

Functional Programming for
Java Developers

Functional Programming for
Java Developers

Dean Wampler

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Functional Programming for Java Developers
by Dean Wampler

Copyright © 2011 Dean Wampler. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Shawn Wallace
Production Editor: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Functional Programming for Java Developers, the image of a pronghorn antelope,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31103-2

[LSI]

1311172935

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . vii

1. Why Functional Programming? . 1
I Have to Be Good at Writing Concurrent Programs 2
Most Programs Are Just Data Management Problems 2
Functional Programming Is More Modular 3
I Have to Work Faster and Faster 4
Functional Programming Is a Return to Simplicity 5

2. What Is Functional Programming? . 7
The Basic Principles of Functional Programming 8

Avoiding Mutable State 8
Functions as First-Class Values 10
Lambdas and Closures 12
Higher-Order Functions 13
Side-Effect-Free Functions 13
Recursion 14
Lazy vs. Eager Evaluation 15
Declarative vs. Imperative Programming 16

Designing Types 17
What About Nulls? 17
Algebraic Data Types and Abstract Data Types 21

Exercises 22

3. Data Structures and Algorithms . 23
Lists 23
Maps 29
Combinator Functions: The Collection Power Tools 29
Persistent Data Structures 36
Some Final Thoughts on Data Structures and Algorithms 37
Exercises 38

v

4. Functional Concurrency . 41
The Actor Model 41
Software Transactional Memory 44
Exercises 47

5. Better Object-Oriented Programming . 49
Imperative, Mutable Code 49
The Liskov Substitution Principle 50
More on Design Patterns 51

Pattern Matching 51
What Makes a Good Type? 53
Rethinking Object-Oriented Middleware 55
Exercises 55

6. Where to Go From Here . 57
Functional Tools for Java 58
A Recap 58
Exercises 60

Appendix: References . 61

Glossary . 65

vi | Table of Contents

Preface

Welcome to Functional Programming for Java Developers
Why should a Java developer learn about functional programming (FP)? After all, hasn’t
functional programming been safely hidden in academia for decades? Isn’t object-
oriented programming (OOP) all we really need? This book explains why functional
programming has become an important tool for the challenges of our time and how
you, a Java developer, can use it to your advantage.

The recent interest in functional programming started as a response to the growing
pervasiveness of concurrency as a way of scaling horizontally, through parallelism.
Multithreaded programming (see, e.g., [Goetz2006]) is difficult to do well and few
developers are good at it. As we’ll see, functional programming offers better strategies
for writing robust, concurrent software.

An example of the greater need for horizontal scalability is the growth of massive data
sets requiring management and analysis, the so-called big data trend. These are data
sets that are too large for traditional database management systems. They require clus-
ters of computers to store and process the data. Today, it’s not just Google, Yahoo!,
Facebook, and Twitter who work with big data. Many organizations face this challenge.

Once you learn the benefits of functional programming, you find that it improves all
the code you write. When I learned functional programming a few years ago, it re-
energized my enthusiasm for programming. I saw new, exciting ways to approach old
problems. The rigor of functional programming complemented the design and testing
benefits of test-driven development, giving me greater confidence in my work. I learned
functional programming using the Scala programming language [Scala] and co-wrote
a book on Scala with Alex Payne, called Programming Scala (O’Reilly). Scala is a JVM
language, a potential successor to Java, with the goal of bringing object-oriented and
functional programming into one coherent whole. Clojure is the other well-known
functional language on the JVM. It is a Lisp dialect that minimizes the use of OOP in
favor of functional programming. Clojure embodies a powerful vision for how pro-
gramming should be done.

vii

http://oreilly.com/catalog/9780596155964/

Fortunately, you don’t have to adopt a new language to enjoy many of the benefits of
functional programming. Back in early 1990s, I used an object-oriented approach in
the C software I wrote, until I could use C++. Similarly, if you’re working with an
object-oriented language, like Java, you can still apply many of the ideas from functional
programming.

Unfortunately, much of the literature on functional programming is difficult to under-
stand for people who are new to it. This short book offers a pragmatic, approachable
introduction to functional programming. While aimed at the Java developer, the prin-
ciples are general and will benefit anyone familiar with an object-oriented language.

I assume that you are well versed in object-oriented programming and you can read
Java code. You’ll find some exercises at the end of each chapter to help you practice
and expand on what you’ve learned.

Because this is a short introduction and because it is difficult to represent some func-
tional concepts in Java, there will be several topics that I won’t discuss in the text,
although I have added glossary entries, for completeness. These topics include curry-
ing, partial application, and comprehensions. I’ll briefly discuss several other topics,
such as combinators, laziness, and monads, to give you a taste of their importance.
However, fully understanding these topics isn’t necessary when you’re new to func-
tional programming.

I hope you find functional programming as seductive as I did. Let me know how it goes!

You can learn more at the book’s catalog page (http://oreilly.com/catalog/
9781449311032/).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions. Many
italicized terms are defined in the Glossary.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

viii | Preface

http://oreilly.com/catalog/9781449311032/
http://oreilly.com/catalog/9781449311032/

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using the Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Functional Programming for Java
Developers, by Dean Wampler (O’Reilly). Copyright 2011 Dean Wampler,
978-1-449-31103-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Some of the code examples were adapted from examples provided with the Akka dis-
tribution, copyright © 2009-2011 Scalable Solutions AB. The Akka code base is covered
by the Apache 2 License.

Getting the Code Examples
You can download the code examples from http://examples.oreilly.com/
9781449311032/. Unzip the files to a convenient location. See the README file in the
distribution for instructions on building and using the examples.

Note that some of the files won’t actually compile, because they introduce speculative
concepts that aren’t supported by current compilers or libraries. Those files end with
the extension .javax. (The build process skips them.)

Preface | ix

mailto:permissions@oreilly.com
http://examples.oreilly.com/9781449311032/
http://examples.oreilly.com/9781449311032/

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920021667/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/0636920021667/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
I want to think my editor at O’Reilly, Mike Loukides, who suggested that I write this
book. Brendan McNichols and Bobby Norton provided helpful feedback on drafts of
the book. Debasish Ghosh provided valuable comments on the Liskov Substitution
Principle and suggested the Olin Shivers quotes on the meaning of foldLeft and fold
Right [Shivers]. Daniel Spiewak provided invaluable feedback that helped clarify many
of the concepts in the book, such as Monads.

I have learned a lot about functional programming from fellow developers around the
world, many of whom are fellow Scala enthusiasts. Martin Odersky, Jonas Bonér, De-
basish Ghosh, James Iry, Daniel Spiewak, Simon Peyton Jones, Rich Hickey, Conal
Elliot, David Pollak, Paul Snively, and others have illuminated dark corners with their
writing, speaking, personal conversations, and code! Finally, my fellow members of the
Chicago Area Scala Enthusiasts (CASE) group have also been a source of valuable
feedback and inspiration over the last several years.

Of course, any errors and omissions are mine alone.

Preface | xi

CHAPTER 1

Why Functional Programming?

A few years ago, when many developers started talking about functional programming
(FP) as the best way to approach concurrency, I decided it was time to learn more and
judge for myself. I expected to learn some new ideas, but I assumed I would still use
object-oriented programming (OOP) as my primary approach to software develop-
ment. I was wrong.

As I learned about functional programming, I found good ideas for implementing con-
currency, as I expected, but I also found that it brought new clarity to my thinking
about the design of types* and functions. It also allowed me to write more concise code.
Functional programming made me rethink where module boundaries should go and
how to make those modules better for reuse. I found that the functional programming
community was building innovative and more powerful type systems that help enforce
correctness. I also concluded that functional programming is a better fit for many of
the unique challenges of our time, like working with massive data sets and remaining
agile as requirements change ever more rapidly and schedules grow ever shorter.

Instead of remaining an OOP developer who tosses in some FP for seasoning, today I
write functional programs that use objects judiciously. You could say that I came to FP
for the concurrency, but I stayed for the “paradigm shift.”

The funny thing is, we’ve been here before. A very similar phenomenon occurred in
the 80s when OOP began to go mainstream. Objects are an ideal way of representing
graphical widgets, so OOP was a natural fit for developing Graphical User Interfaces
(GUIs). However, once people started using objects, they found them to be an intuitive
way to represent many “domains.” You could model the problem domain in objects,
then put the same object model in the code! Even implementation details, like various
forms of input and output, seemed ideal for object modeling.

But let’s be clear, both FP and OOP are tools, not panaceas. Each has advantages and
disadvantages. It’s easy to stick with the tried and true, even when there might be a
better way available. Even so, it’s hard to believe that objects, which have worked so

* I’ll occasionally use type and class interchangeably, but they aren’t synonyms. See the definitions in Glossary.

1

well in the past, could be any less valuable today, isn’t it? For me, my growing interest
in functional programming isn’t a repudiation of objects, which have proven benefits.
Rather, it’s a recognition that the drawbacks of objects are harder to ignore when faced
with the programming challenges of today. The times are different than they were when
objects were ascendant several decades ago.

Here, in brief, is why I became a functional programmer and why I believe you should
learn about it, too. For me, functional programming offers the best approach to meet
the following challenges, which I face every day.

I Have to Be Good at Writing Concurrent Programs
It used to be that a few of the “smart guys” on the team wrote most of the concurrent
code, using multithreaded concurrency, which requires carefully synchronized access
to shared, mutable state. Occasionally everyone would get a midnight call to debug
some nasty concurrency bug that appeared in production. But most of the time, most
of the developers could ignore concurrency.

Today, even your phone has several CPU cores (or your next one will). Learning how
to write robust concurrent software is no longer optional. Fortunately, functional pro-
gramming gives you the right principles to think about concurrency and it has spawned
several higher-level concurrency abstractions that make the job far easier.

Multithreaded programming, requiring synchronized access to shared,
mutable state, is the assembly language of concurrency.

Most Programs Are Just Data Management Problems
I work a lot with big data these days, mostly using the Apache Hadoop ecosystem of
tools, built around MapReduce [Hadoop]. When you are ingesting terabytes of new
data each day, when you need to cleanse and store that data, then do analysis on the
petabytes of accumulated data, you simply can’t afford the overhead of objects. You
want very efficient data structures and operations on that data, with minimal overhead.
The old agile catch phrase, What’s the simplest thing that could possibly work?, takes on
new meaning.

I started thinking about how we manage smaller data sets, say in a typical IT application
backed by a database. If objects add overhead for big data problems, what about the
overhead for smaller data problems? Performance and storage size are less likely to be
issues in this case, but team agility is a pervasive issue. How does a small team remain
nimble when enhancing an IT application, year after year? How does the team keep the
code base as concise as possible?

2 | Chapter 1: Why Functional Programming?

I’ve come to believe that faithfully representing the domain object model in code should
be questioned. Object-relational mapping (ORM) and similar forms of object middle-
ware add overhead for transforming relational data into objects, moving those objects
around the application, then ultimately transforming them back to relational data for
updates. Of course, all this extra code has to be tested and maintained.

I know this practice arose in part because we love objects and we often hate relational
data, or maybe we just hate working with relational databases. (I speak from personal
experience.) However, relational data, such as the result sets for queries, are really just
collections that can be manipulated in a functional way. Would it be better to work
directly with that data?

I’ll show you how working directly with more fundamental collections of data mini-
mizes the overhead of working with object models, while still avoiding duplication and
promoting reuse.

Functional Programming Is More Modular
Years ago, I had a large client that struggled to get work done with their bloated code
base. Their competition was running circles around them. One day I saw something
that captured their problems in a nutshell. I walked by a five-foot partition wall with a
UML diagram that covered the wall. I remember one class in particular, a Customer
class. It stretched the whole five feet. This was a failure of modularity, specifically in
finding the correct levels of abstraction and decomposition. The Customer class had
become a grab bag of everything anyone might associate with one of their customers.

In the late 1980s, when object-oriented programming was on the rise, many people
hoped that objects would finally solve the problem of building reusable components
that you plug together to build applications, greatly reducing costs and development
times. This vision seems so reasonable that it is easy to overlook the fact that it didn’t
turn out as well as we hoped. Most of the successful examples of reusable libraries are
platforms that defined their own standards that everyone had to follow. Examples in-
clude the JDK, the Spring Framework, and the Eclipse plugin API. Even most of the
third-party “component libraries” we might use (for example, Apache Commons) have
their own custom APIs that we must conform to. For the rest of the code we need, we
still rewrite a lot of it project after project. Hence, object-oriented software development
isn’t the “component assembly” we hoped would emerge.

The nearly limitless flexibility of objects actually undermines the potential for reuse,
because there are few standards for how objects should interconnect and we can’t agree
on even basic names of things! Systems with greater constraints are actually more
modular, which is a paradox. The book Design Rules: The Power of Modularity [Bald-
win2000] demonstrates that the explosive growth of the PC industry was made possible
when IBM created a de facto standard for the personal computer hardware architecture.
Because of standardized buses for peripherals and connectors, it enabled innovators to

Functional Programming Is More Modular | 3

create new, better, and cheaper drives, mice, monitors, motherboards, etc. Digital
electronics is itself a great example of a modular system. Each wire carries only a 0 or
1 signal, yet when you join them together in groups of 8, 16, 32, and 64, you can build
up protocol layers that make possible all the wonderful things that we’ve come to do
with computers.

There are no similar standards for object-based components. Various attempts like
CORBA and COM had modest success, but ultimately failed for the same basic reasons,
that objects are at the wrong level of abstraction. Concepts like “customer” are rarely
new, yet we can’t find a way to stop inventing a new representation for them in every
new project, because each project brings its own context and requirements.

However, if we notice that an object is fundamentally just an aggregation of data, then
we can see a way to define better standardized abstractions at lower levels than objects,
analogous to digit circuits. These standards are the fundamental collections like list,
map, and set, along with “primitive” types like numbers and few well-defined domain
concepts (e.g., Money in a financial application).

A further aid to modularity is the nature of functions in functional programming, which
avoid side effects, making them free of dependencies on other objects and therefore
easier to reuse in many contexts.

The net result is that a functional program defines abstractions where they are more
useful, easier to reuse, compose, and also test.

Any arbitrarily complex object can be decomposed into “atomic” values
(like primitives) and collections containing those values and other
collections.

I Have to Work Faster and Faster
Development cycles are going asymptotically to zero length. That sounds crazy, espe-
cially if you started professional programming when I did, when projects typically lasted
months, even years. However, today there are plenty of Internet sites that deploy new
code several times a day and all of us are feeling the pressure to get work done more
quickly, without sacrificing quality, of course.

When schedules were longer, it made more sense to model your domain carefully and
to implement that domain in code. If you made a mistake, it would take months to
correct with a new release. Today, for most projects, understanding the domain pre-
cisely is less important than delivering some value quickly. Our understanding of the
domain will change rapidly anyway, as we and our customers discover new insights
with each deployment. If we misunderstand some aspect of the domain, we can fix
those mistakes quickly when we do frequent deployments.

4 | Chapter 1: Why Functional Programming?

If careful modeling seems less important, faithfully implementing the object model is
even more suspect today than before. While Agile Software Development has greatly
improved our quality and our ability to respond to change, we need to rethink ways to
keep our code “minimally sufficient” for the requirements today, yet flexible for change.
Functional programming helps us do just that.

Functional Programming Is a Return to Simplicity
Finally, building on the previous points, I see functional programming as a reaction
against accidental complexity, the kind we add ourselves by our implementation
choices, as opposed to the inherent complexity of the problem domain.† So, for exam-
ple, much of the object-oriented middleware in our applications today is unnecessary
and wasteful, in my opinion.

I know that some of these claims are provocative. I’m not trying to convince you to
abandon objects altogether or to become an FP zealot. I’m trying to give you a bigger
toolbox and a broadened perspective, so you can make more informed design choices
and maybe refresh your enthusiasm for the art and science of software development. I
hope this short introduction will show you why my thinking changed. Maybe your
thinking will change, too.

Let’s begin!

† I don’t mean that functional programming is simple. Becoming an expert in functional programming requires
mastery of many advanced, yet powerful concepts.

Functional Programming Is a Return to Simplicity | 5

CHAPTER 2

What Is Functional Programming?

Functional programming, in its “purest” sense, is rooted in how functions, variables,
and values actually work in mathematics, which is different from how they typically
work in most programming languages.

Functional programming got its start before digital computers even existed. Many of
the theoretical underpinnings of computation were developed in the 1930s by mathe-
maticians like Alonzo Church and Haskell Curry.

In the 1930s, Alonzo Church developed the Lambda Calculus, which is a formalism
for defining and invoking functions (called applying them). Today, the syntax and be-
havior of most programming languages reflect this model.

Haskell Curry (for whom the Haskell language is named) helped develop Combinatory
Logic, which provides an alternative theoretical basis for computation. Combinatory
Logic examines how combinators, which are essentially functions, combine to represent
a computation. One practical application of combinators is to use them as building
blocks for constructing parsers. They are also useful for representing the steps in a
planned computation, which can be analyzed for possible bugs and optimization op-
portunities.

More recently, Category Theory has been a fruitful source of ideas for functional pro-
gramming, such as ways to structure computations so that side effects like IO (input
and output), which change the state of the “world,” are cleanly separated from code
with no side effects.

