
Steve Lindstrom

 CSS
Refactoring
ARCHITECT YOUR STYLESHEETS FOR SUCCESS

Steve Lindstrom

CSS Refactoring
Architect Your Stylesheets for Success

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-90642-2

[LSI]

CSS Refactoring
by Steve Lindstrom

Copyright © 2017 Steve Lindstrom. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Kristen Brown
Copyeditor: Rachel Head
Proofreader: Molly Ives Brower

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2016: First Edition

Revision History for the First Edition
2016-11-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491906422 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. CSS Refactoring, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491906422

To my family, who have supported me through thick and thin; I wouldn’t be where I am
today without you.

Table of Contents

Preface. ix

1. Refactoring and Architecture. 1
What Is Refactoring? 1
What Is Software Architecture? 1

Good Architectures Are Predictable 2
Good Architectures Promote Code Reuse 2
Good Architectures Are Extensible 2
Good Architectures Are Maintainable 2
Software Architecture and Refactoring 2

Shortcomings that Lead to Refactoring 3
Changing Requirements 3
Poorly Designed Architecture 3
Underestimating Difficulty 3
Ignoring Best Practices 3

When Should Code Be Refactored? 4
When Should Code NOT Be Refactored? 4
Am I Allowed to Refactor My Code? 5
Refactoring Examples 5

Refactoring Example 1: Calculating the Total Price of an Ecommerce Order 6
Refactoring Example 2: A Simple Example of Refactoring CSS 17

Chapter Summary 20

2. Understanding the Cascade. 21
What Is the Cascade? 21
Selector Specificity 21
Ruleset Order 23
Inline CSS and Specificity 23

v

Overriding the Cascade with the !important Declaration 24
Chapter Summary 25

3. Writing Better CSS. 27
Use Comments 27
Consistently Structure Rulesets 28

Organize Properties with Vendor Prefixes 29
Keep Selectors Simple 30

Performant Selectors 32
Decouple CSS and JavaScript 34

Prefix Classes and IDs that Are Used in JavaScript 35
Modify Element Styles with Classes 35

Use Classes 35
Assign Classes Meaningful Names 36

Avoid Over-Modularized Classes 37
Build a Better Box 38

box-sizing: content-box 39
box-sizing: border-box 39
content-box or border-box? 40

Chapter Summary 40

4. Classifying Different Types of Styles. 41
The Importance of Classifying Styles 41
Normalizing Styles 41
Base Styles 42

Defining Base Styles 43
Document Metadata 44
Sectioning Elements 44
Heading and Text Elements 45
Anchor Tags 47
Text Semantics 48
Lists 49
Grouping Elements 50
Tables 50
Forms 52
Images 53

Component Styles 54
Define the Behavior that Needs to Be Built 55
Keep Component Styles Granular 56
Let the Component’s Container Override Visual Styles as Needed 59
Delegate the Assignment of Dimensions to Structural Containers 64

Structural Styles 68

vi | Table of Contents

Utility Styles 71
Browser-Specific Styles 72
Chapter Summary 73

5. Testing. 75
Why Is Testing Difficult? 75
Which Browsers Are Important to Test? 75
Browser Market Share 76

Accessing Browser Statistics and Screen Resolutions in Google Analytics 76
Testing with Multiple Browsers 79

Safari for iOS 79
Android 81

Testing with Old Versions of Browsers 84
Internet Explorer and Microsoft Edge 84
Firefox 84
Safari and Safari for iOS 84
Chrome 85

Testing the Bleeding Edge 85
Third-Party Testing Services 86
Testing with Developer Tools 86

Emulating Device Sizes 87
The Document Object Model (DOM) and CSS Styles 91

Visual Regression Testing 93
Tips for Visual Regression Testing 93
Visual Regression Testing with Gemini 94

Maintaining Your Code 99
Coding Standards 99
Pattern Libraries 104

Chapter Summary 106

6. Code Placement and Refactoring Strategies. 107
Organize CSS from Least Specific to Most Specific Styles 107

Normalizing Styles 108
Base Styles 108
Styles for Components and Their Containers 108
Structural Styles 108
Utility Styles 108
Browser-Specific Styles 108

Multiple Files or One Big File? 109
Serving CSS 109
Developing with a Single File 111
Developing with Multiple Files 112

Table of Contents | vii

Auditing Your CSS Before Refactoring 113
Refactoring Strategies 115

Consistently Structure Rulesets 115
Delete Dead Code 115
Decouple CSS and JavaScript 116
Separate Base Styles 117
Remove Redundant IDs 120
Convert IDs to Classes 120
Separate Utility Styles 121
Define Reusable Components 121
Remove Inline CSS and Over-Modularized Classes 121
Segregate Browser-Specific CSS Hacks 122

Measuring Success 122
Is Your Website Broken? 123
Number of UI Bugs 123
Reduced Development and Testing Time 124

Chapter Summary 124

A. normalize.css. 125

Index. 135

viii | Table of Contents

Preface

When I first started learning CSS, I found that getting to grips with the syntax (the set
of rules and structures that comprise a programming language) was simple because
there are rules that explain how the code should be written. However, I found it was
much more difficult to learn how to keep my CSS organized and maintainable, and
even more difficult to clean up the disorganized CSS I’d written without a clear
vision. I wrote this book with the hope that I could help others by sharing everything
I learned through trial and error; I wish this book had existed when I was just starting
out.

Intended Audience
While I hope that anybody writing CSS will benefit from reading this book, it’s aimed
primarily at people who have cobbled together a working user interface but lack
either the experience or the vision to understand how their code fits together in the
bigger picture. The intended reader understands how to write CSS syntax, but might
not necessarily grasp why some things work the way they do. They might also not
know how to better architect their code into a piece of software that is easier to main‐
tain, extend, and collaborate on.

Objectives of This Book
My goal in writing this book is to make some of the subtler aspects of CSS more
approachable to readers that are just starting out. I also aim to shed some light on
why CSS can be difficult to write and test and why spending time refactoring CSS is a
worthwhile endeavor.

ix

Topics we’ll cover include:

• What refactoring is, why it’s beneficial, and how it relates to software architecture
• Commonly misunderstood aspects of CSS including the cascade, selector specif‐

icity, and the box model
• How to write better CSS by making informed decisions and being consistent
• How to maintain well-written CSS with coding standards and pattern libraries
• How to test CSS
• How to organize CSS
• Strategies for refactoring CSS
• Ways to measure success when refactoring

Reading this book will provide the knowledge necessary to take immediate action to
start working toward a better CSS codebase that should also be more maintainable
when working with a team. While doing so, readers are encouraged to revisit chapters
that apply to concepts they’re currently making use of.

What’s Not In This Book
This book focuses on explaining concepts that are not necessarily technical in nature.
As such, there are a lot of topics that are not covered in this book. These include:

CSS properties
Knowledge of available CSS properties is necessary for writing CSS, but they will
not be covered in this book. While there may be recommendations for which
properties to use from time to time, these properties are better learned by con‐
sulting a book like CSS: The Definitive Guide by Eric Meyer or CSS Cookbook by
Christopher Schmitt (both from O’Reilly), or any number of reputable websites
like the Mozilla Developer Network.

Structuring HTML
HTML and CSS are used in tandem to build user interfaces, and one can influ‐
ence the other. Strategies for decoupling CSS from HTML will be discussed, but
the pros and cons of how to write and structure HTML will not.

Frontend performance
Frontend performance is an important aspect of building any website, and it’s an
extremely interesting topic. Since this book is only about refactoring CSS,
though, this topic will only be covered very briefly—it is far too broad a topic,
since it encompasses a variety of other subjects. Steve Souders has written some
great books about performance, and Paul Irish, Nicole Sullivan, and Stoyan Stefa‐
nov have done a lot of great work on the topic as well. Google also provides a

x | Preface

http://shop.oreilly.com/product/9780596527334.do
http://shop.oreilly.com/product/9780596155940.do
https://developer.mozilla.org
https://stevesouders.com
http://www.paulirish.com
http://www.stubbornella.org
http://www.phpied.com
http://www.phpied.com

number of guidelines and tools that can be very beneficial to frontend perfor‐
mance.

CSS frameworks
CSS frameworks change frequently and impose their own rules on implementa‐
tion, so they won’t be covered in this book. However, after reading this book I
hope that you will be able to look at the source code of any given framework and
draw your own conclusions about its implementation.

Lesser-known or less popular browsers
There are a ton of web browsers out there, but I’ll only be discussing the major
players—Microsoft Edge (formerly Internet Explorer), Safari, Chrome, and Fire‐
fox, as well as their mobile counterparts—because they comprise the majority of
the market share.

Nomenclature
Although the intended audience for this book has some knowledge about CSS, some
nomenclature might not be familiar, so various terms will be defined throughout the
book. At an even more basic level:

• Selectors are patterns that are used to choose an element or group of elements to
style.

• A declaration block is a collection of rules that denote the properties and values
that should be applied to an HTML element.

• A property indicates which style should be applied to the selected elements and is
assigned a value.

• A ruleset is comprised of one or more selectors combined with a declaration
block.

In Example P-1 the web browser is instructed to style all paragraphs such that they
have blue text set at 16 px (pixels). p is the selector that tells the browser which ele‐
ments to style. Everything from the left curly brace up to and including the right
curly brace is the declaration block. The declaration block contains two declarations;
the first assigns the value #1200FF to the color property and the second assigns the
value 16px to the font-size property. The passage of code in its entirety is the rule‐
set. For your convenience, the anatomy of a ruleset is illustrated in Figure P-1.

Preface | xi

https://developers.google.com/speed/pagespeed

Example P-1. A sample ruleset

p {
 color: #1200FF;
 font-size: 16px;
}

Figure P-1. Diagram of a CSS ruleset

What You’ll Find on the Companion Website
The companion website to this book, http://www.cssrefactoringbook.com, contains:

• Examples from this book
• Occasional blog posts
• Links to great articles, presentations, and other resources
• Errata and corrections

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

xii | Preface

http://www.cssrefactoringbook.com

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “CSS Refactoring by Steve Lindstrom
(O’Reilly). Copyright 2017 Steve Lindstrom, 978-1-491-90642-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xiii

mailto:permissions@oreilly.com

O’Reilly Safari
Safari (formerly Safari Books Online) is membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/css-refactoring.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/css-refactoring
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Writing this book was a truly humbling experience.

One night on a whim I sent a short proposal to O’Reilly Media in the form of a terse
email that included some bullet points for ideas I had for this book. I panicked after
the email was sent, and promptly stopped thinking about it because I didn’t expect to
hear back anyway.

When I did hear back from O’Reilly and it was good news I was even more afraid that
I was in over my head, but Simon St. Laurent, Brian MacDonald, and Meg Foley were
fantastic to work with. I owe a tremendous amount of gratitude to my editor Meg
Foley in particular, because she was so understanding and encouraging despite the
fact that I missed every single deadline that I had. I’ve said it before and I’ll say it
again—sorry Meg!

This book is full of techniques, strategies, and ideas that have come from lots of dif‐
ferent places over the years. I can’t claim ownership of the majority of the concepts in
this book, so first and foremost I’d like to thank all of the people that have come
before me and figured all of this stuff out. I think the web development community is
one of the best to be a part of because there are so many smart people that are willing
to share their ideas with everyone. I can only hope that I’ve done some good by
compiling all of these ideas in one place.

Writing a book is much more difficult than I had ever imagined because it’s time-
consuming, lonely work, but fortunately I’m surrounded by great people all day at
work. Whenever I felt like throwing in the towel writing this book, I would look to
Andy Denmark’s amazing work ethic for inspiration. Thor Denmark also helped me
keep my head above water by showing me how to maintain a great attitude through
both the good times and the bad. Nate Racklyeft and Josh Hudner read a very early
version of this book and provided tremendous feedback that made it a thousand
times better than it would have been otherwise. Finally, Erin Wallace provided valua‐
ble feedback as someone who deals with similar concepts of organization, process,
and subtlety in the design world and was able to help me refine my writing to be eas‐
ier to understand. All of these people keep me on my toes on a daily basis and push
me to be better than I was the day before, and for that I’m eternally grateful.

I also owe a great deal of thanks to Christopher Schmitt for reviewing the contents of
this book. When I found out that he was reviewing my work I knew that his name
sounded familiar, and sure enough two of his books were sitting on my bookshelf.
Your notes helped me immensely and your books were invaluable when I was first
getting started. Thanks so much for taking the time out of your day to help a com‐
plete stranger. I’d love to repay the favor some day!

Preface | xv

This acknowledgments section wouldn’t be complete if I didn’t also thank my family
for making me the person I am today. My parents always encouraged me to read and
I still try to read more than I watch TV. At an early age my dad gave me my first
O’Reilly book (I think it was a book about C), and I attribute my career choice in
large part to his encouragement and career. My mom and brother have also been
major sources of inspiration and encouragement, and I can’t possibly thank you
enough.

Finally, I owe a lot of thanks to coffee. I love you, coffee <3.

xvi | Preface

CHAPTER 1

Refactoring and Architecture

This is the starting point of our CSS refactoring journey. In this chapter we’ll learn
what refactoring is and how it relates to software architecture. We’ll also discuss the
importance of refactoring and some of the reasons why your code might need it, and
we’ll also work through two refactoring examples to drive these concepts home.

What Is Refactoring?
Refactoring is the process of rewriting code in order to make it more simple and reus‐
able without changing its behavior. It’s a vital skill to have if you’re writing code
because you will have to do it at some point, whether you want to or not; you may
have even already refactored code without realizing it! Since refactoring doesn’t
change the code’s behavior it’s understandable to wonder why it’s even worth doing in
the first place. However, before that question can be answered it’s important to under‐
stand what software architecture is.

What Is Software Architecture?
Like a living creature, a software system is usually comprised of many smaller pieces
that specialize in doing one particular thing. When combined, these smaller pieces
work together to create the larger software system. Software architecture is the term
used for describing how all of the pieces of a software project fit together.

Every piece of software, from a simple website to the control system in a spacecraft,
has an architecture, whether it’s intentional or not. However, the best architectures
are usually planned out well before any coding takes place. Following are some of the
most important characteristics of a good architecture.

1

Good Architectures Are Predictable
Being predictable means that accurate assumptions can be made about how the soft‐
ware works and is structured. Predictability is indicative of proper forward planning
and will help save on development time because there will be no question as to:

• What a component’s responsibilities are
• Where to find a particular piece of code
• Where to put a new piece of code

Because assumptions can be made accurately in a predictable architecture, developers
that are unfamiliar with the code should be able to understand it more quickly.

Good Architectures Promote Code Reuse
Code reuse is the ability for code to be used in multiple places without being duplica‐
ted. Code reuse is beneficial because it speeds up development time, since you don’t
have to rewrite pieces of code that already exist. Similarly, the fewer pieces of code
you have that solve a particular problem, the less time you will have to spend main‐
taining all of those implementations. For example, if you discover a bug in a piece of
code that gets reused across a project, you know that bug will be present wherever
that code is used. But by fixing it in one place, you’ll fix it in all of the places that
piece of code is used.

Good Architectures Are Extensible
Extensibility is a principle of good architecture because it allows for the system to
have new functionality built upon it with ease. Most software isn’t built from start to
finish in one day, so it’s very important that it can be built incrementally without
requiring major structural changes. If your project frequently requires significant
changes to its architecture it becomes much more difficult to release.

Good Architectures Are Maintainable
Much like extensibility, maintainability is very important to an architecture because it
allows you to modify existing functionality with ease. Over time requirements may
change, and you will be forced to modify your code. Having maintainable software
means that you will be able to modify one piece of your code without necessarily hav‐
ing to drastically change all of the other pieces.

Software Architecture and Refactoring
In a nutshell, refactoring exists to help maintain and promote good software architec‐
ture. It is nothing more than a set of techniques that can be used to reorganize code

2 | Chapter 1: Refactoring and Architecture

into a more meaningful structure with the intention of making it more predictable,
reusable, extensible, and maintainable. When your software’s architecture displays the
aforementioned characteristics it will be much more reliable for its intended users,
and it will be much more enjoyable for you to work on too.

Shortcomings that Lead to Refactoring
Why isn’t code just written correctly in the first place so there’s no need to refactor it
later? Despite our best efforts to design and write the highest-quality code possible,
over time something will change that requires refactoring. Let’s take a look at a few of
the causes.

Changing Requirements
Over time software systems evolve as the result of changing requirements. When
software is written to satisfy one set of requirements, it likely doesn’t take things into
consideration that would satisfy another set of requirements that have not yet been
written (nor should it). As such, when requirements change so must the code, and if
there are time constraints present then code quality might suffer as a result of cutting
corners.

Poorly Designed Architecture
Even if you’re aware of what makes a good architecture, it’s not always feasible to
spend a significant amount of time planning everything out. And if you don’t have a
clear picture of how everything should work together from the beginning, you may
have to do some refactoring down the road. It’s also fairly common to build a new
feature really quickly (which can result in cutting corners) to see if it gets traction
with users and then either clean up the code later if it does or remove it if it doesn’t.

Underestimating Difficulty
Estimating how long software development will take is difficult, and unfortunately
these estimates are often used to create schedules. When a project’s timescale is
underestimated it puts pressure on developers to “just get it done,” which leads to
writing code quickly without putting too much thought into it. If this happens fre‐
quently enough even the best code can turn into a big plate of “spaghetti code” that’s
difficult to understand and unruly to manage.

Ignoring Best Practices
It can be difficult to stay up to date with every best practice, especially if your job
encompasses many technologies and/or managing people. If you’re working on a
team and overlook a best practice, then hopefully you’ll have a colleague that will

Shortcomings that Lead to Refactoring | 3

make you aware of it. If the opportunity to use a best practice is missed, then at some
point in the future you may have to revisit your code and do some refactoring.

Difficulty Keeping Up with Best Practices
Technology changes at a very rapid pace, and as a result a technique that was once
considered a best practice might not be anymore. For example, before 2011 if you
wanted to display a container that appeared to have rounded corners on a website,
you would need to have an image for each of the corners, embed the images in your
HTML, and then position them using CSS to make sure everything lined up correctly.
Today this technique is obsolete because modern browsers can display rounded cor‐
ners with the border-radius CSS property. If you don’t continually update your code
to make use of modern best practices, over time your technical debt will build up and
you’ll find your code in a much worse state than it otherwise could be.

When Should Code Be Refactored?
Refactoring code is much easier when it’s done with context. As such, it’s usually best
to refactor when you’re fixing a bug or building a new feature that makes use of exist‐
ing code. Refactoring code consistently while working on smaller tasks reduces the
likelihood of breaking anything, and those who modify the same code after it’s been
refactored will also benefit from your work. Over time, consistent refactoring will
lead to superior code, provided your changes align with the properties of good archi‐
tecture.

However, sometimes you’ll run across a piece of code that has a lot of dependencies,
and you may be faced with the decision of whether or not you should refactor. Refac‐
toring a piece of code that has a lot of dependencies can be like pulling a loose thread
on a shirt: the more you pull the thread, the more it unravels. Similarly, the more you
modify a piece of code that has a lot of dependencies, the more dependencies you’ll
end up having to update. In situations like this, if you’re up against a tight deadline it
might be beneficial to get your work done in time first, and then allocate some time
to go back and refactor. However, if you find along the way that there are smaller
things that can be refactored without adversely affecting your schedule, you might
consider refactoring them now.

When Should Code NOT Be Refactored?
Knowing when not to refactor code is probably even more important than knowing
when it should be refactored. Refactoring can have a bad reputation because often
software developers seem to rewrite code just for the sake of rewriting it. Maybe
someone else wrote the code and the person doing the unnecessary refactoring is suf‐

4 | Chapter 1: Refactoring and Architecture

fering from a case of Not Written Here Syndrome, where they feel the code is inferior
because they didn’t write it. Or perhaps one day someone decides that they just don’t
like the way they’ve written code previously (maybe they used underscores instead of
dashes in class names and now want to do the opposite), so they embark down the
rabbit hole of changing things to scratch this itch. In many cases this can be consid‐
ered “fake work” that makes people feel productive even when they aren’t. In Chap‐
ter 5 we’ll discuss how to form a plan for how your code should be written by drafting
a set of coding standards. At that point it will be much clearer that you should only
refactor when doing so will improve your architecture or if it aligns with your coding
standards.

Am I Allowed to Refactor My Code?
If you’re working on a personal project, then the answer is a resounding “yes!”—but if
you’re working for an organization where you’re not necessarily in charge, the answer
might not be as clear. In a perfect world every organization would understand the
importance of refactoring, but often that’s not the reality. If colleagues in your organi‐
zation lack technical knowledge about refactoring, you might try to educate them; I
hear CSS Refactoring books make nice gifts!

Reasonable people that are responsible for ensuring software ships with high-quality
code will likely get it, but those that don’t may argue that:

• Spending time to rewrite code without seeing changes is a waste of time and
money.

• If it’s not broken, it doesn’t need to be fixed.
• You should have written the code correctly the first time.

If you encounter any of these arguments and you feel confident enough to do so, my
advice is to refactor your code anyway, provided you stay on schedule and are careful
not to break anything. If you’ve heard statements like these, I’m willing to bet the per‐
son making them has never participated in a code review, so your changes probably
won’t be noticed anyway. However, if you’re refactoring code just for the sake of refac‐
toring, you may consider waiting until it becomes more apparent that the changes
will be necessary; premature optimization can often be just as bad as technical debt.

Refactoring Examples
Now that you have a general idea of the benefits of refactoring and when it is (and
isn’t) a good idea to do it, we can start to talk about how you go about refactoring
your code.

