreter looks for a catch clause with an
argument that matches the same type as the exception object or a superclass of that
type. The interpreter invokes the first such catch clause it finds. The code within a
catch block should take whatever action is necessary to cope with the exceptional
condition. If the exception is a java.io.FileNotFoundException exception, for
example, you might handle it by asking the user to check his spelling and try again.

It is not required to have a catch clause for every possible exception; in some cases,
the correct response is to allow the exception to propagate up and be caught by the
invoking method. In other cases, such as a programming error signaled by Null
PointerException, the correct response is probably not to catch the exception at
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all, but allow it to propagate and have the Java interpreter exit with a stack trace and
an error message.

finally
The finally clause is generally used to clean up after the code in the try clause
(e.g., close files and shut down network connections). The finally clause is useful
because it is guaranteed to be executed if any portion of the try block is executed,
regardless of how the code in the try block completes. In fact, the only way a try
clause can exit without allowing the finally clause to be executed is by invoking
the System.exit() method, which causes the Java interpreter to stop running.

In the normal case, control reaches the end of the try block and then proceeds to
the finally block, which performs any necessary cleanup. If control leaves the try
block because of a return, continue, or break statement, the finally block is exe‐
cuted before control transfers to its new destination.

If an exception occurs in the try block and there is an associated catch block to
handle the exception, control transfers first to the catch block and then to the
finally block. If there is no local catch block to handle the exception, control
transfers first to the finally block, and then propagates up to the nearest contain‐
ing catch clause that can handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw
statement or by calling a method that throws an exception, the pending control
transfer is abandoned, and this new transfer is processed. For example, if a finally
clause throws an exception, that exception replaces any exception that was in the
process of being thrown. If a finally clause issues a return statement, the method
returns normally, even if an exception has been thrown and has not yet been
handled.

try and finally can be used together without exceptions or any catch clauses. In
this case, the finally block is simply cleanup code that is guaranteed to be exe‐
cuted, regardless of any break, continue, or return statements within the try
clause.

The try-with-resources Statement
The standard form of a try block is very general, but there is a common set of cir‐
cumstances that require developers to be very careful when writing catch and
finally blocks. These circumstances are when operating with resources that need
to be cleaned up or closed when no longer needed.

Java (since version 7) provides a very useful mechanism for automatically closing
resources that require cleanup. This is known as try-with-resources, or TWR. We
discuss TWR in detail in “Classic Java I/O” on page 289—but for completeness, let’s
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2 Technically, they must all implement the AutoCloseable interface.

introduce the syntax now. The following example shows how to open a file using the
FileInputStream class (which results in an object which will require cleanup):

try (InputStream is = new FileInputStream("/Users/ben/details.txt")) {
  // ... process the file
}

This new form of try takes parameters that are all objects that require cleanup.2
These objects are scoped to this try block, and are then cleaned up automatically no
matter how this block is exited. The developer does not need to write any catch or
finally blocks—the Java compiler automatically inserts correct cleanup code.

All new code that deals with resources should be written in the TWR style—it is
considerably less error prone than manually writing catch blocks, and does not suf‐
fer from the problems that plague techniques such as finalization (see “Finalization”
on page 206 for details).

The assert Statement
An assert statement is an attempt to provide a capability to verify design assump‐
tions in Java code. An assertion consists of the assert keyword followed by a
boolean expression that the programmer believes should always evaluate to true. By
default, assertions are not enabled, and the assert statement does not actually do
anything.

It is possible to enable assertions as a debugging tool, however; when this is done,
the assert statement evaluates the expression. If it is indeed true, assert does
nothing. On the other hand, if the expression evaluates to false, the assertion fails,
and the assert statement throws a java.lang.AssertionError.

Outside of the core JDK libraries, the assert statement is
extremely rarely used. It turns out to be too inflexible for test‐
ing most applications and is not often used by ordinary devel‐
opers, except sometimes for field-debugging complex multi‐
threaded applications.

The assert statement may include an optional second expression, separated from
the first by a colon. When assertions are enabled and the first expression evaluates
to false, the value of the second expression is taken as an error code or error mes‐
sage and is passed to the AssertionError() constructor. The full syntax of the
statement is:

assert assertion;

or:

assert assertion : errorcode;
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To use assertions effectively, you must also be aware of a couple of fine points. First,
remember that your programs will normally run with assertions disabled and only
sometimes with assertions enabled. This means that you should be careful not to
write assertion expressions that contain side effects.

You should never throw AssertionError from your own
code, as it may have unexpected results in future versions
of the platform.

If an AssertionError is thrown, it indicates that one of the programmer’s assump‐
tions has not held up. This means that the code is being used outside of the parame‐
ters for which it was designed, and it cannot be expected to work correctly. In short,
there is no plausible way to recover from an AssertionError, and you should not
attempt to catch it (unless you catch it at the top level simply so that you can display
the error in a more user-friendly fashion).

Enabling assertions
For efficiency, it does not make sense to test assertions each time code is executed—
assert statements encode assumptions that should always be true. Thus, by default,
assertions are disabled, and assert statements have no effect. The assertion code
remains compiled in the class files, however, so it can always be enabled for diag‐
nostic or debugging purposes. You can enable assertions, either across the board or
selectively, with command-line arguments to the Java interpreter.

To enable assertions in all classes except for system classes, use the -ea argument.
To enable assertions in system classes, use -esa. To enable assertions within a spe‐
cific class, use -ea followed by a colon and the classname:

java -ea:com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a package and in all of its subpackages, follow
the -ea argument with a colon, the package name, and three dots:

java -ea:com.example.sorters... com.example.sorters.Test

You can disable assertions in the same way, using the -da argument. For example, to
enable assertions throughout a package and then disable them in a specific class or
subpackage, use:

java -ea:com.example.sorters... -da:com.example.sorters.QuickSort
java -ea:com.example.sorters... -da:com.example.sorters.plugins..

Finally, it is possible to control whether or not assertions are enabled or disabled at
classloading time. If you use a custom classloader (see Chapter 11 for details on cus‐
tom classloading) in your program and want to turn on assertions, you may be
interested in these methods.
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3 In the Java Language Specification, the term “signature” has a technical meaning that is slightly
different than that used here. This book uses a less formal definition of method signature.

Methods
A method is a named sequence of Java statements that can be invoked by other Java
code. When a method is invoked, it is passed zero or more values known as argu‐
ments. The method performs some computations and, optionally, returns a value.
As described earlier in “Expressions and Operators” on page 30, a method
invocation is an expression that is evaluated by the Java interpreter. Because method
invocations can have side effects, however, they can also be used as expression state‐
ments. This section does not discuss method invocation, but instead describes how
to define methods.

Defining Methods
You already know how to define the body of a method; it is simply an arbitrary
sequence of statements enclosed within curly braces. What is more interesting about
a method is its signature.3 The signature specifies the following:

• The name of the method
• The number, order, type, and name of the parameters used by the method
• The type of the value returned by the method
• The checked exceptions that the method can throw (the signature may also list

unchecked exceptions, but these are not required)
• Various method modifiers that provide additional information about the

method

A method signature defines everything you need to know about a method before
calling it. It is the method specification and defines the API for the method. In order
to use the Java platform’s online API reference, you need to know how to read a
method signature. And, in order to write Java programs, you need to know how to
define your own methods, each of which begins with a method signature.

A method signature looks like this:

modifiers type name ( paramlist ) [ throws exceptions ]

The signature (the method specification) is followed by the method body (the
method implementation), which is simply a sequence of Java statements enclosed in
curly braces. If the method is abstract (see Chapter 3), the implementation is omit‐
ted, and the method body is replaced with a single semicolon.

The signature of a method may also include type variable declarations—such
methods are known as generic methods. Generic methods and type variables are dis‐
cussed in Chapter 4.
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Here are some example method definitions, which begin with the signature and are
followed by the method body:

// This method is passed an array of strings and has no return value.
// All Java programs have an entry point with this name and signature.
public static void main(String[] args) {
     if (args.length > 0) System.out.println("Hello " + args[0]);
     else System.out.println("Hello world");
}

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin(double x, double y) {
     return Math.sqrt(x*x + y*y);
}

// This method is abstract which means it has no body.
// Note that it may throw exceptions when invoked.
protected abstract String readText(File f, String encoding)
    throws FileNotFoundException, UnsupportedEncodingException;

modifiers is zero or more special modifier keywords, separated from each other by
spaces. A method might be declared with the public and static modifiers, for
example. The allowed modifiers and their meanings are described in the next sec‐
tion.

The type in a method signature specifies the return type of the method. If the
method does not return a value, type must be void. If a method is declared with a
non-void return type, it must include a return statement that returns a value of (or
convertible to) the declared type.

A constructor is a block of code, similar to a method, that is used to initialize newly
created objects. As we’ll see in Chapter 3, constructors are defined in a very similar
way to methods, except that their signatures do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method
names, like variable names, are Java identifiers and, like all Java identifiers, may
contain letters in any language represented by the Unicode character set. It is legal,
and often quite useful, to define more than one method with the same name, as
long as each version of the method has a different parameter list. Defining multiple
methods with the same name is called method overloading.

Unlike some other languages, Java does not have anonymous
methods. Instead, Java 8 introduces lambda expressions,
which are similar to anonymous methods, but which the Java
runtime automatically converts to a suitable named method—
see “Lambda Expressions” on page 76 for more details.

For example, the System.out.println() method we’ve seen already is an overloa‐
ded method. One method by this name prints a string and other methods by the
same name print the values of the various primitive types. The Java compiler
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decides which method to call based on the type of the argument passed to the
method.

When you are defining a method, the name of the method is always followed by the
method’s parameter list, which must be enclosed in parentheses. The parameter list
defines zero or more arguments that are passed to the method. The parameter spec‐
ifications, if there are any, each consist of a type and a name and are separated from
each other by commas (if there are multiple parameters). When a method is
invoked, the argument values it is passed must match the number, type, and order
of the parameters specified in this method signature line. The values passed need
not have exactly the same type as specified in the signature, but they must be con‐
vertible to those types without casting.

When a Java method expects no arguments, its parameter list
is simply (), not (void). Java does not regard void as a type—
C and C++ programmers in particular should pay heed.

Java allows the programmer to define and invoke methods that accept a variable
number of arguments, using a syntax known colloquially as varargs. Varargs are
covered in detail later in this chapter.

The final part of a method signature is the throws clause, which is used to list the
checked exceptions that a method can throw. Checked exceptions are a category of
exception classes that must be listed in the throws clauses of methods that can
throw them. If a method uses the throw statement to throw a checked exception, or
if it calls some other method that throws a checked exception and does not catch or
handle that exception, the method must declare that it can throw that exception. If a
method can throw one or more checked exceptions, it specifies this by placing the
throws keyword after the argument list and following it by the name of the excep‐
tion class or classes it can throw. If a method does not throw any exceptions, it does
not use the throws keyword. If a method throws more than one type of exception,
separate the names of the exception classes from each other with commas. More on
this in a bit.

Method Modifiers
The modifiers of a method consist of zero or more modifier keywords such as pub
lic, static, or abstract. Here is a list of allowed modifiers and their meanings:

abstract

An abstract method is a specification without an implementation. The curly
braces and Java statements that would normally comprise the body of the
method are replaced with a single semicolon. A class that includes an abstract
method must itself be declared abstract. Such a class is incomplete and cannot
be instantiated (see Chapter 3).
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final

A final method may not be overridden or hidden by a subclass, which makes
it amenable to compiler optimizations that are not possible for regular meth‐
ods. All private methods are implicitly final, as are all methods of any class
that is declared final.

native

The native modifier specifies that the method implementation is written in
some “native” language such as C and is provided externally to the Java pro‐
gram. Like abstract methods, native methods have no body: the curly braces
are replaced with a semicolon.

Implementing native Methods
When Java was first released, native methods were sometimes used for efficiency
reasons. That is almost never necessary today. Instead, native methods are used to
interface Java code to existing libraries written in C or C++. native methods are
implicitly platform-dependent, and the procedure for linking the implementation
with the Java class that declares the method is dependent on the implementation of
the Java virtual machine. native methods are not covered in this book.

public, protected, private
These access modifiers specify whether and where a method can be used out‐
side of the class that defines it. These very important modifiers are explained in
Chapter 3.

static

A method declared static is a class method associated with the class itself
rather than with an instance of the class (we cover this in more detail in Chap‐
ter 3).

strictfp

The fp in this awkwardly named, rarely used modifier stands for “floating
point.” Java normally takes advantage of any extended precision available to the
runtime platform’s floating-point hardware. The use of this keyword forces Java
to strictly obey the standard while running the strictfp method and only per‐
form floating-point arithmetic using 32- or 64-bit floating-point formats, even
if this makes the results less accurate.

synchronized

The synchronized modifier makes a method threadsafe. Before a thread can
invoke a synchronized method, it must obtain a lock on the method’s class (for
static methods) or on the relevant instance of the class (for non-static
methods). This prevents two threads from executing the method at the same
time.
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The synchronized modifier is an implementation detail (because methods can
make themselves threadsafe in other ways) and is not formally part of the method
specification or API. Good documentation specifies explicitly whether a method is
threadsafe; you should not rely on the presence or absence of the synchronized
keyword when working with multithreaded programs.

Annotations are an interesting special case (see Chapter 4 for
more on annotations)—they can be thought of as a halfway
house between a method modifier and additional supplemen‐
tary type information.

Checked and Unchecked Exceptions
The Java exception-handling scheme distinguishes between two types of exceptions,
known as checked and unchecked exceptions.

The distinction between checked and unchecked exceptions has to do with the cir‐
cumstances under which the exceptions could be thrown. Checked exceptions arise
in specific, well-defined circumstances, and very often are conditions from which
the application may be able to partially or fully recover.

For example, consider some code that might find its configuration file in one of sev‐
eral possible directories. If we attempt to open the file from a directory it isn’t
present in, then a FileNotFoundException will be thrown. In our example, we want
to catch this exception and move on to try the next possible location for the file. In
other words, although the file not being present is an exceptional condition, it is one
from which we can recover, and it is an understood and anticipated failure.

On the other hand, in the Java environment there are a set of failures that cannot
easily be predicted or anticipated, due to such things as runtime conditions or abuse
of library code. There is no good way to predict an OutOfMemoryError, for example,
and any method that uses objects or arrays can throw a NullPointerException if it
is passed an invalid null argument.

These are the unchecked exceptions—and practically any method can throw an
unchecked exception at essentially any time. They are the Java environment’s ver‐
sion of Murphy’s law: “Anything that can go wrong, will go wrong.” Recovery from
an unchecked exception is usually very difficult, if not impossible—simply due to
their sheer unpredictability.

To figure out whether an exception is checked or unchecked, remember that excep‐
tions are Throwable objects and that exceptions fall into two main categories, speci‐
fied by the Error and Exception subclasses. Any exception object that is an Error is
unchecked. There is also a subclass of Exception called RuntimeException—and
any subclass of RuntimeException is also an unchecked exception. All other excep‐
tions are checked exceptions.
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Working with checked exceptions
Java has different rules for working with checked and unchecked exceptions. If you
write a method that throws a checked exception, you must use a throws clause to
declare the exception in the method signature. The Java compiler checks to make
sure you have declared them in method signatures and produces a compilation
error if you have not (that’s why they’re called “checked exceptions”).

Even if you never throw a checked exception yourself, sometimes you must use a
throws clause to declare a checked exception. If your method calls a method that
can throw a checked exception, you must either include exception-handling code to
handle that exception or use throws to declare that your method can also throw that
exception.

For example, the following method tries to estimate the size of a web page—it uses
the standard java.net libraries, and the class URL (we’ll meet these in Chapter 10) to
contact the web page. It uses methods and constructors that can throw various types
of java.io.IOException objects, so it declares this fact with a throws clause:

public static estimateHomepageSize(String host) throws IOException {
    URL url = new URL("htp://"+ host +"/");
    try (InputStream in = url.openStream()) {
        return in.available();
    }
}

In fact, the preceding code has a bug: we’ve misspelled the protocol specifier—
there’s no such protocol as htp://. So, the estimateHomepageSize() method will
always fail with a MalformedURLException.

How do you know if the method you are calling can throw a checked exception?
You can look at its method signature to find out. Or, failing that, the Java compiler
will tell you (by reporting a compilation error) if you’ve called a method whose
exceptions you must handle or declare.

Variable-Length Argument Lists
Methods may be declared to accept, and may be invoked with, variable numbers of
arguments. Such methods are commonly known as varargs methods. The “print for‐
matted” method System.out.printf() as well as the related format() methods of
String use varargs, as do a number of important methods from the Reflection API
of java.lang.reflect.

A variable-length argument list is declared by following the type of the last argu‐
ment to the method with an ellipsis (…), indicating that this last argument can be
repeated zero or more times. For example:

public static int max(int first, int... rest) {
    /* body omitted for now */
}
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Varargs methods are handled purely by the compiler. They operate by converting
the variable number of arguments into an array. To the Java runtime, the max()
method is indistinguishable from this one:

public static int max(int first, int[] rest) {
    /* body omitted for now */
}

To convert a varargs signature to the “real” signature, simply replace ... with [ ].
Remember that only one ellipsis can appear in a parameter list, and it may only
appear on the last parameter in the list.

Let’s flesh out the max() example a little:

public static int max(int first, int... rest) {
    int max = first;
    for(int i : rest) { // legal because rest is actually an array
        if (i > max) max = i;
    }
    return max;
}

This max() method is declared with two arguments. The first is just a regular int
value. The second, however, may be repeated zero or more times. All of the follow‐
ing are legal invocations of max():

max(0)
max(1, 2)
max(16, 8, 4, 2, 1)

Because varargs methods are compiled into methods that expect an array of argu‐
ments, invocations of those methods are compiled to include code that creates and
initializes such an array. So the call max(1,2,3) is compiled to this:

max(1, new int[] { 2, 3 })

In fact, if you already have method arguments stored in an array, it is perfectly legal
for you to pass them to the method that way, instead of writing them out individu‐
ally. You can treat any ... argument as if it were declared as an array. The converse
is not true, however: you can only use varargs method invocation syntax when the
method is actually declared as a varargs method using an ellipsis.

Introduction to Classes and Objects
Now that we have introduced operators, expressions, statements, and methods, we
can finally talk about classes. A class is a named collection of fields that hold data
values and methods that operate on those values. Classes are just one of five refer‐
ence types supported by Java, but they are the most important type. Classes are
thoroughly documented in a chapter of their own (Chapter 3). We introduce them
here, however, because they are the next higher level of syntax after methods, and
because the rest of this chapter requires a basic familiarity with the concept of a
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class and the basic syntax for defining a class, instantiating it, and using the result‐
ing object.

The most important thing about classes is that they define new data types. For
example, you might define a class named Point to represent a data point in the two-
dimensional Cartesian coordinate system. This class would define fields (each of
type double) to hold the x and y coordinates of a point and methods to manipulate
and operate on the point. The Point class is a new data type.

When discussing data types, it is important to distinguish between the data type
itself and the values the data type represents. char is a data type: it represents Uni‐
code characters. But a char value represents a single specific character. A class is a
data type; a class value is called an object. We use the name class because each class
defines a type (or kind, or species, or class) of objects. The Point class is a data type
that represents x,y points, while a Point object represents a single specific x,y point.
As you might imagine, classes and their objects are closely linked. In the sections
that follow, we will discuss both.

Defining a Class
Here is a possible definition of the Point class we have been discussing:

/** Represents a Cartesian (x,y) point */
public class Point {
     // The coordinates of the point
     public double x, y;                    
     public Point(double x, double y) {     // A constructor that
         this.x = x; this.y = y;            // initializes the fields
     }

     public double distanceFromOrigin() {   // A method that operates
         return Math.sqrt(x*x + y*y);       // on the x and y fields
     }
}

This class definition is stored in a file named Point.java and compiled to a file
named Point.class, where it is available for use by Java programs and other classes.
This class definition is provided here for completeness and to provide context, but
don’t expect to understand all the details just yet; most of Chapter 3 is devoted to
the topic of defining classes.

Keep in mind that you don’t have to define every class you want to use in a Java
program. The Java platform includes thousands of predefined classes that are guar‐
anteed to be available on every computer that runs Java.

Creating an Object
Now that we have defined the Point class as a new data type, we can use the follow‐
ing line to declare a variable that holds a Point object:

Point p;
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Declaring a variable to hold a Point object does not create the object itself, however.
To actually create an object, you must use the new operator. This keyword is fol‐
lowed by the object’s class (i.e., its type) and an optional argument list in parenthe‐
ses. These arguments are passed to the constructor for the class, which initializes
internal fields in the new object:

// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object
Point p = new Point(2.0, -3.5);

// Create some other objects as well
// A Date object that represents the current time
Date d = new Date();        
// A HashSet object to hold a set of object
Set words = new HashSet();

The new keyword is by far the most common way to create objects in Java. A few
other ways are also worth mentioning. First, classes that meet certain criteria are so
important that Java defines special literal syntax for creating objects of those types
(as we discuss later in this section). Second, Java supports a dynamic loading mech‐
anism that allows programs to load classes and create instances of those classes
dynamically. See Chapter 11 for more details. Finally, objects can also be created by
deserializing them. An object that has had its state saved, or serialized, usually to a
file, can be re-created using the java.io.ObjectInputStream class.

Using an Object
Now that we’ve seen how to define classes and instantiate them by creating objects,
we need to look at the Java syntax that allows us to use those objects. Recall that a
class defines a collection of fields and methods. Each object has its own copies of
those fields and has access to those methods. We use the dot character (.) to access
the named fields and methods of an object. For example:

Point p = new Point(2, 3);         // Create an object
double x = p.x;                    // Read a field of the object
p.y = p.x * p.x;                   // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is very common when programming in object-oriented languages, and
Java is no exception, so you’ll see it a lot. Note, in particular, p.distanceFromOri
gin(). This expression tells the Java compiler to look up a method named distance
FromOrigin() (which is defined by the class Point) and use that method to perform
a computation on the fields of the object p. We’ll cover the details of this operation
in Chapter 3.

Object Literals
In our discussion of primitive types, we saw that each primitive type has a literal
syntax for including values of the type literally into the text of a program. Java also
defines a literal syntax for a few special reference types, as described next.

74 | Chapter 2: Java Syntax from the Ground Up



String literals
The String class represents text as a string of characters. Because programs usually
communicate with their users through the written word, the ability to manipulate
strings of text is quite important in any programming language. In Java, strings are
objects; the data type used to represent text is the String class. Modern Java pro‐
grams usually use more string data than anything else.

Accordingly, because strings are such a fundamental data type, Java allows you to
include text literally in programs by placing it between double-quote (") characters.
For example:

String name = "David";
System.out.println("Hello, " + name);

Don’t confuse the double-quote characters that surround string literals with the
single-quote (or apostrophe) characters that surround char literals. String literals
can contain any of the escape sequences char literals can (see Table 2-2). Escape
sequences are particularly useful for embedding double-quote characters within
double-quoted string literals. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

String literals cannot contain comments and may consist of only a single line. Java
does not support any kind of continuation-character syntax that allows two separate
lines to be treated as a single line. If you need to represent a long string of text that
does not fit on a single line, break it into independent string literals and use the +
operator to concatenate the literals. For example:

// This is illegal; string  literals cannot be broken across lines.
String x = "This is a test of the
            emergency broadcast system";

String s = "This is a test of the " +     // Do this instead
           "emergency broadcast system";

This concatenation of literals is done when your program is compiled, not when it is
run, so you do not need to worry about any kind of performance penalty.

Type literals
The second type that supports its own special object literal syntax is the class named
Class. Instances of the Class class represent a Java data type, and contain metadata
about the type that is referred to. To include a Class object literally in a Java pro‐
gram, follow the name of any data type with .class. For example:

Class<?> typeInt = int.class;
Class<?> typeIntArray = int[].class;
Class<?> typePoint = Point.class;
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The null reference
The null keyword is a special literal value that is a reference to nothing, or an
absence of a reference. The null value is unique because it is a member of every
reference type. You can assign null to variables of any reference type. For example:

String s = null;
Point p = null;

Lambda Expressions
In Java 8, a major new feature was introduced—lambda expressions. These are a very
common programming language construct, and in particular are extremely widely
used in the family of languages known as functional programming languages (e.g.,
Lisp, Haskell, and OCaml). The power and flexibility of lambdas goes far beyond
just functional languages, and they can be found in almost all modern program‐
ming languages.

Definition of a Lambda Expression
A lambda expression is essentially a function that does not have a name, and can be
treated as a value in the language. As Java does not allow code to run around on its
own outside of classes, in Java, this means that a lambda is an anonymous method
that is defined on some class (that is possibly unknown to the developer).

The syntax for a lambda expression looks like this:

( paramlist ) -> { statements }

One simple, very traditional example:

Runnable r = () -> System.out.println("Hello World");

When a lambda expression is used as a value it is automatically converted to a new
object of the correct type for the variable that it is being placed into. This auto-
conversion and type inference is essential to Java’s approach to lambda expressions.
Unfortunately, it relies on a proper understanding of Java’s type system as a whole.
“Lambda Expressions” on page 171 provides a more detailed explanation of lambda
expressions—so for now, it suffices to simply recognize the syntax for lambdas.

A slightly more complex example:

ActionListener listener = (e) -> {
  System.out.println("Event fired at: "+ e.getWhen());
  System.out.println("Event command: "+ e.getActionCommand());
};
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4 There is a terminology difficulty when discussing arrays. Unlike with classes and their instances,
we use the term “array” for both the array type and the array instance. In practice, it is usually
clear from context whether a type or a value is being discussed.

Arrays
An array is a special kind of object that holds zero or more primitive values or refer‐
ences. These values are held in the elements of the array, which are unnamed vari‐
ables referred to by their position or index. The type of an array is characterized by
its element type, and all elements of the array must be of that type.

Array elements are numbered starting with zero, and valid indexes range from zero
to the number of elements minus one. The array element with index 1, for example,
is the second element in the array. The number of elements in an array is its length. 
The length of an array is specified when the array is created, and it never changes.

The element type of an array may be any valid Java type, including array types. This
means that Java supports arrays of arrays, which provide a kind of multidimensional
array capability. Java does not support the matrix-style multidimensional arrays
found in some languages.

Array Types
Array types are reference types, just as classes are. Instances of arrays are objects,
just as the instances of a class are.4 Unlike classes, array types do not have to be
defined. Simply place square brackets after the element type. For example, the fol‐
lowing code declares three variables of array type:

byte b;                        // byte is a primitive type
byte[] arrayOfBytes;           // byte[] is an array of byte values
byte[][] arrayOfArrayOfBytes;  // byte[][] is an array of byte[]
String[] points;               // String[] is an array of strings

The length of an array is not part of the array type. It is not possible, for example, to
declare a method that expects an array of exactly four int values, for example. If a
method parameter is of type int[], a caller can pass an array with any number
(including zero) of elements.

Array types are not classes, but array instances are objects. This means that arrays
inherit the methods of java.lang.Object. Arrays implement the Cloneable inter‐
face and override the clone() method to guarantee that an array can always be
cloned and that clone() never throws a CloneNotSupportedException. Arrays also
implement Serializable so that any array can be serialized if its element type can
be serialized. Finally, all arrays have a public final int field named length that
specifies the number of elements in the array.

Array type widening conversions
Because arrays extend Object and implement the Cloneable and Serializable
interfaces, any array type can be widened to any of these three types. But certain
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array types can also be widened to other array types. If the element type of an array
is a reference type T, and T is assignable to a type S, the array type T[] is assignable
to the array type S[]. Note that there are no widening conversions of this sort for
arrays of a given primitive type. As examples, the following lines of code show legal
array widening conversions:

String[] arrayOfStrings;      // Created elsewhere
int[][] arrayOfArraysOfInt;   // Created elsewhere
// String is assignable to Object, 
// so String[] is assignable to Object[]
Object[] oa = arrayOfStrings;
// String implements Comparable, so a String[] can 
// be considered a Comparable[]
Comparable[] ca = arrayOfStrings;
// An int[] is an Object, so int[][] is assignable to Object[]
Object[] oa2 = arrayOfArraysOfInt;
// All arrays are cloneable, serializable Objects
Object o = arrayOfStrings;
Cloneable c = arrayOfArraysOfInt;
Serializable s = arrayOfArraysOfInt[0];

This ability to widen an array type to another array type means that the compile-
time type of an array is not always the same as its runtime type.

This widening is known as array covariance—and as we shall
see in “Wildcards” on page 146 it is regarded by modern
standards as a historical artifact and a misfeature, because of
the mismatch between compile and runtime typing that it
exposes.

The compiler must usually insert runtime checks before any operation that stores a
reference value into an array element to ensure that the runtime type of the value
matches the runtime type of the array element. If the runtime check fails, an ArrayS
toreException is thrown.

C compatibility syntax
As we’ve seen, an array type is written simply by placing brackets after the element
type. For compatibility with C and C++, however, Java supports an alternative syn‐
tax in variable declarations: brackets may be placed after the name of the variable
instead of, or in addition to, the element type. This applies to local variables, fields,
and method parameters. For example:

// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays[][];

// These three lines declare fields of the same array type:
public String[][] aas1;   // Preferred Java syntax
public String aas2[][];   // C syntax
public String[] aas3[];   // Confusing hybrid syntax
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// This method signature includes two parameters with the same type
public static double dotProduct(double[] x, double y[]) { ... }

This compatibility syntax is extremely uncommon, and you
should not use it.

Creating and Initializing Arrays
To create an array value in Java, you use the new keyword, just as you do to create an
object. Array types don’t have constructors, but you are required to specify a length
whenever you create an array. Specify the desired size of your array as a nonnegative
integer between square brackets:

// Create a new array to hold 1024 bytes
byte[] buffer = new byte[1024];
// Create an array of 50 references to strings
String[] lines = new String[50];

When you create an array with this syntax, each of the array elements is automati‐
cally initialized to the same default value that is used for the fields of a class: false
for boolean elements, \u0000 for char elements, 0 for integer elements, 0.0 for
floating-point elements, and null for elements of reference type.

Array creation expressions can also be used to create and initialize a multidimen‐
sional array of arrays. This syntax is somewhat more complicated and is explained
later in this section.

Array initializers
To create an array and initialize its elements in a single expression, omit the array
length and follow the square brackets with a comma-separated list of expressions
within curly braces. The type of each expression must be assignable to the element
type of the array, of course. The length of the array that is created is equal to the
number of expressions. It is legal, but not necessary, to include a trailing comma fol‐
lowing the last expression in the list. For example:

String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };

Note that this syntax allows arrays to be created, initialized, and used without ever
being assigned to a variable. In a sense, these array creation expressions are anony‐
mous array literals. Here are examples:

// Call a method, passing an anonymous array literal that 
// contains two strings
String response = askQuestion("Do you want to quit?",
                               new String[] {"Yes", "No"});
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// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new Point[] { new Point(1,2),
                                               new Point(3,4),
                                               new Point(3,2) });

When an array initializer is part of a variable declaration, you may omit the new
keyword and element type and list the desired array elements within curly braces:

String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

Array literals are created and initialized when the program is run, not when the pro‐
gram is compiled. Consider the following array literal:

int[] perfectNumbers = {6, 28};

This is compiled into Java byte codes that are equivalent to:

int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;

The fact that Java does all array initialization at runtime has an important corollary.
It means that the expressions in an array initializer may be computed at runtime
and need not be compile-time constants. For example:

Point[] points = { circle1.getCenterPoint(), circle2.getCenterPoint() };

Using Arrays
Once an array has been created, you are ready to start using it. The following sec‐
tions explain basic access to the elements of an array and cover common idioms of
array usage such as iterating through the elements of an array and copying an array
or part of an array.

Accessing array elements
The elements of an array are variables. When an array element appears in an expres‐
sion, it evaluates to the value held in the element. And when an array element
appears on the left-hand side of an assignment operator, a new value is stored into
that element. Unlike a normal variable, however, an array element has no name,
only a number. Array elements are accessed using a square bracket notation. If a is
an expression that evaluates to an array reference, you index that array and refer to
a specific element with a[i], where i is an integer literal or an expression that eval‐
uates to an int. For example:

// Create an array of two strings
String[] responses = new String[2];
responses[0] = "Yes";  // Set the first element of the array
responses[1] = "No";   // Set the second element of the array

// Now read these array elements
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System.out.println(question + " (" + responses[0] + "/" +
                   responses[1] + " ): ");

// Both the array reference and the array index may be more complex
double datum = data.getMatrix()[data.row() * data.numColumns() +
                   data.column()];

The array index expression must be of type int, or a type that can be widened to an
int: byte, short, or even char. It is obviously not legal to index an array with a
boolean, float, or double value. Remember that the length field of an array is an
int and that arrays may not have more than Integer.MAX_VALUE elements. Index‐
ing an array with an expression of type long generates a compile-time error, even if
the value of that expression at runtime would be within the range of an int.

Array bounds
Remember that the first element of an array a is a[0] , the second element is a[1],
and the last is a[a.length-1].

A common bug involving arrays is use of an index that is too small (a negative
index) or too large (greater than or equal to the array length). In languages like C
or C++, accessing elements before the beginning or after the end of an array yields
unpredictable behavior that can vary from invocation to invocation and platform to
platform. Such bugs may not always be caught, and if a failure occurs, it may be at
some later time. While it is just as easy to write faulty array indexing code in Java,
Java guarantees predictable results by checking every array access at runtime. If an
array index is too small or too large, Java immediately throws an ArrayIndexOutOf
BoundsException.

Iterating arrays
It is common to write loops that iterate through each of the elements of an array in
order to perform some operation on it. This is typically done with a for loop. The
following code, for example, computes the sum of an array of integers:

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23 };
int sumOfPrimes = 0;
for(int i = 0; i < primes.length; i++)
    sumOfPrimes += primes[i];

The structure of this for loop is idiomatic, and you’ll see it frequently. Java also has
the foreach syntax that we’ve already met. The summing code could be rewritten
succinctly as follows:

for(int p : primes) sumOfPrimes += p;

Copying arrays
All array types implement the Cloneable interface, and any array can be copied by
invoking its clone() method. Note that a cast is required to convert the return value
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to the appropriate array type, but that the clone() method of arrays is guaranteed
not to throw CloneNotSupportedException:

int[] data = { 1, 2, 3 };
int[] copy = (int[]) data.clone();

The clone() method makes a shallow copy. If the element type of the array is a ref‐
erence type, only the references are copied, not the referenced objects themselves.
Because the copy is shallow, any array can be cloned, even if the element type is not
itself Cloneable.

Sometimes you simply want to copy elements from one existing array to another
existing array. The System.arraycopy() method is designed to do this efficiently,
and you can assume that Java VM implementations perform this method using
high-speed block copy operations on the underlying hardware.

arraycopy() is a straightforward function that is difficult to use only because it has
five arguments to remember. First pass the source array from which elements are to
be copied. Second, pass the index of the start element in that array. Pass the destina‐
tion array and the destination index as the third and fourth arguments. Finally, as
the fifth argument, specify the number of elements to be copied.

arraycopy() works correctly even for overlapping copies within the same array. For
example, if you’ve “deleted” the element at index 0 from array a and want to shift the
elements between indexes 1 and n down one so that they occupy indexes 0 through
n-1 you could do this:

System.arraycopy(a, 1, a, 0, n);

Array utilities
The java.util.Arrays class contains a number of static utility methods for work‐
ing with arrays. Most of these methods are heavily overloaded, with versions for
arrays of each primitive type and another version for arrays of objects. The sort()
and binarySearch() methods are particularly useful for sorting and searching
arrays. The equals() method allows you to compare the content of two arrays. The
Arrays.toString() method is useful when you want to convert array content to a
string, such as for debugging or logging output.

The Arrays class also includes deepEquals(), deepHashCode(), and deepTo
String() methods that work correctly for multidimensional arrays.

Multidimensional Arrays
As we’ve seen, an array type is written as the element type followed by a pair of
square brackets. An array of char is char[], and an array of arrays of char is char[]
[]. When the elements of an array are themselves arrays, we say that the array is
multidimensional. In order to work with multidimensional arrays, you need to
understand a few additional details.
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Imagine that you want to use a multidimensional array to represent a multiplication
table:

int[][] products;      // A multiplication table

Each of the pairs of square brackets represents one dimension, so this is a two-
dimensional array. To access a single int element of this two-dimensional array, you
must specify two index values, one for each dimension. Assuming that this array
was actually initialized as a multiplication table, the int value stored at any given
element would be the product of the two indexes. That is, products[2][4] would
be 8, and products[3][7] would be 21.

To create a new multidimensional array, use the new keyword and specify the size of
both dimensions of the array. For example:

int[][] products = new int[10][10];

In some languages, an array like this would be created as a single block of 100 int
values. Java does not work this way. This line of code does three things:

• Declares a variable named products to hold an array of arrays of int.

• Creates a 10-element array to hold 10 arrays of int.

• Creates 10 more arrays, each of which is a 10-element array of int. It assigns
each of these 10 new arrays to the elements of the initial array. The default
value of every int element of each of these 10 new arrays is 0.

To put this another way, the previous single line of code is equivalent to the follow‐
ing code:

int[][] products = new int[10][]; // An array to hold 10 int[] values
for(int i = 0; i < 10; i++)      // Loop 10 times...
    products[i] = new int[10];   // ...and create 10 arrays

The new keyword performs this additional initialization automatically for you. It
works with arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size for
all dimensions of the array, only the leftmost dimension or dimensions. For exam‐
ple, the following two lines are legal:

float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of the array can
hold a float[][]. The second line creates a two-dimensional array, where each ele‐
ment of the array is a float[]. If you specify a size for only some of the dimensions
of an array, however, those dimensions must be the leftmost ones. The following
lines are not legal:
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float[][][] globalTemperatureData = new float[360][][100];  // Error!
float[][][] globalTemperatureData = new float[][180][100];  // Error!

Like a one-dimensional array, a multidimensional array can be initialized using an
array initializer. Simply use nested sets of curly braces to nest arrays within arrays.
For example, we can declare, create, and initialize a 5 × 5 multiplication table like
this:

int[][] products = { {0, 0, 0, 0, 0},
                     {0, 1, 2, 3, 4},
                     {0, 2, 4, 6, 8},
                     {0, 3, 6, 9, 12},
                     {0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you
can use the anonymous initializer syntax:

boolean response = bilingualQuestion(question, new String[][] {
                                                   { "Yes", "No" },
                                                   { "Oui", "Non" }});

When you create a multidimensional array using the new keyword, it is usually good
practice to only use rectangular arrays: one in which all the array values for a given
dimension have the same size.

Reference Types
Now that we’ve covered arrays and introduced classes and objects, we can turn to a
more general description of reference types. Classes and arrays are two of Java’s five
kinds of reference types. Classes were introduced earlier and are covered in com‐
plete detail, along with interfaces, in Chapter 3. Enumerated types and annotation
types are reference types introduced in Chapter 4.

This section does not cover specific syntax for any particular reference type, but
instead explains the general behavior of reference types and illustrates how they dif‐
fer from Java’s primitive types. In this section, the term object refers to a value or
instance of any reference type, including arrays.

Reference Versus Primitive Types
Reference types and objects differ substantially from primitive types and their prim‐
itive values:

• Eight primitive types are defined by the Java language, and the programmer
cannot define new primitive types. Reference types are user-defined, so there is
an unlimited number of them. For example, a program might define a class
named Point and use objects of this newly defined type to store and manipu‐
late x,y points in a Cartesian coordinate system.

• Primitive types represent single values. Reference types are aggregate types that
hold zero or more primitive values or objects. Our hypothetical Point class, for
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example, might hold two double values to represent the x and y coordinates of
the points. The char[] and Point[] array types are aggregate types because
they hold a sequence of primitive char values or Point objects.

• Primitive types require between one and eight bytes of memory. When a primi‐
tive value is stored in a variable or passed to a method, the computer makes a
copy of the bytes that hold the value. Objects, on the other hand, may require
substantially more memory. Memory to store an object is dynamically allocated
on the heap when the object is created and this memory is automatically
“garbage collected” when the object is no longer needed.

When an object is assigned to a variable or passed to a
method, the memory that represents the object is not copied.
Instead, only a reference to that memory is stored in the vari‐
able or passed to the method.

References are completely opaque in Java and the representation of a reference is an
implementation detail of the Java runtime. If you are a C programmer, however, you
can safely imagine a reference as a pointer or a memory address. Remember,
though, that Java programs cannot manipulate references in any way.

Unlike pointers in C and C++, references cannot be converted to or from integers,
and they cannot be incremented or decremented. C and C++ programmers should
also note that Java does not support the & address-of operator or the * and -> deref‐
erence operators.

Manipulating Objects and Reference Copies
The following code manipulates a primitive int value:

int x = 42;
int y = x;

After these lines execute, the variable y contains a copy of the value held in the vari‐
able x. Inside the Java VM, there are two independent copies of the 32-bit
integer 42.

Now think about what happens if we run the same basic code but use a reference
type instead of a primitive type:

Point p = new Point(1.0, 2.0);
Point q = p;

After this code runs, the variable q holds a copy of the reference held in the variable
p. There is still only one copy of the Point object in the VM, but there are now two
copies of the reference to that object. This has some important implications. Sup‐
pose the two previous lines of code are followed by this code:
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System.out.println(p.x);  // Print out the x coordinate of p: 1.0
q.x = 13.0;               // Now change the X coordinate of q
System.out.println(p.x);  // Print out p.x again; this time it is 13.0

Because the variables p and q hold references to the same object, either variable can
be used to make changes to the object, and those changes are visible through the
other variable as well. As arrays are a kind of object then the same thing happens
with arrays, as illustrated by the following code:

// greet holds an array reference
char[] greet = { 'h','e','l','l','o' };  
char[] cuss = greet;             // cuss holds the same reference
cuss[4] = '!';                   // Use reference to change an element
System.out.println(greet);       // Prints "hell!"

A similar difference in behavior between primitive types and reference types occurs
when arguments are passed to methods. Consider the following method:

void changePrimitive(int x) {
    while(x > 0) {
        System.out.println(x--);
    }
}

When this method is invoked, the method is given a copy of the argument used to
invoke the method in the parameter x. The code in the method uses x as a loop
counter and decrements it to zero. Because x is a primitive type, the method has its
own private copy of this value, so this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the
parameter is a reference type:

void changeReference(Point p) {
    while(p.x > 0) {
        System.out.println(p.x--);
    }
}

When this method is invoked, it is passed a private copy of a reference to a Point
object and can use this reference to change the Point object. For example, consider
the following:

Point q = new Point(3.0, 4.5);  // A point with an x coordinate of 3
changeReference(q);             // Prints 3,2,1 and modifies the Point
System.out.println(q.x);        // The x coordinate of q is now 0!

When the changeReference() method is invoked, it is passed a copy of the refer‐
ence held in variable q. Now both the variable q and the method parameter p hold
references to the same object. The method can use its reference to change the con‐
tents of the object. Note, however, that it cannot change the contents of the variable
q. In other words, the method can change the Point object beyond recognition, but
it cannot change the fact that the variable q refers to that object.
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Comparing Objects
We’ve seen that primitive types and reference types differ significantly in the way
they are assigned to variables, passed to methods, and copied. The types also differ
in the way they are compared for equality. When used with primitive values, the
equality operator (==) simply tests whether two values are identical (i.e., whether
they have exactly the same bits). With reference types, however, == compares refer‐
ences, not actual objects. In other words, == tests whether two references refer to the
same object; it does not test whether two objects have the same content. Here’s an
example:

String letter = "o";
String s = "hello";              // These two String objects
String t = "hell" + letter;      // contain exactly the same text.
if (s == t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 };                  
// A copy with identical content.
byte[] b = (byte[]) a.clone();           
if (a == b) System.out.println("equal"); // But they are not equal!

When working with reference types, there are two kinds of equality: equality of ref‐
erence and equality of object. It is important to distinguish between these two kinds
of equality. One way to do this is to use the word “identical” when talking about
equality of references and the word “equal” when talking about two distinct objects
that have the same content. To test two nonidentical objects for equality, pass one of
them to the equals() method of the other:

String letter = "o";
String s = "hello";              // These two String objects
String t = "hell" + letter;      // contain exactly the same text.
if (s.equals(t)) {               // And the equals() method
    System.out.println("equal"); // tells us so.
}

All objects inherit an equals() method (from Object), but the default implementa‐
tion simply uses == to test for identity of references, not equality of content. A class
that wants to allow objects to be compared for equality can define its own version of
the equals() method. Our Point class does not do this, but the String class does,
as indicated in the code example. You can call the equals() method on an array, but
it is the same as using the == operator, because arrays always inherit the default
equals() method that compares references rather than array content. You can com‐
pare arrays for equality with the convenience method java.util.Arrays.equals().

Boxing and Unboxing Conversions
Primitive types and reference types behave quite differently. It is sometimes useful
to treat primitive values as objects, and for this reason, the Java platform includes
wrapper classes for each of the primitive types. Boolean, Byte, Short, Character,
Integer, Long, Float, and Double are immutable, final classes whose instances each
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hold a single primitive value. These wrapper classes are usually used when you want
to store primitive values in collections such as java.util.List:

// Create a List collection
List numbers = new ArrayList();               
// Store a wrapped primitive
numbers.add(new Integer(-1));                 
// Extract the primitive value
int i = ((Integer)numbers.get(0)).intValue(); 

Java allows types of conversions known as boxing and unboxing  conversions. Box‐
ing conversions convert a primitive value to its corresponding wrapper object and
unboxing conversions do the opposite. You may explicitly specify a boxing or
unboxing conversion with a cast, but this is unnecessary, as these conversions are
automatically performed when you assign a value to a variable or pass a value to a
method. Furthermore, unboxing conversions are also automatic if you use a wrap‐
per object when a Java operator or statement expects a primitive value. Because Java
performs boxing and unboxing automatically, this language feature is often known 
as autoboxing.

Here are some examples of automatic boxing and unboxing conversions:

Integer i = 0;   // int literal 0 boxed to an Integer object
Number n = 0.0f; // float literal boxed to Float and widened to Number
Integer i = 1;   // this is a boxing conversion
int j = i;       // i is unboxed here
i++;             // i is unboxed, incremented, and then boxed up again
Integer k = i+2; // i is unboxed and the sum is boxed up again
i = null;
j = i;           // unboxing here throws a NullPointerException

Autoboxing makes dealing with collections much easier as well. Let’s look at an
example that uses Java’s generics (a language feature we’ll meet properly in “Java
Generics” on page 142) that allows us to restrict what types can be put into lists and
other collections:

List<Integer> numbers = new ArrayList<>(); // Create a List of Integer
numbers.add(-1);                           // Box int to Integer
int i = numbers.get(0);                    // Unbox Integer to int

Packages and the Java Namespace
A package is a named collection of classes, interfaces, and other reference types. 
Packages serve to group related classes and define a namespace for the classes they
contain.

The core classes of the Java platform are in packages whose names begin with java.
For example, the most fundamental classes of the language are in the package
java.lang. Various utility classes are in java.util. Classes for input and output are
in java.io, and classes for networking are in java.net. Some of these packages
contain subpackages, such as java.lang.reflect and java.util.regex.

88 | Chapter 2: Java Syntax from the Ground Up



Extensions to the Java platform that have been standardized by Oracle (or originally
Sun) typically have package names that begin with javax. Some of these extensions,
such as javax.swing and its myriad subpackages, were later adopted into the core
platform itself. Finally, the Java platform also includes several “endorsed standards,”
which have packages named after the standards body that created them, such as
org.w3c and org.omg.

Every class has both a simple name, which is the name given to it in its definition,
and a fully qualified name, which includes the name of the package of which it is a
part. The String class, for example, is part of the java.lang package, so its fully
qualified name is java.lang.String.

This section explains how to place your own classes and interfaces into a package
and how to choose a package name that won’t conflict with anyone else’s package
name. Next, it explains how to selectively import type names or static members into
the namespace so that you don’t have to type the package name of every class or
interface you use.

Package Declaration
To specify the package a class is to be part of, you use a package declaration. The
package keyword, if it appears, must be the first token of Java code (i.e., the first
thing other than comments and space) in the Java file. The keyword should be fol‐
lowed by the name of the desired package and a semicolon. Consider a Java file that
begins with this directive:

package org.apache.commons.net;

All classes defined by this file are part of the package org.apache.commons.net.

If no package directive appears in a Java file, all classes defined in that file are part of
an unnamed default package. In this case, the qualified and unqualified names of a
class are the same.

The possibility of naming conflicts means that you should not
use the default package. As your project grows more compli‐
cated, conflicts become almost inevitable—much better to cre‐
ate packages right from the start.

Globally Unique Package Names
One of the important functions of packages is to partition the Java namespace and
prevent name collisions between classes. It is only their package names that keep the
java.util.List and java.awt.List classes distinct, for example. In order for this
to work, however, package names must themselves be distinct. As the developer of 
Java, Oracle controls all package names that begin with java, javax, and sun.
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One scheme in common use is to use your domain name, with its elements
reversed, as the prefix for all your package names. For example, the Apache Project
produces a networking library as part of the Apache Commons project. The Com‐
mons project can be found at http://commons.apache.org/ and accordingly, the pack‐
age name used for the networking library is org.apache.commons.net.

Note that these package-naming rules apply primarily to API developers. If other
programmers will be using classes that you develop along with unknown other
classes, it is important that your package name be globally unique. On the other
hand, if you are developing a Java application and will not be releasing any of the
classes for reuse by others, you know the complete set of classes that your
application will be deployed with and do not have to worry about unforeseen nam‐
ing conflicts. In this case, you can choose a package naming scheme for your own
convenience rather than for global uniqueness. One common approach is to use the
application name as the main package name (it may have subpackages beneath it).

Importing Types
When referring to a class or interface  in your Java code, you must, by default, use
the fully qualified name of the type, including the package name. If you’re writing
code to manipulate a file and need to use the File class of the java.io package, you
must type java.io.File. This rule has three exceptions:

• Types from the package java.lang are so important and so commonly used
that they can always be referred to by their simple names.

• The code in a type p.T may refer to other types defined in the package p by
their simple names.

• Types that have been imported into the namespace with an import declaration
may be referred to by their simple names.

The first two exceptions are known as “automatic imports.” The types from
java.lang and the current package are “imported” into the namespace so that they
can be used without their package name. Typing the package name of commonly
used types that are not in java.lang or the current package quickly becomes tedi‐
ous, and so it is also possible to explicitly import types from other packages into the
namespace. This is done with the import declaration.

import declarations must appear at the start of a Java file, immediately after the
package declaration, if there is one, and before any type definitions. You may use
any number of import declarations in a file. An import declaration applies to all
type definitions in the file (but not to any import declarations that follow it).

The import declaration has two forms. To import a single type into the namespace,
follow the import keyword with the name of the type and a semicolon:

import java.io.File;    // Now we can type File instead of java.io.File

This is known as the “single type import” declaration.
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The other form of import is the “on-demand type import.” In this form, you specify
the name of a package followed by the characters .* to indicate that any type from
that package may be used without its package name. Thus, if you want to use several
other classes from the java.io package in addition to the File class, you can simply
import the entire package:

import java.io.*;   // Use simple names for all classes in java.io

This on-demand import syntax does not apply to subpackages. If I import the
java.util package, I must still refer to the java.util.zip.ZipInputStream class
by its fully qualified name.

Using an on-demand type import declaration is not the same as explicitly writing
out a single type import declaration for every type in the package. It is more like an
explicit single type import for every type in the package that you actually use in your
code. This is the reason it’s called “on demand”; types are imported as you use them.

Naming conflicts and shadowing
import declarations are invaluable to Java programming. They do expose us to the
possibility of naming conflicts, however. Consider the packages java.util and
java.awt. Both contain types named List.

java.util.List is an important and commonly used interface. The java.awt pack‐
age contains a number of important types that are commonly used in client-side
applications, but java.awt.List has been superseded and is not one of these
important types. It is illegal to import both java.util.List and java.awt.List in
the same Java file. The following single type import declarations produce a compila‐
tion error:

import java.util.List;
import java.awt.List;

Using on-demand type imports for the two packages is legal:

import java.util.*;  // For collections and other utilities.
import java.awt.*;   // For fonts, colors, and graphics.

Difficulty arises, however, if you actually try to use the type List. This type can be
imported “on demand” from either package, and any attempt to use List as an
unqualified type name produces a compilation error. The workaround, in this case,
is to explicitly specify the package name you want.

Because java.util.List is much more commonly used than java.awt.List, it is
useful to combine the two on-demand type import declarations with a single-type
import declaration that serves to disambiguate what we mean when we say List:

import java.util.*;    // For collections and other utilities.
import java.awt.*;     // For fonts, colors, and graphics.
import java.util.List; // To disambiguate from java.awt.List
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With these import declarations in place, we can use List to mean the
java.util.List interface. If we actually need to use the java.awt.List class, we
can still do so as long as we include its package name. There are no other naming
conflicts between java.util and java.awt, and their types will be imported “on
demand” when we use them without a package name.

Importing Static Members
As well as types, you can import  the static members of types using the keywords
import static. (Static members are explained in Chapter 3. If you are not already
familiar with them, you may want to come back to this section later.) Like type
import declarations, these static import declarations come in two forms: single static
member import and on-demand static member import. Suppose, for example, that
you are writing a text-based program that sends a lot of output to System.out. In
this case, you might use this single static member import to save yourself typing:

import static java.lang.System.out;

With this import in place, you can then use out.println() instead of Sys
tem.out.println(). Or suppose you are writing a program that uses many of the
trigonometric and other functions of the Math class. In a program that is clearly
focused on numerical methods like this, having to repeatedly type the class name
“Math” does not add clarity to your code; it just gets in the way. In this case, an on-
demand static member import may be appropriate:

import static java.lang.Math.*

With this import declaration, you are free to write concise expressions like
sqrt(abs(sin(x))) without having to prefix the name of each static method with
the class name Math.

Another important use of import static declarations is to import the names of
constants into your code. This works particularly well with enumerated types (see
Chapter 4). Suppose, for example, that you want to use the values of this enumer‐
ated type in code you are writing:

package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };

You could import the type climate.temperate.Seasons and then prefix the con‐
stants with the type name: Seasons.SPRING. For more concise code, you could
import the enumerated values themselves:

import static climate.temperate.Seasons.*;

Using static member import declarations for constants is generally a better techni‐
que than implementing an interface that defines the constants.
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Static member imports and overloaded methods
A static import declaration imports a name, not any one  specific member with that
name. Because Java allows method overloading and allows a type to have fields and
methods with the same name, a single static member import declaration may
actually import more than one member. Consider this code:

import static java.util.Arrays.sort;

This declaration imports the name “sort” into the namespace, not any one of the 19
sort() methods defined by java.util.Arrays. If you use the imported name sort
to invoke a method, the compiler will look at the types of the method arguments to
determine which method you mean.

It is even legal to import static methods with the same name from two or more dif‐
ferent types as long as the methods all have different signatures. Here is one natural
example:

import static java.util.Arrays.sort;
import static java.util.Collections.sort;

You might expect that this code would cause a syntax error. In fact, it does not
because the sort() methods defined by the Collections class have different signa‐
tures than all of the sort() methods defined by the Arrays class. When you use the
name “sort” in your code, the compiler looks at the types of the arguments to deter‐
mine which of the 21 possible imported methods you mean.

Java File Structure
This chapter has taken us from the smallest to the largest elements of Java syntax,
from individual characters and tokens to operators, expressions, statements, and
methods, and on up to classes and packages. From a practical standpoint, the unit
of Java program structure you will be dealing with most often is the Java file. A Java
file is the smallest unit of Java code that can be compiled by the Java compiler. A
Java file consists of:

• An optional package directive

• Zero or more import or import static directives
• One or more type definitions

These elements can be interspersed with comments, of course, but they must appear
in this order. This is all there is to a Java file. All Java statements (except the package
and import directives, which are not true statements) must appear within methods,
and all methods must appear within a type definition.

Java files have a couple of other important restrictions. First, each file can contain at
most one top-level class that is declared public. A public class is one that is
designed for use by other classes in other packages. A class can contain any number
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of nested or inner classes that are public. We’ll see more about the public modifier
and nested classes in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java file contains a
public class, the name of the file must be the same as the name of the class, with the
extension .java appended. Therefore, if Point is defined as a public class, its source
code must appear in a file named Point.java. Regardless of whether your classes are
public or not, it is good programming practice to define only one per file and to
give the file the same name as the class.

When a Java file is compiled, each of the classes it defines is compiled into a separate
class file that contains Java byte codes to be interpreted by the Java Virtual Machine.
A class file has the same name as the class it defines, with the extension .class
appended. Thus, if the file Point.java defines a class named Point, a Java compiler
compiles it to a file named Point.class. On most systems, class files are stored in
directories that correspond to their package names. The class com.davidflana
gan.examples.Point is thus defined by the class file com/davidflanagan/examples/
Point.class.

The Java interpreter knows where the class files for the standard system classes are
located and can load them as needed. When the interpreter runs a program that
wants to use a class named com.davidflanagan.examples.Point, it knows that the
code for that class is located in a directory named com/davidflanagan/examples/
and, by default, it “looks” in the current directory for a subdirectory of that name.
In order to tell the interpreter to look in locations other than the current directory,
you must use the -classpath option when invoking the interpreter or set the CLASS
PATH environment variable. For details, see the documentation for the Java inter‐
preter, java, in Chapter 8.

Defining and Running Java Programs
A Java program consists of a set of interacting class definitions. But not every Java
class or Java file defines a program. To create a program, you must define a class that
has a special method with the following signature:

public static void main(String[] args)

This main() method is the main entry point for your program. It is where the Java
interpreter starts running. This method is passed an array of strings and returns no
value. When main() returns, the Java interpreter exits (unless main() has created
separate threads, in which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java interpreter, java, specifying the fully quali‐
fied name of the class that contains the main() method. Note that you specify the
name of the class, not the name of the class file that contains the class. Any addi‐
tional arguments you specify on the command line are passed to the main() method
as its String[] parameter. You may also need to specify the -classpath option (or
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-cp) to tell the interpreter where to look for the classes needed by the program.
Consider the following command:

java -classpath /opt/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter. -classpath /usr/local/Jude
tells the interpreter where to look for .class files. com.davidflanagan.jude.Jude is
the name of the program to run (i.e., the name of the class that defines the main()
method). Finally, datafile.jude is a string that is passed to that main() method as the
single element of an array of String objects.

There is an easier way to run programs. If a program and all its auxiliary classes
(except those that are part of the Java platform) have been properly bundled in a
Java archive (JAR) file, you can run the program simply by specifying the name of
the JAR file. In the next example, we show how to start up the Censum garbage col‐
lection log analyzer:

java -jar /usr/local/Censum/censum.jar

Some operating systems make JAR files automatically executable. On those systems,
you can simply say:

% /usr/local/Censum/censum.jar

See Chapter 13 for more details on how to execute Java programs.

Summary
In this chapter, we’ve introduced the basic syntax of the Java language. Due to the
interlocking nature of the syntax of programming languages, it is perfectly fine if
you don’t feel at this point that you have completely grasped all of the syntax of the
language. It is by practice that we acquire proficiency in any language, human or
computer.

It is also worth observing that some parts of syntax are far more regularly used than
others. For example, the strictfp and assert keywords are almost never used.
Rather than trying to grasp every aspect of Java’s syntax, it is far better to begin to
acquire facility in the core aspects of Java and then return to any details of syntax
that may still be troubling you. With this in mind, let’s move to the next chapter and
begin to discuss the classes and objects that are so central to Java and the basics of
Java’s approach to object-oriented programming.
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3
Object-Oriented Programming

in Java

Now that we’ve covered fundamental Java syntax, we are ready to begin object-
oriented programming in Java. All Java programs use objects, and the type of an
object is defined by its class or interface. Every Java program is defined as a class,
and nontrivial programs include a number of classes and interface definitions. This
chapter explains how to define new classes and how to do object-oriented program‐
ming with them. We also introduce the concept of an interface, but a full discussion
of interfaces and Java’s type system is deferred until Chapter 4.

If you have experience with OO programming, however, be
careful. The term “object-oriented” has different meanings in
different languages. Don’t assume that Java works the same
way as your favorite OO language. (This is particularly true
for C++ or Python programmers).

This is a fairly lengthy chapter, so let’s begin with an overview and some definitions.

Overview of Classes
Classes are the most fundamental structural element of all Java programs. You can‐
not write Java code without defining a class. All Java statements appear within
classes, and all methods are implemented within classes.

Basic OO Definitions
Here are a couple important definitions:
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1 There is also the default, aka package, visibility that we will meet later.

Class
A class is a collection of data fields that hold values and methods that operate
on those values. A class defines a new reference type, such as the Point type
defined in Chapter 2.

The Point class defines a type that is the set of all possible two-dimensional points.

Object
An object is an instance of a class.

A Point object is a value of that type: it represents a single two-dimensional point.

Objects are often created by instantiating a class with the new keyword and a con‐
structor invocation, as shown here:

Point p = new Point(1.0, 2.0);

Constructors are covered later in this chapter in “Creating and Initializing Objects”
on page 106.

A class definition consists of a signature and a body. The class signature defines the
name of the class and may also specify other important information. The body of a
class is a set of members enclosed in curly braces. The members of a class usually
include fields and methods, and may also include constructors, initializers, and nes‐
ted types.

Members can be static or nonstatic. A static member belongs to the class itself while
a nonstatic member is associated with the instances of a class (see “Fields and Meth‐
ods” on page 100).

There are four very common kinds of members—class fields,
class methods, instance fields, and instance methods. The
majority of work done with Java involves interacting with
these kinds of members.

The signature of a class may declare that the class extends another class. The exten‐
ded class is known as the superclass and the extension is known as the subclass. A
subclass inherits the members of its superclass and may declare new members or
override inherited methods with new implementations.

The members of a class may have access modifiers public, protected, or private.1
These modifiers specify their visibility and accessibility to clients and to subclasses.
This allows classes to control access to members that are not part of their public
API. This ability to hide members enables an object-oriented design technique
known as data encapsulation, which we discuss in “Data Hiding and Encapsulation”
on page 121.
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Other Reference Types
The signature of a class may also declare that the class implements one or more
interfaces. An interface is a reference type similar to a class that defines method sig‐
natures but does not usually include method bodies to implement the methods.

However, from Java 8 onward, interfaces may use the keyword default to indicate
that a method specified in the interface is optional. If a method is optional, the
interface file must include a default implementation (hence the choice of keyword)
which will be used by all implementing classes that do not provide an implementa‐
tion of the optional method.

A class that implements an interface is required to provide bodies for the interface’s
nondefault methods. Instances of a class that implement an interface are also instan‐
ces of the interface type.

Classes and interfaces are the most important of the five fundamental reference
types defined by Java. Arrays, enumerated types (or “enums”), and annotation types
(usually just called “annotations”) are the other three. Arrays are covered in
Chapter 2. Enums are a specialized kind of class and annotations are a specialized
kind of interface—both are discussed later in Chapter 4, along with a full discussion
of interfaces.

Class Definition Syntax
At its simplest level, a class definition consists of the keyword class followed by the
name of the class and a set of class members within curly braces. The class key‐
word may be preceded by modifier keywords and annotations. If the class extends
another class, the class name is followed by the extends keyword and the name of
the class being extended. If the class implements one or more interfaces, then the
class name or the extends clause is followed by the implements keyword and a
comma-separated list of interface names. For example:

public class Integer extends Number implements Serializable, Comparable {
    // class members go here
}

A generic class may also have type parameters and wildcards as part of its definition
(see Chapter 4).

Class declarations may include modifier keywords. In addition to the access control
modifiers (public, protected, etc.), these include:

abstract

An abstract class is one whose implementation is incomplete and cannot be
instantiated. Any class with one or more abstract methods must be declared
abstract. Abstract classes are discussed in “Abstract Classes and Methods” on
page 128.
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final

The final modifier specifies that the class may not be extended. A class cannot
be declared to be both abstract and final.

strictfp

If a class is declared strictfp, all its methods behave as if they were declared
strictfp. This modifier is extremely rarely used.

Fields and Methods
A class can be viewed as a collection of data (also referred to as state) and code to
operate on that state. The data is stored in fields, and the code is organized into
methods.

This section covers fields and methods, the two most important kinds of class mem‐
bers. Fields and methods come in two distinct types: class members (also known as
static members) are associated with the class itself, while instance members are
associated with individual instances of the class (i.e., with objects). This gives us
four kinds of members:

• Class fields
• Class methods
• Instance fields
• Instance methods

The simple class definition for the class Circle, shown in Example 3-1, contains all
four types of members.

Example 3-1. A simple class and its members

public class Circle {
  // A class field
  public static final double PI= 3.14159;     // A useful constant

  // A class method: just compute a value based on the arguments
  public static double radiansToDegrees(double radians) {
    return radians * 180 / PI;
  }

  // An instance field
  public double r;                  // The radius of the circle

  // Two instance methods: they operate on the instance fields of an object
  public double area() {            // Compute the area of the circle
    return PI * r * r;
  }
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  public double circumference() {   // Compute the circumference 
                                    // of the circle
    return 2 * PI * r;
  }
}

It is not normally good practice to have a public field r—
instead, it would be much more usual to have a private field
r and a method radius() to provide access to it. The rea‐
son for this will be explained later, in “Data Hiding and
Encapsulation” on page 121. For now, we use a public field
simply to give examples of how to work with instance
fields.

The following sections explain all four common kinds of members. First, we cover
the declaration syntax for fields. (The syntax for declaring methods is covered later
in this chapter in “Data Hiding and Encapsulation” on page 121.)

Field Declaration Syntax
Field declaration syntax is much like the syntax for declaring local variables (see
Chapter 2) except that field definitions may also include modifiers. The simplest
field declaration consists of the field type followed by the field name. The type may
be preceded by zero or more modifier keywords or annotations, and the name may
be followed by an equals sign and initializer expression that provides the initial
value of the field. If two or more fields share the same type and modifiers, the type
may be followed by a comma-separated list of field names and initializers. Here are
some valid field declarations:

int x = 1;
private String name;
public static final int DAYS_PER_WEEK = 7;
String[] daynames = new String[DAYS_PER_WEEK];
private int a = 17, b = 37, c = 53;

Field modifiers are comprised of zero or more of the following keywords:

public, protected, private
These access modifiers specify whether and where a field can be used outside of
the class that defines it.

static
If present, this modifier specifies that the field is associated with the defining
class itself rather than with each instance of the class.

final
This modifier specifies that once the field has been initialized, its value may
never be changed. Fields that are both static and final are compile-time
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constants that javac may inline. final fields can also be used to create classes
whose instances are immutable.

transient
This modifier specifies that a field is not part of the persistent state of an object
and that it need not be serialized along with the rest of the object.

volatile
This modifier indicates that the field has extra semantics for concurrent use by
two or more threads. The volatile modifier says that the value of a field must
always be read from and flushed to main memory, and that it may not be
cached by a thread (in a register or CPU cache). See Chapter 6 for more details.