A lot of the literature on functional programming reflects its mathematical roots, which
can be overwhelming if you don’t have a strong math background. In contrast, object-
oriented programming seems more intuitive and approachable. Fortunately, you can
learn and use the principles of functional programming without a thorough grounding
in mathematics.

7

The first language to incorporate functional programming ideas was Lisp,* which was
developed in the late 1950s and is the second-oldest high-level programming language,
after Fortran. The ML family of programming languages started in the 1970s, including
Caml, OCaml (a hybrid object-functional language), and Microsoft’s F#. Perhaps the
best known functional language that comes closest to functional “purity” is Haskell,
which was started in the early 1990s. Other recent functional languages include Clojure
and Scala, both of which run on the JVM but are being ported to the .NET environment.
Today, many other languages are incorporating ideas from functional programming.

The Basic Principles of Functional Programming
Don’t all programming languages have functions? If so, why aren’t all programming
languages considered functional languages? Functional languages share a few basic
principles.

Avoiding Mutable State
The first principle is the use of immutable values. You might recall the famous Pytha-
gorean equation from school, which relates the lengths of the sides of a triangle:

x2 + y2 = z2

If I give you values for the variables x and y, say x=3 and y=4, you can compute the value
for z (5 in this case). The key idea here is that values are never modified. It would be
crazy to say 3++, but you could start over by assigning new values to the same variables.

Most programming languages don’t make a clear distinction between a value (i.e., the
contents of memory) and a variable that refers to it. In Java, we’ll use final to prohibit
variable reassignment, so we get objects that are immutable values.

Why should we avoid mutating values? First, allowing mutable values is what makes
multithreaded programming so difficult. If multiple threads can modify the same
shared value, you have to synchronize access to that value. This is quite tedious and
error-prone programming that even the experts find challenging [Goetz2006]. If you
make a value immutable, the synchronization problem disappears. Concurrent reading
is harmless, so multithreaded programming becomes far easier.

A second benefit of immutable values relates to program correctness in other ways. It
is harder to understand and exhaustively test code with mutable values, particularly if
mutations aren’t localized to one place. Some of the most difficult bugs to find in large
systems occur when state is modified non-locally, by client code that is located else-
where in the program.

* See the References for links to information about the languages mentioned here.

8 | Chapter 2: What Is Functional Programming?

Consider the following example, where a mutable List is used to hold a customer’s
orders:

public class Customer {
 // No setter method
 private final List<Order> orders;
 public List<Order> getOrders() { return orders; }
 public Customer(...) {...}
}

It’s reasonable that clients of Customer will want to view the list of Orders. Unfortu-
nately, by exposing the list through the getter method, getOrders, we’ve lost control
over them! A client could modify the list without our knowledge. We didn’t provide a
setter for orders and it is declared final, but these protections only prevent assigning
a new list to orders. The list itself can still be modified.

We could work around this problem by having getOrders return a copy of the list or
by adding special accessor methods to Customer that provide controlled access to
orders. However, copying the list is expensive, especially for large lists. Adding ad-hoc
accessor methods increases the complexity of the object, the testing burden, and the
effort required of other programmers to comprehend and use the class.

However, if the list of orders is immutable and the list elements are immutable, these
worries are gone. Clients can call the getter method to read the orders, but they can’t
modify the orders, so we retain control over the state of the object.

What happens when the list of orders is supposed to change, but it has become huge?
Should we relent and make it mutable to avoid the overhead of making big copies?
Fortunately, we have an efficient way to copy large data structures; we’ll reuse the parts
that aren’t changing! When we add a new order to our list of orders, we can reuse the
rest of the list. We’ll explore how in Chapter 3.

Some mutability is unavoidable. All programs have to do IO. Otherwise, they could do
nothing but heat up the CPU, as a joke goes. However, functional programming en-
courages us to think strategically about when and where mutability is necessary. If we
encapsulate mutations in well-defined areas and keep the rest of the code free of mu-
tation, we improve the robustness and modularity of our code.

We still need to handle mutations in a thread-safe way. Software Transactional Memory
and the Actor Model give us this safety. We’ll explore both in Chapter 4.

Make your objects immutable. Declare fields final. Only provide getters
for fields and then only when necessary. Be careful that mutable final
objects can still be modified. Use mutable collections carefully. See
“Minimize Mutability” in [Bloch2008] for more tips.

The Basic Principles of Functional Programming | 9

Functions as First-Class Values
In Java, we are accustomed to passing objects and primitive values to methods, re-
turning them from methods, and assigning them to variables. This means that objects
and primitives are first-class values in Java. Note that classes themselves aren’t first-
class values, although the reflection API offers information about classes.

Functions are not first-class values in Java. Let’s clarify the difference between a
method and a function.

A method is a block of code attached to a particular class. It can only be
called in the context of the class, if it’s defined to be static, or in the
context of an instance of the class. A function is more general. It is not
attached to any particular class or object. Therefore, all instance meth-
ods are functions where one of the arguments is the object.

Java only has methods and methods aren’t first-class in Java. You can’t pass a method
as an argument to another method, return a method from a method, or assign a method
as a value to a variable.

However, most anonymous inner classes are effectively function “wrappers.” Many Java
methods take an instance of an interface that declares one method. Here’s a common
example, specifying an ActionListener for an AWT/Swing application (see the Pref-
ace for details on obtaining and using all the source code examples in this book):

package functions;
import java.awt.*;
import java.awt.event.*;

class HelloButtonApp2 {
 private final Button button = new Button();

 public HelloButtonApp2() {
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("Hello There: event received: " + e);
 }
 });
 }
}

If we want the button to do something, we have to specify an ActionListener object,
which has a single method: actionPerformed. We used an anonymous inner class to
implement the interface and the method.

It is very common in Java APIs to define custom interfaces like this that declare a single
abstract method. They are often labelled “callback methods,” because they are typically
used to enable registration of client code that will be called for particular events.

10 | Chapter 2: What Is Functional Programming?

The world’s Java APIs must have hundreds of one-off, special-purpose interfaces like
ActionListener. It greatly increases the cognitive load on the developer to learn all of
them. You spend a lot of time reading Javadocs or letting your IDE remember for you.
We’ve been told that abstraction is a good thing, right? Well, let’s introduce abstrac-
tions for all these “function objects”!

First, here is an interface that defines a “function” that takes one argument of type
parameter A and returns void:

package functions;

public interface Function1Void<A> {
 void apply(A a);
}

You could call the generic method name anything you want, but I chose apply because
it is a common name in functional programming, derived from the convention of saying
that you “apply” a function to its arguments when you call it.

Now, let’s pretend that there is a “functional” version of the Abstract Window Toolkit
(AWT), java.fawt.Component, with a method addActionListener that takes a Func
tion1Void object instead of ActionListener:

package functions;
import java.fawt.*;
import java.fawt.event.*;

class FunctionalHelloButtonApp {
 private final Button button = new Button();

 public FunctionalHelloButtonApp() {
 button.addActionListener(new Function1Void<ActionEvent>() { // 1
 public void apply(ActionEvent e) { // 2
 System.out.println("Hello There: event received: "+e);
 }
 });
 }
}

I have indicated the changes with the two comments 1 and 2. Otherwise, the code is
identical to the previous example.

You might argue that having a custom type for the argument to addActionListener
prevents a user from passing an arbitrary and inappropriate object to it. You might also
claim that the custom name of the interface and the custom method name help docu-
ment the API for the reader. Neither argument really holds up.

First, giving abstractions special names does nothing to prevent the user from imple-
menting the wrong thing. As far as documentation is concerned, addActionListener
must document its expectations (as we’ll discuss in “The Liskov Substitution Princi-
ple” on page 50). The type parameter for Function1Void<ActionEvent> must still

The Basic Principles of Functional Programming | 11

appear in addActionListener signature. That’s another bit of essential documentation
for the user.

Once the developer is accustomed to using Function1Void<A> all over the JDK (in our
more perfect world…), it’s no longer necessary to learn all the one-off interfaces defined
in the library. They are all effectively the same thing; a function wrapper.

So, we have introduced a new, highly reusable abstraction. You no longer need to
remember the name of the special type you pass to addActionListener. It’s just the same
Function1Void that you use “everywhere.” You don’t need to remember the special
name of its method. It’s always just apply.

It was a revelation for me when I realized how much less I have to learn when I can
reuse the same function abstractions in a wide variety of contexts. I no longer care about
trivial details like one-off interface names. I only care about what a particular function
is supposed to do.

Lambdas and Closures
While we’ve reduced some of the unnecessary complexity in the JDK (or pretended to
do so), the syntax is still very verbose, as we still have to say things like new Func
tion1Void<ActionEvent>() {…}. Wouldn’t it be great if we could just write an anony-
mous function with just the argument list and the body?

Most programming languages now support this. After years of debate, JDK 8 will in-
troduce a syntax for defining anonymous functions, also called lambdas (see [Project
Lambda] and [Goetz2010]). Here is what the planned syntax looks like:

public FunctionalHelloButtonApp() {
 button.addActionListener(
 #{ ActionEvent e -> System.out.println("Hello There: event received: "+e) }
);
}

The #{…} expression is the literal syntax for lambda expressions. The argument list is
to the left of the “arrow” (->) and the body of the function is to the right of the arrow.
Notice how much boilerplate code this syntax removes!

The term lambda is another term for anonymous function. It comes from
the use of the Greek lambda symbol λ to represent functions in lambda
calculus.

For completeness, here is another example function type, one that takes two arguments
of types A1 and A2, respectively, and returns a non-void value of type R. This example
is inspired by the Scala types for anonymous functions:

12 | Chapter 2: What Is Functional Programming?

package functions;

public interface Function2<A1, A2, R> {
 R apply(A1 a1, A2 a2);
}

Unfortunately, you would need a separate interface for every function “arity” you want
(arity is the number of arguments). Actually, it’s that number times two; one for the
void return case and one for the non-void return case. However, the effort is justified
for a widely used concept. Actually, the [Functional Java] project has already done this
work for you.

Closures
A closure is formed when the body of a function refers to one or more free variables,
variables that aren’t passed in as arguments or defined locally, but are defined in the
enclosing scope where the function is defined. The runtime has to “close over” those
variables so they are available when the function is actually executed, which could
happen long after the original variables have gone out of scope! Java has limited support
for closures in inner classes; they can only refer to final variables in the enclosing scope.

Higher-Order Functions
There is a special term for functions that take other functions as arguments or return
them as results: higher-order functions. Java methods are limited to primitives and ob-
jects as arguments and return values, but we can mimic this feature with our Function
interfaces.

Higher-order functions are a powerful tool for building abstractions and composing
behavior. In Chapter 3, we’ll show how higher-order functions allow nearly limitless
customization of standard library types, like Lists and Maps, and also promote reusa-
bility. In fact, the combinators we mentioned at the beginning of this chapter are higher-
order functions.

Side-Effect-Free Functions
Another source of complexity, which leads to bugs, are functions that mutate state,
e.g., setting values of an object’s field or global variables.

In mathematics, functions never have side effects, meaning they are side-effect-free. For
example, no matter how much work sin(x) has to do, its entire result is returned to
the caller. No external state is changed. Note that a real implementation might cache
previously calculated values, for efficiency, which would require changing the state of
a cache. It’s up to the implementer to preserve the side-effect-free external behavior
(including thread safety), as seen by users of the function.

The Basic Principles of Functional Programming | 13

Being able to replace a function call for a particular set of parameters with the value it
returns is called referential transparency. It has a fundamental implication for functions
with no side effects; the function and the corresponding return values are really syn-
onymous, as far as the computation is concerned. You can represent the result of calling
any such function with a value. Conversely, you can represent any value with a function
call!

Side-effect-free functions make excellent building blocks for reuse, since they don’t
depend on the context in which they run. Compared to functions with side effects, they
are also easier to design, comprehend, optimize, and test. Hence, they are less likely to
have bugs.

Recursion
Recall that functional programming in its purest form doesn’t allow mutable values.
That means we can’t use mutable loop counters to iterate through a collection! Of
course, Java already solves this problem for us with the foreach loop:

for (String str: myListOfStrings) {...}

which encapsulates the required loop counting. We’ll see other iteration approaches
in the next chapter, when we discuss operations on functional collections.

The classic functional alternative to an iterative loop is to use recursion, where each
pass through the function operates on the next item in the collection until a termination
point is reached. Recursion is also a natural fit for certain algorithms, such as traversing
a tree where each branch is itself a tree.

Consider the following example, where a unit test defines a simple tree type, with a
value at each node, and left and right subtrees. The Tree type defines a recursive
toString method that walks the tree and builds up a string from each node. After the
definition, the unit test declares an instance of the tree and tests that toString works
as expected:

package functions;
import static org.junit.Assert.*;
import org.junit.Test;

public class RecursionTest {

 static class Tree {
 // public fields for simplicity
 public final Tree left; // left subtree
 public final Tree right; // right subtree
 public final int value; // value at this node

 public Tree(Tree left, int value, Tree right) {
 this.left = left;
 this.value = value;
 this.right = right;
 }

14 | Chapter 2: What Is Functional Programming?

 public final String toString() {
 String leftStr = left == null ? "^" : left.toString();
 String rightStr = right == null ? "^" : right.toString();
 return "(" + leftStr + "-" + value + "-" + rightStr + ")";
 }
 }

 @Test
 public void walkATree() {
 Tree root = new Tree(
 new Tree(
 new Tree(null, 3, null), 2, new Tree(new Tree(null, 5, null), 4, null)),
 1,
 new Tree(
 new Tree(null, 7, null), 6, new Tree(null, 8, null)));

 String expected = "(((^-3-^)-2-((^-5-^)-4-^))-1-((^-7-^)-6-(^-8-^)))";
 assertEquals(expected, root.toString());
 }
}

However, each recursion adds a new frame to the stack, which can exceed the stack
size for deep recursions. Tail-call recursions can be converted to loops, eliminating the
extra function call overhead. Unfortunately, the JVM and the Java compiler do not
currently perform this optimization.

Lazy vs. Eager Evaluation
Mathematics defines some infinite sets, such as the natural numbers (all positive inte-
gers). They are represented symbolically. Any particular finite subset of values is eval-
uated only on demand. We call this lazy evaluation. Eager evaluation would force us
to represent all of the infinite values, which is clearly impossible.

Some languages are lazy by default, while others provide lazy data structures that can
be used to represent infinite collections and only compute a subset of values on demand.
Here is an example that represents the natural numbers:

package math;
import static datastructures2.ListModule.*;

public class NaturalNumbers {
 public static final int ZERO = 0;

 public static int next(int previous) { return previous + 1; }

 public static List<Integer> take(int count) {
 return doTake(emptyList(), count);
 }

 private static List<Integer> doTake(List<Integer> accumulator, int count) {
 if (count == ZERO)
 return accumulator;

The Basic Principles of Functional Programming | 15

 else
 return doTake(list(next(count - 1), accumulator), count - 1);
 }
}

We start with a definition of zero, then use next to compute each natural number from
its predecessor. The take(n) method is a pragmatic tool for extracting a fixed subset of
the integers. It returns a List of the integers from 1 to n. (The List type shown will be
discussed in Chapter 3. It isn’t java.util.List.) Note that the helper method doTake is
tail-call recursive.

We have replaced values, integers in this case, with functions that compute them on
demand, an example of the referential transparency we discussed earlier. Lazy repre-
sentation of infinite data structures wouldn’t be possible without this feature! Both
referential transparency and lazy evaluation require side-effect-free functions and im-
mutable values.

Finally, lazy evaluation is useful for deferring expensive operations until needed or
never executing them at all.

Declarative vs. Imperative Programming
Finally, functional programming is declarative, like mathematics, where properties and
relationships are defined. The runtime figures out how to compute final values. The
definition of the factorial function provides an example:

factorial(n) = 1 if n = 1
 n * factorial(n-1) if n > 1

The definition relates the value of factorial(n) to factorial(n-1), a recursive defini-
tion. The special case of factorial(1) terminates the recursion.

Object-oriented programming is primarily imperative, where we tell the computer what
specific steps to do.

To better understand the differences, consider this example, which provides a declar-
ative and an imperative implementation of the factorial function:

package math;

public class Factorial {

 public static long declarativeFactorial(int n) {
 assert n > 0 : "Argument must be greater than 0";
 if (n == 1) return 1;
 else return n * declarativeFactorial(n-1);
 }

 public static long imperativeFactorial(int n) {
 assert n > 0 : "Argument must be greater than 0";
 long result = 1;
 for (int i = 2; i<= n; i++) {

16 | Chapter 2: What Is Functional Programming?

 result *= i;
 }
 return result;
 }
}

The declarativeFactorial method might look “imperative,” in the sense that it imple-
ments a calculation of factorials, but its structure is more declarative than imperative.
I formatted the method to look similar to the definition of factorial.

The imperativeFactorial method uses mutable values, the loop counter and the
result that accumulates the calculated value. The method explicitly implements a par-
ticular algorithm. Unlike the declarative version, this method has lots of little mutation
steps, making it harder to understand and keep bug free.

Declarative programming is made easier by lazy evaluation, because laziness gives the
runtime the opportunity to “understand” all the properties and relations, then deter-
mine the optimal way to compute values on demand. Like lazy evaluation, declarative
programming is largely incompatible with mutability and functions with side effects.

