

Evan Hahn

JavaScript Testing with Jasmine

JavaScript Testing with Jasmine
by Evan Hahn

Copyright © 2013 Evan Hahn. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Marisa LaFleur
Proofreader: Rachel Monaghan

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2013: First Edition

Revision History for the First Edition:

2013-03-22: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449356378 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. _JavaScript Testing with Jasmine_, the image of a phoebe, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-35637-8

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449356378

Table of Contents

Preface. v

1. Intro to Testing. 1
What Is Software Testing? 1
Why Is It Useful? 2
Test-Driven Development 2
Behavior-Driven Development 2

2. Jasmine. 5
What Is Jasmine? 5
Getting Set Up with Jasmine 5
Testing Existing Code with describe, it, and expect 6

An Example to Test 6
Jasmine Time! 7

Matchers 8
Writing the Tests First with Test-Driven Development 9

3. Writing Good Tests. 13
Cardinal Rule: When in Doubt, Test 13
Test Components 13
Black-Box Testing 14

4. Matchers in Depth. 15
Equality: toEqual 15
Identity: toBe 15
Yes or No? toBeTruthy, toBeFalsy 16
Negate Other Matchers with not 17
Check If an Element Is Present with toContain 17
Is It Defined? toBeDefined, toBeUndefined 18

iii

Nullness: toBeNull 18
Is It NaN? toBeNaN 18
Comparators: toBeGreaterThan, toBeLessThan 19
Nearness: toBeCloseTo 19
Using toMatch with Regular Expressions 20
Checking If a Function Throws an Error with toThrow 20
Custom Matchers 20

5. More Jasmine Features. 23
Before and After 23
Nested Suites 24
Skipping Specs and Suites 24
Matching Class Names 25

6. Spies. 27
The Basics: Spying on a Function 27
Calling Through: Making Your Spy Even Smarter 29
Making Sure a Spy Returns a Specific Value 30
Replacing a Function with a Completely Different Spy 30
Creating a New Spy Function 30
Creating a New Spy Object 31

7. Using Jasmine with Other Tools. 33
Jasmine and CoffeeScript 33
Jasmine and Node.js 34

Installing jasmine-node on Unix and Linux 34
Installing jasmine-node on Windows 34
Basic Usage 34
Asynchronous Tests with jasmine-node 35
jasmine-node and CoffeeScript 35

Jasmine and Ruby on Rails 36
Installation 36
Usage 36

Jasmine with Non-Rails Ruby 37
More Tools 37

8. Reference. 39
Jasmine on the Web 39
The Basic Structure of a Suite 39
Matchers Reference 40
List of Falsy Values 40
Reserved Words in Jasmine 40

iv | Table of Contents

Preface

All programmers want their code to work the way they intended. Jasmine, a popular
testing framework for the JavaScript programming language, allows you to achieve that
goal. Through coded specifications, Jasmine helps make your JavaScript work exactly
how it’s supposed to. In this book, we’ll explore Jasmine in detail, from its basic concepts
to its advanced features.

This book aims to explain the concepts of testing and test-driven development, as well
as why they’re useful. It then aims to dive into Jasmine and explain how it can help
programmers test their JavaScript code. By the end of this book, I aim to give readers
an understanding of Jasmine’s concepts and syntax.

Who Should Read This Book
This book is intended for programmers who are familiar with some more advanced
JavaScript features, such as closures and callbacks, and who have a general understand‐
ing of JavaScript’s prototype system. If you are interested in learning how to write reliable
JavaScript code, this is the book for you.

Jasmine is useful when building a maintainable and scalable JavaScript application, ei‐
ther in a browser or on a server. It can help ensure that a browser’s client-side data
models are performing properly, or that a server is correctly serving pages.

Jasmine is also useful for building reliable JavaScript libraries. It can help ensure that
the exposed API of your library matches what you intend it to match.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

v

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

This icon signifies a tip, suggestion, or general note.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “JavaScript Testing with Jasmine by Evan
Hahn (O’Reilly). Copyright 2013 Evan Hahn, 978-1-4493-5637-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John

vi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/JS_Jasmine.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to RockMelt for asking me to learn Jasmine.

Thanks to Pivotal Labs for creating Jasmine.

Thanks to my parents for their constant support.

Preface | vii

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/JS_Jasmine
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Intro to Testing

What Is Software Testing?
In short, you can test software against a specification.

Let’s say you’re writing a simple calculator that just does addition. Before you even start,
think about how it should behave. It should be able to add positive integers. It should
be able to add negative integers. It should be able to add decimal numbers, not just
integers. You can think of many different ways that your calculator needs to work.

Before you’ve written any of the code, you know how you want it to behave. You have
a specification for its behavior.

You can write these specifications in code. You’d say, “OK, it should work this way.” You’d
make tests that added 1 and 1, 2 and 2, –1 and 5, –1.2 and 6.8, 0 and 0, and so on. When
you run these tests, you’ll either get a success (it works according to the specification)
or a failure (it doesn’t). If you ran all of your tests and saw success for each, then you
can be pretty sure that your calculator works. If you ran these tests and saw some failures,
then you know that your calculator doesn’t work.

That’s software testing in a nutshell. You’re testing your code against a specification.
There are many tools (Jasmine among them) that help you automate these software
tests.

It’s important to know that it’s difficult (and often impossible) to write tests for every
case. In the calculator example, there are an infinite number of possible combinations.
When testing, you should try to cover every reasonable case by testing a number of
different groups (integers, negative numbers, mixes of the two, etc.). You should also
identify boundary conditions (zeroes, for example) and edge cases, testing as many
different scenarios as possible.

1

Why Is It Useful?
Testing is useful for a number of reasons.

First, these tests can evaluate a program’s correctness after a change. Let’s say all the tests
are passing, and then I decide I want one of my functions to be faster. I can dive in, make
some changes, and see that it is indeed faster. But if I run the tests again and see that
some are failing, I quickly discover that my fix has broken some part of the code. Au‐
tomated testing lets me see those errors before they happen in the “real world.”

These tests can also function as good examples for other developers. If a developer is
trying to figure out how to use some undocumented part of your code, a well-written
test can help him see how that piece works.

Test-Driven Development
A relatively new software development technique is called test-driven development, or
TDD. The process works like this:

1. Write test cases for a specific part of your code. In the calculator example, you’d
write tests for adding positive numbers, negative numbers, integers, and so on. You
haven’t written the calculator yet, so all of these tests should fail!

2. Write your code to “fill in” the tests. Your code only serves to make all of your tests
pass, and nothing more.

3. Once all of your tests pass, go back and clean up your code (this is called refactoring).

Test-driven development allows developers to think clearly about the specifications
before their minds are clouded with the implementation details. It also ensures that tests
are always written, which is always useful.