Class Fields
A class field is associated with the class in which it is defined rather than with an
instance of the class. The following line declares a class field:

public static final double PI = 3.14159;

This line declares a field of type double named PI and assigns it a value of 3.14159.

The static modifier says that the field is a class field. Class fields are sometimes
called static fields because of this static modifier. The final modifier says that the
value of the field does not change. Because the field PI represents a constant, we
declare it final so that it cannot be changed. It is a convention in Java (and many
other languages) that constants are named with capital letters, which is why our
field is named PI, not pi. Defining constants like this is a common use for class
fields, meaning that the static and final modifiers are often used together. Not all
class fields are constants, however. In other words, a field can be declared static
without being declared final.

The use of public static fields that are not final is almost
never a good practice—as multiple threads could update the
field and cause behavior that is extremely hard to debug.

A public static field is essentially a global variable. The names of class fields are
qualified by the unique names of the classes that contain them, however. Thus, Java
does not suffer from the name collisions that can affect other languages when differ‐
ent modules of code define global variables with the same name.

The key point to understand about a static field is that there is only a single copy of
it. This field is associated with the class itself, not with instances of the class. If you
look at the various methods of the Circle class, you’ll see that they use this field.
From inside the Circle class, the field can be referred to simply as PI. Outside the
class, however, both class and field names are required to uniquely specify the field.
Methods that are not part of Circle access this field as Circle.PI.
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Class Methods
As with class fields, class methods are declared with the static modifier:

public static double radiansToDegrees(double rads) { 
  return rads * 180 / PI;
}

This line declares a class method named radiansToDegrees(). It has a single
parameter of type double and returns a double value.

Like class fields, class methods are associated with a class, rather than with an
object. When invoking a class method from code that exists outside the class, you
must specify both the name of the class and the method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it is defined, you
don’t have to specify the class name. You can also shorten the amount of typing
required via the use of a static import (as discussed in Chapter 2).

Note that the body of our Circle.radiansToDegrees( ) method uses the class field
PI. A class method can use any class fields and class methods of its own class (or of
any other class).

A class method cannot use any instance fields or instance methods because class
methods are not associated with an instance of the class. In other words, although
the radiansToDegrees() method is defined in the Circle class, it cannot use the
instance part of any Circle objects.

One way to think about this is that in any instance, we always
have a this reference to the current object. But class methods
are not associated with a specific instance, so have no this
reference, and no access to instance fields.

As we discussed earlier, a class field is essentially a global variable. In a similar way, a
class method is a global method, or global function. Although radiansToDegrees()
does not operate on Circle objects, it is defined within the Circle class because it is
a utility method that is sometimes useful when working with circles, and so it makes
sense to package it along with the other functionality of the Circle class.

Instance Fields
Any field declared without the static modifier is an instance field:

public double r;    // The radius of the circle

Instance fields are associated with instances of the class, so every Circle object we
create has its own copy of the double field r. In our example, r represents the radius
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of a specific circle. Each Circle object can have a radius independent of all other
Circle objects.

Inside a class definition, instance fields are referred to by name alone. You can see
an example of this if you look at the method body of the circumference() instance
method. In code outside the class, the name of an instance method must be prefixed
with a reference to the object that contains it. For example, if the variable c holds a
reference to a Circle object, we use the expression c.r to refer to the radius of that
circle:

Circle c = new Circle(); // Create a Circle object; store a ref in c
c.r = 2.0;               // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2;           // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields hold the
state of an object; the values of those fields make one object distinct from another.

Instance Methods
An instance method operates on a specific instance of a class (an object), and any
method not declared with the static keyword is automatically an instance method.

Instance methods are the feature that makes object-oriented programming start to
get interesting. The Circle class defined in Example 3-1 contains two instance
methods, area() and circumference(), that compute and return the area and cir‐
cumference of the circle represented by a given Circle object.

To use an instance method from outside the class in which it is defined, we must
prefix it with a reference to the instance that is to be operated on. For example:

// Create a Circle object; store in variable c
Circle c = new Circle();   
c.r = 2.0;                 // Set an instance field of the object
double a = c.area();       // Invoke an instance method of the object

This is why it is called object-oriented programming; the
object is the focus here, not the function call.

From within an instance method, we naturally have access to all the instance fields
that belong to the object the method was called on. Recall that an object is often best
considered to be a bundle containing state (represented as the fields of the object),
and behavior (the methods to act on that state).

All instance methods are implemented using an implicit parameter not shown in
the method signature. The implicit argument is named this; it holds a reference to
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the object through which the method is invoked. In our example, that object is a
Circle.

The bodies of the area() and circumference() methods both
use the class field PI. We saw earlier that class methods can
use only class fields and class methods, not instance fields or
methods. Instance methods are not restricted in this way: they
can use any member of a class, whether it is declared static
or not.

How the this Reference Works
The implicit this parameter is not shown in method signatures because it is usually
not needed; whenever a Java method accesses the instance fields in its class, it is
implicit that it is accessing fields in the object referred to by the this parameter. The
same is true when an instance method invokes another instance method in the same
class—it’s taken that this means “call the instance method on the current object.”

However, you can use the this keyword explicitly when you want to make it clear
that a method is accessing its own fields and/or methods. For example, we can
rewrite the area() method to use this explicitly to refer to instance fields:

public double area() { return Circle.PI * this.r * this.r; }

This code also uses the class name explicitly to refer to class field PI. In a method
this simple, it is not normally necessary to be quite so explicit. In more complicated
cases, however, you may sometimes find that it increases the clarity of your code to
use an explicit this where it is not strictly required.

In some cases, the this keyword is required, however. For example, when a method
parameter or local variable in a method has the same name as one of the fields of
the class, you must use this to refer to the field, because the field name used alone
refers to the method parameter or local variable.

For example, we can add the following method to the Circle class:

public void setRadius(double r) {
  this.r = r;      // Assign the argument (r) to the field (this.r)
                   // Note that we cannot just say r = r
}

Some developers will deliberately choose the names of their method arguments in
such a way that they don’t clash with field names, so the use of this can largely be
avoided.

Finally, note that while instance methods can use the this keyword, class methods
cannot. This is because class methods are not associated with individual objects.
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Creating and Initializing Objects
Now that we’ve covered fields and methods, let’s move on to other important mem‐
bers of a class. In particular, we’ll look at constructors—these are class members
whose job is to initialize the fields of a class as new instances of the class are created.

Take another look at how we’ve been creating Circle objects:

Circle c = new Circle();

This can easily be read as the creation of a new instance of Circle, by calling some‐
thing that looks a bit like a method. In fact, Circle() is an example of a constructor.
This is a member of a class that has the same name as the class, and has a body, like
a method.

Here’s how a constructor works. The new operator indicates that we need to create a
new instance of the class. First of all, memory is allocated to hold the new object
instance. Then, the constructor body is called, with any arguments that have been
specified. The constructor uses these arguments to do whatever initialization of the
new object is necessary.

Every class in Java has at least one constructor, and their purpose is to perform any
necessary initialization for a new object. Because we didn’t explicitly define a con‐
structor for our Circle class in Example 3-1, the javac compiler automatically gave
us a constructor (called the default constructor) that takes no arguments and per‐
forms no special initialization.

Defining a Constructor
There is some obvious initialization we could do for our circle objects, so let’s define
a constructor. Example 3-2 shows a new definition for Circle that contains a con‐
structor that lets us specify the radius of a new Circle object. We’ve also taken the
opportunity to make the field r protected (to prevent access to it from arbitary
objects).

Example 3-2. A constructor for the Circle class

public class Circle {
    public static final double PI = 3.14159;  // A constant
    // An instance field that holds the radius of the circle
    protected double r;   

    // The constructor: initialize the radius field
    public Circle(double r) { this.r = r; }

    // The instance methods: compute values based on the radius
    public double circumference() { return 2 * PI * r; }
    public double area() { return PI * r*r; }
    public double radius() { return r; }
}
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When we relied on the default constructor supplied by the compiler, we had to write
code like this to initialize the radius explicitly:

Circle c = new Circle();
c.r = 0.25;

With the new constructor, the initialization becomes part of the object creation step:

Circle c = new Circle(0.25);

Here are some basic facts regarding naming, declaring, and writing constructors:

• The constructor name is always the same as the class name.

• A constructor is declared without a return type, not even void.
• The body of a constructor is initializing the object. You can think of this as set‐

ting up the contents of the this reference
• A constructor may not return this or any other value.

Defining Multiple Constructors
Sometimes you want to initialize an object in a number of different ways, depending
on what is most convenient in a particular circumstance. For example, we might
want to initialize the radius of a circle to a specified value or a reasonable default
value. Here’s how we can define two constructors for Circle:

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

Because our Circle class has only a single instance field, we can’t initialize it too
many ways, of course. But in more complex classes, it is often convenient to define a
variety of constructors.

It is perfectly legal to define multiple constructors for a class, as long as each con‐
structor has a different parameter list. The compiler determines which constructor
you wish to use based on the number and type of arguments you supply. This ability
to define multiple constructors is analogous to method overloading.

Invoking One Constructor from Another
A specialized use of the this keyword arises when a class has multiple constructors;
it can be used from a constructor to invoke one of the other constructors of the
same class. In other words, we can rewrite the two previous Circle constructors as
follows:

// This is the basic constructor: initialize the radius
public Circle(double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }
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This is a useful technique when a number of constructors share a significant
amount of initialization code, as it avoids repetition of that code. In more complex
cases, where the constructors do a lot more initialization, this can be a very useful
technique.

There is an important restriction on using this(): it can appear only as the first
statement in a constructor—but the call may be followed by any additional initiali‐
zation a particular constructor needs to perform. The reason for this restriction
involves the automatic invocation of superclass constructors, which we’ll explore
later in this chapter.

Field Defaults and Initializers
The fields of a class do not necessarily require initialization. If their initial values are
not specified, the fields are automatically initialized to the default value false,
\u0000, 0, 0.0, or null, depending on their type (see Table 2-1 for more details).
These default values are specified by the Java language specification and apply to
both instance fields and class fields.

If the default field value is not appropriate for your field, you can instead explicitly
provide a different initial value. For example:

public static final double PI = 3.14159;
public double r = 1.0;

Field declarations are not part of any method. Instead, the Java
compiler generates initialization code for the field automati‐
cally and puts it into all the constructors for the class. The ini‐
tialization code is inserted into a constructor in the order in
which it appears in the source code, which means that a field
initializer can use the initial values of any fields declared
before it.

Consider the following code excerpt, which shows a constructor and two instance
fields of a hypothetical class:

public class SampleClass {
  public int len = 10;
  public int[] table = new int[len];

  public SampleClass() {
    for(int i = 0; i < len; i++) table[i] = i;
  }

  // The rest of the class is omitted...
}

In this case, the code generated by javac for the constructor is actually equivalent to
the following:
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public SampleClass() {
  len = 10;
  table = new int[len];
  for(int i = 0; i < len; i++) table[i] = i;
}

If a constructor begins with a this() call to another constructor, the field
initialization code does not appear in the first constructor. Instead, the initialization
is handled in the constructor invoked by the this() call.

So, if instance fields are initialized in constructor, where are class fields initialized?
These fields are associated with the class, even if no instances of the class are ever
created. This means they need to be initialized even before a constructor is called.

To support this, javac generates a class initialization method automatically for
every class. Class fields are initialized in the body of this method, which is invoked
exactly once before the class is first used (often when the class is first loaded by the
Java VM.)

As with instance field initialization, class field initialization expressions are inserted
into the class initialization method in the order in which they appear in the source
code. This means that the initialization expression for a class field can use the class
fields declared before it. The class initialization method is an internal method that is
hidden from Java programmers. In the class file, it bears the name <clinit> (and
this method could be seen by, for example, examining the class file with javap—see
Chapter 13 for more details on how to use javap to do this).

Initializer blocks
So far, we’ve seen that objects can be initialized through the initialization expres‐
sions for their fields and by arbitrary code in their constructors. A class has a class
initialization method, which is like a constructor, but we cannot explicitly define the
body of this method as we can for a constructor. Java does allow us to write arbi‐
trary code for the initialization of class fields, however, with a construct known as a
static initializer. A static initializer is simply the keyword static followed by a block
of code in curly braces. A static initializer can appear in a class definition anywhere
a field or method definition can appear. For example, consider the following code
that performs some nontrivial initialization for two class fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {
  // Here are our static lookup tables and their own initializers
  private static final int NUMPTS = 500;
  private static double sines[] = new double[NUMPTS];
  private static double cosines[] = new double[NUMPTS];

  // Here's a static initializer that fills in the arrays
  static {
    double x = 0.0;
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    double delta_x = (Circle.PI/2)/(NUMPTS-1);
    for(int i = 0, x = 0.0; i < NUMPTS; i++, x += delta_x) {
      sines[i] = Math.sin(x);
      cosines[i] = Math.cos(x);
    }
  }
  // The rest of the class is omitted...
}

A class can have any number of static initializers. The body of each initializer block
is incorporated into the class initialization method, along with any static field initi‐
alization expressions. A static initializer is like a class method in that it cannot use
the this keyword or any instance fields or instance methods of the class.

Classes are also allowed to have instance initializers. An instance initializer is like a
static initializer, except that it initializes an object, not a class. A class can have any
number of instance initializers, and they can appear anywhere a field or method
definition can appear. The body of each instance initializer is inserted at the begin‐
ning of every constructor for the class, along with any field initialization expres‐
sions. An instance initializer looks just like a static initializer, except that it doesn’t
use the static keyword. In other words, an instance initializer is just a block of
arbitrary Java code that appears within curly braces.

Instance initializers can initialize arrays or other fields that require complex initiali‐
zation. They are sometimes useful because they locate the initialization code right
next to the field, instead of separating into a constructor. For example:

private static final int NUMPTS = 100;
private int[] data = new int[NUMPTS];
{ for(int i = 0; i < NUMPTS; i++) data[i] = i; }

In practice, however, this use of instance initializers is fairly rare.

Subclasses and Inheritance
The Circle defined earlier is a simple class that distinguishes circle objects only by
their radii. Suppose, instead, that we want to represent circles that have both a size
and a position. For example, a circle of radius 1.0 centered at point 0,0 in the Carte‐
sian plane is different from the circle of radius 1.0 centered at point 1,2. To do this,
we need a new class, which we’ll call PlaneCircle.

We’d like to add the ability to represent the position of a circle without losing any of
the existing functionality of the Circle class. This is done by defining PlaneCircle
as a subclass of Circle so that PlaneCircle inherits the fields and methods of its
superclass, Circle. The ability to add functionality to a class by subclassing, or
extending, is central to the object-oriented programming paradigm.
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Extending a Class
In Example 3-3, we show how we can implement PlaneCircle as a subclass of the
Circle class.

Example 3-3. Extending the Circle class

public class PlaneCircle extends Circle {
  // We automatically inherit the fields and methods of Circle,
  // so we only have to put the new stuff here.
  // New instance fields that store the center point of the circle
  private final double cx, cy;

  // A new constructor to initialize the new fields
  // It uses a special syntax to invoke the Circle() constructor
  public PlaneCircle(double r, double x, double y) {
    super(r);       // Invoke the constructor of the superclass, Circle()
    this.cx = x;    // Initialize the instance field cx
    this.cy = y;    // Initialize the instance field cy
  }

  public double getCentreX() {
    return cx;
  }

  public double getCentreY() {
    return cy;
  }

  // The area() and circumference() methods are inherited from Circle
  // A new instance method that checks whether a point is inside the circle
  // Note that it uses the inherited instance field r
  public boolean isInside(double x, double y) {
    double dx = x - cx, dy = y - cy;             // Distance from center
    double distance = Math.sqrt(dx*dx + dy*dy);  // Pythagorean theorem
    return (distance < r);                       // Returns true or false
  }
}

Note the use of the keyword extends in the first line of Example 3-3. This keyword
tells Java that PlaneCircle extends, or subclasses, Circle, meaning that it inherits
the fields and methods of that class.

There are several different ways to express the idea that our
new object type has the characteristics of a Circle as well as
having a position. This is probably the simplest, but is not
always the most suitable, especially in larger systems.
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The definition of the isInside() method shows field inheritance; this method uses
the field r (defined by the Circle class) as if it were defined right in PlaneCircle
itself. PlaneCircle also inherits the methods of Circle. Therefore, if we have a Pla
neCircle object referenced by variable pc, we can say:

double ratio = pc.circumference() / pc.area();

This works just as if the area() and circumference() methods were defined in 
PlaneCircle itself.

Another feature of subclassing is that every PlaneCircle object is also a perfectly
legal Circle object. If pc refers to a PlaneCircle object, we can assign it to a Circle
variable and forget all about its extra positioning capabilities:

// Unit circle at the origin
PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0);  
Circle c = pc;     // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be done without a
cast. As we discussed in Chapter 2 a conversion like this is always legal. The value
held in the Circle variable c is still a valid PlaneCircle object, but the compiler
cannot know this for sure, so it doesn’t allow us to do the opposite (narrowing) con‐
version without a cast:

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean origininside = ((PlaneCircle) c).isInside(0.0, 0.0);

This distinction is covered in more detail in “Lambda Expressions” on page 171,
where we talk about the distinction between the compile and runtime type of an
object.

Final classes
When a class is declared with the final modifier, it means that it cannot be exten‐
ded or subclassed. java.lang.String is an example of a final class. Declaring a
class final prevents unwanted extensions to the class: if you invoke a method on a
String object, you know that the method is the one defined by the String class
itself, even if the String is passed to you from some unknown outside source.

Superclasses, Object, and the Class Hierarchy
In our example, PlaneCircle is a subclass of Circle. We can also say that Circle is
the superclass of PlaneCircle. The superclass of a class is specified in its extends
clause:

public class PlaneCircle extends Circle { ... }

Every class you define has a superclass. If you do not specify the superclass with an
extends clause, the superclass is the class java.lang.Object. The Object class is
special for a couple of reasons:
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• It is the only class in Java that does not have a superclass.

• All Java classes inherit the methods of Object.

Because every class (except Object) has a superclass, classes in Java form a class
hierarchy, which can be represented as a tree with Object at its root.

Object has no superclass, but every other class has exactly one
superclass. A subclass cannot extend more than one super‐
class. See Chapter 4 for more information on how to achieve a
similar result.

Figure 3-1 shows a partial class hierarchy diagram that includes our Circle and 
PlaneCircle classes, as well as some of the standard classes from the Java API.

Figure 3-1. A class hierarchy diagram

Subclass Constructors
Look again at the PlaneCircle() constructor from Example 3-3:

public PlaneCircle(double r, double x, double y) {
  super(r);       // Invoke the constructor of the superclass, Circle()
  this.cx = x;    // Initialize the instance field cx
  this.cy = y;    // Initialize the instance field cy
}

Although this constructor explicitly initializes the cx and cy fields newly defined by
PlaneCircle, it relies on the superclass Circle() constructor to initialize the
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inherited fields of the class. To invoke the superclass constructor, our constructor 
calls super().

super is a reserved word in Java. One of its uses is to invoke the constructor of a
superclass from within a subclass constructor. This use is analogous to the use of
this() to invoke one constructor of a class from within another constructor of the
same class. Invoking a constructor using super() is subject to the same restrictions
as is using this() :

• super() can be used in this way only within a constructor.
• The call to the superclass constructor must appear as the first statement within

the constructor, even before local variable declarations.

The arguments passed to super() must match the parameters of the superclass con‐
structor. If the superclass defines more than one constructor, super() can be used
to invoke any one of them, depending on the arguments passed.

Constructor Chaining and the Default Constructor
Java guarantees that the constructor of a class is called whenever an instance of that
class is created. It also guarantees that the constructor is called whenever an instance
of any subclass is created. In order to guarantee this second point, Java must ensure
that every constructor calls its superclass constructor.

Thus, if the first statement in a constructor does not explicitly invoke another con‐
structor with this() or super(), the javac compiler inserts the call super() (i.e., it
calls the superclass constructor with no arguments). If the superclass does not have
a visible constructor that takes no arguments, this implicit invocation causes a com‐
pilation error.

Consider what happens when we create a new instance of the PlaneCircle class.

• First, the PlaneCircle constructor is invoked.

• This constructor explicitly calls super(r) to invoke a Circle constructor.

• That Circle() constructor implicitly calls super() to invoke the constructor of
its superclass, Object (Object only has one constructor).

• At this point, we’ve reached the top of the hierarchy and constructors start to
run.

• The body of the Object constructor runs first.

• When it returns, the body of the Circle() constructor runs.

• Finally, when the call to super(r) returns, the remaining statements of the Pla
neCircle() constructor are executed.

What all this means is that constructor calls are chained; any time an object is cre‐
ated, a sequence of constructors is invoked, from subclass to superclass on up to
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Object at the root of the class hierarchy. Because a superclass constructor is always
invoked as the first statement of its subclass constructor, the body of the Object
constructor always runs first, followed by the constructor of its subclass and on
down the class hierarchy to the class that is being instantiated.

Whenever a constructor is invoked, it can count on the fields
of its superclass to be initialized by the time the constructor
starts to run.

The default constructor
There is one missing piece in the previous description of constructor chaining. If a
constructor does not invoke a superclass constructor, Java does so implicitly. But
what if a class is declared without a constructor? In this case, Java implicitly adds a
constructor to the class. This default constructor does nothing but invoke the super‐
class constructor.

For example, if we don’t declare a constructor for the PlaneCircle class, Java
implicitly inserts this constructor:

public PlaneCircle() { super(); }

If the superclass, Circle, doesn’t declare a no-argument constructor, the super()
call in this automatically inserted default constructor for PlaneCircle() causes a
compilation error. In general, if a class does not define a no-argument constructor,
all its subclasses must define constructors that explicitly invoke the superclass con‐
structor with the necessary arguments.

If a class does not declare any constructors, it is given a no-argument constructor by
default. Classes declared public are given public constructors. All other classes are
given a default constructor that is declared without any visibility modifier: such a
constructor has default visibility. (The notion of visibility is explained later in this
chapter.)

If you are creating a public class that should not be publicly instantiated, you
should declare at least one non-public constructor to prevent the insertion of a
default public constructor. Classes that should never be instantiated (such as
java.lang.Math or java.lang.System) should define a private constructor. Such
a constructor can never be invoked from outside of the class, but it prevents the
automatic insertion of the default constructor.

Hiding Superclass Fields
For the sake of example, imagine that our PlaneCircle class needs to know the dis‐
tance between the center of the circle and the origin (0,0). We can add another
instance field to hold this value:

public double r;
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Adding the following line to the constructor computes the value of the field:

this.r = Math.sqrt(cx*cx + cy*cy);  // Pythagorean theorem

But wait; this new field r has the same name as the radius field r in the Circle
superclass. When this happens, we say that the field r of PlaneCircle hides the field
r of Circle. (This is a contrived example, of course: the new field should really be
called distanceFromOrigin).

In code that you write, you should avoid declaring fields with
names that hide superclass fields. It is almost always a sign of
bad code.

With this new definition of PlaneCircle, the expressions r and this.r both refer to
the field of PlaneCircle. How, then, can we refer to the field r of Circle that holds 
the radius of the circle? A special syntax for this uses the super keyword:

r        // Refers to the PlaneCircle field
this.r   // Refers to the PlaneCircle field
super.r  // Refers to the Circle field

Another way to refer to a hidden field is to cast this (or any instance of the class) to
the appropriate superclass and then access the field:

((Circle) this).r   // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to a hidden field
defined in a class that is not the immediate superclass. Suppose, for example, that
classes A, B, and C all define a field named x and that C is a subclass of B, which is a
subclass of A. Then, in the methods of class C, you can refer to these different fields
as follows:

x                // Field x in class C
this.x           // Field x in class C
super.x          // Field x in class B
((B)this).x      // Field x in class B
((A)this).x      // Field x in class A
super.super.x    // Illegal; does not refer to x in class A

You cannot refer to a hidden field x in the superclass of a
superclass with super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to the three fields named
x like this:
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c.x              // Field x of class C
((B)c).x         // Field x of class B
((A)c).x         // Field x of class A

So far, we’ve been discussing instance fields. Class fields can also be hidden. You can
use the same super syntax to refer to the hidden value of the field, but this is never
necessary, as you can always refer to a class field by prepending the name of the
desired class. Suppose, for example, that the implementer of PlaneCircle decides
that the Circle.PI field does not express to enough decimal places. She can define
her own class field PI:

public static final double PI = 3.14159265358979323846;

Now code in PlaneCircle can use this more accurate value with the expressions PI
or PlaneCircle.PI. It can also refer to the old, less accurate value with the expres‐
sions super.PI and Circle.PI. However, the area() and circumference() meth‐
ods inherited by PlaneCircle are defined in the Circle class, so they use the value
Circle.PI, even though that value is hidden now by PlaneCircle.PI.

Overriding Superclass Methods
When a class defines an instance method using the same name, return type, and
parameters as a method in its superclass, that method overrides the method of the
superclass. When the method is invoked for an object of the class, it is the new defi‐
nition of the method that is called, not the old definition from the superclass.

The return type of the overriding method may be a subclass of
the return type of the original method (instead of being
exactly the same type). This is known as a covariant return.

Method overriding is an important and useful technique in object-oriented pro‐
gramming. PlaneCircle does not override either of the methods defined by Circle,
but suppose we define another subclass of Circle, named Ellipse.

It is important for Ellipse to override the area() and circumference() methods
of Circle in this case, because the formulas used to compute the area and circum‐
ference of a circle do not work for ellipses.

The upcoming discussion of method overriding considers only instance methods.
Class methods behave quite differently, and they cannot be overridden. Just like
fields, class methods can be hidden by a subclass but not overridden. As noted ear‐
lier in this chapter, it is good programming style to always prefix a class method
invocation with the name of the class in which it is defined. If you consider the class
name part of the class method name, the two methods have different names, so
nothing is actually hidden at all.
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Before we go any further with the discussion of method overriding, you should
understand the difference between method overriding and method overloading. As
we discussed in Chapter 2, method overloading refers to the practice of defining
multiple methods (in the same class) that have the same name but different parame‐
ter lists. This is very different from method overriding, so don’t get them confused.

Overriding is not hiding
Although Java treats the fields and methods of a class analogously in many ways,
method overriding is not like field hiding at all. You can refer to hidden fields sim‐
ply by casting an object to an instance of the appropriate superclass, but you cannot
invoke overridden instance methods with this technique. The following code illus‐
trates this crucial difference:

class A {                          // Define a class named A
  int i = 1;                       // An instance field
  int f() { return i; }            // An instance method
  static char g() { return 'A'; }  // A class method
}

class B extends A {                // Define a subclass of A
  int i = 2;                       // Hides field i in class A
  int f() { return -i; }           // Overrides method f in class A
  static char g() { return 'B'; }  // Hides class method g() in class A
}

public class OverrideTest {
  public static void main(String args[]) {
    B b = new B();               // Creates a new object of type B
    System.out.println(b.i);     // Refers to B.i; prints 2
    System.out.println(b.f());   // Refers to B.f(); prints -2
    System.out.println(b.g());   // Refers to B.g(); prints B
    System.out.println(B.g());   // A better way to invoke B.g()

    A a = (A) b;                 // Casts b to an instance of class A
    System.out.println(a.i);     // Now refers to A.i; prints 1
    System.out.println(a.f());   // Still refers to B.f(); prints -2
    System.out.println(a.g());   // Refers to A.g(); prints A
    System.out.println(A.g());   // A better way to invoke A.g()
  }
}

While this difference between method overriding and field hiding may seem sur‐
prising at first, a little thought makes the purpose clear.

Suppose we are manipulating a bunch of Circle and Ellipse objects. To keep track
of the circles and ellipses, we store them in an array of type Circle[]. We can do
this because Ellipse is a subclass of Circle, so all Ellipse objects are legal Circle
objects.
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When we loop through the elements of this array, we don’t have to know or care
whether the element is actually a Circle or an Ellipse. What we do care about very
much, however, is that the correct value is computed when we invoke the area()
method of any element of the array. In other words, we don’t want to use the for‐
mula for the area of a circle when the object is actually an ellipse!

All we really want is for the objects we’re computing the areas of to “do the right
thing”—the Circle objects to use their definition of how to compute their own
area, and the Ellipse objects to use the definition that is correct for them.

Seen in this context, it is not surprising at all that method overriding is handled dif‐
ferently by Java than is field hiding.

Virtual method lookup
If we have a Circle[] array that holds Circle and Ellipse objects, how does the
compiler know whether to call the area() method of the Circle class or the
Ellipse class for any given item in the array? In fact, the source code compiler can‐
not know this at compilation time.

Instead, javac creates bytecode that uses virtual method lookup at runtime. When
the interpreter runs the code, it looks up the appropriate area() method to call for
each of the objects in the array. That is, when the interpreter interprets the expres‐
sion o.area(), it checks the actual runtime type of the object referred to by the vari‐
able o and then finds the area() method that is appropriate for that type.

Some other languages (such as C# or C++) do not do virtual
lookup by default and instead have a virtual keyword that
programmers must explicitly use if they want to allow sub‐
classes to be able to override a method.

The JVM does not simply use the area() method that is associated with the static
type of the variable o, as that would not allow method overriding to work in the way
detailed earlier. Virtual method lookup is the default for Java instance methods. See
Chapter 4 for more details about compile-time and runtime type and how this
affects virtual method lookup.

Invoking an overridden method
We’ve seen the important differences between method overriding and field hiding.
Nevertheless, the Java syntax for invoking an overridden method is quite similar to
the syntax for accessing a hidden field: both use the super keyword. The following
code illustrates:

class A {
  int i = 1;            // An instance field hidden by subclass B
  int f() { return i; } // An instance method overridden by subclass B
}
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class B extends A {
  int i;                    // This field hides i in A
  int f() {                 // This method overrides f() in A
    i = super.i + 1;        // It can retrieve A.i like this
    return super.f() + i;   // It can invoke A.f() like this
  }
}

Recall that when you use super to refer to a hidden field, it is the same as casting
this to the superclass type and accessing the field through that. Using super to
invoke an overridden method, however, is not the same as casting the this refer‐
ence. In other words, in the previous code, the expression super.f() is not the
same as ((A)this).f().

When the interpreter invokes an instance method with the super syntax, a modified
form of virtual method lookup is performed. The first step, as in regular virtual
method lookup, is to determine the actual class of the object through which the
method is invoked. Normally, the runtime search for an appropriate method defini‐
tion would begin with this class. When a method is invoked with the super syntax,
however, the search begins at the superclass of the class. If the superclass imple‐
ments the method directly, that version of the method is invoked. If the superclass
inherits the method, the inherited version of the method is invoked.

Note that the super keyword invokes the most immediately overridden version of a
method. Suppose class A has a subclass B that has a subclass C and that all three
classes define the same method f(). The method C.f() can invoke the method
B.f(), which it overrides directly, with super.f(). But there is no way for C.f() to
invoke A.f() directly: super.super.f() is not legal Java syntax. Of course, if C.f()
invokes B.f(), it is reasonable to suppose that B.f() might also invoke A.f().

This kind of chaining is relatively common when working with overridden meth‐
ods: it is a way of augmenting the behavior of a method without replacing the
method entirely.

Don’t confuse the use of super to invoke an overridden
method with the super() method call used in a constructor to
invoke a superclass constructor. Although they both use the
same keyword, these are two entirely different syntaxes. In
particular, you can use super to invoke an overridden method
anywhere in the overriding class while you can use super()
only to invoke a superclass constructor as the very first state‐
ment of a constructor.

It is also important to remember that super can be used only to invoke an overrid‐
den method from within the class that overrides it. Given a reference to an Ellipse
object e, there is no way for a program that uses e to invoke the area() method 
defined by the Circle class on e.
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Data Hiding and Encapsulation
We started this chapter by describing a class as a collection of data and methods.
One of the most important object-oriented techniques we haven’t discussed so far is
hiding the data within the class and making it available only through the methods.
This technique is known as encapsulation because it seals the data (and internal
methods) safely inside the “capsule” of the class, where it can be accessed only by
trusted users (i.e., the methods of the class).

Why would you want to do this? The most important reason is to hide the internal
implementation details of your class. If you prevent programmers from relying on
those details, you can safely modify the implementation without worrying that you
will break existing code that uses the class.

You should always encapsulate your code. It is almost always
impossible to reason through and ensure the correctness of
code that hasn’t been well-encapsulated, especially in multi‐
threaded environments (and essentially all Java programs are
multithreaded).

Another reason for encapsulation is to protect your class against accidental or will‐
ful stupidity. A class often contains a number of interdependent fields that must be
in a consistent state. If you allow a programmer (including yourself) to manipulate
those fields directly, he may change one field without changing important related
fields, leaving the class in an inconsistent state. If instead he has to call a method to
change the field, that method can be sure to do everything necessary to keep the
state consistent. Similarly, if a class defines certain methods for internal use only,
hiding these methods prevents users of the class from calling them.

Here’s another way to think about encapsulation: when all the data for a class is hid‐
den, the methods define the only possible operations that can be performed on
objects of that class.

Once you have carefully tested and debugged your methods, you can be confident
that the class will work as expected. On the other hand, if all the fields of the class
can be directly manipulated, the number of possibilities you have to test becomes
unmanageable.

This idea can be carried to a very powerful conclusion, as we
will see in “Safe Java Programming” on page 195 when we dis‐
cuss the safety of Java programs (which differs from the con‐
cept of type safety of the Java programming language).

Other, secondary, reasons to hide fields and methods of a class include:
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• Internal fields and methods that are visible outside the class just clutter up the
API. Keeping visible fields to a minimum keeps your class tidy and therefore
easier to use and understand.

• If a method is visible to the users of your class, you have to document it. Save
yourself time and effort by hiding it instead.

Access Control
Java defines access control rules that can restrict members of a class from being used
outside the class. In a number of examples in this chapter, you’ve seen the public
modifier used in field and method declarations. This public keyword, along with
protected and private (and one other, special one) are access control modifiers;
they specify the access rules for the field or method.

Access to packages
Access control on a per-package basis is not directly part of the Java language.
Instead, access control is usually done at the level of classes and members of classes.

A package that has been loaded is always accessible to code
defined within the same package. Whether it is accessible to
code from other packages depends on the way the package is
deployed on the host system. When the class files that com‐
prise a package are stored in a directory, for example, a user
must have read access to the directory and the files within it in
order to have access to the package.

Access to classes
By default, top-level classes are accessible within the package in which they are
defined. However, if a top-level class is declared public, it is accessible everywhere.

In Chapter 4, we’ll meet nested classes. These are classes that
can be defined as members of other classes. Because these
inner classes are members of a class, they also obey the mem‐
ber access-control rules.

Access to members
The members of a class are always accessible within the body of the class. By default,
members are also accessible throughout the package in which the class is defined.
This default level of access is often called package access. It is only one of four possi‐
ble levels of access. The other three levels are defined by the public, protected, and
private modifiers. Here is some example code that uses these modifiers:
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public class Laundromat {    // People can use this class.
  private Laundry[] dirty;   // They cannot use this internal field,
  public void wash() { ... } // but they can use these public methods
  public void dry() { ... }  // to manipulate the internal field.
  // A subclass might want to tweak this field
  protected int temperature; 
}

These access rules apply to members of a class:

• All the fields and methods of a class can always be used within the body of the
class itself.

• If a member of a class is declared with the public modifier, it means that the
member is accessible anywhere the containing class is accessible. This is the
least restrictive type of access control.

• If a member of a class is declared private, the member is never accessible,
except within the class itself. This is the most restrictive type of access control.

• If a member of a class is declared protected, it is accessible to all classes within
the package (the same as the default package accessibility) and also accessible
within the body of any subclass of the class, regardless of the package in which
that subclass is defined.

• If a member of a class is not declared with any of these modifiers, it has default
access (sometimes called package access) and it is accessible to code within all
classes that are defined in the same package but inaccessible outside of the
package.

Default access is more restrictive than protected—as default
access does not allow access by subclasses outside the package.

protected access requires more elaboration. Suppose class A declares a protected
field x and is extended by a class B, which is defined in a different package (this last
point is important). Class B inherits the protected field x, and its code can access
that field in the current instance of B or in any other instances of B that the code can
refer to. This does not mean, however, that the code of class B can start reading the
protected fields of arbitrary instances of A.

Let’s look at this language detail in code. Here’s the definition for A:

package javanut6.ch03;

public class A {
    protected final String name;
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    public A(String named) {
        name = named;
    }

    public String getName() {
        return name;
    }
}

Here’s the definition for B:

package javanut6.ch03.different;

import javanut6.ch03.A;

public class B extends A {

    public B(String named) {
        super(named);
    }

    @Override
    public String getName() {
        return "B: " + name;
    }
}

Java packages do not “nest,” so javanut6.ch03.different is
just a different package than javanut6.ch03; it is not con‐
tained inside it or related to it in any way.

However, if we try to add this new method to B, we will get a compilation error,
because instances of B do not have access to arbitary instances of A:

    public String examine(A a) {
        return "B sees: " + a.name;
    }

If we change the method to this:

    public String examine(B b) {
        return "B sees another B: " + b.name;
    }

then the compiler is happy, because instances of the same exact type can always see
each other’s protected fields. Of course, if B was in the same package as A then any
instance of B could read any protected field of any instance of A because protected
fields are visible to every class in the same package.
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Access control and inheritance
The Java specification states that:

• A subclass inherits all the instance fields and instance methods of its superclass
accessible to it.

• If the subclass is defined in the same package as the superclass, it inherits all
non-private instance fields and methods.

• If the subclass is defined in a different package, it inherits all protected and
public instance fields and methods.

• private fields and methods are never inherited; neither are class fields or class
methods.

• Constructors are not inherited (instead, they are chained, as described earlier
in this chapter).

However, some programmers are confused by the statement that a subclass does not
inherit the inaccessible fields and methods of its superclass. It could be taken to
imply that when you create an instance of a subclass, no memory is allocated for any
private fields defined by the superclass. This is not the intent of the statement,
however.

Every instance of a subclass does, in fact, include a complete
instance of the superclass within it, including all inaccessible
fields and methods.

This existence of potentially inaccessible members seems to be in conflict with the
statement that the members of a class are always accessible within the body of the
class. To clear up this confusion, we define “inherited members” to mean those
superclass members that are accessible.

Then the correct statement about member accessibility is: “All inherited members
and all members defined in this class are accessible.” An alternative way of saying
this is:

• A class inherits all instance fields and instance methods (but not constructors)
of its superclass.

• The body of a class can always access all the fields and methods it declares
itself. It can also access the accessible fields and members it inherits from its
superclass.

Member access summary
We summarize the member access rules in Table 3-1.
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Table 3-1. Class member accessibility

 Member visibility    

Accessible to Public Protected Default Private

Defining class Yes Yes Yes Yes

Class in same package Yes Yes Yes No

Subclass in different package Yes Yes No No

Nonsubclass different package Yes No No No

Here are some simple rules of thumb for using visibility modifiers:

• Use public only for methods and constants that form part of the public API of
the class. The only acceptable usage of public fields is for constants or immut‐
able objects, and they must be also declared final.

• Use protected for fields and methods that aren’t required by most program‐
mers using the class but that may be of interest to anyone creating a subclass as
part of a different package.

protected members are technically part of the exported API
of a class. They must be documented and cannot be changed
without potentially breaking code that relies on them.

• Use the default package visibility for fields and methods that are internal imple‐
mentation details but are used by cooperating classes in the same package.

• Use private for fields and methods that are used only inside the class and
should be hidden everywhere else.

If you are not sure whether to use protected, package, or private accessibility, start
with private. If this is overly restrictive, you can always relax the access restrictions
slightly (or provide accessor methods, in the case of fields).

This is especially important when designing APIs because increasing access restric‐
tions is not a backward-compatible change and can break code that relies on access
to those members.

Data Accessor Methods
In the Circle example, we declared the circle radius to be a public field. The Cir
cle class is one in which it may well be reasonable to keep that field publicly
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accessible; it is a simple enough class, with no dependencies between its fields. On
the other hand, our current implementation of the class allows a Circle object to
have a negative radius, and circles with negative radii should simply not exist. As
long as the radius is stored in a public field, however, any programmer can set the
field to any value she wants, no matter how unreasonable. The only solution is to
restrict the programmer’s direct access to the field and define public methods that
provide indirect access to the field. Providing public methods to read and write a
field is not the same as making the field itself public. The crucial difference is that
methods can perform error checking.

We might, for example, want to prevent Circle objects with negative radii—these
are obviously not sensible, but our current implementation does not prohibit this.
In Example 3-4, we show how we might change the definition of Circle to prevent
this.

This version of Circle declares the r field to be protected and defines accessor 
methods named getRadius() and setRadius() to read and write the field value
while enforcing the restriction on negative radius values. Because the r field is pro
tected, it is directly (and more efficiently) accessible to subclasses.

Example 3-4. The Circle class using data hiding and encapsulation

package shapes;           // Specify a package for the class

public class Circle {     // The class is still public
  // This is a generally useful constant, so we keep it public
  public static final double PI = 3.14159;

  protected double r;     // Radius is hidden but visible to subclasses

  // A method to enforce the restriction on the radius
  // This is an implementation detail that may be of interest to subclasses
  protected void checkRadius(double radius) {
    if (radius < 0.0)
      throw new IllegalArgumentException("radius may not be negative.");
  }

  // The non-default constructor
  public Circle(double r) {
    checkRadius(r);
    this.r = r;
  }

  // Public data accessor methods
  public double getRadius() { return r; }
  public void setRadius(double r) {
    checkRadius(r);
    this.r = r;
  }
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  // Methods to operate on the instance field
  public double area() { return PI * r * r; }
  public double circumference() { return 2 * PI * r; }
}

We have defined the Circle class within a package named shapes. Because r is pro
tected, any other classes in the shapes package have direct access to that field and
can set it however they like. The assumption here is that all classes within the
shapes package were written by the same author or a closely cooperating group of
authors and that the classes all trust each other not to abuse their privileged level of
access to each other’s implementation details.

Finally, the code that enforces the restriction against negative radius values is itself
placed within a protected method, checkRadius(). Although users of the Circle
class cannot call this method, subclasses of the class can call it and even override it if
they want to change the restrictions on the radius.

It is a common convention in Java that data accessor methods
begin with the prefixes “get” and “set.” But if the field being
accessed is of type boolean, the get() method may be
replaced with an equivalent method that begins with “is.” For
example, the accessor method for a boolean field named read
able is typically called isReadable() instead of
getReadable().

Abstract Classes and Methods
In Example 3-4, we declared our Circle class to be part of a package named shapes.
Suppose we plan to implement a number of shape classes: Rectangle, Square,
Ellipse, Triangle, and so on. We can give these shape classes our two basic area()
and circumference() methods. Now, to make it easy to work with an array of
shapes, it would be helpful if all our shape classes had a common superclass, Shape.
If we structure our class hierarchy this way, every shape object, regardless of the
actual type of shape it represents, can be assigned to variables, fields, or array ele‐
ments of type Shape. We want the Shape class to encapsulate whatever features all
our shapes have in common (e.g., the area() and circumference() methods). But
our generic Shape class doesn’t represent any real kind of shape, so it cannot define
useful implementations of the methods. Java handles this situation with abstract
methods.

Java lets us define a method without implementing it by declaring the method with
the abstract modifier. An abstract method has no body; it simply has a signature

128 | Chapter 3: Object-Oriented Programming in Java



2 An abstract method in Java is something like a pure virtual function in C++ (i.e., a virtual func‐
tion that is declared = 0). In C++, a class that contains a pure virtual function is called an abstract
class and cannot be instantiated. The same is true of Java classes that contain abstract methods.

definition followed by a semicolon.2 Here are the rules about abstract methods
and the abstract classes that contain them:

• Any class with an abstract method is automatically abstract itself and must
be declared as such. To fail to do so is a compilation error.

• An abstract class cannot be instantiated.

• A subclass of an abstract class can be instantiated only if it overrides each of
the abstract methods of its superclass and provides an implementation (i.e., a
method body) for all of them. Such a class is often called a concrete subclass, to
emphasize the fact that it is not abstract.

• If a subclass of an abstract class does not implement all the abstract methods
it inherits, that subclass is itself abstract and must be declared as such.

• static, private, and final methods cannot be abstract, because these types
of methods cannot be overridden by a subclass. Similarly, a final class cannot
contain any abstract methods.

• A class can be declared abstract even if it does not actually have any abstract
methods. Declaring such a class abstract indicates that the implementation is
somehow incomplete and is meant to serve as a superclass for one or more
subclasses that complete the implementation. Such a class cannot be
instantiated.

The Classloader class that we will meet in Chapter 11 is a
good example of an abstract class that does not have any
abstract methods.

Let’s look at an example of how these rules work. If we define the Shape class to have
abstract area() and circumference() methods, any subclass of Shape is required
to provide implementations of these methods so that it can be instantiated. In other
words, every Shape object is guaranteed to have implementations of these methods
defined. Example 3-5 shows how this might work. It defines an abstract Shape
class and two concrete subclasses of it.

Example 3-5. An abstract class and concrete subclasses

public abstract class Shape {
  public abstract double area();            // Abstract methods: note
  public abstract double circumference();   // semicolon instead of body.
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}

class Circle extends Shape {
  public static final double PI = 3.14159265358979323846;
  protected double r;                              // Instance data
  public Circle(double r) { this.r = r; }          // Constructor
  public double getRadius() { return r; }          // Accessor
  public double area() { return PI*r*r; }          // Implementations of
  public double circumference() { return 2*PI*r; } // abstract methods.
}

class Rectangle extends Shape {
  protected double w, h;                               // Instance data
  public Rectangle(double w, double h) {               // Constructor
    this.w = w;  this.h = h;
  }
  public double getWidth() { return w; }               // Accessor method
  public double getHeight() { return h; }              // Another accessor
  public double area() { return w*h; }                 // Implementation of
  public double circumference() { return 2*(w + h); }  // abstract methods
}

Each abstract method in Shape has a semicolon right after its parentheses. They
have no curly braces, and no method body is defined. Using the classes defined in
Example 3-5, we can now write code such as:

Shape[] shapes = new Shape[3];        // Create an array to hold shapes
shapes[0] = new Circle(2.0);          // Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);

double totalArea = 0;
for(int i = 0; i < shapes.length; i++)
    totalArea += shapes[i].area();   // Compute the area of the shapes

Notice two important points here:

• Subclasses of Shape can be assigned to elements of an array of Shape. No cast is
necessary. This is another example of a widening reference type conversion
(discussed in Chapter 2).

• You can invoke the area() and circumference() methods for any Shape
object, even though the Shape class does not define a body for these methods.
When you do this, the method to be invoked is found using virtual method
lookup, which means that the area of a circle is computed using the method
defined by Circle, and the area of a rectangle is computed using the method
defined by Rectangle.
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Reference Type Conversions
Objects can be converted between different reference types. As with primitive types,
reference type conversions can be widening conversions (allowed automatically by
the compiler) or narrowing conversions that require a cast (and possibly a runtime
check). In order to understand reference type conversions, you need to understand
that reference types form a hierarchy, usually called the class hierarchy.

Every Java reference type extends some other type, known as its superclass. A type
inherits the fields and methods of its superclass and then defines its own additional
fields and methods. A special class named Object serves as the root of the class
hierarchy in Java. All Java classes extend Object directly or indirectly. The Object
class defines a number of special methods that are inherited (or overridden) by all
objects.

The predefined String class and the Point class we discussed earlier in this chapter
both extend Object. Thus, we can say that all String objects are also Object objects.
We can also say that all Point objects are Object objects. The opposite is not true,
however. We cannot say that every Object is a String because, as we’ve just seen,
some Object objects are Point objects.

With this simple understanding of the class hierarchy, we can define the rules of ref‐
erence type conversion:

• An object cannot be converted to an unrelated type. The Java compiler does
not allow you to convert a String to a Point, for example, even if you use a
cast operator.

• An object can be converted to the type of its superclass or of any ancestor class.
This is a widening conversion, so no cast is required. For example, a String
value can be assigned to a variable of type Object or passed to a method where
an Object parameter is expected.

No conversion is actually performed; the object is simply
treated as if it were an instance of the superclass. This is some‐
times referred to as the Liskov substitution principle, after
Barbara Liskov, the computer scientist who first explicitly for‐
mulated it.

• An object can be converted to the type of a subclass, but this is a narrowing
conversion and requires a cast. The Java compiler provisionally allows this kind
of conversion, but the Java interpreter checks at runtime to make sure it is
valid. Only cast an object to the type of a subclass if you are sure, based on the
logic of your program, that the object is actually an instance of the subclass. If
it is not, the interpreter throws a ClassCastException. For example, if we
assign a String object to a variable of type Object, we can later cast the value
of that variable back to type String:
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Object o = "string";    // Widening conversion from String 
                        // to Object Later in the program...
String s = (String) o;  // Narrowing conversion from Object 
                        // to String

Arrays are objects and follow some conversion rules of their own. First, any array
can be converted to an Object value through a widening conversion. A narrowing
conversion with a cast can convert such an object value back to an array. Here’s an
example:

// Widening conversion from array to Object
Object o = new int[] {1,2,3};
// Later in the program...

int[] a = (int[]) o;      // Narrowing conversion back to array type

In addition to converting an array to an object, an array can be converted to another
type of array if the “base types” of the two arrays are reference types that can them‐
selves be converted. For example:

// Here is an array of strings.
String[] strings = new String[] { "hi", "there" };
// A widening conversion to CharSequence[] is allowed because String
// can be widened to CharSequence
CharSequence[] sequences = strings;
// The narrowing conversion back to String[] requires a cast.
strings = (String[]) sequences;
// This is an array of arrays of strings
String[][] s = new String[][] { strings };
// It cannot be converted to CharSequence[] because String[] cannot be
// converted to CharSequence: the number of dimensions don't match

sequences = s;  // This line will not compile
// s can be converted to Object or Object[], because all array types
// (including String[] and String[][]) can be converted to Object.
Object[] objects = s;

Note that these array conversion rules apply only to arrays of objects and arrays of
arrays. An array of primitive type cannot be converted to any other array type, even
if the primitive base types can be converted:

// Can't convert int[] to double[] even though 
// int can be widened to double
// This line causes a compilation error
double[] data = new int[] {1,2,3};  
// This line is legal, however, because int[] can be converted to Object
Object[] objects = new int[][] {{1,2},{3,4}};

Modifier Summary
As we’ve seen, classes, interfaces, and their members can be declared with one or
more modifiers—keywords such as public, static, and final. Let’s conclude this
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chapter by listing the Java modifiers, explaining what types of Java constructs they
can modify, and explaining what they do. Table 3-2 has the details; you can also
refer back to “Overview of Classes” on page 97 and “Field Declaration Syntax” on
page 101 as well as “Method Modifiers” on page 68.

Table 3-2. Java modifiers

Modifier Used on Meaning

abstract Class The class cannot be instantiated and may contain unimplemented methods.

 Interface All interfaces are abstract. The modifier is optional in interface
declarations.

 Method No body is provided for the method; it is provided by a subclass. The signature
is followed by a semicolon. The enclosing class must also be abstract.

default Method Implementation of this interface method is optional. The interface provides a
default implementation for classes that elect not to implement it. See Chapter
4 for more details.

final Class The class cannot be subclassed.

 Method The method cannot be overridden.

 Field The field cannot have its value changed. static final fields are
compile-time constants.

 Variable A local variable, method parameter, or exception parameter cannot have its
value changed.

native Method The method is implemented in some platform-dependent way (often in C).
No body is provided; the signature is followed by a semicolon.

<None> (package) Class A non-public class is accessible only in its package.

 Interface A non-public interface is accessible only in its package.

 Member A member that is not private, protected, or public has package
visibility and is accessible only within its package.

private Member The member  is accessible only within the class that defines it.

protected Member The member is accessible only within the package in which it is defined and
within subclasses.

public Class The class is accessible anywhere its package is.
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Modifier Used on Meaning

 Interface The interface is accessible anywhere its package is.

 Member The member is accessible anywhere its class is.

strictfp Class All methods of the class are implicitly strictfp.

 Method All floating-point computation done by the method must be performed in a
way that strictly conforms to the IEEE 754 standard. In particular, all values,
including intermediate results, must be expressed as IEEE float or double
values and cannot take advantage of any extra precision or range offered by
native platform floating-point formats or hardware. This modifier is extremely
rarely used.

static Class An inner class declared static is a top-level class, not associated with a
member of the containing class. See Chapter 4 for more details.

 Method A static method is a class method. It is not passed an implicit this object
reference. It can be invoked through the class name.

 Field A static field is a class field. There is only one instance of the field,
regardless of the number of class instances created. It can be accessed
through the class name.

 Initializer The initializer is run when the class is loaded rather than when an instance is
created.

synchronized Method The method makes nonatomic modifications to the class or instance, so care
must be taken to ensure that two threads cannot modify the class or instance
at the same time. For a static method, a lock for the class is acquired
before executing the method. For a non-static method, a lock for the
specific object instance is acquired. See Chapter 5 for more details.

transient Field The field is not part of the persistent state of the object and should not be
serialized with the object. Used with object serialization; see
java.io.ObjectOutputStream.

volatile Field The field can be accessed by unsynchronized threads, so certain optimizations
must not be performed on it. This modifier can sometimes be used as an
alternative to synchronized. See Chapter 5 for more details.
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4
The Java Type System

In this chapter, we move beyond basic object-oriented programming with classes
and into the additional concepts required to work effectively with Java’s static type
system.

A statically typed language is one in which variables have
definite types, and where it is a compile-time error to
assign a value of an incompatible type to a variable. Java is
an example of a statically typed language. Languages that
only check type compatibility at runtime are called dynami‐
cally typed—JavaScript is an example of a dynamically
typed language.

Java’s type system involves not only classes and primitive types, but also other kinds
of reference type that are related to the basic concept of a class, but which differ in
some way, and are usually treated in a special way by javac or the JVM.

We have already met arrays and classes, two of Java’s most widely used kinds of ref‐
erence type. This chapter starts by discussing another very important kind of refer‐
ence type—interfaces. We then move on to discuss Java’s generics, which have a
major role to play in Java’s type system. With these topics under our belts, we can
discuss the differences between compile-time and runtime types in Java.

To complete the full picture of Java’s reference types, we look at specialized kinds of
classes and interfaces—known as enums and annotations. We conclude the chapter
by looking at nested types and finally the new lambda expressions functionality intro‐
duced in Java 8.

Let’s get started by taking a look at interfaces—probably the most important of Java’s
reference types after classes, and a key building block for the whole of Java’s type
system.
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Interfaces
In Chapter 3, we met the idea of inheritance. We also saw that a Java class can only
inherit from a single class. This is quite a big restriction on the kinds of object-
oriented programs that we want to make. The designers of Java knew this, but they
also wanted to ensure that Java’s approach to object-oriented programming was less
complex than, for example, that of C++.

The solution that they chose was to create the concept of an interface. Like a class,
an interface defines a new reference type. As its name implies, an interface is
intended to represent only an API—so it provides a description of a type, and the
methods (and signatures) that classes that implement that API should provide.

In general, a Java interface does not provide any implementation code for the meth‐
ods that it describes. These methods are considered mandatory—any class that
wishes to implement the interface must provide an implementation of these
methods.

However, an interface may wish to mark that some API methods are optional, and
that implementing classes do not need to implement them if they choose not to.
This is done with the default keyword—and the interface must provide a default
implementation of these optional methods, which will be used by any implementa‐
tion that elects not to implement them.

The ability to have optional methods in interfaces is new in
Java 8. It is not available in any earlier version. See “Default
Methods” on page 140 for a full description of how optional
(also called default) methods work.

It is not possible to directly instantiate an interface and create a member of the
interface type. Instead, a class must implement the interface to provide the necessary
method bodies.

Any instances of that class are members of both the type defined by the class and
the type defined by the interface. Objects that do not share the same class or super‐
class may still be members of the same type by virtue of implementing the same
interface.

Defining an Interface
An interface definition is much like a class definition in which all the (nondefault)
methods are abstract and the keyword class has been replaced with interface. For
example, the following code shows the definition of an interface named Centered. A
Shape class, such as those defined in Chapter 3, might implement this interface if it
wants to allow the coordinates of its center to be set and queried:

interface Centered {
  void setCenter(double x, double y);
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  double getCenterX();
  double getCenterY();
}

A number of restrictions apply to the members of an interface:

• All mandatory methods of an interface are implicitly abstract and must have a
semicolon in place of a method body. The abstract modifier is allowed, but by
convention is usually omitted.

• An interface defines a public API. All members of an interface are implicitly
public, and it is conventional to omit the unnecessary public modifier. It is a
compile-time error to try to define a protected or private method in an
interface.

• An interface may not define any instance fields. Fields are an implementation
detail, and an interface is a specification not an implementation. The only fields
allowed in an interface definition are constants that are declared both static
and final.

• An interface cannot be instantiated, so it does not define a constructor.

• Interfaces may contain nested types. Any such types are implicitly public and
static. See “Nested Types” on page 155 for a full description of nested types.

• As of Java 8, an interface may contain static methods. Previous versions of Java
did not allow this, and this is widely believed to have been a flaw in the design
of the Java language.

Extending Interfaces
Interfaces may extend other interfaces, and, like a class definition, an interface defi‐
nition may include an extends clause. When one interface extends another, it
inherits all the methods and constants of its superinterface and can define new
methods and constants. Unlike classes, however, the extends clause of an interface
definition may include more than one superinterface. For example, here are some
interfaces that extend other interfaces:

interface Positionable extends Centered {
  void setUpperRightCorner(double x, double y);
  double getUpperRightX();
  double getUpperRightY();
}
interface Transformable extends Scalable, Translatable, Rotatable {}
interface SuperShape extends Positionable, Transformable {}

An interface that extends more than one interface inherits all the methods and con‐
stants from each of those interfaces and can define its own additional methods and
constants. A class that implements such an interface must implement the abstract
methods defined directly by the interface, as well as all the abstract methods inher‐
ited from all the superinterfaces.
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Implementing an Interface
Just as a class uses extends to specify its superclass, it can use implements to name
one or more interfaces it supports. implements is a Java keyword that can appear in
a class declaration following the extends clause. implements should be followed by
a comma-separated list of interfaces that the class implements.

When a class declares an interface in its implements clause, it is saying that it pro‐
vides an implementation (i.e., a body) for each mandatory method of that interface.
If a class implements an interface but does not provide an implementation for every
mandatory interface method, it inherits those unimplemented abstract methods
from the interface and must itself be declared abstract. If a class implements more
than one interface, it must implement every mandatory method of each interface it
implements (or be declared abstract).

The following code shows how we can define a CenteredRectangle class that
extends the Rectangle class from Chapter 3 and implements our Centered
interface:

public class CenteredRectangle extends Rectangle implements Centered {
  // New instance fields
  private double cx, cy;

  // A constructor
  public CenteredRectangle(double cx, double cy, double w, double h) {
    super(w, h);
    this.cx = cx;
    this.cy = cy;
  }

  // We inherit all the methods of Rectangle but must
  // provide implementations of all the Centered methods.
  public void setCenter(double x, double y) { cx = x; cy = y; }
  public double getCenterX() { return cx; }
  public double getCenterY() { return cy; }
}

Suppose we implement CenteredCircle and CenteredSquare just as we have
implemented this CenteredRectangle class. Each class extends Shape, so instances
of the classes can be treated as instances of the Shape class, as we saw earlier.
Because each class implements the Centered interface, instances can also be treated
as instances of that type. The following code demonstrates how objects can be
members of both a class type and an interface type:

Shape[] shapes = new Shape[3];      // Create an array to hold shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are all widening conversions
shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);
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// Compute average area of the shapes and 
// average distance from the origin
double totalArea = 0;
double totalDistance = 0;
for(int i = 0; i < shapes.length; i++) {
  totalArea += shapes[i].area();   // Compute the area of the shapes

  // Be careful—in general, the use of instanceof to determine the
  // runtime type of an object is quite often an indication of a
  // problem with the design
  if (shapes[i] instanceof Centered) { // The shape is a Centered shape
    // Note the required cast from Shape to Centered (no cast would
    // be required to go from CenteredSquare to Centered, however).
    Centered c = (Centered) shapes[i]; 

    double cx = c.getCenterX();    // Get coordinates of the center
    double cy = c.getCenterY();    // Compute distance from origin
    totalDistance += Math.sqrt(cx*cx + cy*cy);
  }
}
System.out.println("Average area: " + totalArea/shapes.length);
System.out.println("Average distance: " + totalDistance/shapes.length);

Interfaces are data types in Java, just like classes. When a class
implements an interface, instances of that class can be
assigned to variables of the interface type.

Don’t interpret this example to imply that you must assign a CenteredRectangle
object to a Centered variable before you can invoke the setCenter() method or to
a Shape variable before you can invoke the area() method. CenteredRectangle
defines setCenter() and inherits area() from its Rectangle superclass, so you can
always invoke these methods.

Implementing Multiple Interfaces
Suppose we want shape objects that can be positioned in terms of not only their
center points but also their upper-right corners. And suppose we also want shapes
that can be scaled larger and smaller. Remember that although a class can extend
only a single superclass, it can implement any number of interfaces. Assuming we
have defined appropriate UpperRightCornered and Scalable interfaces, we can
declare a class as follows:

public class SuperDuperSquare extends Shape
  implements Centered, UpperRightCornered, Scalable {
  // Class members omitted here
}
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When a class implements more than one interface, it simply means that it must pro‐
vide implementations for all abstract (aka mandatory) methods in all its interfaces.

Default Methods
With the advent of Java 8, it is possible to include methods in interfaces that include
an implementation. In this section, we’ll discuss these methods, which represent
optional methods in the API the interfaces represents—they’re usually called default
methods. Let’s start by looking at the reasons why we need the default mechanism in
the first place.

Backward compatibility
The Java platform has always been very concerned with backwards compatibility.
This means that code that was written (or even compiled) for an earlier version of
the platform must continue to keep working with later releases of the platform. This
principle allows development groups to have a high degree of confidence that an
upgrade of their JDK or JRE will not break currently working applications.

Backward compatibility is a great strength of the Java platform, but in order to ach‐
ieve it, some constraints are placed on the platform. One of them is that interfaces
may not have new mandatory methods added to them in a new release of the
interface.

For example, let’s suppose that we want to update the Positionable interface with
the ability to add a bottom-left bounding point as well:

public interface Positionable extends Centered {
  void setUpperRightCorner(double x, double y);
  double getUpperRightX();
  double getUpperRightY();
  void setLowerLeftCorner(double x, double y);
  double getLowerLeftX();
  double getLowerLeftY();
}

With this new definition, if we try to use this new interface with code developed for
the old then it just won’t work, as the existing code is missing the mandatory meth‐
ods setLowerLeftCorner(), getLowerLeftX(), and getLowerLeftY().

You can see this effect quite easily in your own code. Compile
a class file that depends on an interface. Then add a new
mandatory method to the interface, and try to run the pro‐
gram with the new version of the interface, together with your
old class file. You should see the program crash with a
NoClassDefError.

This limitation was a concern for the designers of Java 8—as one of their goals was
to be able to upgrade the core Java Collections libraries, and introduce methods that
made use of lambda expressions.
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To solve this problem, a new mechanism was needed, essentially to allow interfaces
to evolve by allowing new, optional methods to be added to interfaces without
breaking backward compatibility.

Implementation of default methods
To add new methods to an interface without breaking backward compatability
requires that some implementation must be provided for the older implementations
of the interface so that they can continue to work. This mechanism is a default
method, and it was first added to the platform in JDK 8.

A default method (sometimes called an optional method) can
be added to any interface. This must include an implementa‐
tion, called the default implementation, which is written inline
in the interface definition.

The basic behavior of default methods is:

• An implementing class may (but is not required to) implement the default
method.

• If an implementing class implements the default method, then the implementa‐
tion in the class is used.

• If no other implementation can be found, then the default implementation is
used.

An example default method is the sort() method. It’s been added to the interface
java.util.List in JDK 8, and is defined as:

// The <E> syntax is Java's way of writing a generic type—see 
// the next section for full details. If you aren't familiar with 
// generics, just ignore that syntax for now.
interface List<E> {
  // Other members omitted

  public default void sort(Comparator<? super E> c) {
    Collections.<E>sort(this, c);
  }
}

Thus, from Java 8 upward, any object that implements List has an instance method
sort() that can be used to sort the list using a suitable Comparator. As the return
type is void, we might expect that this is an in-place sort, and this is indeed the case.

Marker Interfaces
Sometimes it is useful to define an interface that is entirely empty. A class can imple‐
ment this interface simply by naming it in its implements clause without having to
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implement any methods. In this case, any instances of the class become valid instan‐
ces of the interface. Java code can check whether an object is an instance of the
interface using the instanceof operator, so this technique is a useful way to provide
additional information about an object.

The java.io.Serializable interface is a marker interface of this sort. A class
implements the Serializable interface to tell ObjectOutputStream that its instan‐
ces may safely be serialized. java.util.RandomAccess is another example:
java.util.List implementations implement this interface to advertise that they
provide fast random access to the elements of the list. For example, ArrayList
implements RandomAccess, while LinkedList does not. Algorithms that care about
the performance of random-access operations can test for RandomAccess like this:

// Before sorting the elements of a long arbitrary list, we may want  
// to make sure that the list allows fast random access.  If not,  
// it may be quicker make a random-access copy of the list before 
// sorting it. Note that this is not necessary when using 
// java.util.Collections.sort().
List l = ...;  // Some arbitrary list we're given
if (l.size() > 2 && !(l instanceof RandomAccess))  l = new ArrayList(l);
sortListInPlace(l);

As we will see later, Java’s type system is very tightly connected to the names that
types have—an approach called nominal typing. A marker interface is a great exam‐
ple of this—it has nothing at all except a name.

Java Generics
One of the great strengths of the Java platform is the standard library that it ships. It
provides a great deal of useful functionality—and in particular robust implementa‐
tions of common data structures. These implementations are relatively simple to
develop with and are well documented. The libraries are known as the Java Collec‐
tions, and we will spend a big chunk of Chapter 8 discussing them. For a far more
complete treatment, see the book Java Generics and Collections by Maurice Naftalin
and Philip Wadler (O’Reilly).

Although they were still very useful, the earliest versions of the collections had a
fairly major limitation, however. This limitation was that the data structure (often
called the container) essentially hid the type of the data being stored in it.

Data hiding and encapsulation is a great principle of object-
oriented programming, but in this case, the opaque nature of
the container caused a lot of problems for the developer.

Let’s kick off the section by demonstrating the problem, and showing how the intro‐
duction of generic types can solve it, and make life much easier for Java developers.