Designing Types
Whether you prefer static or dynamic typing, functional programming has some useful
lessons to teach us about good type design. First, all functional languages emphasize
the use of core container types, like lists, maps, trees, and sets for capturing and trans-
forming data, which we’ll explore in Chapter 3. Here, I want to discuss two other
benefits of functional thinking about types, enforcing valid values for variables and
applying rigor to type design.

What About Nulls?
In a pure functional language where values are immutable, each variable must be ini-
tialized to a value that can be checked to make sure it is valid. This suggests that we
should never allow a variable to reference our old friend, null. Null values are a common
source of bugs. Tony Hoare, who invented the concept of null, has recently called it
The Billion Dollar Mistake [Hoare2009].

Java’s model is to “pretend” there is a Null type that is the subtype of all other types in
the system. Suppose you have a variable of type String. If the value can be null, you
could also think of the type as actually StringOrNull. However, we never think in either
terms and that’s why we often forget to check for null. What’s really going on is that
we have a variable that can “optionally” hold a value. So, why not explicitly represent
this idea in the type system? Consider the following abstract class:

package option;

public abstract class Option<T> {
 public abstract boolean hasValue();

Designing Types | 17

 public abstract T get();

 public T getOrElse(T alternative) {
 return hasValue() == true ? get() : alternative;
 }
}

Option defines a “container” that may have one item of type T or not. The hasValue
method returns true if the container has an item or false if it doesn’t. Subclasses will
define this method appropriately. Similarly, the get method returns the item, if there
is one. A variation of this method is the getOrElse method, which will return the
alternative value if the Option doesn’t have a value. This is the one method that can
be implemented in this class.

Here is the first subtype, Some:

package option;

public final class Some<T> extends Option<T> {
 private final T value;

 public Some(T value) { this.value = value; }

 public boolean hasValue() { return true; }

 public T get() { return value; }

 @Override
 public String toString() { return "Some("+value+")"; }

 @Override
 public boolean equals(Object other) {
 if (other == null || other.getClass() != Some.class)
 return false;
 Some<?> that = (Some<?>) other;
 Object thatValue = that.get();
 return value.equals(thatValue);
 }

 @Override
 public int hashCode() { return 37 * value.hashCode(); }
}

A Some instance is used when the Option has a value. So, its hasValue always returns
true and its get method simply returns the value. It also provides conventional
toString, equals, and hashCode methods. I’ll explain why Some is declared final in the
next section.

Finally, here is None, the only other valid subtype of Option:

package option;

public final class None<T> extends Option<T> {
 public static class NoneHasNoValue extends RuntimeException {}

18 | Chapter 2: What Is Functional Programming?

 public None() {}

 public boolean hasValue() { return false; }

 public T get() { throw new NoneHasNoValue(); }

 @Override
 public String toString() { return "None"; }

 @Override
 public boolean equals(Object other) {
 return (other == null || other.getClass() != None.class) ? false : true;
 }

 @Override
 public int hashCode() { return -1; }
}

A None instance is used when the Option has no value. So, its hasValue always returns
false and its get method throws an exception, because there is nothing to get! It also
provides toString, equals, and hashCode methods. Since None has no value, all instances
are considered equal! None is also final.

The following unit test exercises Option, Some, and None:

package option;

import java.util.*;
import org.junit.*;
import static org.junit.Assert.*;

public class OptionTest {
 private List<Option<String>> names = null;

 @Before
 public void setup() {
 names = new ArrayList<Option<String>>();
 names.add(new Some<String>("Dean"));
 names.add(new None<String>());
 names.add(new Some<String>("Wampler"));
 }

 @Test
 public void getOrElseUsesValueForSomeAndAlternativeForNone() {
 String[] expected = { "Dean", "Unknown!", "Wampler"};;

 System.out.println("*** Using getOrElse:");
 for (int i = 0; i < names.size(); i++) {
 Option<String> name = names.get(i);
 String value = name.getOrElse("Unknown!");
 System.out.println(name + ": " + value);
 assertEquals(expected[i], value);
 }
 }

Designing Types | 19

 @Test
 public void hasNextWithGetUsesOnlyValuesForSomes() {
 String[] expected = { "Dean", null, "Wampler"};;

 System.out.println("*** Using hasValue:");
 for (int i = 0; i < names.size(); i++) {
 Option<String> name = names.get(i);
 if (name.hasValue()) {
 String value = name.get();
 System.out.println(name + ": " + value);
 assertEquals(expected[i], value);
 }
 }
 }

 static Option<String> wrap(String s) {
 if (s == null)
 return new None<String>();
 else
 return new Some<String>(s);
 }

 @Test
 public void exampleMethodReturningOption() {
 System.out.println("*** Method that Returns an Option:");
 Option<String> opt1 = wrap("hello!");
 System.out.println("hello! -> "+opt1);
 assertEquals(Some.class, opt1.getClass());
 assertEquals("hello!", opt1.get());

 Option<String> opt2 = wrap(null);
 System.out.println("null -> "+opt2);
 assertEquals(None.class, opt2.getClass());
 assertEquals("str", opt2.getOrElse("str"));
 }
}

After creating an array of Some and None instances in the setup method, the first test uses
getOrElse to extract the value for Some instances, or the “alternative” for None instances.
Print statements output each case before the assertion verifies the expected behavior.

The second test shows an alternative way to work with the Options. The hasValue
method is called to determine if the Option has a value (that is, if it is a Some instance).
Only then is the get method called and the value is output and tested with an assertion.

The final test demonstrates the wrap method defined in the test, which demonstrates
how an arbitrary method might return an Option instead of returning another type when
the value could be null. In this case, if the input String is null, then a None is returned.
Otherwise, the input String is wrapped in a Some.

Here is the output from running the test. The following listing shows just the output
from the println calls:

20 | Chapter 2: What Is Functional Programming?

*** Using getOrElse:
Some(Dean): Dean
None: Unknown!
Some(Wampler): Wampler
*** Using hasValue:
Some(Dean): Dean
Some(Wampler): Wampler
*** Method that Returns an Option:
hello! -> Some(hello!)
null -> None

Look at the method signature for the test’s wrap method again:

static Option<String> wrap(String s) ...

What’s most interesting about this signature is the return value. The type tells you that
a value may or may not be available. That is, a value is optional. Furthermore, Java’s
type safety won’t let you “forget” that an option is returned. You must determine if a
Some was returned and extract the value before calling methods with it, or handle the
None case. Using Option as a return type improves the robustness of your code compared
to allowing nulls and it provides better documentation for users of the code. We are
expressing and enforcing the optional availability of a value through the type system.

Algebraic Data Types and Abstract Data Types
In the previous discussion the Option interface has only two valid implementing types:
Some and None. Mathematically, Option is an algebraic data type, which for our purposes
means that there can be only a few well-defined types that implement the abstraction
[AlgebraicDT]. It also means that there are well-defined rules for transitioning from an
instance of one type to another. We’ll see a good example of these transitions when we
discuss lists in Chapter 3.

A similar-sounding (and easy to confuse) concept is the abstract data type. This is al-
ready familiar from object-oriented programming, where you define an interface for an
abstraction and give it well-defined semantics. The abstraction is implemented by one
or more types. Usually, abstract data types have relatively little polymorphic behavior.
Instead, the subtypes optimize for different performance criteria, like search speed vs.
update speed. Unlike algebraic data types, you might make these concrete classes pri-
vate and hide them behind a factory, which could decide which class to instantiate
based on the input arguments, for example.

A good example of an abstract data type is a map of key-value pairs. The abstraction
tells us how to put new pairs in the map, query for existing pairs, remove pairs, etc.

To compare these two concepts, an algebraic data type like Option constrains the num-
ber of possible subtypes that implement the abstraction. Usually these subtypes are
visible to users. In contrast, an abstract data type imposes no limit on the possible
subtypes, but often those subtypes exist only to support different implementation goals
and they may be hidden behind a factory.

Designing Types | 21

One final point on algebraic data types. Recall that Some and None are final and can’t be
subtyped. Final types are often considered bad in Java, because you can’t subclass them
to create special versions for testing. That’s really only a problem for types with strong
dependencies on other objects that would make testing difficult, like networked serv-
ices. Well-designed algebraic data types should never have such connections, so there
is really nothing that would need to be replaced by a test-only derivative.

Exercises
Note: Some of these exercises are difficult.

1. Write unit tests for Function1Void and Function2.

2. Write a method that uses recursion to add a list of numbers.

3. Find some Java code you wrote before that does null checks. Try modifying it to
use Option instead.

4. Explore the typing of functions under inheritance. Hint: this exercise anticipates
“The Liskov Substitution Principle” on page 50. If you get stuck, see the unit
tests for the functions package that is part of the code distribution.

a. Suppose some method m1 takes a Function1<String,Object> argument.
What would happen if you passed an instance f1 of type Func
tion1<Object,Object> to m1? In Java, how could you change the declaration of
m1 so that the compiler would allow you to pass f1 to it? Why would that be
a valid thing to do, at least from the perspective of “safe typing”?

b. Considering the same method m1, suppose you wanted to pass a function f2
of type Function1<String,String> to m1? How could you change the declara-
tion of m1 so that the compiler would allows you to pass f2 to it? Why would
that be a valid thing to do from the safe typing perspective?

22 | Chapter 2: What Is Functional Programming?

CHAPTER 3

Data Structures and Algorithms

This chapter looks at how the principles of functional programming influence the de-
sign of data structures and algorithms. We won’t have the space to study either in depth,
but we’ll learn some universal principles by studying a few important examples.

Functional languages provide a core set of common data structures with combinator
operations that are very powerful for working with data. Functional algorithms em-
phasize declarative structure, immutable values, and side-effect-free functions.

This chapter is dense with details and it might be hard to digest on a first reading.
However, the ideas discussed here are the basis for functional programming’s elegance,
conciseness, and composability.

Let’s start with an in-depth discussion of lists, followed by a brief discussion of maps.

Lists
The linked list has been the central data structure in functional languages since the days
of Lisp (as its name suggests). Don’t confuse the following classic definition with Java’s
built-in List type.

As you read this code, keep a few things in mind. First, List is an Algebraic Data Type
with structural similarities to Option<T>. In both cases, a common interface defines the
protocol of the type, and there are two concrete subtypes, one that represents “empty”
and one that represents “non-empty.”

Second, despite the similarities of structure, we’ll introduce a few more implementation
idioms that get us closer to the requirements of a true algebraic data type, such as
preventing undesired subtypes:

package datastructures;

public class ListModule {
 public static interface List<T> {

 public abstract T head();

23

 public abstract List<T> tail();
 public abstract boolean isEmpty();
 }

 public static final class NonEmptyList<T> implements List<T> {

 public T head() { return _head; }
 public List<T> tail() { return _tail; }
 public boolean isEmpty() { return false; }

 protected NonEmptyList(T head, List<T> tail) {
 this._head = head;
 this._tail = tail;
 }

 private final T _head;
 private final List<T> _tail;

 @Override
 public boolean equals(Object other) {
 if (other == null || getClass() != other.getClass())
 return false;
 List<?> that = (List<?>) other;
 return head().equals(that.head()) && tail().equals(that.tail());
 }

 @Override
 public int hashCode() { return 37*(head().hashCode()+tail().hashCode()); }

 @Override
 public String toString() { return "(" + head() + ", " + tail() + ")"; }
 }

 public static class EmptyListHasNoHead extends RuntimeException {}

 public static class EmptyListHasNoTail extends RuntimeException {}

 public static final List<? extends Object> EMPTY = new List<Object>() {

 public Object head() { throw new EmptyListHasNoHead(); }
 public List<Object> tail() { throw new EmptyListHasNoTail(); }
 public boolean isEmpty() { return true; }

 @Override
 public String toString() { return "()"; }
 };

 /* See the text for an explanation of this code */
 @SuppressWarnings(value = "unchecked")
 public static <T> List<T> emptyList() {
 return (List<T>) EMPTY; // Dangerous!?
 }

 public static <T> List<T> list(T head, List<T> tail) {
 return new NonEmptyList<T>(head, tail);

24 | Chapter 3: Data Structures and Algorithms

 }
}

First, we surround everything with a “module”, a class named ListModule. This is not
strictly necessary, but it provides a place for us to define Factory methods that we’ll
use as part of the public interface, rather than public constructors. Also, it’s convenient
to define everything in one file. I’ll discuss some other benefits of ListModule below.

Next, we define an interface List<T> that holds items of type T (or subtypes of T).
Following convention, a linked list is represented by a head, the left-most element, and
a tail, the rest of the list. That is, the tail is itself a List, so the data structure is
recursive. We’ll exploit this feature when implementing methods.

Member functions provide read-only access to the head and tail of the list. Hence,
Lists will be immutable, although we can’t prevent the user from modifying the state
within a particular list element itself. The isEmpty method is a convenience method to
determine if the list has elements or not.

Next we have the class NonEmptyList that represents a list with one or more elements.
Because a list is an algebraic data type, we need to control the allowed subtypes of
List. Therefore, NonEmptyList is declared final.

Now the head and tail methods are getters for the corresponding fields, which are
declared final so they are immutable.* We’ll retain control over the structure of the list.
Hopefully, the user will make the list elements immutable, too.

Because NonEmptyList never represents empty lists, isEmpty always returns false.

Why is the constructor protected? We want to control how lists are constructed, too.
We will use static factory methods that are defined at the end of ListModule. This is not
required, but it lets us use a construction “style” that is similar to the idioms used in
functional languages.

The equals and hashCode method are somewhat conventional, but notice that both
exploit the recursive structure of Lists. For equals, we compare the heads and then call
List.equals on the tails. Similarly, hashCode effectively calls itself on the tail.

Recursion is also used in toString. It calls List.toString again when it formats the tail.

Now let’s discuss the representation of empty lists. What should happen if you call
head or tail on an empty list? Neither method can return valid values, so we declare
two exceptions that will be thrown if head or tail is called on an empty list.

Before we continue, those of you who know the Liskov Substitution Principle (which
we’ll discuss in Chapter 5) might be crying, “foul!” Our List abstraction says that im-
plementers should return valid objects, not throw exceptions. Isn’t this a violation of
LSP?

* We don’t care about using JavaBeans conventions for accessors in this case, because that convention doesn’t
serve a useful purpose here.

Lists | 25

After our discussion of the Option type in Chapter 2, we better not return null! We
could change head to return Option<T> and tail to return Option<List<T>>. You should
try this yourself (see the Exercises for this chapter).

Another approach, however, is to say that the list type specifies a protocol that you
should never call head or tail on an empty list. To do so is an “exceptional” condition.
If you think about it, you will have to check any list to see if it’s empty, one way or the
other. You can either call isEmpty first and only call head or tail if it is not empty, or
you can use Option as the return type and test for when None is returned, meaning the
list is empty.

This checking may sound tedious, but it sure beats debugging NullPointerExceptions
in production. Fortunately, you don’t need to do these checks very often, as we’ll see
when we add combinator methods to List later on.

Back to the implementation. Recall that we defined None with a conventional class, even
though all instances of None<T> for all types T are equivalent, because None carries no
state information. It is effectively just a “marker” object. Empty lists are the same,
stateless and used as list terminators and occasionally on their own. Now, however,
we’ll really use just one instance, a Singleton object, to represent all empty lists.

ListModule declares a static final List<? extends Object> named EMPTY, an instance of
an anonymous inner class. Its head and tail methods throw the exceptions we described
above and its isEmpty method always returns true. Note the type parameter, ? extends
Object, which means you could assign any List<X> for some X to EMPTY. This is needed
for how we use EMPTY, which we’ll discuss in a moment. The following sidebar discusses
what this type expression means.

No equals and hashCode methods are required, since there is only one empty list object,
the default implementations for Object are sufficient. Also, toString returns empty
parentheses to represent a list of zero elements.

Now we come to the public static Factory methods that clients use to instantiate lists,
rather than calling constructors directly. Just as there are two concrete types, there are
two factory methods, one for each type.

The first static method, emptyList “creates” an empty list. In fact, it returns EMPTY, but
it appears to do something unspeakably evil; it downcasts from List<Object> to the
correct List<T> type!

Well, this actually isn’t evil, because EMPTY carries no state, just like None. No
ClassCastExceptions will ever occur when you use it. So, in practical terms, we are safe
and our factory method hides our hack from users. We added the annotation to sup-
press warnings from the compiler.

Type parameters for generic methods like this are one of the few places where Java uses
type inference when you call the method. Java will figure out the appropriate value for
T from the type of the variable to which you assign the returned value.

26 | Chapter 3: Data Structures and Algorithms

One Subtype to Rule Them All?
Having to downcast EMPTY like this reflects a few limitations in Java’s type system that
some other languages don’t have. Some languages define a special type that is the sub-
type of all other types, e.g., Nothing in Scala, where List<Nothing> would be a proper
subtype of List<T> for all <T>. However, this feature wouldn’t be quite enough, due to
another Java limitation. You can’t declare in the implementation of List<T> that any
List<T2> is a subtype of List<T> if T2 is a subtype of T (called covariant subtyping). You
can only make these declarations when List<T> is used to declare an instance, which is
what we did for EMPTY. Here’s another example that demonstrates covariant subtyping:

List<? extends Object> EMPTY = new List<String>();

So, we are stuck with our hack if we want to use a Singleton for all empty lists.