Behavior-Driven Development
With behavior-driven development, or BDD, you write specifications that are small and
easy to read. There are basically two key parts of BDD:

1. Your tests must be small and test one thing. Instead of testing the entire application,
you write many small tests. In the calculator example, you would write one test for
each addition pair: one test for 0 + 0, one test for 1 + 1, one test for –5 + 6, one test
for 6.2 + 1.2, and so on.

2. Your tests should be sentences. In the calculator example, sentences would look like
“Calculator adds two positive integers.” The testing framework that you use
(Jasmine, in this book’s case) should do this automatically for you.

2 | Chapter 1: Intro to Testing

These two tenets allow you to run your test suite and see exactly what’s wrong at a glance.
If you see a bunch of successes but one failure on “Calculator adds two negative num‐
bers,” you know where to look.

Dan North is credited with BDD’s invention. He describes the system
in more detail on his website.

So, enough about testing. What’s Jasmine?

Behavior-Driven Development | 3

http://dannorth.net/introducing-bdd/

CHAPTER 2

Jasmine

What Is Jasmine?
Jasmine is a behavior-driven testing framework for JavaScript programming language.
It’s a bunch of tools that you can use to test JavaScript code.

As you learned in the previous chapter, you can test your code against specifications
that you write. If your code should work in a certain way, Jasmine helps you express
that intention in code.

(By the way: if you’ve played around with RSpec for testing Ruby, Jasmine will look
suspiciously familiar.)

Getting Set Up with Jasmine
Start by downloading the latest standalone release of Jasmine. Unzip it.

Throughout this book, we’ll mostly be using browser-based Jasmine for
various reasons. If you’d prefer a different environment (Node.js, Ruby/
Rails, or other environments), take a look at Chapter 7, or the Jasmine
wiki. These instructions are for a browser-based environment.

When you open SpecRunner.html in a web browser, you’ll see something like Figure 2-1.

5

http://bit.ly/ZAgJqg
https://github.com/pivotal/jasmine/wiki
https://github.com/pivotal/jasmine/wiki

Figure 2-1. First time running Jasmine!

This file has run some example tests on some example code. It’s testing a Player and a
Song. Whenever you want to run the tests, you simply need to load/reload this page.

In the src directory, you’ll see two things to be tested: a Player and a Song. The spec
directory has tests for the Player. Taking a look inside the spec directory might help
you understand Jasmine’s syntax (though there’s also this fine book to help with that).

You probably don’t want to test this example code, so you should empty out the spec
and src directories. When you change the filenames, you’ll have to edit SpecRunner.html
to point to the right files (there are comments that indicate what you should change).
We’ll go through how to do that next.

Testing Existing Code with describe, it, and expect
To learn Jasmine, let’s write some example code and then test it with Jasmine.

An Example to Test
First, let’s create a simple function and test its behavior. It’ll say hello to the entire
world. It could look something like this:

6 | Chapter 2: Jasmine

 function helloWorld() {
 return "Hello world!";
 }

You’re pretty sure that this works, but you want to test it with Jasmine to see what it
thinks. Start by saving this in the src directory as hello.js. Open up your SpecRunner.html
file to include it:

 <!-- put this code somewhere in the <head>... -->
 <script type="text/javascript" src="src/hello.js"></script>

Note that the order doesn’t matter—you can put the specs before or after the source
files.

Jasmine Time!
Next is the Jasmine part. Get ready to get your money’s worth for this book.

Make a file that includes the following code:

 describe("Hello world", function() {
 it("says hello", function() {
 expect(helloWorld()).toEqual("Hello world!");
 });
 });

describe("Hello world"… is what is called a suite. The name of the suite (“Hello
world” in this case) typically defines a component of your application; this could be a
class, a function, or maybe something else fun. This suite is called “Hello world”; it’s a
string of English, not code.

Inside of that suite (technically, inside of an anonymous function), is the it() block.
This is called a specification, or a spec for short. It’s a JavaScript function that says what
some small piece of your component should do. It says it in plain English (“says hello”)
and in code. For each suite, you can have any number of specs for the tests you
want to run.

In this case, you’re testing if helloWorld() does indeed return "Hello world!". This
check is called a matcher. Jasmine includes a number of predefined matchers, but you
can also define your own (we’ll get to that in Chapter 4). We expect the output of
helloWorld() to equal (toEqual) the string "Hello world!".

Jasmine aims to read like English, so it’s possible that you were able to intuit how this
example worked just by looking at it. If not, don’t worry!

Save that code as hello.spec.js, put it in the spec directory, and make sure that your spec
runner knows about it:

 <!-- put this code somewhere in the <head>... -->
 <script type="text/javascript" src="spec/hello.spec.js"></script>

Testing Existing Code with describe, it, and expect | 7

If you run this spec in the browser, you’ll see the output shown in Figure 2-2.

Figure 2-2. Hello world specs

Success!

Go into the helloWorld() function and make it say something other than “Hello
world!”. When you run the specs again, Jasmine will complain. That’s what you want;
Jasmine should tell you when you’ve done something you didn’t intend to.

Matchers
In the previous example, you were checking to see if helloWorld() was indeed equal
to "Hello world!". You used the function toEqual(), which—as noted earlier—is a
matcher. This basically takes the argument to the expect function (which is hello
World(), in this case) and checks to see if it satisfies some criterion in the matcher. In
the preceding example, it checks if the argument is equal to something else.

But what if we wanted to expect it to contain the word “world,” but we don’t care what
else is in there? We just want it to say “world.” Easy peasy; we just need to use a different
matcher: toContain. Have a look:

 describe("Hello world", function() {
 it("says world", function() {

8 | Chapter 2: Jasmine

 expect(helloWorld()).toContain("world");
 });
 });

Instead of expecting something to equal “Hello world!”, I’m now just expecting it to
contain “world.” It even reads like English! There are a lot of bundled matchers, and you
can even make your own. We’ll learn how to do that in Chapter 4.

Writing the Tests First with Test-Driven Development
Jasmine can easily test existing code; you write the code first and test it second. Test-
driven development is the opposite: you write the tests first, and then “fill in” the tests
with code.

As an example, let’s try using test-driven development (TDD) to make a “disemvoweler.”
A disemvoweler removes all vowels from a string (let’s assume that the letter y isn’t a
vowel in this example, and that we’re dealing with English). What does our disemvoweler
do (i.e. what does the specification look like)?

• It should remove all lowercase vowels.
• It should remove all uppercase vowels.
• It shouldn’t change empty strings.
• It shouldn’t change strings with no vowels.