142 | Chapter 4: The Java Type System

http://shop.oreilly.com/product/9780596527754.do


Introduction to Generics
If we want to build a collection of Shape instances, we can use a List to hold them,
like this:

List shapes = new ArrayList();   // Create a List to hold shapes

// Create some centered shapes, and store them in the list
shapes.add(new CenteredCircle(1.0, 1.0, 1.0));
// This is legal Java—but is a very bad design choice
shapes.add(new CenteredSquare(2.5, 2, 3));

// List::get() returns Object, so to get back a 
// CenteredCircle we must cast
CenteredCircle c = (CentredCircle)shapes.get(0);

// Next line causes a runtime failure
CenteredCircle c = (CentredCircle)shapes.get(1);

A problem with this code stems from the requirement to perform a cast to get the
shape objects back out in a usable form—the List doesn’t know what type of objects
it contains. Not only that, but it’s actually possible to put different types of objects
into the same container—and everything will work fine until an illegal cast is used,
and the program crashes.

What we really want is a form of List that understands what type it contains. Then,
javac could detect when an illegal argument was passed to the methods of List and
cause a compilation error, rather than deferring the issue to runtime.

Java provides syntax to cater for this—to indicate that a type is a container that
holds instances of another reference type we enclose the payload type that the con‐
tainer holds within angle brackets:

// Create a List-of-CenteredCircle
List<CenteredCircle> shapes = new ArrayList<CenteredCircle>();

// Create some centered shapes, and store them in the list
shapes.add(new CenteredCircle(1.0, 1.0, 1.0));

// Next line will cause a compilation error
shapes.add(new CenteredSquare(2.5, 2, 3));

// List<CenteredCircle>::get() returns a CenteredCircle, no cast needed
CenteredCircle c = shapes.get(0);

This syntax ensures that a large class of unsafe code is caught by the compiler,
before it gets anywhere near runtime. This is, of course, the whole point of static
type systems—to use compile-time knowledge to help eliminate whole swathes of
runtime problems.

Container types are usually called generic types—and they are declared like this:
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interface Box<T> {
  void box(T t);
  T unbox();
}

This indicates that the Box interface is a general construct, which can hold any type
of payload. It isn’t really a complete interface by itself—it’s more like a general
description of a whole family of interfaces, one for each type that can be used in
place of T.

Generic Types and Type Parameters
We’ve seen how to use a generic type, to provide enhanced program safety, by using
compile-time knowledge to prevent simple type errors. In this section, let’s dig
deeper into the properties of generic types.

The syntax <T> has a special name—it’s called a type parameter, and another name
for a generic type is a parameterized type. This should convey the sense that the con‐
tainer type (e.g., List) is parameterized by another type (the payload type). When
we write a type like Map<String, Integer>, we are assigning concrete values to the
type parameters.

When we define a type that has parameters, we need to do so in a way that does not
make assumptions about the type parameters. So the List type is declared in a
generic way as List<E>, and the type parameter E is used all the way through to
stand as a placeholder for the actual type that the programmer will use for the pay‐
load when she makes use of the List data structure.

Type parameters always stand in for reference types. It is not
possible to use a primitive type as a value for a type parameter.

The type parameter can be used in the signatures and bodies of methods as though
it is a real type, for example:

interface List<E> extends Collection<E> {
  boolean add(E e);
  E get(int index);
  // other methods omitted
}

Note how the type parameter E can be used as a parameter for both return types
and method arguments. We don’t assume that the payload type has any specific
properties, and only make the basic assumption of consistency—that the type we
put in is the sane type that we will later get back out.
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1 Some small traces of generics remain, which can be seen at runtime via reflection.

Diamond Syntax
When creating an instance of a generic type, the right-hand side of the assignment
statement repeats the value of the type parameter. This is usually unnecessary, as the
compiler can infer the values of the type parameters. In modern versions of Java, we
can leave out the repeated type values in what is called diamond syntax.

Let’s look at an example of how to use diamond syntax, by rewriting one of our ear‐
lier examples:

// Create a List-of-CenteredCircle using diamond syntax
List<CenteredCircle> shapes = new ArrayList<>();

This is a small improvement in the verbosity of the assignment statement—we’ve
managed to save a few characters of typing. We’ll return to the topic of type infer‐
ence when we discuss lambda expressions towards the end of this chapter.

Type Erasure
In “Default Methods” on page 140, we discussed the Java platform’s strong prefer‐
ence for backwards compatibility. The addition of generics in Java 5 was another
example of where backwards compatibility was an issue for a new language feature.

The central question was how to make a type system that allowed older, nongeneric
collection classes to be used along with newer, generic collections. The design deci‐
sion was to achieve this by the use of casts:

List someThings = getSomeThings();
// Unsafe cast, but we know that the 
// contents of someThings are really strings
List<String> myStrings = (List<String>)someThings;

This means that List and List<String> are compatible as types, at least at some
level. Java achieves this compatibility by type erasure. This means that generic type
parameters are only visible at compile time—they are stripped out by javac and are
not reflected in the bytecode.1

The nongeneric type List is usually called a raw type. It is still
perfectly legal Java to work with the raw form of types—even
for types that are now generic. This is almost always a sign of
poor quality code, however.

The mechanism of type erasure gives rise to a difference in the type system seen by
javac and that seen by the JVM—we will discuss this fully in “Compile and Run‐
time Typing” on page 150.
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Type erasure also prohibits some other definitions, which would otherwise seem
legal. In this code, we want to count the orders as represented in two slightly differ‐
ent data structures:

// Won't compile
interface OrderCounter {
  // Name maps to list of order numbers
  int totalOrders(Map<String, List<String>> orders);

  // Name maps to total orders made so far
  int totalOrders(Map<String, Integer> orders);
}

This seems like perfectly legal Java code—but it will not compile. The issue is that
although the two methods seem like normal overloads, after type erasure, the signa‐
ture of both methods becomes:

  int totalOrders(Map);

All that is left after type erasure is the raw type of the container—in this case, Map.
The runtime would be unable to distinguish between the methods by signature, and
so the language specification makes this syntax illegal.

Wildcards
A parameterized type, such as ArrayList<T>, is not instantiable—we cannot create
instances of them. This is because <T> is just a type parameter—merely a place‐
holder for a genuine type. It is only when we provide a concrete value for the type
parameter, (e.g., ArrayList<String>), that the type becomes fully formed and we
can create objects of that type.

This poses a problem if the type that we want to work with is unknown at compile
time. Fortunately, the Java type system is able to accommodate this concept. It does
so by having an explicit concept of the unknown type—which is represented as <?>.
This is the simplest example  of Java’s wildcard types.

We can write expressions that involve the unknown type:

ArrayList<?> mysteryList = unknownList();
Object o = mysteryList.get(0);

This is perfectly valid Java—ArrayList<?> is a complete type that a variable can
have, unlike ArrayList<T>. We don’t know anything about the payload type of mys
teryList, but that may not be a problem for our code. When working with the
unknown type, there are some limitations on its use in user code. For example, this
code will not compile:

// Won't compile
mysteryList.add(new Object());
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The reason for this is simple—we don’t know what the payload type of mysteryList
is! For example, if mysteryList was really a instance of ArrayList<String>, then
we wouldn’t expect to be able to put an Object into it.

The only value that we know we can always insert into a container is null—as we
know that null is a possible value for any reference type. This isn’t that useful, and
for this reason, the Java language spec also rules out instantiating a container object
with the unknown type as payload, for example:

// Won't compile
List<?> unknowns = new ArrayList<?>();

A very important use for the unknown type stems  from the question, “Is
List<String> a subtype of List<Object>?” That is, can we write this?

// Is this legal?
List<Object> objects = new ArrayList<String>();

At first glance, this seems entirely reasonable—String is a subclass of Object, so we
know that any String element in our collection is also a valid Object. However,
consider the following code:

// Is this legal?
List<Object> objects = new ArrayList<String>();

// If so, what do we do about this?
objects.add(new Object());

As the type of objects was declared to be List<Object>, then it should be legal to
add an Object instance to it. However, as the actual instance holds strings, then try‐
ing to add an Object would not be compatible, and so this would fail at runtime.

The resolution for this is to realize that although this is legal (because String inher‐
its from Object):

Object o = new String("X");

that does not mean that the corresponding statement for generic container types is
also true:

// Won't compile
List<Object> objects = new ArrayList<String>();

Another way of saying this is that List<String> is not a subtype of List<Object>.
If we want to have a subtyping relationship for containers, then we need to use the
unknown type:

// Perfectly legal
List<?> objects = new ArrayList<String>();

This means that List<String> is a subtype of List<?>—although when we use an
assignment like the preceding one, we have lost some type information. For exam‐
ple, the return type of get() is now effectively Object. You should also note that
List<?> is not a subtype of any List<T>, for any value of T.

Typ
e

System

Java Generics | 147



The unknown type sometimes confuses developers—provoking questions like,
“Why wouldn’t you just use Object instead of the unknown type?” However, as
we’ve seen, the need to have subtyping relationships between generic types essen‐
tially requires us to have a notion of the unknown type.

Bounded wildcards
In fact, Java’s wildcard types extend beyond just the unknown type, with the concept 
of bounded wildcards, also called type parameter constraints. This is the ability to
restrict the types that can be used as the value of a type parameter.

They are used to describe the inheritance hierarchy of a mostly unknown type—
effectively making statements like, for example, “I don’t know anything about this
type, except that it must implement List.” This would be written as ? extends
List in the type parameter. This provides a useful lifeline to the programmer—
instead of being restricted to the totally unknown type, she knows that at least the
capabilities of the type bound are available.

The extends keyword is always used, regardless of whether
the constraining type is a class or interface type.

This is an example of a concept called type variance, which is the general theory of
how inheritance between container types relates to the inheritance of their payload
types.

Type covariance
This means that the container types have the same relationship to each other as
the payload types do. This is expressed using the extends keyword.

Type contravariance
This means that the container types have the inverse relationship to each other
as the payload types. This is expressed using the super keyword.

These principles tend to appear when discussing container types that act as produc‐
ers or consumers of types. For example, if Cat extends Pet, then List<Cat> is a sub‐
type of List<? extends Pet>. The List is acting as a producer of Cat objects and
the appropriate keyword is extends.

For a container type that is acting purely as a consumer of instances of a type, we
would use the super keyword.
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2 Raoul-Gabriel Urma and Janina Voigt, “Using the OpenJDK to Investigate Covariance in Java,”
Java Magazine (May/June 2012):44–47.

This is codified in the Producer Extends, Consumer Super
(PECS) principle coined by Joshua Bloch.

As we will see in Chapter 8, we see both covariance and contravariance throughout
the Java Collections. They largely exist to ensure that the generics just “do the right
thing” and behave in a manner that should not surprise the developer.

Array Covariance

In the earliest versions of Java, before the collections libraries were even introduced,
the problem of type variance in container types was still present for Java’s arrays. 
Without type variance, even simple methods like this sort() would have been very
difficult to write in a useful way:

Arrays.sort(Object[] a);

For this reason, arrays in Java are covariant—this was seen as a necessary evil in the
very early days of the platform, despite the hole in the static type system that it
exposes:

// This is completely legal
String[] words = {"Hello World!"};
Object[] objects = words;

// Oh, dear, runtime error
objects[0] = new Integer(42);

More recent research on modern open source codebases indicates that array cova‐
riance is extremely rarely used and is almost certainly a language misfeature.2 It
should be avoided when writing new code.

Generic Methods

A generic method is a method that is able to take instances of any reference type.

For example, this method emulates the behavior of the , (comma) operator from
the C language, which is usually used to combine expressions with side effects
together:

// Note that this class is not generic
public class Utils
  public static <T> T comma(T a, T b) {
    return a;
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  }
}

Even though a type parameter is used in the definition of the method, the class it is
defined in need not be generic—instead, the syntax is used to indicate that the
method can be used freely, and that the return type is the same as the argument.

Using and Designing Generic Types

When working with Java’s generics, it can sometimes be helpful to think in terms of
two different levels of understanding:

Practitioner
A practitioner needs to use existing generic libraries, and to build some fairly
simple generic classes. At this level, the developer should also understand the
basics of type erasure, as several Java syntax features are confusing without at
least an awareness of the runtime handling of generics.

Designer
The designer of new libraries that use generics needs to understand much more
of the capabilities of generics. There are some nastier parts of the spec—includ‐
ing a full understanding of wildcards, and advanced topics such as “capture-of ”
error messages.

Java generics are one of the most complex parts of the language specification with a
lot of potential corner cases, which not every developer needs to fully understand, at
least on a first encounter with this part of Java’s type system.

Compile and Runtime Typing
Consider an example piee>ce of code:

List<String> l = new ArrayList<>();
System.out.println(l);

We can ask the following question: what is the type of l? The answer to that ques‐
tion depends on whether we consider l at compile time (i.e., the type seen by javac)
or at runtime (as seen by the JVM).

javac will see the type of l as List-of-String, and will use that type information to
carefully check for syntax errors, such as an attempted add() of an illegal type.

Conversely, the JVM will see l as an object of type ArrayList—as we can see from
the println() statement. The runtime type of l is a raw type due to type erasure.

The compile-time and runtime types are therefore slightly different to each other.
The slightly strange thing is that in some ways, the runtime type is both more and
less specific than the compile-time type.
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The runtime type is less specific than the compile-time type, because the type infor‐
mation about the payload type is gone—it has been erased, and the resulting run‐
time type is just a raw type.

The compile-time type is less specific than the runtime type, because we don’t know
exactly what concrete type l will be—all we know is that it will be of a type compati‐
ble with List.

Enums and Annotations
Java has specialized forms of classes and interfaces that are used to fulfill specific
roles in the type system. They are known as enumerated types and annotation types,
normally just called enums and annotations.

Enums
Enums are a variation of classes that have limited functionality and that have only a
small number of possible values that the type permits.

For example, suppose we want to define a type to represent the primary colors of
red, green, and blue, and we want these to be the only possible values of the type.
We can do this by making use of the enum keyword:

public enum PrimaryColor {
  // The ; is not required at the end of the list of instances
  RED, GREEN, BLUE
}

Instances of the type PrimaryColor can then be referenced as though they were
static fields: PrimaryColor.RED, PrimaryColor.GREEN, and PrimaryColor.BLUE.

In other languages, such as C++, this role is usually fulfilled by
using constant integers, but Java’s approach provides better
type safety, and more flexiblity. For example, as enums are
specialized classes, enums can have member fields and meth‐
ods. If they do have a body (consisting of fields or methods)
then the semicolon at the end of the list of instances is
required.

For example, suppose that we want to have an enum that encompasses the first few
regular polygons (shapes with all sides and all angles equal), and we want them to
have some behavior (in the form of methods). We could achieve this by using an
enum that takes a value as a parameter, like this:

public enum RegularPolygon {
  // The ; is mandatory for enums that have parameters
  TRIANGLE(3), SQUARE(4), PENTAGON(5), HEXAGON(6);

  private Shape shape;
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  public Shape getShape() {
    return shape;
  }

  private RegularPolygon(int sides) {
    switch (sides) {
      case 3:
        // We assume that we have some general constructors
        // for shapes that take the side length and
        // angles in degrees as parameters
        shape = new Triangle(1,1,1,60,60,60);
        break;
      case 4:
        shape = new Rectangle(1,1);
        break;
      case 5:
        shape = new Pentagon(1,1,1,1,1,108,108,108,108,108);
        break;
      case 6:
        shape = new Hexagon(1,1,1,1,1,1,120,120,120,120,120,120);
        break;
    }
  }
}

These parameters (only one of them in this example) are passed to the constructor
to create the individual enum instances. As the enum instances are created by the
Java runtime, and can’t be instantiated from outside, the constructor is declared as
private.

Enums have some special properties:

• All (implicitly) extend java.lang.Enum
• May not be generic
• May implement interfaces
• Cannot be extended
• May only have abstract methods if all enum values provide an implementation

body
• May only have a private (or default access) constructor

Annotations
Annotations are a specialized kind of interface that, as the name suggests, annotate
some part of a Java program.

For example, consider the @Override annotation. You may have seen it on some
methods in some of the earlier examples, and may have asked the following ques‐
tion: what does it do?
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The short, and perhaps surprising, answer is that it does nothing at all.

The less short (and flippant) answer is that, like all annotations, it has no direct
effect, but instead acts as additional information about the method that it annotates
—in this case, it denotes that a method overrides a superclass method.

This acts as a useful hint to compilers and integrated development environments
(IDEs)—if a developer has misspelled the name of a method that she intended to be
an override of a superclass method, then the presence of the @Override annotation
on the misspelled method (which does not override anything) alerts the compiler to
the fact that something is not right.

Annotations are not allowed to alter program semantics—instead, they provide
optional metadata. In its strictest sense, this means that they should not affect pro‐
gram execution and instead can only provide information for compilers and other
pre-execution phases.

The platform defines a small number of basic annotations in java.lang. The origi‐
nal set were @Override, @Deprecated, and @SuppressWarnings—which were used
to indicate that a method was overriden, deprecated, or that it generated some com‐
piler warnings that should be suppressed.

These were augmented by @SafeVarargs in Java 7 (which provides extended warn‐
ing suppression for varargs methods) and @FunctionalInterface in Java 8. This
last annotation indicates an interface can be used as a target for a lambda expression
—it is a useful marker annotation although not mandatory, as we will see.

Annotations have some special properties, compared to regular interfaces:

• All (implicitly) extend java.lang.annotation.Annotation
• May not be generic
• May not extend any other interface
• May only define zero-arg methods
• May not define methods that throw exceptions
• Have restrictions on the return types of methods
• Can have a default return value for methods

Defining Custom Annotations
Defining custom annotation types for use in your own code is not that hard. The
@interface keyword allows the developer to define a new annotation type, in much
the same way that class or interface are used.
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The key to writing custom annotations is the use of “meta-
annotations.” These are special annotations, which appear as
annotations on the definition of new (custom) annotation
types.

The meta-annotations are defined in java.lang.annotation and allow the devel‐
oper to specify policy for where the new annotation type is to be used, and how it
will be treated by the compiler and runtime.

There are two primary meta-annotations that are both essentially required when
creating a new annotation type—@Target and @Retention. These both take values
that are represented as enums.

The @Target meta-annotation indicates where the new custom annotation can be
legally placed within Java source code. The enum ElementType has the following
possible values: TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL_VARIABLE,
ANNOTATION_TYPE, PACKAGE, TYPE_PARAMETER, and TYPE_USE.

The other meta-annotation is @Retention, which indicates how javac and the Java
runtime should process the custom annotation type. It can have one of three values,
which are represented by the enum RetentionPolicy:

SOURCE

Annotations with this retention policy are discarded by javac during
compilation.

CLASS
This means that the annotation will be present in the class file, but will not nec‐
essarily be accessible at runtime by the JVM. This is rarely used, but is some‐
times seen in tools that do offline analysis of JVM bytecode.

RUNTIME
This indicates that the annotation will be available for user code to access at
runtime (by using reflection).

Let’s take a look at an example, a simple annotation called @Nickname, which allows
the developer to define a nickname for a method, which can then be used to find the
method reflectively at runtime:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Nickname {
    String[] value() default {};
}

This is all that’s required to define the annotation—a syntax element where the
annotation can appear, a retention policy, and the name of the element. As we need
to be able to state the nickname we’re assigning to the method, we also need to
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define a method on the annotation. Despite this, defining new custom annotations
is a remarkably compact undertaking.

In addition to the two primary meta-annotations, there are also the @Inherited and
@Documented meta-annotations. These are much less frequently encountered in
practice, and details on them can be found in the platform documentation.

Type Annotations
With the release of Java 8, two new values for ElementType were added—
TYPE_PARAMETER and TYPE_USE. These new values allow the use of annotations in
places where they were previously not legal, such as at any site where a type is used.
This enables the developer to write code such as:

@NotNull String safeString = getMyString();

The extra type information conveyed by the @NotNull can then be used by a special
type checker to detect problems (a possible NullPointerException, in this exam‐
ple) and to perform additional static analysis. The basic Java 8 distribution ships
with some basic pluggable type checkers, but also provides a framework for allow‐
ing developers and library authors to create their own.

In this section, we’ve met Java’s enum and annotation types. Let’s move on, to con‐
sider the next important part of Java’s type system: nested types.

Nested Types
The classes, interfaces, and enum types we have seen so far in this book have all
been defined as top-level types. This means that they are direct members of pack‐
ages, defined independently of other types. However, type definitions can also be
nested within other type definitions. These nested types, commonly known as “inner
classes,” are a powerful feature of the Java language.

Nested types are used for two separate purposes, both related to encapsulation:

• A type may be nested because it needs especially intimate access to the internals
of another type—by being a member type, it has access in the same way that
member variables and methods do, and can bend the rules of encapsulation.

• A type may be only required for a very specific reason, and in a very small sec‐
tion of code. It should be tightly localized, as it is really part of the implementa‐
tion detail and should be encapsulated away from the rest of the system.

Another way of thinking of nested types is that they are types that are somehow tied
together with another type—they don’t really have a completely independent exis‐
tence as an entity. Types can be nested within another type in four different ways:
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Static member types
A static member type is any type defined as a static member of another type.
Nested interfaces, enums, and annotations are always static (even if you don’t
use the keyword).

Nonstatic member classes
A “nonstatic member type” is simply a member type that is not declared
static. Only classes can be nonstatic member types.

Local classes
A local class is a class that is defined and only visible within a block of Java
code. Interfaces, enums, and annotations may not be defined locally.

Anonymous classes
An anonymous class is a kind of local class that has no meaningful name in the
Java language. Interfaces, enums, and annotations cannot be defined
anonymously.

The term “nested types,” while a correct and precise usage, is not widely used by
developers. Instead, most Java prorammers user the much vaguer term “inner class.”
Depending on the situation, this can refer to a nonstatic member class, local class,
or anonymous class, but not a static member type, with no real way to distinguish
between them.

Fortunately, although the terminology for describing nested types is not always
clear, the syntax for working with them is, and it is usually clear from context which
kind of nested type is being discussed.

Let’s move on to describe each of the four kinds of nested types in greater detail.
Each section describes the features of the nested type, the restrictions on its use, and
any special Java syntax used with the type. These four sections are followed by an
implementation note that explains how nested types work under the hood.

Static Member Types
A static member type is much like a regular top-level type. For convenience, how‐
ever, it is nested within the namespace of another type. Static member types have
the following basic properties:

• A static member type is like the other static members of a class: static fields and
static methods.

• A static member type is not associated with any instance of the containing class
(i.e., there is no this object).

• A static member type can access (only) the static members of the class that
contains it.

• A static member type has access to all the static members (including any
other static member types) of its containing type.
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• Nested interfaces, enums, and annotations are implicitly static, whether or not
the static keyword appears.

• Any type nested within an interface or annotation is also implicitly static.
• Static member types may be defined within top-level types or nested to any

depth within other static member types.
• A static member type may not be defined within any other kind of nested type.

Let’s look at a quick example of the syntax for static member types. Example 4-1
shows a helper interface defined as a static member of a containing class. The exam‐
ple also shows how this interface is used both within the class that contains it and by
external classes. Note the use of its hierarchical name in the external class.

Example 4-1. Defining and using a static member interface

// A class that implements a stack as a linked list
public class LinkedStack {

    // This static member interface defines how objects are linked
    // The static keyword is optional: all nested interfaces are static
    static interface Linkable {
        public Linkable getNext();
        public void setNext(Linkable node);
    }

    // The head of the list is a Linkable object
    Linkable head;

    // Method bodies omitted
    public void push(Linkable node) { ... }

    public Object pop() { ... }
}

// This class implements the static member interface
class LinkableInteger implements LinkedStack.Linkable {
    // Here's the node's data and constructor
    int i;
    public LinkableInteger(int i) { this.i = i; }

    // Here are the data and methods required to implement the interface
    LinkedStack.Linkable next;

    public LinkedStack.Linkable getNext() { return next; }

    public void setNext(LinkedStack.Linkable node) { next = node; }
}
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Features of static member types
A static member type has access to all static members of its containing type, includ‐
ing private members. The reverse is true as well: the methods of the containing
type have access to all members of a static member type, including the private
members. A static member type even has access to all the members of any other
static member types, including the private members of those types. A static mem‐
ber type can use any other static member without qualifying its name with the name
of the containing type.

A static member type cannot have the same name as any of its
enclosing classes. In addition, static member types can be
defined only within top-level types and other static member
types. This is actually part of a larger prohibition against
static members of any sort within member, local, and anony‐
mous classes.

Top-level types can be declared as either public or package-private (if they’re
declared without the public keyword). But declaring top-level types as private and
protected wouldn’t make a great deal of sense—protected would just mean the
same as package-private and a private top-level class would be unable to be
accessed by any other type.

Static member types, on the other hand, are members and so can use any access
control modifiers that other members of the containing type can. These modifiers
have the same meanings for static member types as they do for other members of a
type. Recall that all members of interfaces (and annotations) are implicitly public,
so static member types nested within interfaces or annotation types cannot be pro
tected or private.

For example, in Example 4-1, the Linkable interface is declared public, so it can be
implemented by any class that is interested in being stored on a LinkedStack.

In code outside the containing class, a static member type is named by combining
the name of the outer type with the name of the inner type (e.g., LinkedStack.Link
able).

Under most circumstances, this syntax provides a helpful reminder that the inner
class is interconnected with its containing type. However, the Java language does
permit you to use the import directive  to directly import a static member type:

import pkg.LinkedStack.Linkable;  // Import a specific nested type
// Import all nested types of LinkedStack
import pkg.LinkedStack.*;  

The nested type can then be referenced without including the name of its enclosing
type (e.g., just as Linkable).
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You can also use the import static directive to import a
static member type. See “Packages and the Java Namespace”
on page 88 in Chapter 2 for details on import and import
static.

However, importing a nested type obscures the fact that that type is closely associ‐
ated with its containing type—which is usually important information—and as a
result it is not commonly done.

Nonstatic Member Classes
A nonstatic member class is a class that is declared as a member of a containing class
or enumerated type without the static keyword:

• If a static member type is analogous to a class field or class method, a nonstatic
member class is analogous to an instance field or instance method.

• Only classes can be nonstatic member types.
• An instance of a nonstatic member class is always associated with an instance

of the enclosing type.
• The code of a nonstatic member class has access to all the fields and methods

(both static and non-static) of its enclosing type.
• Several features of Java syntax exist specifically to work with the enclosing

instance of a nonstatic member class.

Example 4-2 shows how a member class can be defined and used. This example
extends the previous LinkedStack example to allow enumeration of the elements on
the stack by defining an iterator() method that returns an implementation of the
java.util.Iterator interface. The implementation of this interface is defined as a
member class.

Example 4-2. An iterator implemented as a member class

import java.util.Iterator;

public class LinkedStack {

    // Our static member interface
    public interface Linkable {
        public Linkable getNext();
        public void setNext(Linkable node);
    }

    // The head of the list
    private Linkable head;

    // Method bodies omitted here
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    public void push(Linkable node) { ... }
    public Linkable pop() { ... }

    // This method returns an Iterator object for this LinkedStack
    public Iterator<Linkable> iterator() { return new LinkedIterator(); }

    // Here is the implementation of the Iterator interface,
    // defined as a nonstatic member class.
    protected class LinkedIterator implements Iterator<Linkable> {
        Linkable current;

        // The constructor uses a private field of the containing class
        public LinkedIterator() { current = head; }

        // The following 3 methods are defined by the Iterator interface
        public boolean hasNext() {  return current != null; }

        public Linkable next() {
            if (current == null) 
              throw new java.util.NoSuchElementException();
            Linkable value = current;
            current = current.getNext();
            return value;
        }

        public void remove() { throw new UnsupportedOperationException(); }
    }
}

Notice how the LinkedIterator class is nested within the LinkedStack class.
Because LinkedIterator is a helper class used only within LinkedStack, having it
defined so close to where it is used by the containing class makes for a clean design,
just as we discussed when we introduced nested types.

Features of member classes
Like instance fields and  instance methods, every instance of a nonstatic member
class is associated with an instance of the class in which it is defined. This means
that the code of a member class has access to all the instance fields and instance
methods (as well as the static members) of the containing instance, including any
that are declared private.

This crucial feature was already illustrated in Example 4-2. Here is the Linked
Stack.LinkedIterator() constructor again:

public LinkedIterator() { current = head; }

This single line of code sets the current field of the inner class to the value of the
head field of the containing class. The code works as shown, even though head is
declared as a private field in the containing class.
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A nonstatic member class, like any member of a class, can be assigned one of the
standard access control modifiers. In Example 4-2, the LinkedIterator class is
declared protected, so it is inaccessible to code (in a different package) that uses
the LinkedStack class but is accessible to any class that subclasses LinkedStack.

Restrictions on member classes
Member classes have two important restrictions:

• A nonstatic member class cannot have the same name as any containing class
or package. This is an important rule, one that is not shared by fields and meth‐
ods.

• Nonstatic member classes cannot contain any static fields, methods, or types,
except for constant fields declared both static and final.

static members are top-level constructs not associated with
any particular object while every nonstatic member class is
associated with an instance of its enclosing class. Defining a
static top-level member within a member class that is not at
the top level would cause confusion, so it is not allowed.

Syntax for member classes
The most important  feature of a member class is that it can access the instance
fields and methods in its containing object. We saw this in the LinkedStack.Linked
Iterator() constructor of Example 4-2:

public LinkedIterator() { current = head; }

In this example, head is a field of the enclosing LinkedStack class, and we assign it
to the current field of the LinkedIterator class (which is a member of the non‐
static member class).

If we want to use explicit references, and make use of this, then we have to use a
special syntax for explicitly referring to the containing instance of the this object.
For example, if we want to be explicit in our constructor, we can use the following
syntax:

public LinkedIterator() { this.current = LinkedStack.this.head; }

The general syntax is classname.this, where classname is the name of a contain‐
ing class. Note that member classes can themselves contain member classes, nested
to any depth. However, because no member class can have the same name as any
containing class, the use of the enclosing class name prepended to this is a perfectly
general way to refer to any containing instance.
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This special syntax is needed only when referring to a member
of a containing class that is hidden by a member of the same
name in the member class.

Scope versus inheritance
We notice that a top-level class can extend a  member class. With the introduction
of nonstatic member classes, two separate hierarchies must be considered for any
class. The first is the inheritance hierarchy, from superclass to subclass, that defines
the fields and methods a member class inherits. The second is the containment hier‐
archy, from containing class to contained class, that defines a set of fields and meth‐
ods that are in the scope of (and are therefore accessible to) the member class.

It is important to be familiar with the properties and rules of thumb that the two
hierarchies have:

• The two hierarchies are entirely distinct from each other; it is important that
you do not confuse them.

• Refrain from creating naming conflicts, where a field or method in a superclass
has the same name as a field or method in a containing class.

• If such a naming conflict does arise, the inherited field or method takes prece‐
dence over the field or method of the same name in the containing class.

• Inherited fields and methods are in the scope of the class that inherits them
and take precedence over fields and methods by the same name in enclosing
scopes.

• To prevent confusion between the class hierarchy and the containment hierar‐
chy, avoid deep containment hierarchies.

• If a class is nested more than two levels deep, it is probably going to cause more
confusion than it is worth.

• If a class has a deep class hierarchy (i.e., it has many ancestors), consider defin‐
ing it as a top-level class rather than as a nonstatic member class.

Local Classes
A local class is declared locally within a block of Java code rather than as a member
of a class. Only classes may be defined locally: interfaces, enumerated types, and
annotation types must be top-level or static member types. Typically, a local class is
defined within a method, but it can also be defined within a static initializer or
instance initializer of a class.

Just as all blocks of Java code appear within class definitions, all local classes are nes‐
ted within containing blocks. For this reason, local classes share many of the
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features of member classes. It is usually more appropriate to think of them as an
entirely separate kind of nested type.

See Chapter 5 for details as to when it’s appropriate to choose
a local class versus a lambda expression.

The defining characteristic of a local class is that it is local to a block of code. Like a
local variable, a local class is valid only within the scope defined by its enclosing
block. Example 4-3 shows how we can modify the iterator() method of the
LinkedStack class so it defines LinkedIterator as a local class instead of a member
class.

By doing this, we move the definition of the class even closer to where it is used and
hopefully improve the clarity of the code even further. For brevity, Example 4-3
shows only the iterator() method, not the entire LinkedStack class that
contains it.

Example 4-3. Defining and using a local class

// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> Iterator() {
    // Here's the definition of LinkedIterator as a local class
    class LinkedIterator implements Iterator<Linkable> {
        Linkable current;

        // The constructor uses a private field of the containing class
        public LinkedIterator() { current = head; }

        // The following 3 methods are defined by the Iterator interface
        public boolean hasNext() {  return current != null; }

        public Linkable next() {
            if (current == null) 
              throw new java.util.NoSuchElementException();
            Linkable value = current;
            current = current.getNext();
            return value;
        }

        public void remove() { throw new UnsupportedOperationException(); }
    }

    // Create and return an instance of the class we just defined
    return new LinkedIterator();
}
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Features of local classes
Local classes have the following interesting features:

• Like member classes, local classes are associated with a containing instance and
can access any members, including private members, of the containing class.

• In addition to accessing fields defined by the containing class, local classes can
access any local variables, method parameters, or exception parameters that are
in the scope of the local method definition and are declared final.

Restrictions on local classes
Local classes are subject to the following restrictions:

• The name of a local class is defined only within the block that defines it; it can
never be used outside that block. (Note, however, that instances of a local class
created within the scope of the class can continue to exist outside of that scope.
This situation is described in more detail later in this section.)

• Local classes cannot be declared public, protected, private, or static.
• Like member classes, and for the same reasons, local classes cannot contain
static fields, methods, or classes. The only exception is for constants that are
declared both static and final.

• Interfaces, enumerated types, and annotation types cannot be defined locally.
• A local class, like a member class, cannot have the same name as any of its

enclosing classes.
• As noted earlier, a local class can use the local variables, method parameters,

and even exception parameters that are in its scope but only if those variables
or parameters are declared final. This is because the lifetime of an instance of
a local class can be much longer than the execution of the method in which the
class is defined.

A local class has a private internal copy of all local variables it
uses (these copies are automatically generated by javac). The
only way to ensure that the local variable and the private copy
are always the same is to insist that the local variable is final.

Scope of a local class
In discussing nonstatic member classes, we saw that a member class can access any
members inherited from superclasses and any members defined by its containing
classes. The same is true for local classes, but local classes can also access final local
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variables and parameters. Example 4-4 illustrates the different kinds of fields and 
variables that may be accessible to a local class:

Example 4-4. Fields and variables available to a local class

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
  private char c = 'c';         // Private fields visible to local class
  public static char d = 'd';
  public void createLocalObject(final char e)
  {
    final char f = 'f';
    int i = 0;                  // i not final; not usable by local class
    class Local extends B
    {
      char g = 'g';
      public void printVars()
      {
        // All of these fields and variables are accessible to this class
        System.out.println(g);  // (this.g) g is a field of this class
        System.out.println(f);  // f is a final local variable
        System.out.println(e);  // e is a final local parameter
        System.out.println(d);  // (C.this.d) d field of containing class
        System.out.println(c);  // (C.this.c) c field of containing class
        System.out.println(b);  // b is inherited by this class
        System.out.println(a);  // a is inherited by the containing class
      }
    }
    Local l = new Local();      // Create an instance of the local class
    l.printVars();              // and call its printVars() method.
  }
}

Lexical Scoping and Local Variables
A local variable is defined within a block of code that defines its scope, and outside
of that scope, a local variable cannot be accessed and ceases to exist. Any code
within the curly braces that define the boundaries of a block can use local variables
defined in that block.

This type of scoping, which is known as lexical scoping, just defines a section of
source code within which a variable can be used. It is common for programmers to
think of such a scope as temporal instead—that is, to think of a local variable as
existing from the time the JVM begins executing the block until the time control
exits the block. This is usually a reasonable way to think about local variables and
their scope.
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The introduction of local classes confuses the picture, however. To see why, notice
that instances of a local class can have a lifetime that extends past the time that the
JVM exits the block where the local class is defined.

In other words, if you create an instance of a local class, that
instance does not automatically go away when the JVM fin‐
ishes executing the block that defines the class. So, even
though the definition of the class was local, instances of that
class can escape out of the place they were defined.

This can cause effects that some developers initially find surprising. This is because
local classes can use local variables, and so they can contain copies of values from
lexical scopes that no longer exist. This can been seen in the following code:

public class Weird {
  // A static member interface used below
  public static interface IntHolder { public int getValue(); }

  public static void main(String[] args) {
    IntHolder[] holders = new IntHolder[10];
    for(int i = 0; i < 10; i++) { 
      final int fi = i;

      // A local class
      class MyIntHolder implements IntHolder {
        // Use the final variable
        public int getValue() { return fi; }
      }
      holders[i] = new MyIntHolder();
    }

    // The local class is now out of scope, so we can't use it. But we 
    // have 10 valid instances of that class in our array. The local
    // variable fi is not in our scope here, but it is still in scope 
    // for the getValue() method of each of those 10 objects. So call
    // getValue() for each object and print it out. This prints the 
    // digits 0 to 9.
    for(int i = 0; i < 10; i++) {
      System.out.println(holders[i].getValue());
    }
  }
}

To make sense of this code, remember that the lexical scope of the methods of a
local class has nothing to do with when the interpreter enters and exits the block of
code that defines the local class.

Each instance of a local class has an automatically created private copy of each of
the final local variables it uses, so, in effect, it has its own private copy of the scope
that existed when it was created.
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The local class MyIntHolder is sometimes called a closure. In
more general Java terms, a closure is an object that saves the
state of a scope and makes that scope available later.

Closures are useful in some styles of programming, and different programming lan‐
guages define and implement closures in different ways. Java implements closures as
local classes, anonymous classes, and lambda expressions.

Anonymous Classes
An anonymous class is a local class without a name. It is defined and instantiated in
a single succinct expression using the new operator. While a local class definition is a
statement in a block of Java code, an anonymous class definition is an expression,
which means that it can be included as part of a larger expression, such as a method
call.

For the sake of completeness, we cover anonymous classes
here, but for most use cases in Java 8 and later, lambda expres‐
sions (see “Conclusion” on page 174) have replaced anony‐
mous classes.

Consider Example 4-5, which shows the LinkedIterator class implemented as an
anonymous class within the iterator() method of the LinkedStack class. Compare
it with Example 4-4, which shows the same class implemented as a local class.

Example 4-5. An enumeration implemented with an anonymous class

public Iterator<Linkable> iterator() {
    // The anonymous class is defined as part of the return statement
    return new Iterator<Linkable>() {
        Linkable current;
        // Replace constructor with an instance initializer
        { current = head; }

        // The following 3 methods are defined by the Iterator interface
        public boolean hasNext() {  return current != null; }
        public Linkable next() {
            if (current == null) 
              throw new java.util.NoSuchElementException();
            Linkable value = current;
            current = current.getNext();
            return value;
        }
        public void remove() { throw new UnsupportedOperationException(); }
    };  // Note the required semicolon. It terminates the return statement
}
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As you can see, the syntax for defining an anonymous class and creating an instance
of that class uses the new keyword, followed by the name of a class and a class body
definition in curly braces. If the name following the new keyword is the name of a
class, the anonymous class is a subclass of the named class. If the name following
new specifies an interface, as in the two previous examples, the anonymous class
implements that interface and extends Object.

The syntax for anonymous classes does not include any way to
specify an extends clause, an implements clause, or a name
for the class.

Because an anonymous class has no name, it is not possible to define a constructor
for it within the class body. This is one of the basic restrictions on anonymous
classes. Any arguments you specify between the parentheses following the super‐
class name in an anonymous class definition are implicitly passed to the superclass
constructor. Anonymous classes are commonly used to subclass simple classes that
do not take any constructor arguments, so the parentheses in the anonymous class
definition syntax are often empty. In the previous examples, each anonymous class
implemented an interface and extended Object. Because the Object() constructor
takes no arguments, the parentheses were empty in those examples.

Restrictions on anonymous classes
Because an anonymous class is just a type of local class, anonymous classes and local
classes share the same restrictions. An anonymous class cannot define any static
fields, methods, or classes, except for static final constants. Interfaces, enumer‐
ated types, and annotation types cannot be defined anonymously. Also, like local
classes, anonymous classes cannot be public, private, protected, or static.

The syntax for defining an anonymous class combines definition with instantiation.
Using an anonymous class instead of a local class is not appropriate if you need to
create more than a single instance of the class each time the containing block is
executed.

Because an anonymous class has no name, it is not possible to define a constructor
for an anonymous class. If your class requires a constructor, you must use a local
class instead. However, you can often use an instance initializer as a substitute for a
constructor.

Although they are not limited to use with anonymous classes, instance initializers
(described earlier in “Field Defaults and Initializers” on page 108), were introduced
into the language for this purpose. An anonymous class cannot define a constructor,
so it only has a default constructor. By using an instance initializer, you can get
around the fact that you cannot define a constructor for an anonymous class.
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How Nested Types Work
The preceding sections explained the features and behavior of the four kinds of nes‐
ted types. That should be all you need to know about nested types, especially if all
you want to do is use them. You may find it easier to understand nested types if you
understand how they are implemented, however.

The introduction of nested types did not change the Java Vir‐
tual Machine or the Java class file format. As far as the Java
interpreter is concerned, there is no such thing as a nested
type: all classes are normal top-level classes.

In order to make a nested type behave as if it is actually defined inside another class,
the Java compiler ends up inserting hidden fields, methods, and constructor argu‐
ments into the classes it generates. These hidden fields and methods are often
referred to as synthetic.

You may want to use the javap disassembler to disassemble some of the class files
for nested types so you can see what tricks the compiler has used to make the nested
types work. (See Chapter 13 for information on javap.)

The implementation of nested types works by having javac compile each nested
type into a separate class file, which is actually a top-level class. The compiled class
files have a special naming convention, and have names that would not ordinarily
be created from user code.

Recall our first LinkedStack example (Example 4-1), which defined a static member
interface named Linkable. When you compile this LinkedStack class, the compiler
generates two class files. The first one is LinkedStack.class, as expected.

The second class file, however, is called LinkedStack$Linkable.class. The $ in this
name is automatically inserted by javac. This second class file contains the imple‐
mentation of the static member interface defined in the exercise.

Because the nested type is compiled into an ordinary top-level class, there is no way
it can directly access the privileged members of its container. Therefore, if a static
member type uses a private (or other privileged) member of its containing type,
the compiler generates synthetic access methods (with the default package access)
and converts the expressions that access the private members into expressions that
invoke these specially generated methods.

The naming conventions for the four kinds of nested type are:

(Static or nonstatic) member types
Member types are named according to the EnclosingType$Member.class
pattern.
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3 We will have more to say on this subject when we discuss memory and mutable state in Chap‐
ter 6.

Anonymous classes
Because anonymous classes have no names, the names of the class files that
represent them are an implementation detail. The Oracle/OpenJDK javac uses
numbers to provide anonymous class names (e.g., EnclosingType$1.class).

Local classes
A local class is named according to a combination (e.g., EnclosingType$1Mem
ber.class).

Let’s also take a quick look at some implementation details of how javac provides
synthetic access for some of the specific cases that nested types need.

Nonstatic member class implementation
Each instance of a nonstatic member class is associated with an instance of the
enclosing class. The compiler enforces this association by defining a synthetic field
named this$0 in each member class. This field is used to hold a reference to the
enclosing instance.

Every nonstatic member class constructor is given an extra parameter that
initializes this field. Every time a member class constructor is invoked, the compiler
automatically passes a reference to the enclosing class for this extra parameter.

Local and anonymous class implementation
A local class is able to refer to fields and methods in its containing class for exactly
the same reason that a nonstatic member class can; it is passed a hidden reference to
the containing class in its constructor and saves that reference away in a private
synthetic field added by the compiler. Like nonstatic member classes, local classes
can use private fields and methods of their containing class because the compiler
inserts any required accessor methods.

What makes local classes different from member classes is that they have the ability
to refer to local variables in the scope that defines them. The crucial restriction on
this ability, however, is that local classes can reference only local variables and
parameters that are declared final. The reason for this restriction becomes appa‐
rent in the implementation.

A local class can use local variables because javac automatically gives the class a
private instance field to hold a copy of each local variable the class uses.

The compiler also adds hidden parameters to each local class constructor to initial‐
ize these automatically created private fields. A local class does not actually access
local variables but merely its own private copies of them. This could cause inconsis‐
tencies if the local variables could alter outside of the local class.3
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Lambda Expressions
One of the most eagerly anticated features of Java 8 was the introduction of lambda
expressions. These allow small bits of code to be written inline as literals in a pro‐
gram and facilitate a more functional style of programming Java.

In truth, many of these techniques had always been possible using nested types, via
patterns like callbacks and handlers, but the syntax was always quite cumbersome,
especially given the need to explicitly define a completely new type even when only
needing to express a single line of code in the callback.

As we saw in Chapter 2, the syntax for a lambda expression is to take a list of
parameters (the types of which are typically inferred), and to attach that to a
method body, like this:

(p, q) -> { /* method body */ }

This can provide a very compact way to represent simple methods, and can largely
obviate the need to use anonymous classes.

A lambda expression has almost all of the component parts of
a method, with the obvious exception that a lambda doesn’t
have a name. In fact, some developers like to think of lambdas
as “anonymous methods.”

For example, consider the list() method of the java.io.File class. This method
lists the files in a directory. Before it returns the list, though, it passes the name of
each file to a FilenameFilter object you must supply. This FilenameFilter object
accepts or rejects each file.

Here’s how you can define a FilenameFilter class to list only those files whose
names end with .java, using an anonymous class:

File dir = new File("/src");      // The directory to list

// Now call the list() method with a single anonymous implemenation of
// FilenameFilter as the argument
String[] filelist = dir.list(new FilenameFilter() {
  public boolean accept(File f, String s) { 
     return s.endsWith(".java"); 
  }
});

With lambda expressions, this can be simplified:

File dir = new File("/src");      // The directory to list

String[] filelist = dir.list((f,s) -> { return s.endsWith(".java"); });
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For each file in the list, the block of code in the lambda expression is evaluated. If
the method returns true (which happens if the filename ends in .java) then the file
is included in the output—which ends up in the array filelist.

This pattern, where a block of code is used to test if an element of a container
matches a condition, and to only return the elements that pass the condition, is
called a filter idiom—and is one of the standard techniques of functional program‐
ming, which we will discuss in more depth presently.

Lambda Expression Conversion
When javac encounters a lambda expression, it interprets it as the body of a
method with a specific signature—but which method?

To resolve this question, javac looks at the surrounding code. To be legal Java code,
the lambda expression must satisfy the following:

• The lambda must appear where an instance of an interface type is expected.
• The expected interface type should have exactly one mandatory method.
• The expected interface method should have a signature that exactly matches

that of the lambda expression.

If this is the case, then an instance is created of a type that implements the expected
interface, and uses the lambda body as the implementation for the mandatory
method.

This slightly complex explanation comes from the decision to keep Java’s type sys‐
tem as purely nominative (based on names). The lambda expression is said to be
converted to an instance of the correct interface type.

Some developers also like to use the term single abstract method (or SAM) type to
refer to the interface type that the lambda is converted into. This draws attention to
the fact that to be usable by the lambda expression mechanism, an interface must
have only a single nondefault method.

Despite the parallels between lambda expressions and anony‐
mous classes, lambdas are not simply syntactic sugar over
anonymous classes. In fact, lambdas are implemented using
method handles (which we will meet in Chapter 11) and a
new, special JVM bytecode called invokedynamic.

From this discussion, we can see that although Java 8 has added lambda expres‐
sions, they have been specifically designed to fit into Java’s existing type system—
which has a very strong emphasis on nominal typing.
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Method References
Recall that we can think of lambda expressions as methods that don’t have names.
Now, consider this lambda expression:

// In real code this would probably be shorter because of type inference
(MyObject myObj) -> myObj.toString()

This will be autoconverted to an implementation of a @FunctionalInterface that
has a single nondefault method that takes a single MyObject and returns String.
However, this seems like excessive boilerplate, and so Java 8 provides a syntax for
making this easier to read and write:

MyObject::toString

This is a shorthand, known as a method reference, that uses an existing method as a
lambda expression. It can be thought of as using an existing method, but ignoring
the name of the method, so it can be can used as a lambda, and autoconverted in the
usual way.

Functional Programming
Java is fundamentally an object-oriented lanaguage. However, with the arrival of
lambda expressions, it becomes much easier to write code that is closer to the func‐
tional approach.

There’s no single definition of exactly what constitutes a func‐
tional language—but there is at least a consensus that it should
at least contain the ability to represent a function as a value
that can be put into a variable.

Java has always (since version 1.1) been able to represent functions via inner classes,
but the syntax was complex and lacking in clarity. Lambda expressions greatly sim‐
plify that syntax, and so it is only natural that more developers will be seeking to use
aspects of functional programming in their Java code, now that it is considerably
easier to do so.

The first taste of functional programming that Java developers are likely to
encounter are three basic idioms that are remarkably useful:

map()
The map idiom is used with lists, and list-like containers. The idea is that a
function is passed in that is applied to each element in the collection, and a new
collection is created—consisting of the results of applying the function to each
element in turn. This means that a map idiom converts a collection of one type
to a collection of potentially a different type.
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filter()
We have already met an example of the filter idiom, when we discussed how to
replace an anonymous implementation of FilenameFilter with a lambda. The
filter idiom is used for producing a new subset of a collection, based on some
criteria. Note that in functional programming, it is normal to produce a new
collection, rather than modifying an existing one in-place.

reduce()
The reduce idiom has several different guises. It is an aggregation operation,
which can be called fold or accumulate or aggregate as well as reduce. The basic
idea is to take an initial value, and an aggregation (or reduction) function, and
apply the reduction function to each element in turn, building up a final result
for the whole collection by making a series of intermediate results—similar to a
“running total”—as the reduce operation traverses the collection.

Java has full support for these key functional idioms (and several others). The
implementation is explained in some depth in Chapter 8, where we discuss Java’s
data structures and collections, and in particular the stream abstraction, that makes
all of this possible.

Let’s conclude this introduction with some words of caution. It’s worth noting that
Java is best regarded as having support for “slightly functional programming.” It is
not an especially functional language, nor does it try to be. Some particular aspects
of Java that mitigate against any claims to being a functional language include the
following:

• Java has no structural types, which means no “true” function types. Every
lambda is automatically converted to the appropriate nominal type.

• Type erasure causes problems for functional programming—type safety can be
lost for higher-order functions.

• Java is inherently mutable (as we’ll discuss in Chapter 6)—mutability is often
regarded as highly undesirable for functional languages.

Despite this, easy access to the basics of functional programing—and especially idi‐
oms such as map, filter, and reduce—is a huge step forward for the Java community.
These idioms are so useful that a large majority of Java developers will never need or
miss the more advanced capabilities provided by languages with a more thorough‐
bred functional pedigree.

Conclusion
By examining Java’s type system, we have been able to build up a clear picture of the
worldview that the Java platform has about data types. Java’s type system can be
characterized as:
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Nominal
The name of a Java type is of paramount importance. Java does not permit
structural types in the way some other languages do.

Static
All Java variables have types that are known at compile time.

Object/imperative
Java code is object-oriented, and all code must live inside methods, which must
live inside classes. However, Java’s primitive types prevent adoption of the
“everything is an object” worldview.

Slightly functional
Java provides support for some of the more common functional idioms, but
more as a convenience to programmers than anything else.

Modestly type-inferred
Java is optimized for readability (even by novice progammers) and prefers to
be explicit, even at the cost of repetition of information.

Strongly backward compatible
Java is primarily a business-focused language, and backward compatibility and
protection of existing codebases is a very high priority.

Type erased
Java permits parameterized types, but this information is not available at
runtime.

Java’s type system has evolved (albeit slowly and cautiously) over the years—and
with the addition of lambda expressions, is now on a par with the type systems of
other mainstream programming languages. Lambdas, along with default methods,
represent the greatest transformation since the advent of Java 5, and the introduc‐
tion of generics, annotations, and related innovations.

Default methods represent a major shift in Java’s approach to object-oriented pro‐
gramming—perhaps the biggest since the language’s inception. From Java 8 onward,
interfaces can contain implementation code. This fundamentally changes Java’s
nature—previously a single-inherited language, Java is now multiply inherited (but
only for behavior—there is still no multiple inheritance of state).

Despite all of these innovations, Java’s type system is not (and is not intended to be)
equipped with the power of the type systems of languages such as Scala or Haskell.
Instead, Java’s type system is strongly biased in favor of simplicity, readability, and a
simple learning curve for newcomers.

Java has also benefited enormously from the approaches to types developed in other
languages over the last 10 years. Scala’s example of a statically typed language that
nevertheless achieves much of the feel of a dynamically typed language by the use of
type inference has been a good source of ideas for features to add to Java, even
though the languages have quite different design philosophies.
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Despite the long wait for lambda expressions in Java, the argument has been settled,
and Java is a better language for them. Whether the majority of ordinary Java pro‐
grammers require the added power—and attendant complexity—that comes from
an advanced (and much less nominal) type system such as Scala’s, or whether the
“slightly functional programming” of Java 8 (e.g., map, filter, reduce, and their peers)
will suffice for most developers’ needs, remains to be seen in the months and years
ahead. It should be an interesting journey.
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5
Introduction to Object-Oriented

Design in Java

In this chapter, we’ll look at how to work with Java’s objects, covering the key meth‐
ods of Object, aspects of object-oriented design, and implementing exception han‐
dling schemes. Throughout the chapter, we will be introducing some design patterns
—essentially best practices for solving some very common situations that arise in
software design. Towards the end of the chapter, we’ll also consider the design of
safe programs—those that are designed so as not to become inconsistent over time.
We’ll get started by considering the subject of Java’s calling and passing conventions
and the nature of Java values.

Java Values
Java’s values, and their relationship to the type system, are quite straightforward.
Java has two types of values—primitives and object references.

Some books refer to primitives as “value types”—this makes it
confusing to think of object references as a value in Java. For
this reason, we stick to the term primitive when discussing any
of Java’s eight nonreference types.

These two kinds of values are the only things that can be put into variables. In fact,
that’s one way to define a value: “a thing that can be put into a variable or passed to a
method.” For C++ and C programmers, note that object contents cannot be put into
variables—so there is no equivalent of a dereference operator or a struct.

The key difference between primitive values and references is that primitive values
cannot be altered—the value 2 is always the same value. By contrast, the contents of

O
O

 D
esig

n

177



object references can usually be changed—often referred to as mutation of object
contents.

Java tries to simplify a concept that often confused C++ programmers—the differ‐
ence between “contents of an object” and “reference to an object.” Unfortunately, it’s
not possible to completely hide the difference, and so it is necessary for the pro‐
grammer to understand how reference values work in the platform.

Is Java “Pass by Reference”?
Java handles objects “by reference,” but we must not confuse this with the phrase
“pass by reference.” “Pass by reference” is a term used to describe the method-calling
conventions of some programming languages. In a pass-by-reference language, val‐
ues—even primitive values—are not passed directly to methods. Instead, methods
are always passed references to values. Thus, if the method modifies its parameters,
those modifications are visible when the method returns, even for primitive types.

Java does not do this; it is a “pass-by-value” language. However, when a reference
type is involved, the value that is passed is a copy of the reference (as a value). But
this is not the same as pass by reference. If Java were a pass-by-reference language,
when a reference type is passed to a method, it would be passed as a reference to the
reference.

The fact that Java is pass by value can be demonstrated very simply. The following
code shows that even after the call to manipulate(), the value contained in variable
c is unaltered—it is still holding a reference to a Circle object of radius 2. If Java
was a pass-by-reference language, it would instead be holding a reference to a radius
3 Circle:

public void manipulate(Circle circle) {
    circle = new Circle(3);
}

Circle c = new Circle(2);
manipulate(c);
System.out.println("Radius: "+ c.getRadius());

If we’re scrupulously careful about the distinction, and about referring to object ref‐
erences as one of Java’s possible kinds of values, then some otherwise surprising fea‐
tures of Java become obvious. Be careful—some older texts are ambiguous on this
point. We will meet this concept of Java’s values again when we discuss memory and
garbage collection in Chapter 6.

Important Methods of java.lang.Object
As we’ve noted, all classes extend, directly or indirectly, java.lang.Object. This
class defines a number of useful methods that were designed to be overridden by
classes you write. Example 5-1 shows a class that overrides these methods. The
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sections that follow this example document the default implementation of each
method and explain why you might want to override it.

The example uses a lot of the extended features of the type system that we met last
chapter. First, it implements a parameterized, or generic, version of the Comparable
interface. Second, the example uses the @Override annotation to emphasize (and
have the compiler verify) that certain methods override Object.

Example 5-1. A class that overrides important Object methods

// This class represents a circle with immutable position and radius.
public class Circle implements Comparable<Circle> {
    // These fields hold the coordinates of the center and the radius.
    // They are private for data encapsulation and final for immutability
    private final int x, y, r;

    // The basic constructor: initialize the fields to specified values
    public Circle(int x, int y, int r) {
        if (r < 0) throw new IllegalArgumentException("negative radius");
        this.x = x; this.y = y; this.r = r;
    }

    // This is a "copy constructor"--a useful alternative to clone()
    public Circle(Circle original) {
        x = original.x;   // Just copy the fields from the original
        y = original.y;
        r = original.r;
    }

    // Public accessor methods for the private fields.
    // These are part of data encapsulation.
    public int getX() { return x; }
    public int getY() { return y; }
    public int getR() { return r; }

    // Return a string representation
    @Override public String toString() {
        return String.format("center=(%d,%d); radius=%d", x, y, r);
    }

    // Test for equality with another object
    @Override public boolean equals(Object o) {
        // Identical references?
        if (o == this) return true;
        // Correct type and non-null?
        if (!(o instanceof Circle)) return false; 
        Circle that = (Circle) o;                 // Cast to our type
        if (this.x == that.x && this.y == that.y && this.r == that.r)
            return true;                          // If all fields match
        else
            return false;                         // If fields differ
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    }

    // A hash code allows an object to be used in a hash table.
    // Equal objects must have equal hash codes.  Unequal objects are
    // allowed to have equal hash codes as well, but we try to avoid that.
    // We must override this method because we also override equals().
    @Override public int hashCode() {
        int result = 17;          // This hash code algorithm from the book
        result = 37*result + x;   // _Effective Java_, by Joshua Bloch
        result = 37*result + y;
        result = 37*result + r;
        return result;
    }

    // This method is defined by the Comparable interface. Compare
    // this Circle to that Circle.  Return a value < 0 if this < that
    // Return 0 if this == that. Return a value > 0 if this > that.
    // Circles are ordered top to bottom, left to right, and then by radius
    public int compareTo(Circle that) {
        // Smaller circles have bigger y
        long result = (long)that.y - this.y;
        // If same compare l-to-r
        if (result==0) result = (long)this.x - that.x;
        // If same compare radius
        if (result==0) result = (long)this.r - that.r; 

        // We have to use a long value for subtraction because the 
        // differences between a large positive and large negative 
        // value could overflow an int. But we can't return the long, 
        // so return its sign as an int.
        return Long.signum(result);
    }
}

toString()
The purpose of the toString() method is to return a textual representation of an
object. The method is invoked automatically on objects during string concatenation
and by methods such as System.out.println(). Giving objects a textual represen‐
tation can be quite helpful for debugging or logging output, and a well-crafted
toString() method can even help with tasks such as report generation.

The version of toString() inherited from Object returns a string that includes the
name of the class of the object as well as a hexadecimal representation of the hash
Code() value of the object (discussed later in this chapter). This default implementa‐
tion provides basic type and identity information for an object but is not usually
very useful. The toString() method in Example 5-1 instead returns a human-
readable string that includes the value of each of the fields of the Circle class.
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equals()
The == operator tests two references to see if they refer to the same object. If you
want to test whether two distinct objects are equal to one another, you must use the
equals() method instead. Any class can define its own notion of equality by over‐
riding equals(). The Object.equals() method simply uses the == operator: this
default method considers two objects equal only if they are actually the very same
object.

The equals() method in Example 5-1 considers two distinct Circle objects to be
equal if their fields are all equal. Note that it first does a quick identity test with == as
an optimization and then checks the type of the other object with instanceof: a
Circle can be equal only to another Circle, and it is not acceptable for an
equals() method to throw a ClassCastException. Note that the instanceof test
also rules out null arguments: instanceof always evaluates to false if its left-hand
operand is null.

hashCode()
Whenever you override equals(), you must also override hashCode(). This method
returns an integer for use by hash table data structures. It is critical that two objects
have the same hash code if they are equal according to the equals() method. It is
important (for efficient operation of hash tables) but not required that unequal
objects have unequal hash codes, or at least that unequal objects are unlikely to
share a hash code. This second criterion can lead to hashCode() methods that
involve mildly tricky arithmetic or bit manipulation.

The Object.hashCode() method works with the Object.equals() method and
returns a hash code based on object identity rather than object equality. (If you ever
need an identity-based hash code, you can access the functionality of Object.hash
Code() through the static method System.identityHashCode().)

When you override equals(), you must always override hash
Code() to guarantee that equal objects have equal hash codes.
Failing to do this can cause subtle bugs in your programs.

Because the equals() method in Example 5-1 bases object equality on the values of
the three fields, the hashCode() method computes its hash code based on these
three fields as well. It is clear from the code that if two Circle objects have the same
field values, they will have the same hash code.

Note that the hashCode() method in Example 5-1 does not simply add the three
fields and return their sum. Such an implementation would be legal but not efficient
because two circles with the same radius but whose x and y coordinates were
reversed would then have the same hash code. The repeated multiplication and
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addition steps “spread out” the range of hash codes and dramatically reduce the
likelihood that two unequal Circle objects have the same code. Effective Java by
Joshua Bloch (Addison Wesley) includes a helpful recipe for constructing efficient
hashCode() methods like this one.

Comparable::compareTo()
Example 5-1 includes  a compareTo() method. This method is defined by the
java.lang.Comparable interface rather than by Object, but it is such a common
method to implement that we include it in this section. The purpose of Comparable
and its compareTo() method is to allow instances of a class to be compared to each
other in the way that the <, <=, >, and >= operators compare numbers. If a class
implements Comparable, we can say that one instance is less than, greater than, or
equal to another instance. This also means that instances of a Comparable class can
be sorted.

Because compareTo() is not declared by the Object class, it is up to each individual
class to determine whether and how its instances should be ordered and to include a
compareTo() method that implements that ordering. The ordering defined by
Example 5-1 compares Circle objects as if they were words on a page. Circles are
first ordered from top to bottom: circles with larger y coordinates are less than cir‐
cles with smaller y coordinates. If two circles have the same y coordinate, they are
ordered from left to right. A circle with a smaller x coordinate is less than a circle
with a larger x coordinate. Finally, if two circles have the same x and y coordinates,
they are compared by radius. The circle with the smaller radius is smaller. Notice
that under this ordering, two circles are equal only if all three of their fields are
equal. This means that the ordering defined by compareTo() is consistent with the
equality defined by equals(). This is very desirable (but not strictly required).

The compareTo() method returns an int value that requires further explanation.
compareTo() should return a negative number if the this object is less than the
object passed to it. It should return 0 if the two objects are equal. And compareTo()
should return a positive number if this is greater than the method argument.

clone()
Object defines a method named clone() whose purpose is to return an object with
fields set identically to those of the current object. This is an unusual method for
two reasons. First, it works only if the class implements the java.lang.Cloneable
interface. Cloneable does not define any methods (it is a marker interface) so
implementing it is simply a matter of listing it in the implements clause of the class
signature. The other unusual feature of clone() is that it is declared protected.
Therefore, if you want your object to be cloneable by other classes, you must imple‐
ment Cloneable and override the clone() method, making it public.

The Circle class of Example 5-1 does not implement Cloneable; instead it provides
a copy constructor for making copies of Circle objects:
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Circle original = new Circle(1, 2, 3);  // regular constructor
Circle copy = new Circle(original);     // copy constructor

It can be difficult to implement clone() correctly, and it is usually easier and safer
to provide a copy constructor. To make the Circle class cloneable, you would add
Cloneable to the implements clause and add the following method to the class
body:

@Override public Object clone() {
  try { return super.clone(); }
  catch(CloneNotSupportedException e) { throw new AssertionError(e); }
}

Aspects of Object-Oriented Design
In this section, we will consider several techniques relevant to object-oriented
design in Java. This is a very incomplete treatment and merely intended to showcase
some examples—the reader is encouraged to consult additional resources, such as
the aforementioned Effective Java by Joshua Bloch.

We start by considering good practices for defining constants in Java, before moving
on to discuss different approaches to using Java’s object-oriented capabilities for
modeling and domain object design. At the end of the section, we conclude by cov‐
ering the implementation of some common design patterns in Java.

Constants
As noted earlier, constants can appear in an interface definition. Any class that
implements an interface inherits the constants it defines and can use them as if they
were defined directly in the class itself. Importantly, there is no need to prefix the
constants with the name of the interface or provide any kind of implementation of
the constants.

When a set of constants is used by more than one class, it is tempting to define the
constants once in an interface and then have any classes that require the constants
implement the interface. This situation might arise, for example, when client and
server classes implement a network protocol whose details (such as the port number
to connect to and listen on) are captured in a set of symbolic constants. As a con‐
crete example, consider the java.io.ObjectStreamConstants interface, which 
defines constants for the object serialization protocol and is implemented by both
ObjectInputStream and ObjectOutputStream.

The primary benefit of inheriting constant definitions from an interface is that it
saves typing: you don’t need to specify the type that defines the constants. Despite
its use with ObjectStreamConstants, this is not a recommended technique. The use
of constants is an implementation detail that is not appropriate to declare in the
implements clause of a class signature.

A better approach is to define constants in a class and use the constants by typing
the full class name and the constant name. You can save typing by importing the
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constants from their defining class with the import static declaration. See “Pack‐
ages and the Java Namespace” on page 88 for details.

Interfaces Versus Abstract Classes
The advent of Java 8 has fundamentally changed Java’s object-oriented program‐
ming model. Before Java 8, interfaces were pure API specification and contained no
implementation. This could often lead to duplication of code if the interface had
many implementations.

In response, a coding pattern developed. This pattern takes advantage of the fact
that an abstract class does not need to be entirely abstract; it can contain a partial
implementation that subclasses can take advantage of. In some cases, numerous
subclasses can rely on method implementations provided by an abstract superclass.

The pattern consists of an interface that contains the API spec for the basic meth‐
ods, paired with a primary implementation as an abstract class. A good example
would be java.util.List, which is paired with java.util.AbstractList. Two of
the main implementations of List that ship with the JDK (ArrayList and Linked
List) are subclasses of AbstractList. As another example:

// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {
    void setSize(double width, double height);
    void setPosition(double x, double y);
    void translate(double dx, double dy);
    double area();
    boolean isInside();
}

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape
                        implements RectangularShape {
    // The position and size of the shape
    protected double x, y, w, h;

    // Default implementations of some of the interface methods
    public void setSize(double width, double height) {
     w = width; h = height;
    }
    public void setPosition(double x, double y) {
     this.x = x; this.y = y;
    }
    public void translate (double dx, double dy) { x += dx; y += dy; }
}

The arrival of default methods in Java 8 changes this picture considerably. Interfaces
can now contain implementation code, as we saw in “Default Methods” on page 140.
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This means that when defining an abstract type (e.g., Shape) that you expect to have
many subtypes (e.g., Circle, Rectangle, Square), you are faced with a choice
between interfaces and abstract classes. Because they now have very similar features,
it is not always clear which to use.