Am I Allowed to Refactor My Code? | 5

Although this book is about refactoring CSS, it’s much easier to initially analyze the
concept with code that calculates a discrete value as opposed to code that changes the
appearance of HTML elements. So, our first example will demonstrate refactoring
some basic JavaScript that calculates the total price of an ecommerce order. The sec‐
ond example will refactor some CSS.

Code Examples

Because it can be difficult to understand what’s going on in long
code passages that span multiple pages and files, smaller pieces of
code will be used for examples in this book. All the JavaScript code
from our first example can be embedded in an HTML file to make
execution easier.
For more complicated examples, CSS that is used to define the gen‐
eral look and feel of the elements in the examples will be included
using a separate CSS file.
Styles in this book that are included inline between <style> and
</style> tags will be directly relevant to the example at hand and
will be used to illustrate a granular concept.
All code examples are available online at the book’s companion
website.

Refactoring Example 1: Calculating the Total Price of an
Ecommerce Order
Example 1-1 contains some JavaScript that calculates the total price of an ecommerce
order if provided with:

• The price of each item purchased
• The quantity of each item purchased
• The cost to ship each item purchased
• The customer’s shipping information
• An optional discount code that can reduce the price of the order

Example 1-1. Calculating an ecommerce order total

/**
 * Calculates the total order price after shipping costs, discounts, and
 * taxes are applied.
 *
 * @param {Object} customer - a collection of information about
 * the person that placed the order.

6 | Chapter 1: Refactoring and Architecture

https://www.cssrefactoringbook.com
https://www.cssrefactoringbook.com

 *
 * @param {Array.<Object>} lineItems - a collection of products
 * and quantities being purchased as well as the cost to ship one unit.
 *
 * @param {string} discountCode - an optional discount code that can trigger
 * a discount to be deducted before shipping and tax are added.
 */
var getOrderTotal = function (customer, lineItems, discountCode) {
 var discountTotal = 0;
 var lineItemTotal = 0;
 var shippingTotal = 0;
 var taxTotal = 0;

 for (var i = 0; i < lineItems.length; i++) {
 var lineItem = lineItems[i];
 lineItemTotal += lineItem.price * lineItem.quantity;
 shippingTotal += lineItem.shippingPrice * lineItem.quantity;
 }

 if (discountCode === '20PERCENT') {
 discountTotal = lineItemTotal * 0.2;
 }

 if (customer.shiptoState === 'CA') {
 taxTotal = (lineItemTotal - discountTotal) * 0.08;
 }

 var total = (
 lineItemTotal -
 discountTotal +
 shippingTotal +
 taxTotal
);

 return total;
};

Calling getOrderTotal using the data in Example 1-2 results in Total: $266 being
printed. Example 1-3 explains why that result is printed.

Example 1-2. Running getOrderTotal with test input

var lineItem1 = {
 price: 50,
 quantity: 1,
 shippingPrice: 10
};

var lineItem2 = {
 price: 100,
 quantity: 2,

Refactoring Examples | 7

 shippingPrice: 20
};

var lineItems = [lineItem1, lineItem2];

var customer = {
 shiptoState: 'CA'
};

var discountCode = '20PERCENT';

var total = getOrderTotal(customer, lineItems, discountCode);

document.writeln('Total: $' + total);

Example 1-3. Explanation of why getOrderTotal prints “Total: $266”

discountTotal = 0
lineItemTotal = 0
shippingTotal = 0
taxTotal = 0

FOR LOOP 1st iteration:
lineItemTotal = 0 + (50 * 1) = 50
shippingTotal = 0 + (10 * 1) = 10

FOR LOOP 2nd iteration:
lineItemTotal = 50 + (100 * 2) = 250
shippingTotal = 10 + (20 * 2) = 50

discountTotal gets calculated because discountCode equals "20 PERCENT":
discountTotal = 250 * 0.2 = 50

taxTotal gets set because customer.shiptoState equals "CA":
taxTotal = (250 - 50) * 0.08 = 16

total = 250 - 50 + 50 + 16 = 266

Unit tests
After walking through the calculations, the math checks out and everything appears
to be working as expected. To ensure that things continue working over time, we can
now write a unit test. Put simply, a unit test is a piece of code that executes another
piece of code to make sure everything is working as expected. Unit tests should be
written to test singular pieces of functionality in order to narrow down the root cause
of any issues that may surface. Further, a suite of unit tests that are written for your
entire project should be run before releasing new code so bugs that have been intro‐
duced into the system can be discovered and fixed before it’s too late.

8 | Chapter 1: Refactoring and Architecture

The input data from Example 1-2 can be used to write a unit test, shown in
Example 1-4, that asserts the function returns the expected value (266). After the test
is done running, a count of how many successful and unsuccessful tests were run in
addition to a list of unsuccessful tests will be printed.

Example 1-4. A unit test for getOrderTotal

var successfulTestCount = 0;
var unsuccessfulTestCount = 0;
var unsuccessfulTestSummaries = [];

/**
 * Asserts the calculations in `getOrdertotal()` are correct.
 */
var testGetOrderTotal = function () {

 // set up expectations

 var expectedTotal = 266;

 // set up test data

 var lineItem1 = {
 price: 50,
 quantity: 1,
 shippingPrice: 10
 };

 var lineItem2 = {
 price: 100,
 quantity: 2,
 shippingPrice: 20
 };

 var lineItems = [lineItem1, lineItem2];

 var customer = {
 shiptoState: 'CA'
 };

 var discountCode = '20PERCENT';

 var total = getOrderTotal(customer, lineItems, discountCode);

 // test the results against expectations

 if (total === expectedTotal) {
 successfulTestCount++;
 } else {
 unsuccessfulTestCount++;
 unsuccessfulTestSummaries.push(

Refactoring Examples | 9

 'testGetOrderTotal: expected ' + expectedTotal + '; actual ' + total
);
 }
};

// run tests

testGetOrderTotal();
document.writeln(successfulTestCount + ' successful test(s)
');
document.writeln(unsuccessfulTestCount + ' unsuccessful test(s)
');

if (unsuccessfulTestCount) {
 document.writeln('');
 for(var i = 0; i < unsuccessfulTestSummaries.length; i++) {
 document.writeln('' + unsuccessfulTestSummaries[i] + '');
 }
 document.writeln('');
}

Executing testGetOrderTotal results in the test successfully passing the assertion, as
can be seen in Figure 1-1.

Figure 1-1. Successful unit test results

10 | Chapter 1: Refactoring and Architecture

However, if in the future for some reason a bug was introduced and the multiplier
used in the calculation of discountTotal changed from 0.2 to –0.2, this would no
longer be the case and we would instead see the result pictured in Figure 1-2.

Figure 1-2. Unsuccessful unit test results

Unit tests are a powerful way to ensure that your system continues working as
expected over time. They can be especially helpful when rewriting code because an
assertion will already be documented, and that assertion will provide greater confi‐
dence that the code’s behavior hasn’t changed.

Now that we understand the code used to calculate the total price of an ecommerce
order and we have an accompanying unit test, let’s see how refactoring can improve
things.

Refactoring getOrderTotal

Looking closely at getOrderTotal reveals that there are a number of calculations
being performed in that one function:

• The total discount to be subtracted from the final price
• The total price for all of the line items

Refactoring Examples | 11

• The total shipping costs
• The total tax costs
• The total order price

If a bug is accidentally introduced into one of those five calculations, the unit test
(testGetOrderTotal) will indicate that something went wrong, but it won’t be obvi‐
ous what specifically went wrong. This is the main reason why unit tests should be
written to test single pieces of functionality.

To make the code more granular, each of the aforementioned calculations should be
extracted into a separate function that has a name describing what it does, like in
Example 1-5.

Example 1-5. Extracting code fragments into new functions

/**
 * Calculates the total price of all line items ordered.
 *
 * @param {Array.<Object>} lineItems - a collection of products
 * and quantities being purchased and the cost to ship one unit.
 *
 * @returns {number} The total price of all line items ordered.
 */
var getLineItemTotal = function (lineItems) {
 var lineItemTotal = 0;

 for (var i = 0; i < lineItems.length; i++) {
 var lineItem = lineItems[i];
 lineItemTotal += lineItem.price * lineItem.quantity;
 }

 return lineItemTotal;
};

/**
 * Calculates the total shipping cost of all line items ordered.
 *
 * @param {Array.<Object>} lineItems - a collection of products
 * and quantities being purchased and the cost to ship one unit.
 *
 * @returns {number} The total price to ship of all line items ordered.
 */
var getShippingTotal = function (lineItems) {
 var shippingTotal = 0;

 for (var i = 0; i < lineItems.length; i++) {
 var lineItem = lineItems[i];
 shippingTotal += lineItem.shippingPrice * lineItem.quantity;
 }

12 | Chapter 1: Refactoring and Architecture

 return shippingTotal;
};

/**
 * Calculates the total discount to be subtracted from an order total.
 *
 * @param {number} lineItemTotal - The total price of all line items ordered.
 *
 * @param {string} discountCode - An optional discount code that can trigger a
 * discount to be deducted before shipping and tax are added.
 *
 * @returns {number} The total discount to be subtracted from an order total.
 */
var getDiscountTotal = function (lineItemTotal, discountCode) {
 var discountTotal = 0;

 if (discountCode === '20PERCENT') {
 discountTotal = lineItemTotal * 0.2;
 }

 return discountTotal;
};

/**
 * Calculates the total tax to apply to an order.
 *
 * @param {number} lineItemTotal - The total price of all line items ordered.
 *
 * @param {Object} customer - A collection of information about the person that
 * placed an order.
 *
 * @returns {number} The total tax to be applied to an order.
 */
var getTaxTotal = function () {
 var taxTotal = 0;

 if (customer.shiptoState === 'CA') {
 taxTotal = lineItemTotal * 0.08;
 }

 return taxTotal;
};

Each new function should also have an accompanying unit test like the one in
Example 1-6.

Refactoring Examples | 13

Example 1-6. Unit tests for extracted functions written in JavaScript

/**
 * Asserts getLineItemTotal works as expected.
 */
var testGetLineItemTotal = function () {
 var lineItem1 = {
 price: 50,
 quantity: 1
 };

 var lineItem2 = {
 price: 100,
 quantity: 2
 };

 var lineItemTotal = getLineItemTotal([lineItem1, lineItem2]);
 var expectedTotal = 250;

 if (lineItemTotal === expectedTotal) {
 successfulTestCount++;
 } else {
 unsuccessfulTestCount++;
 unsuccessfulTestSummaries.push(
 'testGetLineItemTotal: expected ' + expectedTotal + '; actual ' +
 lineItemTotal
);
 }
};

/**
 * Asserts getShippingTotal works as expected.
 */
var testGetShippingTotal = function () {
 var lineItem1 = {
 quantity: 1,
 shippingPrice: 10
 };

 var lineItem2 = {
 quantity: 2,
 shippingPrice: 20
 };

 var shippingTotal = getShippingTotal([lineItem1, lineItem2]);
 var expectedTotal = 250;

 if (shippingTotal === expectedTotal) {
 successfulTestCount++;
 } else {
 unsuccessfulTestCount++;
 unsuccessfulTestSummaries.push(

14 | Chapter 1: Refactoring and Architecture

 'testGetShippingTotal: expected ' + expectedTotal + '; actual ' +
 shippingTotal
);
 }
};

/**
 * Ensures GetDiscountTotal works as expected when a valid discount code
 * is used.
 */
var testGetDiscountTotalWithValidDiscountCode = function () {
 var discountTotal = getDiscountTotal(100, '20PERCENT');
 var expectedTotal = 20;

 if (discountTotal === expectedTotal) {
 successfulTestCount++;
 } else {
 unsuccessfulTestCount++;
 unsuccessfulTestSummaries.push(
 'testGetDiscountTotalWithValidDiscountCode: expected ' + expectedTotal +
 '; actual ' + discountTotal
);
 }
};

/**
 * Ensures GetDiscountTotal works as expected when an invalid discount code
 * is used.
 */
var testGetDiscountTotalWithInvalidDiscountCode = function () {
 var discountTotal = get_discount_total(100, '90PERCENT');
 var expectedTotal = 0;

 if (discountTotal === expectedTotal) {
 successfulTestCount++;
 } else {
 unsuccessfulTestCount++;
 unsuccessfulTestSummaries.push(
 'testGetDiscountTotalWithInvalidDiscountCode: expected ' + expectedTotal +
 '; actual ' + discountTotal
);
 }
};

/**
 * Ensures GetTaxTotal works as expected when the customer lives in California.
 */
var testGetTaxTotalForCaliforniaResident = function () {
 var customer = {
 shiptoState: 'CA'
 };

Refactoring Examples | 15

 var taxTotal = getTaxTotal(100, customer);
 var expectedTotal = 8;

 if (taxTotal === expectedTotal) {
 successfulTestCount++;
 } else {
 unsuccessfulTestCount++;
 unsuccessfulTestSummaries.push(
 'testGetTaxTotalForCaliforniaResident: expected ' + expectedTotal +
 '; actual ' + taxTotal
);
 }
};

/**
 * Ensures GetTaxTotal works as expected when the customer doesn't live
 * in California.
 */
var testGetTaxTotalForNonCaliforniaResident = function () {
 var customer = {
 shiptoState: 'MA'
 };

 var taxTotal = getTaxTotal(100, customer);
 var expectedTotal = 0;

 if (taxTotal === expectedTotal) {
 successfulTestCount++;
 } else {
 unsuccessfulTestCount++;
 unsuccessfulTestSummaries.push(
 'testGetTaxTotalForNonCaliforniaResident: expected ' + expectedTotal +
 '; actual ' + taxTotal
);
 }
};

Finally, getOrderTotal should be modified to make use of the new functions, as seen
in Example 1-7.

Example 1-7. Modifying getOrderTotal to use extracted functions

/**
 * Calculates the total order price after shipping costs, discounts, and
 * taxes are applied.
 *
 * @param {Object} customer - a collection of information about
 * the person that placed the order.
 *
 * @param {Array.<Object>} lineItems - a collection of products
 * and quantities being purchased and the cost to ship one unit.

16 | Chapter 1: Refactoring and Architecture

 *
 * @param {string} discountCode - an optional discount code that can trigger
 * a discount to be deducted before shipping and tax are added.
 */
var getOrderTotal = function (customer, lineItems, discountCode) {
 var lineItemTotal = getLineItemTotal(lineItems);
 var shippingTotal = getShippingTotal(lineItems);
 var discountTotal = getDiscountTotal(lineItemTotal, discountCode);
 var taxTotal = getTaxTotal(lineTtemTotal, customer);

 return lineItemTotal - discountTotal + shippingTotal + taxTotal;
};

After analyzing the preceding code, the following observations can be made:

• There are more functions than before.
• There are more unit tests than before.
• Each function does one particular thing.
• Each function has an accompanying unit test.
• Functions can be used together to perform more complex calculations.

Overall, this code is in much better shape now. The individual calculations used in
getOrderTotal have been extracted and each has an accompanying unit test. This
means that it will be much easier to pinpoint exactly which piece of functionality is
broken should a bug be introduced into the code. Additionally, if the totals for tax or
shipping needed to be calculated in another piece of code, the existing functionality
that already has unit tests can be used.

Refactoring Example 2: A Simple Example of Refactoring CSS
Example 1-8 is some code that displays the headline of a website.

Example 1-8. HTML for a website headline

<!doctype html>
<html>
 <head>
 <title>Ferguson's Cat Shelter</title>
 <link rel="stylesheet" type="text/css" href="css/style.css" />
 </head>
 <body>
 <main>
 <h1 style="font-family: Helvetica, Arial, sans-serif;font-size: 36px;
 font-weight: 400;text-align: center;">
 San Francisco's Premiere Cat Shelter
 </h1>
 </main>

Refactoring Examples | 17

 </body>
</html>

Opening up a browser and loading index.html will display Figure 1-3.

Figure 1-3. Screenshot of website headline

In our first refactoring example we wrote a unit test for the code before refactoring to
ensure its behavior didn’t change. When refactoring CSS it’s still important to make
sure that your modifications don’t change anything, but unfortunately it’s not as
straightforward because something visual is being tested rather than something that
produces discrete values. Chapter 5 discusses useful techniques for maintaining visual
equality. For now, though, simply taking a screenshot to provide a visual reference
before refactoring will suffice.

Refactoring the website headline
Looking at the code in Example 1-8, it’s clear that there’s room for improvement
because the headline, denoted by an <h1> tag, has its styles embedded in the style
attribute. When styles are embedded in HTML via an element’s style attribute or
between <style></style> tags, they are known as inline styles.

Much like the original function in Example 1-1 that performed multiple calculations,
inline styles are not very reusable. When styles are set using the style attribute, they
can only be applied to that particular element. When styles are embedded between
<style></style> tags, they can only be applied to that particular page.

18 | Chapter 1: Refactoring and Architecture

Because most websites have multiple pages that could each have a headline, these
styles should be extracted out of the HTML into a separate CSS file (in this case
style.css) that can be included on multiple pages and cached by the browser. The con‐
tents of style.css are depicted in Example 1-9, and Example 1-10 shows the HTML
with the inline CSS extracted.

Example 1-9. Headline CSS extracted into style.css

h1 {
 font-family: Helvetica, Arial, sans-serif;
 font-size: 36px;
 font-weight: 400;
 text-align: center;
}

Example 1-10. HTML with inline CSS extracted

<!doctype html>
<html>
 <head>
 <title>Ferguson's Cat Shelter</title>
 <link rel="stylesheet" type="text/css" href="css/style.css" />
 </head>
 <body>
 <main>
 <h1>San Francisco's Premiere Cat Shelter</h1>
 </main>
 </body>
</html>

A quick browser refresh shows that nothing has changed, and once again some obser‐
vations can be made:

• Extracting inline CSS promotes reusability.
• Separating functionality (styles and structure) makes code more readable.
• Regression testing can be performed manually in a web browser or by comparing

a refactored interface against a screenshot.

Extracting styles into a separate file promotes code reuse because those styles can be
used across multiple pages. When CSS is in a file separate from HTML, both the
HTML and the CSS are easier to read because the HTML does not have extremely
long lines of style definitions in it, and the CSS is grouped together in logical chunks.
Finally, testing of changes can be performed by manually reloading the page in the
browser so the changes can be compared against a screenshot that was taken before
refactoring.

Refactoring Examples | 19

Although this example was very simple, lots of small changes like this can produce a
sizable benefit over time.

Chapter Summary
We’ve made it through the first chapter, and we know what refactoring is and how it
relates to software architecture. We also learned why refactoring is important and
when it should be performed. Finally, we walked through two refactoring examples
and learned about unit tests. Next, we’ll learn about the cascade, which is arguably the
most important concept to understand when it comes to writing CSS.

20 | Chapter 1: Refactoring and Architecture

CHAPTER 2

Understanding the Cascade

There’s nothing worse than writing a bunch of CSS only to test it out and find that
other styles are being applied instead of the ones you intended. To better understand
why this happens, this chapter explains how web browsers determine which styles to
apply to which elements using the cascade.

What Is the Cascade?
The cascade is the method by which the browser determines how styles should be
applied to elements. Because multiple styles can be applied to the same element,
understanding how the cascade works is important in the event that styles are not
applied they way you expect them to be. Luckily, it’s not as complicated as it sounds;
styles are applied based on the specificity of their selectors as well as the order in
which they appear.

Selector Specificity
Specificity is a measure of how precisely elements are identified based on the CSS
selectors used. Specificity is calculated by analyzing the different types of selectors
(except the universal selector, *) that are combined to select an element. A specificity
is determined by plugging numbers into (a, b, c, d):

1. If the styles are applied via the style attribute, a=1; otherwise, a=0.
2. b is equal to the number of ID selectors present.
3. c is equal to the number of class selectors, attribute selectors, and pseudoclasses

present.
4. d is equal to the number of type selectors and pseudoelements present.

21

When all of these calculations are completed, those numbers are concatenated to give
the specificity. To make this a bit more concrete, consider the selector in Example 2-1.

Example 2-1. An example ruleset to calculate specificity for

#nav-global > ul > li > a.nav-link {
 color: #000000;
}

Using the algorithm just defined, we can determine that this selector has a specificity
of (0,1,1,3):

1. The styles are not applied via the style attribute, so a=0
2. There is 1 ID selector (#nav-global), so b=1
3. There is 1 class selector (.nav-link), so c=1
4. there are 3 type selectors (ul, li, and a), so d=3

When comparing the specificity of selectors, the selector that has the largest number
farthest to the left has the highest specificity. If the two leftmost numbers being com‐
pared are equal, then the next number to the left is used, and so on. For example, a
specificity of (1, 0, 0, 0) is higher than (0, 1, 1, 3), in the same way (0, 2, 1, 3) is higher
than (0, 1, 1, 3). However, a specificity of (0, 1, 1, 3) is lower than a specificity of (0, 1,
1, 4) or (0, 1, 2, 0). Example 2-2 gives some more examples of calculating specificity.