Now, let’s think of some examples that would test the preceding specifications:

• Remove all lowercase vowels: “Hello world” should become “Hll wrld”.
• Remove all uppercase vowels: “Artistic Eagle” should become “rtstc gl”.
• Don’t change empty strings: “” should stay “”.
• Don’t change strings with no vowels: “Mhmm” should stay “Mhmm”.

Jasmine makes it easy to codify these specifications:

 describe("Disemvoweler", function() {
 it("should remove all lowercase vowels", function() {
 expect(disemvowel("Hello world")).toEqual("Hll wrld");
 });
 it("should remove all uppercase vowels", function() {
 expect(disemvowel("Artistic Eagle")).toEqual("rtstc gl");
 });
 it("shouldn't change empty strings", function() {
 expect(disemvowel("")).toEqual("");
 });
 it("shouldn't change strings with no vowels", function() {
 expect(disemvowel("Mhmm")).toEqual("Mhmm");

Writing the Tests First with Test-Driven Development | 9

 });
 });

Save this code into spec/DisemvowelSpec.js and include it in SpecRunner.html:
 <script type="text/javascript" src="spec/DisemvowelSpec.js"></script>

If you refresh the spec runner, you’ll see what’s shown in Figure 2-3.

Figure 2-3. Failing disemvoweler specs

All of your specs fail! This is expected—you haven’t written any of the code yet, so
Jasmine can’t find any function called disemvowel. It’s helpful to see your tests fail be‐
cause you know you’re protected against false positives this way. (If a test passed with
no code written, something is wrong!)

Let’s write a first version of our disemvoweler:

 function disemvowel(str) {
 return str.replace(/a|e|i|o|u/g, "");
 }

10 | Chapter 2: Jasmine

This code uses a regular expression to substitute any vowel with an empty string. Save
this into src/Disemvowel.js and add that into the spec runner:

 <script type="text/javascript" src="src/Disemvowel.js"></script>

Refresh the spec runner, and you should see something like Figure 2-4.

Figure 2-4. Only one disemvoweler spec failing!

Instead of all of the specs failing, only one is failing now. It looks like the disemvoweler
isn’t removing all the uppercase vowels. Jasmine helps us see where the problem is: our
first version wouldn’t remove any uppercase vowels. Let’s add the case-insensitive flag
(i) to our regular expression:

 function disemvowel(str) {
 return str.replace(/a|e|i|o|u/gi, "");
 }

Save that and rerun the spec runner. See Figure 2-5.

Writing the Tests First with Test-Driven Development | 11

Figure 2-5. Our disemvoweler works!

It looks like our disemvoweler works! That’s a simple example of how to write code using
TDD: tests come first, implementation comes second.

12 | Chapter 2: Jasmine

CHAPTER 3

Writing Good Tests

So, now you know how to write tests with Jasmine. In theory, you could write an infinite
number of tests for your code, testing weird conditions and more, but you don’t have
unlimited time on your hands. You have to write the correct specs for the job.

This is subjective; none of this is gospel by any means. These are simply my recom‐
mendations after having worked with Jasmine on a number of projects.

Cardinal Rule: When in Doubt, Test
If you’re not sure whether or not to test something, it probably doesn’t hurt to test it. If
it would take you, as the developer, a long time to develop the spec, you might want to
make sure you really need to build it. If it’d make Jasmine run slowly (perhaps it’s doing
a large computation), you might also want to reconsider. Usually, specs are pretty short
and pretty speedy, so if you’re not sure, make a spec!

Test Components
Test individual components of your code, rather than everything at once. For example,
if you have a Calculator class, you don’t want to test it like this:

 describe("calculator addition", function() {
 it("can add, subtract, multiply, and divide positive integers",
 function() {
 var calc = new Calculator;
 expect(calc.add(2, 3)).toEqual(5);
 expect(calc.sub(8, 5)).toEqual(3);
 expect(calc.mult(4, 3)).toEqual(12);
 expect(calc.div(12, 4)).toEqual(3);
 });
 });

13

That large spec should be split up into four different specs, because you’re really testing
four different parts. This is a step in the right direction:

 describe("calculator addition", function() {
 var calc;
 beforeEach(function() {
 calc = new Calculator();
 });
 it("can add positive integers", function() {
 expect(calc.add(2, 3)).toEqual(5);
 });
 it("can subtract positive integers", function() {
 expect(calc.sub(8, 5)).toEqual(3);
 });
 it("can multiply positive integers", function() {
 expect(calc.mult(4, 3)).toEqual(12);
 });
 it("can divide positive integers", function() {
 expect(calc.div(12, 4)).toEqual(3);
 });
 });

Each spec should test only one case or scenario at a time. In the previous example, if
you had an error in your mult function, the spec would fail even if the other components
worked perfectly. In this example, only one test will fail, and you’ll be able to more
quickly pinpoint that your multiplication is broken.

Black-Box Testing
When writing behavior-focused tests, you can imagine your software being a black box.
You care only about the software’s behavior, not what happens internally.

A simple example: if your person object has a function that includes a private method
(not technically private, sorry) called _generateHello, it might look like this when
calling helloWorld:

 var person = {
 // Private method
 _generateHello: function() {
 return "hello";
 },
 // Public method
 helloWorld: function() {
 return this._generateHello() + " world";
 }
 };

Because _generateHello is a private method, you’d never test that in Jasmine. You don’t
need to, because you don’t care how it works. You just care how the public method
works.

14 | Chapter 3: Writing Good Tests

CHAPTER 4

Matchers in Depth

There are a lot of useful matchers that come with Jasmine. Later in this section, you’ll
also see how to build your own.

Equality: toEqual
Perhaps the simplest matcher in Jasmine is toEqual. It simply checks if two things are
equal (and not necessarily the same exact object, as you’ll see in Chapter 5).

The following expect functions will pass:

expect(true).toEqual(true);
expect([1, 2, 3]).toEqual([1, 2, 3]);
expect({}).toEqual({});

Here are some examples of toEqual that will fail:

expect(5).toEqual(12);
expect([1, 2, 3, 4]).toEqual([1, 2, 3]);
expect(true).toEqual(100);

Keep in mind that this is different from the toBe matcher. The subtle difference is noted
next.

Identity: toBe
At first, the toBe matcher looks a lot like the toEqual matcher, but it’s not exactly the
same. toBe checks if two things are the same object, not just if they are equivalent.

Here’s an example spec that illustrates the difference between toEqual and toBe:

var spot = { species: "Border Collie" };
var cosmo = { species: "Border Collie" };
expect(spot).toEqual(cosmo); // success; equivalent

15

expect(spot).toBe(cosmo); // failure; not the same object
expect(spot).toBe(spot); // success; the same object

We see that, although spot and cosmo look really similar and are equal, they aren’t the
same object. Because of that, they evaluate as equal, not the same.