Remember that a class that extends an abstract class cannot extend any other class,
and that interfaces still cannot contain any nonconstant fields. This means that
there are still some restrictions on how we can use object orientation in our Java
programs.

Another important difference between interfaces and abstract classes has to do with
compatibility. If you define an interface as part of a public API and then later add a
new mandatory method to the interface, you break any classes that implemented the
previous version of the interface—in other words, any new interface methods must
be declared as default and an implementation provided. If you use an abstract class,
however, you can safely add nonabstract methods to that class without requiring
modifications to existing classes that extend the abstract class.

In both cases, adding new methods can cause a clash with
subclass methods of the same name and signature—with the
subclass methods always winning. For this reason, think care‐
fully when adding new methods—especially when the method
names are “obvious” for this type, or where the method could
have several possible meanings.

In general, the suggested approach is to prefer interfaces when an API specification
is needed. The mandatory methods of the interface are nondefault, as they represent
the part of the API that must be present for an implementation to be considered
valid. Default methods should be used only if a method is truly optional, or if they
are really only intended to have a single possible implementation. This latter exam‐
ple is the case for the functional composition present in java.util.function.Func
tion—functions will only ever be composed in the standard way, and it is highly
implausible that any sane override of the default compose() method could exist.

Finally, the older technique of merely documenting which methods of an interface
are considered “optional” and just throwing a java.lang.UnsupportedOperationEx
ception if the programmer does not want to implement them is fraught with prob‐
lems, and should not be used in new code.

Instance Methods or Class Methods?
Instance methods are one of the key features of object-oriented programming. That
doesn’t mean, however, that you should shun class methods. In many cases, it is per‐
fectly reasonable to define class methods.
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Remember that in Java, class methods are declared with the
static keyword, and the terms static method and class
method are used interchangeably.

For example, when working with the Circle class you might find that you often
want to compute the area of a circle with a given radius but don’t want to bother
creating a Circle object to represent that circle. In this case, a class method is more
convenient:

public static double area(double r) { return PI * r * r; }

It is perfectly legal for a class to define more than one method with the same name,
as long as the methods have different parameters. This version of the area()
method is a class method, so it does not have an implicit this parameter and must
have a parameter that specifies the radius of the circle. This parameter keeps it dis‐
tinct from the instance method of the same name.

As another example of the choice between instance methods and class methods,
consider defining a method named bigger() that examines two Circle objects and
returns whichever has the larger radius. We can write bigger() as an instance
method as follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) {
  if (this.r > that.r) return this;
  else return that;
}

We can also implement bigger() as a class method as follows:

// Compare circles a and b and return the one with the larger radius
public static Circle bigger(Circle a, Circle b) {
  if (a.r > b.r) return a;
  else return b;
}

Given two Circle objects, x and y, we can use either the instance method or the
class method to determine which is bigger. The invocation syntax differs signifi‐
cantly for the two methods, however:

// Instance method: also y.bigger(x)
Circle biggest = x.bigger(y);          
Circle biggest = Circle.bigger(x, y);  // Static method

Both methods work well, and, from an object-oriented design standpoint, neither of
these methods is “more correct” than the other. The instance method is more for‐
mally object oriented, but its invocation syntax suffers from a kind of asymmetry. In
a case like this, the choice between an instance method and a class method is simply
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a design decision. Depending on the circumstances, one or the other will likely be
the more natural choice.

A word about System.out.println()
We’ve frequently encountered the method System.out.println()—it’s used to dis‐
play output to the terminal window or console. We’ve never explained why this
method has such a long, awkward name or what those two periods are doing in it.
Now that you understand class and instance fields and class and instance methods,
it is easier to understand what is going on: System is a class. It has a public class field
named out. This field is an object of type java.io.PrintStream, and it has an
instance method named println().

We can use static imports to make this a bit shorter with import static

java.lang.System.out;—this will enable us to refer to the printing method as
out.println() but as this is an instance method, we cannot shorten it any further.

Composition Versus Inheritance
Inheritance is not the only technique at our disposal in object-oriented design.
Objects can contain references to other objects, so a larger conceptual unit can be
aggregated out of smaller component parts—this is known as composition. One
important related technique is delegation, where an object of a particular type holds
a reference to a secondary object of a compatible type, and forwards all operations
to the secondary object. This is frequently done using interface types, as shown in
this example where we model the employment structure of software companies:

public interface Employee {
  void work();
}

public class Programmer implements Employee {
  public void work() { /* program computer */ }
}

public class Manager implements Employee {
  private Employee report;

  public Manager(Employee staff) {
    report = staff;
  }

  public Employee setReport(Employee staff) {
    report = staff;
  }

  public void work() {
    report.work();
  }
}
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The Manager class is said to delegate the work() operation to their direct report, and
no actual work is performed by the Manager object. Variations of this pattern
involve some work being done in the delegating class, with only some calls being
forwarded to the delegate object.

Another useful, related technique is called the decorator pattern—this provides the
capability to extend objects with new functionality, including at runtime. The slight
overhead is some extra work needed at design time. Let’s look at an example of the
decorator pattern as applied to modeling burritos for sale at a taqueria. To keep
things simple, we’ve only modeled a single aspect to be decorated—the price of the
burrito:

// The basic interface for our burritos
interface Burrito {
  double getPrice();
}

// Concrete implementation—standard size burrito
public class StandardBurrito implements Burrito {
  private static final double BASE_PRICE = 5.99;

  public double getPrice() {
    return BASE_PRICE;
  }
}

// Larger, super-size burrito
public class SuperBurrito implements Burrito {
  private static final double BASE_PRICE = 6.99;

  public double getPrice() {
    return BASE_PRICE;
  }
}

These cover the basic burritos that can be offered—two different sizes, at different
prices. Let’s enhance this by adding some optional extras—jalapeño chilies and gua‐
camole. The key design point here is to use an abstract base class that all of the
optional decorating components will subclass:

/*
 * This class is the Decorator for Burrito—it represents optional
 * extras that the burrito may or may not have.
 */
public abstract class BurritoOptionalExtra implements Burrito {
    private final Burrito burrito;
    private final double price;

    // This constructor is protected to protect against the default
    // constructor and to prevent rogue client code from directly
    // instantiating the base class.
    protected BurritoOptionalExtra(Burrito toDecorate, 
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          double myPrice) {
        burrito = toDecorate;
        price = myPrice;
    }

    public final double getPrice() {
        return (burrito.getPrice() + price);
    }
}

The combination of an abstract base, BurritoOptional
Extra, and a protected constructor means that the only valid
way to get a BurritoOptionalExtra is to construct an
instance of one of the subclasses, as they have public construc‐
tors (which also hide the setup of the price of the component
from client code).

Let’s test the implementation out:

Burrito lunch = new Jalapeno(new Guacamole(new SuperBurrito()));
// The overall cost of the burrito is the expected $8.09.
System.out.println("Lunch cost: "+ lunch.getPrice());

The decorator pattern is very widely used—not least in the JDK utility classes.
When we discuss Java I/O in Chapter 10, we will see more examples of decorators in
the wild.

Field Inheritance and Accessors
Java offers multiple potential approaches to the design issue of the inheritance of
state. The programmer can choose to mark fields as protected and allow them to
be accessed directly by subclasses (including writing to them). Alternatively, we can
provide accessor methods to read (and write, if desired) the actual object fields, while
retaining encapsulation, and leaving the fields as private.

Let’s revisit our earlier PlaneCircle example from the end of Chapter 9 and explic‐
itly show the field inheritance:

public class Circle {
  // This is a generally useful constant, so we keep it public
  public static final double PI = 3.14159;

  protected double r;     // State inheritance via a protected field

  // A method to enforce the restriction on the radius
  protected void checkRadius(double radius) {
    if (radius < 0.0)
      throw new IllegalArgumentException("radius may not < 0");
  }

  // The non-default constructor
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  public Circle(double r) {
    checkRadius(r);
    this.r = r;
  }

  // Public data accessor methods
  public double getRadius() { return r; }
  public void setRadius(double r) {
    checkRadius(r);
    this.r = r;
  }

  // Methods to operate on the instance field
  public double area() { return PI * r * r; }
  public double circumference() { return 2 * PI * r; }
}

public class PlaneCircle extends Circle {
  // We automatically inherit the fields and methods of Circle,
  // so we only have to put the new stuff here.
  // New instance fields that store the center point of the circle
  private final double cx, cy;

  // A new constructor to initialize the new fields
  // It uses a special syntax to invoke the Circle() constructor
  public PlaneCircle(double r, double x, double y) {
    super(r);       // Invoke the constructor of the superclass
    this.cx = x;    // Initialize the instance field cx
    this.cy = y;    // Initialize the instance field cy
  }

  public double getCentreX() {
    return cx;
  }

  public double getCentreY() {
    return cy;
  }

  // The area() and circumference() methods are inherited from Circle
  // A new instance method that checks whether a point is inside the 
  // circle Note that it uses the inherited instance field r
  public boolean isInside(double x, double y) {
    double dx = x - cx, dy = y - cy;
    // Pythagorean theorem
    double distance = Math.sqrt(dx*dx + dy*dy);  
    return (distance < r);                   // Returns true or false
  }
}

Instead of the preceding code, we can rewrite PlaneCircle using accessor methods,
like this:
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public class PlaneCircle extends Circle {
  // Rest of class is the same as above The field r in 
  // the superclass Circle can be made private because 
  // we no longer access it directly here

  // Note that we now use the accessor method getRadius()
  public boolean isInside(double x, double y) {
    double dx = x - cx, dy = y - cy;            // Distance from center
    double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
    return (distance < getRadius());        
  }
}

Both approaches are legal Java, but they have some differences. As we discussed in
“Data Hiding and Encapsulation” on page 121, fields that are writable outside of the
class are usually not a correct way to model object state. In fact, as we will see in
“Safe Java Programming” on page 195 and again in “Java’s Support for Concur‐
rency” on page 208, they can damage the running state of a program irreparably.

It is therefore unfortunate that the protected keyword in Java allows access to fields
(and methods) from both subclasses and classes in the same packages as the declar‐
ing class. This, combined with the ability for anyone to write a class that belongs to
any given package (except system packages), means that protected inheritance of
state is potentially flawed in Java.

Java does not provide a mechanism for a member to be visible
only in the declaring class and its subclasses.

For all of these reasons, it is usually better to use accessor methods (either public or
protected) to provide access to state for subclasses—unless the inherited state is
declared final, in which case protected inheritance of state is perfectly permissible.

Singleton
The singleton pattern is another well-known  design pattern. It is intended to solve
the design issue where only a single instance of a class is required or desired. Java
provides a number of different possible ways to implement the singleton pattern. In
our discussion, we will use a slightly more verbose form, that has the benefit of
being very explicit in what needs to happen for a safe singleton:

public class Singleton {
  private final static Singleton instance = new Singleton();
  private static boolean initialized = false;

  // Constructor
  private Singleton() {
    super();
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  }

  private void init() {
    /* Do initialization */
  }

  // This method should be the only way to get a reference 
  // to the instance
  public static synchronized Singleton getInstance() {
    if (initialized) return instance;
    instance.init();
    initialized = true;
    return instance;
  }
}

The crucial point is that for the singleton pattern to be effective, it must be impossi‐
ble to create more than one of them, and it must be impossible to get a reference to
the object in an uninitialized state (see later in this chapter for more on this impor‐
tant point). To achieve this, we require a private constructor, which is only called
once. In our version of Singleton, we only call the constructor when we initialize
the private static variable instance. We also separate out the creation of the only
Singleton object from its initialization—which occurs in the private method
init().

With this mechanism in place, the only way to get a reference to the lone instance of
Singleton is via the static helper method, getInstance(). This method checks the
flag initialized to see if the object is already in an active state. If it is, then a refer‐
ence to the singleton object is returned. If not, then getInstance() calls init() to
activate the object, and flicks the flag to true, so that next time a reference to the
Singleton is requested, further initialization will not occur.

Finally, we also note that getInstance() is a synchronized method. See Chapter 6
for full details of what this means, and why it is necessary, but for now, know that it
is present to guard against unintended consequences if Singleton is used in a
multithreaded program.

Singleton, being one of the simplest patterns, is often over‐
used. When used correctly, it can be a useful technique, but
too many singleton classes in a program is a classic sign of
badly engineered code.

The singleton pattern has some drawbacks—in particular, it can be hard to test and
to separate out from other classes. It also requires care when used in mulithreaded
code. Nevertheless, it is important that developers are familiar with, and do not
accidentally reinvent it. The singleton pattern is often used in configuration man‐
agement, but modern code will typically use a framework (often a dependency
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injection) to provide the programmer with singletons automatically, rather than via
an explicit Singleton (or equivalent) class.

Exceptions and Exception Handling
We met checked and unchecked exceptions in “Checked and Unchecked Excep‐
tions” on page 70. In this section, we discuss some additional aspects of the design
of exceptions, and how to use them in your own code.

Recall that an exception in Java is an object. The type of this object is
java.lang.Throwable, or more commonly, some subclass of Throwable that more
specifically describes the type of exception that occurred. Throwable has two stan‐
dard subclasses: java.lang.Error and java.lang.Exception. Exceptions that are 
subclasses of Error generally indicate unrecoverable problems: the virtual machine
has run out of memory, or a class file is corrupted and cannot be read, for example.
Exceptions of this sort can be caught and handled, but it is rare to do so—these are
the unchecked exceptions previously mentioned.

Exceptions that are subclasses of Exception, on the other hand, indicate less severe
conditions. These exceptions can be reasonably caught and handled. They include
such exceptions as java.io.EOFException, which signals the end of a file, and
java.lang.ArrayIndexOutOfBoundsException, which indicates that a program has
tried to read past the end of an array. These are the checked exceptions from Chap‐
ter 2 (except for subclasses of RuntimeException, which are also a form of
unchecked exception). In this book, we use the term “exception” to refer to any
exception object, regardless of whether the type of that exception is Exception or
Error.

Because an exception is an object, it can contain data, and its class can define meth‐
ods that operate on that data. The Throwable class and all its subclasses include a
String field that stores a human-readable error message that describes the excep‐
tional condition. It’s set when the exception object is created and can be read from
the exception with the getMessage() method. Most exceptions contain only this
single message, but a few add other data. The java.io.InterruptedIOException,
for example, adds a field named bytesTransferred that specifies how much input
or output was completed before the exceptional condition interrupted it.

When designing your own exceptions, you should consider what other additional
modeling information is relevant to the exception object. This is usually situation-
specific information about the aborted operation, and the exceptional circumstance
that was encountered (as we saw with java.io.InterruptedIOException).

There are some trade-offs in the use of exceptions in application design. Using
checked exceptions means that the compiler can enforce the handling (or propaga‐
tion up the call stack) of known conditions that have the potential of recovery or
retry. It also means that it’s more difficult to forget to actually handle errors—thus
reducing the risk that a forgotten error condition causes a system to fail in
production.
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On the other hand, some applications will not be able to recover from certain con‐
ditions—even conditions that are theoretically modelled by checked exceptions. For
example, if an application requires a config file to be placed at a specific place in the
filesystem and is unable to locate it at startup, there may be very little it can do
except print an error message and exit—despite the fact that java.io.FileNotFoun
dException is a checked exception. Forcing exceptions that cannot be recovered
from to be either handled or propagated is, in these circumstances, bordering on
perverse.

When designing exception schemes, there are some good practices that you should
follow:

• Consider what additional state needs to be placed on the exception—remember
that it’s also an object like any other.

• Exception has four public constructors—under normal circumstances, custom
exception classes should implement all of them—to initialize the additional
state, or to customize messages.

• Don’t create many fine-grained custom exception classes in your APIs—the
Java I/O and reflection APIs both suffer from this and it needlessly complicates
working with those packages.

• Don’t overburden a single exception type with describing too many conditions
—for example, the Nashorn JavaScript implementation (new with Java 8) origi‐
nally had overly coarse-grained exceptions, although this was fixed before
release.

Finally, two exception handling antipatterns that you should avoid:

// Never just swallow an exception
try {
  someMethodThatMightThrow();
} catch(Exception e){
}

// Never catch, log and rethrow an exception
try {
  someMethodThatMightThrow();
} catch(SpecificException e){
  log(e);
  throw e;
}

The former of these two just ignores a condition that almost certainly required
some action (even if just a notification in a log). This increases the likelihood of fail‐
ure elsewhere in the system—potentially far from the original, real source.

The second one just creates noise—we’re logging a message but not actually doing
anything about the issue—we still require some other code higher up in the system
to actually deal with the problem.
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Safe Java Programming
Programming languages are sometimes described as being type safe—however, this
term is used rather loosely by working programmers. There are a number of differ‐
ent viewpoints and definitions when discussing type safety, not all of which are
mutually compatible. The most useful view for our purposes is that type safety is the
property of a programming language that prevents the type of data being incorrectly
identified at runtime. This should be thought of as a sliding scale—it is more helpful
to think of languages as being more (or less) type safe than each other, rather than a
simple binary property of safe / unsafe.

In Java, the static nature of the type system helps prevent a large class of possible
errors, by producing compilation errors if, for example, the programmer attempts
to assign an incompatible value to a variable. However, Java is not perfectly type
safe, as we can perform a cast between any two reference types—this will fail at run‐
time with a ClassCastException if the value is not compatible.

In this book, we prefer to think of safety as inseparable from the broader topic of
correctness. This means that we should think in terms of programs, rather than lan‐
guages. This emphasizes the point that safe code is not guaranteed by any widely
used language, and instead considerable programmer effort (and adherence to rig‐
orous coding discipline) must be employed if the end result is to be truly safe and
correct.

We approach our view of safe programs by working with the state model abstraction
as shown in Figure 5-1. A safe program is one in which:

• All objects start off in a legal state after creation
• Externally accessible methods transition objects between legal states
• Externally accessible methods must not return with object in an inconsistent

state
• Externally accessible methods must reset object to a legal state before throwing

In this context, “externally accessible” means public, package-private, or pro
tected. This defines a reasonable model for safety of programs, and as it is bound
up with defining our abstract types in such a way that their methods ensure consis‐
tency of state, it’s reasonable to refer to a program satisfying these requirements as a
“safe program,” regardless of the language in which such a program is implemented.

Private methods do not have to start or end with object in a
legal state, as they cannot be called by an external piece of
code.
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As you might imagine, actually engineering a substantial piece of code so that we
can be sure that the state model and methods respect these properties, can be quite
an undertaking. In languages such as Java, in which programmers have direct con‐
trol over the creation of preemptively multitasked execution threads, this problem is
a great deal worse.

Figure 5-1. Program state transitions

Moving on from our introduction of object-oriented design, there is one final aspect
of the Java language and platform that needs to be understood for a sound ground‐
ing. That is the nature of memory and concurrency—one of the most complex of
the platform, but also one that rewards careful study with large dividends. It is the
subject of our next chapter and concludes the first part of this book.
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6
Java’s Approach to

Memory and Concurrency

This chapter is an introduction to the handling of concurrency (multithreading)
and memory in the Java platform. These topics are inherently intertwined, so it
makes sense to treat them together. We will cover:

• Introduction to Java’s memory management
• The basic mark and sweep Garbage Collection (GC) algorithm
• How the HotSpot JVM optimizes GC according to the lifetime of the object
• Java’s concurrency primitives
• Data visibility and mutability

Basic Concepts of Java Memory Management
In Java, the memory occupied by an object is automatically reclaimed when the
object is no longer needed. This is done through a process known as garbage collec‐
tion (or automatic memory management). Garbage collection is a technique that
has been around for years in languages such as Lisp. It takes some getting used to
for programmers accustomed to languages such as C and C++, in which you must
call the free() function or the delete operator to reclaim memory.
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The fact that you don’t need to remember to destroy every
object you create is one of the features that makes Java a pleas‐
ant language to work with. It is also one of the features that
makes programs written in Java less prone to bugs than those
written in languages that don’t support automatic garbage
collection.

Different VM implementations handle garbage collection in different ways, and the
specifications do not impose very stringent restrictions on how GC must be imple‐
mented. Later in this chapter, we will discuss the HotSpot JVM (which is the basis of
both the Oracle and OpenJDK implementations of Java). Although this is not the
only JVM that you may encounter, it is the most common among server-side
deployments, and provides a good example of a modern production JVM.

Memory Leaks in Java
The fact that Java supports garbage collection dramatically reduces the incidence of
memory leaks. A memory leak occurs when memory is allocated and never
reclaimed. At first glance, it might seem that garbage collection prevents all memory
leaks because it reclaims all unused objects.

A memory leak can still occur in Java, however, if a valid (but unused) reference to
an unused object is left hanging around. For example, when a method runs for a
long time (or forever), the local variables in that method can retain object references
much longer than they are actually required. The following code illustrates:

public static void main(String args[]) {
  int bigArray[] = new int[100000];

  // Do some computations with bigArray and get a result.
  int result = compute(bigArray);

  // We no longer need bigArray. It will get garbage collected when 
  // there are no more references to it. Because bigArray is a local 
  // variable, it refers to the array until this method returns. But 
  // this method doesn't return. So we've got to explicitly get rid 
  // of the referenceourselves, so the garbage collector knows it can 
  // reclaim the array.
  bigArray = null;

  // Loop forever, handling the user's input
  for(;;) handle_input(result);
}

Memory leaks can also occur when you use a HashMap or similar data structure to
associate one object with another. Even when neither object is required anymore,
the association remains in the hash table, preventing the objects from being
reclaimed until the hash table itself is reclaimed. If the hash table has a substantially
longer lifetime than the objects it holds, this can cause memory leaks.

198 | Chapter 6: Java’s Approach to Memory and Concurrency



1 The process whereby we exhaustively explore from the GC roots produces what is known as the
transitive closure of live objects—a term that is borrowed from the abstract mathematics of graph
theory.

Introducing Mark and Sweep
The JVM knows exactly what objects and arrays it has allocated. They’ll be stored in
some sort of internal data structure, which we will refer to as the allocation table.
The JVM can also figure out which local variables in each stack frame refer to which
objects and arrays in the heap. Finally, by following references held by objects and
arrays in the heap, the JVM can trace through and find all objects and arrays are still
referred to, no matter how indirectly.

Thus, the runtime is able to determine when an allocated object is no longer
referred to by any other active object or variable. When the interpreter finds such an
object, it knows it can safely reclaim the object’s memory and does so. Note that the
garbage collector can also detect and reclaim cycles of objects that refer to each
other, but are not referenced by any other active objects.

We define a reachable object to be an object that can be reached by starting from
some local variable in one of the methods in the stack trace of some application
thread, and following references until we reach the object. Objects of this type are
also said to be live.1

There are a couple of other possibilities of where the chain of
references can start apart from local variables. The general
name for the root of a reference chain leading to a reachable
object is a GC root.

With these simple definitions, let’s look at a simple method for performing garbage
collection based on these principles.

The Basic Mark and Sweep Algorithm
The usual (and simplest) algorithm for the collection process is called mark and
sweep. This occurs in three phases:

1. Iterate through the allocation table, marking each object as dead.
2. Starting from the local variables that point into the heap, follow all references

from all objects we reach. Every time we reach an object or array we haven’t
seen yet, mark it as live. Keep going until we’ve fully explored all references we
can reach from the local variables.

3. Sweep across the allocation table again. For each object not marked as live,
reclaim the memory in heap and place it back on the free memory list. Remove
the object from the allocation table.
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The form of mark and sweep just outlined is the usual sim‐
plest theoretical form of the algorithm. As we will see in the
following sections, real garbage collectors do more work than
this. Instead, this description is grounded in basic theory and
is designed for easy understanding.

As all objects are allocated from the allocation table, GC will trigger before the heap
gets full. In this description of mark and sweep, GC requires exclusive access to the
entire heap. This is because application code is constantly running, creating, and
changing objects, which could corrupt the results.

In Figure 6-1, we show the effects of trying to garbage collect objects while applica‐
tion threads are running.

Figure 6-1. Heap mutation
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To avoid this, a simple GC like the one just shown will cause a stop-the-world
(STW) pause when it runs—because all application threads are stopped, then GC
occurs, and finally application threads are started up again. The runtime takes care
of this by halting application threads as they reach a safepoint—for example the start
of a loop or when about to call a method. At these execution points, the runtime
knows that it can stop an application thread without a problem.

These pauses sometimes worry developers, but for most mainstream usages, Java is
running on top of an operating system that is constantly swapping processes on and
off processor cores, so this slight additional stoppage is usually not a concern. In the
HotSpot case, a large amount of work has been done to optimize GC and to reduce
STW times, for those cases where it is important to an application’s workload. We
will discuss some of those optimizations in the next section.

How the JVM Optimizes Garbage Collection
The weak generational hypothesis (WGH) is a great example of one of the runtime 
facts about software that we introduced in Chapter 1. Simply put, it is that objects
tend to have one of a small number of possible life expectancies (referred to as
generations).

Usually objects are alive for a very short amount of time (sometimes called transient
objects), and then become eligible for garbage collection. However, some small frac‐
tion of objects live for longer, and are destined to become part of the longer-term
state of the program (sometimes referred to as the working set of the program). This
can be seen in Figure 6-2 where we see Volume of memory plotted against expected
lifetime.

Figure 6-2. Weak generational hypothesis

M
em

o
ry and

C
o

ncurrency

How the JVM Optimizes Garbage Collection | 201



This fact is not deducible from static analysis, and yet when we measure the runtime
behavior of software, we see that it is broadly true across a wide range of workloads.

The HotSpot JVM has a garbage collection subsystem that is designed specifically to
take advantage of the weak generational hypothesis, and in this section, we will dis‐
cuss how these techniques apply to short-lived objects (which is the majority case).
This discussion is directly applicable to HotSpot, but other server-class JVMs often
employ similar or related techniques.

In its simplest form, a generational garbage collector is simply one that takes notice
of the WGH. They take the position that some extra bookkeeping to monitor mem‐
ory will be more than paid for by gains obtained by being friendly to the WGH. In
the simplest forms of generational collector, there are usually just two generations—
usually referred to as young and old generation.

Evacuation
In our original formulation of mark and sweep, during the cleanup phase, we
reclaimed individual objects, and returned their space to the free list. However, if
the WGH is true, and on any given GC cycle most objects are dead, then it may
make sense to use an alternative approach to reclaiming space.

This works by dividing the heap up into separate memory spaces. Then, on each GC
run, we locate only the live objects and move them to a different space, in a process
called evacuation. Collectors that do this are referred to as evacuating collectors—
and they have property that the entire memory space can be wiped at the end of the
collection, to be reused again and again. Figure 6-3 shows an evacuating collector in
action.

Figure 6-3. Evacuating collectors
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This is potentially much more efficient than the naive collection approach, because
the dead objects are never touched. GC cycle length is proportional to the number
of live objects, rather than the number of allocated objects. The only downside is
slightly more bookkeeping—we have to pay the cost of copying the live objects, but
this is almost always a very small price compared to the huge gains realized by evac‐
uation strategies.

HotSpot manages the JVM heap itself, completely in user
space, and does not need to perform system calls to allocate or
free memory. The area where objects are initially created is
usually called Eden or the Nursery, and most production
JVMs (at least in the SE/EE space) will use an evacuating strat‐
egy when collecting Eden.

The use of an evacuating collector also allows the use of per-thread allocation. This
means that each application thread can be given a contiguous chunk of memory
(called a thread-local allocation buffer) for its exclusive use when allocating new
objects. When new objects are allocated, this only involves bumping a pointer in the
allocation buffer, an extremely cheap operation.

If an object is created just before a collection starts, then it will not have time to ful‐
fill its purpose and die before the GC cycle starts. In a collector with only two gener‐
ations, this short-lived object will be moved into the long-lived region, almost
immediately die, and then stay there until the next full collection. As these are a lot
less frequent (and typically a lot more expensive), this seems rather wasteful.

To mitigate this, HotSpot has a concept of a survivor space—this is an area that is
used to house objects that have survived from previous collections of young objects.
A surviving object is copied by the evacuating collector between survivor spaces
until a tenuring threshold is reached, when the object will be promoted to the old
generation.

A full discussion of survivor spaces and how to tune GC is outside the scope of this
book—for production applications, specialist material should be consulted.

The HotSpot Heap
The HotSpot JVM is a relatively complex piece of code, made up of an interpreter
and a just-in-time compiler, as well as a user-space memory management subsys‐
tem. It is comprised of a mixture of C, C++, and a fairly large amount of platform-
specific assembly code.

At this point, let’s summarize our description of the HotSpot heap, and recap its
basic features. The Java heap is a contiguous block of memory, which is reserved at
JVM startup, but only some of the heap is initially allocated to the various memory
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pools. As the application runs, memory pools are resized as needed. These resizes
are performed by the GC subsystem.

Objects in the Heap
Objects are created in Eden by application threads, and are removed by a nondeter‐
ministic garbage collection cycle. The GC cycle runs when necessary (i.e., when
memory is getting low). The heap is divided into two generations, young and old.
The young generation comprises three spaces, Eden and two survivor spaces,
whereas the old generation has just one memory space

After surviving several GC cycles, objects get promoted to the old generation. Col‐
lections that only collect the young generation are usually very cheap (in terms of
computation required). HotSpot uses a more advanced form of mark and sweep
than we have seen so far, and is prepared to do extra bookkeeping to improve GC
performance. In the next section, let’s move on to discuss the old generation and
how HotSpot handles longer-lived objects.

Collecting the Old Generation
When discussing garbage collectors, there is one other important piece of terminol‐
ogy that developers should know:

Parallel collector
A garbage collector that uses multiple threads to perform collection

Concurrent collector
A garbage collector that can run at the same time as application threads are still
running

All the collectors we have met up until now are parallel, but not concurrent, collec‐
tors. By default, the collector for the old generation is also a parallel (but not con‐
current) mark and sweep collector, but HotSpot allows different collectors to be
plugged in. For example, later on in this section we’ll meet CMS, which is a parallel
and mostly concurrent collector that ships with HotSpot.

Returning to the default collector, it seems at first glance to be similar to the collec‐
tor used for the young generation. However, it differs in one very important respect
—it is not an evacuating collector. Instead, the old generation is compacted when
collection occurs. This is important so that the memory space does not become
fragmented over the course of time.

Other Collectors
This section is completely HotSpot-specific, and a detailed treatment is outside the
scope of the book, but it is worth knowing about the existence of alternate collec‐
tors. For non-HotSpot users, you should consult your JVM’s documentation to see
what options may be available for you.
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Concurrent Mark and Sweep
The most widely used alternate collector in HotSpot is Concurrent Mark and Sweep
(CMS). This collector is only used to collect the old generation—it is used in con‐
junction with a parallel collector that has responsibility for cleaning up the young
generation.

CMS is designed for use only in low-pause applications, those
that cannot deal with a stop-the-world pause of more than a
few milliseconds. This is a surprisingly small class—very few
applications outside of financial trading have a genuine need
for this requirement.

CMS is a complex collector, and often difficult to tune effectively. It can be a very
useful tool in the developer’s armory, but should not be deployed lightly or blindly.
It has these basic properties that you should be aware of, but a full discussion of
CMS is beyond the scope of this book. Interested readers should consult specialist
blogs and mailing lists (e.g., the “Friends of jClarity” mailing list quite often deals
with performance-related questions related to GC):

• CMS only collects the old generation.
• CMS runs alongside application threads for most of the GC cycle, reducing

pauses.
• Application threads don’t have to stop for as long.
• Has six phases, all designed to minimize STW pause times.
• Replaces main STW pause with two (usually very short) STW pauses.
• Uses considerably more bookkeeping and lots more CPU time.
• GC cycles overall take much longer.
• By default, half of CPUs are used for GC when running concurrently.
• Should not be used except for low-pause applications.
• Definitely should not be used for applications with high-throughput

requirements.
• Does not compact, and in cases of high fragmentation will fall back to the

default (parallel) collector.

G1
The Garbage First collector (known as G1) is a new garbage collector that was
developed during the life of Java 7 (with some preliminary work done in Java 6). It
is designed to take over from CMS as the low-pause collector, and allows the user to 
specify pause goals in terms of how long and how often to pause for when doing
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GC. Unlike CMS, it is intended to be usable in workloads that have higher through‐
put requirements.

G1 uses a coarse-grained approach to memory, called regions, and focuses its atten‐
tion on regions that are mostly garbage, as they have the best free memory recovery.
It is an evacuating collector, and does incremental compaction when evacuating
individual regions.

The development of a new production-grade collector that is suitable for general-
purpose use is not a quick process. Accordingly, although G1 has been in develop‐
ment for some years, as of early 2014, G1 is still less efficient than CMS on most
benchmarks. Having said that, the gap has been steadily closing and G1 is now
ahead on some workloads. It is entirely plausible that G1 will become the most com‐
mon low-pause collector in the coming months and years.

Finally, HotSpot also has a Serial (and SerialOld collector) and a collector known as
“Incremental CMS." These collectors are all considered deprecated and should not
be used.

Finalization
There is one old technique for resource management known as finalization that the
developer should be aware of. However, this technique is extremely heavily depre‐
cated and the vast majority of Java developers should not directly use it under any
circumstances.

Finalization has only a very small number of legitimate use
cases, and only a minority of Java developers will encounter
them. If in any doubt, do not use finalization—try-with-
resources is usually the correct alternative.

The finalization mechanism was intended to automatically release resources once
they are no longer needed. Garbage collection automatically frees up the memory
resources used by objects, but objects can hold other kinds of resources, such as
open files and network connections. The garbage collector cannot free these addi‐
tional resources for you, so the finalization mechanism was intended to allow the
developer to perform cleanup tasks as closing files, terminating network connec‐
tions, deleting temporary files, and so on.

The finalization mechanism works as follows: if an object has a finalize() method
(usually called a finalizer), this is invoked sometime after the object becomes unused
(or unreachable) but before the garbage collector reclaims the space allocated to the
object. The finalizer is used to perform resource cleanup for an object.

In Oracle/OpenJDK the technique used is as follows:
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1. When a finalizable object is no longer reachable, a reference to it is placed on
an internal finalization queue and the object is marked, and considered live for
the purposes of the GC run.

2. One by one, objects on the finalization queue are removed and their final
ize() methods are invoked.

3. After a finalizer is invoked, the object is not freed right away. This is because a
finalizer method could resurrect the object by storing the this reference some‐
where (for example, in a public static field on some class) so that the object
once again has references.

4. Therefore, after finalize() has been called, the garbage collection subsytem
must redetermine that the object is unreachable before it can be garbage
collected.

5. However, even if an object is resurrected, the finalizer method is never invoked
more than once.

6. All of this means that objects with a finalize() will usually survive for (at
least) one extra GC cycle (and if they’re long-lived, that means one extra
full GC).

The central problem with finalization is that Java makes no guarantees about when
garbage collection will occur or in what order objects will be collected. Therefore,
the platform can make no guarantees about when (or even whether) a finalizer will
be invoked or in what order finalizers will be invoked.

This means that as an automatic cleanup mechanism for protecting scarce resources
(such as filehandles), this mechanism is broken by design. We cannot guarantee that
finalization will happen fast enough to prevent us from running out of resources.

The only real use case for a finalizer is the case of a class with native methods, hold‐
ing open some non-Java resource. Even here, the block-structured approach of try-
with-resources is preferable, but it can make sense to also declare a public native
finalize() (which would be called by the close() method)—this would release
native resources, including off-heap memory that is not under the control of the
Java garbage collector.

Finalization Details
For the few use cases where finalization is appropriate, we include some additional
details and caveats that occur when using the mechanism:

• The JVM can exit without garbage collecting all outstanding objects, so some
finalizers may never be invoked. In this case, resources such as network con‐
nections are closed and reclaimed by the operating system. Note, however, that
if a finalizer that deletes a file does not run, that file will not be deleted by the
operating system.
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• To ensure that certain actions are taken before the VM exits, Java provides Run
time::addShutdownHook—it can safely execute arbitrary code before the JVM
exits.

• The finalize() method is an instance method, and finalizers act on instances.
There is no equivalent mechanism for finalizing a class.

• A finalizer is an instance method that takes no arguments and returns no value.
There can be only one finalizer per class, and it must be named finalize().

• A finalizer can throw any kind of exception or error, but when a finalizer is
automatically invoked by the garbage collection subsystem, any exception or
error it throws is ignored and serves only to cause the finalizer method to
return.

Java’s Support for Concurrency
The idea of a thread is that of a lightweight unit of execution—smaller than a pro‐
cess, but still capable of executing arbitrary Java code. The usual way that this is
implemented is for each thread to be a fully fledged unit of execution to the operat‐
ing system but to belong to a process, with the address space of the process being
shared between all threads comprising that process. This means that each thread
can be scheduled independently and has its own stack and program counter but
shares memory and objects with other threads in the same process.

The Java platform has had support for multithreaded programming from the very
first version. The platform exposes the ability to create new threads of execution to
the developer. This is usually as simple as:

Thread t = new Thread(() -> {System.out.println("Hello Thread");});
t.start();

This small piece of code creates and starts a new thread, which executes the body of
the lambda expression and then executes. For programmers coming from older ver‐
sions of Java, the lambda is effectively being converted to an instance of the Runna
ble interface before being passed to the Thread constructor.

The threading mechanism allows new threads to execute concurrently with the
original application thread and the threads that the JVM itself starts up for various
purposes.

For most implementations of the Java platform, application
threads have their access to the CPU controlled by the operat‐
ing system scheduler—a built-in part of the OS that is respon‐
sible for managing timeslices of processor time (and that will
not allow an application thread to exceed its allocated time).

In more recent versions of Java, an increasing trend towards runtime-managed con‐
currency has appeared. This is the idea that for many purposes explicit management

208 | Chapter 6: Java’s Approach to Memory and Concurrency



of threads by developers is not desirable. Instead, the runtime should provide “fire
and forget” capabilities, whereby the program specifies what needs to be done, but
the low-level details of how this is to be accomplished are left to the runtime.

This viewpoint can be seen in the concurrency toolkit contained in java.util.con
current, a full discussion of which is outside the scope of this book. The interested
reader should refer to Java Concurrency in Practice by Brian Goetz et al. (Addison-
Wesley).

For the remainder of this chapter, we will introduce the low-level concurrency
mechanisms that the Java platform provides, and that every Java developer should
be aware of.

Thread Lifecycle
Let’s start by looking at the lifecycle of an application thread. Every operating system
has a view of threads that can differ in the details (but in most cases is broadly simi‐
lar at a high level). Java tries hard to abstract these details away, and has an enum
called Thread.State—which wrappers over the operating system’s view of the
thread’s state. The values of Thread.State provide an overview of the lifecycle of a
thread:

NEW

The thread has been created but its start() method has not yet been called. All
threads start in this state.

RUNNABLE
The thread is running or is available to run when the operating system sched‐
ules it.

BLOCKED
The thread is not running because it is waiting to acquire a lock so that it can
enter a synchronized method or block. We’ll see more about synchronized
methods and blocks later in this section.

WAITING

The thread is not running because it has called Object.wait() or
Thread.join().

TIMED_WAITING

The thread is not running because it has called Thread.sleep() or has called
Object.wait() or Thread.join() with a timeout value.

TERMINATED

The thread has completed execution. Its run() method has exited normally or
by throwing an exception.

These states represent the view of a thread that is common (at least across main‐
stream operating systems), leading to a view like that in Figure 6-4.
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Figure 6-4. Thread lifecycle

Threads can also be made to sleep, by using the Thread.sleep() method. This takes
an argument in milliseconds, which indicates how long the thread would like to
sleep for, like this:

try {
    Thread.sleep(2000);
} catch (InterruptedException e) {
    e.printStackTrace();
}

The argument to sleep is a request to the operating system,
not a demand. For example, it is possible to sleep for longer
than requested, depending on load and other factors specific
to the runtime environment.

We will discuss the other methods of Thread later in this chapter, but first we need
to cover some important theory that deals with how threads access memory, and
that is fundamental to understanding why multithreaded programming is hard and
can cause developers a lot of problems.

Visibility and Mutability
In Java, this essentially equates to all Java application threads in a process having
their own stacks (and local variables) but sharing a single heap. This makes it very
easy to share objects between threads, as all that is required is to pass a reference
from one thread to another. This is illustrated in Figure 6-5.
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Figure 6-5. Shared memory between threads

This leads to a general design principle of Java—that objects are visible by default. If
I have a reference to an object, I can copy it and hand it off to another thread with
no restrictions. A Java reference is essentially a typed pointer to a location in mem‐
ory—and threads share the same address space, so visible by default is a natural
model.

In addition to visible by default, Java has another property that is important to fully
understand concurrency, which is that objects are mutable—the contents of an
object instance’s fields can usually be changed. We can make individual variables or
references constant, by using the final keyword, but this does not apply to the con‐
tents of the object.
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As we will see throughout the rest of this chapter, the combination of these two
properties—visibility across threads and object mutability—gives rise to a great
many complexities when trying to reason about concurrent Java programs.

Concurrent Safety
If we’re to write correct multithreaded code, then we want our programs to satisfy a
certain important property. What we want is this:

A safe multithreaded program is one in which it is impossi‐
ble for any object to be seen in an illegal or inconsistent
state by any another object, no matter what methods are
called, and no matter how the application threads are
scheduled by the operating system.

In Chapter 5, we defined a safe object-oriented program to be one where objects are
moved from legal state to legal state by calling their accessible methods. This defini‐
tion works well for single-threaded code. However, there is a particular difficulty
that comes about when trying to extend it to concurrent programs.

For most mainstream cases, the operating system will schedule threads to run on
particular processor cores at various times, depending on load and what else is run‐
ning in the system. If load is high, then there may be other processes that also need
to run.

The operating system will forcibly remove a Java thread from a CPU core if it needs
to. The thread is suspended immediately, no matter what it’s doing—including
being partway through a method. However, as we discussed in Chapter 5, a method
can temporarily put an object into an illegal state while it is working on it, providing
it corrects it before the method exits.

This means that if a thread is swapped off before it has completed a long-running
method, it may leave an object in an inconsistent state, even if the program follows
the safety rules. Another way of saying this is that even data types that have been
correctly modeled for the single-threaded case still need to protect against the
effects of concurrency. Code that adds on this additional layer of protection is called
concurrently safe.

In the next section, we’ll discuss the primary means of achieving this safety, and at
the end of the chapter, we’ll meet some other mechanisms that can also be useful
under some circumstances.

Exclusion and Protecting State
Any code that modifies or reads state that can become inconsistent must be pro‐
tected. To achieve this, the Java platform provides only one mechanism: exclusion.
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Consider a method that contains a sequence of operations that, if interrupted part‐
way through, could leave an object in an inconsistent or illegal state. If this illegal
state was visible to another object, incorrect code behavior could occur.

For example, consider an ATM or other cash-dispensing machine:

public class Account {
    private double balance = 0.0; // Must be >= 0
    // Assume the existence of other field (e.g. name) and methods
    // such as deposit(), checkBalance() and dispenseNotes()

    public Account(double openingBal) {
        balance = openingBal;
    }

    public boolean withdraw(double amount) {
        if (balance >= amount) {
            try {
                Thread.sleep(2000); // Simulate risk checks
            } catch (InterruptedException e) {
                return false;
            }
            balance = balance - amount;
            dispenseNotes(amount);
            return true;
        }
        return false;
    }
}

The sequence of operations that happens inside withdraw() can leave the object in
an inconsistent state. In particular, after we’ve checked the balance, a second thread
could come in while the first was sleeping in simulated risk checks, and the account
could be overdrawn, in violation of the constraint that balance >= 0.

This is an example of a system where the operations on the objects are single-
threaded safe (because the objects cannot reach an illegal state (balance < 0) if
called from a single thread), but not concurrently safe.

To allow the developer to make code like this concurrently safe, Java provides the
synchronized keyword. This keyword can be applied to a block or to a method, and
when it is used, the platform uses it to restrict access to the code inside the block or
method.

Because synchronized surrounds code, many developers are
led to the conclusion that concurrency in Java is about code.
Some texts even refer to the code that is inside the synchron‐
ized block or method as a critical section and consider that to
be the crucial aspect of concurrency. This is not the
case; instead, it is the inconsistency of data that we must guard
against, as we will see.
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The Java platform keeps track of a special token, called a monitor, for every object
that it ever creates. These monitors (also called locks) are used by synchronized to
indicate that the following code could temporarily render the object inconsistent.
The sequence of events for a synchronized block or method is:

1. Thread needs to modify an object and may make it briefly inconsistent as an
intermediate step

2. Thread acquires the monitor, indicating it requires temporary exclusive access
to the object

3. Thread modifies the object, leaving it in a consistent, legal state when done
4. Thread releases the monitor

If another thread attempts to acquire the lock while the object is being modified,
then the attempt to acquire the lock blocks, until the holding thread releases the
lock.

Note that you do not have to use the synchronized statement unless your program
creates multiple threads that share data. If only one thread ever accesses a data
structure, there is no need to protect it with synchronized.

One point which is of critical importance—acquiring the monitor does not prevent
access to the object. It only prevents any other thread from claiming the lock. Cor‐
rect concurrently safe code requires developers to ensure that all accesses that might
modify or read potentially inconsistent state acquire the object monitor before oper‐
ating on, or reading that state.

Put another way, if a synchronized method is working on an object and has placed
it into an illegal state, and another method (which is not synchronized) reads from
the object, it can still see the inconsistent state.

Synchronization is a cooperative mechanism for protecting
state and it is very fragile as a result. A single bug (such as
missing a single synchronized keyword from a method it’s
required on) can have catastrophic results for the safety of the
system as a whole.

The reason we use the word synchronized as the keyword for “requires temporary
exclusive access” is that in addition to acquiring the monitor, the JVM also rereads
the current state of the object from main memory when the block is entered. Simi‐
larly, when the synchronized block or method is exited, the JVM flushes any modi‐
fied state of the object back to main memory.

Without synchronization, different CPU cores in the system may not see the same
view of memory, and memory inconsistencies can damage the state of a running
program, as we saw in our ATM example.
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volatile
Java provides another keyword for dealing with concurrent access to data. This is
the volatile keyword, and it indicates that before being used by application code,
the value of the field or variable must be reread from main memory. Equally, after a
volatile value has been modified, then as soon as the write to the variable has com‐
pleted, it must be written back to main memory.

One common usage of the volatile keyword is in the “run-until-shutdown” pat‐
tern. This is used in multithreaded programming where an external user or system
needs to signal to a processing thread that it should finish the current job being
worked on and then shut down gracefully. This is sometimes called the “Graceful
Completion” pattern. Let’s look at a typical example, supposing that this code for
our processing thread is in a class that implements Runnable:

    private volatile boolean shutdown = false;

    public void shutdown() {
        shutdown = true;
    }

    public void run() {
        while (!shutdown) {
            // ... process another task
        }
    }

All the time that the shutdown() method is not called by another thread, the pro‐
cessing thread continues to sequentially process tasks (this is often combined very
usefully with a BlockingQueue to deliver work). Once shutdown() is called by
another thread, then the processing thread immediately sees the shutdown flag
change to true. This does not affect the running job, but once the task finishes, the
processing thread will not accept another task and instead will shut down gracefully.

Useful Methods of Thread
When creating new  application threads, the Thread class has a number of methods
on it to make the programmer’s life easier. This is not an exhaustive list—there are
many other methods on Thread, but this is a description of some of the more com‐
mon methods.

getId()
This method returns the ID number of the thread, as a long. This ID will stay the
same for the lifetime of the thread.

getPriority() and setPriority()
These methods are used to control the priority of threads. The scheduler decides
how to handle thread priorities—for example, one strategy could be to not have any
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low-priority threads run while there are high-priority threads waiting. In most
cases, there is no way to influence how the scheduler will interpret priorities.
Thread priorities are represented as an integer between 1 and 10.

setName() and getName()
Allows the developer to set or retrieve a name for an individual thread. Naming
threads is good practice, as it can make debugging much easier, especially when
using a tool such as jvisualvm, which we will discuss in “VisualVM” on page 362.

getState()
Returns a Thread.State object that indicates which state this thread is in, as per the
values defined in “Thread Lifecycle” on page 209.

isAlive()
Used to test whether a thread is still alive.

start()
This method is used to create a new application thread, and to schedule it, with the
run() method being the entry point for execution. A thread terminates normally
when it reaches the end of its run() method or when it executes a return statement
in that method.

interrupt()
If a thread is blocked in a sleep(), wait(), or join() call, then calling interrupt()
on the Thread object that represents the thread will cause the thread to be sent an
InterruptedException (and to wake up). If the thread was involved in interruptible
I/O then the I/O will be terminated and the thread will receive a ClosedByInterrup
tException. The interrupt status of the thread will be set to true, even if the thread
was not engaged in any activity that could be interrupted.

join()
The current thread waits until the thread corresponding to the Thread object has
died. It can be thought of as an instruction not to proceed until the other thread has
completed.

setDaemon()
A user thread is a thread that will prevent the process from exiting if it is still alive—
this is the default for threads. Sometimes, programmers want threads that will not
prevent an exit from occurring—these are called daemon threads. The status of a
thread as a daemon or user thread can be controlled by the setDaemon() method.
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setUncaughtExceptionHandler()
When a thread exits by throwing an exception, the default behavior is to print the
name of the thread, the type of the exception, the exception message, and a stack
trace. If this isn’t sufficient, you can install a custom handler for uncaught excep‐
tions in a thread. For example:

// This thread just throws an exception
Thread handledThread =
  new Thread(() -> { throw new UnsupportedOperationException(); });

// Giving threads a name helps with debugging
handledThread.setName("My Broken Thread");

// Here's a handler for the error.
handledThread.setUncaughtExceptionHandler((t, e) -> {
    System.err.printf("Exception in thread %d '%s':" +
        "%s at line %d of %s%n",
        t.getId(),    // Thread id
        t.getName(),  // Thread name
        e.toString(), // Exception name and message
        e.getStackTrace()[0].getLineNumber(),
        e.getStackTrace()[0].getFileName()); });
handledThread.start();

This can be useful in some situations, for example, if one thread is supervising a
group of other worker threads, then this pattern can be used to restart any threads
that die.

Deprecated Methods of Thread
In addition to the useful methods of Thread, there are a number of unsafe methods
that the developer should not use. These methods form part of the original Java
thread API, but were quickly found to be not suitable for developer use. Unfortu‐
nately, due to Java’s backward compatibility requirements, it has not been possible to
remove them from the API. The developer simply needs to be aware of them, and to
avoid using them under all circumstances.

stop()
Thread.stop() is almost impossible to use correctly without violating concurrent
safety, as stop() kills the thread immediately, without giving it any opportunity to
recover objects to legal states. This is in direct opposition to principles such as con‐
current safety, and so should never be used.

suspend(), resume(), and countStackFrames()
The suspend() mechanism does not release any monitors it holds when it suspends,
so any other thread that attempts to accesses those monitors will deadlock. In
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2 Outside of Java, not all implementations of locks have this property.

practice, this mechanism produces race conditions between these deadlocks and
resume(), that render this group of methods unusable.

destroy()
This method was never implemented—it would have suffered from the same race
condition issues as suspend() if it had been.

All of these deprecated methods should always be avoided. Instead, a set of safe
alternative patterns that achieve the same intended aims as the preceding methods
have been developed. A good example of one of these patterns is the run-until-
shutdown pattern that we have already met.

Working with Threads
In order to work effectively with multithreaded code, it’s important to have the basic
facts about monitors and locks at your command. This checklist contains the main
facts that you should know:

• Synchronization is about protecting object state and memory, not code.
• Synchronization is a cooperative mechanism between threads. One bug can

break the cooperative model and have far-reaching consequences.
• Acquiring a monitor only prevents other threads from acquiring the monitor—

it does not protect the object.
• Unsynchronized methods can see (and modify) inconsistent state, even while

the object’s monitor is locked.
• Locking an Object[] doesn’t lock the individual objects.
• Primitives are not mutable, so they can’t (and don’t need to) be locked.

• synchronized can’t appear on a method declaration in an interface.
• Inner classes are just syntactic sugar, so locks on inner classes have no effect on

the enclosing class (and vice versa).
• Java’s locks are reentrant. This means that if a thread holding a monitor

encounters a synchronized block for the same monitor, it can enter the block.2

We’ve also seen that threads can be asked to sleep for a period of time. It is also use‐
ful to go to sleep for an unspecified amount of time, and wait until a condition is
met. In Java, this is handled by the wait() and notify() methods, that are present
on Object.

Just as every Java object has a lock associated with it, every object maintains a list of
waiting threads. When a thread calls the wait() method of an object, any locks the
thread holds are temporarily released, and the thread is added to the list of waiting
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threads for that object and stops running. When another thread calls the noti
fyAll() method of the same object, the object wakes up the waiting threads and
allows them to continue running.

For example, let’s look at a simplified version of a queue that is safe for multithrea‐
ded use:

/*
 * One thread calls push() to put an object on the queue.
 * Another calls pop() to get an object off the queue. If there is no
 * data, pop() waits until there is some, using wait()/notify().
 */
public class WaitingQueue<E> {
    LinkedList<E> q = new LinkedList<E>(); // storage
    public synchronized void push(E o) {
        q.add(o);         // Append the object to the end of the list
        this.notifyAll(); // Tell waiting threads that data is ready
    }
    public synchronized E pop() {
        while(q.size() == 0) {
            try { this.wait(); }
            catch (InterruptedException ignore) {}
        }
        return q.remove();
    }
}

This class uses a wait() on the instance of WaitingQueue if the queue is empty
(which would make the pop() fail). The waiting thread temporarily releases its
monitor, allowing another thread to claim it—a thread that might push() some‐
thing new onto the queue. When the original thread is woken up again, it is restar‐
ted where it originally began to wait—and it will have reacquired its monitor.

wait() and notify() must be used inside a synchronized
method or block, because of the temporary relinquishing of
locks that is required for them to work properly.

In general, most developers shouldn’t roll their own classes like the one in this
example—instead, make use of the libraries and components that the Java platform
provides for you.

Summary
In this chapter, we’ve discussed Java’s view of memory and concurrency, and seen
how these topics are intrinsically linked. As processors develop more and more
cores, we will need to use concurrent programming techniques to make effective
use of those cores. Concurrency is key to the future of well-performing applications.

M
em

o
ry and

C
o

ncurrency

Summary | 219



Java’s threading model is based on three fundamental concepts:

Shared, visible-by-default mutable state
This means that objects are easily shared between different threads in a process,
and that they can be changed (“mutated”) by any thread holding a reference to
them.

Preemptive thread scheduling
The OS thread scheduler can swap threads on and off cores at more or less any
time.

Object state can only be protected by locks
Locks can be hard to use correctly, and state is quite vulnerable—even in unex‐
pected places such as read operations.

Taken together, these three aspects of Java’s approach to concurrency explain why
multithreaded programming can cause so many headaches for developers.
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II
Working with the Java Platform

Part II is an introduction to some of the core libraries that ship with Java and some
programming techniques that are common to intermediate and advanced Java pro‐
grams.

Chapter 7, Programming and Documentation Conventions
Chapter 8, Working with Java Collections and Arrays
Chapter 9, Handling Common Data Formats
Chapter 10, File handling and I/O 
Chapter 11, Classloading, Reflection and Method Handles
Chapter 12, Nashorn 
Chapter 13, Platform Tools and Profiles





7
Programming and

Documentation Conventions

This chapter explains a number of important and useful Java programming and
documentation conventions. It covers:

• General naming and capitalization conventions
• Portability tips and conventions

• javadoc documentation comment syntax and conventions

Naming and Capitalization Conventions
The following widely adopted naming conventions apply to packages, reference
types, methods, fields, and constants in Java. Because these conventions are almost
universally followed and because they affect the public API of the classes you define,
they should be followed carefully:

Packages
It is customary to try to ensure that your publicly visible package names are
unique. One very common way of doing this is by prefixing them with the
inverted name of an Internet domain that you own (e.g., com.oreilly.javanut
shell). All package names should be lowercase.

Packages of code used internally by applications distributed in self-contained
JAR files are not publicly visible and need not follow this convention. It is com‐
mon in this case to use the application name as the package name or as a pack‐
age prefix.
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Reference types
A type name should begin with a capital letter and be written in mixed case
(e.g., String). If a class name consists of more than one word, each word
should begin with a capital letter (e.g., StringBuffer). If a type name, or one of
the words of a type name, is an acronym, the acronym can be written in all cap‐
ital letters (e.g., URL, HTMLParser).

Because classes and enumerated types are designed to represent objects, you
should choose class names that are nouns (e.g., Thread, Teapot, Format
Converter).

When an interface is used to provide additional information about the classes
that implement it, it is common to choose an interface name that is an adjective
(e.g., Runnable, Cloneable, Serializable). Annotation types are also com‐
monly named in this way.

When an interface is intended to work more like an abstract superclass, use a
name that is a noun (e.g., Document, FileNameMap, Collection).

Methods
A method name always begins with a lowercase letter. If the name contains
more than one word, every word after the first begins with a capital letter (e.g.,
insert(), insertObject(), insertObjectAt()). This is usually referred to as
“Camel-Case.”

Method names are typically chosen so that the first word is a verb. Method
names can be as long as is necessary to make their purpose clear, but choose
succinct names where possible. Avoid overly general method names, such as
performAction(), go(), or the dreadful doIt().

Fields and constants
Nonconstant field names follow the same capitalization conventions as method
names. If a field is a static final constant, it should be written in uppercase.
If the name of a constant includes more than one word, the words should be
separated with underscores (e.g., MAX_VALUE). A field name should be chosen to
best describe the purpose of the field or the value it holds. The constants
defined by enum types are also typically written in all capital letters.

Parameters
Method parameters follow the same capitalization conventions as nonconstant
fields. The names of method parameters appear in the documentation for a
method, so you should choose names that make the purpose of the parameters
as clear as possible. Try to keep parameter names to a single word and use them
consistently. For example, if a WidgetProcessor class defines many methods
that accept a Widget object as the first parameter, name this parameter widget
or even w in each method.
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Local variables
Local variable names are an implementation detail and never visible outside
your class. Nevertheless, choosing good names makes your code easier to read,
understand, and maintain. Variables are typically named following the same
conventions as methods and fields.

In addition to the conventions for specific types of names, there are conven‐
tions regarding the characters you should use in your names. Java allows the $
character in any identifier, but, by convention, its use is reserved for synthetic
names generated by source-code processors. For example, it is used by the Java
compiler to make inner classes work. You should not use the $ character in any
name that you create.

Java allows names to use any alphanumeric characters from the entire Unicode
character set. While this can be convenient for non-English-speaking program‐
mers, this has never really taken off and this usage is extremely rare.

Practical Naming
The names we give to our constructs matter—a lot. Naming is a key part of the pro‐
cess that conveys our abstract designs to our peers. The process of transferring a
software design from one human mind to another is hard—harder, in many cases,
than the process of transferring our design from our mind to the machines that will
execute it.

We must, therefore, do everything we can to ensure that this process is eased.
Names are a keystone of this. When reviewing code (and all code should be
reviewed), the reviewer should pay particular attention to the names that have been
chosen:

• Do the names of the types reflect the purpose of those types?
• Does each method do exactly what its name suggests? Ideally, no more, and no

less?
• Are the names descriptive enough? Could a more specific name be used

instead?
• Are the names well-suited for the domain they describe?
• Are the names consistent across the domain?
• Do the names mix metaphors?
• Does the name reuse a common term of software engineering?

Mixed metaphors are common in software, especially after several releases of an
application. A system that starts off perfectly reasonably with components called
Receptionist (for handling incoming connections), Scribe (for persisting orders),
and Auditor (for checking and reconciling orders) can quite easily end up in a later
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release with a class called Watchdog for restarting processes. This isn’t terrible, but it
breaks the established pattern of people’s job titles that previously existed.

It is also incredibly important to realize that software changes a lot over time. A per‐
fectly apposite name on release 1 can become highly misleading by release 4. Care
should be taken that as the system focus and intent shifts, the names are refactored
along with the code. Modern IDEs have no problem with global search and replace
of symbols, so there is no need to cling to outdated metaphors once they are no
longer useful.

One final note of caution—an overly strict interpretation of these guidelines can
lead the developer to some very odd naming constructs. There are a number of
excellent descriptions of some of the absurdities that can result by taking these con‐
ventions to their extremes.

In other words, none of the conventions described here are mandatory. Following
them will, in the vast majority of cases, make your code easier to read and maintain.
However, you should recall George Orwell’s maxim of style—“Break any of these
rules rather than say anything outright barbarous”—and not be afraid to deviate
from these guidelines if it makes your code easier to read.

Above all, you should have a sense of the expected lifetime of the code you are writ‐
ing. A risk calculation system in a bank may have a lifetime of a decade or more,
whereas a prototype for a startup may only be relevant for a few weeks. Document
accordingly—the longer the code is likely to be live, the better its documentation
needs to be.

Java Documentation Comments
Most ordinary comments within Java code explain the implementation details of
that code. By contrast, the Java language specification defines a special type of com‐
ment known as a doc comment that serves to document the API of your code.

A doc comment is an ordinary multiline comment that begins with /** (instead of
the usual /*) and ends with */. A doc comment appears immediately before a type
or member definition and contains documentation for that type or member. The
documentation can include simple HTML formatting tags and other special key‐
words that provide additional information. Doc comments are ignored by the com‐
piler, but they can be extracted and automatically turned into online HTML docu‐
mentation by the javadoc program. (See Chapter 13 for more information about
javadoc.) Here is an example class that contains appropriate doc comments:

/**
 * This immutable class represents <i>complex numbers</i>.
 *
 * @author David Flanagan
 * @version 1.0
 */
public class Complex {
    /**
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     * Holds the real part of this complex number.
     * @see #y
     */
    protected double x;

    /**
     * Holds the imaginary part of this complex number.
     * @see #x
     */
    protected double y;

    /**
     * Creates a new Complex object that represents the complex number 
     * x+yi. @param x The real part of the complex number.
     * @param y The imaginary part of the complex number.
     */
    public Complex(double x, double y) {
        this.x = x;
        this.y = y;
    }

    /**
     * Adds two Complex objects and produces a third object that 
     * represents their sum.
     * @param c1 A Complex object
     * @param c2 Another Complex object
     * @return  A new Complex object that represents the sum of
     *          <code>c1</code> and <code>c2</code>.
     * @exception java.lang.NullPointerException
     *            If either argument is <code>null</code>.
     */
    public static Complex add(Complex c1, Complex c2) {
        return new Complex(c1.x + c2.x, c1.y + c2.y);
    }
}

Structure of a Doc Comment
The body of a doc comment should begin with a one-sentence summary of the type
or member being documented. This sentence may be displayed by itself as summary
documentation, so it should be written to stand on its own. The initial sentence may
be followed by any number of other sentences and paragraphs that describe the
class, interface, method, or field in full detail.

After the descriptive paragraphs, a doc comment can contain any number of other
paragraphs, each of which begins with a  special doc-comment tag, such as @author,
@param, or @returns. These tagged paragraphs provide specific information about
the class, interface, method, or field that the javadoc program displays in a standard
way. The full set of doc-comment tags is listed in the next section.
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The descriptive material in a doc comment can contain simple HTML markup tags,
such as <i> for emphasis, <code> for class, method, and field names, and <pre> for
multiline code examples. It can also contain <p> tags to break the description into
separate paragraphs and <ul>, <li>, and related tags to display bulleted lists and
similar structures. Remember, however, that the material you write is embedded
within a larger, more complex HTML document. For this reason, doc comments
should not contain major structural HTML tags, such as <h2> or <hr>, that might
interfere with the structure of the larger document.

Avoid the use of the <a> tag to include hyperlinks or cross-references in your doc
comments. Instead, use the special {@link} doc-comment tag, which, unlike the
other doc-comment tags, can appear anywhere within a doc comment. As described
in the next section, the {@link} tag allows you to specify hyperlinks to other classes,
interfaces, methods, and fields without knowing the HTML-structuring conven‐
tions and filenames used by javadoc.

If you want to include an image in a doc comment, place the image file in a doc-files
subdirectory of the source code directory. Give the image the same name as the
class, with an integer suffix. For example, the second image that appears in the doc
comment for a class named Circle can be included with this HTML tag:

<img src="doc-files/Circle-2.gif">

Because the lines of a doc comment are embedded within a Java comment, any lead‐
ing spaces and asterisks (*) are stripped from each line of the comment before pro‐
cessing. Thus, you don’t need to worry about the asterisks appearing in the gener‐
ated documentation or about the indentation of the comment affecting the indenta‐
tion of code examples included within the comment with a <pre> tag.

Doc-Comment Tags
The javadoc program recognizes a number of special tags, each of which begins
with an @ character. These doc-comment tags allow you to encode specific informa‐
tion into your comments in a standardized way, and they allow javadoc to choose
the appropriate output format for that information. For example, the @param tag lets
you specify the name and meaning of a single parameter for a method. javadoc can
extract this information and display it using an HTML <dl> list, an HTML <table>,
or however it sees fit.

The following doc-comment tags are recognized by javadoc; a doc comment
should typically use these tags in the order listed here:

@author name
Adds an “Author:” entry that contains the specified name. This tag should be
used for every class or interface definition but must not be used for individual
methods and fields. If a class has multiple authors, use multiple @author tags
on adjacent lines. For example:
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@author Ben Evans
@author David Flanagan

List the authors in chronological order, with the original author first. If the
author is unknown, you can use “unascribed.” javadoc does not output author‐
ship information unless the -author command-line argument is specified.

@version text
Inserts a “Version:” entry that contains the specified text. For example:

@version 1.32, 08/26/04

This tag should be included in every class and interface doc comment but can‐
not be used for individual methods and fields. This tag is often used in con‐
junction with the automated version-numbering capabilities of a version con‐
trol system, such as git, Perforce, or SVN. javadoc does not output version
information in its generated documentation unless the -version command-
line argument is specified.

@param parameter-name description
Adds the specified parameter and its description to the “Parameters:” section of
the current method. The doc comment for a method or constructor must con‐
tain one @param tag for each parameter the method expects. These tags should
appear in the same order as the parameters specified by the method. The tag
can be used only in doc comments for methods and constructors.

You are encouraged to use phrases and sentence fragments where possible to
keep the descriptions brief. However, if a parameter requires detailed docu‐
mentation, the description can wrap onto multiple lines and include as much
text as necessary. For readability in source-code form, consider using spaces to
align the descriptions with each other. For example:

@param o      the object to insert
@param index  the position to insert it at

@return description
Inserts a “Returns:” section that contains the specified description. This tag
should appear in every doc comment for a method, unless the method returns
void or is a constructor. The description can be as long as necessary, but con‐
sider using a sentence fragment to keep it short. For example:

@return <code>true</code> if the insertion is successful, or
        <code>false</code> if the list already contains the object.