Example 2-2. Examples of calculating specificity

/**
 * This selector has a specificity of (0,0,2,2) because there are:
 * 0 inline styles
 * 0 IDs
 * 1 class (.title), 0 attribute selectors, and 1 pseudoclass (:first-child)
 * 2 type selectors (li, h2)
 */
li:first-child h2 .title {}

/**
 * This selector has a specificity of (0,1,2,1) because there are:
 * 0 inline styles
 * 1 ID (#nav)
 * 1 class (.selected), 0 attribute selectors, and 1 pseudoclass (:hover)
 * 1 type selector (a)
 */
#nav .selected > a:hover {}

/**
 * This selector has a specificity of (0,1,2,3) because there are:
 * 0 inline styles

22 | Chapter 2: Understanding the Cascade

 * 1 ID (#nav)
 * 1 class (.selected), 0 attribute selectors, and 1 pseudoclass (:hover)
 * 3 type selectors (html, body, a)
 */
html body #nav .selected > a:hover {}

Ruleset Order
Ruleset order describes the location of a CSS ruleset in a stylesheet. When two decla‐
ration blocks that have selectors of equal specificity attempt to style a property on the
same element, the properties in the declaration block that appears later in the style‐
sheet have precedence. This means that the color property for the element styled in
Example 2-3 is assigned the value #000000 because a declaration block with the same
specificity appears later in the stylesheet and assigns that color.

Example 2-3. Assigning a value to the color property with a later declaration block

<!doctype html>
<html>
 <head>
 <title>Inline Styles and Specificity</title>
 <style type="text/css">
 #nav-global > ul > li > a.nav-link {
 color: #FFFFFF;
 }
 #nav-global > ul > li > a.nav-link {
 color: #000000;
 }
 </style>
 </head>
 <body>
 <nav id="nav-global">

 Link

 </nav>
 </body>
</html>

Inline CSS and Specificity
Specificity and ruleset order are paramount in determining how styles are applied to
an element, unless it has inline styles applied via the style attribute. In Example 2-4
there are inline styles present on the anchor tag. Because the color property is being
set on the actual element, that style will be applied. No matter how specific the selec‐

Ruleset Order | 23

tor is in either a <style> block or an external stylesheet, it will never be more specific
than styles on the actual element.

Example 2-4. Assigning a value to the color property with inline CSS via the style
attribute

<!doctype html>
<html>
 <head>
 <title>Inline Styles and Specificity</title>
 <style type="text/css">
 #nav-global > ul > li > a.nav-link {
 color: #000000;
 }
 </style>
 </head>
 <body>
 <nav id="nav-global">

 Link

 </nav>
 </body>
</html>

Overriding the Cascade with the !important Declaration
The only way to ensure that styles present in a <style> block or an external stylesheet
are more specific than any other styles (including inline styles applied with the style
attribute) is to append !important to a declaration. When !important is appended to
a declaration, it indicates to the browser that that declaration should be used for ele‐
ments that match its containing ruleset’s selectors, regardless of the properties applied
by selectors that have a higher specificity. When multiple declaration blocks that
select the same elements make use of !important, the one that appears last is applied.

In Example 2-5, for instance, the anchor tag appears with white (#FFFFFF) text
because the !important declaration is used in the first ruleset. If !important was
used in both rulesets, the anchor tag would have black (#000000) text because that
ruleset appears last. If !important was not used at all, the anchor tag would have blue
(#1200FF) text because inline styles have the highest specificity. Note that !important
cannot be used on styles applied with the style attribute (i.e., <a href="/"

style="color: #1200FF !important">Link).

24 | Chapter 2: Understanding the Cascade

Example 2-5. Assigning a value to the color property with an earlier declaration block
using !important

<!doctype html>
<html>
 <head>
 <title>Inline Styles and Specificity</title>
 <style type="text/css">
 #nav-global > ul > li > a.nav-link {
 color: #FFFFFF !important;
 }
 #nav-global > ul > li > a.nav-link {
 color: #000000;
 }
 </style>
 </head>
 <body>
 <nav id="nav-global">

 Link

 </nav>
 </body>
</html>

Chapter Summary
With a solid understanding of the cascade and how to calculate specificity, learning
more about refactoring will be a bit easier because it all hinges on these ideas. In the
coming chapters, be sure to think about how the cascade plays into each concept and
it will become much more apparent how everything is tied together. Next, we’ll shift
gears a bit and look at some recommendations for how to write better CSS.

Chapter Summary | 25

CHAPTER 3

Writing Better CSS

“Best practices” is a contentious term when it comes to writing CSS because there are
so many different ways to accomplish the same thing, and the preference for one
technique over another can be very subjective. However, as Chapter 1 explained, a
good architecture is predictable, maintainable, extensible, and promotes code reuse.
The ideas presented in the following sections keep this definition in mind and are
intended to provide a solid foundation from which you can write better CSS.

Use Comments
Comments provide documentation that is helpful when looking at a file in the future.
Comments should be used to document things including:

• File contents
• Selectors’ dependencies, usages, etc.
• Why certain declarations were used (this is especially helpful in regard to

browser quirks)
• Deprecated styles that are being refactored and should no longer be used

CSS only has block-level comments (comments that can span multiple lines), and
they begin with /* and end with */. In the event that a comment only needs one line,
that can be done, but it must still begin with /* and end with */. Here are some
examples of comments:

/*
 * Styles for main navigation links.
 *
 * @see templates/_navigation.html
 */

27

.nav-link {
 padding: 4px;
 text-decoration: none;
}

.nav-link:hover {
 border-bottom: 4px solid #000000;

 /*
 * prevents addition of the 4px bottom border
 * from making the element shift
 */
 padding-bottom: 0;
}

/* @deprecated */
.navigation-link {
 color: #1200FF;
}

Consistently Structure Rulesets
Rulesets can be written all on one line or they can be formatted to use multiple lines.
Example 3-1 shows what a ruleset looks like on one line, and Example 3-2 shows what
it looks like on multiple lines. Rulesets can even have their curly braces on new lines,
as seen in Example 3-3.

Example 3-1. CSS ruleset on one line

selector { property1: value; property2: value; property3: value; }

Example 3-2. CSS ruleset on multiple lines

selector {
 property1: value;
 property2: value;
 property3: value;
}

Example 3-3. CSS ruleset with braces on multiple lines

selector
{
 property1: value;
 property2: value;
 property3: value;
}

28 | Chapter 3: Writing Better CSS

Writing rulesets consistently makes your CSS more predictable, which in turn makes
it easier to understand.

While it’s certainly a matter of preference, my preference is for each ruleset to have
each declaration on its own line like in Example 3-2. Additionally, I like keeping CSS
properties in alphabetical order; this makes things even more predictable by making
it easier to find any given property.

Organize Properties with Vendor Prefixes
A vendor prefix is a string that browser makers prepend to new and experimental CSS
properties before their behavior is standardized. Typically the prefixes are -webkit-
for browsers that use the Blink or WebKit rendering engines (Chrome and Safari),
-moz- for browsers that use the Gecko rendering engine (Firefox), and -ms- for
browsers that use the Trident rendering engine (Internet Explorer/Edge). When a
property is standardized there is no prefix appended to it.

For example, transform-origin is one such property. transform-origin allows you
to modify the origin at which transformations (like rotations and translations) occur
on elements. In order to use it today, vendor prefixes should be used with the stand‐
ardized version as a fallback:

-ms-transform-origin: @origin;
-moz-transform-origin: @origin;
-webkit-transform-origin: @origin;
transform-origin: @origin;

The order of these properties is very important because as the browser applies prop‐
erties in a declaration block from top to bottom, it ignores the ones it does not recog‐
nize and applies the ones it does. This means that placing a non-prefixed standard
CSS property before its vendor-prefixed version could result in it being overridden
on browsers that support both.

Old browsers that do not support a new property or any of its vendor-prefixed ver‐
sions will simply ignore them. Other old browsers that only support the vendor-
prefixed version of the new property will apply the appropriate one and ignore the
standard non-prefixed version. Newer browsers that continue to support the vendor-
prefixed version of a new property for backward compatibility, but also support the
standard non-prefixed version, can apply both. Finally, modern browsers that have
dropped support for the vendor-prefixed version of a property and only support the
standard non-prefixed version will ignore the vendor-prefixed version and apply the
standard version.

Since it may take some time for all users of a particular browser to upgrade, both the
prefixed and unprefixed properties should remain until that browser is no longer
supported by your website.

Consistently Structure Rulesets | 29

Feature Flags

Vendor-prefixed CSS properties can be burdensome to maintain
because they notoriously bloat stylesheets. To combat this, many
browser makers have made the switch to using opt-in features so
developers can experiment with bleeding-edge CSS properties. If
your website is still visited by people using older browsers and you
need to support them, however, you may want to continue to main‐
tain those vendor-prefixed CSS properties.

Keep Selectors Simple
Selectors can be made very complex by stringing lots of different selectors and com‐
binators together. However, just because selectors can be very specific doesn’t mean
they should be. Consider the code in Example 3-4.

Example 3-4. CSS that selects a very specific element

<!doctype html>
<html>
 <head>
 <title>Keep Selectors Simple</title>
 <style type="text/css">
 div > nav > ul > li > a {
 color: #1200FF;
 }
 </style>
 </head>
 <body>
 <div>
 <nav>

 Policies

 </nav>
 </div>
 </body>
</html>

The code in Example 3-4 styles a very particular anchor tag because of its use of mul‐
tiple child combinators (>). This isn’t a great way to style the anchor tag element
because the selector being used is highly dependent on the HTML structure present
on the page. Should something change within that HTML structure, the desired styles
will no longer be applied. Instead, adding a class to the HTML element and styling
that class is a better solution, as illustrated in Example 3-5.

30 | Chapter 3: Writing Better CSS

Example 3-5. HTML hierarchy with an added class

<!doctype html>
<html>
 <head>
 <title>Keep Selectors Simple</title>
 <style type="text/css">
 a.nav-link {
 color: #1200FF;
 }
 </style>
 </head>
 <body>
 <div>
 <nav>

 Policies

 </nav>
 </div>
 </body>
</html>

Now that all of the complicated child selectors have been removed, in Example 3-5
the class selector is used to select elements with the class nav-link. However, the
selector a.nav-link is still more specific than it needs to be: it’s said to be an overqua‐
lified selector because it can only be used on anchor tags.

As can be seen in Example 3-6, the selector can be simplified further.

Example 3-6. A simplified selector

.nav-link {
 color: #1200FF;
}

Simplifying the selector as much as possible, as shown here, is beneficial because it
means these styles are no longer dependent on the HTML structure being used and
the CSS file size will be slightly smaller. Should this element need to be styled differ‐
ently than it is in Example 3-6, this can be done in in relation to its parent container
(e.g., .parent-container .nav-link { color: #FF0000; }), which not only styles
the element differently, but also provides context for when those styles should apply.

However, there are times when qualifying selectors is appropriate—for example,
when applying a class to one element results in a different behavior than it would
when applied to a different element.

Keep Selectors Simple | 31

In Example 3-7, the error class makes text red. When styling inputs, though, the
design might call for both the text and the border to be red without changing the
styles of other elements that share the error class. Because input.error is as specific
as it needs to be to style an input element’s text and border color, it is considered a
qualified selector as opposed to an overqualified selector.

Example 3-7. Acceptable qualified selectors

.error {
 color: #FF0000;
}

input.error {
 border-color: #FF0000;
}

Performant Selectors
Less complex selectors are more performant than complicated selectors; however, as
computers continue to get faster and browsers continue to be optimized, most of the
time selector performance shouldn’t be something to stress out about. Simple selec‐
tors should be preferred because they are more reusable and easy to understand, not
because they are noticeably more efficient. Following the guidelines in this book
should help you avoid selector performance anxiety, but having a general idea of how
selectors work is still worthwhile.

Matching selectors from right to left
Web browsers need to be able to select elements and apply styles quickly so the web
page can be used as soon as possible. The browser matches selectors from right to left
so it can eliminate elements that don’t match up front, rather than wasting time
checking elements that might match. To illustrate this concept, take a look at
Example 3-8, which contains some markup that houses a .nav-link and a strong
element.

Example 3-8. A simple HTML hierarchy

<!doctype html>
<html>
 <head>
 <title>Another Example</title>
 </head>
 <body>
 <div>
 <nav>

32 | Chapter 3: Writing Better CSS

 Not a Link

 </nav>
 </div>
 <div>
 <nav>

 Link

 </nav>
 </div>
 </body>
</html>

If the anchor tag is selected using the selector div > nav > ul > li > a and the
browser tried to match elements (excluding <!doctype>) from left to right, it would
need to:

1. Iterate through each element to see if it is a <div> element.
2. Check each <div> that was matched in step 1 to see if it has a <nav> element as a

child.
3. Check each <nav> element that was matched in step 2 to see if it has a ele‐

ment as a child.
4. Check each element that was matched in step 3 to see if it has an

element as a child.
5. Check each element that was matched in step 4 to see if it has an <a> ele‐

ment as a child.
6. Apply the styles to the one <a> element that was found.

On the other hand, if the same selector (div > nav > ul > li > a) is matched from
right to left the browser will need to:

1. Iterate through each element to see if it is an <a> element.
2. Check if each <a> element matched in step 1 has an element as a parent.
3. Check if each element matched in step 2 has a element as a parent.
4. Check if each element matched in step 3 has a <nav> element as a parent.
5. Check if each <nav> element matched in step 4 has a <div> element as a parent.
6. Apply the styles to the <a> element that matches the selector.

Keep Selectors Simple | 33

While the number of steps is the same, the big difference is that when matching the
selector from left to right both <div> elements need to be traversed. By matching the
selector from right to left the browser is able to eliminate entire hierarchies of ele‐
ments that do not contain an anchor tag. To make things even more performant the
anchor tag can be selected by its class, .nav-link, so all the browser has to do is iter‐
ate through each element and check if it has that class.

With this very general understanding of how browsers parse selectors, we can analyze
a more extreme (and easy-to-avoid) example.

The key selector

The code in Example 3-9 selects any element that is an ancestor of the <body> tag.
Parsing the selector from right to left effectively selects each element on the page and
traverses its ancestors to see if one is the <body> tag. This is extremely inefficient
because almost every visible element is a descendant of the <body> element.

Example 3-9. Universal selector ancestor example

body * {
 font-size: 12px;
}

As previously described, the browser will match elements from right to left so it can
eliminate elements that don’t match the selector sooner rather than later. The right‐
most part of a selector is known as the key selector, so in Example 3-9 this makes the
universal selector * the key selector.

When the universal selector is used by itself to apply styles to all elements (* {}),
the browser can do so fairly quickly because it only has to match every element on the
page. However, when the universal selector is used in conjunction with another selec‐
tor and a combinator (the ancestor combinator in Example 3-9), the browser will
have to do much more work to match the appropriate elements. This can be avoided
by only using the universal selector by itself rather than with combinators and other
selectors.

Decouple CSS and JavaScript
JavaScript and CSS can become intertwined because both depend on the classes and
IDs that are present on HTML elements. Additionally, because JavaScript can modify
an HTML element’s styles it can be easy for the responsibilities of these two languages
to become muddled. In order to separate the concerns of CSS and JavaScript, classes
and IDs used to select elements in JavaScript should not be used to style elements.
Similarly, when element styles need to be modified by JavaScript it should be done by
adding and removing classes.

34 | Chapter 3: Writing Better CSS

Prefix Classes and IDs that Are Used in JavaScript
It’s fairly common to find HTML that includes classes that are not only used to style
elements with CSS, but also used by JavaScript as selectors. It’s also fairly common to
see classes and IDs added to elements that are only intended to be used to select ele‐
ments with no intention of styling them. Classes and IDs that are present in HTML
but not used in CSS can make it more difficult to find the styles that are needed to
change the appearance of an element. Similarly, JavaScript can break if a class name is
changed to more accurately reflect what is being styled without the change to the
class name also being made in JavaScript.

A simple fix for this is to prepend the names of classes and IDs that are only intended
to be used for JavaScript with js-. For example, if a tab group related to policies
needed to be selected in JavaScript, the ID js-tab-group-policies might be used. By
only using classes and IDs that are prepended with js- for JavaScript selectors, any
dependencies that may exist between JavaScript and CSS can be eliminated.

Modify Element Styles with Classes
Element styles can be modified by JavaScript, and many libraries (like jQuery) make
it fairly trivial. However, changing styles in JavaScript usually means adding inline
styles to an element via its style attribute, which makes those styles among the most
specific. Additionally, modifying styles in JavaScript means that the JavaScript is
aware of specific CSS styles, which seems to be out of the scope of its responsibility. In
the event that the styling of an element needs to be changed, not only will CSS files
need to be searched for existing styles, but JavaScript files will also need to be
included in that search.

Instead of modifying the styles of an HTML element by adding them to its style
attribute with JavaScript, classes should be added to or removed from the element.
Not only will the appropriate styles be applied, but the CSS rulesets used will continue
to be appropriately organized with the rest of the website’s CSS.

Use Classes
Classes and IDs are an easy means to identify elements in the DOM that should have
certain styles applied to them. Classes can be reused as many times as needed on a
page, and they have a fairly low specificity so they can be overridden easily. IDs, on
the other hand, are almost exactly the opposite; they have a very high specificity, so
they cannot be easily overridden and they should be used at most once per page.
When writing CSS for a website that is ever-changing, elements should be styled by
using classes.

Use Classes | 35

Exclusively using classes is one of many ideas that divide frontend developers. One
argument against only using classes is that IDs are not only valid, but helpful in
enforcing that some HTML constructs are only used once. For example, if a website is
built that has a two-column page wherein one column is a sidebar and the other
houses the page content, the following selectors might be used:

#content {
 /* #content styles go here */
}
#sidebar {
 /* #sidebar styles go here */
}

The use of IDs implies that these elements will each be used at most once on the page.
However, what if at some point the page needs to be modified so the content is dis‐
played between two identically styled sidebars? Either the second sidebar would need
new CSS that gets applied with a new ID or class, or #sidebar could be changed to
use a class so its styles can be reused.

Elements that would benefit from using a unique ID can make use of a unique class
name instead, and the same goal can be achieved. If it turns out in the future that that
styling needs to be reused, it can be without change. Realistically, in most cases there
isn’t even a noticeable performance difference between using classes and IDs in
regard to CSS.

IDs are the fastest way to select elements in JavaScript, and not
using them to style elements is another good way to decouple CSS
from JavaScript, much like prefixing classes and IDs with js-.

Assign Classes Meaningful Names
Meaningful class names provide context by expressing what is being styled without
giving so little detail that it’s ambiguous, but also without giving so much detail that it
hinders code reuse.

In Example 3-10 a class is used to select an element, but what is a? Cryptic class
names are confusing. Maybe .a is intended to signify “animal.” If so, that would have
been a better choice, because .animal explains exactly what the element is intended
to represent.

Example 3-10. A declaration block with a cryptic class name

.a {
 width: 200px;
}

36 | Chapter 3: Writing Better CSS

However, while it’s important to be descriptive, it’s just as important not to overdo it.
What if instead of animal, the class name was female-black-and-white-kitten?
Technically it could be reused, but this class name is far too specific because other
animals might be displayed using the same styles, and this class name might not accu‐
rately describe the animals being displayed. .animal is a much better class name
because it’s descriptive enough that it’s easy to understand what is being styled, but it’s
also generic enough that it can describe any type of animal that should be styled simi‐
larly, be it male or female, young or old, or an animal that’s not a kitten.

Avoid Over-Modularized Classes
Meaningful class names describe the element that is being styled rather than describ‐
ing the styles being applied to the element. Have you ever seen a piece of HTML that
looks like Example 3-11?

Example 3-11. Over-modularized classes

<h1 class="font-bold uppercase blue-text margin-bottom-large no-padding">
 Too Many CSS Classes
</h1>

These classes describe how the element is being styled rather than what is being
styled. Additionally, these classes are said to be suffering from over-modularization—
because each class only applies one style, they will always need to be used together.
Over-modularized classes should be avoided because they aren’t much better than
using inline styles, like in Example 3-12.

Example 3-12. Inline CSS

<h2 style="font-weight: bold; text-transform: uppercase; color: #1200FF;
 margin-bottom: 20px; padding: 0">
 Too Many CSS Classes
</h2>

Instead these styles should be grouped together using a meaningful class name that
describes what is being styled, like in Example 3-13. Once that is done, the HTML is
much more readable because it is styled using one succinct class name, like in
Example 3-14.

Example 3-13. A class that describes what is being styled

.section-title {
 color: #1200FF;
 font-weight: bold;
 margin-bottom: 20px;
 padding: 0;

Assign Classes Meaningful Names | 37

 text-transform: uppercase;
}

Example 3-14. A class that groups over-modularized classes together

<h2 class="section-title">
 Too Many CSS Classes
</h2>

Build a Better Box
The box model is the method by which a browser determines how to render a rectan‐
gle. It is important to understand how the box model works because all HTML ele‐
ments are essentially boxes, and this knowledge can be the difference between
everything fitting together properly or not.

Figure 3-1 displays an element that has a set width, height, padding, margin, and bor‐
der (the color coding for margin and padding are purely illustrative). This box can be
generated using the code in Example 3-15.