The same is also true for arrays:

var arr = [1, 2, 3];
expect(arr).toEqual([1, 2, 3]); // success; equivalent
expect(arr).toBe([1, 2, 3]); // failure; not the same array

You might notice that toBe works for primitives (numbers, Booleans, strings). This is
because JavaScript’s === operator evaluates primitives as the same entity. Using toBe is
essentially using the === operator.

Use toEqual when checking the equivalence of primitive types, even if toBe will work.
Using toBe might break your tests if you later decide to change a number to an array,
for example.

For more about how this nuance works in JavaScript, see the video JavaScript Primitive
Types vs Reference Types.

Yes or No? toBeTruthy, toBeFalsy
To test if something evaluates to true, you use the toBeTruthy matcher:

expect(true).toBeTruthy();
expect(12).toBeTruthy();
expect({}).toBeTruthy();

Likewise, to test if something evaluates to false, you use toBeFalsy:

expect(false).toBeFalsy();
expect(null).toBeFalsy();
expect("").toBeFalsy();

Note that Jasmine’s evaluation of truthy and falsy are identical to JavaScript’s. This means
that true is truthy, but so is "Hello world", or the number 12, or an object. It’s useful
to think of all the things that are falsy, and then everything else as truthy.

For reference, here’s a list of things that are falsy in Jasmine (and in JavaScript, too):

• false

• 0

• ""

• undefined (note that the variable undefined isn’t always undefined!)

16 | Chapter 4: Matchers in Depth

http://youtu.be/mh-hPzDfb_Q
http://youtu.be/mh-hPzDfb_Q

• null

• NaN

If you haven’t seen NaN before, it’s a special number value that stands for Not a Num‐
ber. It represents nonsensical number values like 0/0. It’s also returned by some func‐
tions that return numbers (for example, parseInt("hello") returns NaN because it
cannot properly parse a number).

If you want to make sure something is literally true or false and nothing else, use the
toEqual matcher like so:

expect(myVariable).toEqual(true);
expect(myOtherVariable).toEqual(false);

Negate Other Matchers with not
It’s frequently useful to reverse Jasmine’s matchers to make sure that they aren’t true.
To do that, simply prefix things with .not:

expect(foo).not.toEqual(bar);
expect("Hello planet").not.toContain("world");

Check If an Element Is Present with toContain
Sometimes you want to verify that an element is a member of an array, somewhere. To
do that, you can use the toContain matcher:

expect([1, 2, 3, 4]).toContain(3);
expect(["Penguin", "Turtle", "Pig", "Duck"]).toContain("Duck");

Note that toContain doesn’t check if the array contains the exact same object, so the
following example will succeed:

var dog = { name: "Fido" };
expect([
 { name: "Spike" },
 { name: "Fido" },
 { name: "Spot" }
]).toContain(dog);

The toContain matcher also works in strings, as we saw in the first example of this book:

expect("Hello world").toContain("world");
expect(favoriteCandy).not.toContain("Almond");

Negate Other Matchers with not | 17

Is It Defined? toBeDefined, toBeUndefined
As with truthiness and falsiness, there are matchers to check if something is defined or
undefined.

Before we start, let’s briefly review JavaScript’s notion of undefined and how it compares
to null: when you declare a new variable with no value specified, its type is “undefined”
(just like 123’s type is “number”). In other languages, it might be null or nil. Not in
JavaScript! There’s a lot of confusion around this, but it doesn’t directly apply to Jasmine.

For more background on undefined and how it works, check out Understanding Java‐
Script’s “undefined”.

Here are a few examples to demonstrate how these matchers work:

var somethingUndefined;
expect("Hello!").toBeDefined(); // success
expect(null).toBeDefined(); // success
expect(somethingUndefined).toBeDefined(); // failure

var somethingElseUndefined;
expect(somethingElseUndefined).toBeUndefined(); // success
expect(12).toBeUndefined(); // failure
expect(null).toBeUndefined(); // failure

It’s worth noting that the variables you’re checking have to be defined. The following
code throws a ReferenceError and will fail:

it("tests toBeUndefined", function() {
 expect(someUndefinedVariable).toBeUndefined();
 // Throws a ReferenceError because someUndefinedVariable hasn't been declared.
});

Nullness: toBeNull
The toBeNull matcher is fairly straightforward. If you hadn’t guessed by now, it checks
if something is null:

expect(null).toBeNull(); // success
expect(false).toBeNull(); // failure
expect(somethingUndefined).toBeNull(); // failure

Fairly simple!

Is It NaN? toBeNaN
Like toBeNull, toBeNaN checks if something is NaN:

expect(5).not.toBeNaN(); // success
expect(0 / 0).toBeNaN(); // success
expect(parseInt("hello")).toBeNaN(); // success

18 | Chapter 4: Matchers in Depth

http://bit.ly/14XHBU3
http://bit.ly/14XHBU3

This is different from JavaScript’s built-in isNaN function. The built-in
isNaN will return true for many nonnumber types, such as nonnumeric
strings, objects, and arrays. Jasmine’s will be positive only if it’s the NaN
value.

Comparators: toBeGreaterThan, toBeLessThan
The toBeGreaterThan and toBeLessThan matchers check if something is greater than
or less than something else. All of these will pass:

expect(8).toBeGreaterThan(5);
expect(5).toBeLessThan(12);
expect("a").toBeLessThan("z"); // Notice that it works for strings too!

Not too difficult!

Nearness: toBeCloseTo
toBeCloseTo allows you to check if a number is close to another number, given a certain
amount of decimal precision as the second argument.

If you want to make sure that a variable is close to 12.3 within one decimal point, you’d
code it like this:

expect(12.34).toBeCloseTo(12.3, 1); // success

If you want it to be the same within two decimal points, you’d change the 1 to a 2. This
spec will fail, though—they differ at the second decimal digit:

expect(12.34).toBeCloseTo(12.3, 2); // failure

In this case, any second argument over 2 will fail, so the following will fail as well:

expect(12.34).toBeCloseTo(12.3, 3); // failure
expect(12.34).toBeCloseTo(12.3, 4); // failure
expect(12.34).toBeCloseTo(12.3, 5); // failure
// and so on...

Setting the second argument to 0 effectively rounds the numbers to integers:

expect(12.3456789).toBeCloseTo(12, 0); // success
expect(500).toBeCloseTo(500.087315, 0); // success
expect(500.087315).toBeCloseTo(500, 0); // success

I find toBeCloseTo a little confusing and limiting. In “Custom Matchers” on page 20,
we’ll make a matcher that aims to improve it.