@exception full-classname description
Adds a “Throws:” entry that contains the specified exception name and
description. A doc comment for a method or constructor should contain an
@exception tag for every checked exception that appears in its throws clause.
For example:
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@exception java.io.FileNotFoundException
           If the specified file could not be found

The @exception tag can optionally be used to document unchecked exceptions
(i.e., subclasses of RuntimeException) the method may throw, when these are
exceptions that a user of the method may reasonably want to catch. If a method
can throw more than one exception, use multiple @exception tags on adjacent
lines and list the exceptions in alphabetical order. The description can be as
short or as long as necessary to describe the significance of the exception. This
tag can be used only for method and constructor comments. The @throws tag is 
a synonym for @exception.

@throws full-classname description
This tag is a synonym for @exception.

@see reference
Adds a “See Also:” entry that contains the specified reference. This tag can
appear in any kind of doc comment. The syntax for the reference is explained
later in this chapter in “Cross-References in Doc Comments” on page 233.

@deprecated explanation
This tag specifies that the following type or member has been deprecated and
that its use should be avoided. javadoc adds a prominent “Deprecated” entry
to the documentation and includes the specified explanation text. This text
should specify when the class or member was deprecated and, if possible, sug‐
gest a replacement class or member and include a link to it. For example:

@deprecated As of Version 3.0, this method is replaced
            by {@link #setColor}.

The @deprecated tag is an exception to the general rule that javac ignores all
comments. When this tag appears, the compiler notes the deprecation in the
class file it produces. This allows it to issue warnings for other classes that rely
on the deprecated feature.

@since version
Specifies when the type or member was added to the API. This tag should be
followed by a version number or other version specification. For example:

@since JNUT 3.0

Every doc comment for a type should include an @since tag, and any members
added after the initial release of the type should have @since tags in their doc
comments.

@serial description
Technically, the way a class is serialized is part of its public API. If you write a
class that you expect to be serialized, you should document its serialization for‐
mat using @serial and the related tags listed next. @serial should appear in
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the doc comment for any field that is part of the serialized state of a Serializa
ble class.

For classes that use the default serialization mechanism, this means all fields
that are not declared transient, including fields declared private. The
description should be a brief description of the field and of its purpose within
a serialized object.

You can also use the @serial tag at the class and package level to specify
whether a “serialized form page” should be generated for the class or package.
The syntax is:

@serial include
@serial exclude

@serialField name type description
A Serializable class can define its serialized format by declaring an array of
ObjectStreamField objects in a field named serialPersistentFields. For
such a class, the doc comment for serialPersistentFields should include an
@serialField tag for each element of the array. Each tag specifies the name,
type, and description for a particular field in the serialized state of the class.

@serialData description
A Serializable class can define a writeObject() method to write data other
than that written by the default serialization mechanism. An Externalizable
class defines a writeExternal() method responsible for writing the complete
state of an object to the serialization stream. The @serialData tag should be
used in the doc comments for these writeObject() and writeExternal()
methods, and the description should document the serialization format used
by the method.

Inline Doc-Comment Tags
In addition to the preceding tags, javadoc also supports several inline tags that may
appear anywhere that HTML text appears in a doc comment. Because these tags
appear directly within the flow of HTML text, they require the use of curly braces as
delimiters to separate the tagged text from the HTML text. Supported inline tags
include the following:

{@link reference }
The {@link} tag is like the @see tag except that instead of placing a link to the
specified reference in a special “See Also:” section, it inserts the link inline. An
{@link} tag can appear anywhere that HTML text appears in a doc comment.
In other words, it can appear in the initial description of the class, interface,
method, or field and in the descriptions associated with the @param, @returns,
@exception, and @deprecated tags. The reference for the {@link} tag uses
the syntax described next in “Cross-References in Doc Comments” on page
233. For example:
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@param regexp The regular expression to search for. This string
              argument must follow the syntax rules described for
              {@link java.util.regex.Pattern}.

{@linkplain reference }
The {@linkplain} tag is just like the {@link} tag, except that the text of the
link is formatted using the normal font rather than the code font used by the
{@link} tag. This is most useful when reference contains both a feature to
link to and a label that specifies alternate text to be displayed in the link. See
“Cross-References in Doc Comments” on page 233 for a discussion of the fea
ture and label portions of the reference argument.

{@inheritDoc}
When a method overrides a method in a superclass or implements a method in
an interface, you can omit a doc comment, and javadoc automatically inherits
the documentation from the overridden or implemented method. The {@inher
itDoc} tag allows you to inherit the text of individual tags. This tag also allows
you to inherit and augment the descriptive text of the comment. To inherit
individual tags, use it like this:

@param index @{inheritDoc}
@return @{inheritDoc}

{@docRoot}
This inline tag takes no parameters and is replaced with a reference to the root
directory of the generated documentation. It is useful in hyperlinks that refer to
an external file, such as an image or a copyright statement:

<img src="{@docroot}/images/logo.gif">
This is <a href="{@docRoot}/legal.html">Copyrighted</a> material.

{@literal text }
This inline tag displays text literally, escaping any HTML in it and ignoring
any javadoc tags it may contain. It does not retain whitespace formatting but is
useful when used within a <pre> tag.

{@code text }
This tag is like the {@literal} tag, but displays the literal text in code font.
Equivalent to:

&lt;code&gt;{@literal <replaceable>text</replaceable>}&lt;/code&gt;

{@value}

The {@value} tag, with no arguments, is used inline in doc comments for
static final fields and is replaced with the constant value of that field.

{@value reference }
This variant of the {@value} tag includes a reference to a static final field
and is replaced with the constant value of that field.
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Cross-References in Doc Comments
The @see tag and the inline tags {@link}, {@linkplain}, and {@value} all encode a 
cross-reference to some other source of documentation, typically to the documenta‐
tion comment for some other type or member.

reference can take three different forms. If it begins with a quote character, it is
taken to be the name of a book or some other printed resource and is displayed as
is. If reference begins with a < character, it is taken to be an arbitrary HTML
hyperlink that uses the <a> tag and the hyperlink is inserted into the output docu‐
mentation as is. This form of the @see tag can insert links to other online docu‐
ments, such as a programmer’s guide or user’s manual.

If reference is not a quoted string or a hyperlink, it is expected to have the follow‐
ing form:

feature [label]

In this case, javadoc outputs the text specified by label and encodes it as a hyper‐
link to the specified feature. If label is omitted (as it usually is), javadoc uses the
name of the specified feature instead.

feature can refer to a package, type, or type member, using one of the following
forms:

pkgname
A reference to the named package. For example:

@see java.lang.reflect

pkgname.typename
A reference to a class, interface, enumerated type, or annotation type specified
with its full package name. For example:

@see java.util.List

typename
A reference to a type specified without its package name. For example:

@see List

javadoc resolves this reference by searching the current package and the list of
imported classes for a class with this name.

typename # methodname
A reference to a named method or constructor within the specified type. For
example:

@see java.io.InputStream#reset
@see InputStream#close
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If the type is specified without its package name, it is resolved as described for
typename. This syntax is ambiguous if the method is overloaded or the class
defines a field by the same name.

typename # methodname ( paramtypes )
A reference to a method or constructor with the type of its parameters explic‐
itly specified. This is useful when cross-referencing an overloaded method. For
example:

@see InputStream#read(byte[], int, int)

# methodname
A reference to a nonoverloaded method or constructor in the current class or
interface or one of the containing classes, superclasses, or superinterfaces of the
current class or interface. Use this concise form to refer to other methods in the
same class. For example:

@see #setBackgroundColor

# methodname ( paramtypes )
A reference to a method or constructor in the current class or interface or one
of its superclasses or containing classes. This form works with overloaded
methods because it lists the types of the method parameters explicitly. For
example:

@see #setPosition(int, int)

typename # fieldname
A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStream#buf

If the type is specified without its package name, it is resolved as described for
typename.

# fieldname
A reference to a field in the current type or one of the containing classes, super‐
classes, or superinterfaces of the current type. For example:

@see #x

Doc Comments for Packages
Documentation comments for classes, interfaces, methods, constructors, and fields
appear in Java source code immediately before the definitions of the features they
document. javadoc can also read and display summary documentation for pack‐
ages. Because a package is defined in a directory, not in a single file of source code,
javadoc looks for the package documentation in a file named package.html in the
directory that contains the source code for the classes of the package.

The package.html file should contain simple HTML documentation for the package.
It can also contain @see, @link, @deprecated, and @since tags. Because
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package.html is not a file of Java source code, the documentation it contains should
be HTML and should not be a Java comment (i.e., it should not be enclosed
within /** and */ characters). Finally, any @see and @link tags that appear in pack‐
age.html must use fully qualified class names.

In addition to defining a package.html file for each package, you can also provide
high-level documentation for a group of packages by defining an overview.html file
in the source tree for those packages. When javadoc is run over that source tree, it
uses overview.html as the highest level overview it displays.

Conventions for Portable Programs
One of the earliest slogans for Java was “write once, run anywhere.” This emphasizes
that Java makes it easy to write portable programs, but it is still possible to write Java
programs that do not automatically run successfully on any Java platform. The fol‐
lowing tips help to avoid portability problems.

Native methods
Portable Java code can use any methods in the core Java APIs, including meth‐
ods implemented as native methods. However, portable code must not define
its own native methods. By their very nature, native methods must be ported to
each new platform, so they directly subvert the “write once, run anywhere”
promise of Java.

The Runtime.exec() method
Calling the Runtime.exec() method to spawn a process and execute an exter‐
nal command on the native system is rarely allowed in portable code. This is
because the native OS command to be executed is never guaranteed to exist or
behave the same way on all platforms. The only time it is legal to use Run
time.exec() in portable code is when the user is allowed to specify the com‐
mand to run, either by typing the command at runtime or by specifying the
command in a configuration file or preferences dialog box.

The System.getenv() method
Using System.getenv() is inherently nonportable.

Undocumented classes
Portable Java code must use only classes and interfaces that are a documented
part of the Java platform. Most Java implementations ship with additional
undocumented public classes that are part of the implementation but not part
of the Java platform specification. Nothing prevents a program from using and
relying on these undocumented classes, but doing so is not portable because
the classes are not guaranteed to exist in all Java implementations or on all plat‐
forms.

Of particular note is the sun.misc.Unsafe class, which provides access to a
number of “unsafe” methods, which can allow developers to circumvent a
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number of key restrictions of the Java platform. Developers should not make
direct use of the Unsafe class under any circumstances.

The java.awt.peer package
The interfaces in the java.awt.peer package are part of the Java platform but
are documented for use by AWT implementors only. Applications that use
these interfaces directly are not portable.

Implementation-specific features
Portable code must not rely on features specific to a single implementation. For
example, Microsoft distributed a version of the Java runtime system that
included a number of additional methods that were not part of the Java plat‐
form as defined by the specifications. Any program that depends on such
extensions is obviously not portable to other platforms.

Implementation-specific bugs
Just as portable code must not depend on implementation-specific features, it
must not depend on implementation-specific bugs. If a class or method
behaves differently than the specification says it should, a portable program
cannot rely on this behavior, which may be different on different platforms,
and ultimately may be fixed.

Implementation-specific behavior
Sometimes different platforms and different implementations present different
behaviors, all of which are legal according to the Java specification. Portable
code must not depend on any one specific behavior. For example, the Java spec‐
ification does not indicate whether threads of equal priority share the CPU or if
one long-running thread can starve another thread at the same priority. If an
application assumes one behavior or the other, it may not run properly on all
platforms.

Standard extensions
Portable code can rely on standard extensions to the Java platform, but, if it
does so, it should clearly specify which extensions it uses and exit cleanly with
an appropriate error message when run on a system that does not have the
extensions installed.

Complete programs
Any portable Java program must be complete and self-contained: it must sup‐
ply all the classes it uses, except core platform and standard extension classes.

Defining system classes
Portable Java code never defines classes in any of the system or standard exten‐
sion packages. Doing so violates the protection boundaries of those packages
and exposes package-visible implementation details.

Hardcoded filenames
A portable program contains no hardcoded file or directory names. This is
because different platforms have significantly different filesystem organizations
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and use different directory separator characters. If you need to work with a file
or directory, have the user specify the filename, or at least the base directory
beneath which the file can be found. This specification can be done at runtime,
in a configuration file, or as a command-line argument to the program. When
concatenating a file or directory name to a directory name, use the File() con‐
structor or the File.separator constant.

Line separators
Different systems use different characters or sequences of characters as line
separators. Do not hardcode \n, \r, or \r\n as the line separator in your pro‐
gram. Instead, use the println() method of PrintStream or PrintWriter,
which automatically terminates a line with the line separator appropriate for
the platform, or use the value of the line.separator system property. You can
also use the “%n” format string to printf() and format() methods of
java.util.Formatter and related classes.
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8
Working with Java Collections

This chapter introduces Java’s interpretation of fundamental data structures, known
as the Java Collections. These abstractions are core to many (if not most) program‐
ming types, and form an essential part of any programmers basic toolkit. Accord‐
ingly, this is one of the most important chapters of the entire book, and provides a
toolkit that is essential to virtually all Java programmers.

In this chapter, we will introduce the fundamental interfaces and the type hierarchy,
show how to use them, and discuss aspects of their overall design. Both the “classic”
approach to handling the Collections and the newer approach (using the Streams
API and the lambda expressions functionality introduced in Java 8) will be covered.

Introduction to Collections API
The Java Collections are a set of generic interfaces that describe the most common
forms of data structure. Java ships with several implementations of each of the clas‐
sic data structures, and because the types are represented as interfaces, it is very pos‐
sible for development teams to develop their own, specialized implementations of
the interfaces for use in their own projects.

The Java Collections define two fundamental types of data structures. A Collection
is a grouping of objects, while a Map is a set of mappings, or associations, between
objects. The basic layout of the Java Collections is shown in Figure 8-1.

Within this basic description, a Set is a type of Collection with no duplicates, and
a List is a Collection in which the elements are ordered (but may contain
duplicates).
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Figure 8-1. Collections classes and inheritance

SortedSet and SortedMap are specialized sets and maps that maintain their ele‐
ments in a sorted order.

Collection, Set, List, Map, SortedSet, and SortedMap are all interfaces, but the
java.util package also defines various concrete implementations, such as lists
based on arrays and linked lists, and maps and sets based on hash tables or binary
trees. Other important interfaces are Iterator and Iterable, which allow you to
loop through the objects in a collection, as we will see later on.

The Collection Interface
Collection<E> is a parameterized interface that represents a generalized grouping
of objects of type E. Methods are defined for adding and removing objects from the
group, testing an object for membership in the group, and iterating through all ele‐
ments in the group. Additional methods return the elements of the group as an
array and return the size of the collection.

The grouping within a Collection may or may not allow
duplicate elements and may or may not impose an ordering
on the elements.

The Java Collections Framework provides Collection because it defines the fea‐
tures common to all common forms of data structure. The JDK ships Set, List, and
Queue as subinterfaces of Collection. The following code illustrates the operations
you can perform on Collection objects:

// Create some collections to work with.
Collection<String> c = new HashSet<>();  // An empty set
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// We'll see these utility methods later Be aware that there are 
// some subtleties to watch out for when using them
Collection<String> d = Arrays.asList("one", "two");
Collection<String> e = Collections.singleton("three");

// Add elements to a collection. These methods return true 
// if the collection changes, which is useful with Sets that 
// don't allow duplicates.
c.add("zero");           // Add a single element
c.addAll(d);             // Add all of the elements in d

// Copy a collection: most implementations have a copy constructor
Collection<String> copy = new ArrayList<String>(c);

// Remove elements from a collection.
// All but clear return true if the collection changes.
c.remove("zero");        // Remove a single element
c.removeAll(e);          // Remove a collection of elements
c.retainAll(d);          // Remove all elements that are not in e
c.clear();               // Remove all elements from the collection

// Querying collection size
boolean b = c.isEmpty(); // c is now empty, so true
int s = c.size();        // Size of c is now 0.

// Restore collection from the copy we made
c.addAll(copy);

// Test membership in the collection. Membership is based on the equals
// method, not the == operator.
b = c.contains("zero");  // true
b = c.containsAll(d);    // true

// Most Collection implementations have a useful toString()  method
System.out.println(c);

// Obtain an array of collection elements.  If the iterator guarantees
// an order, this array has the same order. The array is a copy, not a
// reference to an internal data structure.
Object[] elements = c.toArray();

// If we want the elements in a String[], we must pass one in
String[] strings = c.toArray(new String[c.size()]);

// Or we can pass an empty String[] just to specify the type and
// the toArray method will allocate an array for us
strings = c.toArray(new String[0]);

Remember that you can use any of the methods shown here with any Set, List, or
Queue. These subinterfaces may impose membership restrictions or ordering con‐
straints on the elements of the collection but still provide the same basic methods.
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Methods such as add(), remove(), clear(), and retainAll()
that alter the collection were conceived of as optional parts of
the API. Unfortunately, they were specified a long time ago,
when the received wisdom was to indicate the absence of an
optional method by throwing UnsupportedOperation Excep
tion. Accordingly, some implementations (notably read-only
forms) may throw this unchecked exception.

Collection, Map, and their subinterfaces do not extend the Cloneable or Serializa
ble interfaces. All of the collection and map implementation classes provided in the
Java Collections Framework, however, do implement these interfaces.

Some collection implementations place restrictions on the elements that they can
contain. An implementation might prohibit null as an element, for example. And
EnumSet restricts membership to the values of a specified enumerated type.

Attempting to add a prohibited element to a collection always throws an unchecked
exception such as NullPointerException or ClassCastException. Checking
whether a collection contains a prohibited element may also throw such an excep‐
tion, or it may simply return false.

The Set Interface
A set is a collection of objects that does not allow duplicates: it may not contain two
references to the same object, two references to null, or references to two objects a
and b such that a.equals(b). Most general-purpose Set implementations impose
no ordering on the elements of the set, but ordered sets are not prohibited (see Sor
tedSet and LinkedHashSet). Sets are further distinguished from ordered collections
like lists by the general expectation that they have an efficient contains method
that runs in constant or logarithmic time.

Set defines no additional methods beyond those defined by Collection but places
additional restrictions on those methods. The add() and addAll() methods of a Set
are required to enforce the no-duplicates rules: they may not add an element to the
Set if the set already contains that element. Recall that the add() and addAll()
methods defined by the Collection interface return true if the call resulted in a
change to the collection and false if it did not. This return value is relevant for Set
objects because the no-duplicates restriction means that adding an element does not
always result in a change to the set.

Table 8-1 lists the implementations of the Set interface and summarizes their inter‐
nal representation, ordering characteristics, member restrictions, and the perfor‐
mance of the basic add(), remove(), and contains operations as well as iteration
performance. You can read more about each class in the reference section. Note that
CopyOnWriteArraySet is in the java.util.concurrent package; all the other
implementations are part of java.util. Also note that java.util.BitSet is not a
Set implementation. This legacy class is useful as a compact and efficient list of
boolean values but is not part of the Java Collections Framework.
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Table 8-1. Set implementations

Class Internal
representation

Since Element
order

Member
restric-
tions

Basic
opera-
tions

Iteration
perfor-
mance

Notes

Hash

Set

Hashtable 1.2 None None O(1) O(capacity) Best general-
purpose
implementation.

Linked

Hash

Set

Linked
hashtable

1.2 Insertion
order

None O(1) O(n) Preserves
insertion order.

Enum

Set

Bit fields 5.0 Enum
declaration

Enum
values

O(1) O(n) Holds non-null
enum values
only.

Tree

Set

Red-black tree 1.2 Sorted
ascending

Comparable O(log(n)) O(n) Comparable

elements or Com
parator.

CopyOn

Wri

teAr

raySet

Array 5.0 Insertion
order

None O(n) O(n) Threadsafe
without
synchronized
methods.

The TreeSet implementation uses a red-black tree data structure to maintain a set
that is iterated in ascending order according to the natural ordering of Comparable
objects or according to an ordering specified by a Comparator object. TreeSet
actually implements the SortedSet interface, which is a subinterface of Set.

The SortedSet interface offers several interesting methods that take advantage of its
sorted nature. The following code illustrates:

public static void testSortedSet(String[] args) {
    // Create a SortedSet
    SortedSet<String> s = new TreeSet<>(Arrays.asList(args));

    // Iterate set: elements are automatically sorted
    for (String word : s) {
        System.out.println(word);
    }

    // Special elements
    String first = s.first();  // First element
    String last = s.last();    // Last element

    // all elements but first
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    SortedSet<String> tail = s.tailSet(first + '\0'); 
    System.out.println(tail);

    // all elements but last
    SortedSet<String> head = s.headSet(last);       
    System.out.println(head);

    SortedSet<String> middle = s.subSet(first+'\0', last);
    System.out.println(middle);
}

The addition of \0 characters is needed because the tail
Set() and related methods use the successor of an element,
which for strings is the string value with a NULL character
(ASCII code 0) appended.

The List Interface
A List is an ordered collection of objects. Each element of a list has a position in
the list, and the List interface defines methods to query or set the element at a par‐
ticular position, or index. In this respect, a List is like an array whose size changes
as needed to accommodate the number of elements it contains. Unlike sets, lists
allow duplicate elements.

In addition to its index-based get() and set() methods, the List interface defines
methods to add or remove an element at a particular index and also defines meth‐
ods to return the index of the first or last occurrence of a particular value in the list.
The add() and remove() methods inherited from Collection are defined to
append to the list and to remove the first occurrence of the specified value from the
list. The inherited addAll() appends all elements in the specified collection to the
end of the list, and another version inserts the elements at a specified index. The
retainAll() and removeAll() methods behave as they do for any Collection,
retaining or removing multiple occurrences of the same value, if needed.

The List interface does not define methods that operate on a range of list indexes.
Instead, it defines a single subList() method that returns a List object that repre‐
sents just the specified range of the original list. The sublist is backed by the parent
list, and any changes made to the sublist are immediately visible in the parent list.
Examples of subList() and the other basic List manipulation methods are shown
here:

// Create lists to work with
List<String> l = new ArrayList<String>(Arrays.asList(args));
List<String> words = Arrays.asList("hello", "world");

// Querying and setting elements by index
String first = l.get(0);             // First element of list
String last = l.get(l.size -1);     // Last element of list
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l.set(0, last);                      // The last shall be first

// Adding and inserting elements.  add  can append or insert
l.add(first);       // Append the first word at end of list
l.add(0, first);    // Insert first at the start of the list again
l.addAll(words);    // Append a collection at the end of the list
l.addAll(1, words); // Insert collection after first word

// Sublists: backed by the original list
List<String> sub = l.subList(1,3);  // second and third elements
sub.set(0, "hi");                   // modifies 2nd element of l
// Sublists can restrict operations to a subrange of backing list
String s = Collections.min(l.subList(0,4));
Collections.sort(l.subList(0,4));
// Independent copies of a sublist don't affect the parent list.
List<String> subcopy = new ArrayList<String>(l.subList(1,3));

// Searching lists
int p = l.indexOf(last);  // Where does the last word appear?
p = l.lastIndexOf(last);  // Search backward

// Print the index of all occurrences of last in l.  Note subList
int n = l.size();
p = 0;
do {
    // Get a view of the list that includes only the elements we
    // haven't searched yet.
    List<String> list = l.subList(p, n);
    int q = list.indexOf(last);
    if (q == -1) break;
    System.out.printf("Found '%s' at index %d%n", last, p+q);
    p += q+1;
} while(p < n);

// Removing elements from a list
l.remove(last);         // Remove first occurrence of the element
l.remove(0);            // Remove element at specified index
l.subList(0,2).clear(); // Remove a range of elements using subList
l.retainAll(words);     // Remove all but elements in words
l.removeAll(words);     // Remove all occurrences of elements in words
l.clear();              // Remove everything

Foreach loops and iteration
One very important way of working with collections is to process each element in
turn, an approach known as iteration. This is an older way of looking at data struc‐
tures, but is still very useful (especially for small collections of data) and is easy to
understand. This approach fits naturally with the for loop, as shown in this bit of
code, and is easiest to illustrate using a List:

ListCollection<String> c = new ArrayList<String>();
// ... add some Strings to c
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for(String word : c) {
    System.out.println(word);
}

The sense of the code should be clear—it takes the elements of c one at a time and
uses them as a variable in the loop body. More formally, it iterates through the ele‐
ments of an array or collection (or any object that implements java.lang.Itera
ble). On each iteration it assigns an element of the array or Iterable object to the
loop variable you declare and then executes the loop body, which typically uses the
loop variable to operate on the element. No loop counter or Iterator object is
involved; the foreach loop performs the iteration automatically, and you need not
concern yourself with correct initialization or termination of the loop.

This type of for loop is often referred to as a foreach loop. Let’s see how it works.
The following bit of code shows a rewritten (and equivalent) for loop, with the
methods actually shown:

// Iteration with a for loop
for(Iterator<String> i = c.iterator(); i.hasNext();) {
    System.out.println(i.next());
}

The Iterator object, i, is produced from the collection, and used to step through
the collection one item at a time. It can also be used with while loops:

//Iterate through collection elements with a while loop.
//Some implementations (such as lists) guarantee an order of iteration
//Others make no guarantees.
Iterator<String> iterator() = c.iterator();
while (iterator.hasNext()) {
    System.out.println(iterator.next());
}

Here are some more things you should know about the syntax of the foreach loop:

• As noted earlier, expression must be either an array or an object that imple‐
ments the java.lang.Iterable interface. This type must be known at compile
time so that the compiler can generate appropriate looping code.

• The type of the array or Iterable elements must be assignment-compatible
with the type of the variable declared in the declaration. If you use an Itera
ble object that is not parameterized with an element type, the variable must be
declared as an Object.

• The declaration usually consists of just a type and a variable name, but it may
include a final modifier and any appropriate annotations (see Chapter 4).
Using final prevents the loop variable from taking on any value other than the
array or collection element the loop assigns it and serves to emphasize that the
array or collection cannot be altered through the loop variable.
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• The loop variable of the foreach loop must be declared as part of the loop, with
both a type and a variable name. You cannot use a variable declared outside the
loop as you can with the for loop.

To understand in detail how the foreach loop works with collections, we need to
consider two interfaces, java.util.Iterator and java.lang.Iterable:

public interface Iterator<E> {
     boolean hasNext();
     E next();
     void remove();
}

Iterator defines a way to iterate through the elements of a collection or other data
structure. It works like this: while there are more elements in the collection (has
Next() returns true), call next to obtain the next element of the collection. Ordered
collections, such as lists, typically have iterators that guarantee that they’ll return
elements in order. Unordered collections like Set simply guarantee that repeated
calls to next() return all elements of the set without omissions or duplications but
do not specify an ordering.

The next() method of Iterator performs two functions—
it advances through the collection and also returns the old
head value of the collection. This combination of operations
can cause problems when programming in an immutable
style, as it fundamentally mutates the collection.

The Iterable interface  was introduced to make the foreach loop work. A class
implements this interface in order to advertise that it is able to provide an Iterator
to anyone interested:

public interface Iterable<E> {
     java.util.Iterator<E> iterator();
}

If an object is Iterable<E>, that means that that it has an iterator() method that
returns an Iterator<E>, which has a next() method that returns an object of
type E.

Note that if you use the foreach loop with an Iterable<E>, the
loop variable must be of type E or a superclass or interface.

For example, to iterate through the elements of a List<String>, the variable must
be declared String or its superclass Object, or one of the interfaces it implements:
CharSequence, Comparable, or Serializable.
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Random access to Lists
A general expectation of List implementations is that they can be efficiently iter‐
ated, typically in time proportional to the size of the list. Lists do not all provide effi‐
cient random access to the elements at any index, however. Sequential-access lists,
such as the LinkedList class, provide efficient insertion and deletion operations at
the expense of random-access performance. Implementations that provide efficient
random access implement the RandomAccess marker interface, and you can test for
this interface with instanceof if you need to ensure efficient list manipulations:

// Arbitrary list we're passed to manipulate
List<?> l = ...;

// Ensure we can do efficient random access.  If not, use a copy 
// constructor to make a random-access copy of the list before 
// manipulating it.
if (!(l instanceof RandomAccess)) l = new ArrayList<?>(l);

The Iterator returned by the iterator() method of a List iterates the list ele‐
ments in the order that they occur in the list. List implements Iterable, and lists
can be iterated with a foreach loop just as any other collection can.

To iterate just a portion of a list, you can use the subList() method to create a sub‐
list view:

List<String> words = ...;  // Get a list to iterate

// Iterate just all elements of the list but the first
for(String word : words.subList(1, words.size ))
    System.out.println(word);

Table 8-2 summarizes the five general-purpose List implementations in the Java
platform. Vector and Stack are legacy implementations and should not be used.
CopyOnWriteArrayList is part of the java.util.concurrent package and is only
really suitable for multithreaded use cases.

Table 8-2. List implementations

Class Representation Since Random
access

Notes

ArrayList Array 1.2 Yes Best all-around implementation.

LinkedList Double-linked list 1.2 No Efficient insertion and deletion.

CopyOnWri

teArray

List

Array 5.0 Yes Threadsafe; fast traversal, slow modification.

Vector Array 1.0 Yes Legacy class; synchronized methods. Do not use.
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Class Representation Since Random
access

Notes

Stack Array 1.0 Yes Extends Vector; adds push(), pop(),
peek(). Legacy; use Deque instead.

The Map Interface
A map is a set of key objects and a mapping from each member of that set to a value
object. The Map interface defines an API for defining and querying mappings. Map is
part of the Java Collections Framework, but it does not extend the Collection
interface, so a Map is a little-c collection, not a big-C Collection. Map is a parame‐
terized type with two type variables. Type variable K represents the type of keys held
by the map, and type variable V represents the type of the values that the keys are
mapped to. A mapping from String keys to Integer values, for example, can be
represented with a Map<String,Integer>.

The most important Map methods are put(), which defines a key/value pair in the
map, get(), which queries the value associated with a specified key, and remove(),
which removes the specified key and its associated value from the map. The general
performance expectation for Map implementations is that these three basic methods
are quite efficient: they should usually run in constant time and certainly no worse
than in logarithmic time.

An important feature of Map is its support for “collection views.” A Map is not a Col
lection, but its keys can be viewed as a Set, its values can be viewed as a Collec
tion, and its mappings can be viewed as a Set of Map.Entry objects. (Map.Entry is a 
nested interface defined within Map: it simply represents a single key/value pair.)

The following sample code shows the get(), put(), remove(), and other methods
of a Map and also demonstrates some common uses of the collection views of a Map:

// New, empty map
Map<String,Integer> m = new HashMap();  

// Immutable Map containing a single key-value pair
Map<String,Integer> singleton = Collections.singletonMap("test", -1);

// Note this rarely used syntax to explicitly specify the parameter
// types of the generic emptyMap method. The returned map is immutable
Map<String,Integer> empty = Collections.<String,Integer>emptyMap();

// Populate the map using the put method to define mappings 
// from array elements to the index at which each element appears
String[] words = { "this", "is", "a", "test" };
for(int i = 0; i < words.length; i++) {
    m.put(words[i], i);  // Note autoboxing of int to Integer
}
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// Each key must map to a single value. But keys may map to the 
// same value
for(int i = 0; i < words.length; i++) {
    m.put(words[i].toUpperCase(), i);
}

// The putAll() method copies mappings from another Map
m.putAll(singleton);

// Query the mappings with the get()  method
for(int i = 0; i < words.length; i++) {
    if (m.get(words[i]) != i) throw new AssertionError();
}

// Key and value membership testing
m.containsKey(words[0]);        // true
m.containsValue(words.length);  // false

// Map keys, values, and entries can be viewed as collections
Set<String> keys = m.keySet();
Collection<Integer> values = m.values();
Set<Map.Entry<String,Integer>> entries = m.entrySet();

// The Map and its collection views typically have useful 
// toString  methods
System.out.printf("Map: %s%nKeys: %s%nValues: %s%nEntries: %s%n",
                  m, keys, values, entries);

// These collections can be iterated.
// Most maps have an undefined iteration order (but see SortedMap)
for(String key : m.keySet()) System.out.println(key);
for(Integer value: m.values()) System.out.println(value);

// The Map.Entry<K,V> type represents a single key/value pair in a map
for(Map.Entry<String,Integer> pair : m.entrySet()) {
    // Print out mappings
    System.out.printf("'%s' ==> %d%n", pair.getKey(), pair.getValue());
    // And increment the value of each Entry
    pair.setValue(pair.getValue() + 1);
}

// Removing mappings
m.put("testing", null);   // Mapping to null can "erase" a mapping:
m.get("testing");         // Returns null
m.containsKey("testing"); // Returns true: mapping still exists
m.remove("testing");      // Deletes the mapping altogether
m.get("testing");         // Still returns null
m.containsKey("testing"); // Now returns false.

// Deletions may also be made via the collection views of a map.
// Additions to the map may not be made this way, however.
m.keySet().remove(words[0]);  // Same as m.remove(words[0]);

250 | Chapter 8: Working with Java Collections



// Removes one mapping to the value 2 - usually inefficient and of 
// limited use
m.values().remove(2);
// Remove all mappings to 4
m.values().removeAll(Collections.singleton(4)); 
// Keep only mappings to 2 & 3
m.values().retainAll(Arrays.asList(2, 3));      

// Deletions can also be done via iterators
Iterator<Map.Entry<String,Integer>> iter = m.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry<String,Integer> e = iter.next();
    if (e.getValue() == 2) iter.remove();
}

// Find values that appear in both of two maps.  In general, addAll() 
// and retainAll() with keySet() and values() allow union and 
// intersection
Set<Integer> v = new HashSet<Integer>(m.values());
v.retainAll(singleton.values());

// Miscellaneous methods
m.clear();                // Deletes all mappings
m.size();                 // Returns number of mappings: currently 0
m.isEmpty();              // Returns true
m.equals(empty);          // true: Maps implementations override equals

The Map interface includes a variety of general-purpose and special-purpose imple‐
mentations, which are summarized in Table 8-3. As always, complete details are in
the JDK’s documentation and javadoc. All classes in Table 8-3 are in the java.util
package except ConcurrentHashMap and ConcurrentSkipListMap, which are part of
java.util.concurrent.

Table 8-3. Map implementations

Class Representation Since null
keys

null
values

Notes

HashMap Hashtable 1.2 Yes Yes General-purpose implementation.

Concurren

tHashMap

Hashtable 5.0 No No General-purpose threadsafe
implementation; see ConcurrentMap
interface.

Concurrent

SkipList

Map

Hashtable 6.0 No No Specialized threadsafe implementation;
see ConcurrentNavigableMap
interface.

EnumMap Array 5.0 No Yes Keys are instances of an enum.
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Class Representation Since null
keys

null
values

Notes

LinkedHash

Map

Hashtable plus list 1.4 Yes Yes Preserves insertion or access order.

TreeMap Red-black tree 1.2 No Yes Sorts by key value. Operations are
O(log(n)). See SortedMap interface.

Identity

HashMap

Hashtable 1.4 Yes Yes Compares with == instead of equals().

WeakHash

Map

Hashtable 1.2 Yes Yes Doesn’t prevent garbage collection of
keys.

Hashtable Hashtable 1.0 No No Legacy class; synchronized methods. Do
not use.

Properties Hashtable 1.0 No No Extends Hashtable with String
methods.

The ConcurrentHashMap and ConcurrentSkipListMap classes of the java.util.con
current package implement the ConcurrentMap interface of the same package. Con
currentMap extends Map and defines some additional atomic operations that are
important in multithreaded programming. For example, the putIfAbsent method
is like put() but adds the key/value pair to the map only if the key is not already
mapped.

TreeMap implements the SortedMap interface, which extends Map to add methods
that take advantage of the sorted nature of the map. SortedMap is quite similar to
the SortedSet interface. The firstKey() and lastKey() methods return the first
and last keys in the keySet(). And headMap(), tailMap(), and subMap() return a
restricted range of the original map.

The Queue and BlockingQueue Interfaces
A queue is an ordered collection  of elements with methods for extracting elements,
in order, from the head of the queue. Queue implementations are commonly based
on insertion order as in first-in, first-out (FIFO) queues or last-in, first-out (LIFO)
queues.

LIFO queues are also known as stacks, and Java provides a
Stack class, but its use is strongly discouraged—instead
implementations of the Deque interface should be used.
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Other orderings are also possible: a priority queue orders its elements according to
an external Comparator object, or according to the natural ordering of Comparable
elements. Unlike a Set, Queue implementations typically allow duplicate elements.
Unlike List, the Queue interface does not define methods for manipulating queue
elements at arbitrary positions. Only the element at the head of the queue is avail‐
able for examination. It is common for Queue implementations to have a fixed
capacity: when a queue is full, it is not possible to add more elements. Similarly,
when a queue is empty, it is not possible to remove any more elements. Because full
and empty conditions are a normal part of many queue-based algorithms, the Queue
interface defines methods that signal these conditions with return values rather than
by throwing exceptions. Specifically, the peek() and poll() methods return null to
indicate that the queue is empty. For this reason, most Queue implementations do
not allow null elements.

A blocking queue is a type of queue that defines  blocking put() and take() meth‐
ods. The put() method adds an element to the queue, waiting, if necessary, until
there is space in the queue for the element. And the take() method removes an ele‐
ment from the head of the queue, waiting, if necessary, until there is an element to
remove. Blocking queues are an important part of many multithreaded algorithms,
and the BlockingQueue interface (which extends Queue) is defined as part of the
java.util.concurrent package.

Queues are not nearly as commonly used as sets, lists, and maps, except perhaps in
certain multithreaded programming styles. In lieu of example code here, we’ll try to
clarify the different possible queue insertion and removal operations.

Adding elements to queues
add()

This Collection method simply adds an element in the normal way. In boun‐
ded queues, this method may throw an exception if the queue is full.

offer()

This Queue method is like add() but returns false instead of throwing an
exception if the element cannot be added because a bounded queue is full.

BlockingQueue defines a timeout version of offer() that waits up to a speci‐
fied amount of time for space to become available in a full queue. Like the basic
version of the method, it returns true if the element was inserted and false
otherwise.

put()

This BlockingQueue method blocks: if the element cannot be inserted because
the queue is full, put() waits until some other thread removes an element from
the queue, and space becomes available for the new element.
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Removing elements from queues
remove()

In addition to the Collection.remove() method, which removes a specified
element from the queue, the Queue interface defines a no-argument version of
remove() that removes and returns the element at the head of the queue. If the
queue is empty, this method throws a NoSuchElementException.

poll()

This Queue method removes and returns the element at the head of the queue,
like remove() does but returns null if the queue is empty instead of throwing
an exception.

BlockingQueue defines a timeout version of poll() that waits up to a specified
amount of time for an element to be added to an empty queue.

take()

This BlockingQueue method removes and returns the element at the head of
the queue. If the queue is empty, it blocks until some other thread adds an ele‐
ment to the queue.

drainTo()

This BlockingQueue method removes all available elements from the queue
and adds them to a specified Collection. It does not block to wait for elements
to be added to the queue. A variant of the method accepts a maximum number
of elements to drain.

Querying

In this context, querying refers to examining the element at the head without
removing it from the queue.

element()

This Queue method returns the element at the head of the queue but does not
remove that element from the queue. If the queue is empty, it throws NoSuchE
lementException.

peek()

This Queue method is like element but returns null if the queue is empty.

When using queues, it is usually a good idea to pick one par‐
ticular style of how to deal with a failure. For example, if you
want operations to block until they succeed, then choose
put() and take(). If you want to examine the return code of a
method to see if the queue operation suceeded, then offer()
and poll() are an appropriate choice.
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The LinkedList class also implements Queue. It provides unbounded FIFO order‐
ing, and insertion and removal operations require constant time. LinkedList allows
null elements, although their use is discouraged when the list is being used as a
queue.

There are two other Queue implementations in the java.util package. Priority
Queue orders its elements according to a Comparator or orders Comparable elements
according to the order defined by their compareTo() methods. The head of a Priori
tyQueue is always the smallest element according to the defined ordering. Finally,
ArrayDeque is a double-ended queue implementation. It is often used when a stack
implementation is needed.

The java.util.concurrent package also contains a number of BlockingQueue
implementations, which are designed for use in multithreaded programing style;
advanced versions that can remove the need for synchronized methods are avail‐
able.

Utility Methods
The java.util.Collections class is home to quite a few static utility methods
designed for use with collections. One important group of these methods are the
collection wrapper methods: they return a special-purpose collection wrapped
around a collection you specify. The purpose of the wrapper collection is to wrap
additional functionality around a collection that does not provide it itself. Wrappers
exist to provide thread-safety, write-protection, and runtime type checking. Wrap‐
per collections are always backed by the original collection, which means that the
methods of the wrapper simply dispatch to the equivalent methods of the wrapped
collection. This means that changes made to the collection through the wrapper are
visible through the wrapped collection and vice versa.

The first set of wrapper methods provides threadsafe wrappers around collections.
Except for the legacy classes Vector and Hashtable, the collection implementations
in java.util do not have synchronized methods and are not protected against
concurrent access by multiple threads. If you need threadsafe collections and don’t
mind the additional overhead of synchronization, create them with code like this:

List<String> list = 
    Collections.synchronizedList(new ArrayList<String>());
Set<Integer> set = 
    Collections.synchronizedSet(new HashSet<Integer>());
Map<String,Integer> map =
    Collections.synchronizedMap(new HashMap<String,Integer>());

A second set of wrapper methods provides collection objects through which the
underlying collection cannot be modified. They return a read-only view of a collec‐
tion: any attempt to change the content of the collection results in an Unsupported
OperationException. These wrappers are useful when you must pass a collection to
a method that must not be allowed to modify or mutate the content of the collection
in any way:
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List<Integer> primes = new ArrayList<Integer>();
List<Integer> readonly = Collections.unmodifiableList(primes);
// We can modify the list through primes
primes.addAll(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
// But we can't modify through the read-only wrapper
readonly.add(23);  // UnsupportedOperationException

The java.util.Collections class also defines methods to operate on collections.
Some of the most notable are methods to sort and search the elements of
collections:

Collections.sort(list);
// list must be sorted first
int pos = Collections.binarySearch(list, "key"); 

Here are some other interesting Collections methods:

// Copy list2 into list1, overwriting list1
Collections.copy(list1, list2); 
// Fill list with Object o
Collections.fill(list, o);      
// Find the largest element in Collection c
Collections.max(c);             
// Find the smallest element in Collection c
Collections.min(c);             

Collections.reverse(list);      // Reverse list
Collections.shuffle(list);      // Mix up list

It is a good idea to familiarize yourself fully with the utility methods in Collections
and Arrays as they can save you from writing your own implementation of a com‐
mon task.

Special-case collections

In addition to its wrapper methods, the java.util.Collections class also defines
utility methods for creating immutable collection instances that contain a single ele‐
ment and other methods for creating empty collections. singleton(), singleton
List(), and singletonMap() return immutable Set, List, and Map objects that con‐
tain a single specified object or a single key/value pair. These methods are useful
when you need to pass a single object to a method that expects a collection.

The Collections class also includes methods that return empty collections. If you
are writing a method that returns a collection, it is usually best to handle the no-
values-to-return case by returning an empty collection instead of a special-case
value like null:

Set<Integer> si = Collections.emptySet();
List<String> ss = Collections.emptyList();
Map<String,Integer> m = Collections.emptyMap();
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Finally, nCopies() returns an immutable List that contains a specified number of
copies of a single specified object:

List<Integer> tenzeros = Collections.nCopies(10, 0);

Arrays and Helper Methods
Arrays of objects and collections serve similar purposes. It is possible to convert
from one to the other:

String[] a ={ "this", "is", "a", "test" };  // An array
// View array as an ungrowable list
List<String> l = Arrays.asList(a);          
// Make a growable copy of the view
List<String> m = new ArrayList<String>(l);  

// asList() is a varargs method so we can do this, too:
Set<Character> abc = new HashSet<Character>(Arrays.asList('a', 'b', 'c'));

// Collection defines the toArray  method.  The no-args version creates
// an Object[] array, copies collection elements to it and returns it
// Get set elements as an array
Object[] members = set.toArray();         
// Get list elements as an array
Object[] items = list.toArray();          
// Get map key objects as an array
Object[] keys = map.keySet().toArray();   
// Get map value objects as an array
Object[] values = map.values().toArray(); 

// If you want the return value to be something other than Object[], 
// pass in an array of the appropriate type. If the array is not 
// big enough, another one of the same type will be allocated.  
// If the array is too big, the collection elements copied to it 
// will be null-filled
String[] c = l.toArray(new String[0]);

In addition, there are a number of useful helper methods for working with Java’s
arrays, which are included here for completeness.

The java.lang.System class defines an arraycopy() method that is useful for
copying specified elements in one array to a specified position in a second array.
The second array must be the same type as the first, and it can even be the same
array:

char[] text = "Now is the time".toCharArray();
char[] copy = new char[100];
// Copy 10 characters from element 4 of text into copy, 
// starting at copy[0]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
System.arraycopy(copy, 3, copy, 6, 7);
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There are also a number of useful static methods defined on the Arrays class:

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort(intarray);                       // Sort it in place
// Value 7 is found at index 2
int pos = Arrays.binarySearch(intarray, 7);  
// Not found: negative return value
pos = Arrays.binarySearch(intarray, 12);     

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };
Arrays.sort(strarray);   // sorted to: { "is", "now", "the", "time" }

// Arrays.equals  compares all elements of two arrays
String[] clone = (String[]) strarray.clone();
boolean b1 = Arrays.equals(strarray, clone);  // Yes, they're equal

// Arrays.fill  initializes array elements
// An empty array; elements set to 0
byte[] data = new byte[100];          
// Set them all to -1
Arrays.fill(data, (byte) -1);         
// Set elements 5, 6, 7, 8, 9 to -2
Arrays.fill(data, 5, 10, (byte) -2);

Arrays can be treated and manipulated as objects in Java. Given an arbitrary object
o, you can use code such as the following to find out if the object is an array and, if
so, what type of array it is:

Class type = o.getClass();
if (type.isArray()) {
  Class elementType = type.getComponentType();
}

Lambda Expressions in the Java Collections
One of the major reasons for introducing lambda expressions in Java 8 was to facili‐
tate the overhaul of the Collections API to allow more modern programming styles
to be used by Java developers. Until the release of Java 8, the handling of data struc‐
tures in Java looked a little bit dated. Many languages now support a programming
style that allows collections to be treated as a whole, rather than requiring them to
be broken apart and iterated over.

In fact, many Java developers had taken to using alternative data structures libraries
to achieve some of the expressivity and productivity that they felt was lacking in the
Collections API. The key to upgrading the APIs was to introduce new methods that
would accept lambda expressions as parameters—to define what needed to be done,
rather than precisely how.
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The desire to add new methods to existing interfaces was
directly responsible for the new language feature referred to as
default methods (see “Default Methods” on page 140 for more
details). Without this new mechanism, older implementations
of the Collections interfaces would fail to compile under Java
8, and would fail to link if loaded into a Java 8 runtime.

In this section, we will give a basic introduction to the use of lambda expressions in
the Java Collections. For a fuller treatment, see Java 8 Lambdas by Richard Warbur‐
ton (O’Reilly).

Functional Approaches
The approach that Java 8 wished to enable was derived from functional program‐
ming languages and styles. We met some of these key patterns in “Method Refer‐
ences” on page 173—let’s reintroduce them and look at some examples of each.

Filter
The idiom applies a piece of code (that returns either true or false) to each element
in a collection, and builds up a new collection consisting of those elements that
“passed the test" (i.e., the bit of code returned true when applied to the element).

For example, let’s look at some code to work with a collection of cats and pick out
the tigers:

String[] input = {"tiger", "cat", "TIGER", "Tiger", "leopard"};
List<String> cats = Arrays.asList(input);
String search = "tiger";
String tigers = cats.stream()
                    .filter(s -> s.equalsIgnoreCase(search))
                    .collect(Collectors.joining(", "));
System.out.println(tigers);

The key piece is the call to filter(), which takes a lambda expression. The lambda
takes in a string, and returns a Boolean value. This is applied over the whole collec‐
tion cats, and a new collection is created, which only contains tigers (however they
were capitalized).

The filter() method takes in an instance of the Predicate interface, from the new
package java.util.function. This is a functional interface, with only a single non‐
default method, and so is a perfect fit for a lambda expression.

Note the final call to collect(); this is an essential part of the API and is used to
“gather up” the results at the end of the lambda operations. We’ll discuss it in more
detail in the next section.

Predicate has some other very useful default methods, such as for constructing
combined predicates by using logic operations. For example, if the tigers want to
admit leopards into their group, this can be represented by using the or() method:
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Predicate<String> p = s -> s.equalsIgnoreCase(search);
Predicate<String> combined = p.or(s -> s.equals("leopard"));
String pride = cats.stream()
                   .filter(combined)
                   .collect(Collectors.joining(", "));
System.out.println(pride);

Note that the Predicate<String> object p must be explicitly created, so that the
defaulted or() method can be called on it and the second lambda expression (which
will also be automatically converted to a Predicate<String>) passed to it.

Map
The map idiom in Java 8 makes use of a new interface Function<T, R> in the pack‐
age java.util.function. Like Predicate<T>, this is a functional interface, and so
only has one nondefaulted method, apply(). The map idiom is about transforming
a collection of one type in a collection of a potentially different type. This shows up
in the API as the fact that Function<T, R> has two separate type parameters. The
name of the type parameter R indicates that this represents the return type of the
function.

Let’s look at a code example that uses map():

List<Integer> namesLength = cats.stream()
                .map(String::length)
                .collect(Collectors.toList());
System.out.println(namesLength);

forEach
The map and filter idioms are used to create one collection from another. In lan‐
guages that are strongly functional, this would be combined with requiring that the
original collection was not affected by the body of the lambda as it touched each
element. In computer science terms, this means that the lambda body should be
“side-effect free.”

In Java, of course, we often need to deal with mutable data, so the new Collections
API provides a way to mutate elements as the collection is traversed—the for
Each() method. This takes an argument of type Consumer<T>, that is a functional
interface that is expected to operate by side effects (although whether it actually
mutates the data or not is of lesser importance). This means that the signature of
lambdas that can be converted to Consumer<T> is (T t) → void. Let’s look at a
quick example of forEach():

List<String> pets =
  Arrays.asList("dog", "cat", "fish", "iguana", "ferret");
pets.stream().forEach(System.out::println);

In this example, we are simply printing out each member of the collection. How‐
ever, we’re doing so by using a special kind of method reference as a lambda expres‐
sion. This type of method reference is called a bound method reference, as it involves
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a specific object (in this case, the object System.out, which is a static public field of
System). This is equivalent to the lambda expression:

s -> System.out.println(s);

This is of course eligible for conversion to an instance of a type that implements
Consumer<? super String> as required by the method signature.

Nothing prevents a map() or filter() call from mutating
elements. It is only a convention that they must not, but it’s
one that every Java programmer should adhere to.

There’s one final functional technique that we should look at before we move on.
This is the practice of aggregating a collection down to a single value, and it’s the
subject of our next section.

Reduce
Let’s look at the reduce() method. This implements the reduce idiom, which is
really a family of similar and related operations, some referred to as fold, or aggre‐
gation operations.

In Java 8, reduce() takes two arguments. These are the initial value, which is often
called the identity (or zero), and a function to apply step by step. This function is of 
type BinaryOperator<T>, which is another functional interface that takes in two
arguments of the same type, and returns another value of that type. This second
argument to reduce() is a two-argument lambda. reduce() is defined in the java
doc like this:

T reduce(T identity, BinaryOperator<T> aggregator);

The easy way to think about the second argument to reduce() is that it creates a
“running total” as it runs over the stream. It starts by combining the identity with
the first element of the stream to produce the first result, then combines that result
with the second element of the stream, and so on.

It can help to imagine that the implementation of reduce() works a bit like this:

public T reduce(T identity, BinaryOperator<T> aggregator) {
    T runningTotal = identity;
    for (T element : myStream) {
        runningTotal = aggregator.apply(runningTotal, element);
    }

    return result;
}
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In practice, implementations of reduce() can be more sophis‐
ticated than these, and can even execute in parallel if the data
structure and operations are amenable to this.

Let’s look at a quick example of a reduce() and calculate the sum of some primes:

double sumPrimes = ((double)Stream.of(2, 3, 5, 7, 11, 13, 17, 19, 23)
       .reduce(0, (x, y) -> {return x + y;}));
System.out.println("Sum of some primes: " + sumPrimes);

In all of the examples we’ve met in this section, you may have noticed the presence
of a stream() method call on the List instance. This is part of the evolution of the
Collections—it was originally chosen partly out of necessity, but has proved to be an
excellent abstraction. Let’s move on to discuss the Streams API in more detail.

The Streams API
The issue that caused the library  designers to introduce the Streams API was the
large number of implementations of the core collections interfaces present in the
wild. As these implementations predate Java 8 and lambdas, they would not have
any of the methods corresponding to the new functional operations. Worse still, as
method names such as map() and filter() have never been part of the interface of
the Collections, implementations may already have methods with those names.

To work around this problem, a new abstraction called a Stream was introduced—
the idea being that a Stream object can be generated from a collection object via the
stream() method. This Stream object, being new and under the control of the
library designers, is then guaranteed to be free of method name collisions. This then
mitigates the risk of clash, as only implementations that contained a stream()
method would be affected.

A Stream object plays a similar role to an Iterator in the new approach to collec‐
tions code. The overall idea is for the developer to build up a sequence (or “pipe‐
line”) of operations (such as map, filter, or reduce) that need to be applied to the
collection as a whole. The actual content of the operations will usually be expressed
by using a lambda expression for each operation.

At the end of the pipeline, the results need to be gathered up, or “materialized” back
into an actual collection again. This is done either by using a Collector or by fin‐
ishing the pipeline with a “terminal method” such as reduce() that returns an
actual value, rather than another stream. Overall, the new approach to collections
looks like this:

        stream()   filter()   map()   collect()
Collection -> Stream -> Stream -> Stream -> Collection

The Stream class behaves as a sequence of elements that are accessed one at a time
(although there are some types of streams that support parallel access and can be
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used to process larger collections in a naturally multithreaded way). In a similar way
to an Iterator, the Stream is used to take each item in turn.

As is usual for generic classes in Java, Stream is parameterized by a reference type.
However, in many cases, we actually want streams of primitive types, especially ints
and doubles. We cannot have Stream<int>, so instead in java.util.stream there
are special (nongeneric) classes such as IntStream and DoubleStream. These are
known as primitive specializations of the Stream class and have APIs that are very
similar to the general Stream methods, except that they use primitives where appro‐
priate.

For example, in the reduce() example, we’re actually using primitive specialization
over most of the pipeline.

Lazy evaluation
In fact, streams are more general than iterators (or even collections), as streams do
not manage storage for data. In earlier versions of Java, there was always a presump‐
tion that all of the elements of a collection existed (usually in memory). It was possi‐
ble to work around this in a limited way by insisting on the use of iterators every‐
where, and by having the iterators construct elements on the fly. However, this was
neither very convenient or that common.

By contrast, streams are an abstraction for managing data, rather than being con‐
cerned with the details of storage. This makes it possible to handle more subtle data
structures than just finite collections. For example, infinite streams can easily be
represented by the Stream interface, and can be used as a way to, for example, han‐
dle the set of all square numbers. Let’s see how we could accomplish this using a
Stream:

public class SquareGenerator implements IntSupplier {
    private int current = 1;

    @Override
    public synchronized int getAsInt() {
        int thisResult = current * current;
        current++;
        return thisResult;
    }
}

IntStream squares = IntStream.generate(new SquareGenerator());
PrimitiveIterator.OfInt stepThrough = squares.iterator();
for (int i = 0; i < 10; i++) {
    System.out.println(stepThrough.nextInt());
}
System.out.println("First iterator done...");

// We can go on as long as we like...
for (int i = 0; i < 10; i++) {

Java
C

o
llectio

ns

Lambda Expressions in the Java Collections | 263



    System.out.println(stepThrough.nextInt());
}

One significant consequence of modeling the infinite stream is that methods like
collect() won’t work. This is because we can’t materialize the whole stream to a
collection (we would run out of memory before we created the infinite amount of
objects we would need). Instead, we must adopt a model in which we pull the ele‐
ments out of the stream as we need them. Essentially, we need a bit of code that
returns the next element as we demand it. The key technique that is used to accom‐
plish this is lazy evaluation. This essentially means that values are not necessarily
computed until they are needed.

Lazy evaluation is a big change for Java, as until JDK 8 the
value of an expression was always computed as soon as it was
assigned to a variable (or passed into a method). This familiar
model, where values are computed immediately, is called
“eager evaluation” and it is the default behavior for evaluation
of expressions in most mainstream programming languages.

Fortunately, lazy evaluation is largely a burden that falls on the library writer, not
the developer, and for the most part when using the Streams API, Java developers
don’t need to think closely about lazy evaluation. Let’s finish off our discussion of
streams by looking at an extended code example using reduce(), and calculate the
average word length in some Shakespeare quotes:

String[] billyQuotes = {"For Brutus is an honourable man",
  "Give me your hands if we be friends and Robin shall restore amends",
  "Misery acquaints a man with strange bedfellows"};
List<String> quotes = Arrays.asList(billyQuotes);

// Create a temporary collection for our words
List<String> words = quotes.stream()
        .flatMap(line -> Stream.of(line.split(" +")));
        .collect(Collectors.toList());
long wordCount = words.size();

// The cast to double is only needed to prevent Java from using 
// integer division
double aveLength = ((double) words.stream()
        .map(String::length)
        .reduce(0, (x, y) -> {return x + y;})) / wordCount;
System.out.println("Average word length: " + aveLength);

In this example, we’ve introduced the flatMap() method. In our example, it takes in
a single string, line, and returns a stream of strings, which is obtained by splitting
up the line into its component words. These are then “flattened” so that all the sub-
streams from each string are just combined into a single stream.
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This has the effect of splitting up each quote into its component words, and making
one superstream out of them. We count the words by creating the object words,
essentially “pausing” halfway through the stream pipeline, and rematerializing into a
collection to get the number of words before resuming our stream operations.

Once we’ve done that, we can proceed with the reduce, and add up the length of all
the words, before dividing by the number of words that we have, across the quotes.
Remember that streams are a lazy abstraction, so to perform an eager operation
(like getting the size of a collection that backs a stream) we have to rematerialize the
collection.

Streams utility default methods
Java 8 takes the opportunity to introduce a number of new methods to the Java Col‐
lections libraries. Now that the language supports default methods, it is possible to
add new methods to the Collections without breaking backward compatibility.

Some of these methods are “scaffolding methods” for the Streams abstraction. These
include methods  such as Collection::stream, Collection::parallelStream, and
Collection::spliterator (which has specialized forms List::spliterator and
Set::spliterator).

Others are “missing methods,” such as Map::remove and Map::replace. This also
includes the List::sort method, that is defined in List like this:

// Essentially just forwards to the helper method in Collections
public default void sort(Comparator<? super E> c) {
    Collections.<E>sort(this, c);
}

Also in the missing methods is Map::putIfAbsent, which has been adopted from
the ConcurrentMap interface in java.util.concurrent.

Another missing method worth noting is Map::getOrDefault, which allows the
programmer to avoid a lot of tedious null checks, by providing a value that should
be returned if the key is not found.

The remaining methods provide additional functional techniques using the inter‐
faces of java.util.function:

Collection::removeIf

This method takes a Predicate and iterates internally over the collection,
removing any elements that satisfy the predicate object.

Map::forEach
The single argument to this method is a lambda expression that takes two argu‐
ments (one of the key’s type and one of the value’s type) and returns void. This
is converted to an instance of BiConsumer and is applied to each key-value pair
in the map.
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Map::computeIfAbsent
Takes a key and a lambda expression that maps the key type to the value type. If
the specified key (first parameter) is not present in the map, then, computes a
default value by using the lambda expression and puts it in the map.

(See also Map::computeIfPresent, Map::compute, and Map::merge.)

Conclusion
In this chapter, we’ve met the Java Collections libraries, and seen how to start work‐
ing with Java’s implementations of fundamental and classic data structures. We’ve
met the general Collection interface, as well as List, Set, and Map. We’ve seen the
original, iterative way of handling collections, and also introduced the new Java 8
style, based on ideas from fundamental programming. Finally, we’ve met the
Streams API and seen how the new approach is more general, and is able to express
more subtle programming concepts than the classic approach.

Let’s move on. In the next chapter, we’ll continue looking at data, and common tasks
like text processing, handling numeric data, and Java 8’s new date and time libraries.
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9
Handling Common

Data Formats

Most of programming is handling data in various formats. In this chapter, we will
introduce Java’s support for handling two big classes of data—text and numbers.
The second half of the chapter will focus on handling date and time information.
This is of particular interest as Java 8 ships a completely new API for handling date
and time. We cover this new interface in some depth, before finishing the chapter by
briefly discussing Java’s original date and time API.

Many applications are still using the legacy APIs, so developers need to be aware of
the old way of doing things, but the new APIs are so much better that we recom‐
mend converting as soon as possible. Before we get to those more complex formats,
let’s get underway by talking about textual data and strings.

Text
We have already met Java’s strings on many occasions. They consist of sequences of
Unicode characters, and are represented as instances of the String class. Strings are
one of the most common types of data that Java programs process (a claim you can
investigate for yourself by using the jmap tool that we’ll meet in Chapter 13).

In this section, we’ll meet the String class in some more depth, and understand
why it is in a rather unique position within the Java language. Later in the section,
we’ll introduce regular expressions, a very common abstraction for searching text
for patterns (and a classic tool in the programmer’s arsenal).

Special Syntax for Strings
The String class is handled in a somewhat special way by the Java language. This is
because, despite not being a primitive type, strings are so common that it makes
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sense for Java to have a number of special syntax features designed to make han‐
dling strings easy. Let’s look at some examples of special syntax features for strings
that Java provides.

String literals
As we saw in Chapter 2, Java allows a sequence of characters to be placed in double
quotes to create a literal string object. Like this:

String pet = "Cat";

Without this special syntax, we would have to write acres of horrible code like this:

char[] pullingTeeth = {'C', 'a', 't'};
String pet = new String(pullingTeeth);

This would get tedious extremely quickly, so it’s no surprise that Java, like all
modern programming languages, provides a simple string literal syntax. The string
literals are perfectly sound objects, so code like this is completely legal:

System.out.println("Dog".length());

toString()
This method is defined on Object, and is designed to allow easy conversion of any
object to a string. This makes it easy to print out any object, by using the method
System.out.println(). This method is actually PrintStream::println because
System.out is a static field of type PrintStream. Let’s see how this method is
defined:

    public void println(Object x) {
        String s = String.valueOf(x);
        synchronized (this) {
            print(s);
            newLine();
        }
    }

This creates a new string by using the static method String::valueOf():

    public static String valueOf(Object obj) {
        return (obj == null) ? "null" : obj.toString();
    }

The static valueOf() method is used instead of toString()
directly, to avoid a NullPointerException in the case where
obj is null.

268 | Chapter 9: Handling Common Data Formats



This construction means that toString() is always available for any object, and this
turns out to come in very handy for another major syntax feature that Java provides
—string concatenation.

String concatenation
Java has a language feature where we can create new  strings by “adding” the charac‐
ters from one string onto the end of another. This is called string concatenation and
uses the operator +. It works by first creating a “working area” in the form of a
StringBuilder object that contains the same sequence of characters as the original
string.

The builder object is then updated and the characters from the additional string are
added onto the end. Finally, toString() is called on the StringBuilder object
(which now contains the characters from both strings). This gives us a new string
with all the characters in it. All of this code is created automatically by javac when‐
ever we use the + operator to concatenate strings.

The concatenation process returns a completely new String object, as we can see in
this example:

String s1 = "AB";
String s2 = "CD";

String s3 = s1;
System.out.println(s1 == s3); // Same object?

s3 = s1 + s2;
System.out.println(s1 == s3); // Still same?
System.out.println(s1);
System.out.println(s3);

The concatentation example directly shows that the + operator is not altering (or
mutating) s1 in place. This is an example of a more general principle: Java’s strings
are immutable. This means that once the characters that make up the string have
been chosen and the String object has been created, the String cannot be changed.
This is an important language principle in Java, so let’s look at it in a little more
depth.

String Immutability
In order to “change” a string, as we saw when we discussed string concatenation, we
actually need to create an  intermediate StringBuilder object to act as a temporary
scratch area, and then call toString() on it, to bake it into a new instance of
String. Let’s see how this works in code:

String pet = "Cat";
StringBuilder sb = new StringBuilder(pet);
sb.append("amaran");
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String boat = sb.toString();
System.out.println(boat);

Code like this is equivalent to what javac would generate if, instead, we had written:

String pet = "Cat";
String boat = pet + "amaran";
System.out.println(boat);

Of course, as well as being used under the hood by javac, the StringBuilder class
can also be used directly in application code, as we’ve seen.

Along with StringBuilder Java also has a StringBuffer
class. This comes from the oldest versions of Java, and
should not be used for new development—use String
Builder instead, unless you really need to share the con‐
struction of a new string between multiple threads.

String immutability is an extremely useful language feature. For example, suppose
the + changed a string instead of creating a new one; then whenever any thread con‐
catenated two strings together, all other threads would also see the change. This is
unlikely to be a useful behavior for most programs, and so immutability makes
good sense.

Hash codes and effective immutability
We have already met the hashCode() method in Chapter 5, where we described the
contract that the method must satisfy. Let’s take a look at the JDK source code and
see how the method String::hashCode() is defined:

    public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            char val[] = value;

            for (int i = 0; i < value.length; i++) {
                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }

The field hash holds the hash code of the string, and the field value is a char[] that
holds the characters that actually make up the string. As we can see from the code,
the hash is computed by looping over all the characters of the string. It therefore
takes a number of machine instructions proportional to the number of characters in
the string. For very large strings this could take a bit of time. Rather than pre-
compute the hash value, Java only calculates it when it is needed.
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When the method runs, the hash is computed by stepping through the array of
characters. At the end of the array, we exit the for loop and write the computed
hash back into the field hash. Now, when this method is called again, the value has
already been computed, and so we can just use the cached value. So subsequent calls
to hashCode() return immediately.

The computation of a string’s hash code is an example of a
benign data race. In a program with multiple threads, they
could race to compute the hash code. However, they would all
eventually arrive at exactly the same answer—hence the term
benign.

All of the fields of the String class are final, except for hash. So Java’s strings are
not, strictly speaking, immutable. However, because the hash field is just a cache of
a value that is deterministically computed from the other fields, which are all
immutable, then provided String has been coded correctly, it will behave as if it was
immutable. Classes that have this property are called effectively immutable—they are
quite rare in practice, and working programmers can usually ignore the distinction
between truly immutable and effectively immutable data.

Regular Expressions
Java has support for regular expressions (often shortened to regex or regexp). These
are a representation of a search pattern used to scan and match text. A regex is a
sequence of characters that we want to search for. They can be very simple—for
example, abc means that we’re looking for a, followed immediately by b, followed
immediately by c, anywhere within the text we’re searching through. Note that a
search pattern may match an input text in zero, one, or more places.