Figure 3-1. An element with a set height, width, padding, margin, and border

Example 3-15. Code for the box in Figure 3-1

<!doctype html>
<html>
 <head>
 <title>Determining Dimensions with the Box Model</title>

38 | Chapter 3: Writing Better CSS

 <style type="text/css">
 .example-element {
 background-color: #FF0000;
 border: 5px solid #000000;
 display: block;
 height: 150px;
 margin: 5px;
 padding: 10px;
 width: 150px;
 }
 </style>
 </head>
 <body>
 <div class="example-element"></div>
 </body>
</html>

The dimensions for this box can be calculated in one of two ways, depending on the
value assigned to the element’s box-sizing property. In each of the following scenar‐
ios margin will affect the spacing around the box, but it is not taken into considera‐
tion when calculating its size.

box-sizing: content-box
When the box-sizing property is assigned the value content-box, the dimensions of
the box are calculated by adding the padding and border dimensions to the element’s
height and width dimensions. For example, if the dimensions of the box in
Figure 3-1 are calculated this way, the box’s computed dimensions will be 180 px tall
by 180 px wide because:

 150px height
+ 10px padding-top
+ 10px padding-bottom
+ 5px border-top
+ 5px border-bottom = 180px computed height

 150px width
+ 10px padding-left
+ 10px padding-right
+ 5px border-left
+ 5px border-right = 180px computed width

box-sizing: border-box
When the box-sizing property is assigned the value border-box, the dimensions of
the box are based solely on the box’s width and height properties. This means that
despite the padding and border applied to the box in Figure 3-1, the computed
dimensions of the box will be 150 px tall by 150 px wide because those are the dimen‐
sions set for the height and width properties; the browser will take padding and

Build a Better Box | 39

border into account and resize the height and width properties appropriately, so the
total dimensions equal those set by the height and width properties. In this case:

 150px computed height
- 10px padding-top
- 10px padding-bottom
- 5px border-top
- 5px border-bottom = 120px implicit height

 150px computed width
- 10px padding-left
- 10px padding-right
- 5px border-left
- 5px border-right = 120px implicit width

content-box or border-box?
Given that there are two different ways to calculate the dimensions of a box, it’s rea‐
sonable to wonder which should be used and when. Neither content-box nor
border-box is “better” than the other, but many find border-box to be a bit more
intuitive as it describes the total height and width of an element from border to bor‐
der, rather than just the dimensions of the content.

box-sizing can be set on any element, so it is possible to mix and match when
border-box and content-box are used, but for consistency’s sake it’s usually prefera‐
ble to choose one and stick with it. This can be accomplished by setting the appropri‐
ate value using the universal selector:

*,
*:after,
*:before {
 box-sizing: border-box;
}

Chapter Summary
The concepts in this chapter have laid another piece of the groundwork for when we
begin refactoring. Understanding how to write better CSS before we refactor will
make refactoring much easier. Next we’ll explore the intentions that styles can have
and how they can help with code reuse. When reading the next chapter, keep the
ideas from this chapter in mind because they will help you make decisions that can
simplify your CSS tremendously.

40 | Chapter 3: Writing Better CSS

CHAPTER 4

Classifying Different Types of Styles

Code reuse is one of the tenets of good architecture and arguably one of the most
important parts of writing high-quality CSS. This chapter discusses the subtle intents
that different styles can have when they are applied to HTML elements in logical and
deliberate ways. When styles are classified and used in relation to their intent, finding
ways to reuse code becomes much more obvious. As you make your way through this
chapter, think back to Chapter 2 and you’ll see how classifying different styles paral‐
lels how the cascade works.

The Importance of Classifying Styles
At its most basic, a website is a collection of documents that display information.
However, on the other end of the spectrum and at its most complicated, a website can
more resemble an intricate application that facilitates simple human interactions and
enables complex operations. Both of these extremes make use of semantic HTML tags
that help describe what is being displayed, and both can benefit from intent-based
styling.

Intent-based styling helps create a better architecture because organizing styles into
different classifications promotes more predictable code that can be reused more
easily. Following are the various classifications of styles that can be applied to any
website, despite its intricacies.

Normalizing Styles
Browsers come with a default stylesheet, called the user agent stylesheet, that applies
default styles to HTML elements. Because different browsers are made by different
companies, there can be discrepancies in which properties and values these style‐
sheets set.

41

Normalizing styles are styles whose intent is to provide default values for properties
on various elements that might otherwise have different defaults across browsers. For
example, Example 4-1 normalizes the styling of <hr> elements in various browsers.

Example 4-1. Normalizing <hr> elements across browsers

/**
 * 1. Add the correct box sizing in Firefox.
 * 2. Show the overflow in Edge and IE.
 */

hr {
 box-sizing: content-box; /* 1 */
 height: 0; /* 1 */
 overflow: visible; /* 2 */
}

It can be difficult to test and keep track of which browsers set which properties and
values by default, but luckily the web development community has done much of this
work for us already and there are a number of different sets of open source normaliz‐
ing styles available. One of the most commonly used (and the source of the CSS from
Example 4-1) is normalize.css, authored by Nicolas Gallagher and Jonathan Neal; it’s
available on GitHub and reprinted in Appendix A.

Many of the styles you might find in a set of open source normalizing styles are most
helpful when dealing with legacy browsers, so it’s entirely possible that they might not
be necessary for your project (depending on which browsers it supports). You might
also find that styles are included for a lot of elements that you’re not using, like
<audio>, <canvas>, <kbd>, and more. If you have no plans to use some of the
included elements you should consider removing their styles in the interest of having
smaller CSS files.

Base Styles
Base styles are styles whose intent is to provide a starting point from which other,
more specialized styles can be built up. They can be identified easily because they are
applied to HTML elements using single type selectors or very simple combinations of
type selectors and combinators (ul ul to target unordered lists within unordered
lists, for example) and any pseudoclasses that apply to them. Along with normalizing
styles, base styles are the least specific styles that should be found in a stylesheet.

Once a base style has been set on an HTML element it shouldn’t need to be redeclared
unless the style being set differs for another intended use case. The general rule of
thumb to keep in mind when writing base styles is that as additional styles are applied

42 | Chapter 4: Classifying Different Types of Styles

http://necolas.github.io/normalize.css

to elements, they shouldn’t need to override lots of base style declarations to accom‐
plish design goals.

Defining Base Styles
Following are some suggestions for how to approach defining base styles for different
types of commonly used elements. Many of the suggested properties are usually set by
the user agent stylesheet, but they may not be set with values that are appropriate for
every design, and those values might change over time as new browser versions are
released. Think about the majority of use cases the elements will be styled for, and
that will provide guidance for the values that should be set.

Base styles should only set properties and values for the most generic of use cases.
Properties that are commonly set include:

• color

• font-family

• font-size

• font-weight

• letter-spacing

• line-height

• margin

• padding

If your website is mostly informational in nature, setting just these styles will likely
get you far. However, if you are building a more application-like website with a more
intricate design, setting these properties will only get you started; more complex
styles might be needed for reusable components, as we’ll see later in this chapter.

The properties in this list should be considered when writing your base styles, but
they don’t need to be set 100% of the time, as all are inherited from their ancestors
(except margin and padding). If margin and padding values should be inherited, this
can be accomplished by using the value inherit for each of those properties. Any
additional properties or pseudoclasses that should be considered for inclusion in base
styles for a particular type of element are included in the following sections.

Base Styles | 43

Leveraging Inheritance

The color, font-family, font-size, font-weight, letter-

spacing, and line-height properties are usually inherited from
parent elements by child elements, so these values don’t always
need to be set. For a complete list of CSS properties and informa‐
tion on if their values are inherited, visit https://www.w3.org/TR/
CSS21/propidx.html. For a complete list of HTML elements to style,
visit https://www.w3.org/TR/html-markup/elements.html.

Document Metadata
Document metadata tags include the <head>, <title>, <base>, <link>, and <meta>
tags. Since they are not visible, they cannot be styled.

Sectioning Elements
Sectioning elements include the <address>, <article>, <aside>, <body>, <footer>,
<header>, <nav>, and <section> elements. These elements usually contain other ele‐
ments and comprise the various sections of an HTML document.

Consider setting the following properties on sectioning elements:

• color

• font-family

• font-size

• font-weight

• letter-spacing

• line-height

• padding

Setting the background property might also be helpful for the <body> element.
Example 4-2 shows how base styles can be applied to sectioning elements.

44 | Chapter 4: Classifying Different Types of Styles

https://www.w3.org/TR/CSS21/propidx.html
https://www.w3.org/TR/CSS21/propidx.html
https://www.w3.org/TR/html-markup/elements.html

Example 4-2. Base styles for sectioning elements

body {
 background: #FFFFFF;
 color: #333333;
 font-family: Helvetica, Arial, sans-serif;
 font-size: 14px;
 line-height: 1.3;
 padding: 5% 20%;
}

article,
footer,
header,
nav {
 padding: 0;
}

article,
nav {
 margin-bottom: 12px;
 margin-top: 12px;
}

footer {
 margin-top: 12px;
}

header {
 margin-bottom: 12px;
}

Heading and Text Elements
Heading elements include the <h1>–<h6> elements and are intended to define the
topic of each different section in an HTML document. Text elements include the
<figure>, <figcaption>, <p>, and <pre> elements and are intended to display blocks
of text.

Properties that should be considered when defining base styles for heading and text
elements include:

• font-family

• font-size

• font-weight

• letter-spacing

Base Styles | 45

• line-height

• margin-bottom

• margin-top

Example 4-3 shows how base styles can be applied to heading and text elements.

Example 4-3. Base styles for heading and text elements

h1,
h2,
h3,
h4,
h5,
h6 {
 font-family: Georgia, Times, serif;
 font-weight: 100;
 line-height: 1.1;
 margin: 0.5em 0;
}

h1 {
 font-size: 36px;
}

h2 {
 font-size: 24px;
}

h3 {
 font-size: 21px;
}

h4 {
 font-size: 18px;
}

h5 {
 font-size: 16px;
}

h6 {
 font-size: 14px;
}

p,
pre {
 margin-bottom: 12px;
 margin-top: 12px;
}

46 | Chapter 4: Classifying Different Types of Styles

Anchor Tags
Anchor tags provide links to other HTML documents or other sections of the same
HTML document. They can make use of the :link, :visited, :focus, :hover,
and :active pseudoclasses that are commonly used to show state, so when defining
base styles it’s important to keep these pseudoclasses in mind. Here’s a breakdown of
what each pseudoclass is used for:

• :link styles are applied to elements that have a valid href attribute.
• :visited styles are applied to links that have a valid href attribute whose loca‐

tion appears in the browser’s history.
• :focus styles are applied when a link element has received focus. This occurs

when the element is clicked or tapped, or when the Tab key is used to navigate to
the element.

• :hover styles are applied when the mouse pointer is placed over a link. On touch
devices, since there is no hover state, :hover styles are usually applied when an
element is tapped, and the styles are removed when a different element is tapped.

• :active styles are applied when a link is “activated.” When using a mouse this
happens after the link has been clicked but before the mouse button has been
released. On touch devices, this occurs when an element is tapped but before the
finger is released.

It’s also important to ensure that if they are set, the :link and :visited pseudoclasses
are the first two defined. All of these pseudoclasses have the same specificity, so the
cascade will apply them based on order. This means that if a link has been visited
and :visited is defined after :hover, :focus, or :active, any overlapping styles
defined for the :visited pseudoclass will take precedence.

Another thing to keep in mind is that all of these pseudoclasses effectively give links a
higher specificity because they are comprised of one type selector and one pseudo‐
class selector. This means that overriding those styles requires a higher specificity or
an equal specificity that appears later in the stylesheet. For this reason, the :link
pseudoclass is often ignored and the styles that would be applied are instead set
directly using the a type selector.

Common properties that should be considered when defining base styles for anchor
tags and their pseudoclasses include:

• background-color

• border

• color

Base Styles | 47

• font-weight

• text-decoration

Although the browser’s defaults usually suffice, defining the outline-width,
outline-style, and outline-color properties (or the more concise outline short‐
hand property) can be helpful when styling the :focus pseudoclass.

Removing a link’s use of the outline property on :focus without
replacing it with another visual cue is considered poor form as it
hinders usability for those navigating with just a keyboard or
another accessibility device.

Anchor tags are commonly inline by default as they are used to modify text or other
inline elements. font-family, font-size, and font-weight could also be set, but
more than likely values for these properties will be inherited. Example 4-4 shows how
base styles can be applied to anchor tag elements.

Example 4-4. Base styles for links

a,
a:visited,
a:focus,
a:hover,
a:active {
 color: inherit;
 text-decoration: underline;
}

a:hover {
 background-color: #FFFF00;
}

Text Semantics
Text semantics are elements that are used to give text more meaning or structure.
These elements are usually inline and include the <abbr>, , <cite>, <code>,
<data>, <dfn>, , <i>, <kbd>, <s>, , <sub>, <sup>, <time>, and <u> tags,
among others.

As these elements are used to modify text, the following properties should be consid‐
ered when defining their base styles:

• color

• font-family

48 | Chapter 4: Classifying Different Types of Styles

• font-size

• font-weight

For example, styles for the <code> tag might be defined as follows:

code {
 color: #00FF00;
 font-family: monospace;
 font-weight: 500;
 line-height: 1.5;
}

Lists
List elements include the (ordered list), (unordered list), and <dl> (defini‐
tion list) elements. Ordered and unordered lists can only immediately contain
(list item) elements and definition lists can only immediately contain <dt> (definition
term) and <dd> (definition description) elements.

Because of their versatility, it can be difficult to determine appropriate base styles for
lists. If a website is mostly informational it is common to display lists as numbered or
bulleted or as appropriately indented definitions, but if a website has a more intricate
user interface, lists may be used in a number of different scenarios that require other
styling to match a given design. Some of these scenarios might include horizontal
navigation, a list of products for sale, details in a social media profile, and so on.

The following properties should be considered when defining base styles for ordered
and unordered list elements:

• font-family

• font-size

• list-style-type or list-style-image
• list-style-position

• line-height

• margin-bottom

• margin-top

• padding-left

For a purely informational website, it might make sense to set the list-style-type
or list-style-image and list-style-position properties to help enumerate the
items in the list. However, for a more application-like website it might make even
more sense to simply assign the value none to these properties if they will rarely be
used in order to prevent having to constantly override them. To prevent child ele‐

Base Styles | 49

ments from being indented, padding-left should be set to 0 on the or
element. Child elements inherit font-family, font-size, and line-height
properties from their parent or element, but not margin or padding prop‐
erties.

An unordered list might be assigned the following styles:

ul {
 list-style-position: outside;
 list-style-type: disc;
 margin-top: 0;
 margin-bottom: 12px;
}

ul ul {
 margin-bottom: 0;
}

You can style the same properties for definition lists as for ordered and unordered
lists, though it’s not very common to use list-style-type, list-style-image, or
list-style-position as those styles only apply to elements that have the display
property set to list-item. list-item is the default value for the display property of
li elements, but block is typically the default for <dt> and <dd> elements.

<dd> and <dt> elements inherit font-family, font-size, and line-height proper‐
ties from their parent <dl> element, and it is common for <dd> elements to have
margin-left set to create an indented effect (to avoid this, assign this property a
value of 0).

Grouping Elements
Grouping elements include <div>, <main>, and . Although the tag is
technically a text-level semantic, its main use is for grouping text or inline elements.

The <div> and <main> tags are typically block-level elements, whereas the tag
is inline. Because these elements are simply used for grouping other tags, they don’t
usually warrant any base styles; their styling will vary on a case-by-case basis denoted
by classes. If, however, the <main> tag is used as a visual container, it might benefit
from having values set for margin and padding.

Tables
As the name suggests, tables display data within a tabular structure. Elements used
for displaying tabular data include the <table>, <caption>, <colgroup>, <col> (col‐
umn), <tbody> (table body), <thead> (table header), <tfoot> (table footer), <tr>
(table row), <td> (table cell), and <th> (table header cell) elements. In the late 1990s
and early 2000s it was common to use tables to create page layouts, but now that CSS

50 | Chapter 4: Classifying Different Types of Styles

and browsers have matured it makes more sense to leave that to other styled elements
and instead use tables to only display tabular data.

The following properties should be considered when defining base styles for <table>
elements:

• border-collapse

• border-spacing

• border (border-width, border-color, border-style)
• empty-cells

• font-family

• font-size

• letter-spacing

• line-height

The following properties should be considered when defining base styles for <thead>,
<tbody>, and <tfoot> elements:

• background-color

• color

• text-align

• vertical-align

And these properties should be considered when defining base styles for <th> and
<td> elements:

• background-color

• border (border-width, border-color, border-style)
• color

• font-family

• font-size

• letter-spacing

• line-height

• text-align

• vertical-align

Base Styles | 51

Given these considerations, base table styles might resemble something like the
following:

table {
 border-collapse: collapse;
 border-spacing: 0;
 empty-cells: show;
 border: 1px solid #000000;
}

tfoot,
thead {
 text-align: left;
}

thead {
 background-color: #ACACAC;
 color: #000000;
}

th,
td {
 border-left: 1px solid #000000;
 padding: 0.5em 1em;
}

th:first-child,
td:first-child {
 border-left: none;
}

Forms
Forms are used for gathering information from users and include the <form>,
<label>, <input>, <button>, <select>, <datalist>, <optgroup>, <option>,
<textarea>, <output>, <progress>, <meter>, <fieldset>, and <legend> elements.
As usual, properties that should be considered when declaring base styles include:

• font-family

• font-size

• line-height

• margin

• padding

Styles can be set on the <form> element and inherited by its children for basic
designs, but more complicated designs may warrant more styling. It’s common for
<legend>, <label>, and <input> elements to have differing values set for font-

52 | Chapter 4: Classifying Different Types of Styles

weight, font-size, and font-family, in which case those values need to be set on
the element.

Some form elements can be difficult to style because many browsers simply ignore
properties that are applied to them. For example, attempting to apply border-color,
border-width, background-color, and a number of other properties on checkboxes
and radio buttons results in the browser ignoring the desired styles. This can be over‐
come by creating custom checkbox and radio button components that hide the form
control and use other HTML elements to represent the visual metaphor, but this is
not the job of base styles.

Form elements might be reasonably assigned the following styles:

fieldset {
 border: 0;
 margin: 0;
 padding: 0;
}

input {
 display: block;
 font-size: inherit;
 padding: 4px;
 width: 100%;
}

label {
 display: block;
 font-weight: 900;
 margin-bottom: 6px;
 padding: 4px;
}

legend {
 border: 0;
 color: #000000;
 display: block;
 font-size: 1.2em;
 margin-bottom: 12px;
 padding: 0 12px;
 width: 100%;
}

Images
Graphics can be displayed using the or <picture> tags. Properties that should
be considered when declaring base styles include:

• border

Base Styles | 53

• max-width

• vertical-align

Because elements can be used in inline formatting contexts, baseline is the
default value assigned to the vertical-align property, which may or may not be
appropriate for the design being implemented. Additionally, when elements are
displayed within sized block-level elements, it’s common to prevent the image from
overflowing its container by assigning it a max-width equal to 100% of its parent con‐
tainer.

Base styles for the img tag might be defined as follows:

img {
 border: none;
 max-width: 100%;
 vertical-align: middle;
}

Component Styles
Reusable components are elements or groups of elements that are styled to employ vis‐
ual metaphors that make it easier to interact with a website. Some examples of reusa‐
ble components include buttons, drop-down menus, modal windows, progress bars,
and tabs.

Reusable components are easy to recognize, but they can be difficult to build cor‐
rectly. Before building a reusable component it’s helpful to answer the following ques‐
tions:

• Will this be a standalone component or will there be more than one grouped
together?

• Will this component typically behave like an inline element, a block-level ele‐
ment, or in some other way (i.e., will it be positioned absolutely out of the docu‐
ment flow)?

With the answers to these questions in mind, the process of creating reusable compo‐
nents can be simplified by following a few guidelines:

1. Before building a component, define the behavior that needs to be built.
2. Keep component styles granular and set reasonable defaults.
3. Override visual styles for grouped components as needed by surrounding them

with a container element that has a differentiating class.
4. Delegate the assignment of dimensions to structural containers.

54 | Chapter 4: Classifying Different Types of Styles

The following example, which explains how to build a simple tab component
(Figure 4-1), explores each of these guidelines.

Figure 4-1. Tabs

Define the Behavior that Needs to Be Built
For this example we’ll be building the tabs depicted in Figure 4-1. The requirements
are as follows:

• There are three tabs in Figure 4-1, but the component should work with two or
more tabs.

• When a tab is active, the bottom border turns blue and the background white.
• When a tab is inactive, the background color is gray.

We’ll use the HTML in Example 4-5 to build the tabs.

Example 4-5. Markup for a group of three tabs

<nav>

 Tab One

Component Styles | 55

 Tab Two
 Tab Three

</nav>

Keep Component Styles Granular
Keeping component styles granular means that each should be written to style just
one element, so they can be reused. In Example 4-5 there are three tabs, so a class
could be created for each (as in Example 4-6), but that would just result in a lot of
duplicated code.

Example 4-6. Individual classes for each tab

/**
 * Styling each tab individually results in lots of duplicated code.
 */
.tab-1 { /* styles go here */ }
.tab-2 { /* styles go here */ }
.tab-3 { /* styles go here */ }

.tab-1:hover { /* styles go here */ }

.tab-2:hover { /* styles go here */ }

.tab-3:hover { /* styles go here */ }

.tab-1.active { /* styles go here */ }

.tab-2.active { /* styles go here */ }

.tab-3.active { /* styles go here */ }

.tab-1 > a { /* styles go here */ }

.tab-2 > a { /* styles go here */ }

.tab-3 > a { /* styles go here */ }

.tab-group { /* styles go here */ }

This isn’t a very good solution—each class has the same declaration block as the oth‐
ers, which leads to larger CSS files for clients to download and an increased risk of
visual inconsistencies because there is more code to maintain. To avoid this the
classes could be grouped as in Example 4-7, but there would still be a bunch of classes
that do the same thing.