Comparators: toBeGreaterThan, toBeLessThan | 19

Using toMatch with Regular Expressions
toMatch checks if something is matched, given a regular expression. It can be passed as
a regular expression or a string, which is then parsed as a regular expression. All of the
following will succeed:

expect("foo bar").toMatch(/bar/);
expect("horse_ebooks.jpg").toMatch(/\w+.(jpg|gif|png|svg)/i);
expect("jasmine@example.com").toMatch("\w+@\w+\.\w+");

For more on regular expressions in JavaScript, check out this very helpful article on the
Mozilla Developer Network. (Note that these regular expression examples aren’t as
thorough as they could be—a better email regular expression is very long!)

Checking If a Function Throws an Error with toThrow
toThrow lets you express, “Hey, I expect this function to throw an error”:

var throwMeAnError = function() {
 throw new Error();
};
expect(throwMeAnError).toThrow();

You can use this with anonymous functions too, which can be more useful. For example,
let’s say there’s a function that should throw an exception with bad input, like so:

calculate("BAD INPUT"); // This should throw some exciting exception

To test that, we use Jasmine like so:

expect(function() {
 calculate("BAD INPUT");
}).toThrow();

Whether you use an anonymous or named function, you still need to pass a function
because Jasmine will call it when running your specs.

Custom Matchers
You can create custom matchers, too! You must add the matcher before every spec in
which you want it, you must add it. To do that, we’ll be using beforeEach, which is
explained in more detail in Chapter 5.

Let’s say you want to add a matcher called toBeLarge, which checks if a number is greater
than 100. At the very top of a file (or at the top of a describe), you can add the following:

 beforeEach(function() {
 this.addMatchers({
 toBeLarge: function() {
 this.message = function() {

20 | Chapter 4: Matchers in Depth

http://mzl.la/WnQ5Dn

 return "Expected " + this.actual + " to be large";
 };
 return this.actual > 100;
 }
 });
 });

This requires a little bit of knowledge about how Jasmine is put together. Every matcher
takes an argument to the expect function, right? expect(200) has 200 as its argument.
This argument, in Jasmine, is this.actual when we’re defining a new matcher;
this.message is a function that, if the matcher fails, returns the explanatory output
message. Finally, we return a Boolean indicating whether this.actual is large.

Now we can do the following in our specs:

 expect(5).toBeLarge(); // failure
 expect(200).toBeLarge(); // success
 expect(12).not.toBeLarge(); // success

A more complex matcher might want to introduce this syntax as a replacement for
toBeCloseTo:

 // Expect 6 to be within 2 of 5 (between 3 and 7, inclusive).
 expect(6).toBeWithinOf(2, 5);

This matcher will take two arguments and is otherwise similar to the previous example:

 beforeEach(function() {
 this.addMatchers({
 toBeWithinOf: function(distance, base) {
 this.message = function() {
 var lower = base - distance;
 var upper = base + distance;
 return "Expected " + this.actual + " to be between " +
 lower + " and " + upper + " (inclusive)";
 };
 return Math.abs(this.actual - base) <= distance;
 }
 });
 });

In this example, we’re making sure that this.actual is, at most, distance away from
base. The message calculates the lower and upper bounds, and the matcher’s result is a
simple bounds check.

Custom Matchers | 21

CHAPTER 5

More Jasmine Features

Jasmine has a number of other useful features, which help you write tests that are more
advanced.

Before and After
Another useful feature of Jasmine is actually a twofer: beforeEach and afterEach. They
allow you to execute some code—you guessed it—before and after each spec. This can
be very useful for factoring out common code or cleaning up variables after tests.

To execute some code before every spec, simply put it in a beforeEach. Note that you
have to scope variables properly in order to have them throughout each spec:

 describe("employee", function() {
 var employee; // Note the scoping of this variable.
 beforeEach(function() {
 employee = new Employee;
 });
 it("has a name", function() {
 expect(employee.name).toBeDefined();
 });
 it("has a role", function() {
 expect(employee.role).toBeDefined();
 });
 });

Similarly, if you’d like to execute something after each spec, simply put it in the cleverly
named afterEach. I use this much less than beforeEach, but it’s useful when you want
to do cleanup, for example:

 describe("Calculator", function() {
 var calculator = new Calculator;
 afterEach(function() {
 calculator.reset();

23

 });
 it("can add two positive integers", function() {
 expect(calculator.add(5, 12)).toEqual(17);
 });
 it("can add two negative integers", function() {
 expect(calculator.add(-5, -12)).toEqual(-17);
 });
 });

Nested Suites
As your code gets more complex, you might want to organize your suites into groups,
subgroups sub-subgroups, and so on. Jasmine makes it very easy for you to do that by
simply nesting the specs.

Put a describe block inside another describe block like this:

 describe("chat", function() {
 describe("buddy list", function() {
 it("contains a list of users", function() {
 expect(chat.buddyList instanceof Array).toBeTruthy();
 expect(chat.buddyList[0] instanceof chat.User).toBeTruthy();
 });
 });
 describe("messages object", function() {
 it("contains a sender and a body", function() {
 var message = new chat.Message;
 expect(message.body).toEqual("");
 expect(message.sender instanceof chat.User).toBeTruthy();
 });
 });
 });

To give you an idea of this feature’s utility: my most recent project had a group with
about 20 subgroups, and each subgroup had about 5 sub-subgroups. Jasmine makes
nesting suites very easy indeed!

Skipping Specs and Suites
When you code specs, sometimes you might want to skip a few. Maybe a spec isn’t
finished; maybe it’s too slow; maybe you’re just not in the mood to see one red spec in
a sea of green ones.

Instead of commenting specs out, just add an x before the word it, and the code will
behave as though you had commented the spec out. In the following example, we haven’t
finished the spec that tests a double rainbow’s brightness, so we’ll x it out:

 describe("double rainbow", function() {
 it("is all the way across the sky", function() {
 // This spec will run.

24 | Chapter 5: More Jasmine Features

 });
 xit("is so bright", function() {
 // Because we've x'd this spec out, it won't run.
 });
 });

Now when you run your specs, you won’t see the “double rainbow is so bright” spec at all.

You can also x out entire suites, which will skip all of the specs inside. In this example,
none of the Leonardo DiCaprio specs will run:

 xdescribe("Leonardo DiCaprio", function() {
 it("is not named after Leonardo da Vinci", function() {
 expect("Leonardo DiCaprio").not.toEqual("Leonardo da Vinci");
 });
 it("is in the movie Inception", function() {
 expect(Inception.cast).toContain("Leonardo DiCaprio");
 });
 it("is not in the movie Braveheart", function() {
 expect(Bravehart.cast).not.toContain("Leonardo DiCaprio");
 });
 });

No specs for poor Leo.