The simplest regexs are just sequences of literal characters, like abc. However, the
language of regexs can express more complex and subtle ideas than just literal
sequences. For example, a regex can represent patterns to match like:

• A numeric digit
• Any letter
• Any number of letters, which must all be in the range a to j but can be upper-

or lowercase
• a followed by any four characters, followed by b

The syntax we use to write regular expressions is simple, but because we can build
up complex patterns, it is often possible to write an expression that does not imple‐
ment precisely what we wanted. When using regexs, it is very important to always
test them fully. This should include both test cases that should pass and cases that
should fail.
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To express these more complex patterns, regexs use metacharacters. These are spe‐
cial characters that indicate that special processing is required. This can be thought
of as similar to the use of the * character in the Unix or Windows shell. In those
circumstances, it is understood that the * is not to be interpreted literally but
instead means “anything.” If we wanted to list all the Java source files in the current
directory on Unix, we would issue the command:

ls *.java

The metacharacters of regexs are similar, but there are far more of them, and they
are far more flexible than the set available in shells. They also have different mean‐
ings than they do in shell scripts, so don’t get confused.

Let’s meet a couple of examples. Suppose we want to have a spell-checking program
that is relaxed about the difference in spelling between British and American
English. This means that honor and honour should both be accepted as valid spelling
choices. This is easy to do with regular expressions.

Java uses a class called Pattern (from the package java.util.regex) to represent a
regex. This class can’t be directly instantiated, however. Instead, new instances are
created by using a static factory method, compile(). From a pattern, we then derive
a Matcher for a particular input string that we can use to explore the input string.
For example, let’s examine a bit of Shakespeare from the play Julius Caesar:

Pattern p = Pattern.compile("honou?r");

String caesarUK = "For Brutus is an honourable man";
Matcher mUK = p.matcher(caesarUK);

String caesarUS = "For Brutus is an honorable man";
Matcher mUS = p.matcher(caesarUS);

System.out.println("Matches UK spelling? " + mUK.find());
System.out.println("Matches US spelling? " + mUS.find());

Be careful when using Matcher as it has a method called
matches(). However, this method indicates whether the pat‐
tern can cover the entire input string. It will return false if
the pattern only starts matching in the middle of the string.

The last example introduces our first regex metacharacter ?, in the pattern honou?r.
This means “the preceding character is optional”—so both honour and honor will
match. Let’s look at another example. Suppose we want to match both minimize and
minimise (the latter spelling is more common in British English). We can use square
brackets to indicate that any character from a set (but only one alternative) [] can
be used—like this:

Pattern p = Pattern.compile("minimi[sz]e");
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Table 9-1 provides an expanded list of metacharacters available for Java regexs.

Table 9-1. Regex metacharacters

Metacharacter Meaning Notes

? Optional character—zero or one instance  

* Zero or more of preceding character  

+ One or more of preceding character  

{M,N} Between M and N instances of preceding character  

\d A digit  

\D A nondigit character  

\w A word character Digits, letters, and _

\W A nonword character  

\s A whitespace character  

\S A nonwhitespace character  

\n Newline character  

\t Tab character  

. Any single character Does not include newline in Java

[ ] Any character contained with the brackets Called a character class

[^ ] Any character not contained with the brackets Called a negated character class

( ) Build up a group of pattern elements Called a group (or capturing group)

| Define alternative possbilities Implements logical OR

^ Start of string  

$ End of string  

There are a few more, but this is the basic list, and from this, we can construct more
complex expressions for matching such as the examples given earlier in this section:
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// Note that we have to use \\ because we need a literal \
// and Java uses a single \ as an escape character
String pStr = "\\d"; // A numeric digit
String text = "Apollo 13";
Pattern p = Pattern.compile(pStr);
Matcher m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

pStr = "[a..zA..Z]"; //Any letter
p = Pattern.compile(pStr);
m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

// Any number of letters, which must all be in the range 'a' to 'j' 
// but can be upper- or lowercase
pStr = "([a..jA..J]*)";
p = Pattern.compile(pStr);
m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

text = "abacab";
pStr = "a....b"; // 'a' followed by any four characters, followed by 'b'
p = Pattern.compile(pStr);
m = p.matcher(text);
System.out.print(pStr + " matches " + text + "? " + m.find());
System.out.println(" ; match: " + m.group());

Let’s conclude our quick tour of regular expressions by meeting a new method that
was added to Pattern as part of Java 8: asPredicate(). This method is present to
allow us to easily bridge from regular expressions to the Java Collections and their
new support for lambda expressions.

For example, suppose we have a regex and a collection of strings. It’s very natural to
ask the question: “Which strings match against the regex?” We do this by using the
filter idiom, and by converting the regex to a Predicate using the helper method,
like this:

String pStr = "\\d"; // A numeric digit
Pattern p = Pattern.compile(pStr);

String[] inputs = {"Cat", "Dog", "Ice-9", "99 Luftballoons"};
List<String> ls = Arrays.asList(inputs);
List<String> containDigits = ls.stream()
                               .filter(p.asPredicate())
                               .collect(Collectors.toList());
System.out.println(containDigits);
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Java’s built-in support for text processing is more than adequate for the majority of
text processing tasks that business applications normally require. More advanced
tasks, such as the search and processing of very large data sets, or complex parsing
(including formal grammars) are outside the scope of this book, but Java has a large
ecosystem of helpful libraries and bindings to specialized technologies for text pro‐
cessing and analysis.

Numbers and Math
In this section, we will discuss Java’s support for numeric types in some more detail.
In particular, we’ll discuss the two’s complement representation of integral types that
Java uses. We’ll introduce floating-point representations, and touch on some of the
problems they can cause. We’ll work through examples that use some of Java’s
library functions for standard mathematical operations.

How Java Represents Integer Types
Java’s integer types are all signed, as we first mentioned in “Primitive Data Types” on
page 22. This means that all integer types can represent both positive and negative
numbers. As computers work with binary, this means that the only really logical
way to represent this is to split the possible bit patterns up and use half of them to
represent negative numbers.

Let’s work with Java’s byte type to investigate how Java represents integers. This has
8 bits, so can represent 256 different numbers (i.e., 128 negative and 128 non-
negative numbers). It’s logical to use the pattern 0b0000_0000 to represent zero
(recall that Java has the syntax 0b<binary digits> to represent numbers as binary),
and then it’s easy to figure out the bit patterns for the positive numbers:

byte b = 0b0000_0001;
System.out.println(b); // 1

b = 0b0000_0010;
System.out.println(b); // 2

b = 0b0000_0011;
System.out.println(b); // 3

// ...

b = 0b0111_1111;
System.out.println(b); // 127

When we set the first bit of the byte, the sign should change (as we have now used
up all of the bit patterns that we’ve set aside for non-negative numbers). So the pat‐
tern 0b1000_0000 should represent some negative number—but which one?
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As a consequence of how we’ve defined things, in this repre‐
sentation we have a very simple way to identify whether a bit
pattern corresponds to a negative number: if the high-end bit
of a bit pattern is a 1, then the number being represented is
negative.

Consider the bit pattern consisting of all set bits: 0b1111_1111. If we add 1 to this
number, then the result will overflow the 8 bits of storage that a byte has, resulting
in 0b1_0000_0000. If we want to constrain this to fit within the byte data type, then
we should ignore the overflow, so this becomes 0b0000_0000 - zero. It is therefore
natural to adopt the representation that “all set bits is -1.” This allows for natural
arithmetic behavior, like this:

b = (byte) 0b1111_1111; // -1
System.out.println(b);
b++;
System.out.println(b);

b = (byte) 0b1111_1110; // -2
System.out.println(b);
b++;
System.out.println(b);

Finally, let’s look at the number that 0b1000_0000 represents. It’s the most negative
number that the type can represent, so for byte:

b = (byte) 0b1000_0000;
System.out.println(b); // -128

This representation is called two’s complement, and is the most common representa‐
tion for signed integers. To use it effectively, there are only two points that you need
to remember:

• A bit pattern of all 1’s is the representation for -1.
• If the high bit is set, the number is negative.

Java’s other integer types (short, int, and long) behave in very similar ways but
with more bits in their representation. The char datatype is different because it rep‐
resents a Unicode character, but in some ways behaves as an unsigned 16-bit
numeric type. It is not normally regarded as an integer type by Java programmers.

Java and Floating-Point Numbers
Computers represent numbers using binary. We’ve seen how Java uses the two’s
complement representation for integers. But what about fractions or decimals? Java,
like almost all modern programming languages, represents them using floating-
point arithmetic. Let’s take a look at how this works, first in base-10 (regular deci‐
mal) and then in binary. Java defines the two most important mathematical con‐
stants, e and π as constants in java.lang.Math like this:
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1 In fact, they are actually two of the known examples of transcendental numbers.

public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

Of course, these constants are actually irrational numbers and cannot be precisely
expressed as a fraction, or by any finite decimal number.1 This means that whenever
we try to represent them in a computer, there is always rounding error. Let’s sup‐
pose we only want to deal with eight digits of π, and we want to represent the digits
as a whole number. We can use a representation like this:

314159265 · 10−8

This starts to suggest the basis of how floating-point numbers work. We use some of
the bits to represent the significant digits (314159265, in our example) of the num‐
ber and some bits to represent the exponent of the base (-8, in our example). The
collection of significant digits is called the significand and the exponent describes
whether we need to shift the significand up or down to get to the desired number.

Of course, in the examples we’ve met until now, we’ve been working in base-10.
Computers use binary, so we need to use this as the base in our floating-point exam‐
ples. This introduces some additional complications.

The number 0.1 cannot be expressed as a finite sequence of
binary digits. This means that virtually all calculations that
humans care about will lose precision when performed in
floating point, and rounding error is essentially inevitable.

Let’s look at an example that shows the rounding problem:

double d = 0.3;
System.out.println(d); // Special-cased to avoid ugly representation

double d2 = 0.2;
// Should be -0.1 but prints -0.09999999999999998
System.out.println(d2 - d);

The standard that describes floating-point arithmetic is IEEE-754 and Java’s support
for floating point is based on that standard. The standard uses 24 binary digits for
standard precision and 53 binary digits for double precision.

As we mentioned briefly in Chapter 2, Java can be more accurate than the standard
requires, by using hardware features if they are available. In extremely rare cases,
usually where very strict compatability with other (possibly older) platforms is
required, this behavior can be switched off by using strictfp to mandate perfect
compliance with the IEEE-754 standard. This is almost never necessary and the vast
majority of programmers will never need to use (or even see) this keyword. C
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BigDecimal
Rounding error is a constant source of headaches for programmers who work with
floating-point numbers. In response, Java has a class java.math.BigDecimal that
provides arbitrary precision arithmetic, in a decimal representation. This works
around the problem of 0.1 not having a finite representation in binary, but there are
still some edge conditions when converting to or from Java’s primitive types, as you
can see:

double d = 0.3;
System.out.println(d);

BigDecimal bd = new BigDecimal(d);
System.out.println(bd);

bd = new BigDecimal("0.3");
System.out.println(bd);

However, even with all arithmetic performed in base-10, there are still numbers,
such as 1/3, that do not have a terminating decimal representation. Let’s see what
happens when we try to represent such numbers using BigDecimal:

bd = new BigDecimal(BigInteger.ONE);
bd.divide(new BigDecimal(3.0));
System.out.println(bd); // Should be 1/3

As BigDecimal can’t represent 1/3 precisely, the call to divide() blows up with
ArithmeticException. When working with BigDecimal, it is therefore necessary to
be acutely aware of exactly which operations could result in a nonterminating deci‐
mal result. To make matters worse, ArithmeticException is an unchecked, runtime
exception and so the Java compiler does not even warn about possible exceptions of
this type.

As as a final note on floating-point numbers, the paper “What Every Computer Sci‐
entist Should Know About Floating-Point Arithmetic” by David Goldberg should be
considered essential further reading for all professional programmers. It is easily
and freely obtainable on the Internet.

Java’s Standard Library of Mathematical Functions
To conclude this look at Java’s support for numeric data and math, let’s take a quick
tour of the standard library of functions that Java ships with. These are mostly static
helper methods that are located on the class java.lang.Math and include functions 
like:

abs()
Returns the absolute value of a number. Has overloaded forms for various
primitive types.
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Trigonometric functions
Basic functions for computing the sine, cosine, tangent, etc. Java also includes
hyperbolic versions and the inverse functions (such as arc sine).

max(), min()
Overloaded functions to return the greater and smaller of two arguments (both
of the same numeric type).

floor()
Used to return the largest integer smaller than the argument (which is a dou‐
ble). ceil() returns the smallest integer larger than the argument.

pow(), exp(), log()
Functions for raising one number to the power of another, and for computing
exponentials and natural logarithms. log10() provides logarithms to base-10,
rather than the natural base.

Let’s look at some simple examples of how to use these functions:

System.out.println(Math.abs(2));
System.out.println(Math.abs(-2));

double cosp3 = Math.cos(0.3);
double sinp3 = Math.sin(0.3);
System.out.println((cosp3 * cosp3 + sinp3 * sinp3)); // Always 1.0

System.out.println(Math.max(0.3, 0.7));
System.out.println(Math.max(0.3, -0.3));
System.out.println(Math.max(-0.3, -0.7));

System.out.println(Math.min(0.3, 0.7));
System.out.println(Math.min(0.3, -0.3));
System.out.println(Math.min(-0.3, -0.7));

System.out.println(Math.floor(1.3));
System.out.println(Math.ceil(1.3));
System.out.println(Math.floor(7.5));
System.out.println(Math.ceil(7.5));

System.out.println(Math.round(1.3)); // Returns long
System.out.println(Math.round(7.5)); // Returns long

System.out.println(Math.pow(2.0, 10.0));
System.out.println(Math.exp(1));
System.out.println(Math.exp(2));
System.out.println(Math.log(2.718281828459045));
System.out.println(Math.log10(100_000));
System.out.println(Math.log10(Integer.MAX_VALUE));

System.out.println(Math.random());
System.out.println("Let's toss a coin: ");
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2 It is very difficult to get computers to produce true random numbers, and in the rare cases where
this is done, specialized hardware is usually necessary.

if (Math.random() > 0.5) {
    System.out.println("It's heads");
} else {
    System.out.println("It's tails");
}

To conclude this section, let’s briefly discuss Java’s random() function. When this is
first called, it sets up a new instance of java.util.Random. This is a pseudorandom
number generator (PRNG)—a deterministic piece of code that produces numbers
that look random but are actually produced by a mathematical formula.2 In Java’s
case, the formula used for the PRNG is pretty simple, for example:

    // From java.util.Random
    public double nextDouble() {
        return (((long)(next(26)) << 27) + next(27)) * DOUBLE_UNIT;
    }

If the sequence of pseudorandom numbers always starts at the same place, then
exactly the same stream of numbers will be produced. To get around this problem,
the PRNG is seeded by a value that should contain as much true randomness as
possible. For this source of randomness for the seed value, Java uses a CPU counter
value that is normally used for high-precision timing.

While Java’s built-in pseudorandom numbers are fine for
most general applications, some specialist applications
(notably cryptography and some types of simulations) have
much more stringent requirements. If you are working on
an application of that sort, seek expert advice from pro‐
grammers who are already working in the area.

Now that we’ve looked at text and numeric data, let’s move on to look at another of
the most frequently encountered kinds of data: date and time information.

Java 8 Date and Time
Almost all business software applications have some notion of date and time. When
modeling real-world events or interactions, collecting a point at which the event
occurred is critical for future reporting or comparison of domain objects. Java 8
brings a complete overhaul to the way that developers work with date and time.
This section introduces those concepts for Java 8. In earlier versions, the only sup‐
port is via classes such as java.util.Date that do not model the concepts. Code
that uses the older APIs should move as soon as possible.
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Introducing the Java 8 Date and Time API
Java 8 introduces a new package java.time, which contains the core classes that
most developers work with. It is split into four subpackages:

java.time.chrono
Alternative chronologies that developers using calendaring systems that do not
follow the ISO standard will interact with. An example would be a Japanese cal‐
endaring system.

java.time.format

Contains the DateTimeFormatter used for converting date and time objects
into a String and also for parsing strings into the data and time objects.

java.time.temporal
Contains the interfaces required by the core date and time classes and also
abstractions (such as queries and adjusters) for advanced operations with dates.

java.time.zone
Classes used for the underlying time zone rules; most developers won’t require
this package.

One of the most important concepts when representing time is the idea of an
instantaneous point on the timeline of some entity. While this concept is well
defined within, for example, Special Relativity, representing this within a computer
requires us to make some assumptions. In Java 8, we represent a single point in time 
as an Instant, which has these key assumptions:

• We cannot represent more seconds than can fit into a long.
• We cannot represent time more precisely than nanosecond precision.

This means that we are restricting ourselves to modeling time in a manner that is
consistent with the capabilities of current computer systems. However, there is
another fundamental concept that should also be introduced.

An Instant is about a single event in space-time. However, it is far from uncom‐
mon for programmers to have to deal with intervals between two events, and so Java
8 also introduces the java.time.Duration class. This class ignores calendar effects
that might arise (e.g., from daylight saving time). With this basic conception of
instants and durations between events, let’s move on to unpack the possible ways of
thinking about an instant.

The parts of a timestamp
In Figure 9-1, we show the breakdown of the different parts of a timestamp in a
number of possible ways. C
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Figure 9-1. Breaking apart a timestamp

The key concept here is that there are a number of different abstractions that might
be appropriate at different times. For example, there are applications where a Local
Date is key to business processing, where the needed granularity is a business day.
Alternatively, some applications require subsecond, or even millisecond precision.
Developers should be aware of their domain and use a suitable representation
within their application.

Example
The date and time API can be a lot to take in at first glance, so let’s start by looking
at an example, and discuss a diary class that keeps track of birthdays. If you happen
to be very forgetful about birthdays, then a class like this (and especially methods
like getBirthdaysInNextMonth()) might be very helpful:

public class BirthdayDiary {
    private Map<String, LocalDate> birthdays;

    public BirthdayDiary() {
        birthdays = new HashMap<>();
    }

    public LocalDate addBirthday(String name, int day, int month,
                                 int year) {
        LocalDate birthday = LocalDate.of(year, month, day);
        birthdays.put(name, birthday);
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        return birthday;
    }

    public LocalDate getBirthdayFor(String name) {
        return birthdays.get(name);
    }

    public int getAgeInYear(String name, int year) {
        Period period = Period.between(birthdays.get(name),
            birthdays.get(name).withYear(year));

        return period.getYears();
    }

    public Set<String> getFriendsOfAgeIn(int age, int year) {
        return birthdays.keySet().stream()
                .filter(p -> getAgeInYear(p, year) == age)
                .collect(Collectors.toSet());
    }

    public int getDaysUntilBirthday(String name) {
        Period period = Period.between(LocalDate.now(),
            birthdays.get(name));
        return period.getDays();
    }

    public Set<String> getBirthdaysIn(Month month) {
        return birthdays.entrySet().stream()
                .filter(p -> p.getValue().getMonth() == month)
                .map(p -> p.getKey())
                .collect(Collectors.toSet());
    }

    public Set<String> getBirthdaysInNextMonth() {
        return getBirthdaysIn(LocalDate.now().getMonth());
    }

    public int getTotalAgeInYears() {
        return birthdays.keySet().stream()
                .mapToInt(p -> getAgeInYear(p,
                      LocalDate.now().getYear()))
                .sum();
    }
}

This class shows how to use the low-level API to build up useful functionality. It
also uses innovations such as the Java Streams API, and demonstrates how to use
LocalDate as an immutable class and how dates should be treated as values.
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Queries
Under a wide variety of circumstances we may find ourselves wanting to answer a
question about a particular temporal object. Some example questions we may want
answers to are:

• Is the date before March 1st?
• Is the date in a leap year?
• How many days is it from today until my next birthday?

This is acheived by the use of the TemporalQuery interface, which is defined like
this:

public interface TemporalQuery<R> {
    R queryFrom(TemporalAccessor temporal);
}

The parameter to queryFrom() should not be null, but if the result indicates that a
value was not found, null could be used as a return value.

The Predicate interface can be thought of as a query that can
only represent answers to yes-or-no questions. Temporal
queries are more general and can return a value of “How
many?” or “Which?” instead of just “yes” or “no.”

Let’s look at an example of a query in action, by considering a query that answers
the following question: “Which quarter of the year is this date in?” Java 8 does not
support the concept of a quarter directly. Instead, code like this is used:

LocalDate today = LocalDate.now();
Month currentMonth = today.getMonth();
Month firstMonthofQuarter = currentMonth.firstMonthOfQuarter();

This still doesn’t give quarter as a separate abstraction and instead special case code
is still needed. So let’s slightly extend the JDK support by defining this enum type:

public enum Quarter {
    FIRST, SECOND, THIRD, FOURTH;
}

Now, the query can be written as:

public class QuarterOfYearQuery implements TemporalQuery<Quarter> {
    @Override
    public Quarter queryFrom(TemporalAccessor temporal) {
        LocalDate now = LocalDate.from(temporal);

        if(now.isBefore(now.with(Month.APRIL).withDayOfMonth(1))) {
            return Quarter.FIRST;
        } else if(now.isBefore(now.with(Month.JULY)
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                               .withDayOfMonth(1))) {
            return Quarter.SECOND;
        } else if(now.isBefore(now.with(Month.NOVEMBER)
                               .withDayOfMonth(1))) {
            return Quarter.THIRD;
        } else {
           return Quarter.FOURTH;
        }
    }
}

TemporalQuery objects can be used directly or indirectly. Let’s look at an example of
each:

QuarterOfYearQuery q = new QuarterOfYearQuery();

// Direct
Quarter quarter = q.queryFrom(LocalDate.now());
System.out.println(quarter);

// Indirect
quarter = LocalDate.now().query(q);
System.out.println(quarter);

Under most circumstances, it is better to use the indirect approach, where the query
object is passed as a parameter to query(). This is because it is normally a lot clearer
to read in code.

Adjusters
Adjusters modify date and time objects. Suppose, for example, that we want to
return the first day of a quarter that contains a particular timestamp:

public class FirstDayOfQuarter implements TemporalAdjuster {
    @Override
    public Temporal adjustInto(Temporal temporal) {

        final int currentQuarter = YearMonth.from(temporal)
                .get(IsoFields.QUARTER_OF_YEAR);

        switch (currentQuarter) {
            case 1:
                return LocalDate.from(temporal)
                        .with(TemporalAdjusters.firstDayOfYear());
            case 2:
                return LocalDate.from(temporal)
                        .withMonth(Month.APRIL.getValue())
                        .with(TemporalAdjusters.firstDayOfMonth());
            case 3:
                return LocalDate.from(temporal)
                        .withMonth(Month.JULY.getValue())
                        .with(TemporalAdjusters.firstDayOfMonth());
            case 4:
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                return LocalDate.from(temporal)
                        .withMonth(Month.OCTOBER.getValue())
                        .with(TemporalAdjusters.firstDayOfMonth());
            default:
                return null; // Will never happen
        }
    }
}

Let’s look at an example of how to use an adjuster:

LocalDate now = LocalDate.now();
Temporal fdoq = now.with(new FirstDayOfQuarter());
System.out.println(fdoq);

The key here is the with() method, and the code should be read as taking in one
Temporal object and returning another object that has been modified. This is com‐
pletely usual for APIs that work with immutable objects.

Legacy Date and Time
Unfortunately, many applications are not yet converted to use the superior date and
time libraries that ship with Java 8. So, for completeness, we briefly mention the leg‐
acy date and time support (which is based on java.util.Date).

The legacy date and time classes, especially
java.util.Date, should not be used in Java 8
environments.

In older versions of Java, java.time is not available. Instead, programmers rely
upon the legacy and rudimentary support provided by java.util.Date. Histori‐
cally, this was the only way to represent timestamps, and although named Date this
class actually consisted of both a date and a time component—and this led to a lot
of confusion for many programmers.

There are many problems with the legacy support provided by Date, for example:

• The Date class is incorrectly factored. It doesn’t actually refer to a date, and
instead is more like a timestamp. It turns out that we need different representa‐
tions for a date, versus a date and time, versus an instantaneous timestamp.

• Date is mutable. We can obtain a reference to a date, and then change when it
refers to.

• The Date class doesn’t actually accept ISO-8601, the universal ISO date stan‐
dard, as being as valid date.

• Date has a very large number of deprecated methods.
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The current JDK uses two constructors for Date—the void constructor that is
intended to be the “now constructor," and a constructor that takes a number of
milliseconds since epoch.

Conclusion
In this chapter, we’ve met several different classes of data. Textual and numeric data
are the most obvious examples, but as working programmers we will meet a large
number of different sorts of data. Let’s move on to look at whole files of data, and
new ways to work with I/O and networking. Fortunately, Java provides good sup‐
port for dealing with many of these abstractions.
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10
File Handling and I/O

Java has had input/output (I/O) support since the very first version. However, due
to Java’s strong desire for platform independence, the earlier versions of I/O func‐
tionality emphasized portability over functionality. As a result, they were not always
easy to work with.

We’ll see later in the chapter how the original APIs have been supplemented—they
are now rich, fully featured, and very easy to develop with. Let’s kick off the chapter
by looking at the original, “classic” approach to Java I/O, which the more modern
approaches layer on top of.

Classic Java I/O
The File class is the cornerstone of Java’s original way to do file I/O. This abstrac‐
tion can represent both files and directories, but in doing so is sometimes a bit cum‐
bersome to deal with, and leads to code like this:

// Get a file object to represent the user's home directory
File homedir = new File(System.getProperty("user.home"));

// Create an object to represent a config file (should
// already be present in the home directory)
File f = new File(homedir, "app.conf");

// Check the file exists, really is a file & is readable
if (f.exists() && f.isFile() && f.canRead()) {

  // Create a file object for a new configuration directory
  File configdir = new File(f, ".configdir");
  // And create it
  configdir.mkdir();
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  // Finally, move the config file to its new home
  f.renameTo(new File(configdir, ".config"));
}

This shows some of the flexibility possible with the File class, but also demon‐
strates some of the problems with the abstraction. It is very general, and this
requires a lot of methods to interrogate a File object in order to determine what it
actually represents and its capabilities.

Files
The File class has a very large number of methods on it, but some basic functional‐
ity (notably a way to read the contents of a file) is not, and never has been provided
directly.

Here’s a quick summary of File methods:

// Permissions management
boolean canX = f.canExecute();
boolean canR = f.canRead();
boolean canW = f.canWrite();

boolean ok;
ok = f.setReadOnly();
ok = f.setExecutable(true);
ok = f.setReadable(true);
ok = f.setWritable(false);

// Different views of the file's name
File absF = f.getAbsoluteFile();
File canF = f.getCanonicalFile();
String absName = f.getAbsolutePath();
String canName = f.getCanonicalPath();
String name = f.getName();
String pName = getParent();
URI fileURI = f.toURI(); // Create URI for File path

// File metadata
boolean exists = f.exists();
boolean isAbs = f.isAbsolute();
boolean isDir = f.isDirectory();
boolean isFile = f.isFile();
boolean isHidden = f.isHidden();
long modTime = f.lastModified(); // milliseconds since epoch
boolean updateOK = f.setLastModified(updateTime); // milliseconds
long fileLen = f.length();

// File management operations
boolean renamed = f.renameTo(destFile);
boolean deleted = f.delete();

// Create won't overwrite existing file
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boolean createdOK = f.createNewFile();

// Temporary file handling
File tmp = File.createTempFile("my-tmp", ".tmp");
tmp.deleteOnExit();

// Directory handling
boolean createdDir = dir.mkdir();
String[] fileNames = dir.list();
File[] files = dir.listFiles();

The File class also has a few methods on it that aren’t a perfect fit for the abstrac‐
tion. They largely involve interrogating the filesystem (e.g., inquiring about avail‐
able free space):

long free, total, usable;

free = f.getFreeSpace();
total = f.getTotalSpace();
usable = f.getUsableSpace();

File[] roots = File.listRoots(); // all available Filesystem roots

Streams
The I/O stream abstraction (not to be confused with the streams that are used when
dealing with the Java 8 Collection APIs) was present in Java 1.0, as a way of dealing
with sequential streams of bytes from disks or other sources.

The core of this API is a pair of abstract classes, InputStream and OutputStream.
These are very widely used, and in fact the “standard” input and output streams,
which are called System.in and System.out, are streams of this type. They are pub‐
lic, static fields of the System class, and are often used in even the simplest pro‐
grams:

System.out.println("Hello World!");

Specific subclasses of streams, including FileInputStream, and FileOutputStream
can be used to operate on individual bytes in a file—for example, by counting all the
times ASCII 97 (small letter a) occurs in a file:

try (InputStream is = new FileInputStream("/Users/ben/cluster.txt")) {
  byte[] buf = new byte[4096];
  int len, count = 0;
  while ((len = is.read(buf)) > 0) {
    for (int i=0; i<len; i++)
      if (buf[i] == 97) count++;
  }
  System.out.println("'a's seen: "+ count);
} catch (IOException e) {
  e.printStackTrace();
}
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This approach to dealing with on-disk data can lack some flexibility—most develop‐
ers think in terms of characters, not bytes. To allow for this, the streams are usually
combined with the higher-level Reader and Writer classes, that provide a character-
stream level of interaction, rather than the low-level byte stream provided by Input
Stream and OutputStream and their subclasses.

Readers and Writers
By moving to an abstraction that deals in characters, rather than bytes, developers
are presented with an API that is much more familiar, and that hides many of the
issues with character encoding, Unicode, and so on.

The Reader and Writer classes are intended to overlay the byte stream classes, and
to remove the need for low-level handling of I/O streams. They have several sub‐
classes that are often used to layer on top of each other, such as:

• FileReader

• BufferedReader

• InputStreamReader

• FileWriter

• PrintWriter

• BufferedWriter

To read all lines in from a file, and print them out, we use a BufferedReader layered
on top of a FileReader, like this:

try (BufferedReader in =
  new BufferedReader(new FileReader(filename))) {
  String line;

  while((line = in.readLine()) != null) {
    System.out.println(line);
  }
} catch (IOException e) {
  // Handle FileNotFoundException, etc. here
}

If we need to read in lines from the console, rather than a file, we will usually use an
InputStreamReader applied to System.in. Let’s look at an example where we want
to read in lines of input from the console, but treat input lines that start with a spe‐
cial character as special—commands (“metas”) to be processed, rather than regular
text. This is a common feature of many chat programs, including IRC. We’ll use
regular expressions from Chapter 9 to help us:

Pattern SHELL_META_START = Pattern.compile("^#(\\w+)\\s*(\\w+)?");

try (BufferedReader console =
  new BufferedReader(new InputStreamReader(System.in))) {
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  String line;

  READ: while((line = console.readLine()) != null) {
    // Check for special commands ("metas")
    Matcher m = SHELL_META_START.matcher(line);
    if (m.find()) {
      String metaName = m.group(1);
      String arg = m.group(2);
      doMeta(metaName, arg);
      continue READ;
    }

    System.out.println(line);
  }
} catch (IOException e) {
  // Handle FileNotFoundException, etc. here
}

To output text to a file, we can use code like this:

File f = new File(System.getProperty("user.home") 
 + File.separator + ".bashrc");
try (PrintWriter out
   = new PrintWriter(new BufferedWriter(new FileWriter(f)))) {
  out.println("## Automatically generated config file. DO NOT EDIT");
} catch (IOException iox) {
  // Handle exceptions
}

This older style of Java I/O has a lot of other functionality that is occasionally useful.
For example, to deal with text files, the FilterInputStream class is quite often use‐
ful. Or for threads that want to communicate in a way similar to the classic “piped”
I/O approach, PipedInputStream, PipedReader, and their write counterparts are
provided.

Throughout this chapter so far, we have used the language feature known as "try-
with-resources” (TWR). This syntax was briefly introduced in “The try-with-
resources Statement” on page 63, but it is in conjunction with operations like I/O
that it comes into its fullest potential, and it has granted a new lease on life to the
older I/O style.

try-with-resources Revisited
To make the most of Java’s I/O capabilities, it is important to understand how and
when to use TWR. It is very easy to understand when code should use TWR—
whenever it is possible to do so.

Before TWR, resources had to be closed manually, and complex interactions
between resources that could fail to close led to buggy code that could leak
resources.
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In fact, Oracle’s engineers estimate that 60% of the resource handling code in the
initial JDK 6 release was incorrect. So, if even the platform authors can’t reliably get
manual resource handling right, then all new code should definitely be using TWR.

The key to TWR is a new interface—AutoCloseable. This is a new interface
(appears in Java 7) that is a direct superinterface of Closeable. It marks a resource
that must be automatically closed, and for which the compiler will insert special
exception-handling code.

Inside a TWR resource clause, only declarations of objects that implement Auto
Closeable objects may appear—but the developer may declare as many as required:

try (BufferedReader in = new BufferedReader(
                           new FileReader("profile"));
     PrintWriter out = new PrintWriter(
                         new BufferedWriter(
                           new FileWriter("profile.bak")))) {
  String line;
  while((line = in.readLine()) != null) {
    out.println(line);
  }
} catch (IOException e) {
  // Handle FileNotFoundException, etc. here
}

The consequences of this are that resources are automatically scoped to the try
block. The resources (whether readable or writable) are automatically closed in the
correct order, and the compiler inserts exception handling that takes dependencies
between resources into account.

The overall effect of TWR is similar to C#’s using keyword, and the developer may
regard it as “finalization done right.” As noted in “Finalization” on page 206, new
code should never directly use the finalization mechanism, and should always use
TWR instead. Older code should be refactored to use TWR as soon as is practicable.

Problems with Classic I/O
Even with the welcome addition of try-with-resources, the File class and friends
have a number of problems that make them less than ideal for extensive use when
performing even standard I/O operations. For instance:

• “Missing methods” for common operations
• Does not deal with filenames consistently across platforms
• Fails to have a unified model for file attributes (e.g., modeling read/write

access)
• Difficult to traverse unknown directory structures
• No platform or OS–specific features
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• Nonblocking operations for filesystems not supported

To deal with these shortcomings, Java’s I/O has evolved over several major releases.
It was really with the release of Java 7 that this support became truly easy and effec‐
tive to use.

Modern Java I/O
Java 7 brought in a brand new I/O API—usually called NIO.2—and it should be
considered almost a complete replacement for the original File approach to I/O.
The new classes are contained in the java.nio.file package.

The new API that was brought in with Java 7 is considerably easier to use for many
use cases. It has two major parts. The first is a new abstraction called Path (which
can be thought of as representing a file location, which may or may not have any‐
thing actually at that location). The second piece is lots of new convenience and
utility methods to deal with files and filesystems. These are contained as static
methods in the Files class.

Files
For example, when using the new Files functionality, a basic copy operation is now
as simple as:

File inputFile = new File("input.txt");
try (InputStream in = new FileInputStream(inputFile)) {
  Files.copy(in, Paths.get("output.txt"));
} catch(IOException ex) {
  ex.printStackTrace();
}

Let’s take a quick survey of some of the major methods in Files—the operation of
most of them is pretty self-explanatory. In many cases, the methods have return
types. We have omitted handling these, as they are rarely useful except for contrived
examples, and for duplicating the behavior of the equivalent C code:

Path source, target;
Attributes attr;
Charset cs = StandardCharsets.UTF_8;

// Creating files
//
// Example of path --> /home/ben/.profile
// Example of attributes --> rw-rw-rw-
Files.createFile(target, attr);

// Deleting files
Files.delete(target);
boolean deleted = Files.deleteIfExists(target);

// Copying/Moving files
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Files.copy(source, target);
Files.move(source, target);

// Utility methods to retrieve information
long size = Files.size(target);

FileTime fTime = Files.getLastModifiedTime(target);
System.out.println(fTime.to(TimeUnit.SECONDS));

Map<String, ?> attrs = Files.readAttributes(target, "*");
System.out.println(attrs);

// Methods to deal with file types
boolean isDir = Files.isDirectory(target);
boolean isSym = Files.isSymbolicLink(target);

// Methods to deal with reading and writing
List<String> lines = Files.readAllLines(target, cs);
byte[] b = Files.readAllBytes(target);

BufferedReader br = Files.newBufferedReader(target, cs);
BufferedWriter bwr = Files.newBufferedWriter(target, cs);

InputStream is = Files.newInputStream(target);
OutputStream os = Files.newOutputStream(target);

Some of the methods on Files provide the opportunity to pass optional arguments,
to provide additional (possibly implementation-specific) behavior for the operation.

Some of the API choices here produce occasionally annoying behavior. For exam‐
ple, by default, a copy operation will not overwrite an existing file, so we need to
specify this behavior as a copy option:

Files.copy(Paths.get("input.txt"), Paths.get("output.txt"),
           StandardCopyOption.REPLACE_EXISTING);

StandardCopyOption is an enum that implements an interface called CopyOption. 
This is also implemented by LinkOption. So Files.copy() can take any number of
either LinkOption or StandardCopyOption arguments. LinkOption is used to spec‐
ify how symbolic links should be handled (provided the underlying OS supports
symlinks, of course).

Path
Path is a type that may be used to locate a file in a filesystem. It represents a path
that is:

• System dependent
• Hierarchical
• Composed of a sequence of path elements
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• Hypothetical (may not exist yet, or may have been deleted)

It is therefore fundamentally  different to a File. In particular, the system depend‐
ency is manifested by Path being an interface, not a class. This enables different file‐
system providers to each implement the Path interface, and provide for system-
specific features while retaining the overall abstraction.

The elements of a Path consist of an optional root component, which identifies the
filesystem hierarchy that this instance belongs to. Note that, for example, relative
Path instances may not have a root component. In addition to the root, all Path
instances have zero or more directory names and a name element.

The name element is the element farthest from the root of the directory hierarchy
and represents the name of the file or directory. The Path can be thought of consist‐
ing of the path elements joined together by a special separator or delimiter.

Path is an abstract concept; it isn’t necessarily bound to any physical file path. This
allows us to talk easily about the locations of files that don’t exist yet. Java ships with
a Paths class that provides factory methods for creating Path instances.

Paths provides two get() methods for creating Path objects. The usual version
takes a String, and uses the default filesystem provider. The URI version takes
advantage of the ability of NIO.2 to plug in additional providers of bespoke filesys‐
tems. This is an advanced usage, and interested developers should consult the pri‐
mary documentation:

Path p = Paths.get("/Users/ben/cluster.txt");
Path p = Paths.get(new URI("file:///Users/ben/cluster.txt"));
System.out.println(p2.equals(p));

File f = p.toFile();
System.out.println(f.isDirectory());
Path p3 = f.toPath();
System.out.println(p3.equals(p));

This example also shows the easy interoperation between Path and File objects.
The addition of a toFile() method to Path and  a toPath() method to File allows
the developer to move effortlessly between the two APIs and allows for a straight‐
forward approach to refactoring the internals of code based on File to use Path
instead.

We can also make use of some useful “bridge” methods that the Files class also
provides. These provide convenient access to the older I/O APIs—for example, by
providing convenience methods to open Writer objects to specified Path locations:

Path logFile = Paths.get("/tmp/app.log");
try (BufferedWriter writer =
       Files.newBufferedWriter(logFile, StandardCharsets.UTF_8,
                               StandardOpenOption.WRITE)) {
  writer.write("Hello World!");
  // ...
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} catch (IOException e) {
  // ...
}

We’re making use of the StandardOpenOption enum, which provides similar capa‐
bilities to the copy options, but for the case of opening a new file instead.

In this example use case, we have used the Path API to:

• Create a Path corresponding to a new file

• Use the Files class to create that new file

• Open a Writer to that file
• Write to that file
• Automatically close it when done

In our next example, we’ll build on this to manipulate a .jar file as a FileSystem in
its own right, modifying it to add an additional file directly into the JAR. JAR files
are just ZIP files, so this technique will also work for .zip archives:

Path tempJar = Paths.get("sample.jar");
try (FileSystem workingFS =
  FileSystems.newFileSystem(tempJar, null)) {
  Path pathForFile = workingFS.getPath("/hello.txt");
  List<String> ls = new ArrayList<>();
  ls.add("Hello World!");

  Files.write(pathForFile, ls, Charset.defaultCharset(),
              StandardOpenOption.WRITE, StandardOpenOption.CREATE);
}

This shows how we use a FileSystem to make the Path objects inside it, via the
getPath() method. This enables the developer to effectively treat FileSystem
objects as black boxes.

One of the criticisms of Java’s original I/O APIs was the lack of support for native
and high-performance I/O. A solution was initially added in Java 1.4, the Java New
I/O (NIO) API, and it has been successively refined in successive Java versions.

NIO Channels and Buffers
NIO buffers are a low-level abstraction for high-performance I/O. They provide a
container for a linear sequence of elements of a specific primitive type. We’ll work
with the ByteBuffer (the most common case) in our examples.

ByteBuffer
This is a sequence of bytes, and can conceptually be thought of as a performance-
critical alternative to working with a byte[]. To get the best possible performance,
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ByteBuffer provides support for dealing directly with the native capabilities of the
platform the JVM is running on.

This approach is called the “direct buffers” case, and it bypasses the Java heap wher‐
ever possible. Direct buffers are allocated in native memory, not on the standard
Java heap, and they are not subject to garbage collection in the same way as regular
on-heap Java objects.

To obtain a direct ByteBuffer, call the allocateDirect() factory method. An on-
heap version, allocate(), is also provided, but in practice this is not often used.

A third way to obtain a byte buffer is to wrap an existing byte[]—this will give an
on-heap buffer that serves to provide a more object-oriented view of the underlying
bytes:

ByteBuffer b = ByteBuffer.allocateDirect(65536);
ByteBuffer b2 = ByteBuffer.allocate(4096);

byte[] data = {1, 2, 3};
ByteBuffer b3 = ByteBuffer.wrap(data);

Byte buffers are all about low-level access to the bytes. This means that developers
have to deal with the details manually—including the need to handle the endianness
of the bytes and the signed nature of Java’s integral primitives:

b.order(ByteOrder.BIG_ENDIAN);

int capacity = b.capacity();
int position = b.position();
int limit = b.limit();
int remaining = b.remaining();
boolean more = b.hasRemaining();

To get data in or out of a buffer, we have two types of operation—single value,
which reads or writes a single value, and bulk, which takes a byte[] or ByteBuffer
and operates on a (potentially large) number of values as a single operation. It is
from the bulk operations that performance gains would expect to be realized:

b.put((byte)42);
b.putChar('x');
b.putInt(0xcafebabe);

b.put(data);
b.put(b2);

double d = b.getDouble();
b.get(data, 0, data.length);

The single value form also supports a form used for absolute positioning within the
buffer:

b.put(0, (byte)9);
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Buffers are an in-memory abstraction. To affect the outside world (e.g., the file or
network), we need to use a Channel, from the package java.nio.channels. Chan‐
nels represent connections to entities that can support read or write operations.
Files and sockets are the usual examples of channels, but we could consider custom
implementations used for low-latency data processing.

Channels are open when they’re created, and can subsequently be closed. Once
closed, they cannot be reopened. Channels are usually either readable or writable,
but not both. The key to understanding channels is that:

• Reading from a channel puts bytes into a buffer
• Writing to a channel takes bytes from a buffer

For example, suppose we have a large file that we want to checksum in 16M chunks:

FileInputStream fis = getSomeStream();
boolean fileOK = true;

try (FileChannel fchan = fis.getChannel()) {
  ByteBuffer buffy = ByteBuffer.allocateDirect(16 * 1024 * 1024);
  while(fchan.read(buffy) != -1 || buffy.position() > 0 || fileOK) {
    fileOK = computeChecksum(buffy);
    buffy.compact();
  }
} catch (IOException e) {
  System.out.println("Exception in I/O");
}

This will use native I/O as far as possible, and will avoid a lot of copying of bytes on
and off the Java heap. If the computeChecksum() method has been well imple‐
mented, then this could be a very performant implementation.

Mapped Byte Buffers
These are a type of direct byte buffer that contain a memory-mapped file (or a
region of one). They are created from a FileChannel object, but note that the File
object corresponding to the MappedByteBuffer must not be used after the memory-
mapped operations, or an exception will be thrown. To mitigate this, we again use
try-with-resources, to scope the objects tightly:

try (RandomAccessFile raf =
  new RandomAccessFile(new File("input.txt"), "rw");
     FileChannel fc = raf.getChannel();) {

  MappedByteBuffer mbf =
    fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());
  byte[] b = new byte[(int)fc.size()];
  mbf.get(b, 0, b.length);
  for (int i=0; i<fc.size(); i++) {
    b[i] = 0; // Won't be written back to the file, we're a copy
  }
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  mbf.position(0);
  mbf.put(b); // Zeros the file
}

Even with buffers, there are limitations of what can be done in Java for large (e.g.,
transferring 10G between filesystems) I/O operations that perform synchronously
on a single thread. Before Java 7, these types of operations would typically be done
by writing custom multithreaded code, and managing a separate thread for per‐
forming a background copy. Let’s move on to look at the new asynchronous I/O fea‐
tures that were added with JDK 7.

Async I/O
The key to the new asynchronous functionality are some new subclasses of Channel
that can deal with I/O operations that need to be handed off to a background
thread. The same functionality can be applied to large, long-running operations,
and to several other use cases.

In this section, we’ll deal exclusively with AsynchronousFileChannel for file I/O,
but there are a couple of other asynchronous channels to be aware of. We’ll deal
with asynchronous sockets at the end of the chapter. We’ll look at:

• AsynchronousFileChannel for file I/O

• AsynchronousSocketChannel for client socket I/O

• AsynchronousServerSocketChannel for asynchronous sockets that accept
incoming connections

There are two different ways to interact with an asynchronous channel—Future

style, and callback style.

Future-Based Style
We’ll meet the Future interface in detail in Chapter 11, but for the purpose of this
chapter, it can be thought of as an ongoing task that may or may not have completed
yet. It has two key methods:

isDone()
Returns a Boolean indicating whether the task has finished.

get()
Returns the result. If finished, returns immediately. If not finished, blocks until
done.

Let’s look at an example of a program that reads a large file (possibly as large as 100
Mb) asynchronously:

try (AsynchronousFileChannel channel =
         AsynchronousFileChannel.open(Paths.get("input.txt"))) {
  ByteBuffer buffer = ByteBuffer.allocateDirect(1024 * 1024 * 100);
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  Future<Integer> result = channel.read(buffer, 0);

  while(!result.isDone()) {
    // Do some other useful work....
  }

  System.out.println("Bytes read: " + result.get());
}

Callback-Based Style
The callback style for asynchronous I/O is based on a CompletionHandler, which 
defines two methods, completed() and failed(), that will be called back when the
operation either succeeds or fails.

This style is useful if you want immediate notification of events in asynchronous
I/O—for example, if there are a large number of I/O operations in flight, but failure
of any single operation is not necessarily fatal:

byte[] data = {2, 3, 5, 7, 11, 13, 17, 19, 23};
ByteBuffer buffy = ByteBuffer.wrap(data);

CompletionHandler<Integer,Object> h =
  new CompletionHandler() {
  public void completed(Integer written, Object o) {
    System.out.println("Bytes written: " + written);
  }

  public void failed(Throwable x, Object o) {
    System.out.println("Asynch write failed: "+ x.getMessage());
  }
};

try (AsynchronousFileChannel channel =
       AsynchronousFileChannel.open(Paths.get("primes.txt"),
          StandardOpenOption.CREATE, StandardOpenOption.WRITE)) {

  channel.write(buffy, 0, null, h);
  Thread.sleep(1000); // Needed so we don't exit too quickly
}

The AsynchronousFileChannel object is associated with a background thread pool,
so that the I/O operation proceeds, while the original thread can get on with other
tasks.

By default, this uses a managed thread pool that is provided by the runtime. If
required, it can be created to use a thread pool that is managed by the application
(via an overloaded form of AsynchronousFileChannel.open()), but this is not
often necessary.

Finally, for completeness, let’s touch upon NIO’s support for multiplexed I/O. This
enables a single thread to manage multiple channels and to examine those channels
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to see which are ready for reading or writing. The classes to support this are in the
java.nio.channels package and include SelectableChannel and Selector.

These nonblocking multiplexed techniques can be extremely useful when writing
advanced applications that require high scalability, but a full discussion is outside
the scope of this book.

Watch Services and Directory Searching
The last class of asynchronous services we will consider are those that watch a direc‐
tory, or visit a directory (or a tree). The watch services operate by observing every‐
thing that happens within a directory—for example, the creation or modification of
files:

try {
  WatchService watcher = FileSystems.getDefault().newWatchService();

  Path dir = FileSystems.getDefault().getPath("/home/ben");
  WatchKey key = dir.register(watcher,
                        StandardWatchEventKinds.ENTRY_CREATE,
                        StandardWatchEventKinds.ENTRY_MODIFY,
                        StandardWatchEventKinds.ENTRY_DELETE);

  while(!shutdown) {
    key = watcher.take();
    for (WatchEvent<?> event: key.pollEvents()) {
      Object o = event.context();
      if (o instanceof Path) {
        System.out.println("Path altered: "+ o);
      }
    }
    key.reset();
  }
}

By contrast, the directory streams provide a view into all files currently in a single
directory. For example, to list all the Java source files and their size in bytes, we can
use code like:

try(DirectoryStream<Path> stream =
    Files.newDirectoryStream(Paths.get("/opt/projects"), "*.java")) {
  for (Path p : stream) {
    System.out.println(p +": "+ Files.size(p));
  }
}

One drawback of this API is that this will only return elements that match accord‐
ing to glob syntax, which is sometimes insufficiently flexible. We can go further by
using the new Files.find() and Files.walk() methods to address each element
obtained by a recursive walk through the directory:
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final Pattern isJava = Pattern.compile(".*\\.java$");
final Path homeDir = Paths.get("/Users/ben/projects/");
Files.find(homeDir, 255,
  (p, attrs) -> isJava.matcher(p.toString()).find())
     .forEach(q -> {System.out.println(q.normalize());});

It is possible to go even further, and construct advanced solutions based on the File
Visitor interface in java.nio.file, but that requires the developer to implement
all four methods on the interface, rather than just using a single lambda expression
as done here.

In the last section of this chapter, we will discuss Java’s networking support and the
core JDK classes that enable it.

Networking
The Java platform provides access to a large number of standard networking proto‐
cols, and these make writing simple networked applications quite easy. The core of
Java’s network support lives in the package java.net, with additional extensibility
provided by javax.net (and in particular, javax.net.ssl).

One of the easiest protocols to use for building applications is HyperText Transmis‐
sion Protocol (HTTP), the protocol that is used as the basic communication proto‐
col of the Web.

HTTP
HTTP is the highest-level network protocol that Java supports out of the box. It is a
very simple, text-based protocol, implemented on top of the standard TCP/IP stack.
It can run on any network port, but is usually found on port 80.

URL is the key class—it supports URLs of the form http://, ftp://, file://, and
https:// out of the box. It is very easy to use, and the simplest example of Java
HTTP support is to download a particular URL. With Java 8, this is just:

URL url = new URL("http://www.jclarity.com/");
try (InputStream in = url.openStream()) {
  Files.copy(in, Paths.get("output.txt"));
} catch(IOException ex) {
  ex.printStackTrace();
}

For more low-level control, including metadata about the request and response, we
can use URLConnection to give us more control, and achieve something like:

try {
  URLConnection conn = url.openConnection();

  String type = conn.getContentType();
  String encoding = conn.getContentEncoding();
  Date lastModified = new Date(conn.getLastModified());
  int len = conn.getContentLength();

304 | Chapter 10: File Handling and I/O



  InputStream in = conn.getInputStream();
} catch (IOException e) {
  // Handle exception
}

HTTP defines “request methods,” which are the operations that a client can make
on a remote resource. These methods are called:

GET, POST, HEAD, PUT, DELETE, OPTIONS, TRACE

Each has slightly different usages, for example:

• GET should only be used to retrieve a document and NEVER should perform
any side effects.

• HEAD is equivalent to GET except the body is not returned—useful if a pro‐
gram wants to quickly check whether a URL has changed.

• POST is used when we want to send data to a server for processing.

By default, Java always uses GET, but it does provide a way to use other methods for
building more complex applications; however, doing so is a bit involved. In this next
example, we’re using the search function provided by the BBC website to search for
news articles about Java:

URL url = new URL("http://www.bbc.co.uk/search");

String rawData = "q=java";
String encodedData = URLEncoder.encode(rawData, "ASCII");
String contentType = "application/x-www-form-urlencoded";

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setInstanceFollowRedirects(false);
conn.setRequestMethod("POST");
conn.setRequestProperty("Content-Type", contentType );
conn.setRequestProperty("Content-Length",
  String.valueOf(encodedData.length()));

conn.setDoOutput(true);
OutputStream os = conn.getOutputStream();
os.write( encodedData.getBytes() );

int response = conn.getResponseCode();
if (response == HttpURLConnection.HTTP_MOVED_PERM
    || response == HttpURLConnection.HTTP_MOVED_TEMP) {
  System.out.println("Moved to: "+ conn.getHeaderField("Location"));
} else {
  try (InputStream in = conn.getInputStream()) {
    Files.copy(in, Paths.get("bbc.txt"),
                StandardCopyOption.REPLACE_EXISTING);
  }
}
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Notice that we needed to send our query parameters in the body of a request, and to
encode them before sending. We also had to disable following of HTTP redirects,
and to treat any redirection from the server manually. This is due to a limitation of
the HttpURLConnection class, which does not deal well with redirection of POST
requests.

In most cases, when implementing these types of more advanced HTTP applica‐
tions, developers would usually use a specialist HTTP client library, such as the one
provided by Apache, rather than coding the whole thing from scratch using JDK
classes.

Let’s move on to look at the next layer down the networking stack, the Transmission
Control Protocol (TCP).

TCP
TCP is the basis of reliable network transport over the Internet. It ensures that web
pages and other Internet traffic are delivered in a complete and comprehensible
state. From a networking theory standpoint, the protocol properties that allow TCP
to function as this “reliability layer” for Internet traffic are:

Connection based
Data belongs to a single logical stream (a connection).

Guaranteed delivery
Data packets will be resent until they arrive.

Error checked
Damage caused by network transit will be detected and fixed automatically.

TCP is a two-way (or bidirectional) communication channel, and uses a special
numbering scheme (TCP Sequence numbers) for data chunks to ensure that both
sides of a communication stream stay in sync. In order to support many different
services on the same network host, TCP uses port numbers to identify services, and
ensures that traffic intended for one port does not go to a different one.

In Java, TCP is represented by the classes Socket and ServerSocket. They are used
to provide the capability to be the client and server side of the connection respec‐
tively—meaning that Java can be used both to connect to network services, and as a
language for implementing new services.

As an example, let’s consider reimplementing HTTP. This is a relatively simple, text-
based protocol. We’ll need to implement both sides of the connection, so let’s start
with a HTTP client on top of a TCP socket. To accomplish this, we will actually
need to implement the details of the HTTP protocol, but we do have the advantage
that we have complete control over the TCP socket.

We will need to both read and write from the client socket, and we’ll construct the
actual request line in accordance with the HTTP standard (which is known as RFC
2616). The resulting code will look something like this:
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String hostname = "www.example.com";
int port = 80;
String filename = "/index.html";

try (Socket sock = new Socket(hostname, port);
  BufferedReader from = new BufferedReader(
      new InputStreamReader(sock.getInputStream()));
  PrintWriter to = new PrintWriter(
      new OutputStreamWriter(sock.getOutputStream())); ) {

  // The HTTP protocol
  to.print("GET " + filename +
    " HTTP/1.1\r\nHost: "+ hostname +"\r\n\r\n");
  to.flush();

  for(String l = null; (l = from.readLine()) != null; )
    System.out.println(l);

}

On the server side, we’ll need to receive possibly multiple incoming connections. To
handle this, we’ll need to kick off a main server loop, then use accept() to take a
new connection from the operating system. The new connection then will need to
be quickly passed to a separate handler class, so that the main server loop can get
back to listening for new connections. The code for this is a bit more involved than
the client case:

// Handler class
private static class HttpHandler implements Runnable {
  private final Socket sock;
  HttpHandler(Socket client) { this.sock = client; }

  public void run() {
    try (BufferedReader in =
           new BufferedReader(
             new InputStreamReader(sock.getInputStream()));
         PrintWriter out =
           new PrintWriter(
             new OutputStreamWriter(sock.getOutputStream())); ) {
      out.print("HTTP/1.0 200\r\nContent-Type: text/plain\r\n\r\n");
      String line;
      while((line = in.readLine()) != null) {
        if (line.length() == 0) break;
        out.println(line);
      }
    } catch(Exception e) {
      // Handle exception
    }
  }
}

// Main server loop
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public static void main(String[] args) {
  try {
    int port = Integer.parseInt(args[0]);

    ServerSocket ss = new ServerSocket(port);
    for(;;) {
      Socket client = ss.accept();
      HTTPHandler hndlr = new HTTPHandler(client);
      new Thread(hndlr).start();
    }
  } catch (Exception e) {
    // Handle exception
  }
}

When designing a protocol for applications to communicate over TCP, there’s a sim‐
ple and profound network architecture principle, known as Postel’s Law (after Jon
Postel, one of the fathers of the Internet) that should always be kept in mind. It is
sometimes stated as follows: “Be strict about what you send, and liberal about what
you will accept.” This simple principle means that communication can remain
broadly possible in a network system, even in the event of quite imperfect imple‐
mentations.

Postel’s Law, when combined with the general principle that the protocol should be
as simple as possible (sometimes called the KISS principle), will make the develo‐
per’s job of implementing TCP-based communication much easier than it otherwise
would be.

Below TCP is the Internet’s general-purpose haulage protocol—the Internet Proto‐
col (IP) itself.

IP
IP is the “lowest common denominator” transport, and provides a useful abstrac‐
tion over the physical network technologies that are used to actually move bytes
from A to B.

Unlike TCP, delivery of an IP packet is not guaranteed, and a packet can be dropped
by any overloaded system along the path. IP packets do have a destination, but usu‐
ally no routing data—it’s the responsiblity of the (possibly many different) physical
transports along the route to actually deliver the data.

It is possible to create “datagram” services in Java that are based around single IP
packets (or those with a UDP header, instead of TCP), but this is not often required
except for extremely low-latency applications. Java uses the class DatagramSocket to
implement this functionality, although few developers should ever need to venture
this far down the network stack.

Finally, it’s worth noting some changes that are currently in-flight in the addressing
schemes that are used across the Internet. The current version of IP that is in use is
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IPv4, which has a 32-bit space of possible network addresses. This space is now very
badly squeezed, and various mitigation techniques have been deployed.

The next version of IP (IPv6) is coming but it is not widely used yet. However, in
the next 10 years, IPv6 should become much more widespread, and the good news
is that Java already has good support for the addressing scheme it introduces.
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11
Classloading, Reflection,

and Method Handles

In Chapter 3, we met Java’s Class objects, as a way of representing a live type in a
running Java process. In this chapter, we will build on this foundation to discuss
how the Java environment loads and makes new types available. In the second half
of the chapter, we will introduce Java’s introspection capabilities—both the original
Reflection API and the newer Method Handles capabilities.

Class Files, Class Objects, and Metadata
Class files, as we saw in Chapter 1, are  the result of compiling Java source files (or,
potentially, other languages) into the intermediate form used by the JVM. These are
binary files that are not designed to be human readable.

The runtime representation of these class files are the class objects that contain met‐
adata, which represents the Java type that the class file was created from.

Examples of Class Objects
You can obtain a  class object in Java in several ways. The simplest is:

Class<?> myCl = getClass();

This returns the class object of the instance that it is called from. However, as we
know from our survey of the public methods of Object, the getClass() method on
Object is public, so we can also obtain the class of an arbitrary object o:

Class<?> c = o.getClass();

Class objects for known types can also be written as “class literals”:
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// Express a class literal as a type name followed by ".class"
c = int.class; // Same as Integer.TYPE
c = String.class; // Same as "a string".getClass()
c = byte[].class; // Type of byte arrays

For primitive types and void, we also have class objects that are represented as liter‐
als:

// Obtain a Class object for primitive types with various 
// predefined constants
c = Void.TYPE; // The special "no-return-value" type
c = Byte.TYPE; // Class object that represents a byte
c = Integer.TYPE; // Class object that represents an int
c = Double.TYPE; // etc; see also Short, Character, Long, Float

For unknown types, we will have to use more sophisticated methods.

Class Objects and Metadata
The class objects contain metadata  about the given type. This includes the methods,
fields, constructors, etc. that are defined on the class in question. This metadata can
be accessed by the programmer to investigate the class, even if nothing is known
about the class when it is loaded.

For example, we can find all the deprecated methods in the class file (they will be
marked with the @Deprecated annotation):

Class<?> clz = getClassFromDisk();
for (Method m : clz.getMethods()) {
  for (Annotation a : m.getAnnotations()) {
    if (a.annotationType() == Deprecated.class) {
      System.out.println(m.getName());
    }
  }
}

We could also find the common ancestor class of a pair of class files. This simple
form will work when both classes have been loaded by the same classloader:

public static Class<?> commonAncestor(Class<?> cl1, Class<?> cl2) {
  if (cl1 == null || cl2 == null) return null;
  if (cl1.equals(cl2)) return cl1;
  if (cl1.isPrimitive() || cl2.isPrimitive()) return null;

  List<Class<?>> ancestors = new ArrayList<>();
  Class<?> c = cl1;
  while (!c.equals(Object.class)) {
    if (c.equals(cl2)) return c;
    ancestors.add(c);
    c = c.getSuperclass();
  }
  c = cl2;
  while (!c.equals(Object.class)) {
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    for (Class<?> k : ancestors) {
      if (c.equals(k)) return c;
    }
    c = c.getSuperclass();
  }

  return Object.class;
}

Class files have a very specific layout that they must conform to if they are to be
legal and loadable by the JVM. The sections of the class file are (in order):

• Magic number (all class files start with the four bytes CA FE BA BE in hexadeci‐
mal)

• Version of class file standard in use
• Constant pool for this class

• Access flags (abstract, public, etc.)
• Name of this class
• Inheritance info (e.g., name of superclass)
• Implemented Interfaces
• Fields
• Methods
• Attributes

The class file is a simple binary format, but it is not human readable. Instead, tools
like javap (see Chapter 13) should be used to comprehend the contents.

One of the most often used sections in the classfile is the Constant Pool—this con‐
tains representations of all the methods, classes, fields and constants that the class
needs to refer to (whether they are in this class, or another). It is designed so that
bytecodes can simply refer to a constant pool entry by its index number—which
saves space in the bytecode representation.

There are a number of different class file versions created by various Java versions.
However, one of Java’s backward compatibility rules is that JVMs (and tools) from
newer versions can always use older class files.

Let’s look at how the classloading process takes a collection of bytes on disk and
turns it into a new class object.

Phases of Classloading
Classloading is the process by which a new type is added to a running JVM process.
This is the only way that new code can enter the system, and the only way to turn
data into code in the Java platform. There are several phases to the process of class‐
loading, so let’s examine them in turn.
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Loading
The classloading process starts with a loading a byte array. This is usually read in
from a filesystem, but can be read from a URL or other location (often represented as
a Path object).

The Classloader::defineClass() method is responsible for turning a class file
(represented as a byte array) into a class object. It is a protected method and so is
not accessible without subclassing.

The first job of defineClass() is loading. This produces the skeleton of a class
object, corresponding to the class you’re attempting to load. By this stage, some
basic checks have been performed on the class (e.g., the constants in the constant
pool have been checked to ensure that they’re self-consistent).

However, loading doesn’t produce a complete class object by itself, and the class isn’t
yet usable. Instead, after loading, the class must be linked. This step breaks down
into separate subphases:

• Verification
• Preparation and resolution
• Initialization

Verification
Verification confirms that the class file conforms to expectations, and that it doesn’t
try to violate the JVM’s security model (see “Secure Programming and Classload‐
ing” on page 315 for details).

JVM bytecode is designed so that it can be (mostly) checked statically. This has the
effect of slowing down the classloading process but speeding up runtime (as checks
can be omitted).

The verification step is designed to prevent the JVM from executing bytecodes that
might crash it or put it into an undefined and untested state where it might be vul‐
nerable to other attacks by malicious code. Bytecode verification is a defense against
malicious hand-crafted Java bytecodes and untrusted Java compilers that might out‐
put invalid bytecodes.

The default methods mechanism works via classloading.
When an implementation of an interface is being loaded, the
class file is examined to see if implementations for default
methods are present. If they are, classloading continues nor‐
mally. If some are missing, the implementation is patched to
add in the default implementation of the missing methods.
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1 As in Chapter 6, we’re borrowing the expression transitive closure from the branch of mathemat‐
ics called graph theory.

Preparation and Resolution
After successful verification, the class is prepared for use. Memory is allocated and
static variables in the class are readied for initialization.

At this stage, variables aren’t initialized, and no bytecode from the new class has
been executed. Before we run any code, the JVM checks that every type referred to
by the new class file is known to the runtime. If the types aren’t known, they may
also need to be loaded—which can kick off the classloading process again, as the
JVM loads the new types.

This process of loading and discovery can execute iteratively until a stable set of
types is reached. This is called the “transitive closure” of the original type that was
loaded.1

Let’s look at a quick example, by examining the dependencies of java.lang.Object.
Figure 11-1 shows a simplified dependency graph for Object. It only shows the
direct dependencies of Object that are visible in the public API of Object, and the
direct, API-visible dependencies of those dependencies. In addition, the dependen‐
cies of Class on the reflection subsystem, and of PrintStream and PrintWriter on
the I/O subsystems, are shown in very simplified form.

In Figure 11.1 we can see part of the transitive closure of Object.

Initialization
Once resolved, the JVM can finally initialize the class. Static variables can be initial‐
ized and static initialization blocks are run.

This is the first time that the JVM is executing bytecode from the newly loaded
class. When the static blocks complete, the class is fully loaded and ready to go.

Secure Programming and Classloading
Java programs can dynamically load Java classes from a variety of sources, including
untrusted sources, such as websites reached across an insecure network. The ability
to create and work with such dynamic sources of code is one of the great strengths
and features of Java. To make it work successfully, however, Java puts great emphasis
on a security architecture that allows untrusted code to run safely, without fear of
damage to the host system.

Java’s classloading subsystem is where a lot of safety features are implemented. The
central idea of the security aspects of the classloading architecture is that there is
only one way to get new executable code into the process: a class.
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Figure 11-1. Transitive closure of types

This provides a “pinch point”—the only way to create a new class is to use the func‐
tionality provided by Classloader to load a class from a stream of bytes. By con‐
centrating on making classloading secure, we can constrain the attack surface that
needs to be protected.

One aspect of the JVM’s design that is extremely helpful is that the JVM is a stack
machine—so all operations are evaluated on a stack, rather than in registers. The
stack state can be deduced at every point in a method, and this can be used to
ensure that the bytecode doesn’t attempt to violate the security model.