Example 4-7. Individual classes for a tab grouped together

/**
 * Grouping tabs like this results in lots of unnecessary duplicated classes.
 */

.tab-1,

.tab-2,

56 | Chapter 4: Classifying Different Types of Styles

.tab-3 {
 /* styles go here */
}

.tab-1:hover,

.tab-2:hover,

.tab-3:hover {
 /* styles go here */
}

.tab-1.active,

.tab-2.active,

.tab-3.active {
 /* styles go here */
}

.tab-1 > a,

.tab-2 > a,

.tab-3 > a {
 /* styles go here */
}

.tab-group {
 /* styles go here */
}

The best solution is to abstract the styles into a reusable class (Example 4-8). Note
that there is also an .active class that can be conditionally applied to indicate which
tab is active, as well as styles for a .tab-group element that contains multiple tabs.

Example 4-8. Styles for a tab

/**
 * Tab Component Styles
 */

.tab {
 background-color: #F2F2F2;
 border-bottom: 1px solid #EEEEEE;
 border-top: 1px solid #EEEEEE;
 bottom: -1px;
 display: inline-block;
 margin-left: 0;
 margin-right: 0;
 margin-top: 4px;
 position: relative;
}

.tab:first-child {
 border-left: 1px solid #EEEEEE;
 border-top-left-radius: 4px;

Component Styles | 57

}

.tab:last-child {
 border-right: 1px solid #EEEEEE;
 border-top-right-radius: 4px;
}

.tab.active {
 background-color: #FFFFFF;
 border-bottom: 1px solid #2196F3;
 color: #000000;
}

.tab:hover {
 background-color: #F9F9F9;
}

.tab > a {
 color: inherit;
 display: block;
 height: 100%;
 padding: 12px;
 text-decoration: none;
 width: 100%;
}

/**
 * Tab Component Containers
 */

.tab-group {
 border-bottom: 1px solid #EEEEEE;
 list-style: none;
 margin: 0;
 padding-left: 0;
}

Now that we have these styles assigned to the appropriate classes we can update the
HTML to make use of them, as in Example 4-9.

Example 4-9. Markup for a group of three tabs with new tab class

<nav>
 <ul class="tab-group">
 <li class="tab active">Tab One
 <li class="tab">Tab Two
 <li class="tab">Tab Three

</nav>

58 | Chapter 4: Classifying Different Types of Styles

Let the Component’s Container Override Visual Styles as Needed
At this point we have a horizontal tab component, but what if we need to also be able
to display tabs vertically? When we need to use the tabs in a context in which they are
styled differently, we’ll delegate the responsibility of defining those styles to the parent
container. To accomplish this, we’ll create a new .tab-group-vertical class that will
also contain .tab elements and group it with the .tab-group class:

.tab-group,

.tab-group-vertical {
 list-style: none;
 margin: 0;
 padding-left: 0;
}

Next, we’ll move some of the declarations made in the .tab ruleset to rulesets with
more specific selectors so new classes don’t have to always override them. The .tab
class will now only contain styles that are applicable to all tabs:

.tab {
 background-color: #F2F2F2;
 margin-left: 0;
 margin-right: 0;
 position: relative;
}

.tab:hover {
 background-color: #F9F9F9;
}

.tab.active {
 background-color: #FFFFFF;
 color: #000000;
}

The border, border-radius, and display styles should now be delegated to appro‐
priately scoped selectors, and the .tab-group and .tab-group-vertical classes
should each receive their own differing border styles (Example 4-10).

Example 4-10. Delegating properties to appropriate containers

/**
 * Horizontal Tab Groups
 */

.tab-group {
 border-bottom: 1px solid #EEEEEE;
}

.tab-group .tab {

Component Styles | 59

 border-bottom: 1px solid #EEEEEE;
 border-top: 1px solid #EEEEEE;
 bottom: -1px;
 display: inline-block;
}

.tab-group .tab:first-child {
 border-left: 1px solid #EEEEEE;
 border-top-left-radius: 4px;
}

.tab-group .tab:last-child {
 border-right: 1px solid #EEEEEE;
 border-top-right-radius: 4px;
}

.tab-group .tab.active {
 border-bottom: 1px solid #2196F3;
}

/**
 * Vertical Tab Groups
 */

.tab-group-vertical {
 border-left: 1px solid #EEEEEE;
}

.tab-group-vertical .tab {
 border-left: 1px solid #EEEEEE;
 border-right: 1px solid #EEEEEE;
 left: -1px;
 display: block;
}

.tab-group-vertical .tab:first-child {
 border-top: 1px solid #EEEEEE;
 border-top-right-radius: 4px;
}

.tab-group-vertical .tab:last-child {
 border-bottom: 1px solid #EEEEEE;
 border-bottom-right-radius: 4px;
}

.tab-group-vertical .tab.active {
 border-left: 1px solid #2196F3;
}

One last thing you may have noticed is that 1px solid #EEEEEE appears over and
over. We can refactor this by setting the border-color and border-style properties

60 | Chapter 4: Classifying Different Types of Styles

on the .tab class and then appropriately setting the border-width and overriding the
border-color property when necessary, like in Example 4-11. This is advantageous
because in the event that this color needs to be changed, there will be fewer places
that need to be updated.

Example 4-11. Markup for a group of three tabs with new tab class

/**
 * Tab Component Styles
 */

.tab {
 background-color: #F2F2F2;
 margin-left: 0;
 margin-right: 0;
 position: relative;
}

.tab:hover {
 background-color: #F9F9F9;
}

.tab.active {
 background-color: #FFFFFF;
 color: #000000;
}

.tab > a {
 color: inherit;
 display: block;
 height: 100%;
 padding: 12px;
 text-decoration: none;
 width: 100%;
}

/**
 * Tab Component Containers
 */

.tab-group,

.tab-group-vertical {
 list-style: none;
 margin: 0;
 padding-left: 0;
}

.tab,

.tab-group,

.tab-group-vertical {
 border-color: #EEEEEE;

Component Styles | 61

 border-style: solid;
 border-width: 0;
}

/**
 * Horizontal Tab Groups
 */

.tab-group {
 border-bottom-width: 1px;
}

.tab-group .tab {
 border-bottom-width: 1px;
 border-top-width: 1px;
 bottom: -1px;
 display: inline-block;
}

.tab-group .tab:first-child {
 border-left-width: 1px;
 border-top-left-radius: 4px;
}

.tab-group .tab:last-child {
 border-right-width: 1px;
 border-top-right-radius: 4px;
}

.tab-group .tab.active {
 border-bottom-color: #2196F3;
 border-bottom-width: 1px;
}

/**
 * Vertical Tab Groups
 */

.tab-group-vertical {
 border-left-width: 1px;
}

.tab-group-vertical .tab {
 border-left-width: 1px;
 border-right-width: 1px;
 left: -1px;
 display: block;
}

.tab-group-vertical .tab:first-child {
 border-top-width: 1px;

62 | Chapter 4: Classifying Different Types of Styles

 border-top-right-radius: 4px;
}

.tab-group-vertical .tab:last-child {
 border-bottom-width: 1px;
 border-bottom-right-radius: 4px;
}

.tab-group-vertical .tab.active {
 border-left-color: #2196F3;
 border-left-width: 1px;
}

When a group of tabs present in a .tab-group-vertical element are rendered using
the CSS in Example 4-11 you’ll see the tabs in Figure 4-2.

Figure 4-2. Vertical tabs

These tabs aren’t quite right yet, but we’ll take care of that next by delegating the
assignment of dimensions to the component’s structural container.

Component Styles | 63

Delegate the Assignment of Dimensions to Structural Containers
You may have noticed that in the CSS we wrote for the .tab-group and .tab-group-
vertical components’ dimensions weren’t specified. This omission was intentional,
because the responsibility for assigning dimensions should be delegated to the struc‐
ture that contains the component or component group. Structural styles, described in
the next section, are styles that dictate the basic structure of a page. There are any
number of different layouts you can build, including those with sidebars, columns, or
whatever you dream up.

Components are intended to be reusable, so it’s difficult to predict all of the different
places where they’ll appear. This is why it’s important to delegate the responsibility of
setting dimensions to the elements that are actually housing the components.

For example, let’s assume that we want to display two horizontal groups of tabs that
each occupy 50% of the available visible area for desktop browsers, as shown in
Figure 4-3. We could add a width: 50% declaration to the .tab-group definition, but
that wouldn’t be very reusable if we needed to use the tabs at a different width else‐
where. Instead, Example 4-12 delegates the responsibility of setting dimensions to a
structural element that has the .tabbed-pane class. You probably wouldn’t want to
use this many different sets of tabs on the same page, but the example is merely
intended as an illustration of how to delegate the responsibility of setting dimensions.

Figure 4-3. Delegating component dimensions to a structural container

Example 4-12. Code that delegates component dimensions to a structural container

<!doctype html>
<html>
 <head>
 <title>Example: Tabs</title>
 <style type="text/css">

64 | Chapter 4: Classifying Different Types of Styles

 *,
 *:after,
 *:before {
 box-sizing: border-box;
 }

 body {
 margin: 0;
 padding: 0;
 }

 /**
 * Tab Component Styles
 */

 .tab {
 background-color: #F2F2F2;
 margin-left: 0;
 margin-right: 0;
 position: relative;
 }

 .tab:hover {
 background-color: #F9F9F9;
 }

 .tab.active {
 background-color: #FFFFFF;
 color: #000000;
 }

 .tab > a {
 color: inherit;
 display: block;
 height: 100%;
 padding: 12px;
 text-decoration: none;
 width: 100%;
 }

 /**
 * Tab Component Containers
 */

 .tab-group,
 .tab-group-vertical {
 list-style: none;
 margin: 0;
 padding-left: 0;
 }

 .tab,

Component Styles | 65

 .tab-group,
 .tab-group-vertical {
 border-color: #EEEEEE;
 border-style: solid;
 border-width: 0;
 }

 /**
 * Horizontal Tab Groups
 */

 .tab-group {
 border-bottom-width: 1px;
 }

 .tab-group .tab {
 border-bottom-width: 1px;
 border-top-width: 1px;
 bottom: -1px;
 display: inline-block;
 }

 .tab-group .tab:first-child {
 border-left-width: 1px;
 border-top-left-radius: 4px;
 }

 .tab-group .tab:last-child {
 border-right-width: 1px;
 border-top-right-radius: 4px;
 }

 .tab-group .tab.active {
 border-bottom-color: #2196F3;
 border-bottom-width: 1px;
 }

 /**
 * Vertical Tab Groups
 */

 .tab-group-vertical {
 border-left-width: 1px;
 }

 .tab-group-vertical .tab {
 border-left-width: 1px;
 border-right-width: 1px;
 left: -1px;
 display: block;
 }

66 | Chapter 4: Classifying Different Types of Styles

 .tab-group-vertical .tab:first-child {
 border-top-width: 1px;
 border-top-right-radius: 4px;
 }

 .tab-group-vertical .tab:last-child {
 border-bottom-width: 1px;
 border-bottom-right-radius: 4px;
 }

 .tab-group-vertical .tab.active {
 border-left-color: #2196F3;
 border-left-width: 1px;
 }

 /**
 * Tab Component Containers
 */

 .tabbed-pane {
 display: block;
 width: 100%;
 }

 .tabbed-pane .tab-group {
 float: left;
 width: 45%;
 }

 .tabbed-pane .tab-group:first-child {
 margin-right: 5%;
 }

 .tabbed-pane .tab-group:last-child {
 margin-left: 5%;
 }

 /**
 * Structural Styles
 */

 .global-nav {
 float: left;
 padding: 5% 0;
 width: 10%
 }

 .content {
 float: left;
 padding: 5%;
 width: 80%;

Component Styles | 67

 }

 </style>
 </head>
 <body>
 <nav class="global-nav">
 <ul class="tab-group-vertical">
 <li class="tab">Home
 <li class="tab active">Policies & Fees
 <li class="tab">Documents
 <li class="tab">Billing

 </nav>

 <main class="content">
 <nav class="tabbed-pane">
 <ul class="tab-group">
 <li class="tab active">Policy One
 <li class="tab">Policy Two
 <li class="tab">Policy Three

 <ul class="tab-group">
 <li class="tab active">Fee One
 <li class="tab">Fee Two
 <li class="tab">Fee Three

 </nav>
 </main>
 </body>
</html>

Structural Styles
Structural styles contain components and their containers, just like the .tabbed-pane
element in Example 4-12. Since layouts need dimensions, it’s easy to delegate setting
the dimensions to structural styles and then simply add in components and their con‐
tainers. Example 4-13 is code for a simple layout that contains a header, sidebar, and
content area (Figure 4-4). When the viewport gets too small, the header, sidebar, and
content area stack vertically (Figure 4-5).

Example 4-13. Layout with a header, sidebar, and content area

<!doctype html>
<html>
 <head>
 <title>Layout Example</title>
 <style type="text/css">
 *,
 *:after,
 *:before {

68 | Chapter 4: Classifying Different Types of Styles

 box-sizing: border-box;
 }

 html,
 body,
 main {
 height: 100%;
 margin: 0;
 width: 100%;
 }

 .layout-header {
 background-color: #DDDD88;
 display: block;
 min-height: 10%;
 width: 100%;
 }

 .layout-header,
 .layout-sidebar,
 .layout-content {
 text-align: center;
 }

 .layout-sidebar,
 .layout-content {
 float: left;
 height: 100%;
 }

 .layout-sidebar {
 background-color: #8888BB;
 width: 20%;
 }
 .layout-content {
 background-color: #EEBB55;
 width: 80%;
 }

 @media all and (max-width: 640px) {
 .layout-header,
 .layout-sidebar,
 .layout-content {
 display: block;
 float: none;
 height: auto;
 min-height: 100px;
 width: 100%;
 }
 }
 </style>
 </head>

Structural Styles | 69

 <body>
 <main>
 <header class="layout-header">Header</header>
 <div class="layout-sidebar">Sidebar</div>
 <div class="layout-content">Content</div>
 </main>
 </body>
</html>

Figure 4-4. Layout with a header, sidebar, and content area

70 | Chapter 4: Classifying Different Types of Styles

Figure 4-5. Layout with a stacked header, sidebar, and content area

Utility Styles
We learned in Chapter 2 that the !important declaration overrides the cascade by
telling the browser that a declaration should be used for elements that match its con‐
taining ruleset’s selectors regardless of the specificity of the declaration block’s selec‐
tor. Misuse of !important leads to confusing CSS: if it’s used in multiple declaration
blocks to style the same element, the order in which those rulesets appear will deter‐
mine which styles get applied.

One way to avoid confusion is to avoid using !important entirely, but used sparingly
it can be very helpful. Utility styles are styles that get applied to elements either by a

Utility Styles | 71

prudent developer when she is defining the classes that appear on an HTML element,
or by JavaScript when a certain condition is met. For example, if pressing a button
hides a particular element, this could be achieved by adding the following class:

.hidden {
 display: none !important;
}

Adding !important ensures that the element will continue to be hidden regardless of
other classes that are added to or removed from the element, (unless, of course, a
conflicting display property augmented by !important is added after).

Browser-Specific Styles
Older browsers have quirks that can often be overcome by using browser-specific CSS
hacks that trick the browser into acting the way you expect it to. For example, due to a
bug in Internet Explorer 7 the inline-block value does not always work as expected
for the display property, but it is still possible to make elements behave like inline-
block elements. To do this you’ll have to trick the browser by using the CSS shown in
Example 4-14.

Example 4-14. The inline-block hack for IE7

.selector {
 display: inline-block;
 *display: inline;
 zoom: 1;
}

There are two problems with this code: the *display property is not valid because it’s
a syntax error (property names cannot begin with an asterisk), and you’re cluttering
up your CSS with a hack for an obsolete browser. If you absolutely cannot drop sup‐
port for an old browser that needs hacks like this, you should keep these hacks sepa‐
rate and be sure to leave behind comments explaining what the code does. For
example, if you need to use a CSS hack for older versions of Internet Explorer, you
could keep these hacks in their own stylesheet and add them to the page using condi‐
tional comments that only load those styles for a particular version of the browser:

<!–-[if IE 7]>
 <link rel="stylesheet" href="ie7.css" type="text/css" />
<![endif]–->

72 | Chapter 4: Classifying Different Types of Styles

Chapter Summary
This chapter described the various intents that styles can have. Although the ideas in
this chapter are fairly simple, they can be very powerful; as we’ll see in Chapter 6, a
solid understanding of the different intents as well as the functionality of the cascade
makes organizing and reusing CSS much easier. Before we get to that, though, we’ll
talk about testing.

Chapter Summary | 73

CHAPTER 5

Testing

Testing CSS can be difficult because there are so many different platforms, screen
sizes, and form factors that need to be tested. This chapter explores how to determine
which browsers and devices need to be tested as well as a number of different ways to
test and maintain your CSS. By the end of this chapter you should have a better idea
of how to approach testing your CSS, which will result in a higher level of confidence
when making changes.

Why Is Testing Difficult?
Thoroughly testing CSS changes can take a long time and requires a lot of different
tools.

There are many factors to consider, including:

• Which browser is the page being tested on?
• How do you test various browsers on different operating systems?
• What size is the window that the page is being viewed in?
• How can a large number of pages be tested quickly?
• How do you verify that what you’re seeing is correct?
• How can a website be tested on other devices if you don’t have access to those

specific devices?

Which Browsers Are Important to Test?
Before testing, it’s important to know which browsers should be tested. Ideally you
will only need to support browsers that are being used to view your website by a min‐

75

imum number of people (the particular threshold can vary from company to com‐
pany). You can identify these fairly easily by using an analytics tool that breaks down
all of the browsers and devices and the versions of each that are used by the website’s
visitors.

Browser Market Share
It’s important to support all of the major browsers that have been released in the past
couple of years. Recent versions of Chrome, Firefox, Safari, Microsoft Edge (formerly
Internet Explorer), and their mobile counterparts have done a great job of being
standards-compliant, so there is less fragmentation in browser behavior than there
once was. Each of these browsers offers automatic updates too, which means that as
time goes on more people will have up-to-date modern browsers.

Unfortunately, though, some people still use old browsers. For example, at the time of
writing the top three most used versions of Microsoft Edge/Internet Explorer accord‐
ing to NetMarketShare were Internet Explorer 11, Internet Explorer 8, and Edge 13,
in that order (Figure 5-1).

Figure 5-1. Desktop browser market share in July 2016, according to NetMarketShare

If your website isn’t being frequented by people using old browsers, then you proba‐
bly don’t have to worry about maintaining your code for them. However, if older
browsers account for a sizeable percentage of your traffic, then you might want to
consider supporting them, especially if your website is generating revenue.

Accessing Browser Statistics and Screen Resolutions in Google
Analytics
Google Analytics is a freemium service offered by Google and is one of the most
commonly used analytics packages; it tracks website traffic, user behavior, and much
more. Let’s look at two pieces of information that are important to refactoring CSS:
browser information and screen resolutions.

76 | Chapter 5: Testing

http://www.google.com/analytics

Finding Browser Statistics and Screen Resolutions in Other Analytics
Tools

If you’re using something other than Google Analytics you might
still be able to get data about the browsers and screen resolutions
being used to view your website. Please refer to your analytics tool’s
documentation for more information.

Browser information
At the time of writing, browser information can be found in Google Analytics in the
Audience → Technology → Browser & OS menu when “Browser” is selected as the
primary dimension (Figure 5-2). Once there, clicking on a browser will reveal the sta‐
tistics for each version of that browser that has visited your website, as seen in
Figure 5-3. This information will provide the necessary information to determine
which browsers are being used to view your website. If you find that you’re spending
a considerable amount of time writing CSS to support an old browser that very few
people are actually using to view your site, you should consider dropping support for
that browser.

Figure 5-2. The Browser & OS screen in Google Analytics

Browser Market Share | 77

Figure 5-3. The breakdown of browser versions in Google Analytics

Screen resolutions
Information on screen resolutions can also be found in Google Analytics in the Audi‐
ence → Technology → Browser & OS menu, when “Screen Resolution” is selected as
the primary dimension (Figure 5-4). This data indicates the screen sizes at which
your website is being viewed and can be helpful in determining the most common
use cases that should be designed for.

78 | Chapter 5: Testing

Figure 5-4. Screen resolutions in Google Analytics

Testing with Multiple Browsers
The most common way to test CSS across browsers is to do so manually. You’ll prob‐
ably want to download all of the major mainstream browsers:

• Google Chrome
• Firefox
• Safari
• Microsoft Edge

For mobile testing, you’ll need to download browsers from the appropriate market‐
place for your device.

Safari for iOS
Safari for iOS can be tested using the native application on an iOS device or the iOS
Simulator for Xcode. You can download Xcode for free from the Apple App Store
(Figure 5-5), but unfortunately Xcode only runs on Mac OS; it cannot be installed on
Windows.

Testing with Multiple Browsers | 79

http://www.google.com/chrome
https://www.mozilla.org/firefox
https://www.apple.com/safari
https://www.microsoft.com/en-us/windows/microsoft-edge

Figure 5-5. Xcode in the App Store

Once you’ve installed Xcode, you can open the iOS Simulator by navigating to Xcode
→ Open Developer Tool → iOS Simulator. Once the iOS Simulator is running, you
can launch Safari and view websites (Figure 5-6).

80 | Chapter 5: Testing

Figure 5-6. Emulating Safari in iOS Simulator

Android
Android devices can be tested in emulators using Android Studio (Figure 5-7), which
you can download for free at http://developer.android.com.