Because all of your specs and suites are defined in functions, you can skip all specs and
suites after a certain point in the function with a clever return. Because return halts a
function’s execution, you can stop some specs from running, like so:

 describe("I'm only going to run SOME of these", function() {
 it("will run this spec", function() {});
 it("will run this spec", function() {});
 return; // This will stop the function from doing anything else.
 it("will not run this spec", function() {});
 it("will not run this spec", function() {});
 });

This is not a Jasmine feature, but a hack “given to us” from JavaScript. It might be a little
unclear to other developers what you’re doing, so I’d recommend leaving a comment
about the fact that you aren’t running some specs.

Matching Class Names
Sometimes you don’t care what the value is; you care what type it is. To indicate this, use
jasmine.any. This is a lot like JavaScript’s instanceof operator, though a bit different
with regard to primitive types.

Let’s say that we create a function called rand that generates a random number. We want
to make sure that, no matter what, it returns a number. We don’t really care what the
number is—we just care that it’s a number:

Matching Class Names | 25

 expect(rand()).toEqual(jasmine.any(Number));

Of course, this doesn’t just work for numbers. All of these specs succeed:

 expect("Hello world").toEqual(jasmine.any(String));
 expect({}).toEqual(jasmine.any(Object));
 expect(new MyObject).toEqual(jasmine.any(MyObject));

These are incredibly useful when you want your results to be of a certain type but don’t
need to be more specific than that.

26 | Chapter 5: More Jasmine Features

CHAPTER 6

Spies

As we’ve learned, Jasmine will let us test if things are working the way we want them to.
We want to ability to check if functions have been called, and whether or not they’ve
been called how we want them to be called. We specify how our code should work.

In Jasmine, a spy does pretty much what its name implies: it lets you spy on pieces of
your program (and in general, the pieces that aren’t just variable checks). A little less
exciting than James Bond, but still cool spying.

The Basics: Spying on a Function
Spying allows you to replace a part of your program with a spy. A spy can pretend to be
a function or an object. When is this useful?

Let’s say that you have a class called Dictionary. It represents an English dictionary,
and can return “hello” and “world”:

 var Dictionary = function() {};
 Dictionary.prototype.hello = function() {
 return "hello";
 };
 Dictionary.prototype.world = function() {
 return "world";
 };

And now let’s say that you have a class called Person, which should be able to output
“hello world” using Dictionary (passed in as an argument). It might work like this:

 var Person = function() {};
 Person.prototype.sayHelloWorld = function(dict) {
 return dict.hello() + " " + dict.world();
 };

So, to get your Person to return “hello world,” you’d do something like this:

27

 var dictionary = new Dictionary;
 var person = new Person;
 person.sayHelloWorld(dictionary); // returns "hello world"

You could, in theory, make the sayHelloWorld function return the string literal hello
world, but you don’t want that—you want to make sure that your Person consults the
Dictionary.

Spies will help you; you can spy on the dictionary and make sure that it’s used. Here’s
how to do that:

 describe("Person", function() {
 it('uses the dictionary to say "hello world"', function() {
 var dictionary = new Dictionary;
 var person = new Person;
 spyOn(dictionary, "hello"); // replace hello function with a spy
 spyOn(dictionary, "world"); // replace world function with another
 spy
 person.sayHelloWorld(dictionary);
 expect(dictionary.hello).toHaveBeenCalled(); // not possible without
 first spy
 expect(dictionary.world).toHaveBeenCalled(); // not possible without
 second spy
 });
 });

Let’s go through this, line by line. First, we make our two objects. Then, we’ll spyOn the
dictionary’s hello and world methods. This basically tells Jasmine to replace dictio
nary.hello and dictionary.world with spies. Very sneaky. Then we call person.say
HelloWorld and make sure that our dictionary’s methods were called.

Throwing this through the spec runner should give you positive results; your program
should indeed have called the dictionary methods.

Why is this useful? Say you decide to make your dictionary Spanish instead of English:

 var Dictionary = function() {};
 Dictionary.prototype.hello = function() {
 return "hola";
 };
 Dictionary.prototype.world = function() {
 return "mundo";
 };

While sayHelloWorld will return different values, the exact same spec will succeed be‐
cause the dictionary is consulted whether you’re using Spanish or English!

OK, maybe that’s not all you want. Maybe you want to make sure that +person.
+pass[<phrase role=keep-together><literal>sayHelloWorld</literal></phrase>] is
called with a specific dictionary. Jasmine has got your back. Take a look at this example
spec:

28 | Chapter 6: Spies

 describe("Person", function() {
 it('uses the dictionary to say "hello world"', function() {
 var dictionary = new Dictionary;
 var person = new Person;
 spyOn(person, "sayHelloWorld"); // replace hello world function with
 a spy
 person.sayHelloWorld(dictionary);
 expect(person.sayHelloWorld).toHaveBeenCalledWith(dictionary);
 });
 });

As you may be able to read (Jasmine looks a lot like English!), this spy makes sure that
sayHelloWorld’s argument is dictionary and not some other dictionary object. Run
that through Jasmine, and it’ll tell you everything is good.

If you want to ensure that something isn’t called, it’s a lot like when you’re making sure
a variable isn’t something: use .not. So, for example, if you want to make sure that a
function isn’t called with a particular argument, you’d write this:

 expect(person.sayHelloWorld).not.toHaveBeenCalledWith(dictionary);

Calling Through: Making Your Spy Even Smarter
Simply using spyOn makes a spy function that knows whether something’s been called.

If you want to spy on a function and make sure that it still works, you can call
through. This makes the spy even sneakier. All you have to do is add andCallThrough
to your spyOn call:

 describe("Person", function() {
 it('uses the dictionary to say "hello world"', function() {
 var dictionary = new Dictionary;
 var person = new Person;
 spyOn(dictionary, "hello"); // replace hello function with a spy
 spyOn(dictionary, "world"); // replace world function with another
 spy
 var result = person.sayHelloWorld(dictionary);
 expect(result).toEqual("hello world"); // not possible without
 calling through
 expect(dictionary.hello).toHaveBeenCalled();
 expect(dictionary.world).toHaveBeenCalled();
 });
 });

This spy function will do everything that the old function did, and it will be a good spy
and let you see its inner workings.

Calling Through: Making Your Spy Even Smarter | 29

Making Sure a Spy Returns a Specific Value
You can also make sure that a spy always returns a given value. Let’s say that you want
the dictionary’s hello spy to speak French:

 it("can give a Spanish hello", function() {
 var dictionary = new Dictionary;
 var person = new Person;
 spyOn(dictionary, "hello").andReturn("bonjour"); // note this new piece
 var result = person.sayHelloWorld(dictionary);
 expect(result).toEqual("bonjour world");
 });

This can be useful if you want to make sure that, despite a changed function, everything
else works well. You can also use this to see how your code performs if given bad output.
In this example, for instance, dictionary.hello might be broken.