Some of the security checks that are implemented by the JVM are:

• All the bytecode of the class has valid parameters.
• All methods are called with the right number of parameters of the correct static

types.
• Bytecode never tries to underflow or overflow the JVM stack.
• Local variables are not used before they are initialized.
• Variables are only assigned suitably typed values.
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• Field, method, and class access control modifiers must be respected.

• No unsafe casts (e.g., attempts to convert an int to a pointer).
• All branch instructions are to legal points within the same method.

Of fundamental importance is the approach to memory, and pointers. In assembly
and C/C++, integers and pointers are interchangeable, so an integer can be used as a
memory address. We can write it in assembly like this:

mov eax, [STAT] ; Move 4 bytes from addr STAT into eax

The lowest level of the Java security architecture involves the design of the Java Vir‐
tual Machine and the bytecodes it executes. The JVM does not allow any kind of
direct access to individual memory addresses of the underlying system, which pre‐
vents Java code from interfering with the native hardware and operating system.
These intentional restrictions on the JVM are reflected in the Java language itself,
which does not support pointers or pointer arithmetic.

Neither the language nor the JVM allow an integer to be cast to an object reference
or vice versa, and there is no way whatsoever to obtain an object’s address in mem‐
ory. Without capabilities like these, malicious code simply cannot gain a foothold.

Recall from Chapter 2 that Java has two types of values—primitives and object refer‐
ences. Theses are the only things that can be put into variables. Note that “object
contents” cannot be put into variables. Java has no equivalent of C’s struct and
always has pass-by-value semantics. For reference types, what is passed is a copy of
the reference—which is a value.

References are represented in the JVM as pointers—but they are not directly manip‐
ulated by the bytecode. In fact, bytecode does not have opcodes for “access memory
at location X.”

Instead, all we can do is access fields and methods—bytecode cannot call an arbi‐
trary memory location. This means that the JVM always knows the difference
between code and data. In turn, this prevents a whole class of stack overflow and
other attacks.

Applied Classloading
To apply knowledge of classloading, it’s important to fully understand
java.lang.ClassLoader.

This is an abstract class that is fully functional and has no abstract methods. The
abstract modifier exists only to ensure that users must subclass ClassLoader if
they want to make use of it.

In addition to the aforementioned defineClass() method, we can load classes via a
public loadClass() method. This is commonly used by the URLClassLoader sub‐
class, that can load classes from a URL or file path.

We can use URLClassLoader to load classes from the local disk like this:
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String current = new File( "." ).getCanonicalPath();
try (URLClassLoader ulr =
  new URLClassLoader(new URL[] {new URL("file://"+ current + "/")})) {
  Class<?> clz = ulr.loadClass("com.example.DFACaller");
  System.out.println(clz.getName());
}

The argument to loadClass() is the binary name of the class file. Note that in order
for the URLClassLoader to find the classes correctly, they need to be in the expected
place on the filesystem. In this example, the class com.example.DFACaller would
need to be found in a file com/example/DFACaller.class relative to the working
directory.

Alternatively, Class provides Class.forName(), a static method that can load
classes that are present on the classpath but that haven’t been referred to yet.

This method takes a fully qualified class name. For example:

Class<?> jdbcClz = Class.forName("oracle.jdbc.driver.OracleDriver");

It throws a ClassNotFoundException if class can’t be found. As the example indi‐
cates, this was commonly used in older versions of JDBC to ensure that the correct
driver was loaded, while avoiding a direct import dependency on the driver classes.

With the advent of JDBC 4.0, this initialization step is no longer required.

Class.forName() has an alternative, three-argument form, which is sometimes
used in conjunction with alternative class loaders:

Class.forName(String name, boolean inited, Classloader classloader);

There are a host of subclasses of ClassLoader that deal with individual special cases
of classloading—which fit into the classloader hierarchy.

Classloader Hierarchy
The JVM has a hierarchy of classloaders—each classloader in the system (apart
from the initial, “primordial” classloader) has a parent that they can delegate to.

The convention is that a classloader will ask its parent to resolve and load a class,
and will only perform the job itself if the parent classloader is unable to comply.
Some common classloaders are shown in Figure 11.2.

Primordial classloader
This is the first classloader to appear in any JVM process, and is only used to load
the core system classes (which are contained in rt.jar). This classloader does no veri‐
fication, and relies on the boot classpath being secure.

The boot classpath can be affected with the -Xbootclasspath switch—see Chap‐
ter 13 for details.
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Figure 11-2. Classloader hierarchy

Extension classloader
This classloader is only used to load JDK extensions—usually from the lib/ext direc‐
tory of the JVM installation directory.

It has the primordial classloader as its parent. It is not widely used, but does some‐
times play a role in implementing debuggers and related development tools.

This is also the classloader used to load the Nashorn JavaScript environment (see
Chapter 12).

Application classloader
This was historically sometimes called the system classloader, but this is a bad name,
as it doesn’t load the system (the primordial classloader does). Instead, it is the
classloader that loads application code from the classpath. It is the most commonly
encountered classloader, and has the extension classloader as its parent.

The application classloader is very widely used, but many advanced Java frame‐
works require functionality that the main classloaders do not supply. Instead, exten‐
sions to the standard classloaders are required. This forms the basis of “custom
classloading”—which relies on implementing a new subclass of ClassLoader.
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Custom classloader
When performing classloading, sooner or later we have to turn data into code. As
noted earlier, the defineClass() (actually a group of related methods) is responsi‐
ble for converting a byte[] into a class object.

This method is usually called from a subclass—for example, this simple custom
classloader that creates a class object from a file on disk:

public static class DiskLoader extends ClassLoader {
  public DiskLoader() {
    super(DiskLoader.class.getClassLoader());
  }

  public Class<?> loadFromDisk(String clzName) throws IOException {
    byte[] b = Files.readAllBytes(Paths.get(clzName));

    return defineClass(null, b, 0, b.length);
  }
}

Notice that in the preceding example we didn’t need to have the class file in the
“correct” location on disk, as we did for the URLClassLoader example.

We need to provide a classloader to act as parent for any custom classloader. In this
example, we provided the classloader that loaded the DiskLoader class (which
would usually be the application classloader).

Custom classloading is a very common technique in Java EE and advanced SE envi‐
ronments, and it provides very sophisticated capabilities to the Java platform. We’ll
see an example of custom classloading later on in this chapter.

One drawback of dynamic classloading is that when working with a class object that
we loaded dynamically, we typically have little or no information about the class. To
work effectively with this class, we will therefore usually have to use a set of
dynamic programming techniques known as reflection.

Reflection
Reflection is the capability of examining, operating on, and modifying objects at
runtime. This includes modifying their structure and behavior—even self-
modification.

Reflection is capable of working even when type and method names are not known
at compile time. It uses the essential metadata provided by class objects, and can dis‐
cover method or field names from the class object—and then acquire an object rep‐
resenting the method or field.

Instances can also be constructed reflexively (by using Class::newInstance() or
another constructor). With a reflexively constructed object, and a Method object, we
can then call any method on an object of a previously unknown type.
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This makes reflection a very powerful technique—so it’s important to understand
when we should use it, and when it’s overkill.

When to Use Reflection
Many, if not most Java frameworks use reflection in some capacity. Writing architec‐
tures that are flexible enough to cope with code that is unknown until runtime usu‐
ally requires reflection. For example, plug-in architectures, debuggers, code brows‐
ers and REPL-like environments are usually implemented on top of reflection.

Reflection is also widely used in testing, for example by the JUnit and TestNG libra‐
ries, and for mock object creation. If you’ve used any kind of Java framework then
you have almost certainly been using reflective code, even if you didn’t realize it.

To start using the Reflection API in your own code, the most important thing to
realize is that it is about accessing objects where virtually no information is known,
and that the interactions can be cumbersome because of this.

Wherever possible, if some static information is known about dynamically loaded
classes (e.g., that the classes loaded all implement a known interface), then this can
greatly simplify the interaction with the classes and reduce the burden of operating
reflectively.

It is a common mistake to try to create a reflective framework that tries to account
for all possible circumstances, instead of dealing only with the cases that are imme‐
diately applicable to the problem domain.

How to Use Reflection
The first step in any reflective operation is to get a Class object representing the
type to be operated on. From this, other objects, representing fields, methods, or
constructors can be accessed, and applied to instances of the unknown type.

To get an instance of an unknown type, the simplest way is to use the no-arg con‐
structor, which is made available directly via the Class object:

Class<?> clz = getSomeClassObject();
Object rcvr = clz.newInstance();

For constructors that take arguments, you will have to look up the precise construc‐
tor needed, represented as a Constructor object.

The Method objects are one of the most commonly used objects provided by Reflec‐
tion. We’ll discuss them in detail—the Constructor and Field objects are similar in
many respects.

Method objects
A class object contains a Method object for each method on the class. These are
lazily created after classloading, and so aren’t immediately visible in an IDE’s
debugger.
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Let’s look at the source code from Method to see what information and metadata is
held for each method:

private Class<?>                   clazz;
private int                        slot;
// This is guaranteed to be interned by the VM in the 1.4
// reflection implementation
private String                     name;
private Class<?>                   returnType;
private Class<?>[]                 parameterTypes;
private Class<?>[]                 exceptionTypes;
private int                        modifiers;
// Generics and annotations support
private transient String           signature;
// Generic info repository; lazily initialized
private transient MethodRepository genericInfo;
private byte[]                     annotations;
private byte[]                     parameterAnnotations;
private byte[]                     annotationDefault;
private volatile MethodAccessor    methodAccessor;

This provides all available information, including the exceptions the method can
throw, annotations (with a retention policy of RUNTIME), and even the generics
information that was otherwise removed by javac.

We can explore the metadata contained on the Method object, by calling accessor
methods, but by far the single biggest use case for Method is reflexive invocation.

The methods represented by these objects can be executed by reflection using the
invoke() method on Method. An example of invoking hashCode() on a String
object follows:

Object rcvr = "a";
try {
  Class<?>[] argTypes = new Class[] { };
  Object[] args = null;

  Method meth = rcvr.getClass().getMethod("hashCode", argTypes);
  Object ret = meth.invoke(rcvr, args);
  System.out.println(ret);

} catch (IllegalArgumentException | NoSuchMethodException |
         SecurityException e) {
  e.printStackTrace();
} catch (IllegalAccessException | InvocationTargetException x) {
  x.printStackTrace();
}

To get the Method object we want to use, we call getMethod() on the class object.
This will return a reference to a Method corresponding to a public method on the
class.

322 | Chapter 11: Classloading, Reflection, and Method Handles



Note that the static type of rcvr was declared to be Object. No static type informa‐
tion was used during the reflective invocation. The invoke() method also returns
Object, so the actual return type of hashCode() has been autoboxed to Integer.

This autoboxing is one of the aspects of Reflection where some of the slight awk‐
wardness of the API can be seen—which is the subject of the next section.

Problems with Reflection
Java’s Reflection API is often the only way to deal with dynamically loaded code, but
there are a number of annoyances in the API that can make it slightly awkward to
deal with:

• Heavy use of Object[] to represent call arguments and other instances.

• Also Class[] when talking about types.
• Methods can be overloaded on name, so we need an array of types to distin‐

guish between methods.
• Representing primitive types can be problematic—we have to manually box

and unbox.

void is a particular problem—there is a void.class, but it’s not used consistently.
Java doesn’t really know whether void is a type or not, and some methods in the
Reflection API use null instead.

This is cumbersome, and can be error prone—in particular, the slight verbosity of
Java’s array syntax can lead to errors.

One further problem is the treatment of non-public methods. Instead of using get
Method(), we must use getDeclaredMethod() to get a reference to a non-public
method, and then override the Java access control subsystem with setAccessible()
to allow it to be executed:

public class MyCache {
  private void flush() {
    // Flush the cache...
  }
}

Class<?> clz = MyCache.class;
try {
  Object rcvr = clz.newInstance();
  Class<?>[] argTypes = new Class[] { };
  Object[] args = null;

  Method meth = clz.getDeclaredMethod("flush", argTypes);
  meth.setAccessible(true);
  meth.invoke(rcvr, args);
} catch (IllegalArgumentException | NoSuchMethodException |
         InstantiationException | SecurityException e) {
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  e.printStackTrace();
} catch (IllegalAccessException | InvocationTargetException x) {
  x.printStackTrace();
}

However, it should be pointed out that reflection always involves unknown infor‐
mation. To some degree, we just have to live with some of this verbosity as the price
of dealing with reflective invocation, and the dynamic, runtime power that it gives
to the developer.

As a final example in this section, let’s show how to combine reflection with custom
classloading to inspect a class file on disk and see if it contains any deprecated
methods (these should be marked with @Deprecated):

public class CustomClassloadingExamples {
    public static class DiskLoader extends ClassLoader {

        public DiskLoader() {
            super(DiskLoader.class.getClassLoader());
        }

        public Class<?> loadFromDisk(String clzName)
          throws IOException {
            byte[] b = Files.readAllBytes(Paths.get(clzName));

            return defineClass(null, b, 0, b.length);
        }
    }

    public void findDeprecatedMethods(Class<?> clz) {
        for (Method m : clz.getMethods()) {
            for (Annotation a : m.getAnnotations()) {
                if (a.annotationType() == Deprecated.class) {
                    System.out.println(m.getName());
                }
            }
        }
    }

    public static void main(String[] args)
      throws IOException, ClassNotFoundException {
        CustomClassloadingExamples rfx =
          new CustomClassloadingExamples();

        if (args.length > 0) {
            DiskLoader dlr = new DiskLoader();
            Class<?> clzToTest = dlr.loadFromDisk(args[0]);
            rfx.findDeprecatedMethods(clzToTest);
        }
    }
}

324 | Chapter 11: Classloading, Reflection, and Method Handles



Dynamic Proxies

One last piece of the Java Reflection story is the creation of dynamic proxies. These
are classes (which extend java.lang.reflect.Proxy) that implement a number of
interfaces. The implementing class is constructed dynamically at runtime, and for‐
wards all calls to an invocation handler object:

InvocationHandler h = new InvocationHandler() {
  @Override
  public Object invoke(Object proxy, Method method, Object[] args)
     throws Throwable {
    String name = method.getName();
    System.out.println("Called as: "+ name);
    switch (name) {
      case "isOpen":
        return false;
      case "close":
        return null;
    }

    return null;
  }
};

Channel c =
  (Channel) Proxy.newProxyInstance(Channel.class.getClassLoader(),
                            new Class[] { Channel.class }, h);
c.isOpen();
c.close();

Proxies can be used as stand-in objects for testing (especially in test mocking
approaches).

Another use case is to provide partial implementations of interfaces, or to decorate
or otherwise control some aspect of delegation:

public class RememberingList implements InvocationHandler {
  private final List<String> proxied = new ArrayList<>();

  @Override
  public Object invoke(Object proxy, Method method, Object[] args)
                         throws Throwable {
    String name = method.getName();
    switch (name) {
      case "clear":
        return null;
      case "remove":
      case "removeAll":
        return false;
    }

    return method.invoke(proxied, args);

C
lasslo

ad
ing

and
R

efl
ectio

n

Reflection | 325



  }
}

RememberingList hList = new RememberingList();

List<String> l =
  (List<String>) Proxy.newProxyInstance(List.class.getClassLoader(),
                                        new Class[] { List.class },
                                        hList);
l.add("cat");
l.add("bunny");
l.clear();
System.out.println(l);

Proxies are an extremely powerful and flexible capability that are used within many
Java frameworks.

Method Handles
In Java 7, a brand new mechanism for introspection and method access was intro‐
duced. This was originally designed for use with dynamic languages, which may
need to participate in method dispatch decisions at runtime. To support this at the
JVM level, the new invokedynamic bytecode was introduced. This bytecode was not
used by Java 7 itself, but with the advent of Java 8, it was extensively used in both
lambda expressions and the Nashorn JavaScript implementation.

Even without invokedynamic, the new Method Handles API is comparable in power
to many aspects of the Reflection API—and can be cleaner and conceptually simpler
to use, even standalone. It can be thought of as Reflection done in a safer, more
modern way.

MethodType
In Reflection, method signatures are represented as Class[]. This is quite cumber‐
some. By contrast, method handles rely on MethodType objects. These are a typesafe
and object-orientated way to represent the type signature of a method.

They include the return type and argument types, but not the receiver type or name
of the method. The name is not present as this allows any method of the correct sig‐
nature to be bound to any name (as per the functional interface behavior of lambda
expressions).

A type signature for a method is represented as an immutable instance of Method
Type, as acquired from the factory method MethodType.methodType(). For exam‐
ple:

MethodType m2Str = MethodType.methodType(String.class); // toString()

// Integer.parseInt()
MethodType mtParseInt =
  MethodType.methodType(Integer.class, String.class);
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// defineClass() from ClassLoader
MethodType mtdefClz = MethodType.methodType(Class.class, String.class,
                                            byte[].class, int.class,
                                            int.class);

This single piece of the puzzle provides significant gains over Reflection, as it makes
method signatures significantly easier to represent and discuss. The next step is to
acquire a handle on a method. This is achieved by a lookup process.

Method Lookup
Method lookup queries are performed on the class where a method is defined, and
are dependent on the context that they are executed from. In this example, we can
see that when we attempt to lookup the protected Class::defineClass() method
from a general look up context, we fail to resolve it with an IllegalAccessExcep
tion, as the protected method is not accessible:

public static void lookupDefineClass(Lookup l) {
  MethodType mt = MethodType.methodType(Class.class, String.class,
                                        byte[].class, int.class,
                                        int.class);

  try {
    MethodHandle mh =
      l.findVirtual(ClassLoader.class, "defineClass", mt);
    System.out.println(mh);
  } catch (NoSuchMethodException | IllegalAccessException e) {
    e.printStackTrace();
  }
}

Lookup l = MethodHandles.lookup();
lookupDefineClass(l);

We always need to call MethodHandles.lookup()—this gives us a lookup context
object based on the currently executing method.

Lookup objects have several methods (which all start with find) declared on them
for method resolution. These include findVirtual(), findConstructor(), and
findStatic().

One big difference between the Reflection and Method Handles APIs is access con‐
trol. A Lookup object will only return methods that are accessible to the context
where the lookup was created—and there is no way to subvert this (no equivalent of
Reflection’s setAccessible() hack).

Method handles therefore always comply with the security manager, even when the
equivalent reflective code does not. They are access-checked at the point where the
lookup context is constructed—the lookup object will not return handles to any
methods to which it does not have proper access.
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The lookup object, or method handles derived from it, can be returned to other
contexts, including ones where access to the method would no longer be possible.
Under those circumstances, the handle is still executable—access control is checked
at lookup time, as we can see in this example:

public class SneakyLoader extends ClassLoader {
  public SneakyLoader() {
    super(SneakyLoader.class.getClassLoader());
  }

  public Lookup getLookup() {
    return MethodHandles.lookup();
  }
}

SneakyLoader snLdr = new SneakyLoader();
l = snLdr.getLookup();
lookupDefineClass(l);

With a Lookup object, we’re able to produce method handles to any method we have
access to. We can also produce a way of accessing fields that may not have a method
that gives access. The findGetter() and findSetter() methods on Lookup pro‐
duce method handles that can read or update fields as needed.

Invoking Method Handles
A method handle represents the ability to call a method. They are strongly typed
and as typesafe as possible. Instances are all of some subclass of
java.lang.invoke.MethodHandle, which is a class that needs special treatment
from the JVM.

There are two ways to invoke a method handle—invoke() and invokeExact().
Both of these take the receiver and call arguments as parameters. invokeExact()
tries to call the method handle directly as is, whereas invoke() will massage call
arguments if needed.

In general, invoke() performs an asType() conversion if necessary—this converts
arguments according to these rules:

• A primitive argument will be boxed if required.
• A boxed primitive will be unboxed if required.
• Primitives will be widened is necessary.

• A void return type will be massaged to 0 or null, depending on whether the
expected return was primitive or of reference type.

• null values are passed through, regardless of static type.

With these potential conversions in place, invocation looks like this:
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Object rcvr = "a";
try {
  MethodType mt = MethodType.methodType(int.class);
  MethodHandles.Lookup l = MethodHandles.lookup();
  MethodHandle mh = l.findVirtual(rcvr.getClass(), "hashCode", mt);

  int ret;
  try {
    ret = (int)mh.invoke(rcvr);
    System.out.println(ret);
  } catch (Throwable t) {
    t.printStackTrace();
  }
} catch (IllegalArgumentException |
  NoSuchMethodException | SecurityException e) {
  e.printStackTrace();
} catch (IllegalAccessException x) {
  x.printStackTrace();
}

Method handles provide a clearer and more coherent way to access the same
dynamic programming capabilities as Reflection. In addition, they are designed to
work well with the low-level execution model of the JVM and thus hold out the
promise of much better performance than Reflection can provide.
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12
Nashorn

With Java 8, Oracle has included Nashorn, a new JavaScript implementation that
runs on the JVM. Nashorn is designed to replace the original JavaScript-on-the-
JVM project—which was called Rhino (Nashorn is the German word for “rhino”).

Nashorn is a completely rewritten implementation and strives for easy interopera‐
bility with Java, high performance, and precise conformance to the JavaScript
ECMA specifications. Nashorn was the first implementation of JavaScript to hit a
perfect 100% on spec compliance and is already at least 20 times faster than Rhino
on most workloads.

Introduction to Nashorn
In this chapter, we will assume some basic understanding of JavaScript. If you aren’t
already familiar with basic JavaScript concepts, then Head First JavaScript by
Michael Morrison (O’Reilly) is a good place to start.

If you recall the differences between Java and JavaScript outlined in “Java Compared
to JavaScript” on page 12, you know that we can see that the two languages are very
different. It may, therefore, seem surprising that JavaScript should be able to run on
top of the same virtual machine as Java.

Non-Java Languages on the JVM
In fact, there are a very large number of non-Java languages that run on the JVM—
and some of them are a lot more unlike Java than JavaScript is. This is made possi‐
ble by the fact that the Java language and JVM are only very loosely coupled, and
only really interact via the definition of the class file format. This can be accom‐
plished in two different ways:

• The source language has an interpreter that has been implemented in Java.
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The interpreter runs on the JVM and executes programs written in the source
language.

• The source language ships with a compiler that produces class files from units
of source language code.
The resulting compiled class files are then directly executed on the JVM, usu‐
ally with some additional language-specific runtime support.

Nashorn takes the second approach—but with the added refinement that the com‐
piler is inside the runtime, so that JavaScript source code is never compiled before
program execution begins. This means that JavaScript that was not specifically writ‐
ten for Nashorn can still be easily deployed on the platform.

Nashorn is unlike many other JVM languages (such as JRuby)
in that it does not implement any form of interpreter. Nashorn
always compiles JavaScript to JVM bytecode and executes the
bytecode directly.

This is interesting, from a technical perspective, but many developers are curious as
to what role Nashorn is intended to play in the mature and well-established Java
ecosystem. Let’s look at that role next.

Motivation
Nashorn serves several purposes within the Java and JVM ecosystem. Firstly, it pro‐
vides a viable environment for JavaScript developers to discover the power of the
JVM. Second, it enables companies to continue to leverage their existing investment
in Java technologies while additionally adopting JavaScript as a development lan‐
guage. Last, it provides a great engineering showcase for the advanced virtual
machine technology present in the HotSpot Java Virtual Machine.

With the continued growth and adoption of JavaScript, broadening out from its tra‐
ditional home in the browser to more general-purpose computing and the server
side, Nashorn represents a great bridge between the existing rock-solid Java ecosys‐
tem and a promising wave of new technologies.

For now, let’s move on to discuss the mechanics of how Nashorn works, and how to
get started with the platform. There are several different ways in which JavaScript
code can be executed on Nashorn, and in the next section we’ll look at two of the
most commonly used.

Executing JavaScript with Nashorn
In this section, we’ll be introducing the Nashorn environment, and discuss two dif‐
ferent ways of executing JavaScript (both of which are present in the bin subdirec‐
tory of $JAVA_HOME):
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jrunscript
A simple script runner for executing JavaScript as .js files.

jjs
A more full-featured shell—suitable for both running scripts and use as an
interactive, read-eval-print-loop (REPL) environment for exploring Nashorn
and its features.

Let’s start by looking at the basic runner, which is suitable for the majority of simple
JavaScript applications.

Running from the Command Line
To run a JavaScript file called my_script.js with Nashorn, just use the jrunscript
command:

jrunscript my_script.js

jrunscript can also be used with different script engines than Nashorn (see “Nas‐
horn and javax.script” on page 340 for more details on script engines) and it pro‐
vides a -l switch to specify them if needed:

jrunscript –l nashorn my_script.js

With this switch, jrunscript can even run scripts in lan‐
guages other than JavaScript, provided a suitable script engine
is available.

The basic runner is perfectly suitable for simple use cases but it has limitations and
so for serious use we need a more capable execution environment. This is provided
by jjs, the Nashorn shell.

Using the Nashorn Shell
The Nashorn shell command is jjs. This can be used either interactively, or non-
interactively, as a drop-in replacement for jrunscript.

The simplest JavaScript example is, of course, the classic “Hello World,” so let’s look
at how we would achieve this in the interactive shell:

$ jjs
jjs> print("Hello World!");
Hello World!
jjs>

Nashorn interoperability with Java can be easily handled from the shell. We’ll dis‐
cuss this in full detail in “Calling Java from Nashorn” on page 342, but to give a first
example, we can directly access Java classes and methods from JavaScript by using
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the fully qualified class name. As a concrete example, let’s access Java’s builtin regu‐
lar expression support:

jjs> var pattern = java.util.regex.Pattern.compile("\\d+");
jjs> var myNums = pattern.split("a1b2c3d4e5f6");

jjs> print(myNums);
[Ljava.lang.String;@10b48321

jjs> print(myNums[0]);
a

When we used the REPL to print out the JavaScript variable
myNums, we got the result [Ljava.lang.String;@10b48321—
this is a tell-tale sign that despite being represented in a Java‐
Script variable, myNums is really a Java array of strings.

We’ll have a great deal more to say about interoperation between Nashorn and Java
later on, but first let’s discuss some of the additional features of jjs. The general
form of the jjs command is:

jjs [<options>] <files> [-- <arguments>]

There are a number of options that can be passed to jjs—some of the most com‐
mon are:

• -cp or -classpath indicates where additional Java classes can be found (to be
used via the Java.type mechanism, as we’ll see later).

• -doe or -dump-on-error will produce a full error dump if Nashorn is forced to
exit.

• -J is used to pass options to the JVM. For example, if we want to increase the
maximum memory available to the JVM:

$ jjs -J-Xmx4g
jjs> java.lang.Runtime.getRuntime().maxMemory()
3817799680

• -strict causes all script and functions to be run in JavaScript strict mode. This
is a feature of JavaScript that was introduced with ECMAScript version 5, and
is intended to reduce bugs and errors. Strict mode is recommended for all new
development in JavaScript, and if you’re not familiar with it you should read up
on it.

• -D allows the developer to pass key-value pairs to Nashorn as system proper‐
ties, in the usual way for the JVM. For example:
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1 JavaFX is a standard Java technology used for making GUIs—but it is outside the scope of this
book.

$ jjs –DmyKey=myValue
jjs> java.lang.System.getProperty("myKey");
myValue

• -v or -version is the standard Nashorn version string.

• -fv or -fullversion prints the full Nashorn version string.

• -fx is used to execute a script as a JavaFX GUI application. This allows a Jav‐
aFX programmer to write a lot less boilerplate by making use of Nashorn.1

• -h is the standard help switch.

• -scripting can be used to enable Nashorn-specific scripting extensions. This
is the subject of the next subsection.

Scripting with jjs
The jjs shell can be a good way to test out some basic JavaScript, or to work inter‐
actively with an unfamiliar JavaScript package (e.g., when learning it). However, it is
slightly hampered by lacking multiline input and other more advanced features that
are often expected when developing with languages that make heavy use of a REPL.

Instead, jjs is very suitable for noninteractive use, such as bringing up a daemon
process written in JavaScript. For use cases like this, we invoke jjs like this:

$ jjs -scripting my_script.js

This enables us to make use of the enhanced features of jjs. These include some
useful extensions, many of which make using Nashorn slightly more familiar to the
script programmer.

Scripting comments
In traditional Unix scripting, the # character is used to indicate a comment that runs
until the end of the line. JavaScript, of course, uses C/C++ style comments that
include // to indicate a comment that runs to the end of the line. Nashorn conforms
to this as well, but in scripting mode also accepts the Unix scripting style, so that
this code is perfectly legal:

#!/usr/bin/jjs

# A perfectly legal comment in scripting mode

print("After the comment");
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Inline command execution
This feature is usually referred to as “backticks” by seasoned Unix programmers. So,
just as we could write this bit of bash to download content from Google by using the
Unix curl command:

echo "Google says: " `curl http://www.google.co.uk`

we can also use the ` backtick quotes to enclose a Unix shell command that we want
to run from within a Nashorn script. Like this:

print("Google says: "+ `curl http://www.google.co.uk`);

String interpolation
String interpolation is a special bit of syntax that allows the programmer to directly
include the contents of a variable without using string concatenation. In Nashorn
scripting, we can use the syntax ${<variable name>} to interpolate variables within
strings. For example, the previous example of downloading a web page can be
rewritten using interpolation like this:

var url = "www.google.co.uk";
var pageContents = `curl http://${url}`;

print("Google says: ${pageContents}");

Special variables
Nashorn also provides several special global variables and functions that are specifi‐
cally helpful for scripting and are not normally available in JavaScript. For example,
the arguments to a script can be accessed via the variable $ARG. The arguments must
be passed using the -- convention, like this:

jjs test1.jjs -- aa bbb cccc

Then the arguments can be accessed as shown in this example:

print($ARG);

for(var i=0; i < $ARG.length; i++) {
    print("${i}: "+ $ARG[i]);
}

The variable $ARG is a JavaScript array (as we can see from
how it behaves when it’s passed to print()) and needs to be
treated as one. This syntax may be a little confusing for pro‐
grammers coming from other languages, where the $ symbol
often indicates a scalar variable.
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The next special global variable that we’ll meet is $ENV, that provides an interface to
the current environment variables. For example, to print out the current user’s
home directory:

print("HOME = "+ $ENV.HOME); # Prints /home/ben for me

Nashorn also provides access to a special global function called $EXEC(). This works
like the backticks we met just now, as this example shows:

var execOutput = $EXEC("echo Print this on stdout");
print(execOutput);

You may have noticed that when we use the backtick or $EXEC() then the output of
the executed command is not printed—but instead ends up as the return value of
the function. This is to prevent the printed output of executed commands from cor‐
rupting the output of the main script.

Nashorn provides two other special variables that can help the programmer to work
with the output of commands that are executed from within a script: $OUT and $ERR.
These are used to capture the output and any error messages from a command that
is executed from within a script. For example:

$EXEC("echo Print this on stdout");

// Code that doesn't change stdout

var saveOut = $OUT;
print("- - - - - - -");
print(saveOut);

The contents of $OUT and $ERR persist until they are overwritten by subsequent code
in the main script that can also affect the values held there (such as another com‐
mand execution).

Inline documents
JavaScript, like Java, does not support strings where the opening quote is on one line
and the closing quote on another (known as multiline strings). However, Nashorn in
scripting mode supports this as an extension. This feature is also known as an inline
document or a heredoc and is a common feature of scripting languages.

To use a heredoc, use the syntax <<END_TOKEN to indicate that the heredoc starts on
the next line. Then, everything until the end token (which can be any string, but is
usually all capitals—strings like END, END_DOC, END_STR, EOF, and EOSTR are all quite
common) is part of the multiline string. After the end token, the script resumes as
normal. Let’s look at an example:

var hw = "Hello World!";
var output = <<EOSTR;

This is a multiline string
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It can interpolate too - ${hw}
EOSTR
print(output);

Nashorn helper functions
Nashorn also provides some helper functions to make it easier for developers to
accomplish common tasks that shell scripts often want to perform:

print() / echo()
We’ve been using print() throughout many of our examples, and these func‐
tions behave exactly as expected. They print the string they’ve been passed, fol‐
lowed by a newline character.

quit() / exit()
These two functions are completely equivalent—they both cause the script to
exit. They can take an integer parameter that will be used as the return code of
the script’s process. If no argument is supplied, they will default to using 0, as is
customary for Unix processes.

readLine()
Reads a single line of input from standard input (usually the keyboard). By
default, it will print the line out on standard output, but if the return value of
readLine() is assigned to a variable, the entered data will end up there instead,
as in this example:

print("Please enter your name: ");
var name = readLine();
print("Please enter your age: ");
var age = readLine();

print(<<EOREC);
Student Record
-+-+-+-+-+-+-+-
Name: ${name}
Age:  ${age}
EOREC

readFully()

Instead of reading from standard input, readFully() loads the entire contents
of a file. As with readLine(), the contents are either printed to standard out‐
put, or assigned to a variable:

var contents = readFully("input.txt");

load()

This function is used to load and evaluate (via JavaScript’s eval) a script. The
script can be located by a local path, or a URL. Alternatively, it may be defined
as a string using JavaScript’s script object notation.
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When using load() to evaluate other scripts, unex‐
pected errors may occur. JavaScript supports a form of
exception handling using try-catch blocks, so you
should use it when loading code.
Here’s a quick example of how to load the D3 graphics
visualization library from Nashorn:

try {
    load("http://d3js.org/d3.v3.min.js");
} catch (e) {
    print("Something went wrong, probably that we're not a web browser");
}

loadWithNewGlobal()

When we use load(), it evaluates the script based on the current JavaScript
context. Sometimes we want to put the script into its own, clean context. In
these cases, use loadWithNewGlobal() instead, as this starts off the script with a
fresh, global context.

Shebang syntax
All the features in this section help to make jjs a good alternative language that can
easily be used to write shell scripts as bash, Perl, or other scripting languages. One
final feature helps to round out this support—the availability of the “shebang” syn‐
tax for starting up scripts written in Nashorn.

If the first line of an executable script starts with #! followed
by a path to an executable, then a Unix operating system will
assume the path points at an interpreter that is able to handle
this type of script. If the script is executed, the OS will execute
the interpreter and pass it the script file to be handled.

In the case of Nashorn, it is good practice to symlink (possibly needing sudo access)
so that there is a link from /usr/bin/jjs (or /usr/local/bin/jjs) to the actual location of
the jjs binary (usually $JAVA_HOME/bin/jjs). The Nashorn shell scripts can then
be written like this:

#!/usr/bin/jjs

# ... rest of script

For more advanced use cases (e.g., long-running daemons) Nashorn can even pro‐
vide compatibility with Node.js. This is achieved by the Avatar.js portion of Project
Avatar, that is discussed in “Project Avatar” on page 347.

The tools we’ve seen in this section easily enable JavaScript code to be run directly
from the command line, but in many cases we will want to go the other way. That is,
we will want to call out to Nashorn and execute JavaScript code from within a Java
program. The API that enables us to do this is contained in the Java package
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javax.script, so let’s move on to examine that package next, and discuss how Java
interacts with engines for interpreting scripting languages.

Nashorn and javax.script
Nashorn is not the first scripting language to ship with the Java platform. The story
starts with the inclusion of javax.script in Java 6, which provided a general inter‐
face for engines for scripting languages to interoperate with Java.

This general interface included concepts fundamental to scripting languages, such
as execution and  compilation of scripting code (whether a full script or just a single
scripting statement in an already existing context). In addition, a notion of binding
between scripting entities and Java was introduced, as well as script engine discov‐
ery. Finally, javax.script provides optional support for invocation (distinct from
execution, as it allows intermediate code to be exported from a scripting language’s
runtime and used by the JVM runtime).

The example language provided was Rhino, but many other scripting languages
were created to take advantage of the support provided. With Java 8, Rhino has been
removed, and Nashorn is now the default scripting language supplied with the Java
platform.

Introducing javax.script with Nashorn
Let’s look at a very simple example of how to use Nashorn to run JavaScript from
Java:

import javax.script.*;

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByName("nashorn");

try {
  e.eval("print('Hello World!');");
} catch (final ScriptException se) {
  // ...
}

The key concept here is ScriptEngine, which is obtained from a ScriptEngineMan
ager. This provides an empty scripting environment, to which we can add code via 
the eval() method.

The Nashorn engine provides a single global JavaScript object, so all calls to eval()
will execute on the same environment. This means that we can make a series of
eval() calls and build up JavaScript state in the script engine. For example:

e.eval("i = 27;");
e.put("j", 15);
e.eval("var z = i + j;");

System.out.println(((Number) e.get("z")).intValue()); // prints 42
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Note that one of the problems with interacting with a scripting engine directly from
Java is that we don’t normally have any information about what the types of values
are.

Nashorn has a fairly close binding to much of the Java type system, so we need to be
somewhat careful, however. When dealing with the JavaScript equivalents of primi‐
tive types, these will typically be converted to the appropriate (boxed) types when
they are made visible to Java. For example, if we add the following line to our previ‐
ous example:

System.out.println(e.get("z").getClass());

we can easily see that the value returned by e.get("z") is of type java.lang.Inte
ger. If we change the code very slightly, like this:

e.eval("i = 27.1;");
e.put("j", 15);
e.eval("var z = i + j;");

System.out.println(e.get("z").getClass());

then this is sufficient to alter the type of the return value of e.get("z") to type
java.lang.Double, which marks out the distinction between the two type systems.
In other implementations of JavaScript, these would both be treated as the numeric
type (as JavaScript does not define integer types). Nashorn, however, is more aware
of the actual type of the data.

When dealing wih JavaScript that the Java programmer must
be consciously aware of the difference between Java’s static
typing and the dynamic nature of JavaScript types. Bugs can
easily creep in if this awareness is lost.

In our examples, we have made use of the get() and put() methods on the Script
Engine. These allow us to directly get and set objects within the global scope of the
script being executed by a Nashorn engine, without having to write or eval Java‐
Script code directly.

The javax.script API
Let’s round out this section with a brief description of some key clases and interfaces
in the javax.script API. This is a fairly small API (six interfaces, five classes, and
one exception) that has not changed since its introduction in Java 6.

ScriptEngineManager
The entry point into the scripting support. It maintains a list of available script‐
ing implementations in this process. This is achieved via Java’s service provider
mechanism, which is a very general way of managing extensions to the plat‐
form that may have wildly different implementations. By default, the only
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scripting extension available is Nashorn, although other scripting environ‐
ments (such as Groovy or JRuby) can also be made available.

ScriptEngine
This class represents the script engine responsible for maintaining the environ‐
ment in which our scripts will be interpreted.

Bindings

This interface extends Map and provides a mapping between strings (the names
of variables or other symbols) and scripting objects. Nashorn uses this to
implement the ScriptObjectMirror mechanism for interoperability.

In practice, most applications will deal with the relatively opaque interface offered
by methods on ScriptEngine such as eval(), get(), and put(), but it’s useful to
understand the basics of how this interface plugs in to the overall scripting API.

Advanced Nashorn
Nashorn is a sophisticated programming environment, which has been engineered
to be a robust platform for deploying applications, and to have great interoperability
with Java. Let’s look at some more advanced use cases for JavaScript to Java integra‐
tion, and examine how this is achieved by looking inside Nashorn at some imple‐
mentation details.

Calling Java from Nashorn
As each JavaScript object is compiled into an instance of a Java class, it’s perhaps not
surprising that Nashorn has seamless integration with Java—despite the major dif‐
ference in type systems and language features. However, there are still mechanisms
that need to be in place to get the most out of this integration.

We’ve already seen that we can directly access Java classes and methods from Nas‐
horn, for example:

$ jjs -Dkey=value
jjs> print(java.lang.System.getProperty("key"));
value

Let’s take a closer look at the syntax and see how to achieve this support in Nashorn.

JavaClass and JavaPackage
From a Java perspective, the expression java.lang.System.getProperty("key")
reads as fully qualified access to the static method getProperty() on
java.lang.System. However, as JavaScript syntax, this reads like a chain of prop‐
erty accesses, starting from the symbol java—so let’s investigate how this symbol
behaves in the jjs shell:

jjs> print(java);
[JavaPackage java]
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jjs> print(java.lang.System);
[JavaClass java.lang.System]

So java is a special Nashorn object that gives access to the Java system packages,
which are given the JavaScript type JavaPackage, and Java classes are represented by
the JavaScript type JavaClass. Any top-level package can be directly used as a pack‐
age navigation object, and subpackages can be assigned to a JavaScript object. This
allows syntax that gives concise access to Java classes:

jjs> var juc = java.util.concurrent;
jjs> var chm = new juc.ConcurrentHashMap;

In addition to navigation by package objects, there is another object, called Java,
which has a number of useful methods on it. One of the most important is the
Java.type() method. This allows the user to query the Java type system, and get
access to Java classes. For example:

jjs> var clz = Java.type("java.lang.System");
jjs> print(clz);
[JavaClass java.lang.System]

If the class is not present on the classpath (e.g., specified using the -cp option to
jjs), then a ClassNotFoundException is thrown (jjs will wrap this in a Java Runti
meException):

jjs> var klz = Java.type("Java.lang.Zystem");
java.lang.RuntimeException: java.lang.ClassNotFoundException:
  Java.lang.Zystem

The JavaScript JavaClass objects can be used like Java class objects in most cases
(they are a slightly different type—but just think of them as the Nashorn-level mir‐
ror of a class object). For example, we can use a JavaClass to create a new Java
object directly from Nashorn:

jjs> var clz = Java.type("java.lang.Object");
jjs> var obj = new clz;
jjs> print(obj);
java.lang.Object@73d4cc9e

jjs> print(obj.hashCode());
1943325854

// Note that this syntax does not work
jjs> var obj = clz.new;
jjs> print(obj);
undefined

However, you should be slightly careful. The jjs environment automatically prints
out the results of expressions—which can lead to some unexpected behavior:

jjs> var clz = Java.type("java.lang.System");
jjs> clz.out.println("Baz!");
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Baz!
null

The point here is that java.lang.System.out.println() has a return type of void
(i.e., it does not return a value). However, jjs expects expressions to have a value
and, in the absence of a variable assignment, it will print it out. So the nonexistent
return value of println() is mapped to the JavaScript value null, and printed out.

Java programmers who are not familiar with JavaScript should
be aware that the handling  of null and missing values in Java‐
Script is subtle, and in particular that null != undefined.

JavaScript functions and Java lambda expressions
The interoperability between JavaScript and Java goes to a very deep level. We can
even use JavaScript functions as anonymous implementations of Java interfaces (or
as lambda expressions). For example, let’s use a JavaScript function as an instance of
the Callable interface (which represents a block of code to be called later). This has
only a single method, call(), which takes no parameters and returns void. In Nas‐
horn, we can use a JavaScript function as a lambda expression instead:

jjs> var clz = Java.type("java.util.concurrent.Callable");
jjs> print(clz);
[JavaClass java.util.concurrent.Callable]
jjs> var obj = new clz(function () { print("Foo"); } );
jjs> obj.call();
Foo

The basic fact that is being demonstrated is that, in Nashorn, there is no distinction
between a JavaScript function and a Java lambda expression. Just as we saw in Java,
the function is being automatically converted to an object of the appropriate type.
Let’s look at how we might use a Java ExecutorService to execute some Nashorn
JavaScript on a Java thread pool:

jjs> var juc = java.util.concurrent;
jjs> var exc = juc.Executors.newSingleThreadExecutor();
jjs> var clbl = new juc.Callable(function (){
  \java.lang.Thread.sleep(10000); return 1; });
jjs> var fut = exc.submit(clbl);
jjs> fut.isDone();
false
jjs> fut.isDone();
true

The reduction in boilerplate compared to the equivalent Java code (even with Java 8
lambdas) is quite staggering. However, there are some limitations caused by the
manner in which lambdas have been implemented. For example:
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jjs> var fut=exc.submit(function (){\
java.lang.Thread.sleep(10000); return 1;});
java.lang.RuntimeException: java.lang.NoSuchMethodException: Can't 
unambiguously select between fixed arity signatures
[(java.lang.Runnable), (java.util.concurrent.Callable)] of the method
java.util.concurrent.Executors.FinalizableDelegatedExecutorService↵
.submit for argument types
[jdk.nashorn.internal.objects.ScriptFunctionImpl]

The problem here is that the thread pool has an overloaded submit() method. One
version will accept a Callable and the other will accept a Runnable. Unfortunately,
the JavaScript function is eligible (as a lambda expression) for conversion to both
types. This is where the error message about not being able to “unambiguously
select” comes from. The runtime could choose either, and can’t choose between
them.

Nashorn’s JavaScript Language Extensions
As we’ve discussed, Nashorn is a completely conformant implementation of ECMA‐
Script 5.1 (as JavaScript is known to the standards body). In addition, however, Nas‐
horn also implements a number of JavaScript language syntax extensions, to make
life easier for the developer. These extensions should be familiar to developers used
to working with JavaScript, and quite a few of them duplicate extensions present in
the Mozilla dialect of JavaScript. Let’s take a look at a few of the most common, and
useful, extensions.

Foreach loops
Standard JavaScript does not have an equivalent of Java’s foreach loop, but Nashorn
implements the Mozilla syntax for for each in loops, like this:

var jsEngs = [ "Nashorn", "Rhino", "V8", "IonMonkey", "Nitro" ];
for each (js in jsEngs) {
    print(js);
}

Single expression functions
Nashorn also supports another small syntax enhancement, designed to make one-
line functions that comprise a single expression easier to read. If a function (named
or anonymous) comprises just a single expression, then the braces and return state‐
ments can be omitted. In the example that follows, cube() and cube2() are com‐
pletely equivalent functions, but cube() is not normally legal JavaScript syntax:

function cube(x) x*x*x;

function cube2(x) {
    return x*x*x;
}
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print(cube(3));
print(cube2(3));

Multiple catch clauses
JavaScript supports try, catch, and throw in a similar way to Java.

JavaScript has no support for checked exceptions—all Java‐
Script exceptions are unchecked.

However, standard JavaScript only allows a single catch clause following a try block.
There is no support for different catch clauses handling different types of excep‐
tion. Fortunately, there is already an existing Mozilla syntax extension to offer this
feature, and Nashorn implements it as well, as shown in this example:

function fnThatMightThrow() {
    if (Math.random() < 0.5) {
        throw new TypeError();
    } else {
        throw new Error();
    }
}

try {
    fnThatMightThrow();
} catch (e if e instanceof TypeError) {
    print("Caught TypeError");
} catch (e) {
    print("Caught some other error");
}

Nashorn implements a few other nonstandard syntax extensions (and when we met
scripting mode for jjs we saw some other useful syntax innovations), but these are
likely to be the most familiar and widely used.

Under the Hood
As we have previously discussed, Nashorn works by compiling JavaScript programs
directly to JVM bytecode, and then runs them just like any other class. It is this
functionality that enables, for example, the straightforward representation of Java‐
Script functions as lambda expressions and their easy interoperability.

Let’s take a closer look at an earlier example, and see how we’re able to use a func‐
tion as an anonymous implementation of a Java interface:

jjs> var clz = Java.type("java.util.concurrent.Callable");
jjs> var obj = new clz(function () { print("Foo"); } );
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jjs> print(obj);
jdk.nashorn.javaadapters.java.util.concurrent.Callable@290dbf45

This means that the actual type of the JavaScript object implementing Callable is
jdk.nashorn.javaadapters.java.util.concurrent.Callable. This class is not
shipped with Nashorn, of course. Instead, Nashorn spins up dynamic bytecode to
implement whatever interface is required and just maintains the original name as
part of the package structure for readability.

Remember that dynamic code generation is an essential part
of Nashorn, and that all JavaScript code is compiled by Nas‐
horn in Java bytecode and never interpreted.

One final note is that Nashorn’s insistence on 100% compliance with the spec does
sometimes restrict the capabilities of the implementation. For example, consider
printing out an object, like this:

jjs> var obj = {foo:"bar",cat:2};
jjs> print(obj);
[object Object]

The ECMAScript specification requires the output to be [object Object]—con‐
formant implementations are not allowed to give more useful detail (such as a com‐
plete list of the properties and values contained in obj).

Conclusion
In this chapter, we’ve met Nashorn, the JavaScript implementation on top of the
JVM that ships with Oracle’s Java 8. We’ve seen how to use it to execute scripts and
even replace bash and Perl scripts with enhanced JavaScript scripts that can leverage
the full power of Java and the JVM. We’ve met the JavaScript engine API and seen
how the bridge between Java and scripting languages is implemented.

We’ve seen the tight integration between JavaScript and Java that Nashorn provides,
and some of the small language syntax extensions that Nashorn provides to make
programming a little bit easier. Finally, we’ve had a brief peek under the hood at
how Nashorn implements all of this functionality. To conclude, let’s take a quick
look into the future and meet Project Avatar, which could be the future of Java/Java‐
Script web applications.

Project Avatar
One of the most successful movements in the JavaScript community in recent years
has been Node.js. This is a simple server-side JavaScript implementation developed
by Ryan Dahl and now curated by Joyent. Node.js provides a programming model
that is heavily asynchronous—designed around callbacks, nonblocking I/O, and a
simple, single-threaded event loop model.
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While it is not suitable for developing complex enterprise applications (due to limi‐
tations of the callback model in larger codebases), Node.js (often referred to simply
as Node) has nonetheless become an interesting option for developing prototypes,
simple “glue” servers, and single-purpose HTTP and TCP server applications of low
to moderate complexity.

The Node ecosystem has also prospered by promoting reusable units of code,
known as Node packages. Similar to the Maven archives (and to earlier systems,
such as the Perl CPAN), Node packages allow the easy creation and redistribution of
code, although they suffer from the relative immaturity of JavaScript, which is miss‐
ing many modularity and deployment features.

The original implementation of Node is composed of several basic components—a
JavaScript execution engine (the V8 engine developed by Google for their Chrome
browser), a thin abstraction layer, and a standard library (of mostly JavaScript
code).

In September 2013, Oracle announced Project Avatar. This is an effort by Oracle to
produce a future-state architecture for web applications and to marry JavaScript
(and Node) to the mature ecosystem that already exists for Java web apps.

As part of Project Avatar, Oracle open sourced their implementation of the Node
API, which runs on top of Nashorn and the JVM. This implementation, known as
Avatar.js, is a faithful implementation of most of the Node API. It is currently (April
2014) capable of running a large number of Node modules—essentially anything
that does not depend on native code.

The future is, of course, unknown, but Avatar points the way towards a possible
world where the JVM is the foundation of a new generation of web applications that
combine JavaScript with Java and hopefully provide the best of both worlds.
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13
Platform Tools and Profiles

This chapter discusses the tools that ship  with the Oracle and OpenJDK version of
the Java platform. The tools covered mostly comprise command-line tools, but we
also discuss the GUI tool jvisualvm. If you are using a different version of Java, you
may find similar but different tools as part of your distribution instead.

Later in the chapter, we also discuss Java 8 profiles, which are cut-down installations
of Java that nevertheless satisfy the language and virtual machine specifications.

Command-Line Tools
The command-line tools we cover are the most commonly used tools, and those of
greatest utility—they are not a complete description of every tool that is available. In
particular, tools concerned with CORBA and the server portion of RMI are not cov‐
ered in detail.

In some cases, we need to discuss switches that take filesystem
paths. As elsewhere in the book, we use Unix conventions for
such cases.

The tools we discuss are:

• javac
• java
• jar
• javadoc
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• jdeps
• jps
• jstat
• jstatd
• jinfo
• jstack
• jmap
• javap

javacjavac

Basic usage

javac some/package/MyClass.java

Description

javac is the Java source code  compiler—it produces bytecode (in the form of .class
files) from .java source files.

For modern Java projects, javac is not often used directly, as it is rather low-level
and unwieldy, especially for larger codebases. Instead, modern integrated develop‐
ment environments (IDEs) either drive javac automatically for the developer or
have built-in compilers for use while code is being written. For deployment, most
projects will make use of a separate build tool, such as Maven, Ant, or Gradle. Dis‐
cussion of these tools is outside the scope of this book.

Nevertheless, it is useful for developers to understand how to use javac as there are
cases when compiling small codebases by hand is preferable to having to install and
manage a production-grade build tool such as Maven.
Common switches

-classpath
Supplies classes we need for compilation.

-d some/dir
Tells javac where to output class files.

@project.list
Load options and source files from the file project.list.

-help
Help on options.

-X
Help on nonstandard options.
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-source <version>
Control the Java version that javac will accept.

-target <version>
Control the version of class files that javac will output.

-profile <profile>
Control the profile that javac will use when compiling the application. See
later in this chapter for more detail on Compact Profiles.

-Xlint
Enable detail about warnings.

-Xstdout
Redirect output of compilation run to a file.

-g
Add debug information to class files.

Notes

javac has traditionally accepted switches (-source and -target) that control the
version of the source language that the compiler would accept, and the version of
the class file format that was used for the outputted class files.

This facility introduces additional compiler complexity (as multiple language syn‐
taxes must be supported internally) for some small developer benefit. In Java 8, this
capability has begun to be slightly tidied up and placed on a more formal basis.

From JDK 8 onward, javac will only accept source and target options from three
versions back. That is, only the formats from JDK 5, 6, 7, and 8 will be accepted by
javac. This does not affect the java interpreter—any class file from any Java version
will still work on the JVM shipped with Java 8.

C and C++ developers may find that the -g switch is less helpful to them than it is in
those other languages. This is largely due to the widespread use of IDEs in the Java
ecosystem—integrated debugging is simply a lot more useful, and easier to use, than
additional debug symbols in class files.

The use of the lint capability remains somewhat contraversial among developers.
Many Java developers produce code that triggers a large number of compilation
warnings, which they then simply ignore. However, experience on larger codebases
(especially on the JDK codebase itself) suggests that in a substantial percentage of
cases, code that triggers warnings is code in which subtle bugs may lurk. Use of the
lint feature, or static analysis tools (such as FindBugs), is strongly recommended.
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javajava

Basic usage

java some.package.MyClass java -jar my-packaged.jar
Description

java is the executable that starts up a Java virtual machine. The initial entry point
into the program is the main() method that exists on the named class, and that has
the signature:

public static void main(String[] args);

This method is run on the single application thread that is created by the JVM
startup. The JVM process will exit once this method returns (and any additional
nondaemon application threads that were started have terminated).

If the form takes a JAR file rather than a class (the executable jar form), the JAR file
must contain a piece of metadata that tells the JVM which class to start from.

This bit of metadata is the Main-Class: attribute, and it is contained in the MANI‐
FEST.MF file in the META-INF/ directory. See the description of the jar tool for
more details.
Common switches

-cp <classpath>
Define the classpath to read from.

-X, -?, -help
Provide help about the java executable and its switches.

-D<property=value>
Sets a Java system property that can be retrieved by the Java program. Any
number of such properties can be specified this way.

-jar
Run an executable JAR (see the entry for jar).

-Xbootclasspath(/a or /p)
Run with an alternative system classpath (very rarely used).

-client, -server
Select a HotSpot JIT compiler (see “Notes” for this entry).

-Xint, -Xcomp, -Xmixed
Control JIT compilation (very rarely used).

-Xms<size>
Set the minimum committed heap size for the JVM.
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-Xmx<size>
Set the maximum committed heap size for the JVM.

-agentlib:<agent>, -agentpath:<path to agent>
Specify a JVM Tooling Interface (JVMTI) agent to attach to the process being
started. Agents are typically used for instrumentation or monitoring.

-verbose
Generate additional output, sometimes useful for debugging.

Notes
The HotSpot VM contains two separate JIT compilers—known as the client (or C1)
compiler and the server (or C2) compiler. These were designed for different
purposes, with the client compiler offering more predictable performance and
quicker startup, at the expense of not performing aggressive code optimization.

Traditionally, the JIT compiler that a Java process used was chosen at process
startup via the -client or -server switch. However, as hardware advances have
made compilation ever cheaper, a new possibility has become available—to use the
client compiler early on, while the Java process is warming up, and then to switch to
the high-performance optimizations available in the server compiler when they are
available. This scheme is called Tiered Compilation, and it is the default in Java 8.
Most processes will no longer need explicit -client or -server switches.

On the Windows platform, a slightly different version of the java executable is
often used—javaw. This version starts up a Java Virtual Machine, without forcing a
Windows console window to appear.

In older Java versions, a number of different legacy interpreters and virtual machine
modes were supported. These have now mostly been removed, and any remaining
should be regarded as vestigial.

Switches that start with -X were intended to be nonstandard switches. However, the
trend has been to standardize a number of these switches (particularly -Xms and
-Xmx). In parallel, Java versions have introduced an increasing number of -XX:
switches. These were intended to be experimental and not for production use. How‐
ever, as the implementations have stabilized, some of these switches are now suit‐
able for some advanced users (even in production deployments).

In general, a full discussion of switches is outside the scope of this book. Configura‐
tion of the JVM for production use is a specialist subject, and developers are urged
to take care, especially when modifying any switches related to the garbage collec‐
tion subsystem.
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jarjar

Basic usage

jar cvf my.jar someDir/

Description

The jar utility is used to manipulate Java Archive (.jar) files. These are ZIP format
files that contain Java classes, additional resources, and (usually) metadata. The tool
has five major modes of operation—Create, Update, Index, List, and Extract—on
a .jar file.

These are controlled by passing a command option character (not a switch) to jar.
Only one command character can be specified, but optional modifier characters can
also be used.
Command options

c
Create a new archive

u
Update archive

i
Index an archive

t
List an archive

x
Extract an archive

Modifiers

v
Verbose mode

f
Operate on a named file, rather than standard input

0
Store, but do not compress, files added to the archive

m

Add the contents of the specified file to the jar metadata manifest

e

Make this jar executable, with the specified class as the entry point
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Notes

The syntax of the jar command is intentionally very similar to that of the Unix tar
command. This similarity is the reason why jar uses command options, rather than
switches (as the other Java platform commands do).

When creating a .jar file, the jar tool will automatically add a directory called
META-INF that contains a file called MANIFEST.MF—this is metadata in the form
of headers paired with values. By default, MANIFEST.MF contains just two headers:

Manifest-Version: 1.0
Created-By: 1.8.0 (Oracle Corporation)

By using the m option, additional metadata can be added into MANIFEST.MF at JAR
creation time. One frequently added piece is the Main-Class: attribute, which indi‐
cates the entry point into the application contained in the JAR. A JAR with a speci‐
fied Main-Class: can be directly executed by the JVM, via java -jar.

The addition of the Main-Class: attribute is so common that jar has the e option
to create it directly in MANIFEST.MF, rather than having to create a separate text
file for this purpose.

javadocjavadoc

Basic usage

javadoc some.package

Description

javadoc produces documentation from Java source files. It does so by reading a spe‐
cial comment format (known as Javadoc comments) and parsing it into a standard
documentation format, which can then be output into a variety of document for‐
mats (although HTML is by far the most common).

For a full description of Javadoc syntax, refer to Chapter 7.
Common switches

-cp <classpath>
Define the classpath to use

-D <directory>
Tell javadoc where to output the generated docs

-quiet
Suppress output except for errors and warnings

Notes
The platform API docs are all written in Javadoc.
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javadoc is built on top of the same classes as javac, and uses some of the source
compiler infrastructure to implement Javadoc features.

The typical way to use javadoc is to run it against a whole package, rather than just
a class.

javadoc has a very large number of switches and options that can control many
aspects of its behavior. Detailed discussion of all the options is outside the scope of
this book.

jdepsjdeps

The jdeps tool is a static analysis tool for analyzing the dependencies of packages or
classes. The tool has a number of usages, from identifying developer code that
makes calls into the internal, undocumented JDK APIs (such as the sun.misc
classes), to helping trace transitive dependencies.

jdeps can also be used to confirm whether a JAR file can run under a Compact Pro‐
file (see later in the chapter for more details on Compact Profiles).
Basic usage

jdeps com.me.MyClass

Description

jdeps reports dependency information for the classes it is asked to analyze. The
classes can be specified as any class on the classpath, a file path, a directory, or a JAR
file.
Common switches

-s, -summary
Prints dependency summary only.

-v, -verbose
Prints all class-level dependencies.

-verbose:package
Prints package-level dependencies, excluding dependencies within the same
archive.

-verbose:class
Prints class-level dependencies, excluding dependencies within the same
archive.

-p <pkg name>, -package <pkg name>
Finds dependencies in the specified package. You can specify this option multi‐
ple times for different packages. The -p and -e options are mutually exclusive.
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-e <regex>, -regex <regex>
Finds dependencies in packages matching the specified regular expression pat‐
tern. The -p and -e options are mutually exclusive.

-include <regex>
Restricts analysis to classes matching pattern. This option filters the list of
classes to be analyzed. It can be used together with -p and -e.

-jdkinternals
Finds class-level dependences in JDK internal APIs (which may change or dis‐
appear in even minor platform releases).

-apionly
Restricts analysis to APIs—for example, dependencies from the signature of
public and protected members of public classes including field type, method
parameter types, returned type, and checked exception types.

-R, -recursive
Recursively traverses all dependencies.

-h, -?, -help
Prints help message for jdeps.

Notes

While Project Jigsaw did not ship as part of Java 8, jdeps is a first step toward mak‐
ing developers aware of their dependencies on the JRE not as a monolithic environ‐
ment, but as something more modular.

jpsjps

Basic usage

jps jps <remote URL>
Description

jps provides a list of all active JVM processes on the local machine (or a remote
machine, if a suitable instance of jstatd is running on the remote side).
Common switches

-m
Output the arguments passed to the main method

-l
Output the full package name for the application’s main class (or the full path
name to the application’s JAR file)

-v
Output the arguments passed to the JVM
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Notes

This command is not strictly necessary as the standard Unix ps command could
suffice. However, it does not use the standard Unix mechanism for interrogating the
process, so there are circumstances where a Java process stops responding (and
looks dead to jps) but is still listed as alive by the operating system.

jstatjstat

Basic usage

jstat <pid>

Description
This command displays some basic statistics about a given Java process. This is usu‐
ally a local process, but can be located on a remote machine, provided the remote
side is running a suitable jstatd process.
Common switches

-options
Reports a list of report types that jstat can produce

-class
Report on classloading activity to date

-compiler
JIT compilation of the process so far

-gcutil
Detailed GC report

-printcompilation
More detail on compilation

Notes

The general syntax jstat uses to identify a process (which may be remote) is:

[<protocol>://]<vmid>[@hostname][:port][/servername]

The general syntax is used to specify a remote process (which is usually connected
to via JMX over RMI), but in practice, the local syntax is far more common, which
simply uses the VM ID, which is the operating system process ID on mainstream
platforms (such as Linux, Windows, Unix, Mac, etc.).
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jstatdjstatd

Basic usage

jstatd <options>

Description

jstatd provides a way of making information about local JVMs available over the
network. It achieves this using RMI, and can make these otherwise-local capabilities
accessible to JMX clients. This requires special security settings, which differ from
the JVM defaults. To start jstatd, first we need to create the following file and
name it jstatd.policy:

grant codebase "file:${java.home}../lib/tools.jar {
  permission java.security.AllPermission
}

This policy file grants all security permissions to any class loaded from the JDK’s
tools.jar file.

To launch jstatd with this policy, use this command line:

jstatd -J-Djava.security.policy=<path to jstat.policy>

Common switches

-p <port>
Look for an existing RMI registry on that port, and create one if not found

Notes

It is recommended that jstatd is always switched on in production environments,
but not over the public Internet. For most corporate and enterprise environments,
this is nontrivial to achieve and will require the cooperation of Operations and Net‐
work Engineering staff. However, the benefits of having telemetry data from pro‐
duction JVMs, especially during outages, are difficult to overstate.

A full discussion of JMX and monitoring techniques is outside the scope of this
book.

jinfojinfo

Basic usage

jinfo <process ID> jinfo <core file>
Description
This tool displays the system properties and JVM options for a running Java process
(or a core file).
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Common switches

-flags
Display JVM flags only

-sysprops
Display system properties only

Notes
In practice, this is very rarely used—although it can occasionally be useful as a san‐
ity check that the expected program is actually what is executing.

jstackjstack

Basic usage

jstack <process ID>

Description

The jstack utility produces a stack trace for each Java thread in the process.
Common switches

-F
Force a thread dump

-l
Long mode (contains additional information about locks)

Notes
Producing the stack trace does not stop or terminate the Java process. The files that
jstack produces can be very large, and some post-processing of the file is usually
necessary.

jmapjmap

Basic usage

jmap <process>

Description

jmap provides a view of memory allocation for a running Java process.
Common switches

-histo
Produces a histogram of the current state of allocated memory.

-histo:live
This version of the histogram only displays information for live objects.
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javap

-heap
Produces a heap dump from the running process.

Notes
The histogram forms walk the JVMs allocation list. This includes both live and dead
(but not yet collected) objects. The histogram is organized by the type of objects
using memory, and is ordered from greatest to least number of bytes used by a par‐
ticular type. The standard form does not pause the JVM.

The live form ensures that it is accurate, by performing a full, stop-the-world
(STW) garbage collection before executing. As a result, it should not be used on a
production system at a time when a full GC would appreciably impact users.

For the -heap form, note that the production of a heap dump can be a time-
consuming process, and is STW. Note that for many processes, the resulting file may
be extremely large.

Basic usage

javap <classname>

Description

javap is the Java class disassembler—effectively a tool for peeking inside class files.
It can show the bytecode that Java methods have been compiled into, as well as the
“constant pool” information (which contains information similar to that of the sym‐
bol table of Unix processes).

By default, javap shows signatures of public, protected, and default methods. The
-p switch will also show private methods.
Common switches

-c
Decompile bytecode

-v
Verbose mode (include constant pool information)

-p
Include private methods

Notes

The javap tool will work with any class file, provided javap is from a JDK version
the same as (or later) than the one that produced the file.
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Some Java language features may have surprising implementa‐
tions in bytecode. For example, as we saw in Chapter 9, Java’s
String class has effectively immutable instances and the JVM
implements the string concatenation operator + by instantiat‐
ing a new StringBuilder object from the orginal string,
mutating it and finally calling toString() on the resulting
(new) instance. This is clearly visible in the disassembled byte‐
code shown by javap.

VisualVM
JVisualVM (often referred to as VisualVM) is a graphical tool, based on the Net‐
beans platform. It is used for monitoring JVMs and essentially acts as an equivalent,
graphical aggregate of many of the tools featured in “Command-Line Tools” on page
349.

jvisualvm is a replacement for the jconsole tool common in
earlier Java versions. The compatability plug-in available for
visualvm obsoletes jconsole; all installations using jconsole
should migrate.

VisualVM was introduced with Java 6, and is contained in the Java distribution
package. However, generally, the standalone version of VisualVM is more up to date
and a better choice for serious work. You can download the latest version from
http://visualvm.java.net/.

After downloading, ensure that the visualvm binary is added to your PATH or you’ll
get the JRE default binary.

The first time you run VisualVM, it will calibrate your machine, so make sure that
you aren’t running any other applications while calibration is being performed.
After calibration, VisualVM will open to a screen like that shown in Figure 13.1.