Testing with Multiple Browsers | 81

http://developer.android.com

Figure 5-7. The Android Studio landing page

Once you’ve installed Android Studio, you can create and launch emulators by creat‐
ing an empty project and then selecting an emulator from the Tools → Android →
AVD Manager menu (Figure 5-8).

Figure 5-8. The Android Virtual Device Manager

82 | Chapter 5: Testing

Once you’ve launched an emulator you can launch a web browser from within the
simulated device, much like in iOS Simulator, and use it to view websites (Figure 5-9).

Figure 5-9. Emulating an Android device

Testing with Multiple Browsers | 83

Testing with Old Versions of Browsers
Earlier in this chapter we learned how to use analytics packages to determine if your
website is being frequented by people using out-of-date browsers. In some instances,
you might be able to drop support for these browsers—but if you can’t, you’ll need to
ensure that your browser works well for this demographic. The following sections
contain information on how to test your website on older browsers.

Internet Explorer and Microsoft Edge
You can download Microsoft Edge and old versions of Internet Explorer for testing
purposes at https://www.modern.ie. These browsers come as virtual machines that
can be run on VirtualBox, VMWare, or Parallels. A virtual machine is a piece of soft‐
ware that emulates an operating system, and Virtual Box, VMWare, and Parallels are
programs that can run virtual machines. Virtual machines are especially helpful
because programs like Internet Explorer that were compiled to run specifically on one
operating system will not run on another.

Firefox
You can download old versions of Firefox at https://support.mozilla.org/en-US/kb/
install-older-version-of-firefox. Testing an old version of Firefox is as simple as finding
the version you need to test, downloading it for your operating system, and then
viewing the website in that browser. If you’re not developing on Windows but you are
making use of the Internet Explorer virtual machines, you can also download older
versions of Firefox for Windows within the virtual machine to test on that platform.

Safari and Safari for iOS
Testing old versions of Safari unfortunately requires having access to an older version
of Mac OS, because Safari uses the WebKit framework found in OS X to render web
pages. However, testing old versions of Safari for iOS can be done using the Xcode
simulator by choosing the Hardware → Device → Manage Devices menu option and
creating a new simulator with the desired operating system in the Devices window
(Figure 5-10).

For more information about the iOS Simulator, see the Simulator User Guide.

84 | Chapter 5: Testing

https://www.modern.ie
https://www.virtualbox.org/
http://www.vmware.com/
http://www.parallels.com/
https://support.mozilla.org/en-US/kb/install-older-version-of-firefox
https://support.mozilla.org/en-US/kb/install-older-version-of-firefox
http://apple.co/2fgPFNv

Figure 5-10. Creating a new simulator in the iOS Simulator

Chrome
Unfortunately Google doesn’t provide old versions of Chrome for testing, but a new
version of Chrome is released every six weeks and each new version has a very high
adoption rate.

Testing the Bleeding Edge
If you’re interested in seeing what’s coming in the next version of Chrome, Firefox, or
Safari, you can keep abreast of changes with their nightly releases:

• Chrome Canary
• Firefox Aurora
• WebKit Nightly

Microsoft does not provide nightly releases for Edge, but it does provide frequent
early releases to members of the Windows Insider Program.

Testing the Bleeding Edge | 85

https://www.google.com/chrome/browser/canary.html
https://nightly.mozilla.org
http://nightly.webkit.org
https://insider.windows.com

Third-Party Testing Services
An alternative to testing your website by maintaining multiple operating systems with
lots of browsers and emulators is to use a third-party service. Many services are avail‐
able that will allow you to test a website on any browser or form factor while provid‐
ing features like sharing test sessions, manual testing on various browsers, taking
screenshots, and more. Here’s a selection, some of which offer a free trial or have a
free tier:

• BrowserStack
• Sauce Labs
• Browserling
• Litmus

Testing with Developer Tools
Each of the major browsers comes with its own set of developer tools that are there to
help developers make their websites better: a number of tools are provided with each
suite, each of which accomplishes a different task, but in this section only those that
are relevant to testing CSS during development will be discussed.

• Chrome DevTools
• Safari for Developers
• Firefox Developer Tools
• Microsoft Edge Developer Tools

Ever-Changing Dev Tools

The instructions given here are accurate at the time of writing, but
browser dev tools are constantly changing. If you find that the
inevitable changes render any of the following information obso‐
lete, please refer to the websites referenced in the preceding list for
more information.

86 | Chapter 5: Testing

https://www.browserstack.com
https://saucelabs.com
https://www.browserling.com
https://litmus.com
https://developer.chrome.com/devtools
https://developer.apple.com/safari/tools/
https://developer.mozilla.org/en-US/docs/Tools
https://dev.modern.ie/platform/documentation/f12-devtools-guide/

Emulating Device Sizes
Testing multiple form factors (i.e., phones, tablets, etc.) can be done by buying lots of
devices, but that can get expensive quickly. Another option is to use browser devel‐
oper tools to emulate the desired device dimensions. Device size can be emulated by
resizing the browser window, but it’s quicker to use preset dimensions. Google
Chrome comes with a number of predefined dimensions that are available in the
DevTools Device Mode menu.

You can access the Device Mode menu by:

• Right-clicking anywhere on the page
• Selecting “Inspect Element” to open Chrome DevTools
• Clicking the Toggle Device Mode icon (Figure 5-11)

Figure 5-11. Chrome’s Toggle Device Mode icon

When you’re in Device Mode, a toolbar appears at the top of the window that pro‐
vides preset device dimensions and the ability to set your own (see Figure 5-12).

Testing with Developer Tools | 87

Figure 5-12. Device emulation in Chrome DevTools

88 | Chapter 5: Testing

Device size can be emulated in Firefox by entering Responsive Design mode from the
Tools → Web Developer menu (Figure 5-13).

Figure 5-13. Firefox’s Responsive Design mode

Testing with Developer Tools | 89

Safari also has a Responsive Design mode for emulating device size (Figure 5-14),
accessed via the Develop → Enter Responsive Design Mode menu item.

Figure 5-14. Safari’s Responsive Design mode

To emulate device size in Microsoft Edge:

1. Open the F12 Developer Tools.
2. Navigate to the Emulation tab (Figure 5-15).
3. Choose a device size from the “Resolution” dropdown.

90 | Chapter 5: Testing

Figure 5-15. Internet Explorer’s F12 Developer Tools Emulation tab

User Agent Spoofing

A user agent is a string that the web browser sends the server to
identify itself. The developer tools found in all major browsers
allow you to change the user agent, and people often assume that
changing this value is effectively the same as simulating a different
browser. However, user agent spoofing only changes the way the
browser identifies itself; changing the user agent string does not
change the browser’s rendering agent.

The Document Object Model (DOM) and CSS Styles
Modern developer tools provide access to the DOM in an interactive state. Elements
can be inspected or manipulated by adding, removing, or changing attributes or
styles. When an element is selected from the DOM its styles can be analyzed as they
are applied or as they are computed.

Figure 5-16 shows each of the CSS rules that are used to style the <body> element in a
website as they are applied from various sources. Rules that are inherited are clearly
labeled with the files and line numbers they originated from. Styles that are applied to
the pseudo ::before and ::after elements are also clearly labeled. Rules that are
crossed out are rules that have been overridden by other rules as determined by the
cascade. Styles can be added or manipulated in various ways depending on which
browser is being used.

Testing with Developer Tools | 91

Figure 5-16. The Chrome DevTools Styles panel

Element styles can also be viewed as they would appear after being manipulated by
the cascade, as can be seen in Figure 5-17. Expanding a style shows the origin file and
line number of the applied style.

To view an element in the DOM, right-click it (Ctrl-click on Mac OS X), and select
the “Inspect Element” option from the context menu. This will automatically open
the browser’s developer tools and highlight the element in the DOM explorer. The
Styles panel appears next to the DOM explorer by default in Chrome, Firefox, and
Edge. In Safari, you may need to click the Styles tab at the top right of the developer
tools menu to view this tool.

92 | Chapter 5: Testing

Figure 5-17. The Chrome DevTools Computed Styles tab

Visual Regression Testing
Visual regression testing is a method of testing in which a baseline image of a user
interface is compared with other images of the same user interface over time to detect
unintended changes (regressions). Visual regressions can be very time-consuming to
test because there are lots of browsers that need to be tested, and doing this every
time a change is made can result in a lot of testing. Additionally, it can be difficult for
the naked eye to determine if small changes in spacing have occurred.

Visual regression testing can be very helpful, but like any method of testing it’s not a
silver bullet that will solve all of your problems. By its very nature visual regression
testing is used for identifying things that have already gone wrong, so it’s important to
do before pushing CSS changes to production.

Tips for Visual Regression Testing
Here are some tips for visual regression testing:

Test important things
Like with unit testing, it can be tempting to try to test every single piece of code
you’ve written when writing visual regression tests. However, the more tests you
have the more you’ll have to maintain, and on top of that lots of tests aren’t nec‐
essarily high-quality tests. Rather than striving for a large quantity of tests, it’s
important to test things that really matter. For example, once your base styles are

Visual Regression Testing | 93

defined, it probably isn’t very likely that they’ll regress; it’s more important to test
reusable components that are more complicated and potentially more brittle.

Make tests granular
Visual regression testing makes it easy to test a lot of things all at once by taking a
screenshot of an entire page, but it’s important to avoid doing this. When a large
number of components are tested together it can be difficult to determine what
the actual cause of a regression is because there are so many different things
going on. Instead, it’s important to make your tests more granular by testing indi‐
vidual components one at a time. This way if there is a regression, it’ll be much
easier to determine the cause.

Use a variety of browsers
Using a variety of browsers for visual regression testing is extremely important
since there can be inconsistencies between them. That being said, it’s important
not to compare screenshots across browsers because it’s not productive. If one
browser renders text a bit differently than another, it’s probably not that big a
deal unless it’s really breaking things. This also means that you’ll likely need to
have multiple test environments available if you need to test multiple versions of
Internet Explorer or Safari, as we learned earlier in this chapter.

Visual Regression Testing with Gemini
Gemini is a project developed by the Yandex team that facilitates visual regression
testing. It allows you to write a script that automates taking screenshots of elements
with any major browser and then compares them against baseline images with the
differences highlighted.

In this example we’ll learn how to use Gemini to test an interface using the WebKit
rendering engine, which is accessed through the headless browser PhantomJS. A
headless browser is a web browser that doesn’t have a user interface and is used to pro‐
vide content to other programs. In addition to being able to render and screenshot
websites without displaying them, headless browsers usually provide interfaces for
developers to supply the browsers with instructions.

94 | Chapter 5: Testing

https://github.com/gemini-testing/gemini
https://www.yandex.com
http://phantomjs.org

Installing Gemini

Gemini requires Node.js and NPM to be installed. You can down‐
load Node.js from https://nodejs.org. Installation instructions for
Gemini can be found at https://github.com/gemini-testing/gemini.
For this example Gemini will also require PhantomJS to be
installed. You can download a PhantomJS binary for your operat‐
ing system from http://phantomjs.org.
Gemini can also test other browsers using Selenium or a cloud ser‐
vice like Sauce Labs or BrowserStack. For detailed instructions,
consult the documentation.

Configuration
Once you’ve installed Gemini, you need to create a file named .gemini.js in the root
directory of your project. For this simple example, the options that need to be set are
shown in Example 5-1. For a complete list of configuration options, visit https://
github.com/gemini-testing/gemini.

Example 5-1. Gemini configuration file

module.exports = {
 rootUrl: 'http://127.0.0.1:8000',
 browsers: {
 phantomjs: {
 desiredCapabilities: {
 browserName: 'phantomjs'
 }
 }
 }
};

The code in Example 5-1 tells Gemini that the root URL is http://127.0.0.1:8000.
Given this, as we’ll see in the next section, when we write tests we’ll be able to specify
the URLs to test relative to this root URL. This code also tells Gemini that we will be
testing with PhantomJS and that when screenshots are taken with this browser, they
should use phantomjs as the filename. When using multiple browsers, this helps dis‐
tinguish which browser took which screenshot.

Visual Regression Testing | 95

https://nodejs.org
https://github.com/gemini-testing/gemini
http://phantomjs.org
https://github.com/gemini-testing/gemini
https://github.com/gemini-testing/gemini
http://127.0.0.1:8000

Tests
Next, you need to write a test file. Gemini has its own set of functions that allow you
to open a URL, select particular elements, manipulate the window, and capture a
screenshot, among other things. Again, this functionality can be explored in depth in
the documentation. For our example, though, we’ll use the code in Example 5-2.

Example 5-2. Gemini test suite file

gemini.suite('animals', function(suite) {
 suite.setUrl('/')
 .setCaptureElements('.animal')
 .capture('plain')
});

This code (Example 5-2) is fairly straightforward. First, a test suite is declared and
given a name (“animals” in this case) and a function to execute that contains tests.
Then the index page of the website (/) is specified as the URL to open using setUrl.
Next, the element being tested is selected with .setCaptureElements. Finally, the
screenshot is captured using .capture.

Gathering baseline images
Before anything can be tested, baseline images need to be gathered so Gemini has
something to compare new screenshots to. To capture baseline images, PhantomJS
and Gemini first need to be run in a terminal.

Open a terminal window and issue the command phantomjs --webdriver=4444.
The argument --webdriver=4444 runs PhantomJS in WebDriver mode on port 4444.
This is what Gemini uses to interact with the browser.

In another terminal window, in the same directory as the .gemini.js file, execute the
command gemini update tests/gemini/animal-tests.js to gather the baseline
screenshots (animal-tests.js is the test file we just wrote, which is located in the tests/
gemini directory). After the baseline images have been gathered, they are stored in a
new directory, gemini/screens/animals/plain, in the file phantomjs.png. For our exam‐
ple we’ll have just one baseline image, shown in Figure 5-18.

96 | Chapter 5: Testing

Figure 5-18. Baseline image

Testing regressions
Now that the baseline image has been gathered, we can test for regressions. Since the
code we’re testing is brand new and error free, we’ll simply alter the code for illustra‐
tive purposes. After altering the CSS for the component being tested, run Gemini
using the command gemini test --reporter html tests/gemini/animal-

tests.js. This command instructs Gemini to run the tests, compare the screenshots,
and output the results to an HTML page that is stored as gemini-report/index.html.
Opening that file displays the test results (Figure 5-19).

Visual Regression Testing | 97

Figure 5-19. Gemini report

The report generated by Gemini provides a summary of the tests and displays the
screenshots it used while testing. In Figure 5-19 the difference between the two
images seems to be quite large, but analyzing the baseline and current images reveals
that the regression is actually a change in font size, which has the side effect of alter‐
ing the dimensions of the component.

Alternatives to Gemini
There are a number of alternatives to Gemini that can be used for testing visual
regressions, but two of the most popular are Wraith and PhantomCSS. Conceptually
they are very similar in that they can be used to open a website, screenshot elements
using either PhantomJS (a WebKit-based headless browser) or SlimerJS (a Gecko-
based headless browser), and present the differences between the present and baseline
versions of elements.

Wraith was developed by the BBC. It depends on CasperJS, PhantomJS, or SlimerJS in
addition to ImageMagick and Ruby.

PhantomCSS was written by James Cryer and the development team at Huddle. It
depends on CasperJS and Resemble.JS, and can be used with PhantomJS or SlimerJS.

98 | Chapter 5: Testing

http://bbc-news.github.io/wraith/index.html
https://github.com/Huddle/PhantomCSS
http://huddle.com

Maintaining Your Code
Testing code is as important as writing it, and over time maintaining quality will be
just as important as new code is written. As we’ll see in the next sections, code quality
can be maintained by making use of coding standards and pattern libraries.

Coding Standards
Coding standards are guidelines that are written to encourage everyone on a team to
write code the same way. Coding standards should be written collaboratively and
reviewed and updated on a regular basis. As technology changes, coding standards
can help your team keep track of the most up-to-date techniques, especially during
code reviews. CSS coding standards commonly dictate conventions regarding com‐
menting, formatting, naming, and selector usage, but they can be as specific or
generic as you want.

Take a look at the sample coding standards in Example 5-3. They are intended to
serve as a starting point for you and your team to begin the conversation about how
CSS should be written in your project. Coding standards can be written and stored in
any place that’s convenient for you and your team, but they should be easily accessible
so anybody can reference them.

Example 5-3. Example coding standards

1. Commenting:

 A. Each file should begin with a comment that explains what the file contains:

 /**
 * This file contains styles for tab groups.
 * Tab groups are intended to only contain elements with the tab class.
 */

 B. Properties that might be confusing should have a comment explaining them:

 .tab-group-flush {
 display: block;
 margin-left: -12px; /* removes parent container's padding */
 margin-right: -12px; /* removes parent container's padding */
 }

2. Formatting:

 A. Rulesets should:

 - appear on multiple lines when multiple properties are present
 - contain declarations that are indented 4 spaces

Maintaining Your Code | 99

 /* Incorrect */
 .selector {
 property1: value;
 property2: value;
 }

 /* Incorrect */
 .selector {
 property1: value;
 property2: value;
 }

 /* Incorrect */
 .selector { property1: value; property2: value; }

 /* Correct */
 .selector {
 property1: value;
 property2: value;
 }

 B. Declarations should:

 - contain one space after the colon
 - always end with a semicolon

 /* Incorrect */
 .selector {
 property1:value;
 }

 /* Incorrect */
 .selector {
 property1: value
 }

 /* Incorrect */
 .selector {
 property1 : value;
 }

 /* Correct */
 .selector {
 property1: value;
 }

 C. Rulesets may appear on one line only when multiple rulesets are
 styling background-position differently

 /* Incorrect */
 .selector1 { property1: value; property2: value; }
 .selector2 { property1: value; property2: value; }

100 | Chapter 5: Testing

 .selector3 { property1: value; property2: value; }

 /* Correct */
 .selector1 { background-position: 0 0; }
 .selector2 { background-position: 0 -10px; }
 .selector3 { background-position: 0 -10px; }

 D. Trailing whitespace must be removed from rulesets and declarations

2. Selector Naming Conventions:

 A. Only lowercase letters may be used

 /* Incorrect */
 .SeleCtor {}
 .SELECTOR {}

 /* Correct */
 .selector {}

 B. Selectors with multiple words must use spinal-case

 /* Incorrect: */
 .selectorWithMultipleWords {}
 .SELECTORWITHMULTIPLEWORDS {}
 .selector_with_multiple_words {}
 .selectorWith_multiple-words {}

 /* Correct */
 .selector-with-multiple-words {}

 C. IDs must not be used to style elements; use classes instead

 /* Incorrect */
 #element-to-style {}

 /* Correct */
 .element-to-style {}

 D. Style changes made by JavaScript (regardless of the framework used)
 must be done by adding or removing CSS classes

 /**
 * Incorrect an element's style is changed via the style
 * attribute in JavaScript
 */
 $('.js-menu-item').on('click', function (e) {
 $(this).css('background-color', '#FFFF00');
 });

 /**
 * Correct: an element's style is changed by adding a class with

Maintaining Your Code | 101

 * JavaScript
 */
 $('.js-menu-item').on('click', function (e) {
 $(this).addClass('highlighted');
 });

 E. Classes and IDs that are used as JavaScript selectors must be prefixed
 with js- and must not be present in a stylesheet

 /**
 * Incorrect: styles prepended with js- should not be in a
 * stylesheet
 */
 #js-element-only-used-by-javascript {
 background-color: #FFFF00;
 }

 /**
 * Incorrect: an element is selected in JavaScript by a class
 * used to style the element
 */
 $('.menu-item').on('click', function () {
 $(this).addClass('highlighted');
 });

 /**
 * Correct: an element is selected in JavaScript by a selector
 * intended for JavaScript
 */
 $('.js-menu-item').on('click', function () {
 $(this).addClass('highlighted');
 });

 F. Meaningful class names must be used

 /* Incorrect: Class name is meaningless */
 .r {}

 /* Correct: Class name is meaningful and descriptive */
 .resident {}

 G. Class names must describe what is being styled as opposed to how it
 is being styled

 /* Incorrect: describes style being applied */
 .float-left-bold {}

 /* Correct: describes what is being styled */
 .sidebar-important {}

3. Properties

102 | Chapter 5: Testing

 A. Shorthand properties may only be used for border, margin, and padding

 /* Incorrect: shorthand is used for font property */
 .selector {
 border: 1px solid #000000;
 font: 12px Arial, sans-serif;
 }

 /* Correct: shorthand is only used for border property */
 .selector {
 border: 1px solid #000000;
 font-family: Arial, sans-serif;
 font-size: 12px;
 }

 B. Properties must be alphabetized

 /* Incorrect */
 .selector {
 padding: 12px;
 margin: 24px;
 border: 1px solid #000000;
 }

 /* Correct */
 .selector {
 border: 1px solid #000000;
 margin: 24px;
 padding: 12px;
 }

 C. Properties with a value of 0 must omit the units

 /* Incorrect */
 .selector {
 padding: 0px;
 margin: 0px;
 border: 1px solid #000000;
 }

 /* Correct */
 .selector {
 border: 1px solid #000000;
 margin: 0;
 padding: 0;
 }

Maintaining Your Code | 103

For more inspiration, take a look at these examples:

• Google CSS Coding Standards
• WordPress CSS Coding Standards
• 18F Front End Guide

Pattern Libraries
A pattern library (sometimes called a style guide) is a collection of user interface pat‐
terns that are used on a website and are displayed with information that is important
relative to each pattern. Some of this information may include:

• Guidelines for when and when not to use a pattern
• Sample markup explaining how to use a pattern
• Information about why one pattern is used instead of a different one

Figure 5-20 is an example of a pattern library used by Yelp.