Replacing a Function with a Completely Different Spy
Spies can get even crazier. They can call through to a fake function, like so:

 it("can call a fake function", function() {
 var fakeHello = function() {
 alert("I am a spy! Ha ha!");
 return "hello";
 };
 var dictionary = new Dictionary();
 spyOn(dictionary, "hello").andCallFake(fakeHello);
 dictionary.hello(); // does an alert
 });

This means that you can test your code against, say, a buggy API.

Creating a New Spy Function
In the previous examples, we were building spies that replaced existing functions. It is
sometimes useful to create a spy for a function that doesn’t yet exist. If you want to, say,
give your Person a getName spy, you can do that by creating a new spy.

Where spyOn created a spy by “eating” an existing function, jasmine.createSpy doesn’t
have to. It can make a new one:

 it("can have a spy function", function() {
 var person = new Person();
 person.getName = jasmine.createSpy("Name spy");
 person.getName();
 expect(person.getName).toHaveBeenCalled();
 });

30 | Chapter 6: Spies

Like other spies, spies created with jasmine.createSpy can have other methods chained
onto them:

 person.getSecretAgentName = jasmine.createSpy("Name spy").andReturn("James
 Bond");

 person.getRealName = jasmine.createSpy("Name spy 2").andCallFake(function() {
 alert("I am also a spy! Ha ha!");
 return "Evan Hahn";
 });

Creating a New Spy Object
In addition to making a new spy function, you can also make a new spy object:

 var tape = jasmine.createSpyObj('tape', ['play', 'pause', 'stop', 'rewind']);

It can be used like this:

 tape.play();
 tape.rewind(10);

Basically, this creates an object called tape that has play, pause, stop, and rewind
functions. All of those functions are spy functions and act just like the spies we’ve seen
before.

This can be useful for testing whether your code calls an external API.

Creating a New Spy Object | 31

CHAPTER 7

Using Jasmine with Other Tools

I’ve demonstrated how to run Jasmine using JavaScript in the browser, but you don’t
have to do it that way. Jasmine works in a variety of other environments and with other
tools.

Jasmine and CoffeeScript
CoffeeScript is a language that compiles to JavaScript, and it’s beautiful. It makes coding
in JavaScript much easier, and it also makes your Jasmine code look better. Using
CoffeeScript with Jasmine is a fairly straightforward process, and your specs will look
pretty.

If you don’t already use CoffeeScript, I’d strongly recommend it. It’s easy to learn if you
know JavaScript, and it reduces a lot of the headaches that come with JavaScript. There
are some people who don’t like CoffeeScript, though—it’s up to you whether to use it
or not.

If you want to give CoffeeScript a try, you can test it out at CoffeesScript.org, where
you’ll also find installation instructions and documentation. If you have npm installed,
you can install CoffeeScript like so:

 sudo npm install -g coffee-script

If you don’t have npm or want to use CoffeeScript in a different way, check the Coffee‐
Script website for more usage instructions.

One of the things that makes Jasmine specs look nice in CoffeeScript is the language’s
optional parentheses. The following two lines are equivalent in CoffeeScript:

 alert("Hello world!")
 alert "Hello world!"

33

http://coffeescript.org/

Because Jasmine’s describe and it are just functions, you can write nice-looking specs
that don’t have as many brackets and parentheses. You can have specs like this:

 describe "CoffeeScript Jasmine specs", ->
 it "is beautiful!", ->
 expect("your code is so beautiful").toBeTruthy()

Aren’t those nice?

Unfortunately, you can’t remove the parentheses from the expect calls, but you can
easily remove them from everything else.

For more about CoffeeScript, take a look at Alex MacCaw’s The Little Book on Coffee‐
Script (O’Reilly).

Jasmine and Node.js
If you want to use Jasmine to test your Node.js projects, you can! You can use it to test
your browser-based projects, too.

Installing jasmine-node on Unix and Linux
First, you need to install the jasmine-node package. Type the following into your
terminal:

 sudo npm install -g jasmine-node

The -g flag installs jasmine-node on your system globally. If you’d prefer to keep it in a
project directory, leave the flag off. This also (probably) means you don’t need sudo at
the front.

Installing jasmine-node on Windows
First, download a ZIP of jasmine-node.

Unpack it and rename the folder as jasmine-node. Once you do this, move it into the
same directory that you installed node.exe into. You should be up and running!

Basic Usage
Now you have jasmine-node installed! Use it as follows:

 jasmine-node /path/to/project/directory

Jasmine-node requires you to put your specs in a directory called spec and for the specs
in that directory to end with .spec.js. You can also put specs in subdirectories of the spec
directory.

For example, if you have a function like this in src/test.js:

34 | Chapter 7: Using Jasmine with Other Tools

http://oreil.ly/LB_CoffeeScript
http://oreil.ly/LB_CoffeeScript
http://bit.ly/WBLMEQ

 global.hello = function() {
 return 'world';
 };

A test spec for that might look like this:

 // Include what we need to include: this is specific to jasmine-node
 require("../src/test.js");

 describe("hello", function() {
 it('returns "world"', function() {
 expect(hello()).toEqual("world");
 });
 });

Other than the require calls that you need to make, the specs are just like browser-
based Jasmine specs—except for one asynchronous component, that is.

Asynchronous Tests with jasmine-node
Asynchronous tests work the same way as they do in “regular” Jasmine, but there’s
another syntax that you can use: the done function. This signals to jasmine-node that
your spec is, well, done.

Here’s an example of how you’d use it:

 it("does an asynchronous call", function() {
 exampleAsyncCall(function(response) {
 expect(response).toContain("something expected");
 done();
 });
 });

The done function says to jasmine-node: “Hey, this is a function that deals with asyn‐
chronous stuff. Don’t call it quits until done is called…unless it takes too long and things
time out (after 5 seconds).” You can adjust this timeout value by changing
jasmine.DEFAULT_TIMEOUT_INTERVAL, like so:

 // Change default timeout interval to 2 seconds
 jasmine.DEFAULT_TIMEOUT_INTERVAL = 2000;

jasmine-node and CoffeeScript
If you want to use jasmine-node with CoffeeScript, you can. You’ll need to end your
filenames with .spec.coffee and then run jasmine-node with the --coffee flag, like so:

 jasmine-node /path/to/project/directory --coffee

That’s all you have to do! Jasmine-node will start picking up .spec.coffee files and test
them properly.