To attach VisualVM to a running process, there are slightly different approaches
depending on whether the process is local or remote.

Local processes are listed down the left-hand side of the screen. Double-click on one
of the local processes and it will appear as a new tab on the right-hand pane.

For a remote process, enter the hostname and a display name that will be used on
the tab. The default port to connect to is 1099, but this can be changed.

In order to connect to a remote process, jstatd must be running on the remote
host (see the entry for jstatd in “Command-Line Tools” on page 349 for more
details). If you are connecting to an application server, you may find that the app
server vendor provides an equivalent capability to jstatd directly in the server, and
that jstatd is unnecessary.
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Figure 13-1. VisualVM welcome screen

The Overview tab (see Figure 13-2) provides a summary of information about your
Java process. This includes the flags and system properties that were passed in, and
the exact Java version being executed.

Figure 13-2. Overview tab
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In the Monitor tab, as shown in Figure 13-3, graphs and data about the active parts
of the JVM system are displayed. This is essentially high-level telemetry data for the
JVM—including CPU usage and how much CPU is being used for GC.

Figure 13-3. Monitor tab

Other information displayed includes the number of classes loaded and unloaded,
basic heap memory information, and an overview of the numbers of threads
running.

From this tab, it is also possible to ask the JVM to produce a heap dump, or to per‐
form a full GC—although in normal production operation, neither are
recommended.

Figure 13-4 shows the Threads tab, which displays data on actively running threads
in the JVM. This is displayed as a continuous timeline, with the ability to inspect
individual thread details and perform thread dumps for deeper analysis.

This presents a similar view to jstack, but with better abilities to diagnose dead‐
locks and thread starvation. Note that the difference between synchronized locks
(i.e., operating system monitors) and the user-space lock objects of java.util.con
current can be clearly seen here.

Threads that are contending on locks backed by operating system monitors (i.e.,
synchronized blocks) will be placed into the BLOCKED state. This shows up as red
in VisualVM.
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1 Before Java 8, a construct called PermGen was used instead of Metaspace.

Figure 13-4. Threads tab

Locked java.util.concurrent lock objects place their
threads into WAITING (yellow in VisualVM). This is
because the implementation provided by java.util.concur
rent is purely user space and does not involve the operating
system.

The Sampler tab, as shown in Figure 13-5, samples either memory or CPU. In the
memory mode, it samples object creation—either overall, or JVM only, or even on a
per-thread basis.

This enables the developer to see what the most common objects are—in terms of
bytes and instances (in a manner similar to jmap -histo).

The objects displayed on the Metaspace submode are typically core Java/JVM con‐
structs.1 Normally, we need to look deeper into other parts of the system, such as
classloading to see the code responsible for creating these objects.

jvisualvm has a plug-in system, which can be used to extend the functionality of
the framework by downloading and installing extra plug-ins. We recommend
always installing the MBeans plugin (shown in Figure 13-6) and the VisualGC plu‐
gin (discussed next, and shown in Figure 13-7), and usually the JConsole compati‐
bility plugin, just in case.
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The MBeans tab allows the operator to interact with Java management servies
(essentially MBeans). JMX is a great way to provide runtime control of your
Java/JVM applications, but a full discussion is outside the scope of this book.

Figure 13-5. Sampler tab

Figure 13-6. MBeans plug-in
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Figure 13-7. VisualGC plug-in

The VisualGC plug-in, shown in Figure 13-7, is one of the simplest and best initial
GC debugging tools available. As mentioned in Chapter 6, for serious analysis, GC
logs are to be preferred to the JMX-based view that VisualGC provides. Having said
that, VisualGC can be a good way to start to understand the GC behavior of an
application, and to inform deeper investigations. It provides a near real-time view of
the memory pools inside HotSpot, and allows the developer to see how GC causes
objects to flow from space to space over the course of GC cycles.

Java 8 Profiles
The original roadmap for Java 8 included Project Jigsaw, a full-featured modularity
solution that included a modularization of the platform itself and a move away from
a single, monolithic rt.jar.

However, the constraints of the Java 8 release cycle meant that this work could not
be completed in time for the intended launch date. Rather than delay the release of
Java 8, the project team opted to put off the modularization of the platform until
Java 9.

Motivation
Instead of full modularity, Java 8 was updated to include Profiles. These are reduced 
versions of Java SE, which must satisfy these requirements:

• They must completely implement the JVM specification.
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• They must completely implement the Java language specification.
• Profiles are lists of packages. Profiles should usually be identical to the package

of the same name in the full Java SE platform, and any exceptions (which
should be very rare) must be explicitly called out.

• A Profile may declare that it is larger than another package. In this case, it must
be a strict superset of that Profile.

As a consequence of the second requirement, all Profiles must include all classes
and packages that are explicitly mentioned in the Java language specification.

The general purpose of Profiles is to reduce the size of rt.jar. This is helpful for
reduced capability platforms, which may not need the full features of Java SE (such
as the Swing/AWT graphical toolkits).

Profiles can be seen, in this light, as a step toward modernizing the Java ME plat‐
form and harmonizing (or even unifying) it with Java SE. However, it is also possi‐
ble to conceive of using a Profile as the basis for a server application or other envi‐
ronment, where deploying unnecessary capability is seen as undesirable.

Finally, it is worth noting that a large number of Java’s security vulnerabilities in
recent years have been connected to Java’s graphical client features, as implemented
in Swing and AWT. By not deploying the packages that implement such features, a
modest amount of additional security for server applications is achieved.

Let’s move on to discuss each of the three standard profiles (the Compact Profiles)
that Java 8 ships with.

Compact Profiles
Compact 1 is the smallest set of packages that it is feasible to deploy an application
on. It contains the packages:

• java.io
• java.lang
• java.lang.annotation
• java.lang.invoke
• java.lang.ref
• java.lang.reflect
• java.math
• java.net
• java.nio
• java.nio.channels
• java.nio.channels.spi
• java.nio.charset
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• java.nio.charset.spi
• java.nio.file
• java.nio.file.attribute
• java.nio.file.spi
• java.security
• java.security.cert
• java.security.interfaces
• java.security.spec
• java.text
• java.text.spi
• java.time
• java.time.chrono
• java.time.format
• java.time.temporal
• java.time.zone
• java.util
• java.util.concurrent
• java.util.concurrent.atomic
• java.util.concurrent.locks
• java.util.function
• java.util.jar
• java.util.logging
• java.util.regex
• java.util.spi
• java.util.stream
• java.util.zip
• javax.crypto
• javax.crypto.interfaces
• javax.crypto.spec
• javax.net
• javax.net.ssl
• javax.script
• javax.security.auth
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• javax.security.auth.callback
• javax.security.auth.login
• javax.security.auth.spi
• javax.security.auth.x500
• javax.security.cert

It is important to understand that any profile must at least
ship the transitive closure of types referred to by Object. Fig‐
ure 11-1 shows a partial piece of this graph, and Compact 1 is
as close to this minimum bootstrap set as is realistic.

Compact 2 comprises all of Compact 1 plus these additional packages:

• java.rmi
• java.rmi.activation
• java.rmi.dgc
• java.rmi.registry
• java.rmi.server
• java.sql
• javax.rmi.ssl
• javax.sql
• javax.transaction
• javax.transaction.xa
• javax.xml
• javax.xml.datatype
• javax.xml.namespace
• javax.xml.parsers
• javax.xml.stream
• javax.xml.stream.events
• javax.xml.stream.util
• javax.xml.transform
• javax.xml.transform.dom
• javax.xml.transform.sax
• javax.xml.transform.stax
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• javax.xml.transform.stream
• javax.xml.validation
• javax.xml.xpath
• org.w3c.dom
• org.w3c.dom.bootstrap
• org.w3c.dom.events
• org.w3c.dom.ls
• org.xml.sax
• org.xml.sax.ext
• org.xml.sax.helpers
• javax.xml.crypto.dsig
• javax.xml.crypto.dsig.dom
• javax.xml.crypto.dsig.keyinfo
• javax.xml.crypto.dsig.spec
• org.ietf.jgss

Compact 3 is the most comprehensive of the Profiles that ships with Java 8. It com‐
prises all of Compact 2 plus these additional packages:

• java.lang.instrument
• java.lang.management
• java.security.acl
• java.util.prefs
• javax.annotation.processing
• javax.lang.model
• javax.lang.model.element
• javax.lang.model.type
• javax.lang.model.util
• javax.management
• javax.management.loading
• javax.management.modelmbean
• javax.management.monitor
• javax.management.openmbean
• javax.management.relation
• javax.management.remote
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• javax.management.remote.rmi
• javax.management.timer
• javax.naming
• javax.naming.directory
• javax.naming.event
• javax.naming.ldap
• javax.naming.spi
• javax.security.auth.kerberos
• javax.security.sasl
• javax.sql.rowset
• javax.sql.rowset.serial
• javax.sql.rowset.spi
• javax.tools
• javax.xml.crypto
• javax.xml.crypto.dom

Despite not being the complete modularity solution we might have wished for, Pro‐
files are a significant step towards our future goals—both for capability-restricted
devices and for server-side developers.

Having Profiles actively deployed as part of Java 8 will help inform the conversation
around modularity and provide feedback into the development process of Java 9.

Conclusion
Java has changed a huge amount over the last 15+ years, and yet, the platform and
community remain vibrant. To have achieved this, while retaining a recognizable
language and platform, is no small accomplishment.

Ultimately, the continued existence and viability of Java depends upon the individ‐
ual developer. On that basis, the future looks bright, and we look forward to the
next wave, Java’s 25th birthday, and beyond.
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Symbols
! (exclamation point)

!= (not equal to) operator, 32, 39
boolean NOT operator, 32, 40

" (quotes, double)
enclosing string literals, 25
escaping in char literals, 24
in string literals, 75
literals in, 21

# (pound sign)
#!, shebang syntax, 339
indicating comments, 335

$ (dollar sign), 225
% (percent sign)

%= (modulo assignment) operator, 32,
43

modulo operator, 32, 36
& (ampersand)

&& (conditional AND) operator, 32,
35, 39

&= (bitwise AND assignment) opera‐
tor, 32, 43

bitwise AND operator, 32, 41
boolean AND operator, 32, 40

' (quotes, single)
enclosing character literals, 23
escaping in char literals, 24
in char literals, 75
in string literals, 25
literals in, 21

( ) (parentheses)
cast operator, 32, 46

enclosing expressions in if statements,
50

enclosing method parameter list, 68
method invocation operator, 32, 35, 45
overriding operator precedence, 31
separators (tokens), 22

* (asterisk)
*= (multiply assignment) operator, 32,

43
in doc comments, 228
in multiline comments, 20
in Unix or Windows shell, 272
multiplication operator, 32, 36

+ (plus sign)
++ (increment) operator, 32, 35, 37, 54
+= (add assignment) operator, 32, 37,

43
addition operator, 32, 36
string concatenation operator, 32, 37,

75, 269
unary plus operator, 32

, (comma) separators (tokens), 22
- (minus sign)

-- (decrement) operator, 32, 38
-= (subtract assignment) operator, 32,

43
subtraction operator, 32, 34, 36
unary minus operator, 32, 34, 37

. (dot)
object member access operator, 32, 45
separators (tokens), 22

... (elipses)
separators (tokens), 22

/ (slash)
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/* */ in multiline comments, 19
/** */ in doc comments, 20, 226
// in single-line comments, 19
//, denoting JavaScript comments, 335
/= (divide assignment) operator, 32, 43
division operator, 32, 36

0 (zero)
division by zero, 36
negative and positive zero, 27
represented by float and double types,

27
represented by integral types, 275

: (colon), :: separators (tokens), 22
; (semicolon)

for empty statements, 48
in abstract methods, 69
in break statements, 58
in for loops, 56
separators (tokens), 22
terminating do loops, 55

< > (angle brackets)
< (less than) operator, 32, 39
<< (signed left shift) operator, 32, 42
<<= (left shift assignment) operator,

32, 43
<<END_TOKEN syntax for heredocs,

337
<= (less than or equal to) operator, 32,

39
<> (diamond syntax), 145
> (greater than) operator, 32, 39
>= (greater than or equal to) operator,

32, 39
>> (signed right shift) operator, 32, 42
>>= (right shift assignment) operator,

32, 43
>>> (unsigned right shift) operator,

32, 42
>>>= (unsigned right shift assign‐

ment) operator, 32, 43
enclosing payload type in generic

types, 143
= (equals sign)

= (assignment) operator, confusion
with == (equal to) operator, 43

== (equal to) operator, 32, 38, 181
comparing objects, 87

assignment operator, 32, 43
? (question mark)

<?> wildcard for unknown types, 146
? : (conditional) operator, 32, 34, 35,

44
regular expression metacharacter, 272

@ (at sign)
in doc-comment tags, 228
separators (tokens), 22

[ ] (brackets)
accessing array elements, 45, 80
after array element type, 77
array access operator, 32

\ (backslash)
in escape sequences, 23
\\ escape sequence in char literals, 24

^ (caret)
bitwise XOR operator, 32, 42
boolean XOR operator, 32, 40, 42
^= (bitwise XOR assignment) opera‐

tor, 32, 43
` ` (backticks), 336
{ } (curly braces)

enclosing class members, 99
in nested if/else statements, 51
in switch statements, 52
in try/catch/finally statements, 61
separators (tokens), 22

| (vertical bar)
bitwise OR operator, 32, 41
boolean OR operator, 32, 40
|= (bitwise OR assignment) operator,

32, 43
|| (conditional OR) operator, 32, 35, 40

~ (tilde), bitwise complement operator,
32, 41

… (ellipses)
in variable-length argument lists, 71

→ (lambda arrow) operator, 32, 46

A
a tag (HTML), 233
abs(), 278
abstract classes, 68, 99

interfaces versus, 184
abstract methods, 68
abstract modifier

abstract classes and methods, 128-132
abstract methods of interfaces, 137
classes implementing an interface, 138
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summary of use, 133
AbstractList class, 184
access control, 122-126

access to members, 122
and inheritance, 125
local classes, 164
member access summary, 125
member classes, 160
Reflection API versus Method Handles

API, 327
access modifiers

anonymous classes, 168
class members, 98
for classes, 99
for fields, 101
for methods, 69
interface members and, 137
member access, 122
static member types, 158
top-level types and, 158

accessor methods, 127
field inheritance and, 189

addition operator (+), 36
(see also + (plus sign), in Symbols sec‐

tion)
adjusters, modifying date and time

objects, 285
aggregation operations, 261
allocateDirect(), ByteBuffer class, 299
allocation table, 199
AND operator (see & (ampersand), in

Symbols section)
annotations, 99, 152

basic, in java.lang, 153
custom, defining, 153
special properties of, 153
static member types nested in, 158
type, 155

anonymous classes, 156, 167
defining and creating an instance, 168
enumerator implemented as, 167
implementation, 170
lambda expressions versus, 172
naming conventions for, 170
restrictions on, 168

Apache Commons project, 90
application classloader, 319
apply() method, Function interface, 260
$ARG variable (Nashorn), 336

arithmetic operators, 36
ArithmeticException, 26, 278
array covariance, 78, 149
arrayCopy(), System class, 82, 257
ArrayDeque class, 255
ArrayIndexOutOfBoundsException, 81
ArrayList class, 184, 248
arrays, 77-84, 99

accessing array elements, 45, 80
array bounds, 81
array types, 77

widening conversions, 77
Arrays class, static methods, 258
as operand type, 38, 44
comparing for equality, 87
conversions, 132
copying, 81
creating and initializing, 79

array initializers, 79
creation with new operator, 46
helper methods for working with, 257
iterating, 81
iterating through using foreach state‐

ment, 57
multidimensional, 82
of collections, 257
utility methods for working with, 82

Arrays class, 82
ArrayStoreException, 78
ASCII

7-bit character set, 18
escape sequences representing non‐

printing characters, 23
assert statements, 64
AssertionError, 64
assertions, 64

enabling, 65
assignment operators, 43

associativity, 31
combined with arithmetic , bitwise,

and shift operators, 43
associativity, operator, 31
async I/O, 301

callback-based style, 302
Future-based style, 301

AsynchronousServerSocketChannel, 301
AsynchronousSocketChannel, 301
@author doc-comment tag, 228
autoboxing, 88
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in reflection, 323
AutoCloseable interface, 294
automatic imports, 90

B
\b (escape sequence for backspace), 24
backticks (`), 336
backwards compatibility, 7

generic types and type erasure, 145
of interfaces, 140

benign data race, 271
BigDecimal class, 278
binary operators, 34
BinaryOperator interface, 261
Bindings interface, 342
bitwise operators, 41
blocking queue, defined, 253
BlockingQueue interface, 253

implementations, 255
methods to add elements to queues,

253
methods to remove elements from

queues, 254
body of a class, 98
body of a method, 66
Boolean operators, 39
boolean type, 23

Boolean class, 50
get() accessor methods and, 128
no conversions to other primitive

types, 28
operator return values, 35, 38
using +=, -=, &= , and |= to work with

boolean flags, 43
bound method reference, 260
bounded wildcards, 148
boxing and unboxing conversions, 88

primitive types to JavaScript equiva‐
lents, 341

break statements, 58, 63
labels, use of, 48
specifying end of case clauses in switch

statements, 53
stopping switch statements, 53

BufferedReader class, 292
buffers, NIO, 298

getting data out of, 299
mapped byte buffers, 300

build tools, 350
byte type, 25, 35, 275

Byte class, 26
conversions to other primitive types,

28
ByteBuffer class, 298
bytecode

defined, 9
frequently asked questions about, 10

byte[], 298, 299

C
C#, using keyword, 294
C/C++

comma operator (,) in C, 149
comparison of Java to C, 12
comparison of Java to C++, 12
compatibility syntax in variable decla‐

rations, 78
constant integers in C++, 151
memory management, 197
native methods, using to interface Java

code to C/C++ libraries, 69
object contents in variables, 177
operator precedence, 31
pointers or memory addresses, refer‐

ences as, 85
structs in C, 317
switch statement, 52
variable declarations, 49
virtual method lookup, 119

Callable interface, 344
callback style for async I/O, 302
case labels (switch statements), 53

restrictions on, 53
case sensitivity in Java, 19
casts, 29

( ) (cast) operator, 46
of primitive types, 29

catch clause (try/catch/finally), 62
catch clauses (multiple) in Nashorn Java‐

Script, 346
ceil(), 279
channels, 300

async I/O, subclasses of Channel, 301
asynchronous, 301

callback-based interactions with,
302
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Future-based interactions with, 301
multiplexed I/O, 303

char type, 23, 35
Character class, static method, 24
conversion to and from integer and

floating-point types, 28
conversion to other primitive types, 24
escape characters in char literals, 24
surrogate pair, Unicode supplemen‐

tary characters, 25
character sets, 18
characters in identifiers, 225
checked exceptions, 70, 193

in throws clause of method signature,
68

working with, 71
Class class, 75

forName(), 318
newInstance(), 320

class files, 5, 9, 311
Constant Pool section, 313
creation of, 10
inspecting for deprecated methods,

using custom classloading and
reflection, 324

required layout, 313
verification of, 314

class hierarchy, 113, 131
class methods

choosing between class and instance
methods, 185

static modifier, 69
Class object, 321
class objects, 311

metdata in, 312
classes, 72-73, 97

abstract, 128-132
access to, 122
access to, from Nashorn, 343
anonymous, 156, 167-168
constructors, 106
core classes of Java platform, 88
data hiding and encapsulation, 121
defining, 73
definition syntax, 99
effectively immutable, 271
fields and methods, 100

class fields, 102, 108
class methods, 103, 105

field declaration syntax, 101
implementing interfaces, 136, 138

inheritance and, 137
instance initializers, 110
local, 156, 162-167
modifiers, 133
name collisions, preventing, 89
names, simple and fully qualified, 89
naming conventions for, 224
nonstatic member classes, 156,

159-162
overview, 97

basic object-oriented definitions,
98

other reference types, 99
serialization, 230
static initializers for class fields, 109
subclasses and inheritance, 110-120

access control and inheritance, 125
constructor chaining and default

constructor, 114
extending a class, 111
hiding superclass fields, 115
superclasses, Object, and the class

hierarchy, 112
undocumented, 235

ClassLoader class, 317
defineClass(), 314
subclasses and classloader hierarchy,

318
classloader hierarchy, 318

application classloader, 319
custom classloader, 320
extension classloader, 319
primordial classloader, 318

classloading, 311
applied, 317

classloader hierarchy, 318
custom classloading, combining with

reflection, 324
defined, 313
initialization phase, 315
loading phase, 314
preparation and resolution phase, 315
secure programming and, 315
verification phase, 314

ClassNotFoundException, 318
clone()

arrays, 77, 81
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Object class, 182
Cloneable interface, 77, 81, 182

Collections interfaces and, 242
CloneNotSupportedException, 77
closures, 167
@code doc-comment tag, 232
collect(), Predicate interface, 259
Collection interface, 239

operations on Collection objects, 240
removeIf method, 265
Streams utility default methods, 265

collections, 239-266
arrays and helper methods, 257
autoboxing and, 88
Collection interface, 240

operations on Collection objects,
240

Collections class
special-case collections, 256
utility methods, 256
wrapper methods, 255

Collections classes and inheritance,
239

iterating over with foreach loops, 57
iteration over, 245
lambda expressions in, 258

regular expressions and, 274
Streams API, 262

List interface, 244
Map interface, 249
Queue and BlockingQueue interfaces,

252
restrictions on elements in, 242
Set interface, 242

Collector interface, 262
command-line tools, 349

commonly used, list of, 349
jar, 353
java, 351
javac, 350
javadoc, 355
javap, 361
jdeps, 356
jinfo, 359
jmap, 360
jps, 357
jstack, 360
jstat, 358
jstatd, 359

comments, 19
doc comments, 226
scripting in jjs, 335

Compact Profiles, 368
Compact 2, additional packages, 370
Compact 3, additional packages, 371

Comparable interface, 179
compareTo(), 182
parameterized, or generic version,

implementing, 179
comparison operators, 38
compilation, 10

in Nashorn, 332
compilation units, 18
compile time typing, 150
compilers

javac and, 10
JIT compilers, 353

CompletionHandler interface, 302
composition versus inheritance, 187
compound statements, 48
concurrency

Java support for, 208
safety of multithreaded programs, 212

exclusion and protecting state, 212
Thread class, useful methods of, 215
thread lifecycle, 209
volatile keyword, 215
working with threads, 218

concurrent collectors, 204
Concurrent Mark and Sweep (CMS), 205
ConcurrentHashMap class, 251
concurrently safe code, 212
ConcurrentMap interface, 252

putIfAbsent() method, 265
ConcurrentSkipListMap class, 251
conditional AND operator (&&), 39
conditional operator (? :), 44
constants, 183

importing into code, 92
constructors, 18, 46, 67, 106

chaining, and the default constructor,
114

Constructor object, 321
default, 106
defining a constructor, 106
defining multiple constructors, 107
invoking one constructor from

another, 107
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subclass, 113
superclass, calling from subclass con‐

structor, 114
Consumer interface, 260
containment hierarchy, 162
continue statements, 58, 63

labels, use of, 48
copy constructors, 182
CopyOnWriteArrayList class, 248
CopyOnWriteArraySet class, 242
CopyOption interface, 296
corporate nature of Java, criticisms of, 15
counters for loops, incrementing, 54
countStackFrames(), Thread class, 217
covariant return, 117
critical section (of code), 213
cross-references in doc comments, 233
currency symbols in identifiers, 21
custom classloader, 320

combining custom classloading with
reflection, 324

D
daemon threads, 216
data encapsulation, 98
data formats (common), handling,

267-287
mathematical functions, 278-280
numbers and math, 275-280
text, 267-275

data types
array index expressions, 81
array types, 77
expressions in switch statements, 53
field type, 101
in class method declarations, 103
instanceof operator, 44
interfaces as, 139
Java type system, characteristics of,

174
JavaScript versus Java, 341
Nashorn and, 341
numeric, 275-278
of array elements, 77
of operands, 34
primitive, 22

boolean type, 23
char type, 23

conversions, 28
floating-point types, 26
integer types, 25

raw types, 145
reference, 84-88

boxing and unboxing conversions,
87

conversions, 131
transitive closure in classloading pro‐

cess, 315
type conversion or casting with ( ), 46
type safety, 195

DatagramSocket class, 308
date and time, 280

Java 8 API, 281-286
adjusters, 285
example of use, 282
temporal queries, 284
timestamp, parts of, 281

legacy, 286
Date class, 286
debugging, using assertions, 64
decorator pattern, 188
decrement operator (--), 38

(see also - (minus sign), in Symbols
section)

default constructors, 115
default modifier, 133

default methods in interfaces, 136, 140
and choice between interfaces and

abstract classes, 184
implementation of, 141
Streams API utility default meth‐

ods, 265
working via classloading, 314

default: label, 53
defineClass(), Classloader, 314
delegation, 187

use of proxies, 325
dependencies, analysis with jdeps tool,

356
@Deprecated annotation, 153, 312
@deprecated doc-comment tag, 230
design patterns, 177

(see also object-oriented design)
destroy(), Thread class, 218
diamond syntax, 145
directories

searching, 303
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watch services for, 303
division operator, 36

(see also / (slash), in Symbols section)
do statements, 54

continue statement in, 59
doc comments, 20, 226

cross-references in, 233
for packages, 234
structure of, 227

doc-comment tags, 228
inline, 231

@docRoot doc-comment tag, 232
documentation (doc comments), 226-235
@Documented meta-annotation, 155
domain names in package names, 90
double type, 26

conversions, 28
Double class, 28
return type for operators, 35

DoubleStream class, 263
Duration class, 281
dynamic proxies, 325

E
eager evaluation, 264
effectively immutable classes, 271
ElementType enum, 154

TYPE_PARAMETER and TYPE_USE
values, 155

else clause (if/else statements), 50
in nested if/else statements, 50

else if clause (if/else statements), 51
empty collections, Collections class meth‐

ods for, 256
empty statements, 48
encapsulation, 121-128

access control, 122-126
data accessor methods, 126
data hiding and, 121
nested types and, 155

endianness, 10
<<END_TOKEN syntax for heredocs, 337
enumerated types (see enums)
EnumMap class, 251
enums, 99, 151

special characteristics of, 152
EnumSet class, 242
$ENV variable (Nashorn), 337

equality operator (==), 28, 38
(see also = (equals sign), in Symbols

section)
comparing reference types, 87

equality operators, 38
equals()

Arrays class, 87
Object class, 181
testing two nonidentical objects for

equality, 87
$ERR variable (Nashorn), 337
Error class, 70, 193
error messages, 193
escape sequences

in char literals, 24
in string literals, 25, 75
Unicode characters, 19

evacuating collectors, 202
evacuation, 202
eval(), 340
evaluation of expressions

lazy evaluation, 263
shortcutting, 39

@exception doc-comment tag, 229
Exception class, 193

constructors, implementation of, 194
exception handlers, 60
exception handling, antipatterns to avoid,

194
exceptions, 193

advantages/disadvantages of using,
193

checked, 68
checked and unchecked, 70

working with checked exceptions,
71

designing, guidelines for, 194
Exception class, 70
JavaScript, 346
subclasses of Error, 193
sublcasses of Exception, 193
thread exiting by throwing, 217
throwing, 60

exclusion, 212
$EXEC() function (Nashorn), 337
exec() method, Runtime class, 235
ExecutorService, 344
exp(), 279
exponential notation, 27
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expression statements, 48
expressions, 30

array creation, 79
following return statements, 59
in assert statements, 64
in for loops, 55
in if statements, 50
in switch statements, 52
in synchronize statements, 60
in throw statements, 60
in while statements, 54
initialization expressions for class

fields, 109
operators and, 30-46
statements versus, 46

extending interfaces, 137
extends clause

in interface definitions, 137
superclass specified in, 112

extends keyword, 99, 111
expressing type covariance, 148
for container types acting as producers

of types, 148
in bounded wildcards, 148

extensions
extension classloader, 319
standard, to the Java platform, 89, 236

F
\f (form feed) escape sequence, 24
false reserved word, 21
fields, 18, 100

access control and inheritance, 125
accessible to a local class, 165
accessing and manipulating with

method handles, 328
class, 102

initialization, 109
declaration syntax, 101
default values and initializers, 108
inheritance of, 112
instance, 103
interface, 137
modifiers, 133
naming conventions for, 224
subclass, initialization of, 113
superclass, hiding, 115

File class, 90, 289

interaction between Path and File
objects, 297

methods, summary of, 290
file handling and I/O

async I/O
AsynchronousFileChannel, 301
callback-based style, 302
Future-based style, 301
watch services and directory

searching, 303
classic Java I/O, 289

File class methods, 290
problems with, 294
readers and writers, 292
streams, 291

modern Java I/O, 295
Files class methods, 295
NIO API in Java 7, 295
Path interface, 296

networking, 304-309
NIO channels and buffers, 298

ByteBuffer, 298
channels, 300
mapped byte buffers, 300

try-with-resources, 293
FileChannel class, 300
FileInputStream class, 291
filenames, hardcoded, 236
FileOutputStream class, 291
FileReader class, 292
files, 289

(see also file handling and I/O)
Java file structure, 93

Files class, 295
bridge methods to older I/O APIs, 297
find() method, 303
walk() method, 303

FileSystem class, 298
FileVisitor interface, 304
filter(), 174

Predicate interface, 259
FilterInputStream class, 293
final modifier, 211

and local classes, 164
class fields, 102
classes, 100, 112
fields, 101
in variable declaration statements, 49
interface fields, 137
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methods, 69
summary of use, 133

finalization, 206
finalizer method, 206
finally clause (try/catch/finally), 63
first-in, first-out (FIFO) queues, 252
flatMap(), 264
floating-point numbers, 276-278

BigDecimal class, 278
floating-point types, 26

conversions, 28
using casts, 29

division by zero, 36
Double class, 28
double type, 26

return type for operators, 35
Float class, 28
float type, 26

return type for operators, 35
floating-point arithmetic, 28, 36
floating-point literals, 27
strictfp modifier for methods, 69
testing if value is Nan, 38
wrapper classes, 28

floor(), 279
flow-control statements, 46
fold operations, 261
for each in loops, 345
for statements, 55

break statement in, 58
comparison operators in, 38
continue statement in, 59
initialize, test, and update expressions

in, 55
interating arrays, 81
iterating lists, 246

foreach statements, 56
iterating arrays, 81
iterating lists, 245
limitations of, 57
syntax, 246

forEach(), 260
format()

Formatter class, 237
String class, 71

Formatter class, 237
frequently asked questions about Java, 9
function types, Java and, 174
functional programming, 173, 259

Java support for slightly functional
programming, 174

functional programming languages, 76
@FunctionalInterface annotation, 153,

173
functions

compose() method of Function class,
185

JavaScript
and lambda expressions, 344
strict mode, 334

Nashorn helper functions, 338
Future interface, interactions with asyn‐

chronous channels, 301

G
G1 (Garbage First) collector, 205
garbage collection, 197

evacuation and evacuating collectors,
202

mark and sweep algorithm, 199
of objects in the heap, 204
optimization by the JVM, 201

garbage collectors, 204
(see also garbage collection; HotSpot

JVM)
Concurrent Mark and Sweep (CMS),

205
other than HotSpot, 204

Garbage First collector (G1), 205
generational garbage collector, 202
generations, 201
generic methods, 66, 149
generic types, 142-151

and type parameters, 144
creating an instance of, using diamond

syntax, 145
declaring, 143
type erasure, 145
using and designing, 150

compile and runtime typing, 150
wildcards for unknown type, 146

get and set methods, 127
GET method (HTTP), 305
get(), Future interface, 301
getClass(), Object class, 311
getId(), Thread class, 215
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getName() and setName(), Thread class,
216

getPriority() and setPriority(), Thread
class, 215

getState(), Thread class, 216
global methods or functions, class meth‐

ods as, 103
global variables

in Nashorn, 336
public static fields as, 102

Graceful Completion pattern, 215
greater than operator (>), 39

(see also < > (angle brackets), in Sym‐
bols section)

greater than or equal to operator (>=), 39

H
handling common data formats (see data

formats (common), handling)
hash tables, memory leaks from, 198
hashCode()

Object class, 181
String class, 270

HashMap class, 251
HashSet class, 242
Hashtable class, 252
hasNext(), Interator, 247
HEAD method (HTTP), 305
heap

HotSpot JVM, 203
sharing by application threads, 210

heredocs, 337
HotSpot JVM, 198

collecting the old generation, 204
heap, 203
JIT compilers, 353
optimization of garbage collection,

202
HTTP, 304

implementing a client on a TCP
socket, 306

implementing on server side, 307
redirects, 306
request methods, 305

HttpURLConnection class, 306

I
I/O (input/output), 289-304

async I/O, 301
callback-based style, 302
Future-based interactions with

async channels, 301
watch services and directory

searching, 303
classic Java I/O, 289

File class methods, 290
problems with, 294
readers and writers, 292
streams, 291
try-with-resources, 293

interruptable, 216
modern Java I/O, 295

Files class, methods of, 295
Path interface, 296

networking, 304-309
NIO channels and buffers, 298

ByteBuffer, 298
channels, 300
mapped byte buffers, 300

identifiers, 21
characters allowed in, 225
method names, 67

IdentityHashMap class, 252
IEEE-754 floating-point arithmetic stan‐

dard, 277
if statements, 50
if/else statements, 50

conditional operator (? :) as version of,
44

else clause, 50
else if clause, 51
nested, 50

immutability of strings, 269
hash codes and effective immutability,

270
implementation-specific code, 236
implements clause, 138
implements keyword, 99
import declarations, 18, 90

causing naming conflicts and shadow‐
ing, 91

importing static member types, 158
on-demand imports, 91
single type imports, 90
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import static declarations, 92
static member imports and overloaded

methods, 93
increment operator (++), 37

(see also + (plus sign), in Symbols sec‐
tion)

side effect of, 35
indexes

array, 77
too small or too large, 81

list, 244
infinite loops

creating with syntax while(true), 54
writing with for(;;), 56

infinite streams, 263
infinity

modulo operator (%) and, 37
positive and negative, 27
positive infinity, division by zero in

floating-point arithmetic, 36
inheritance, 110, 131

(see also subclasses and inheritance)
access control and, 125
between container types and their pay‐

load types, 148
composition versus, 187
field inheritance and accessors, 189
interfaces, 137
nonstatic member classes, 162

@inheritDoc doc-comment tag, 232
@Inherited meta-annotation, 155
initialization, 315
initialize expressions (for loops), 55
initializers

array, 79
defining a constructor, 106
defining multiple constructors, 107
field, 101
field defaults and, 108
in variable declarations, 49
instance initializers, 110
invoking one constructor from

another, 107
static initializer, 109
subclass constructors, 113

inline command execution (jjs), 336
inline doc-comment tags, 231
inner classes, 155

(see also nested types)

representation of functions via, 173
InputStream class, 291
InputStreamReader class, 292
instance fields, 103

class methods and, 103
default values, 108

instance initializers, 110
instance methods, 104

choosing between class methods and,
185

class methods and, 103
overridden, 118
this reference, how it works, 105

instanceof operator, 32, 44, 181
testing for RamdomAccess, 248

instances
constructed reflexively, 320
finalizers acting on, 208

Instant class, 281
int type, 25, 276

32-bit int values, 26
conversions to other primitive types,

28
Integer class, 26
return type for operators, 35

integer types, 25, 275
conversions, 28
integer arithmetic, 26, 36
integer literals, 25
wrapper classes, 26

interface keyword, 136
interfaces, 97, 136-142

@FunctionalInterface annotation, 153
constants in definitions, 183
conversion of lambda expressions to,

172
default methods, 140

implementation of, 141
defined, 99
defining, 136
extending, 137
following implements keyword in class

definitions, 99
implementing an interface, 138
implementing multiple interfaces, 139
marker, 141
modifiers, 133
naming conventions for, 224
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Nashorn JavaScript implementation
of, 346

partial implementations, with proxies,
325

static member interface, defining and
using, 157

static member types nested in, 158
versus abstract classes, 184

interpreted languages, Java and, 10
interpreters

implementation for other languages in
Java, 11

JVM and, 10
interrupt(), Thread class, 216
IntStream class, 263
invokedynamic bytecode, 326
IOException objects, 71
IP (Internet Protocol), 308

IPv4 and IPv6, 308
irrational numbers, 277
isAlive(), Thread class, 216
isDone(), Future interface, 301
isJavaIdentifierPart(): Character, 21
isJavaIdentifierStart(): Character, 21
isNan()

Double class, 38
Float class, 38

Iterable interface, 240, 246, 247
iteration, 245
Iterator interface, 240, 247

implementation as a member class,
159

Iterator object, 246
foreach loop and, 57

iterator(), List, 248

J
JAR (Java archive) files, 95

manipulating as a FileSystem, 298
jar utility, 353
Java

brief history of, 7
calling from Nashorn, 342
comparing to other languages, 11
criticisms of, 13

overly corporate, 15
performance problems, 14
security, 15

slowness to change, 14
verbosity of Java, 13

security (see security)
Java 7

async I/O, 301
Method Handles API, 326
NIO.2 API, 295

Java 8, 13
@FunctionalInterface annotation, 153
Collections libraries, new methods for,

265
Date and Time API, 280-286

adjusters, 285
example of use, 282
java.time package and subpack‐

ages, 281
temporal queries, 284
timestamps, 281

default methods in interfaces, 140
lamdba expressions, 76, 171-174
Nashorn, 331-348
optional methods in interfaces, 136
profiles, 367-372
radical changes in, 5
security problems, 11
Streams API, 262-266

Java bytecode, 5
java command, 94, 351

-client or -server switch, 353
common switches, 352

Java ecosystem, 7
Java interpreter, 94

(see also java command)
running, 94

Java language, 4
syntax, 17-95

arrays, 77-84
case sensitivity and whitespace, 19
classes and objects, 72, 77
comments, 19
defining and running Java pro‐

grams, 94
expressions and operators, 30-46
identifiers, 21
Java file structure, 93
literals, 21
methods, 66-72
packages and the Java namespace,

88, 93
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primitive data types, 22-28
primitive type conversions, 28
punctuation, 22
reserved words, 20
statements, 46-65

Unicode character set, 18
Java Language Specification (JLS), 5
java object, 342
Java platform

backwards compatibility, 140
command-line tools, 349-362
graphical tool, VisualVM, 362-367

Java programming
conventions for portable programs,

235
documentation comments, 226-235
naming and capitalization conven‐

tions, 223-226
Java programming environment, 3-15

Java language, 4
JVM (Java Virtual Machine), 5

Java programs
contents of, 18
defining and running, 94
lexical structure, 18
lifecycle of, 9

Java SE, 367
java., package names beginning with, 88
java.awt.List, 91
java.awt.peer package, 236
java.io.IOException objects, 71
java.io.ObjectInputStream class, 74
java.io.ObjectStreamConstants, 183
java.io.PrintStream, 187
java.lang package, 90

annotations in, 153
java.lang.annotation.Annotation, 153
java.lang.Cloneable, 182

(see also Cloneable interface)
java.lang.Comparable (see Comparable

interface)
java.lang.Enum, 152
java.lang.Error, 193
java.lang.Exception, 193
java.lang.Iterable, 247
java.lang.Object class, 77, 112

(see also Object class)
java.lang.reflect, 71
java.lang.Throwable, 193

java.lang.UnsupportedOperationExcep‐
tion, 185

java.net package, 304
java.nio.channels package, 300
java.nio.file package, 295, 304
java.time package, 281
java.time.chrono package, 281
java.time.format package, 281
java.time.temporal package, 281
java.time.zone package, 281
Java.type(), 343
java.util package

Map interface implementations, 251
Set implementations, 242

java.util.AbstractList, 184
java.util.Arrays class, 82
java.util.concurrent, 209, 242

Map implementations, 251
java.util.Formatter, 237
java.util.function package, 259

interfaces, 265
java.util.function.Function, 185
java.util.Iterator, 247
java.util.Iterator interface, 159
java.util.List, 91, 184
java.util.RandomAccess, 142
java.util.regex package, 272
java.util.stream package, 263
javac, 9, 350

-g switch, 351
-source and -target options, 351
and @deprecated doc-comment tag,

230
class initialization method, generation

of, 109
code generated for a constructor, 108
common switches, 350
compilation and, 10
compile-time typing, 150
constructor chaining and the default

constructor, 114
creation of bytecode that uses virtual

method lookup, 119
field initialization code, generation of,

108
lint capability, 351
nested types, treatment of, 169

JavaClass object, 343
javadoc, 20, 355
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common switches, 355
doc-comment tags recognized by, 228
inline doc-comment tags, 231
version information in its documenta‐

tion, 229
javap disassembler, 169, 361
JavaPackage object, 343
JavaScript, 331

(see also Nashorn)
Java compared to, 12

javaw command, 353
javax., package names beginning with, 89
javax.net package, 304
javax.script, 340-342

key classes and interfaces, 341
with Nashorn, 340

jdeps tool, 356
jinfo tool, 359
JIT compilation, 10
JIT compilers

HotSpot JVM, 353
jjs (Nashorn shell), 333

executing JavaScript, 333
jjs command and options, 334
scripting with, 335

comments, 335
inline command execution, 336
inline documents, 337
shebang syntax for starting scripts,

339
special variables, 336
string interpolation, 336

JLS ( Java Language Specification), 5
jmap tool, 360
join()

Thread class, 216
jps tool, 357
jrunscript, 333
jstack tool, 360
jstat tool, 358
jstatd tool, 358
JVisualVM (see VisualVM)
JVMs (Java Virtual Machines), 3

as interpreters, 10
defined, 5
non-Java languages on, 331
other languages running on, 11
restrictions on, 317
runtime typing, 150

security checks implemented by, 316

K
Kanjii character (in Java identifier), 21
KISS principle, 308

L
labeled statements, 48

following break statement, 58
lambda expressions, 46, 67, 76, 171-174

conversion by javac to interface type,
172

defined, 76
functional programming with, 173
in Java Collections, 258-266

filters, 259
forEach, 260
maps, 260
reduce, 261
regular expressions and, 274
Streams API, 262, 266

JavaScript functions and, 344
method references, 173

last in, first-out (LIFO) queues, 252
Latin-1 character set, 19

escaping in char literals, 24
lazy evaluation, 264
left shift operator (<<), 42
length of arrays, 77, 79

length field, 77
less than operator (<), 39
less than or equal to operator (<=), 39
lexical scoping, 165

(see also scope)
lexical structure of Java programs, 18
libraries, third-party, 7
life expectancy of objects (generations),

201
line separators, 237
@link doc-comment tag, 228, 231, 233
linked lists, iterating through, using for

loop, 56
LinkedHashMap class, 252
LinkedHashSet class, 242
LinkedList class, 184, 248

implementing Queue, 255
LinkOption class, 296
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@linkplain doc-comment tag, 232, 233
List interface, 240, 244

foreach loops and iteration, 245
general-purpose implementations, 248
methods, 244

lists
generic, List<E> type, 144
iterating through using foreach loop,

57
java.util.List and java.awt.List classes,

89, 91
java.util.List and java.util.AbstractList,

184
random access to, 248
storing primitive values in, 88

@literal doc-comment tag, 232
literals, 21

in expressions, 30
live objects, 199
loadClass(), 317
local classes, 156, 162-167

defining and using, 163
features of, 164
implementation, 170
lexical scoping and local variables, 166
naming convention for, 170
restrictions on, 164
scope of, 164

local variable declaration statements, 48
local variables, 48

(see also variables)
lexical scoping and, 165
naming conventions for, 225

LocalDate class, 282, 283
locks, 214

basic facts about, 218
log(), 279
log10(), 279
logical operators, 39
long type, 25, 53, 276

64-bit long values, 26
conversions between char values and,

29
Long class, 26
return type for operators, 35

Lookup object, 327
looping

for statements, 55
while statement, 54

low-pause applications, 205

M
main(), 61, 94
MalformedURLException, 71
Map interface, 239, 249

computeIfAbsent() method, 266
forEach() method, 265
getOrDefault() method, 265
implementations, 251
remove(), replace() and putIfAbsent()

methods, 265
support for collection views, 249

map(), 173, 260
map, defined, 249
Map.Entry interface, 249
MappedByteBuffer class, 300
maps

Bindings interface, 342
Function interface, 260

mark and sweep algorithm for garbage
collection, 199
Concurrent Mark and Sweep (CMS)

collector, 205
HotSpot JVM, 204

marker interfaces, 141
Matcher class, 272
Math class, 278-280

on-demand static import, 92
static methods for rounding, 29

mathematical functions, 278-280
max(), 279
MAX_VALUE constant

Float and Double classes, 28
integer type wrapper classes, 26

member classes (see nonstatic member
classes)

members, 98
access to, 122-126
common kinds of, 98
fields and methods, 100

class fields, 102
class methods, 103
field declarations, 101
instance fields, 103
instance methods, 104

interface, restrictions on, 137
nested types as, 155
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nonstatic member classes, 159
static member types, 156-159

memory
approach to, in Java, 317
required by primitive and reference

types, 85
memory and concurrency, 197-220

finalization, 206
HotSpot JVM, heap, 203
Java support for concurrency, 208
JVM's optimization of garbage collec‐

tion, 201
mark and sweep garbage collection,

199
memory leaks in Java, 198
memory management, basic concepts,

197
safety of multithreaded programs, 212
visibility and mutability of Java

objects, 210
meta-annotations, 154

(see also annotations)
metacharacters in regular expressions,

272
summary of, 273

method body, 66
method handles, 326-329

invoking, 328
method lookup queries, 327
MethodHandle class and subclasses,

328
MethodType class, 326

method invocation operator (( )), 35, 45
Method object, 321

reflexive invocation with, 322
method overloading, 67

static member imports and, 93
method references, 173

as lamdba expressions, 260
method signature, 66
MethodHandles.lookup(), 327
methods, 18, 66-72

abstract, 128-132
access control and inheritance, 125
annotations, 153
arguments passed to, primitive and

reference types, 86
checked and unchecked exceptions, 70

working with checked exceptions,
71

class, 103, 105
use of class fields and methods, 103

class initialization, 109
class versus instance methods, 185
default, 140-141
defining, 66
generic, 149
implementation by classes implement‐

ing interfaces, 138
inheritance through subclassing, 112
instance, 104

this reference, how it works, 105
interface, 136

static methods, 137
modifiers, 68, 133
naming conventions for, 224
native, 235
non-public, treatment in reflection,

323
overriding, 117-120

hiding versus overriding, 118
invoking an overridden method,

119
virtual method lookup, 119

parameter list, 68
synchronized, 60, 213
variable-length argument lists, 71
void, 59

min(), 279
MIN_VALUE constant

Float and Double classes, 28
integer type wrapper classes, 26

modifiers
access, 69
anonymous classes, 168
class, 99
field, 101
local classes, 164
method, 67, 68
summary of, 132

modulo operator (%), 36
(see also % (percent sign), in Symbols

section)
monitors, 214

basic facts about, 218
multidimensional arrays, 82
multiline strings, 337
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multiplexed I/O, 302
multiplication operator (*), 36

(see also * (asterisk), in Symbols sec‐
tion)

multithreaded programming
Java support for, 208
safety of programs, 212
synchronize statement, 59

mutability, 174
of objects, 177, 211

N
\n (newlines, escaping), 24
names

characters used in, 225
guidelines for choosing good names,

225
of class fields, 102
of methods, 67
of static member types, 158
of threads, 216
package-naming rules, 89

namespaces, 88-93
globally unique package names, 89
importing static members, 92
importing types, 90
static member types nested in, 156

naming conflicts, 91
naming conventions, 223

for four kinds of nested types, 169
NaN (Not-a-number), 27

equality tests of, 38
floating-point calculations, division by

zero, 36
modulo operator (%) and, 37

narrowing conversions, 28
Nashorn, 331-348

and javax.script, 340-342
running JavaScript from Java, 340

calling Java from, 342
JavaClass and JavaPackage, 342
JavaScript functions and Java

lambda expressions, 344
executing JavaScript with, 332

running from the command line,
333

scripting with jjs, 335-340
using the Nashorn shell, 333

function as anonymous implementa‐
tion of Java interface, 346

JavaScript language extensions, 345
foreach loops, 345
multiple catch clauses, 346
single expression functions, 345

on the JVM, 332
purposes within Java and JVM ecosys‐

tem, 332
native methods, 69, 235
native modifier, 133
negative infinity, 27
negative zero, 27
NEGATIVE_INFINITY constant, Float

and Double classes, 28
nested types, 155

anonymous classes, 167-168
how they work, 169

local and anonymous class imple‐
mentation, 170

nonstatic member class implemen‐
tation, 170

local classes, 162-167
nonstatic member classes, 159-162
static member types, 156-159

networking, 304-309
HTTP, 304
TCP, 306

New I/O (NIO) API (see NIO API)
new operator, 32, 35, 46

creating arrays, 79, 83
creating new objects, 74, 106

next(), Iterator, 247
NIO (New I/O) API, 298
nominal typing, 142
nonstatic member classes, 159

features of, 160
implementation, 170
naming convention for, 169
restrictions on, 161
scope versus inheritance, 162
syntax for, 161

not equals operator (!=), 39
(see also ! (exclamation point), in

Symbols section)
NOT operator

bitwise NOT (~), 41
boolean NOT (!), 40

Not-a-number (see NaN)
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notify(), 218
notifyAll(), 219
@NotNull annotation, 155
null references, 76

instanceof operator and, 181
null reserved word, 21
null values (in JavaScript), 344
numbers, 275-278

floating-point, 276
integer types, 275

O
Object class, 77, 112, 131

constructor chaining and, 114
dependencies of, 315
getClass(), 311
important methods, 178-183

class that overrides, 179
clone(), 182
hashCode(), 181
toString(), 180

notify(), 218
wait(), 218

object literals, 74
object member access operator (.), 45
object references, 317
object-oriented design, 177-196

composition versus inheritance, 187
constants, 183
exceptions and exception handling,

193
field inheritance and accessors, 189
important methods of

java.lang.Object, 178-183
instance methods or class methods,

choosing, 185
interfaces versus abstract classes, 184
safe programming in Java, 195
singleton pattern, 191

object-oriented programming, 97-134
abstract classes and methods, 128-132
classes, 97-100
creating and initializing objects,

106-110
different meanings in different lan‐

guages, 97
fields and methods, 100-105
modifiers, summary of, 132

subclasses and inheritance, 110-120
ObjectInputStream class, 74, 183
ObjectOutputStream class, 183
objects

arrays as, 77, 258
as operand type, 38, 44
comparing, 87
contents of versus references to, 178
conversions between reference types,

131
creating, 73
creating and initializing, 106-110

defining a constructor, 106
defining multiple constructors, 107
field defaults and initializers, 108
invoking one constructor from

another, 107
creating Java object from Nashorn, 343
creation with new operator, 46
defined, 98
in the heap, 204
longer-lived garbage collection by

HotSpot JVM, 204
manipulating objects and reference

copies, 85
members of both a class type and

interface type, 138
memory requirements for storing, 85
using, 74

object literals, 74
visibility and mutability, 211

ObjectStreamsConstants interface, 183
OpenJDK, 15
operating systems

removing threads from a CPU, 212
scheduler, 208

operators, 22, 30-46
arithmetic, 36
assignment, 43
associativity, 31
bitwise and shift, 41
Boolean (or logical) operators, 39
comparison, 38
conditional operator, 44
in statements, 46
increment and decrement, 37
instanceof, 44
operand number and type, 34
order of evaluation, 35
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precedence of, 31
return type, 35
side effects of, 35
special (language constructs), 45
summary of Java operators, 32

optimization of garbage collection (JVM),
201

OPTIONS method (HTTP), 305
or(), Predicate interface, 259
Oracle Corporation, 4

control of package names beginning
with java, javax, and sun, 89

$OUT variable (Nashorn), 337
OutputStream class, 291
overloading methods

static member imports and, 93
@Override annotation, 152, 179
overriding methods, 117-120

inherited methods, 98
invoking an overridden method, 119
overriding is not hiding, 118
virtual method lookup, 119

P
package access, 122, 126
package declarations, 18
package keyword, 89
packages, 88-93

access to, 122
access to, from Nashorn, 343
declarations, 89
doc comments for, 234
globally unique names, 89
importing static members, 92
importing types, 90
naming conventions for, 223

parallel collectors, 204
@param doc-comment tag, 229
parameterized types, 144

(see also generic types)
parameters, naming conventions for, 224
pass by reference, 178
pass-by-value semantics in Java, 317
Path interface, 296
Paths class, 297
Pattern class, 272

asPredicate() method, 274
pauses for GC

CMS collector, 205
G1 collector, 205
stop-the-world (STW) pause, 201

per-thread allocation, 203
performance

criticisms of Java performance, 14
garbage collection and, 205

PHP, 10
comparison to Java, 12

PipedInputStream class, 293
PipedReader class, 293
pointers

in C/C++ and assembly, 317
references represented in JVM as, 317

portable programs, 235
positive infinity, 27, 36
positive zero, 27
POSITIVE_INFINITY constant, Float

and Double classes, 28
POST method (HTTP), 305
post-decrement operator (--), 38

(see also - (minus sign), in Symbols
section)

post-increment operator (++), 37
(see also + (plus sign), in Symbols sec‐

tion)
Postel’s Law, 308
pow(), 279
pre-decrement operator (--), 38

(see also - (minus sign), in Symbols
section)

pre-increment operator (++), 37
(see also + (plus sign), in Symbols sec‐

tion)
precedence, operator, 31
Predicate interface, 259

converting regex to a Predicate, 274
primary expressions, 30
primitive specializations of the Stream

class, 263
primitive types, 22

arrays of, 132
boolean, 23
boxing and unboxing conversions, 88
char, 23
class objects for, 312
conversion of arguments by method

handles, 328
conversions, 28
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summary of, 29
conversions to strings, 37
equals operator (==), testing operand

values, 38
floating-point types, 26
integer types, 25
JavaScript equivalents of, 341
reference types versus, 84, 86
streams of, 263
wrapper classes, 87

primitive values, 317
references versus, 177

primordial classloader, 318
printf(), 71

%n format string, 237
println(), 67, 187, 268

line separators and, 237
out.println() instead of Sys‐

tem.out.println(), 92
PrintStream class, 187
priority queues, 253
PriorityQueue class, 255
private modifier, 133

constructors for classes that should
never be instantiated, 115

declaring top-level types as private,
158

fields, 101
member access and, 123
member access summary, 125
methods, 69
no inheritance of private fields and

methods, 125
private members, static member type

access to, 158
rules of thumb for using, 126

processes
listing active JVM processes with jps,

357
threads and, 208

Producer Extends, Consumer Super
(PECS) principle, 149

profiles, 367-372
Compact Profiles, 368

Compact 2, additional packages,
370

Compact 3, additional packages,
371

purpose of, 368

requirements for, 367
Properties class, 252
protected modifier, 133

and inheritance of state, 191
declaring top-level types as protected,

158
fields, 101
inheritance of protected fields and

methods, 125
member access and, 123
member access summary, 125
methods, 69
rules of thumb for using, 126

proxies, dynamic, 325
use cases, 325

pseudorandom number generator
(PRNG), 280

public modifier, 133
classes, constructors and, 115
fields, 101
inheritance of public instance fields

and methods, 125
interface members and, 137
member access and, 123
member access summary, 125
methods, 69
rules of thumb for using, 126

punctuation characters as tokens, 22
PUT method (HTTP), 305

Q
queries, temporal, 284
Queue interface, 240
queues

adding elements to, 253
defined, 252
failure of operations on, dealing with,

254
insertion order, 252
querying, 254
Queue and BlockingQueue interfaces,

252
adding elements, methods for, 253
implementations, 255
removing elements, methods for,

254
safe for multithreaded use, 219
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R
\r (carriage return) escape sequence, 24
Random class, 280
RandomAccess interface, 142, 248
raw types, 145
reachable objects, 199
read-only collections, 255
Reader and Writer classes, 292
rectangular arrays, 84
reduce idiom, 261
reduce(), 174, 261

example of use, 264
reentrant locks, 218
reference types, 18, 84-88

array types, 77
as operand type, 44
boxing and unboxing conversions, 87
classes, 98
comparing objects, 87
conversions, 131
generic type parameters, 144
interfaces, 99, 135-142
manipulating objects and reference

copies, 85
naming conventions, 224
null, 76
operands of, testing with == operator,

38
primitive types versus, 84
versus pointers in C/C++, 85

references versus object contents, 178
reflection, 320

combining with custom classloading
to inspect a class file, 324

creation of dynamic proxies, 325
how to use, 321

Method object, 321
Method Handles API versus Reflection

API, 327
problems with Reflection API, 323
when to use, 321

Reflection API, 71
regular expressions, 271-275, 292

accessing Java's builtin support of
from jjs, 334

classes for, 272
metacharacters, 272

relational operators, 38

summary of, 39
reserved words, 20
resume(), Thread class, 218
@Retention meta-annotation, 154
RetentionPolicy enum, 154
@return doc-comment tag, 229
return statements, 59, 63, 67

stopping switch statements, 53
return types

class methods, 103
for operators, 35
of overriding methods, 117
specified by type in method signature,

67
right shift operators, 42
rounding numbers, 277

floating-point values when converting
to integers, 29

run(), Thread class, 216
run-until-shutdown pattern, 215
runtime environment (see JVMs (Java

Virtual Machines))
runtime typing, 150
runtime, implementation for other lan‐

guages in Java, 11
runtime-managed concurrency, 208
Runtime.exec(), 235
Runtime::addShutdownHook, 208
RuntimeException, 70, 230

S
safe Java programming, 195

safety of multithreaded programs, 212
@SafeVarargs annotation, 153
scheduler (operating system), 208
scientific notation, 27
scope

containment hierarchy for nonstatic
member classes, 162

lexical scoping and local variables, 165
of a local class, 164
of local variables, 49

ScriptEngine, 340
get() and put() methods, 341

ScriptEngine class, 342
ScriptEngineManager, 340, 341
ScriptObjectMirror, 342
security, 11
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criticisms of Java security, 15
secure programming and classloading,

315
vulnerabiities connected to Java

graphical clients, 368
@see doc-comment tag, 230, 233
SelectableChannel class, 303
Selector class, 303
separators, 22
@serial doc-comment tag, 230
@serialData doc-comment tag, 231
@serialField doc-comment tag, 231
Serializable interface, 77

as a marker interface, 142
Collections interfaces and, 242

ServerSocket class, 306
Set interface, 240, 242

implementations, summary of, 242
methods, 242

set, defined, 242
setDaemon(), Thread class, 216
setUncaughtExceptionHandler(), Thread

class, 217
shebang syntax, 339
shift operators, 42
short type, 25, 35, 276

conversions to other primitive types,
28

Short class, 26
shutdown(), 215
side effects

expressions having, 47
of operators, 35

signature of a class, 98
signature of a method, 66
@since doc-comment tag, 230
single abstract method (SAM) type, 172
single expression functions, 345
singleton pattern, 191
singletons, Collections class methods for,

256
sleep() method, Thread class, 210
slowness of Java to change, 14
Socket class, 306
sockets, asynchronous, 301
sort()

as a default method, 141
static member imports and, 93

SortedMap interface, 252

SortedSet interface, 243
special operators (language constructs),

45
Stack class, 248
stacks, 252
StandardCopyOption enum, 296
StandardOpenOption enum, 298
standards bodies, packages named for, 89
start(), Thread class, 216
statements, 18, 46-65

assert, 64
break, 58
compound, 48
continue, 58
defined by Java, summary of, 46
do/while, 54
empty, 48
expression statements, 47
for, 55
foreach, 56
if/else, 50
labeled, 48
local variable declaration, 48
return, 59
switch, 52
synchronized, 60
throw, 60
try-with-resources, 63
try/catch/finally, 61-63
versus expressions, 46
while, 54

statements section, synchronize state‐
ment, 60

static methods, 69
static modifier, 134

class fields, 102
class methods, 103
fields, 101
final modifier and, 101
instance fields, 103
interface fields, 137
interface methods, 137
members of local classes and, 164
members of nonstatic member classes

and, 161
methods, 186
static initializers, 109
static member types, 155, 169

basic properties of, 156
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defining and using, 157
features of, 158

stop(), Thread class, 217
stop-the-world (STW) pause for garbage

collection, 201
CMS collector and, 205

stream(), 262
generation of Stream object from col‐

lections, 262
streams, 291

Reader and Writer classes for, 292
Streams API, 262, 283

Stream class, 262
lazy evaluation, 263
primitive specializations of, 263

utility default methods, 265
strict mode (JavaScript), 334
strictfp modifier, 69, 100, 134, 277
String class

hashCode() method, 270
valueOf() method, 268

string concatenation operator (+), 37, 75,
269
(see also + (plus sign), in Symbols sec‐

tion)
string interpolation (in jjs), 336
string literals, 75
StringBuffer class, 270
StringBuilder class, 269
strings, 25, 267-271

conversions for all primitive types, 37
converting to integer values, 26
immutability, 269
multiline, 337
Object.toString() method, 180
special syntax for, 267

string concatenation, 269
string literals, 268
toString(), 268

String class, 25, 75, 89
final class, 112

subclasses and inheritance, 110-120
access control and inheritance, 125
constructor chaining and default con‐

structor, 114
extending a class, 111
hiding superclass fields, 115
overriding superclass methods,

117-120

superclasses, Object, and the class
hierarchy, 112
subclass constructors, 113

subList(), List interface, 244, 248
subtraction operator (-), 36

(see also - (minus sign), in Symbols
section)

subtyping relationships between generic
types, unknown type and, 147

sun.misc.Unsafe class, 235
super keyword, 114

expressing type contravariance, 148
for container types purely as consum‐

ers of instances of a type, 148
using to invoke overridden methods,

119
using to refer to superclass fields, 116

super(), 114
called by javac compiler, 114

superclasses, 112, 131
(see also subclasses and inheritance)
hiding superclass fields, 115

superinterfaces, 137
@SuppressWarnings annotation, 153
surrogate pairs (Unicode supplementary

characters), 25
survivor space, 203
suspend(), Thread class, 217
switch statements, 52

case labels, 53
data type of expression in, 52
default: label, 53
restrictions on, 53

switches for command-line tools, 349
symbolic links (symlinks), 296
synchronization

of collections, 255
of threads, 218

synchronized keyword, 60, 134, 213
synchronized methods, 69

collection implementations in java.util
and, 255

synchronized statements, 59
system classes, 236
System.arraycopy(), 82, 257
System.exit(), 63
System.getenv(), 235
System.identityHashCode(), 181
System.in, 291
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InputStreamReader class applied to,
292

System.out, 291
System.out.printf(), 71
System.out.println(), 67, 92, 187

in a lambda expression, 260

T
\t (tab), 24
<T> (type parameters), 144
@Target meta-annotation, 154
TCP, 306

HTTP client on a TCP socket, 306
Java classes for, 306
Postel's Law for communications over,

308
Temporal class, 285
TemporalAdjuster interface, 285
TemporalQuery interface, 284

direct or indirect use of Temporal‐
Query object, 285

tenuring threshold, 203
ternary operator (see ? : (conditional)

operator, in Symbols section)
test expressions (for loops), 55
testing, use of reflection in, 321
text, 267-275

pattern matching with regular expres‐
sions, 271-275

strings, 267-271
immutability of, 269
String class, 267
string concatenation, 269
string literals, 268
toString(), 268

third-party libraries and components, 7
this keyword

explicitly referring to the container of
the this object, 161

how the reference works, 105
reference to object through which

instance methods are invoked, 104
referring to hidden fields, 116
using in invoking one constructor

from another, 107
Thread class

deprecated methods, 217
useful methods, 215

thread pool, executing Nashorn JavaScript
on, 344

thread-local allocation buffer, 203
Thread.sleep method, 210
Thread.State enum, 209, 216
threads

creating, 208
defined, 208
in synchronized blocks or methods,

214
lifecycle of, 209
monitors and locks, basic facts about,

218
throw statements, 60, 63

methods using to throw checked
exceptions, 68

stopping switch statements, 53
Throwable class, 62, 193
Throwable objects, 70
@throws doc-comment tag, 230
throws clause (method signature), 68, 71
Tiered Compilation, 353
timestamps, parts of, 281
toFile(), Path interface, 297
top-level types, 155
toPath(), File class, 297
toString(), 37, 268

Object class, 180
using in string concatenation, 269

TRACE method (HTTP), 305
transient modifier, 134

fields, 102
transient objects, 201
transitive closure of types, 315, 370
Transmission Control Protocol (see TCP)
TreeMap class, 252
TreeSet class, 243
trigonometric functions, 279
true reserved word, 21
try-with-resources statements, 63, 293

AutoCloseable interface, 294
using instead of finalization, 206

try/catch/finally statements, 61-63
catch clause, 62
finally clause, 63
try block syntax, 61
try clause, 62
try/finally, 63

two's complement, 276
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TWR statements (see try-with-resources
statements)

type annotations, 155
type contravariance, 148
type conversion or casting operator (( )),

46
type covariance, 148

array convariance, 149
type erasure, 145, 174
type inference, 76
type literals, 75
type parameter constraints, 148
type parameters (<T>), 144
type safety, 195

of multithreaded code, 212
type signature of a method, 326
type variance, 148

U
unary operators, 34

associativity, 31
unary minus (-) operator, 37

unboxing conversions, 88
unchecked exceptions, 70
Unicode, 18

escaping in char literals, 24
supplementary characters, 24

unknown type, 146
Unsafe class, 235
UnsupportedOperationException, 185
update expressions (for loops), 55
URIs, 297
URL class, 71, 304
URLClassLoader, loadClass(), 317
URLConnection class, 304
user threads, 216
UTF-8 identifier, 21

V
@value doc-comment tag, 232

cross-references in, 233
values, 177

pass by value, 178
primitives and object references, 177

varargs methods, 71
@SafeVarargs annotation, 153

variables

accessible to a local class, 165
declaring, 48

compatibility syntax for C/C++, 78
initialization of static variables, 315
local variable declaration statements,

48
local, lexical scoping and, 165
naming conventions for, 225
special variables in Nashorn, 336
types of values in, 317

Vector class, 248
verbosity of Java, 13
@version doc-comment tag, 229
visibility (of objects), 211
VisualVM, 362-367
void keyword, 59, 67

problem in reflection, 323
volatile modifier, 134, 215

fields, 102

W
wait(), 218
watch services, 303
weak generational hypothesis (WGH),

201
WeakHashMap class, 252
while statements, 54

comparison operators in, 38
continue statement in, 58
data type of expression in, 54
do statements versus, 54
Iterator object used with, 246

whitespace in Java code, 19
widening conversions, 28, 29

array types, 77
wildcard types, 146

bounded wildcards, 148
working set of a program, 201
wrapper collections, 255

X
XOR operator

bitwise XOR (^), 42
boolean XOR (^), 40
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Z
zero (0)

division by zero, 36
positive and negative zero, 27

represented by float and double types,
27

represented by integral types, 275
zero extension, 42
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