The second factory method creates a non-empty list. We call it list to look similar to
a constructor. Really, it’s effectively just a shorthand way of saying new NonEmpty
List<T>(…) with less noise. Even the type parameter is inferred, as you’ll see when we
discuss the test.

The primary benefit of factories is the way they create an abstraction for construction.
Calling new is a form a strong coupling and prevents the substitution of instances of
different concrete types, depending on the context. As a simple example, the list fac-
tory method could determine if an identical list already exists and return it instead. This
would be safe since the lists are immutable (ignoring the possibility of mutable list
elements).

We can see all this in action by looking at a test, ListTest. It’s long, so I’ll just show
excerpts. For example, we’ll omit the equality tests†:

package datastructures;
import static datastructures.ListModule.*;
...
public class ListTest {
 List<String> EMPTYLS = emptyList(); // The String parameter is inferred!
 List<Long> EMPTYLL = emptyList();

 @Test(expected = EmptyListHasNoHead.class)
 public void callingHeadOnAnEmptyListRaises() {
 EMPTYLS.head();
 }

 @Test(expected = EmptyListHasNoTail.class)
 public void callingTailOnAnEmptyListRaises() {
 EMPTYLS.tail();
 }

 @Test

† The full listing is in the downloadable code examples, test/datastructures/ListTest.java.

Lists | 27

 public void callingTailOnAListWithMultiplElementsReturnsANonEmptyList() {
 List<String> tail = list("one", list("two", EMPTYLS)).tail();
 assertEquals(list("two", EMPTYLS), tail);
 }

 @Test
 public void callingHeadOnANonEmptyListReturnsTheHead() {
 String head = list("one", EMPTYLS).head();
 assertEquals("one", head);
 }

 @Test
 public void AllEmptyListsAreEqual() {
 assertEquals(EMPTYLS, EMPTYLL);
 }

 @Test
 public void ListsAreRecursiveStructures() {
 List<String> list1 = list("one", list("two", list("three", EMPTYLS)));
 assertEquals("(one, (two, (three, ())))", list1.toString());
 }
 ...
}

The test makes two “different” empty lists, one of type List<String> and one of type
List<Long>, using the emptyList factory methods. However, the second to last test veri-
fies that they are actually equal.

The first two tests verify that the appropriate exceptions are thrown if head and tail
are called on empty lists. The next two tests verify that the head and tail of non-empty
lists can be extracted.

The last test shows the nice recursive-looking representation that toString returns:

(one, (two, (three, ())))

Recursion is used in ListModule. A successful recursion must eventually terminate. You
would have an infinite recursion if loops in a list were possible. The factory methods
prevent this as they can only create lists terminated by EMPTY. Hence, the API enforces
good behavior.

Pure functional programming uses recursion instead of loops, since a
loop counter would have to be mutable.

We used a few idioms to enforce the algebraic data type constraint that the type hier-
archy must be closed, with only two concrete types to represent all lists. The final
keyword prevents subclassing NonEmptyList and using an anonymous class for EMPTY
accomplishes the same goal. However, Java doesn’t give us a way to prevent other
implementations of the List<T> interface itself, if we want to keep it public.

28 | Chapter 3: Data Structures and Algorithms

We are accustomed to saying that instances of a class can only have certain valid states
and state transitions. Notice that algebraic data types are making the same kinds of
assertions about types themselves, imposing a rigor that helps us think about allowed
representations of state and transitions from an instance representing one state to an
instance representing another state.

Maps
Let’s talk briefly about maps, which associate keys with values, as in this familiar Java
example:

Map<String,String> languageToType = new HashMap<String,String>();
languageToType.put("Java", "Object Oriented");
languageToType.put("Ruby", "Object Oriented");
languageToType.put("Clojure", "Functional");
languageToType.put("Scala" , "Hybrid Object-Functional");

Maps don’t make good algebraic data types, because the value of defining an “empty”
vs. a “non-empty” type (or similar decomposition) is less useful. In part, this reflects
the fact that the “obvious” implementation of List is strongly implied by the head and
tail design.

There is no such obvious implementation of Map. In fact, we need flexibility to provide
different implementations for different performance goals. Instead, Map is a good ex-
ample of an abstract data type (see “Algebraic Data Types and Abstract Data
Types” on page 21).

I’ll leave it as an exercise for you to implement a functional-style map (see Exercises).
Instead, let’s look at operations that work for lists, maps, and other collections.

Combinator Functions: The Collection Power Tools
You already think of lists, maps, etc. as “collections,” all with a set of common methods.
Most collections support Java Iterators, too. In functional programming, there are
three core operations that are the basis of almost all work you do with collections:

Filter
Create a new collection, keeping only the elements for which a filter method returns
true. The size of the new collection will be less than or equal to the size of the
original collection.

Map
Create a new collection where each element from the original collection is trans-
formed into a new value. Both the original collection and the new collection will
have the same size. (Not to be confused with the Map data structure.)

Combinator Functions: The Collection Power Tools | 29

Fold
Starting with a “seed” value, traverse through the collection and use each element
to build up a new final value where each element from the original collection “con-
tributes” to the final value. An example is summing a list of integers.

Many other common operations can be built on top of these three. Together they are
the basis for implementing concise and composable behaviors. Let’s see how.

Returning to our ListModule implementation, let’s add these methods (plus one other).
Here is version 2 of ListModule, where I’ll only show what’s new to save space‡:

package datastructures2;
...
public class ListModule {
 public static interface List<T> {
 ...
 public List<T> filter (Function1<T,Boolean> f);
 public <T2> List<T2> map (Function1<T,T2> f);
 public <T2> T2 foldLeft (T2 seed, Function2<T2,T,T2> f);
 public <T2> T2 foldRight (T2 seed, Function2<T,T2,T2> f);
 public void foreach (Function1Void<T> f);
 }

 public static final class NonEmptyList<T> implements List<T> {
 ...
 public List<T> filter (Function1<T,Boolean> f) {
 if (f.apply(head())) {
 return list(head(), tail().filter(f));
 } else {
 return tail().filter(f);
 }
 }

 public <T2> List<T2> map (Function1<T,T2> f) {
 return list(f.apply(head()), tail().map(f));
 }

 public <T2> T2 foldLeft (T2 seed, Function2<T2,T,T2> f) {
 return tail().foldLeft(f.apply(seed, head()), f);
 }

 public <T2> T2 foldRight (T2 seed, Function2<T,T2,T2> f) {
 return f.apply(head(), tail().foldRight(seed, f));
 }

 public void foreach (Function1Void<T> f) {
 f.apply(head());
 tail().foreach(f);
 }
 }

 public static final List<? extends Object> EMPTY = new List<Object>() {

‡ The full listing is in the downloadable code examples, src/datastructures2/ListModule.java.

30 | Chapter 3: Data Structures and Algorithms

 ...
 public List<Object> filter (Function1<Object,Boolean> f) { return this; }
 public <T2> List<T2> map (Function1<Object,T2> f) { return emptyList(); }

 public <T2> T2 foldLeft (T2 seed, Function2<T2,Object,T2> f) { return seed; }
 public <T2> T2 foldRight (T2 seed, Function2<Object,T2,T2> f) { return seed; }

 public void foreach (Function1Void<Object> f) {}
 };
}

There are five new methods declared in the List interface. We need two versions of
fold, foldLeft and foldRight, for reasons we’ll discuss in a moment. Also, I’ve added
a foreach method for convenience.

Each implementation for the five new methods in NonEmptyList is recursive, yet there
are no checks for the end of the recursion! The corresponding implementation in
EMPTY terminates the recursion. This means we have eliminated the need for conditional
tests, replacing them with object-oriented polymorphism!

Recall that the filter method will return a new List. It takes a Function1<T,Boolean>
f and applies f to each element. In Empty, filter just returns EMPTY. In NonEmptyList, if
the result of applying f to head (f.apply(head())) is true, then filter constructs a new
list with head and the result of calling filter on the tail. Otherwise, filter just returns
the result of applying filter to the tail, thereby discarding head. So, filter is recursive
and it terminates when it is called on an empty list.

The map method is slightly simpler, since it never discards an element. It also uses
recursion to traverse the list, applying f to each element and building up a new list with
the results. Note that f is now of type Function1<T,T2>, because the goal is to allow the
original elements of type T to be transformed into instances of the new type, T2. This
time, EMPTY’s map method calls emptyList, because it must return an object of type
List<T2>, instead of an object of the original type.

The foldLeft and the foldRight methods are the hardest to understand, but they are
actually the most important, as all other methods could be implemented using them!
We’ll start with a general discussion of how these methods work, then return to the
implementation details.

The reason there are two versions is because they traverse the collection and apply the
function in different orders. In some cases, the ordering doesn’t matter. In others, the
results will be different. There are other important differences we’ll see in a moment.

In a nutshell, foldLeft groups the elements from left to right, while foldRight groups
them from right to left. It might help to start with an illustration of how these two
methods work. Suppose I have a list of the integers 1 through 4. I want to add them
using fold. Consider the following example:

List<Integer> listI =
 list(1, list(2, list(3, list(4, emptyList()))));
listI.foldLeft(0, new Function2<Integer, Integer, Integer>() {

Combinator Functions: The Collection Power Tools | 31

 public Integer apply(Integer seed, Integer item) { return seed + item; }
});

Here is how foldLeft would add these numbers together:

((((0 + 1) + 2) + 3) + 4) == 10

The seed of 0 is first added to 1, then the result is added to 2, etc.

Now, here is the foldRight version:

List<Integer> listI =
 list(1, list(2, list(3, list(4, emptyList()))));
listI.foldRight(0, new Function2<Integer, Integer, Integer>() {
 public Integer apply(Integer item, Integer seed) { return item + seed; }
});

Here is how foldRight would add these numbers together. The result is:

(1 + (2 + (3 + (4 + 0)))) == 10

In this case, I exchanged item and seed in the body of apply to be consistent with the
output and functional programming conventions.

Notice the similarity between the appearance of how listI is declared and how the
foldRight algorithm is written in the comment. In fact, repeated application of our
factory method list builds lists in a right-recursive way.

Since addition is associative, the answer is the same in both cases. You would get dif-
ferent answers if you did subtraction, for example.

So, we need two versions of fold because the order matters for non-associative opera-
tions. There are two other important differences.

First, imagine that listI is actually all positive integers, the natural numbers. We
showed a simple representation in “Lazy vs. Eager Evaluation” on page 15. The Natu
ralNumbers class has a static value representing zero and the next method computes a
value from the previous value you pass in.

Now look at the foldRight example again. Let’s rewrite our previous expression to
make it infinite and let’s replace the literal numbers with calls to next (assuming we did
a static import of everything in NaturalNumbers). For clarity, I’ll first show the expression
with the literal numbers:

(1 + (2 + (3 + (...))))
(next(ZERO) + (next(next(ZERO)) + (next(next(next(ZERO))) + (...))))

Of course, ZERO and 0 are actually equal. NaturalNumbers also defines take(n), which
returns a List of the first n positive integers. Effectively, the recursion in foldRight will
now terminate when it hits the end of this List, as if nested calls to next stop after n. If
we call take(3), our expression reduces to the following:

(1 + (2 + (3 + 0)))
(next(ZERO) + (next(next(ZERO)) + (next(next(next(ZERO))) + 0)))

When the recursion terminates in foldRight, it just returns the original seed value of 0.

32 | Chapter 3: Data Structures and Algorithms

So, we can see that foldRight can be used with infinite data structures, if only the first
n elements will be evaluated.

However, foldRight has a drawback; it is not tail recursive. Why? Notice that we do
an addition after the recursive call returns. The recursive call isn’t the last thing done,
the tail of the algorithm. The tail-call optimization can’t be applied to foldRight.

However, foldLeft is tail recursive. Let’s write the left-recursive version of our last
next example:

(((0 + 1) + 2) + 3)
(((0 + next(ZERO)) + next(next(ZERO))) + next(next(next(ZERO))))

Recall that (0 + next(ZERO)), etc. are recursive calls to foldLeft, but the addition now
happens before the call, to construct the argument passed to the next invocation of
foldLeft. Hence the recursion is a tail call, the last calculation done.

However, foldLeft can’t be used for infinite data structures. There is no place where
we can replace a call to next with the seed, as for foldRight. So, foldLeft will eagerly
evaluate the expression, blowing up on an infinite data structure.

Now let’s return to the implementations, starting with foldLeft. First, the function f
is of type Function2<T2,T,T2>. The first T2 type parameter represents the seed. Recall
that we are building up a new value that could be just about anything; a new list, a
String, an Integer (for sums), etc. So, we have to pass a starter or “seed” value. Another
conventional name for this argument is accumulator, since it will contain the “accu-
mulation” of the work done up to a given point.

The second type parameter T for f is the type of the elements in the original list. The
last type parameter T2 is the final return type of the call to foldLeft. Note that it must
be the same as the seed type parameter.

Empty’s version of foldLeft simply returns the seed, terminating the recursion. In Non
EmptyList’s foldLeft, foldLeft is called on the tail, passing as the new seed the result
of applying f to the input seed and head.

The implementation of foldRight is similar. The seed is returned by Empty’s version of
foldRight. However, the version in NonEmptyList has key differences compared to its
version of foldLeft. Note that f is applied to the head and the result of the recursive
call to tail().foldRight after the latter has returned. As we discussed above, this is
why foldRight is not tail recursive.

Consider these concise and precise definitions: foldLeft “is the funda-
mental list iterator” and foldRight “is the fundamental list recursion
operator” [Shivers].

To end our discussion of fold, note that there is a similar operation called reduce, which
is like fold, but the initial value of the collection is used as the seed. Hence, fold is more

Combinator Functions: The Collection Power Tools | 33

general, because the type of the result doesn’t have to be the same as the type of the
collection elements. Also, unlike fold, reduce will fail if used on an empty collection,
since there is no “first” value!

Finally, we have foreach, the simplest of all these methods. Technically, foreach would
be disallowed in “pure” functional programming, because it performs only side effects,
as it returns void! The only useful work that can be done is for the input function f to
do I/O or other state modifications. For example, you might use foreach in a main
method as the outer loop for all other computations. Here is a contrived example that
converts the input String[] args to a List<String> and then uses foreach to print out
the list of arguments:

package datastructures2;
import datastructures2.ListModule.List;
import static datastructures2.ListModule.*;
import functions.Function1Void;

public class ForeachExample {
 public static void main(String[] args) {
 argsToList(args).foreach(new Function1Void<String>() {
 public void apply(String arg) {
 System.out.println("You entered: "+arg);
 }
 });
 }

 private static List<String> argsToList(String[] args) {
 List<String> result = emptyList();
 for (String arg: args) {
 result = list(arg, result);
 }
 return result;
 }
}

Actually, there’s a bug here; it prints the arguments in reverse order! (See Exercises).

I said that filter, map and fold are composable. All three are methods on List, of course.
Two of them, filter and map, return a new List, while fold can return anything we
want. One of our oldest problem-solving techniques is divide and conquer, where we
decompose a hard problem into smaller, easier problems. We can divide complex
computations into pieces using filter, map, and fold, then compose the results together
to get the final result.

The following JUnit test shows how we can start with a list of integers, filter them to
keep only the even values, multiple each of those by 2, then add them up:

package datastructures2;
import org.junit.Test;
import static org.junit.Assert.*;
import functions.*;
import static datastructures2.ListModule.*;

34 | Chapter 3: Data Structures and Algorithms

public class FunctionCombinatorTest {
 @Test
 public void higherOrderFunctionCombinatorExample() {
 List<Integer> listI =
 list(1, list(2, list(3, list(4, list(5, list(6, emptyList()))))));
 Integer sum = listI.filter(new Function1<Integer,Boolean>() {
 public Boolean apply(Integer i) { return i % 2 == 0; }
 })
 .map(new Function1<Integer, Integer>() {
 public Integer apply(Integer i) { return i * 2; }
 })
 .foldLeft(0, new Function2<Integer, Integer, Integer>() {
 public Integer apply(Integer seed, Integer item) { return seed + item; }
 });
 assertEquals(new Integer(24), sum);
 }
}

In fact, we call filter, map, and fold combinators, because they “combine” with their
function arguments and they combine with each other to build more complex com-
putations from simpler pieces. Combinators are arguably the most reusable constructs
we have in programming.

The filter, map, and fold functions are combinators, composable build-
ing blocks that let us construct complex computations from simpler
pieces. They are highly reusable. The combination of map and reduce was
the inspiration for the MapReduce approach to processing massive data
sets [Hadoop].

Finally, recall that I implemented these functions using recursion, but code that uses
them avoids recursion, as in our FunctionCombinatorTest example. That means users
of filter, map, and fold don’t have the drawbacks of recursion, namely the inefficient
stack usage and the potential complexity that can arise in non-trivial recursive func-
tions. We could even reimplement filter, map, and fold to eliminate recursion for better
performance. Because these functions are used heavily, we would gain significant
performance benefits at the expense of a less elegant implementation, but one that
remains hidden behind the abstraction.

That’s a lot to digest! Once you’re ready for more, see [Bird2010] and [Hutton1999]
for more on what these powerful operations can do.