Jasmine and Node.js | 35

Jasmine and Ruby on Rails
Jasmine works well with Ruby on Rails, allowing you to test your JavaScript without
constantly editing a spec runner HTML file.

The Jasmine documentation recommends one of Ryan Bates’s RailsCasts as a good way
to get set up with Jasmine and Rails 3+. I think it is a fantastic resource, so give it a look
if you’re interested. Or you can follow along here.

Installation
First, you’ll need to add Jasmine to your Gemfile, like so:

 gem "jasmine"

Next, let’s install it:

 bundle install
 rails generate jasmine:install

Usage
Now you’re all set up! This process will create a directory called spec if you don’t already
have one. Inside of that, there’s a folder called javascripts. For this example, let’s make a
test spec in spec/javascripts that just contains this:

 describe("Jasmine + Rails test", function() {
 it("works", function() {
 expect(true).toBeTruthy();
 });
 });

Save this as test.spec.js.

Now, from any directory, run the following command:

 rake jasmine

After chugging a little bit, Jasmine will tell you that your tests are located at http://
localhost:8888/. Visit that in your browser, and you’ll see the test pass! Now you can
change test.spec.js to spec out whatever you’d like and go from there.

If you’d like to run your tests in the terminal, you can do that by running rake
jasmine:ci.

If you have helpers (Jasmine plug-ins, for example), just put them in spec/javascripts/
helpers and they’ll be automatically included.

36 | Chapter 7: Using Jasmine with Other Tools

http://bit.ly/13Tw7VC

Jasmine with Non-Rails Ruby
You don’t need Rails to use Jasmine with Ruby. First, you need to install the
Jasmine gem.

If your project uses Bundler, add the following to your Gemfile:

 gem "jasmine"

If not, run the following commands in the command line:

 gem install jasmine

Once you’ve installed Jasmine, you can run it like this:

 jasmine init
 rake jasmine:ci

You should be up and running!

More Tools
There are countless ways to integrate Jasmine into your project. I’ve covered only a
couple here, but there are plenty. There’s a section on the Jasmine wiki about using
Jasmine with Scala, Java, .NET, and plenty more.

Jasmine with Non-Rails Ruby | 37

http://bit.ly/XuLbb1

CHAPTER 8

Reference

Jasmine on the Web
• Download Jasmine
• Jasmine wiki

The Basic Structure of a Suite
 describe("colors", function() {
 describe("red", function() {
 var red;
 beforeEach(function() {
 red = new Color("red");
 });
 afterEach(function() {
 red = null;
 });
 it("has the correct value", function() {
 expect(red.hex).toEqual("FF0000");
 });
 it("makes orange when mixed with yellow", function() {
 var yellow = new Color("yellow");
 var orange = new Color("orange");
 expect(red.mix(yellow)).toEqual(orange);
 });
 });
 });

39

http://github.com/pivotal/jasmine/downloads
https://github.com/pivotal/jasmine/wiki

Matchers Reference
• toEqual checks for equality, not necessarily the same object.
• toBe checks if two objects are the same.
• toBeTruthy checks if a value is truthy (not just true).
• toBeFalsy checks if a value is falsy (not just false).
• toContain checks if a value is inside another.
• toBeDefined checks if a value is defined.
• toBeUndefined checks if a value is undefined.
• toBeNull checks if a value is null.
• toBeNaN checks if a value is NaN.
• toBeCloseTo checks decimal proximity.
• toMatch checks if a value matches a given regular expression.
• toThrow checks if a function throws an error.
• .not inverts the meaning of the following matcher.

List of Falsy Values
• false

• 0

• ""

• undefined (note that the variable undefined isn’t always undefined!)
• null

• NaN

Reserved Words in Jasmine
The following are words that you shouldn’t use in your code so that you don’t cause
conflicts with Jasmine:

• jasmine (and everything in its namespace)
• describe

40 | Chapter 8: Reference

• it

• expect

• beforeEach

• afterEach

• runs

• waits

• waitsFor

• spyOn

• xdescribe

• xit

These are, of course, in addition to JavaScript’s reserved words, which are even more
off-limits.

Reserved Words in Jasmine | 41

About the Author
Evan Hahn is a JavaScript developer currently enrolled at the University of Michigan.
He started coding in BASIC when he was six years old. In high school, he was the
webmaster of the online newspaper, where he learned how to develop a website using
PHP, mySQL, JavaScript, and jQuery. He most recently worked at UniversityNow, an
educational startup in San Francisco.

Colophon
The animal on the cover of JavaScript Testing for Jasmine is a phoebe.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Intro to Testing
	What Is Software Testing?
	Why Is It Useful?
	Test-Driven Development
	Behavior-Driven Development

	Chapter 2. Jasmine
	What Is Jasmine?
	Getting Set Up with Jasmine
	Testing Existing Code with describe, it, and expect
	An Example to Test
	Jasmine Time!

	Matchers
	Writing the Tests First with Test-Driven Development

	Chapter 3. Writing Good Tests
	Cardinal Rule: When in Doubt, Test
	Test Components
	Black-Box Testing

	Chapter 4. Matchers in Depth
	Equality: toEqual
	Identity: toBe
	Yes or No? toBeTruthy, toBeFalsy
	Negate Other Matchers with not
	Check If an Element Is Present with toContain
	Is It Defined? toBeDefined, toBeUndefined
	Nullness: toBeNull
	Is It NaN? toBeNaN
	Comparators: toBeGreaterThan, toBeLessThan
	Nearness: toBeCloseTo
	Using toMatch with Regular Expressions
	Checking If a Function Throws an Error with toThrow
	Custom Matchers

	Chapter 5. More Jasmine Features
	Before and After
	Nested Suites
	Skipping Specs and Suites
	Matching Class Names

	Chapter 6. Spies
	The Basics: Spying on a Function
	Calling Through: Making Your Spy Even Smarter
	Making Sure a Spy Returns a Specific Value
	Replacing a Function with a Completely Different Spy
	Creating a New Spy Function
	Creating a New Spy Object

	Chapter 7. Using Jasmine with Other Tools
	Jasmine and CoffeeScript
	Jasmine and Node.js
	Installing jasmine-node on Unix and Linux
	Installing jasmine-node on Windows
	Basic Usage
	Asynchronous Tests with jasmine-node
	jasmine-node and CoffeeScript

	Jasmine and Ruby on Rails
	Installation
	Usage

	Jasmine with Non-Rails Ruby
	More Tools

	Chapter 8. Reference
	Jasmine on the Web
	The Basic Structure of a Suite
	Matchers Reference
	List of Falsy Values
	Reserved Words in Jasmine

	About the Author
	Blank Page