Figure 5-20. Yelp pattern library

104 | Chapter 5: Testing

http://bit.ly/2e68N3y
http://bit.ly/2fgLrp2
https://pages.18f.gov/frontend/#css
https://www.yelp.com/styleguide

Benefits
Pattern libraries are beneficial for a number of reasons. First, a pattern library pro‐
vides a place where all of the components that make up a website can be seen. This
gives everyone involved in a project the same access to the building blocks that make
up the website and helps ensure that they are familiar with how things work. Famili‐
arizing everyone with a reusable set of patterns will also provide the added benefit of
making development faster because these building blocks won’t need to be rebuilt
from scratch for each new project.

Having everything in one place also encourages user interfaces to be built consis‐
tently. This can benefit a design team because it allows them to take inventory of
existing patterns in the event that they need to change the way something looks. It
also provides a constraint on design by encouraging new screens to be designed with
these existing patterns, which further solidifies the idea that user interfaces should be
consistent.

Finally, when all of the components that make up a website are displayed next to each
other detecting inconsistencies becomes easier. Before deploying new code that
affects the user interface, a pattern library provides a convenient place to look for vis‐
ual regressions. When a change is made to a pattern and something doesn’t look
right, it becomes easier to diagnose the problem because the pattern is in its simplest
form in a pattern library.

Building a pattern library
A pattern library doesn’t need to be a work of art; it just needs to display each of the
patterns and information about them. It can be as simple or complex as necessary. A
pattern library should be available for everyone on the team to access in a public
place so it can be consulted on a regular basis.

Building a pattern library should be a group effort because it encourages more people
to familiarize themselves with the visual design patterns that are used on a website.
Implementing a pattern library also provides a forum for team members to voice
their opinions about everything from the user experience to its implementation, so a
lot of new insight can come as a result of this effort. If you don’t already have one, a
pattern library should be first built to document the current condition of the user
interface and then be iterated upon.

Pattern libraries promote the idea that styles have different intents and illustrate how
styles should be combined like building blocks to build more complex patterns. Ide‐
ally each pattern should be documented with a working implementation of the pat‐
tern, notes about the pattern that include guidelines for when and when not to use it,
and a code sample that shows how to implement the pattern. Pattern libraries also
provide a terrific place to start visual regression testing. MailChimp’s pattern library
(Figure 5-21) does a great job of accomplishing all of these things.

Maintaining Your Code | 105

https://ux.mailchimp.com/patterns

Figure 5-21. MailChimp’s pattern library

More Resources

For more pattern library resources, including examples, articles,
books, and podcasts, visit http://styleguides.io.

Chapter Summary
In this chapter we learned about testing CSS. We explored why testing CSS changes is
time-consuming and difficult, thanks to the multiplicity of browsers and form factors
that need to be tested. Resources were provided for obtaining new and old browsers,
as well as emulators, virtual machines, and services for testing on other platforms.
The benefits of establishing coding standards and pattern libraries were discussed, as
well as visual regression testing with Gemini. With these tools at your disposal, test‐
ing CSS should be more approachable.

106 | Chapter 5: Testing

http://styleguides.io

CHAPTER 6

Code Placement and Refactoring Strategies

We’ve learned a lot about CSS: how the cascade works, the different intents styles can
have, how to write better CSS, and how to effectively test it. This chapter first dis‐
cusses how to organize your styles and then explores strategies for how to best refac‐
tor your CSS using everything we’ve learned. Then we’ll wrap up by exploring how
success can be measured after your code is refactored.

Organize CSS from Least Specific to Most Specific Styles
We learned in Chapter 2 that CSS styles are applied based on specificity and the order
in which they are included. As such, it makes sense to organize your CSS in an order
that is harmonious with how it will be applied:

1. Normalizing styles
2. Base styles
3. Styles for components and their containers
4. Structural styles
5. Utility styles
6. Browser-specific styles (if absolutely necessary)

This order includes CSS in such a way that as the declaration block selectors get more
specific, more complicated selectors build off of the more general selectors that have
already been included.

Here’s a refresher on what the different types of styles are used for. As you read
through the intents of these styles, notice how they build upon each other.

107

Normalizing Styles
We learned in Chapter 4 that normalizing styles are used for providing a starting
point that irons out some of the inconsistencies between browsers. With these incon‐
sistencies out of the way, styles that follow can benefit from the properties that have
already been defined by these normalizing styles.

Base Styles
Base styles provide a starting point for all of the elements in the website. Things like
spacing (margin, padding, line-height, etc.), font sizes and families, and anything
else that can be used in the majority of styles that will not need to constantly be over‐
ridden should be included here.

Styles for Components and Their Containers
Component styles build on base styles and provide styling that makes use of visual
metaphors to make it easier to interact with the website. As we learned, these styles
should be written to work for the majority of use cases site-wide, and any changes in
styling should be delegated to a parent container.

Structural Styles
Structural styles contain components and their containers. They are used to create the
layout of a page and commonly define dimensions.

Utility Styles
Utility styles are among the most specific styles that should exist. Classes that get
applied by JavaScript that make use of !important belong here, as do any other styles
that serve a singular purpose.

Browser-Specific Styles
Finally, if you cannot drop support for legacy browsers, the styles you implement
specifically for them belong here. These styles also likely make use of !important and
are conditionally included in the website. They usually aren’t very pretty, so be sure to
delete them when they are no longer needed.

108 | Chapter 6: Code Placement and Refactoring Strategies

Keep Media Queries Close to Relevant Declaration Blocks

Media queries are used to style elements differently when certain
conditions are met, like when a browser viewport is a particular
width. Media queries should be kept close to the declaration blocks
they style rather than placed at the end of the CSS or split them
into a separate file. Doing so provides more context about how
styles are applied.

Multiple Files or One Big File?
Code organization can be done in a couple of different ways, namely by using multi‐
ple files or one big file. It’s important for developers to be able to work on their code
easily with predictable code placement, but it’s also really important that this be done
in such a way that the website loads quickly for end users. First let’s look at what hap‐
pens when CSS is served to a browser, and then let’s discuss developing with one file
or multiple files.

Serving CSS
When someone visits a website that includes CSS files (as opposed to being styled by
inline CSS) the browser requests those files, downloads them, and then parses them
and applies the appropriate styles. Thus, it’s important to make these downloads as
small as possible so the site loads as quickly as possible.

Concatenation is the process of combining multiple files into one. It’s a technique
commonly used to decrease page load time by reducing the number of files that need
to be downloaded. If the two files in Examples 6-1 and 6-2 were concatenated in that
order, the result would be the file in Example 6-3.

Example 6-1. Example headings.css file

/**
 * This file contains styles for basic heading elements.
 */
h1 {
 color: #333;
 font-size: 24px;
 margin-bottom: 6px;
 margin-left: 12px;
 margin-right: 6px;
 margin-top: 12px;
}

Multiple Files or One Big File? | 109

Example 6-2. Example lists.css file

/**
 * This file contains styles for list elements.
 */
ul {
 list-style-type: none;
 padding-bottom: 12px;
 padding-left: 0;
 padding-top: 12px;
 padding-right: 0;
}

Example 6-3. Example concatenated CSS file

/**
 * This file contains styles for basic heading elements.
 */
h1 {
 color: #333;
 font-size: 24px;
 margin-bottom: 6px;
 margin-left: 12px;
 margin-right: 6px;
 margin-top: 12px;
}
/**
 * This file contains styles for list elements.
 */
ul {
 list-style-type: none;
 padding-bottom: 12px;
 padding-left: 0;
 padding-top: 12px;
 padding-right: 0;
}

Concatenation is powerful because it allows for big CSS files to be broken up into
smaller files (which can then be reconstructed back into one big file, reducing page
load time by reducing the number of files that the end user needs to download).
Using multiple files allows for similar rulesets to be grouped together logically, so it
becomes easier to find a particular piece of code. Additionally, using multiple files for
development makes it easier to understand the contents of a CSS file without being
overwhelmed, like you might be by one big file.

A concept that goes hand-in-hand with concatenating CSS files is minification. Mini‐
fication is the process of removing all unneeded whitespace, comments, and newlines
from files without changing their behavior. For example, when the code in

110 | Chapter 6: Code Placement and Refactoring Strategies

Example 6-1 and Example 6-2 is both concatenated and minified it will become the
code in Example 6-4.

Example 6-4. Example CSS file after minification

h1{color:#333;font-size:24px;margin-bottom:6px;margin-left:12px;margin-right:6px;
margin-top:12px}ul{list-style-type:none;padding-bottom:12px;padding-left:0;
padding-top:12px;padding-right:0}

Minified CSS usually appears on one line; the line breaks in this
example are a result of formatting for this book.

Notice that all of the spaces and comments have been removed in Example 6-4. This
is beneficial because spaces and comments increase the size of the CSS file that ulti‐
mately gets downloaded by the end user. By eliminating anything in the file that’s
unnecessary, the file can be made smaller. You should not try to write your code in a
minified state, however, because doing so will lead to errors that are difficult to track
down and it will be a nightmare to maintain.

There are any number of tools available online for concatenating and minifying CSS.
When you’re ready to take this step, research a couple of options and use whatever
fits your needs. Maybe you just need to use one of the many simple websites that out‐
put minified CSS after being given unminified CSS, or maybe your needs are more
complicated and you need something that augments your build process.

Developing with a Single File
For small projects, working in a single CSS file is perfectly acceptable and fairly easy.
Based on the order in which CSS should be included such that it works with the cas‐
cade, the contents of this file can be organized into appropriately commented sections
and subsections:

/**
 * Normalizing Styles
 * ---
 */

/**
 * Base Styles
 * ---
 */

 /* Base Styles: Forms */
 /* Base Styles: Headings */
 /* Base Styles: Images */

Multiple Files or One Big File? | 111

 /* Base Styles: Lists */
 /* Base Styles: Tables */
 /* etc. */

 /**
 * Component Styles
 * ---
 */

 /* Component Styles: Alerts */
 /* Component Styles: Buttons */
 /* Component Styles: Carousels */
 /* Component Styles: Dropdowns */
 /* Component Styles: Modals */
 /* etc. */

 /**
 * Structural Styles
 * ---
 */

 /* Structural Styles: Checkout Layout */
 /* Structural Styles: Sidebar Layout */
 /* Structural Styles: Primary Layout */
 /* Structural Styles: Settings Layout */
 /* etc. */

 /**
 * Utility Styles
 * ---
 */

Working in one CSS file can get difficult as the size of the project grows, though, and
at some tipping point it will become evident that the CSS needs to be broken up into
multiple files.

Developing with Multiple Files
When developing a website using multiple CSS files, file contents can be kept very
focused. This can help prevent CSS from being added in a less optimal place if there
is a correct file for it to be in. When developing with multiple CSS files your project
might look something like this:

|-css/
| |-normalizing-styles
| | |- normalize.css
| |
| |-base-styles
| | |- forms.css
| | |- headings.css
| | |- images.css

112 | Chapter 6: Code Placement and Refactoring Strategies

| | |- lists.css
| | |- tables.css
| | |- etc.
| |
| |-component-styles
| | |- alerts.css
| | |- buttons.css
| | |- carousel.css
| | |- dropdowns.css
| | |- modals.css
| | |- etc.
| |
| |- structural-styles
| | |- layout-checkout.css
| | |- layout-sidebar.css
| | |- layout-primary.css
| | |- layout-settings.css
| | |- etc.
| |
| |- utility-styles
| | |- utility.css
| |
| |- browser-specific-styles
| | |-ie8.css

With this many files, you shouldn’t include each in your HTML as that many requests
will slow down the page’s load time. Development will be made much easier by an
automated task that concatenates them into one file.

Auditing Your CSS Before Refactoring
It can be very helpful to get a high-level view of CSS metrics like:

• A list of properties being used
• A list of declaration blocks using a particular property
• The number of different colors being used
• The highest and lowest specificities that are used
• The selectors that have the highest and lowest specificities
• The length of selectors

CSS Dig is a free plug-in for the Google Chrome browser that can provide you with
all of that information. To get it, visit http://cssdig.com using Chrome and install the
plugin. Once you’ve installed it, you’ll see the CSS Dig icon (Figure 6-1) next to the
rest of the icons for browser extensions you’ve installed.

Auditing Your CSS Before Refactoring | 113

http://cssdig.com

Figure 6-1. The CSS Dig extension icon

To use it, visit a website and click the CSS Dig icon. A modal window will appear that
will present a list of CSS sources that can be analyzed as well as a list of files that can‐
not be analyzed (Figure 6-2).

Figure 6-2. The CSS Dig modal prompt

Clicking through the prompt will instruct CSS Dig to analyze the available CSS, at
which point it will present another modal that houses two tabs, Properties and Selec‐
tors, that provide information about both of those topics (Figure 6-3).

Figure 6-3. The CSS Dig Properties tab

114 | Chapter 6: Code Placement and Refactoring Strategies

As you’ll see in the following sections, CSS Dig is an invaluable tool that will help you
whip your code into shape.

Refactoring Strategies
This section explores strategies for how to approach refactoring your CSS. But first, a
warning: when possible, refactoring should be done in small, manageable chunks that
get reviewed and released frequently. If a lot of code is refactored and released at one
time there is more risk for regression because more things have changed. Refactoring
in large chunks can also delay writing code for new features and may require compli‐
cated merges in source control that can lead to regressions if not performed correctly.
If code is refactored in small chunks there will be fewer changes that can cause regres‐
sions and the changes can be tested much more easily.

In Chapter 3 we learned a bunch of techniques for writing better CSS, but it can be
overwhelming to implement them in a project that already has lots of code written.
The end goal should be to employ all of these ideas, which will leave you with a CSS
codebase that contains normalizing, base, component, container, structural, and util‐
ity styles. The following strategies should help you implement each idea, in an order
that will encourage small changes that can be deployed sooner rather than later.

Consistently Structure Rulesets
Consistently structuring rulesets over time will make development much easier.
Decide on how you want to format your declaration blocks and how declarations
should be ordered. One way is to keep each declaration on its own line, in alphabeti‐
cal order when possible. As you modify existing CSS or write new CSS, you can then
make your rulesets more consistent with little risk.

Delete Dead Code
It’s really important that you don’t leave dead code in your CSS codebase. Dead code is
code that is present but doesn’t get used. In the context of CSS, it can take a couple of
forms: unused declaration blocks, duplicate declaration blocks, and duplicate declara‐
tions.

Unused declaration blocks are declaration blocks that are present but never get used.
Unused declaration blocks are a common occurrence because of human error; it can
be difficult to keep track of which styles are used if code is written without a clear
vision or lots of things have changed over time.

Duplicate declaration blocks are declaration blocks that are unnecessary because they
are identical to other declaration blocks that already exist (Example 6-5). Duplicate
declaration blocks usually come as a result of copying and pasting code.

Refactoring Strategies | 115

Example 6-5. Duplicate declaration blocks

h1 {
 font-size: 28px;
 font-weight: 900;
}

/* This is a duplicate declaration block */
h1 {
 font-size: 28px;
 font-weight: 900;
}

Similarly, duplicate declarations (Example 6-6) are declarations that are identical to
other declarations in the same declaration block. It’s common to have duplicate decla‐
rations in different rulesets, and this is fine because the cascade will sort things out
for us (though these styles should be combined when possible). However, duplicate
declarations in the same ruleset should be avoided because the last occurring declara‐
tion will be applied, rendering the ones before it useless.

Example 6-6. Duplicate declaration blocks

h1 {
 font-size: 28px;
 font-weight: 900;
 font-weight: 900; /* This is a duplicate declaration */
}

.section-title {
 font-size: 24px;
 /* This is not a duplicate declaration because it appears
 * in a different declaration block for a different selector
 */
 font-weight: 900;
}

Dead code is bad because it makes your codebase more confusing than it needs to be,
which makes it more difficult to maintain. When you go to change code you’re prob‐
ably pretty careful to make sure it doesn’t break anything, and this can take up a lot of
your time if there are large amounts of dead CSS to wade through. On top of that,
CSS gets sent from your server to the end user’s browser, so when you have lots of
dead code your CSS files take longer to download, which detracts from a good user
experience (especially on a slow connection).

Decouple CSS and JavaScript
Classes and IDs that are used to style elements shouldn’t be used to select them in
JavaScript because it creates a dependency that makes changing those selectors diffi‐

116 | Chapter 6: Code Placement and Refactoring Strategies

cult. Early on, CSS and JavaScript should be decoupled because it’s likely that classes
and IDs will be changed and that could result in broken JavaScript.

Decoupling CSS and JavaScript is as easy as searching your JavaScript for places
where elements are selected, then prepending the selector with js- and adding that
selector to the HTML where the element is defined.

If you’re using a JavaScript framework, consult the framework’s documentation for
how to select elements and then search for places where that’s done in your Java‐
Script. If your code doesn’t make use of a framework, searching for the string
document.getElement should reveal where elements are being selected by either
document.getElementById or document.getElementsByClassName, which should be
a good starting point. Finding the HTML that contains the element being selected is
as easy as searching for the original class or ID that was used in the JavaScript.

Separate Base Styles
Base styles should be the simplest styles in any website because they make use of type
selectors. After analyzing a website with CSS Dig, the Selectors panel (Figure 6-4)
provides a tremendous amount of insight as to when and where a selector is used.

Figure 6-4. The CSS Dig Selectors panel

Refactoring Strategies | 117

Make a list of your base styles as different groups:

• Headings (<h1>–<h6>)
• Text (e.g., <p>, <fig>, <code>)
• Links (<a>)
• Lists (<dl>, ,)
• Forms (e.g., <form>, <legend>, <fieldset>, <input>, <button>)
• Tables (e.g., <table>, <thead>, <tbody>, <tfoot>, <tr>, <td>)
• Media (e.g., <audio>, <object>, <video>)

Once this is done you can use CSS Dig to look for selectors that fall into a particular
category. After identifying how often and where the selectors are used, you can com‐
pare them and see which properties are common. If a type selector is only used alone
and appears once, then it can be safely moved. However, if a type selector is used
multiple times, these are the steps to follow:

1. Create a new ruleset in your base styles for the type selector whose styles are
being refactored.

2. Copy the most common properties found among all uses of the type selector into
the new ruleset.

3. Remove duplicative properties from other rulesets that can be inherited from the
new base style.

For example, let’s assume that CSS Dig found there were multiple styles defined for
the <h1> tag, as shown in Example 6-7.

Example 6-7. Multiple styles For <h1>

/* File: styles.css */

h1 {
 color: #000000;
 font-family: Helvetica, sans-serif;
 font-size: 32px;
 line-height: 1.2;
}

body > div > h1 {
 color: #000000;
 font-size: 32px;
 margin-bottom: 12px;
}

118 | Chapter 6: Code Placement and Refactoring Strategies

.section-condensed h1 {
 color: #000000;
 font-size: 16px;
}

.order-form h1 {
 font-family: Helvetica, sans-serif;
 color: #333333;
 text-decoration: underline;
}

The first step is to create a new ruleset:

/* File: headings.css */

h1 {

}

Next, copy the most common styles into the new ruleset:

/* File: headings.css */

h1 {
 color: #000000;
 font-family: Helvetica, sans-serif;
 font-size: 32px;
 line-height: 1.2;
}

Finally, remove duplicate styles from rulesets that can instead inherit them from base
styles:

/* File: styles.css */

body > div > h1 {
 margin-bottom: 12px;
}

.section-condensed h1 {
 font-size: 16px;
}

.order-form h1 {
 color: #333333;
 text-decoration: underline;
}

If something doesn’t look right after making these changes, inspect the element with
your favorite browser’s developer tools and check the CSS panel to determine where
the problematic styles are coming from. If the problem cannot be rectified easily, then
temporary styles with a more specific selector can be written to overcome the issue.
Be sure to leave behind a comment indicating that the styles are temporary and why

Refactoring Strategies | 119

they are necessary. As you continue to refactor, you’ll eventually be able to remove
these temporary styles.

Finally, the styles that are not included in the base styles can be scrutinized to see if
they are deviating from what the styles are intended to be. If this is the case, then the
styles that deviate can be removed.

Remove Redundant IDs
In CSS files, selectors with the highest specificities will make use of IDs. Selectors that
have multiple IDs in them can be refactored first by eliminating everything to the left
of the rightmost ID. Because IDs can be used at most once on any given page, having
multiple IDs in a selector is redundant. For example, the selector in Example 6-9 will
select the same element styled in Example 6-8, but it will have a lower specificity. If
lowering the specificity of one element cannot be done because it is overriding styles
from an even more specific selector, the more specific selector should have its specif‐
icity reduced first.

Example 6-8. Redundant IDs in a selector

#main-header > div > div > ul#main-menu {
 border-bottom: 1px solid #000000;
}

Example 6-9. Redundant IDs removed from a selector

#main-menu {
 border-bottom: 1px solid #000000;
}

Convert IDs to Classes
Once redundant IDs are removed, the remaining selectors that make use of IDs can
be converted to use classes instead. This process will take some time, but in the end
you’ll be left with CSS that has a much lower specificity that can be reused much
more easily when needed. When changing IDs to classes remember to use meaning‐
ful names rather than cryptic or overly specific names.

When you switch to using classes, you may find that some elements are no longer
styled as intended because of the decreased specificity. This can potentially be fixed by
decreasing the specificity of the selectors whose styles are overriding the styles with
lower specificity. However, if changes to lots of other selectors are required to fix a
particular problem, then you’re probably better off not changing the ID to a class and
instead waiting to refactor this piece of code until the more specific styles have them‐
selves been refactored to have a lower specificity.