Why Languages Matter
If you venture on to a functional language, like Haskell, Scala, Clojure, or F#, you’ll
notice that having an anonymous function syntax removes some of the clutter we had
to use here. That ease of expression makes it easier to understand the concepts, too.

Combinator Functions: The Collection Power Tools | 35

Persistent Data Structures
It seems that if we want immutable values, we have to make a copy whenever we change
a value. While this may be fine for small objects, it will be too expensive for large objects,
like long lists and large maps.

Fortunately, we can have both immutability and acceptable performance if we only
allocate memory for what is actually changing and we share the unchanged parts with
the original object. This approach is called structure sharing. Tree data structures pro-
vide the balance of performance and space efficiency required to do this. The public
abstraction might still be a List, a Map, or another data structure. The tree is only used
for the internal storage. Note that the trees themselves and their nodes must be im-
mutable. Otherwise, structure sharing will be dangerous, as mutations through one
object will be seen by others that share the same substructure!

To simplify the discussion, let’s use unbalanced binary trees. They provide average
O(log2(N)) search times (unless the tree is really unbalanced). Real persistent data
structures often use one of several 16- or 32-way balanced tree variants to further reduce
search times and to optimize other performance goals. We’ll skip over these details and
we won’t cover how you might implement a List, Map, or other object using a tree.
However, [Spiewak2011] is an excellent presentation on several widely used persistent
data structures (warning: Scala syntax). More technical details can be found in [Oka-
saki1998] and [Rabhi1999].

Figure 3-1 shows a tree at time “0” referenced as an object named value1.

Figure 3-1. Time 0, One Value

Now imagine a user wants to create a new tree that prunes off nodes a1 and its left
branch, node a2, but keep node a3 and its right branch, node a4. All we have to do is

36 | Chapter 3: Data Structures and Algorithms

create a new root node that points to a3 as its left branch and b1 as its right branch, as
shown in Figure 3-2.

Figure 3-2. Time 1, Two Values, with Shared Substructures

Six of the original 8 nodes are shared by both trees. Only one new node allocation was
required, the root node, value2.

Note that a history of the evolving values is being maintained. We still have value1 and
as long as some code has a reference to it, it won’t be garbage collected. This is why
these data structures are called persistent, not in the database sense (they aren’t nor-
mally saved to disk), but in the sense that old versions of an evolving structure will
remain available as long as needed. We will exploit this feature in “Software Transac-
tional Memory” on page 44.

Some Final Thoughts on Data Structures and Algorithms
From these examples, we can see how immutable values lead us to structure sharing
as a way of making new values efficiently, where we share data that isn’t changing,
rather than make full copies. This can only work if all the data elements are immuta-
ble. Different kinds of trees are the most useful data structures for implementing im-
mutable collection types, because they can be chosen for optimizing various operations,
like fast searching for values vs. fast updates.

The use of recursion is also universal, instead of looping. Recursion avoids mutable
loop counters and it’s a natural fit for recursive data structures, like lists and trees.

However, we can avoid many uses of recursion by using our combinators, filter, map,
and fold. We can do anything we want with collections using these modular, reusable,
and composable functions.

Some Final Thoughts on Data Structures and Algorithms | 37

Consider another example, a List of email addresses for our customers. We can filter
for just the gmail addresses. We can map each address in the list to an appropriate
anchor tag for displaying in a web page. We can fold over the list to group the users by
domain. That is, we can build a map where each domain name is a key and the list of
users at that domain is the corresponding value.

In contrast, now imagine that we wrote our own custom EmailAddresses class, for ex-
ample, with one-off methods to do the filtering, mapping, and grouping I just described.
We would write a lot more code (and tests) and the special-purpose nature of that code
would make the class less attractive for reuse. If we follow this approach with our other
domain concepts, we end up with far more code than we really need, with a relatively
low density of value per line of code. There would be lots of little ad-hoc types and
methods, most of which are seldom invoked and rarely reused.

You might argue that these custom types and methods provide a self-documentation
feature. For example, EmailAddresses.groupUsersByDomain tells the reader exactly
what’s going on. That’s useful, but there is a better way.

Interest in Domain-Specific Languages is another recent, popular trend (see, for ex-
ample, [Ghosh2011a] and [Ghosh2011b]). DSLs try to capture the idiomatic language
used by domain experts directly in the code. You can implement DSLs in both object-
oriented and functional languages. Some languages provide better support for custom
DSL syntax than others.

Back to our example, it can be useful to represent a domain with a DSL at the upper
levels of abstraction, but questionable to create explicit object representations under
this surface. We can have a DSL that says, for example groupUsersByDomain in
emailAddresses, but implement it with List<EmailAddresses>.foldLeft(new HashMap<…
>(), groupingFunction);, where groupingFunction does the “group by” magic on the
users and domains.

In “Functional Programming Is More Modular” on page 3, I argued that objects operate
at the wrong level of abstraction and they lack a standard set of protocols that are
essential for the kind of reuse we want. The core data structures of functional pro-
gramming and the combinators like filter, map, and fold bring us closer to that ideal.

Exercises
1. Add a factory method to ListModule that takes a variable argument list of elements

and returns a properly constructed list.

2. Implement a new ListModule where head and tail return Options. This eliminates
the slight smell of throwing exceptions for the empty list case. However, using
Options makes some other code more awkward, as a unit test will show.

3. Re-implement the Option hierarchy following the idioms used for List; e.g., make
None a static constant.

38 | Chapter 3: Data Structures and Algorithms

4. Implement a MapModule with an abstract data type Map. The implementation classes
should use side-effect-free functions and immutability. How can you enable the
use of alternative implementations that optimize performance and memory usage?
What implementations would optimize the following:

a. A map that contains just a few key-value pairs.

b. A map that contains a few million key-value pairs.

c. A map that optimizes insertion performance.

d. A map that optimizes search performance.

e. A map that retains the order of insertion (e.g., for subsequent traversal).

5. ForeachExample prints the arguments in reverse order. Determine the cause and
implement a fix. Hint: consider adding a useful method to ListHelper that is com-
monly found in List classes.

6. Reimplement the equals and toString methods in NonEmptyList using foldLeft or
foldRight. Does the choice of fold method affect the results?

7. Reimplement the filter and map methods for Lists using foldLeft or foldRight.

8. Reimplement foldLeft and foldRight so they don’t use recursion. If you use mu-
table values, preserve thread safety.

Exercises | 39

CHAPTER 4

Functional Concurrency

Now that we have discussed functional data structures and algorithms, let’s return to
the topic that has sparked widespread interest in functional programming in the first
place: concurrency. Recall this warning from Chapter 1:

Multithreaded programming, requiring synchronized access to shared,
mutable state, is the assembly language of concurrency.

We’ve already discussed how immutable values make synchronization unnecessary.
Yet, mutating state is never completely avoidable. Let’s examine two higher-level ab-
stractions that provide “principled” ways to manage mutable state in thread-safe ways:
Actors and Software Transactional Memory.

The Actor Model
The Actor model isn’t really a functional approach to concurrency, but it fits our general
goal of managing state mutation in principled ways. In the Actor model of concurrency,
work is coordinated by message passing between “actors.” Each actor has a queue,
sometimes called a mailbox, for incoming messages. The actor processes each message,
one at a time. Carl Hewitt and collaborators developed the actor model almost 40 years
ago [Hewitt1973]. [Agha1987] provides a complete description of the theory of actors.
Perhaps the best known implementation of actors is found in Erlang, where actors are
the core of everything you do in the language.

It’s interesting to note that Alan Kay’s original vision for objects in Smalltalk is much
closer to the actor model than it is to the objects found in most languages [Kay1998].
For Kay, “The big idea is messaging.” He also believed that state changes should be
encapsulated and not done in an unconstrained way.

This metaphor of passing messages between objects is not only intuitive, it helps clarify
boundaries between objects. Have you seen code where one object makes lots of little

41

calls to other objects to get bits of information? How would you change that code if
you thought in terms of message passing, instead?

In an actor system, state mutation is handled one of several ways. For some state, it can
be the responsibility of one actor to mutate that state. No other code is permitted to
do so. When a mutation is required, a message is sent to the actor, which performs all
such changes sequentially, thereby avoiding synchronization problems.

A similar model is to allow multiple actors to modify the same state, but only one at a
time. A special “semaphore” message is exchanged that tells the receiver that it is safe
to modify the state. When finished, the semaphore is sent to another actor.

Both cases run the risk of creating a bottleneck if the scope of responsibility is too large.
It might be necessary to break it down into smaller, “isolated” sections.

Fortunately, good actor libraries are available for most languages. Perhaps the best
option for Java is the Akka Java API [Akka]. An alternative is also available in [Func-
tional Java].

Here is a simple actor-based program that remembers every string passed to it, keeping
the string and the time it was seen in a map:

package actors;
import akka.actor.*;
import static akka.actor.Actors.*;
import java.util.*;

public class AkkaActorExample {
 // server code
 static class MemoryActor extends UntypedActor {
 final Map<String,Date> seen = new HashMap<String,Date>();

 public void onReceive(Object messageObject) {
 String message = messageObject.toString(); // simplifying assumption
 if (message.equals("DUMP")) {
 getContext().replySafe(seen.toString());
 } else {
 Date date = new Date();
 seen.put(message.toString(), date);
 getContext().replySafe("'" + message + "' recorded at " + date);
 }
 }
 }

 public static void main(String[] args) {
 ActorRef remActor = actorOf(MemoryActor.class).start();
 for (String arg: args) {
 // client code
 Object response = remActor.sendRequestReply(arg);
 System.out.println("Reply received: "+response);
 }
 Object response = remActor.sendRequestReply("DUMP");
 System.out.println("Dump of remembered strings: "+response);
 System.exit(0);

42 | Chapter 4: Functional Concurrency

 }
}

For convenience, everything is wrapped in a class, AkkaActorExample, which also defines
the main method. The MemoryActor extends Akka’s UntypedActor, so named because the
messages are of type Object.

MemoryActor implements an onReceive method, declared abstract by UntypedActor,
which is called whenever a new message is received by the actor. This handler stores
the input message (basically assuming it is a string, for simplicity) and the current time
in a mutable map. It replies to the caller that the message was recorded.

However, if a special message DUMP is received, the actor replies with a “dump” of the
current state of the map. Note that the actor manages the mutable state and prevents
any other code from accessing it. Even the DUMP message returns a string, rather than
the map itself.

The main method uses the Akka idiom for instantiating an actor of instance
MemoryActor and wrapping it in an ActorRef, which is returned to main. Akka separates
the actor instance from references to it, an example of the Bridge design pattern
[GOF1995]. Akka does this so that if an actor instance fails for some reason, it can be
restarted without requiring clients to acquire a new reference to the new actor. This is
an example of the extensive robustness and error recovery features in Akka’s Actor
library, which were inspired by similar capabilities in Erlang.

Once main has an actor reference, it loops through the input arguments and sends each
word, one at a time, to the actor. It then prints the response received. At the end, it
sends the DUMP message.

To keep the example simple, synchronous calls and responses are used, where the code
waits for a reply after each message is sent. Normally, you would use asynchronous
messages for better scalability, which Akka supports.

If you download the code examples and build the actor.example make target, it runs
this code with the arguments I am a Master Thespian!. Here is the output (omitting
some Akka informational messages):

Reply received: 'I' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'am' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'a' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'Master' recorded at Sat Jun 25 16:14:43 CDT 2011
Reply received: 'Thespian!' recorded at Sat Jun 25 16:14:43 CDT 2011
Dump of remembered strings: {
 am=Sat Jun 25 16:14:43 CDT 2011,
 a=Sat Jun 25 16:14:43 CDT 2011,
 Master=Sat Jun 25 16:14:43 CDT 2011,
 Thespian!=Sat Jun 25 16:14:43 CDT 2011,
 I=Sat Jun 25 16:14:43 CDT 2011}

The Actor Model | 43

I wrapped the long line for the “Dump” output. Note that creating the string for the
map required iterating through it, which doesn’t preserve insertion order, as you would
expect.

This example just scratches the surface of what you can do with Akka Actors (as well
as other Actor libraries), including distributing actors remotely, managing their life
cycles, handling crash recovery, etc. See [Akka] for more details.

Software Transactional Memory
Chances are you’ve worked on an application with a database backend. A key feature
of most relational databases is support for ACID transactions, an acronym for atomic-
ity, consistency, isolation, and durability.* The goal of ACID transactions is to avoid
logical inconsistencies in a given set of related records, for example where two simul-
taneous updates leave the set of records in an inconsistent state, or updates are made
that are based on stale data, which could effectively erase more recent updates.

Software Transactional Memory (STM) brings transactions to locations in memory that
are referenced by variables [STM] (see also [PeytonJones2007]). STM can’t provide
durability, because memory isn’t durable (e.g., if the power is lost), but STM can pro-
vide the ACI, atomicity, consistency, and isolation in ACID.

The model in STM is to separate references to values from the values themselves. We
saw this principle at work in Akka actors. In STM, a program has a reference to a value
of interest. The STM framework provides a protocol for changing the value to which
the reference “points.”

However, values themselves are not changed. They remain immutable. Only the refer-
ences change to point to new values. We saw in “Persistent Data Struc-
tures” on page 36 how the appropriate choice of implementation can provide an effi-
cient way to make a new value from a large object without copying the parts of it that
aren’t changing. Rather, those parts are shared between the old and new version of the
object. Persistent Data Structures are exactly what STM needs.

Figure 4-1 shows the state at time “0.” There are two references pointing the same
value1 of a persistent data structure, adapted from Figure 3-1 in the previous chapter.

Now let’s change ref2 to point to a new, updated value, as shown in Figure 4-2.

By time “1,” an STM transaction in the context of ref2 has been used to move its
reference to value2, which was created from value1, as indicated by the dotted line.
Creating value2 does not necessary have to occur within the transaction, just the reas-
signment of ref2 (but see the example below). Note that ref1 still points to the old
value, value1.

* One of the big data trends is to use new kinds of databases that relax this constraint in order to improve
throughput and availability.

44 | Chapter 4: Functional Concurrency

This behavior allows different clients to acquire references to the same value at a par-
ticular time, but each can work with the value without fear that it will change unex-
pectedly, due to the actions of one of the other clients. Recall that a history of the
evolving values is effectively maintained, as long as there are references pointing to
multiple versions. A version with no references will be garbage collected.

So that’s how STM works behind the scenes. What’s it like for a client to use STM?

There are several STM libraries for Java, many of which are inspired by Clojure’s im-
plementation. Akka integrates with the [Multiverse STM]. Below is a simple example
adapted from the Akka documentation [Akka]. A reference to an Integer value is man-
aged using the techniques described above:

// Adapted from Akka example source code.
// Copyright (C) 2009-2011 Scalable Solutions AB <http://scalablesolutions.se>
package stm;
import akka.stm.*;

public class AkkaSTMIntegerCounter {

 private final Ref<Integer> ref = new Ref<Integer>(0);

 public int counter() {
 return new Atomic<Integer>() {
 public Integer atomically() {

Figure 4-1. Time 0, one value with two references to it

Software Transactional Memory | 45

 int inc = ref.get() + 1;
 ref.set(inc);
 return inc;
 }
 }.execute();
 }

 public static void main(String[] args) {
 AkkaSTMIntegerCounter counterRef = new AkkaSTMIntegerCounter();
 System.out.println(counterRef.counter()); // -> 1
 System.out.println(counterRef.counter()); // -> 2
 }
}

First, a typed reference, Ref<Integer>, is created with the initial value of zero. Then, a
helper method counter handles incrementing the value and returning the new value.
The mutation and update of the reference must be enclosed in an Atomic<Integer>
object (analogous to synchronizing a method). The Ref.get method retrieves the cur-
rent value and the Ref.set method sets a new value. Note that wrapping these steps in
Atomic prevents updates using potentially stale values from calls to get.

The main method instantiates an AkkaSTMIntegerCounter object, then calls counter twice
and prints the results. The numbers 1 and 2 will be printed on separate lines.

For a beautiful exposition on STM, see [PeytonJones2007].

Figure 4-2. Time 1, two values, with one reference to each

46 | Chapter 4: Functional Concurrency

Exercises
1. Using the [Akka] documentation for actors, modify the Actor example to make

calls asynchronously. For example, create several actors that send messages to
MemoryActor and add an actor that main uses to receive the replies.

2. Use the Akka/Multiverse API to manage a more complex object, like a collection.

Exercises | 47

CHAPTER 5

Better Object-Oriented Programming

Now that we have learned about functional programming and its benefits, let’s revisit
object-oriented programming and see how we can do better with functional ideas.

Imperative, Mutable Code
Recall from “Declarative vs. Imperative Programming” on page 16 that object-oriented
programming is primarily imperative, where we tell the computer what to do, while
functional programming is primarily declarative, where we define properties and rela-
tions, and let the runtime figure out how to compute what we want. We demonstrated
the differences with two versions of the factorial function. The declarative version was
clean and simple, while the imperative version was “busy” with mutations, making it
harder to understand and prevent bugs. Those problems multiply if your whole code
base is like that.

We’ve seen other reasons to avoid mutability. Mutable objects are not thread-safe by
default and it’s easy for clients to change their state outside our control. Hence, we
should make our objects immutable by removing setter methods and by declaring fields
final. We should create new instances when the state changes and we should rely on
persistent data structures for making efficient copies of large collections. We should
avoid representing elaborate domain model object “graphs” in memory by limiting the
parts of our domain models that we actually implement.

Sometimes we can’t avoid mutation. Since Java doesn’t perform tail-call optimization,
declarativeFactorial won’t perform as well as imperativeFactorial. However, we
should choose the desirable approach first, then optimize only where actual perform-
ance data says we should (since our intuitions are seldom correct). If at all possible, we
should keep all public abstractions pure, even when the internals aren’t pure.

Make your objects behave to the outside world as if they are side-effect-
free and immutable.

49

The Liskov Substitution Principle
The Liskov Substitution Principle (LSP; see [LSP] and [Martin2003]) provides the cor-
rect way to think about subtyping. Paraphrasing, LSP says that if you have an object of
type T1 with a set of properties, you can only substitute an object of type T2 if it also
conforms to those properties. We say that T2 is a subtype of T1. In Java, a child class
that derives from a parent class is considered a subtype.

Subtyping, Inheritance, and Polymorphism
We sometimes think of subtyping and inheritance as the same thing. Inheritance is used
for subtype polymorphism, where we define type hierarchies with polymorphic behav-
ior. Inheritance is also sometimes used for implementation inheritance, a form of reuse,
which can cause problems with Liskov substitutability. For completeness, note that
Java’s generics are an example of parametric polymorphism. For example, a List<T>
should behave the same whether T is String, Float, etc.

A practical way to ensure that LSP is satisfied is to use Design by Contract
[Meyer1997], where you specify allowed properties as one of three kinds of constraints
at the level of individual functions or whole types:

• Precondition: A condition that must be true when entering the function (or all
functions for a type-level precondition). Example: Input parameter x can’t be null.

• Postcondition: A condition that must be true when leaving the function (or all
functions for a type-level postcondition). Example: The return value will never be
null.

• Invariant: A condition that must be true both before and after the function call
(or all functions). Example: Field f will never be null.

If you think carefully about these descriptions, you’ll notice that preconditions are
requirements on users of the functions, while postconditions are requirements on the
functions themselves.

With a Design by Contract tool, these conditions are expressed as executable code.
The tool enforces correctness at runtime, such as during testing (see [Meyer1997] and
[Contract4J]). These days, Test-Driven Development [TDD] performs a similar role,
although it is a less formal approach.

Back to LSP, it can be hard to define properties well. The freedom and flexibility of
inheritance doesn’t provide much guidance, but design patterns can help.

Template Method is a pattern that provides a useful constraint on subtype polymor-
phism [GOF1995]. It is error-prone to override concrete methods; it’s easy to forget to
call the parent method when you should; it’s hard to avoid duplication, etc. In Template
Method, instead of overriding a concrete method, we implement the method once in
the base class as a template that defines the protocol of the behavior. This method calls

50 | Chapter 5: Better Object-Oriented Programming

abstract methods to provide specific pieces of the overall computation. Those abstract
methods are implemented in each subclass, giving you a constrained form of polymor-
phic behavior that is easier to keep LSP compliant.

Functional programming gives us a similar tool, higher-order functions. Recall that
filter, map, and fold implement specific operations, but the details are customizable
by the function argument.

Use Template Method and higher-order functions as an aid to conform
to the Liskov Substitution Principle.

More on Design Patterns
Some people have claimed that FP makes design patterns obsolete, relics of flawed
object-oriented languages where missing features had to be retrofitted by coding idi-
oms. This view confuses the concept of patterns with particular example patterns
themselves, which may or may not be relevant in different languages. It is true that
some of the famous “Gang of Four” patterns [GOF1995] are a standard part of many
functional languages. Singleton, Composite, Command, and Iterator might be built
into a language or replaced by similar constructs. We just discussed how higher-order
functions accomplish the same basic goals as Template Method.

At the same time, functional programming has its own set of patterns. One is fold and
its variants. We’ll discuss another one shortly, pattern matching.

Many of the functional patterns are named after the concepts from Category Theory
that inspired them. You might have heard the word Monad, for example. For our pur-
poses we can say that a Monad is a container with a specific protocol for constructing
a new instance of the container using the value in an old instance of the container.
Monads have been used to sequence expressions. For example, Haskell code is nor-
mally side-effect-free and lazily evaluated. The runtime can defer execution of an ex-
pression until needed or never execute it. However, that would not work for IO. So,
the “IO Monad” is used to isolate IO actions, maintain their order, and assure that they
get executed, while maintaining a clean separation from the rest of the “pure” code.

An ugly pattern that won’t be missed is Visitor. It’s invasive, it’s confusing, and it
exposes too many internal implementation details to “visitors.” Functional program-
ming gives us other features that are far more elegant for accomplishing the same goals.
Let’s discuss one of them, pattern matching.

Pattern Matching
A goal of Visitor is to replace the need for public getter methods, which expose imple-
mentation details. Instead, the visitor is allowed to “go inside the object.” A better

More on Design Patterns | 51

approach that preserves modularity is to provide a protocol where objects can expose
internal values while retaining control over what is exposed and how.

This is one use for pattern matching in functional languages (where the word “pattern”
is not being used in the design pattern sense). In part, pattern matching is like switch
statements on steroids, where you aren’t limited to checking just for integer or enum
values (or booleans if you use if statements).

Functional pattern matching lets you ask questions like “Is this object of type List?”,
“Is this object a list that starts with 1 and 2?”, etc. For each match, you can specify what
action to take.

While you can partially simulate pattern matching with if statements in Java, you lose
much of the power of the idea without better support. So, I’ll use an example written
with extensions to Java that are loosely inspired by Scala’s syntax, to provide a sense
of what’s possible. This example matches on an Object and looks for Lists:

package datastructures;
// Possible syntax extensions; won't compile for any version of Java.
public class PatternMatchExample {
 public static String match(Object obj) {
 switch (obj) {
 case EMPTY: // Is it an empty list?
 return "()";
 case NonEmptyList(1, 2): // A list with 1 and 2?
 return "(1,(2,())";
 case List<?> list(head,tail): // Any other List? Create head, tail variables
 return "("+head+","+match(tail)+")";
 default: // Not a List!!
 return "unrecognized object!";
 }
 }
}

The switch first tests the object to see if it is an empty list. Next, it looks for a two-
element list with the literal values 1 and 2. After that, it determines if the object is any
List at all. Note that if a match occurs in the last case, two variables, head and tail,
are automatically created that reference the extracted head and tail of the matched list.
Finally, the default clause handles the case of unrecognized types.

Looking at this code, it appears that I broke a cardinal rule of switch statements in
object-oriented programming: Never switch on types in a type hierarchy! Use polymor-
phism instead!

I didn’t do the wrong thing for two reasons. First, List is an algebraic data type that
will only ever have two concrete classes. So, this switch statement won’t break in the
future, because we won’t modify the class hierarchy. (However, it probably would
break if we were using Maps instead, which don’t constrain the allowed subtypes.)

The second reason takes us back to Visitor and its primary purpose: to “fake” adding
new methods to existing types, where internal access to the implementation is required.

52 | Chapter 5: Better Object-Oriented Programming

I glossed over the bodies of the clauses just now, but actually, the match method is really
a toString implementation (with some odd parts).

Earlier in the book, I complained about a gigantic Customer class that had every possible
field and method anyone could want. The better alternative is to limit the methods on
any class and to provide a way to implement new behaviors in a modular, separable way.

Here’s what I mean by separable: why do we have Object.toString in the first place?
It’s occasionally useful for debugging, but often we really need XML, JSON (JavaScript
Object Notation), or another consistent format. However, it would be crazy to embed
XML or JSON dependencies in every object in the system. A better way is to have a
module that understands XML serialization and knows how to serialize all the common
types to and from XML. It would also need to provide a mechanism for us to specify
how to serialize our own types.

The match (a.k.a. toString) method described above pulls together everything there is
to know about converting a List to a particular String format. We could write similar
modules for XML and JSON serialization. We can use the same approach for any be-
havior that is only needed by some clients, some of the time. When clients need XML
serialization, for example, they can import our module for it. When they don’t need it,
it’s not a burden on them.

Pattern matching gives us a new tool for modularity, where we can do data extraction
in a way that is controlled by the types themselves. We can use pattern matching to
implement new features, yet never pollute the original types with those features. We
can localize feature development in one place, rather than spreading it over all the files
for a type hierarchy.

Just because you can join behaviors with state in the same class doesn’t
mean that you should.

What Makes a Good Type?
When you approach design with a sense of functional rigor, any imprecise type defi-
nition becomes suspect. Consider a typical object model that you might see in an IT
application, a part of which is shown in the UML diagram in Figure 5-1.

What are the properties of the classes in this diagram? How do you ensure that Man
ager is substitutable for Employee, and 401K (an American tax-deferred retirement sav-
ings plan), Insurance, and Tax are substitutable for Deduction?

An object representation of these concepts makes sense conceptually and there is noth-
ing wrong with modeling your domain in objects. However, in software, the impreci-
sion and the fluid nature of real-world objects collides with the precision the machine

What Makes a Good Type? | 53

demands. Worse, even if you find a snapshot today of what these concepts mean to
you, they will surely change with tomorrow’s requirements.

Fortunately, not all domain concepts have this problem. Those that are relatively stable
and have well-defined properties and operations fit the objectives for types in functional
programming.

I think the domain concepts shown in Figure 5-1 don’t make good types. Their par-
ticular details are fluid, likely to change from one scenario to the next, from one de-
velopment cycle to the next, even from one team to the next. For these concepts, slice
what parts you need into maps of key-value pairs, then implement your scenarios with
filter, map, and fold.

However, some of the domain concepts not shown will possess the stable, precise
quality that makes them good types. Money in the financial world has precise rules for
arithmetic and rounding. Post offices have standard formats for Street Addresses and
there exist databases to verify whether an address is known to exist or not. Zip Codes
have a standard format and criteria for validity. What examples come to mind from
your domain?

In fact, any data that fits in a collection probably should not have its own dedicated
type. The power of filter, map, and fold compel you! A type wrapper may not justify
the cost of developing it.

Use types to represent domain concepts with stable, clear properties.
Consider using maps, lists, trees, and sets to represent other domain
concepts that are more fluid and imprecise.

Figure 5-1. UML for an American payroll application.

54 | Chapter 5: Better Object-Oriented Programming

Rethinking Object-Oriented Middleware
In Chapter 1, I discussed my skepticism about Object-Relational Mapping (ORM) and
other object-based middleware. They can add needless complexity.

The power of the combinator functions, filter, map, and fold, make a compelling case
for keeping data in collections. You can read the data from a database or other service
into a collection, transform it as necessary, then send it back to the database, to another
service, or to the UI (usually as JSON for web UIs). You avoid the overhead of con-
verting data collections to objects and keep your code simpler. (The Anorm API, part
of the Play Web Framework’s Scala Module, is a good example of this approach to
persistence [Anorm].) Having domain objects in your code is nice for understanding
the scenario being implemented, but the benefits don’t always justify the costs of using
them.

Finally, reduction of middleware will increase your team’s agility, as more code in a
mature application inevitably slows you down.

Exercises
1. Look at a Java application you’ve worked on recently.

a. How many classes could be made immutable without much difficulty? How
many classes look like feature “kitchen sinks”? How many classes define
methods that reinvent operations that would be easy to implement with
filter, map, and fold, instead?

b. How many polymorphic methods don’t obey the LSP?

2. Look at the design patterns you use frequently. How might you change or replace
them with functional patterns and idioms?

3. Exercise 2 in Chapter 2 explored how functions of different types can be substituted
for each other. Can you explain those behaviors using the Liskov Substitution
Principle?

Exercises | 55

CHAPTER 6

Where to Go From Here

Hopefully I’ve convinced you why functional programming is important for the chal-
lenges of our time. We only scratched the surface of this rich field. I hope you’ll continue
learning and applying functional programming on your own.

So, where should you go next? I find it easier to learn abstract principles by writing real
code. You could start by learning one of the scripting languages on the JVM, such as
Groovy, JRuby, or Jython. While none of these languages is a functional language, per
se, all have many functional features missing in Java, such as anonymous functions,
collections with filter, map, fold, and other higher-order functions. (The names used
by these languages may be different.) Along the way, you’ll find these languages useful
for general development needs.

However, consider learning a real functional language, where you can see functional
programming fully realized. In a few examples in this book we labored to represent
some ideas in Java. Functional languages make them much easier to use.

Scala is my personal favorite, because it strives to unify both object-oriented and func-
tional programming. Scala’s object-oriented support will let you continue to use fa-
miliar object-oriented concepts while you learn and start using functional concepts.
Just be careful to avoid the trap of staying in familiar territory! [Wampler2011] provides
a brief overview of the language and its compelling features. [Eckel2011] discusses how
Scala has the succinct feel of a dynamically-typed language, like Python. For a more in-
depth introduction, see Programming Scala [Wampler2009], the book I cowrote with
Alex Payne. We tried hard to provide a pragmatic, developer-oriented introduction.

Clojure is the other well-known functional language on the JVM. It is a Lisp dialect
that offers a powerful vision of how programming should be done, especially the man-
agement of state and mutability. In Clojure, all mutations of state are done through
specific mechanisms, such as software transactional memory. Simple variable assign-
ment is not supported. The greater discipline prevents many bugs and encourages you
to think carefully about state and state transformations. Even if you don’t like Lisp
syntax, it’s well worth learning Clojure, as the vision it presents is becoming a major
influence on other languages. You can bet that whatever language you are using in

57

http://oreilly.com/catalog/9780596155964/

10 years will be heavily influenced by Clojure. Programming Clojure [Halloway2009]
is an excellent introduction.

Finally, if you’re willing to go beyond the JVM, consider learning Haskell, which has
been the incubator of many of the leading ideas in functional programming. Real World
Haskell [O'Sullivan2009] and the whimsically named Learn You a Haskell for Great
Good! [Lipovaca2011] are great introductions. Haskell is very different than most lan-
guages, so patience is required to learn it, but the profound insights it offers reward the
effort.

If you are a Windows user, consider learning F#, Microsoft’s dialect of OCaml. F# is
the first commercially-supported functional programming language available. OCaml
itself has been used in projects on Wall Street, for example.

There are other great resources for further investigation, many of which are listed in
the References. The videos on MSDN’s Channel 9, especially those by Erik Meijer,
introduce basic and advanced functional topics [Channel 9]. The Structure and Inter-
pretation of Computer Programs [Abelson1996] is a classic textbook for computer sci-
ence. It’s not a book on functional programming, per se, but it walks the reader through
a logical progression of computing principles, starting with functional programming
concepts. Neal Ford’s “Functional Thinking” articles provide more examples of using
functional concepts in several common languages [Ford2011]. Finally, Why Functional
Programming Matters [Hughes1990] is a more advanced, yet approachable discussion
on the benefits of functional programming.

Functional Tools for Java
There are also good options targeted at the Java programmer. The [Functional Java]
APIs define anonymous function types, similar to those we defined in Chapter 2. You
can also find various functional data structures, parser combinators, and an Actor li-
brary. Similarly, the [Totally Lazy] library offers lots of useful features.

The [Akka] Framework is a powerful, emerging suite of tools for building robust, con-
current applications. Akka includes one of the most performant and feature-complete
Actor APIs available. Akka also integrates with many other third-party APIs to provide
support for software transactional memory, web services, persistence stores, etc. Akka
provides both Java and Scala versions of its APIs. I fully expect that Akka will become
a widely used tool for JVM-based applications in the next several years, much as the
Spring Framework became ubiquitous in the past decade [Spring].

A Recap
In the introduction, I discussed these factors that make me emphasize functional pro-
gramming over object-oriented programming in my work.

58 | Chapter 6: Where to Go From Here

I Have to Be Good at Writing Concurrent Programs
All of us must know how to write robust code that scales horizontally to multiple
CPU cores and servers.

Most Programs Are Just Data Management Problems
Big data requires very efficient management of resources. Those efficiencies also
benefit “small data” and “no data” projects. Overreliance on object-relational
mapping and other forms of object middleware lead to code bloat, poor perform-
ance, and lower agility. We should remember, What’s the simplest thing that could
possibly work? and stay focused on the minimal implementation required. We can
express the problem domain through DSLs when appropriate, but we shouldn’t
assume that our domain object models should be implemented in code.

Functional Programming Is More Modular
Functional programming moves the abstraction layers lower, to core data struc-
tures and combinator functions. Combined with immutable values and side-effect-
free functions, the modularity and reusability of functional code is usually better
than similar object-oriented code. Because objects are so free to expose abstractions
any way they want, they are less reusable and composable, which is a paradox.

I Have to Work Faster and Faster
Functional programming keeps my code concise, by minimizing unnecessary and
“one-off” implementation constructs, and it keeps my code logically correct. These
qualities, in turn, keep me more agile over the life of the project as requirements
change and features evolve.

Functional Programming Is a Return to Simplicity
Functional programming isn’t simple, but it represents a return to simplicity: the
goal of minimizing implementation size and complexity by rethinking our ideas of
appropriate design patterns and implementation idioms.

We learned several tools to improve modularity and reuse.

Custom classes aren’t always justified
If data fits in a collection, it probably shouldn’t have its own class.

Put your domain in domain-specific languages
Resist the temptation to faithfully capture your domain model in code. Instead,
express your domain in domain-specific languages (DSLs), when useful, and use
the most straightforward, concise implementation you can behind the DSL.

Function combinators
The combinators filter, map, and fold are flexible and composable tools because
they are higher-order functions. We can exploit that in Java, too, if we standardize
on generic Function types, rather than rely on one-off, special interface types for
callbacks.

A Recap | 59

Use more generic types, like Function
Find ways to replace special purpose types with more general replacements. Really,
just be more aggressive about applying the tools you already use to find abstractions
that eliminate duplication in your code.

I hope you have found Functional Programming for Java Developers stimulating and
informative. I hope you are motivated to learn and embrace this exciting trend in soft-
ware development.

Exercises
1. Look at the [Ninety Nine Problems], originally written for Prolog, and try working

out the solutions in Java. It might be easier to use the ListModule we discussed in
Chapter 3 or the [Functional Java] or [Totally Lazy] libraries. Note that you can
find solutions for other languages, too.

60 | Chapter 6: Where to Go From Here

APPENDIX

References

[Abelson1996] Harold Abelson, Gerald Jay Sussman, and Julie Sussman, Structure and
Interpretation of Computer Programs, MIT Press, 1996

[AbstractDT] Abstract Data Types, http://en.wikipedia.org/wiki/Abstract_data_type

[ACID] ACID, http://en.wikipedia.org/wiki/ACID

[Agha1987] Gul Agha, Actors, MIT Press, 1987

[Akka] Akka, http://akka.io/

[AlgebraicDT] Algebraic Data Types, http://en.wikipedia.org/wiki/Algebraic_data_type

[Anorm] Anorm, SQL Data Access with Play Scala, http://scala.playframework.org/doc
umentation/scala-0.9.1/anorm

[Baldwin2000] Carliss Baldwin and Kim B. Clark, Design Rules: The Power of Modu-
larity, Vol. 1, MIT Press, 2000

[Bird2010] Richard Bird, Pearls of Functional Algorithm Design, Cambridge University
Press, 2010

[Bloch2008] Joshua Bloch, Effective Java Second Edition, Addison-Wesley, 2008

[Caml] The Caml Language, http://ocaml.inria.fr

[CategoryTheory] Category Theory, http://en.wikipedia.org/wiki/Category_theory

[Channel9] Channel 9, http://http://channel9.msdn.com/

[ChurchEncoding] Church Encoding, http://en.wikipedia.org/wiki/Church_numeral

[Clojure] Clojure, http://clojure.org

[CombinatoryLogic] CombinatoryLogic, http://en.wikipedia.org/wiki/Combinatory
_logic

[Contract4J] Contract4J: Design by Contract for Java, http://polyglotprogramming.com/
contract4j

61

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/ACID
http://akka.io/
http://en.wikipedia.org/wiki/Algebraic_data_type
http://scala.playframework.org/documentation/scala-0.9.1/anorm
http://scala.playframework.org/documentation/scala-0.9.1/anorm
http://ocaml.inria.fr
http://en.wikipedia.org/wiki/Category_theory
http://http://channel9.msdn.com/
http://en.wikipedia.org/wiki/Church_numeral
http://clojure.org
http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Combinatory_logic
http://polyglotprogramming.com/contract4j
http://polyglotprogramming.com/contract4j

[Eckel2011] Bruce Eckel, Scala: The Static Language That Feels Dynamic, http://www
.artima.com/weblogs/viewpost.jsp?thread=328540

[Erlang] Erlang Programming Language, http://www.erlang.org/

[Ford2011] Neal Ford, Functional thinking: Thinking functionally, Part 1, http://www
.ibm.com/developerworks/java/library/j-ft1/index.html (first in a series of articles)

[FSharp] Microsoft F# Developer Center, http://msdn.microsoft.com/en-us/fsharp

[FunctionalJava] Functional Java, http://functionaljava.org

[Ghosh2011a] Debasish Ghosh, DSL for the Uninitiated, Communications of the
ACM, Vol. 54, No. 7, pages 44–50

[Ghosh2011b] Debasish Ghosh, DSLs in Action, Manning Publications, 2011

[Goetz2006] Brian Goetz, et al., Java Concurrency in Practice, Pearson Education, 2006

[Goetz2010] Brian Goetz, State of the Lambda, http://cr.openjdk.java.net/~briangoetz/
lambda/lambda-state-3.html

[GOF1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (“Gang
of Four”), Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995

[Groovy] Groovy: An agile dynamic language for the Java Platform, http://groovy.code
haus.org

[Hadoop] Hadoop, http://hadoop.apache.org

[Halloway2009] Stuart Halloway, Programming Clojure, Pragmatic Programmers,
2009

[Haskell] The Haskell Programming Language, http://haskell.org

[Hewitt1973] Carl Hewitt, Peter Bishop, and Richard Steiger, A Universal Modular
Actor Formalism for Artificial Intelligence, http://dli.iiit.ac.in/ijcai/IJCAI-73/PDF/027B
.pdf, 1973

[Hoare2009] Tony Hoare, Null References: The Billion Dollar Mistake, http://qconlon
don.com/london-2009/speaker/Tony+Hoare

[Hughes1990] John Hughes, Why Functional Programming Matters, http://www.cs.kent
.ac.uk/people/staff/dat/miranda/whyfp90.pdf

[Hutton1999] Graham Hutton, A tutorial on the universality and expressiveness of
fold, Journal of Functional Programming 9 (4), Cambridge University Press, July 1999,
pages 355–372

[Java6API] Java Platform SE 6 API, http://java.sun.com/javase/6/docs/api/

[JRuby] JRuby: 100% Pure-Java Implementation of the Ruby Programming Language,
http://jruby.org/

62 | Appendix: References

http://www.artima.com/weblogs/viewpost.jsp?thread=328540
http://www.artima.com/weblogs/viewpost.jsp?thread=328540
http://www.erlang.org/
http://www.ibm.com/developerworks/java/library/j-ft1/index.html
http://www.ibm.com/developerworks/java/library/j-ft1/index.html
http://msdn.microsoft.com/en-us/fsharp
http://functionaljava.org
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-3.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-3.html
http://groovy.codehaus.org
http://groovy.codehaus.org
http://hadoop.apache.org
http://haskell.org
http://dli.iiit.ac.in/ijcai/IJCAI-73/PDF/027B.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-73/PDF/027B.pdf
http://qconlondon.com/london-2009/speaker/Tony+Hoare
http://qconlondon.com/london-2009/speaker/Tony+Hoare
http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
http://java.sun.com/javase/6/docs/api/
http://jruby.org/

[JUnit] JUnit, http://junit.org

[Jython] The Jython Project, http://jython.org

[Kay1998] Alan Kay, message on the “squeak-dev” mailing list, http://lists.squeakfoun
dation.org/pipermail/squeak-dev/1998-October/017019.html

[LazyVsNonStrict] Lazy vs. non-strict (Haskell.org), http://www.haskell.org/haskell
wiki/Lazy_vs._non-strict

[Lipovaca2011] Miran Lipovaca, Learn You a Haskell for Great Good!, http://learnyoua
haskell.com/

[Lisp] Lisp (Programming Language), http://en.wikipedia.org/wiki/Lisp_(programming
_language)

[LSP] Liskov Substitution Principle, http://en.wikipedia.org/wiki/Liskov_substitution
_principle

[MapReduce] MapReduce, http://labs.google.com/papers/mapreduce.html

[Martin2003] Robert C. Martin, Agile Software Development: Principles, Patterns, and
Practices, Prentice-Hall, 2003

[Mazzola2005] Guerino Mazzola, Gérard Milmeister, and Jody Weissman, Compre-
hensive Mathematics for Computer Scientists 2, Springer, 2005

[Meyer1997] Bertrand Meyer, Object-Oriented Software Construction (2nd Edition),
Prentice-Hall, 1997

[Mockito] Mockito, http://mockito.org/

[Monad] Monad (Functional Programming), http://en.wikipedia.org/wiki/Monad_(func
tional_programming)

[MultiverseSTM] Multiverse STM, http://multiverse.codehaus.org/overview.html

[NinetyNine] P-99: Ninety-Nine Prolog Problems, https://sites.google.com/site/prolog
site/prolog-problems/

[OCaml] Objective Caml, http://en.wikipedia.org/wiki/OCaml

[Odersky2008] Martin Odersky, Lex Spoon, and Bill Venners, Programming in Scala,
Artima Press, 2008

[Odersky2009] Martin Odersky, Lex Spoon, and Bill Venners, How to Write an Equality
Method in Java, http://www.artima.com/lejava/articles/equality.html

[Okasaki1998] Chris Okasaki, Purely Functional Data Structures, Cambridge Univer-
sity Press, 1998

[OSullivan2009] Bryan O’Sullivan, John Goerzen, and Don Steward, Real World Has-
kell, O’Reilly Media, 2009

References | 63

http://junit.org
http://jython.org
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-October/017019.html
http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
http://learnyouahaskell.com/
http://learnyouahaskell.com/
http://en.wikipedia.org/wiki/Lisp_(programming_language
http://en.wikipedia.org/wiki/Lisp_(programming_language
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://labs.google.com/papers/mapreduce.html
http://mockito.org/
http://en.wikipedia.org/wiki/Monad_(functional_programming
http://en.wikipedia.org/wiki/Monad_(functional_programming
http://multiverse.codehaus.org/overview.html
https://sites.google.com/site/prologsite/prolog-problems/
https://sites.google.com/site/prologsite/prolog-problems/
http://en.wikipedia.org/wiki/OCaml
http://www.artima.com/lejava/articles/equality.html

[PeytonJones2007] Simon Peyton Jones, “Beautiful Concurrency,” in Beautiful Code,
Andy Oram and Greg Wilson, editors, O’Reilly Media, 2007

[Pierce1991] Benjamin C. Pierce, Basic Category Theory for Computer Scientists, MIT
Press, 1991

[ProjectLambda] Project Lambda: JSR 335 (Lambda Expressions for the Java™ Pro-
gramming Language), http://openjdk.java.net/projects/lambda/

[QuickCheck] Introduction to QuickCheck, http://www.haskell.org/haskellwiki/Intro
duction_to_QuickCheck

[Rabhi1999] Fethi Rabhi and Guy Lapalme, Algorithms: A Functional Programming
Approach, Addison-Wesley, 1999

[Scala] The Scala Programming Language, http://www.scala-lang.org/

[Shivers] Olin Shivers, List Library (for Scheme), http://srfi.schemers.org/srfi-1/srfi-1
.html#FoldUnfoldMap

[Smullyan1982] Raymond Smullyan, To Mock a Mockingbird, Oxford, 1982

[Spiewak2008] Daniel Spiewak, What is Hindley-Milner? (and why is it cool?), http://
www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool

[Spiewak2011] Daniel Spiewak, Extreme Cleverness, https://github.com/djspiewak/ex
treme-cleverness

[Spring] The Spring Framework, http://www.springsource.org/

[STM] Software Transactional Memory, http://en.wikipedia.org/wiki/Software_transac
tional_memory

[TDD] Test-Driven Development, http://en.wikipedia.org/wiki/Test-driven_development

[TotallyLazy] Totally Lazy, http://code.google.com/p/totallylazy/

[TypeInference] Type inference, http://en.wikipedia.org/wiki/Type_inference

[Wadler1992] Philip Wadler, The essence of functional programming, http://citeseerx.ist
.psu.edu/viewdoc/summary?doi=10.1.1.38.9516

[Wadler1995] Philip Wadler, Monads for functional programming, http://citeseerx.ist
.psu.edu/viewdoc/summary?doi=10.1.1.100.9674

[Wampler2009] Dean Wampler and Alex Payne, Programming Scala, O’Reilly Media,
2009

[Wampler2011] Dean Wampler, The Seductions of Scala, http://polyglotprogramming
.com/papers/SeductionsOfScala.pdf

64 | Appendix: References

http://openjdk.java.net/projects/lambda/
http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck
http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck
http://www.scala-lang.org/
http://srfi.schemers.org/srfi-1/srfi-1.html#FoldUnfoldMap
http://srfi.schemers.org/srfi-1/srfi-1.html#FoldUnfoldMap
http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool
http://www.codecommit.com/blog/scala/what-is-hindley-milner-and-why-is-it-cool
https://github.com/djspiewak/extreme-cleverness
https://github.com/djspiewak/extreme-cleverness
http://www.springsource.org/
http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Test-driven_development
http://code.google.com/p/totallylazy/
http://en.wikipedia.org/wiki/Type_inference
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9516
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9516
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.9674
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.9674
http://polyglotprogramming.com/papers/SeductionsOfScala.pdf
http://polyglotprogramming.com/papers/SeductionsOfScala.pdf

Glossary

Abstract Data Type
A more formal definition of the familiar idea
that types should be defined by abstractions
with hidden implementations. An abstract
data type is defined only in terms of allowed
operations, i.e., without specifying fields,
since they are part of the implementation.
Abstract data types may or may not be im-
mutable. Representative examples include
maps, queues, and stacks, where multiple
implementations are possible (including
mutable and immutable, as long as all state-
changing operations are defined to return a
reference to the possibly new instance).
Contrast with algebraic data type, where
only a well-defined set of public subtypes are
allowed.

Abstraction
The outwardly visible state, state transfor-
mations, and other operations supported by
a type. This is separate from the encapsula-
ted implementation (fields and methods) of
the abstraction. Scala traits and abstract
classes are often used to define abstractions
and optionally implement them. Concrete
types provide complete implementations.

ACID
A desired property of database transactions.
They should support atomicity, consis-
tency, isolation, and durability. See
[ACID] for more details.

Actor
An autonomous sender and receiver of mes-
sages in the actor model of concurrency.

Actor Model of Concurrency
A concurrency model where autonomous
actors coordinate work by exchanging mes-
sages. An actor’s messages are stored in a
mailbox until the actor processes them.

Agile and Agile Methods
An umbrella term for several lightweight de-
velopment processes and specific practices
that are designed to minimize process waste,
while improving code quality and commu-
nications with project stakeholders.

Algebraic Data Type
A special kind of data type that is defined in
Java by an interface and a fixed set of possi-
ble implementing classes, representing all
possible instances of the data type. There
may be a well-defined set of operations that
maps instances of one type to new instances
of the same type or one of the other types.
Algebraic data types are always containers
for other types (e.g., list and option). Con-
trast with abstract data type, where the im-
plementing subtypes are not limited and are
often hidden from the user of the type.

Anonymous Function
A value that is a function (as opposed to a
class instance or a primitive value) without
a name in the usual way that methods are
named. Languages that support anonymous
functions have a special syntax for defining
the value. For example, using the planned
lambda syntax in Java 8, addCall
back(#{Event e -> log(INFO, e)}) passes
an anonymous function to some addCall

65

back method. The anonymous function
takes a single argument of type Event and
logs it. Anonymous functions are sometimes
called lambdas (for historical reasons) or
function literals. See also closure.

Associative Arrays
Another common name for the map data
structure, i.e., a collection of key-value
pairs.

Base Type
A synonym for parent type or supertype.

Big Data
A buzzword for the challenges of and ap-
proaches to working with data sets that are
too big to manage with traditional tools,
such as relational databases. So called
NoSQL databases, clustered data process-
ing tools like MapReduce, and other tools
are used to gather, store, and analyze such
data sets.

Bound Variable
A variable that is declared as an argument to
an anonymous function or is a local variable
declared within the function. It is “bound”
to a value when the function is invoked.

Bridge
A design pattern where a reference to an ob-
ject is separated from the instance itself, al-
lowing both to vary independently. Also
known as “handle/body.” Bridge is used in
Software Transactional Memory to allow ref-
erences to values to be changed in a con-
trolled way. It is also used in some Actor li-
braries, like the [Akka] library, to allow cli-
ents to keep the same reference to an actor,
even if the actual instance has been replaced
with a new one.

Category Theory
A branch of mathematics that studies col-
lections of “objects” (used more generally
than in object-oriented programming) and
“arrows” or “morphisms” that connect the
objects in some sense. Category theory has
been a fruitful source of ideas for concepts
in functional programming.

Child Type or Child Class
A class which is derived from another class
and also optionally implements one or more
interfaces. Also called a subtype or derived
type. See inheritance.

Class
A template for creating instances. A class
defines implementation of methods and
fields. A class defines type.

Closure
A function with every free variable refer-
enced in the function bound to variables of
the same name in the enclosing scope where
the function is defined. The free variables
are “closed over,” hence the name. See also
bound variable.

Combinators
Functions that return an instance of one of
their input types, which can be “combined,”
according to the rules of Combinatory
Logic, to build more complex logic. The re-
sult can then be applied to values to perform
the computation. The filter, map, and
fold functions are combinators.

Combinatory Logic
A model of computation invented by Has-
kell Curry and others that eliminates explicit
variables and instead expresses calculations
as the combination of operators (higher-or-
der functions) that will be applied to data
when used.

Composable (or Composition)
The ability to join software “modules” to-
gether with relatively little effort to create
new behaviors and representations of state
from the individual behaviors and states
provided by the components.

Comprehensions
“Comprehending” the elements of a collec-
tion or lazy representation of one (such as
all integers), including filtering, mapping,
and folding over them. In some languages,
comprehensions are syntactic sugar for fil
ter, map, and fold invocations.

Associative Arrays

66 | Glossary

Concurrency
A model of computation with simultaneous
sequences of computation and unpredicta-
ble interaction between the sequences. For
example, two threads in an application that
occasionally communicate. In contrast to
parallelism, the apparent simultaneity might
be an illusion, for example when the pro-
gram executes on a single CPU with a single
core. An example of the unpredictability of
concurrency is the handling of asynchro-
nous events, such as user input or network
traffic. The precise sequence of execution
steps that will occur in the entire program
can’t be predicted in advance. Contrast with
parallelism.

Contract
The protocol and requirements that exist
between a module (e.g., class, object, or sin-
gle method) and clients of the module. More
specifically, see design by contract.

Coupling
In this context, how closely dependent one
“module” is on the details of another. Strong
coupling between two modules makes the
reuse and evolution of either module more
difficult. It also becomes harder to substi-
tute one module for another, if both satisfy
the same public abstractions. Hence weak
coupling is generally preferred. Inheritance is
an example of strong coupling.

Currying
Converting an N argument function into a
sequence of N functions of one argument,
where each function except for the last re-
turns a new function that takes a single ar-
gument that returns a new function, etc.,
until the last function that takes a single ar-
gument and returns a value.

Declarative Programming
The quality of many functional programs
and domain-specific languages where the
code consists of statements that declare re-
lationships between values, rather than di-
recting the system to take a particular se-
quence of actions. The underlying runtime
can then decide how to “satisfy” the rela-

tionships. Contrast with imperative pro-
gramming.

Derived Type
A synonym for sub type and child type.

Design by Contract
An approach to class and module design in-
vented by Bertrand Meyer for the Eiffel lan-
guage [Meyer1997]. For each entry point
(e.g., method call), valid inputs are specified
in a programmatic way, so they can be vali-
dated during testing. These specifications
are called preconditions. Similarly, assuming
the preconditions are satisfied, specifica-
tions on the guaranteed results are called
postconditions and are also specified in an
executable way. Invariants can also be speci-
fied that should be true on entry and on exit.

Design Pattern
A solution to a problem in a context. A code
idiom or design structure that satisfies the
needs of a frequently occurring problem,
constraint, requirement, etc. The “context”
portion of the definition is important, as it
specifies conditions when the pattern is an
appropriate choice and when it isn’t.

Domain-Specific Language
A custom programming language that re-
sembles the terms, idioms, and expressions
of a particular domain. An internal DSL is
an idiomatic form of a general-purpose pro-
gramming language. That is, no special-pur-
pose parser is required for the language. In-
stead, DSL code is written in the general-
purpose language and parsed just like any
other code. An external DSL is a language
with its own grammar and parser. In Java,
good examples of internal DSLs include
most “mocking” frameworks for testing.
See, for example, [Mockito].

Eager Evaluation
Evaluation of an expression (such as com-
puting a value) as soon as the expression is
encountered, rather than delaying evalua-
tion until the result is actually needed, on
demand, which is called lazy evaluation.

Eager Evaluation

Glossary | 67

Eager evaluation is sometimes called “call
by name.”

Encapsulation
Restricting the visibility of members of a
type so they are not visible to clients of the
type when they shouldn’t be. This is a way
of exposing only the abstraction supported
by the type, while hiding implementation
details, which prevents unwanted access to
them from clients and keeps the abstrac-
tion exposed by the type consistent and min-
imal.

Event
The notification of a state change in event-
based concurrency.

Event-Based Concurrency
A form of concurrency where events are
used to signal important state changes and
handlers are used to respond to the events.

Factory
A general term for several related design pat-
terns that abstract the process of construct-
ing objects.

Field
A variable in an object that holds part of the
object’s state.

Final
Keyword for declarations. For types, final
prevents users from subclassing the type.
For methods, final prevents users from
overriding the members. For variables,
final prevents users from reassigning the
values.

First-Class Value
An indication that the applicable “concept”
is a first-class construct in the language,
meaning you can assign instances to varia-
bles, pass them as function parameters, and
return them from functions. In Java, primi-
tives and objects are first-class values, while
functions and classes themselves are not.
Most other programming languages sup-
port functions as first-class values, at least in
some form.

Free Variable
A variable that is referenced in an anony-
mous function, but is not passed in as an ar-
gument nor declared as a local variable.
Therefore, it must be “bound” to a defined
variable of the same name in the scope
where the anonymous function is defined,
to form a closure.

Function
Similar to a method, but not bound to a par-
ticular class or object. Functions are first-
class values in functional programming lan-
guages, and they can usually be defined
“anonymously”; see anonymous function.
Functions also have no side effects in func-
tional programming, meaning they don’t
change state, but only return new values.

Function Literal
A less commonly used name for an anony-
mous function. See also lambda.

Functional Programming
A form of programming that follows the
mathematical principles for function and
variable behaviors. Mathematical functions
are side-effect-free and first-class values. Var-
iables are assigned once, so values are im-
mutable.

Generics
Types that are defined with type parameters
representing other types that they use. For
example, Java’s List<T>. When an instance
of a generic type is created, the type param-
eters must be specified with actual types.
The term parameterized types is sometimes
used instead.

Higher-Order Functions
Functions that take other functions as argu-
ments or return a function value.

Immutable Value
A value that can’t be changed after it has
been initialized. Contrast with mutable
value.

Imperative Programming
The quality of many object-oriented and
“procedural” programs where the code con-

Encapsulation

68 | Glossary

sists of statements directing the system to
take a particular sequence of actions. Con-
trast with declarative programming.

Infinite Data Structure
A data structure that represents a non-ter-
minating collection of values (such as the
non-negative integers), but which is capable
of doing so without exhausting system re-
sources. The values are not computed until
the data structure is asked to produce them.
As long as only a finite subset of the values
are requested, resource exhaustion is avoi-
ded.

Inheritance
A strong coupling between one class or in-
terface and another. The inheriting (de-
rived) class or interface incorporates the
members of the parent class or interface, as
if they were defined within the derivative.
Hence, inheritance is a form of reuse. The
derivative may override inherited members
(unless declared final). For a properly de-
fined derived type, instances of it are substi-
tutable for instances of the parent, satisfying
the Liskov Substitution Principle.

Instance
Another term for an object created by in-
voking a class constructor or a value of a
primitive type.

Invariance and Invariant
In the context of design by contract, an as-
sertion that should be true before and after
a method is executed.

Lambda
In the days when Alonzo Church and others
were developing lambda calculus, it got its
name from the use of the Greek letter
lambda (λ) to represent a function. As a re-
sult, the term is often used for anonymous
functions.

Lazy Evaluation and Laziness
A feature of mathematics and many func-
tional languages where expression evalua-
tion is delayed until its value is needed,
rather than doing the evaluation eagerly.
This feature is useful for delaying or elimi-

nating expensive evaluations, preventing
unnecessary re-evaluations (e.g., through
memoization), and for representing infin-
itely large data structures, where only some
of the values will be needed. Compare with
eager evaluation and contrast with strict re-
duction. Lazy evaluation is sometimes called
“call by need.”

List
The fundamental data structure in func-
tional programming, representing a linked
list, which is implemented as a “head” ele-
ment and a “tail” linked list that represents
the rest of the list. Lists are algebraic data
types; there are only two concrete types that
represent all lists, a type for empty lists and
a type for non-empty lists. There are also
well-defined rules for transitioning from one
to the other. Compare with map.

Liskov Substitution Principle
Named after its inventor, Barbara Liskov, it
specifies that if a type T has certain proper-
ties P, then instances of a different type T2
can be substituted for instances of T if and
only if T2 also satisfies the same properties
P. In object-oriented programming, inheri-
tance is normally used to define these type
relationships. See also [LSP].

Map
The common data structure in program-
ming, representing a collection of key-value
pairs. Maps have a well-defined abstraction
that declares operations that can be per-
formed on the map. A wide variety of im-
plementations are possible, often based on
performance and resource tradeoffs. Be-
cause there is no fixed set of possible imple-
menting types and the focus is instead on the
abstract “specification,” maps are an exam-
ple of an abstract data type. Compare with
list.

MapReduce
A divide and conquer strategy for processing
large data sets in parallel. In the “map”
phase, the data sets are subdivided. The de-
sired computation is performed on each
subset. The “reduce” phase combines the

MapReduce

Glossary | 69

results of the subset calculations into a final
result. MapReduce frameworks handle the
details of managing the operations and the
nodes they run on, including restarting op-
erations that fail for some reason. The user
of the framework only has to write the code
for mapping and reducing the data sets.

Member
A generic term for a field or method declared
in a class.

Memoization
A form of caching that optimizes function
invocations. The results from a function’s
invocations are saved so that when repeated
invocations are made with the same inputs,
the cached results can be returned instead of
re-invoking the function. Memoization is
only useful for functions that are side-effect-
free.

Message
In the actor model of concurrency, messages
are exchanged between actors to coordinate
their work. In object-oriented program-
ming, method invocation is sometimes re-
ferred to as “sending a message to an ob-
ject,” especially in certain languages (for ex-
ample, Smalltalk).

Method
A function that is defined by a class and can
only be invoked in the context of the class
or one of its instances.

Monad
A Category Theory concept adopted in func-
tional programming. A monad is a kind of
container with a protocol for adding ele-
ments to it. For example, Monads are used
to sequence computations that must be
evaluated in a particular order (such as IO)
that would otherwise be lazy and evaluated
in arbitrary order, if at all. Monads are also
useful for isolating code with side effects
(which is also incompatible with laziness).

Mutable Value
A value that can be changed after it has been
initialized. Contrast with immutable value.

NoSQL
An umbrella term for non-relational data
stores, hence the name. These stores sacri-
fice ACID transactions for greater scalability
and availability.

Object
A cohesive unit with a particular state, pos-
sible state transitions, and behaviors. In
Java, an object is an instance of a class.

Object-Oriented Programming
A form of imperative programming that en-
capsulates state values and related opera-
tions, exposing a cohesive abstraction to cli-
ents of the object while hiding internal im-
plementation details. Java’s object model is
based on classes; objects are instantiated
from classes. Most class-based, object-ori-
ented languages also support subtyping to
define specializations and “family” relation-
ships between types.

Overloaded Functions
Two or more functions defined in the same
scope (e.g., as methods in a type or as “bare”
functions) that have the same name, but dif-
ferent signatures.

Overridden Functions
When a function with a particular signature
in a parent class is redefined in a child class,
so its behavior changes. Overridden func-
tions must obey the Liskov Substitution Prin-
ciple.

Parallelism
Computation sequences that happen at the
same time, because they are running on sep-
arate CPU cores or separate servers. Paral-
lelism is a deterministic model in the sense
that sequences are spawned at specific
points in the program and the program often
waits at another point until all the parallel
sequences have finished (called “joining”).
Contrast with concurrency.

Parameterized Types
An alternative term for generics.

Member

70 | Glossary

Parametric Polymorphism
The property of generic types like List<T>
that their behavior is independent of the ac-
tual type for T.

Parent Type or Parent Class
A class from which another class is derived.
Also called a supertype or base type. See in-
heritance.

Partial Application
A feature of many languages where a func-
tion can be invoked with only a subset of its
arguments supplied, yielding a new function
that takes the remaining arguments. Some
languages only permit “curried” functions
to be invoked in this way (see currying).

Pattern Matching
An advanced form of switch expressions
that support matching instances by type and
extracting values from those types, e.g.,
field values.

Precondition
An assertion that should be true on entry to
a method or other entry point. See design by
contract.

Postcondition
An assertion that should be true on exit from
a method or other boundary point. See de-
sign by contract.

Primitive Type
The non-object types in Java, e.g., int, long,
float, double, and boolean.

Pure
Used in the context of functions to mean
that they are side-effect-free. See also refer-
ential transparency.

Recursion
When a function calls itself as part of its
computation. A termination condition is re-
quired to prevent an infinite recursion. You
can also have cycles of recursion between
two or more functions. See also tail-call re-
cursion.

Referential Transparency
The property of an expression, where it can
be replaced with its value without changing
the behavior of the code (see memoization).
This can only be done with side-effect-free
expressions (e.g., functions) when the in-
puts are the same.

Scope
A defined boundary of visibility, constrain-
ing what variables, types and their members
are visible within it.

Side-Effect-Free
Functions or expressions that have no side
effects, meaning they modify no global or
“object” state, only return new values.

Signature
For a function, the name, parameter list
types, type parameters (for generic func-
tions), and the return value. For a method,
the signature also includes the type that de-
fines the method.

Singleton
A design pattern where a class is implemen-
ted in a special way so that only one instance
of the type is ever instantiated.

State
As in, “the state of an object,” where it
means the set of the current values of an ob-
ject’s fields. The state of the whole program
is the set of all object states and the “value”
of the stack.

Static Typing
Analyzing expressions in a program to prove
that certain behaviors won’t occur, based on
an analysis of the values the expressions can
produce.

Strict Reduction
A concept similar to lazy evaluation, but
pertaining to how expressions are reduced
to simpler forms. See [Lazy vs. non-strict]
for more details.

Strong Coupling
See coupling.

Strong Coupling

Glossary | 71

Structure Sharing
A technique for efficiently copying large,
immutable data structures, where the parts
that aren’t changing are shared between the
old and new copies.

Subtype
A synonym for child type or derived type.

Subtype Polymorphism
The technical term for polymorphic behav-
ior of a type hierarchy implemented using
inheritance.

Supertype
A synonym for parent type or base type.

Tail-Call Recursion
A form of recursion where a function calls
itself as the last thing it does, i.e., it does no
additional computations with the result of
the recursive call. Tail-call recursions can be
automatically converted to loops, eliminat-
ing the overhead of creating a stack frame
for each invocation. However, neither the
JVM nor the Java compiler currently per-
forms this optimization.

Test Double
A generic term for a special object that sub-
stitutes for a “normal” object in a test, e.g.,
to fake network I/O or do some verifications
during execution.

Test-Driven Development
A development discipline where no new
functionality is implemented until a test has
been written that will fail initially, but pass
once the functionality is implemented.

Type
A categorization of allowed states and op-
erations on those states, including transfor-
mations from one state to another. In Java,
the type of an object is a primitive type or
the combination of its declared class (ex-
plicitly named or anonymous), the specific
types used to resolve any parameters when
the class is generic, and finally, any overrid-
den methods that are defined when the in-
stance is defined.

Type Erasure
A property of the generics type model on the
JVM. When a type is created from a generic,
the information about the specific types sub-
stituted for the type parameters is not stored
in the byte code and is therefore not availa-
ble at run time, e.g., through reflection.

Type Inference
Inferring the type of a value based on the
context in which it is used, rather than rely-
ing on explicit type information attached to
the value.

Value
The actual state of an instance, usually in the
context of a variable that refers to the in-
stance.

Variable
A named reference to a value. If the variable
is declared with the final keyword, a new
value can’t be assigned to the variable. Oth-
erwise, a new value can be assigned to the
variable.

Visibility
The scope in which a declared type or type
member is visible to other types and mem-
bers.

Weak Coupling
See coupling.

Structure Sharing

72 | Glossary

About the Author
Dean Wampler is a principal consultant at Think Big Analytics, where he specializes
in “Big Data” problems and tools like Hadoop and Machine Learning. Besides Big Data,
he specializes in Scala, the JVM ecosystem, JavaScript, Ruby, functional and object-
oriented programming, and Agile methods. Dean is a frequent speaker at industry and
academic conferences on these topics. He has a Ph.D. in physics from the University
of Washington.

Colophon
The animal on the cover of Functional Programming for Java Developers is a pronghorn
antelope.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Copyright
	Table of Contents
	Preface
	Welcome to Functional Programming for Java Developers
	Conventions Used in This Book
	Using the Code Examples
	Getting the Code Examples

	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Why Functional Programming?
	I Have to Be Good at Writing Concurrent Programs
	Most Programs Are Just Data Management Problems
	Functional Programming Is More Modular
	I Have to Work Faster and Faster
	Functional Programming Is a Return to Simplicity

	Chapter 2. What Is Functional Programming?
	The Basic Principles of Functional Programming
	Avoiding Mutable State
	Functions as First-Class Values
	Lambdas and Closures
	Higher-Order Functions
	Side-Effect-Free Functions
	Recursion
	Lazy vs. Eager Evaluation
	Declarative vs. Imperative Programming

	Designing Types
	What About Nulls?
	Algebraic Data Types and Abstract Data Types

	Exercises

	Chapter 3. Data Structures and Algorithms
	Lists
	Maps
	Combinator Functions: The Collection Power Tools
	Persistent Data Structures
	Some Final Thoughts on Data Structures and Algorithms
	Exercises

	Chapter 4. Functional Concurrency
	The Actor Model
	Software Transactional Memory
	Exercises

	Chapter 5. Better Object-Oriented Programming
	Imperative, Mutable Code
	The Liskov Substitution Principle
	More on Design Patterns
	Pattern Matching

	What Makes a Good Type?
	Rethinking Object-Oriented Middleware
	Exercises

	Chapter 6. Where to Go From Here
	Functional Tools for Java
	A Recap
	Exercises

	Appendix. References
	Glossary
	Colophon