120 | Chapter 6: Code Placement and Refactoring Strategies

Separate Utility Styles
Utility styles are the only styles that should be making use of the !important excep‐
tion. Searching your CSS for !important should hopefully turn up few results, but
those that do appear and have a single purpose (hiding an element, for example)
should be grouped together as utility styles. Earlier in this chapter we determined that
utility styles should appear at the bottom when your CSS is concatenated, so be sure
to order these styles properly when combining your files.

Styles that are not utility styles that make use of the !important exception should be
analyzed using your favorite browser’s developer tools to determine why it is being
used. If it turns out !important doesn’t need to be used, then it can safely be
removed. However, if !important is being used to override inherited styles, then
leave it alone for the time being and leave behind a comment explaining why it is
being used. When the styles !important is overriding are refactored, this piece of
code can be revisited and refactored, and it can safely be removed.

Define Reusable Components
Defining reusable components can be one of the most daunting tasks when refactor‐
ing CSS because there is usually a fear of not getting it right the first time. This fear is
unfounded, though, because even if you don’t get things 100% right the first time, you
can always revisit them in the future and make them right.

Start off by choosing one interface pattern that gets reused frequently (e.g., tabs) and
spending some time surveying your website and noting the places where that pattern
is used. Make note of any variations of the pattern and decide whether those varia‐
tions are legitimate or came into existence as a result of inconsistent CSS. Follow the
guidelines for building reusable components in “Component Styles” on page 54, and
then update all of the occurrences of the pattern to use that code.

Defining reusable components aids in eliminating duplicate CSS and, usually, the
remaining IDs that are used to style elements as well. When an interface pattern that
could be a reusable component is written for the first time everything is great, but
when a similar but slightly different pattern is defined, much of the CSS from the first
occurrence is copied and tweaked to meet the needs of the newer, slightly different
interface pattern. This duplication can be prevented by making use of the same com‐
ponent styles, but redefining them by delegating that responsibility to either a con‐
tainer group or structural styles.

Remove Inline CSS and Over-Modularized Classes
Removing inline CSS and over-modularized classes should be done at the same time
because they’re essentially the same thing, though inline CSS that appears in the

Refactoring Strategies | 121

style attribute has a much higher specificity unless it is overridden using
the !important exception. In both cases, this should be done later rather than sooner.

If you’ve been refactoring in the order presented in this chapter, then by now you:

• Are on your way to having your CSS structured consistently
• Have less dead code
• Have decoupled your CSS from your JavaScript
• Have established base styles
• Have lowered your highest specificities by removing redundant IDs and convert‐

ing IDs to classes
• Have separated out utility styles and reduced the use of !important
• Have defined reusable components

After all of that, you now have a place to migrate inline styles to—if you have any left!
Had you removed inline CSS earlier on, you would have needed to temporarily place
it in interim classes at the end of your stylesheets and possibly use !important to
ensure it maintained specificity. If you wait, though, all you have to do is search your
HTML for inline styles and either remove them if they are no longer needed or move
them into the appropriate places in your stylesheets. Again, inline styles that deviate
from base and component styles should be investigated to determine if this was a
result of inconsistent design or coding. If this is the case, then the inline styles can
safely be removed. If the variation is intentional, then the styles should likely be used
to modify an element via its container.

Segregate Browser-Specific CSS Hacks
Not all browsers are created equal, and as a result it’s easy to pollute CSS with hacks
to get around browser limitations. But before you segregate browser-specific hacks,
remember to look at your website’s traffic and determine if you can drop support for
that browser instead. Deleting browser hacks is much easier and more satisfying than
refactoring this code into its own home. In the event that you cannot drop support
for a browser, all you need to do is style an element specifically for that browser using
the conditional comment technique from Chapter 4.

Measuring Success
After everything we’ve learned, it’s important to understand how success can be
determined so there are achievable goals to strive for when refactoring. Following are
a number of ideas for how success can be measured after refactoring CSS. Some of
the recommendations here, like inspecting file sizes, should also be done before refac‐
toring so they can be compared with the results after.

122 | Chapter 6: Code Placement and Refactoring Strategies

Is Your Website Broken?
The first and most obvious way to determine success after refactoring code is to find
out if its behavior has changed in a negative way. Remember, refactoring is the pro‐
cess of rewriting code to make it simpler without changing its behavior. In Chapter 5
we discussed using multiple browsers to test by hand as well as testing visual regres‐
sions through taking screenshots. If no visual regressions are detected after thorough
visual inspection, then it’s time to consider some of the other aspects.

Low coupling
Quality CSS is decoupled from the structure of the HTML it is used in. You can
decouple your CSS from your HTML by creating reusable components and contain‐
ing elements, using the strategies found in Chapter 4. While there is always going to
be some degree of coupling, avoiding overly complex selectors is a reasonable goal to
strive for. Tools like CSS Dig can help you sniff out complex and overqualified selec‐
tors that should be made more general. Audit your site and inspect your selectors to
see where improvements are necessary.

Low specificities
We learned in Chapter 2 that CSS specificity and ruleset order are used to determine
which styles are applied to an element. We also learned strategies in Chapter 4 that
can and should be used to decrease overall CSS specificity. Selector specificity is a
metric that can be measured and used to determine if a CSS codebase contains an
abundance of selectors with high specificities that will be difficult to maintain. Tools
like CSS Dig can sort selectors by this characteristic.

Fewer files and smaller file sizes
We learned earlier in this chapter that concatenation and minification should be used
when serving CSS files to end users—concatenation reduces the number of files that
need to be downloaded, and minification reduces the file size by removing unneces‐
sary characters. Both of these processes result in faster downloads, which in turn
results in faster page load times. To measure this metric you can simply compare the
sum of all CSS file sizes before refactoring with the sum of all CSS file sizes after
refactoring.

Number of UI Bugs
Once you begin refactoring your CSS and making use of coding standards, the num‐
ber of UI bugs as a result of messy or duplicative code should decrease. As we learned
in Chapter 5, implementing a UI pattern library and monitoring visual regressions
using screenshots are great ways to ensure the user interface is built using code that
has been tested thoroughly and is monitored for regressions over time. Software bugs

Measuring Success | 123

are inevitable—they can be introduced by website developers, or browser issues can
be introduced by browser makers—but using a pattern library and visual regression
testing are surefire ways that you’ll be able to detect and diagnose these issues faster
than you might be able to otherwise.

Reduced Development and Testing Time
After logically organizing your CSS into multiple files, establishing coding standards,
and creating a UI pattern library you will hopefully be able to build and maintain user
interfaces faster than ever. This metric is highly individual, because some interfaces
are much more complicated than others, which means they will take more time to
build. For the most part, though, you’ll probably be able to tell if your development
time has decreased as a result of refactoring and enhancing your workflow.

In addition to reducing the time spent in development, you might also notice that
you’re able to test your interfaces much faster than before if you have the right tools at
your disposal. Again, all of the methods for testing that we discussed in Chapter 5
should help you test your interfaces more quickly with a higher level of confidence.

Chapter Summary
In this chapter we discussed how CSS should be organized, strategies for refactoring
your code, and how to measure success. Remember that when using these strategies
it’s important to use them over time rather than all at once, so changes can be released
in smaller, more controlled chunks. When you begin implementing the strategies
described in this chapter you’ll be on your way to building a CSS codebase that
adheres to all of the tenets of good architecture.

124 | Chapter 6: Code Placement and Refactoring Strategies

APPENDIX A

normalize.css

/*! normalize.css v5.0.0 | MIT License | github.com/necolas/normalize.css */

/**
 * 1. Change the default font family in all browsers (opinionated).
 * 2. Correct the line height in all browsers.
 * 3. Prevent adjustments of font size after orientation changes in
 * IE on Windows Phone and in iOS.
 */

/* Document
 == */

html {
 font-family: sans-serif; /* 1 */
 line-height: 1.15; /* 2 */
 -ms-text-size-adjust: 100%; /* 3 */
 -webkit-text-size-adjust: 100%; /* 3 */
}

/* Sections
 == */

/**
 * Remove the margin in all browsers (opinionated).
 */

body {
 margin: 0;
}

/**
 * Add the correct display in IE 9-.
 */

125

article,
aside,
footer,
header,
nav,
section {
 display: block;
}

/**
 * Correct the font size and margin on `h1` elements within `section` and
 * `article` contexts in Chrome, Firefox, and Safari.
 */

h1 {
 font-size: 2em;
 margin: 0.67em 0;
}

/* Grouping content
 == */

/**
 * Add the correct display in IE 9-.
 * 1. Add the correct display in IE.
 */

figcaption,
figure,
main { /* 1 */
 display: block;
}

/**
 * Add the correct margin in IE 8.
 */

figure {
 margin: 1em 40px;
}

/**
 * 1. Add the correct box sizing in Firefox.
 * 2. Show the overflow in Edge and IE.
 */

hr {
 box-sizing: content-box; /* 1 */
 height: 0; /* 1 */
 overflow: visible; /* 2 */
}

126 | Appendix A: normalize.css

/**
 * 1. Correct the inheritance and scaling of font size in all browsers.
 * 2. Correct the odd `em` font sizing in all browsers.
 */

pre {
 font-family: monospace, monospace; /* 1 */
 font-size: 1em; /* 2 */
}

/* Text-level semantics
 == */

/**
 * 1. Remove the gray background on active links in IE 10.
 * 2. Remove gaps in links underline in iOS 8+ and Safari 8+.
 */

a {
 background-color: transparent; /* 1 */
 -webkit-text-decoration-skip: objects; /* 2 */
}

/**
 * Remove the outline on focused links when they are also active or hovered
 * in all browsers (opinionated).
 */

a:active,
a:hover {
 outline-width: 0;
}

/**
 * 1. Remove the bottom border in Firefox 39-.
 * 2. Add the correct text decoration in Chrome, Edge, IE, Opera, and Safari.
 */

abbr[title] {
 border-bottom: none; /* 1 */
 text-decoration: underline; /* 2 */
 text-decoration: underline dotted; /* 2 */
}

/**
 * Prevent the duplicate application of `bolder` by the next rule in Safari 6.
 */

b,
strong {
 font-weight: inherit;
}

normalize.css | 127

/**
 * Add the correct font weight in Chrome, Edge, and Safari.
 */

b,
strong {
 font-weight: bolder;
}

/**
 * 1. Correct the inheritance and scaling of font size in all browsers.
 * 2. Correct the odd `em` font sizing in all browsers.
 */

code,
kbd,
samp {
 font-family: monospace, monospace; /* 1 */
 font-size: 1em; /* 2 */
}

/**
 * Add the correct font style in Android 4.3-.
 */

dfn {
 font-style: italic;
}

/**
 * Add the correct background and color in IE 9-.
 */

mark {
 background-color: #ff0;
 color: #000;
}

/**
 * Add the correct font size in all browsers.
 */

small {
 font-size: 80%;
}

/**
 * Prevent `sub` and `sup` elements from affecting the line height in
 * all browsers.
 */

128 | Appendix A: normalize.css

sub,
sup {
 font-size: 75%;
 line-height: 0;
 position: relative;
 vertical-align: baseline;
}

sub {
 bottom: -0.25em;
}

sup {
 top: -0.5em;
}

/* Embedded content
 == */

/**
 * Add the correct display in IE 9-.
 */

audio,
video {
 display: inline-block;
}

/**
 * Add the correct display in iOS 4-7.
 */

audio:not([controls]) {
 display: none;
 height: 0;
}

/**
 * Remove the border on images inside links in IE 10-.
 */

img {
 border-style: none;
}

/**
 * Hide the overflow in IE.
 */

svg:not(:root) {
 overflow: hidden;
}

normalize.css | 129

/* Forms
 == */

/**
 * 1. Change the font styles in all browsers (opinionated).
 * 2. Remove the margin in Firefox and Safari.
 */

button,
input,
optgroup,
select,
textarea {
 font-family: sans-serif; /* 1 */
 font-size: 100%; /* 1 */
 line-height: 1.15; /* 1 */
 margin: 0; /* 2 */
}

/**
 * Show the overflow in IE.
 * 1. Show the overflow in Edge.
 */

button,
input { /* 1 */
 overflow: visible;
}

/**
 * Remove the inheritance of text transform in Edge, Firefox, and IE.
 * 1. Remove the inheritance of text transform in Firefox.
 */

button,
select { /* 1 */
 text-transform: none;
}

/**
 * 1. Prevent a WebKit bug where (2) destroys native `audio` and `video`
 * controls in Android 4.
 * 2. Correct the inability to style clickable types in iOS and Safari.
 */

button,
html [type="button"], /* 1 */
[type="reset"],
[type="submit"] {
 -webkit-appearance: button; /* 2 */
}

130 | Appendix A: normalize.css

/**
 * Remove the inner border and padding in Firefox.
 */

button::-moz-focus-inner,
[type="button"]::-moz-focus-inner,
[type="reset"]::-moz-focus-inner,
[type="submit"]::-moz-focus-inner {
 border-style: none;
 padding: 0;
}

/**
 * Restore the focus styles unset by the previous rule.
 */

button:-moz-focusring,
[type="button"]:-moz-focusring,
[type="reset"]:-moz-focusring,
[type="submit"]:-moz-focusring {
 outline: 1px dotted ButtonText;
}

/**
 * Change the border, margin, and padding in all browsers (opinionated).
 */

fieldset {
 border: 1px solid #c0c0c0;
 margin: 0 2px;
 padding: 0.35em 0.625em 0.75em;
}

/**
 * 1. Correct the text wrapping in Edge and IE.
 * 2. Correct the color inheritance from `fieldset` elements in IE.
 * 3. Remove the padding so developers are not caught out when they zero out
 * `fieldset` elements in all browsers.
 */

legend {
 box-sizing: border-box; /* 1 */
 color: inherit; /* 2 */
 display: table; /* 1 */
 max-width: 100%; /* 1 */
 padding: 0; /* 3 */
 white-space: normal; /* 1 */
}

/**
 * 1. Add the correct display in IE 9-.

normalize.css | 131

 * 2. Add the correct vertical alignment in Chrome, Firefox, and Opera.
 */

progress {
 display: inline-block; /* 1 */
 vertical-align: baseline; /* 2 */
}

/**
 * Remove the default vertical scrollbar in IE.
 */

textarea {
 overflow: auto;
}

/**
 * 1. Add the correct box sizing in IE 10-.
 * 2. Remove the padding in IE 10-.
 */

[type="checkbox"],
[type="radio"] {
 box-sizing: border-box; /* 1 */
 padding: 0; /* 2 */
}

/**
 * Correct the cursor style of increment and decrement buttons in Chrome.
 */

[type="number"]::-webkit-inner-spin-button,
[type="number"]::-webkit-outer-spin-button {
 height: auto;
}

/**
 * 1. Correct the odd appearance in Chrome and Safari.
 * 2. Correct the outline style in Safari.
 */

[type="search"] {
 -webkit-appearance: textfield; /* 1 */
 outline-offset: -2px; /* 2 */
}

/**
 * Remove the inner padding and cancel buttons in Chrome and Safari on macOS.
 */

[type="search"]::-webkit-search-cancel-button,
[type="search"]::-webkit-search-decoration {

132 | Appendix A: normalize.css

 -webkit-appearance: none;
}

/**
 * 1. Correct the inability to style clickable types in iOS and Safari.
 * 2. Change font properties to `inherit` in Safari.
 */

::-webkit-file-upload-button {
 -webkit-appearance: button; /* 1 */
 font: inherit; /* 2 */
}

/* Interactive
 == */

/*
 * Add the correct display in IE 9-.
 * 1. Add the correct display in Edge, IE, and Firefox.
 */

details, /* 1 */
menu {
 display: block;
}

/*
 * Add the correct display in all browsers.
 */

summary {
 display: list-item;
}

/* Scripting
 == */

/**
 * Add the correct display in IE 9-.
 */

canvas {
 display: inline-block;
}

/**
 * Add the correct display in IE.
 */

template {
 display: none;
}

normalize.css | 133

/* Hidden
 == */

/**
 * Add the correct display in IE 10-.
 */

[hidden] {
 display: none;
}

134 | Appendix A: normalize.css

Index

Symbols
!important declaration, 24, 71, 108
> (child combinators), 30

A
:active pseudoclass, 47
analytics tools, browser statistics and screen

resolutions, 76
anchor tags

setting properties in base styles, 47
too specific, 30

Android devices, testing, 81
Android Studio, 82
architecture, software (see software architec‐

ture)
auditing CSS (before refactoring), 113-115

B
base styles, 42-54, 108

anchor tags, 47
defining, 43
document metadata, 44
forms, 52
grouping elements, 50
images, 53
lists, 49
sectioning elements, 44
separating, 117
tables, 50
text semantics, 48

best practices
difficulty in keeping up with, 4
ignoring, 3

block-level comments, 27

box model, building a better box, 38-40
box-sizing property, 39

assigning value border-box to, 39
assigning value content-box to, 39

Browserling, 86
browsers, xi

accessing browser statistics and screen reso‐
lutions in Google Analytics, 76

browser-specific CSS hacks, 122
browser-specific styles, 72, 108
deciding which browsers to test, 75
headless, 94
ignoring styling of form elements, 53
market share, 76
matching selectors from right to left, 32
normalizing styles across, 42
testing with multiple browsers, 79-84

Android, 81
Safari for iOS, 79

testing with old versions, 84
testing with third-party testing services, 86
user agent spoofing, 91
vendor pefixes for properties, 29

BrowserStack, 86

C
cascade, 21-25

defined, 21
inline CSS and specificity, 23
overriding with !important declaration, 24
ruleset order, 23
selector specificity, 21

child combinators (>), 30
Chrome

135

CSS Dig, 113
DevTools, 86

device emulation in, 87
DOM and CSS styles, 91

download site, 79
no old versions available, 85
testing with upcoming version, 85

classes
adding a class to an HTML element, 30
assigning meaningful names to, 36

avoiding over-modularization, 37
converting IDs to, 120
modifying element styles with, 35
prefixing classes used in JavaScript, 35
pseudoclasses associated with anchor ele‐

ments, 47
removing over-modularized classes, 122

classifying styles, 41-73
base styles, 42-54

anchor elements, 47
defining, 43
document metadata, 44
forms, 52
grouping elements, 50
images, 53
lists, 49
tables, 50
text semantics, 48

browser-specific styles, 72
component styles, 54-68

component's container overriding styles,
59

defining behavior, 55
delegating component dimensions to

structural containers, 64
keeping them granular, 56

importance of, 41
normalizing styles, 41
structural styles, 68
utility styles, 71

code placement, 107-115
auditing CSS before refactoring, 113-115
multiple files or one big file, 109-113

developing with a single file, 111
developing with multiple files, 112
serving CSS, 109

organizing CSS from least specific to most
specific styles, 107

code reuse, 2

code, maintaining, 99-106
coding standards, 99
pattern libraries, 104-106

comments, 27
component styles, 54-68, 108

allowing component's container to override
visual styles, 59

defining behavior, 55
delegating component dimensions to a

structural container, 64
keeping them granular, 56

components, reusable (see reusable compo‐
nents)

concatenation, 109
containers

allowing component container to override
visual styles, 59

delegating component dimensions to a
structural container, 64

styles for, 108
content-box, assigning box-sizing property to,

39
CSS

coding standards, 99
decoupling from JavaScript, 117

CSS Dig (Chrome extension), 113
CSS frameworks, xi
CSS, writing, 27-40

assigning meaningful names to classes, 36
building a better box, 38

box-sizing border-box, 39
box-sizing content-box, 39
deciding between content-box or

border-box, 40
consistently structuring rulesets, 28
decoupling CSS and JavaScript, 34

modifying element styles with classes, 35
prefixing classes and IDs used in Java‐

Script, 35
keeping selectors simple, 30
using classes, 35
using comments, 27

D
dead code, deleting, 115
declaration blocks, xi
declarations

duplicate declaration blocks, 115
duplicate, in the same block, 116

136 | Index

in rulesets, 29
unused declaration blocks, 115

definition lists, styling in base styles, 50
developer tools, testing with, 86

DOM (Document Object Model) and CSS
styles, 91

emulating device sizes, 87
user agent spoofing and, 91

development time
reduced, with refactoring, 124
reduction through code reuse, 2
underestimation of, 3

device sizes, emulating, 87
display property, inline-block hack for IE 7, 72
document metadata, 44
DOM (Document Object Model) and CSS

styles, 91
duplicate declaration blocks, 115
duplicate declarations in a block, 116

E
Edge (see Microsoft Edge/Internet Explorer)
emulators (Android devices), 81
error class, 32
extensibility, 2

F
files (CSS), fewer and smaller sizes, 123
Firefox

developer tools, 86
DOM and CSS styles, 92
download site, 79
moz vendor prefix, 29
obtaining old versions for testing, 84
Responsive Design mode, emulating device

sizes, 89
testing with upcoming version, 85

:focus pseudoclass, 47
forms, base style for elements, 52

G
Gemini, 94-98

configuring, 95
gathering baseline images for, 96
installing, 95
testing regressions, 97
writing test files, 96

getOrderTotal function, 7

refactoring, 11
Google Analytics, accessing browser statistics

and screen resolutions, 76
grouping elements, base style for, 50

H
heading elements, base style for, 45
headless browsers, 94
headline CSS, refactoring (example), 17
hidden elements, 72
:hover pseudoclass, 47
hr element, normalizing style across browsers,

42
HTML, x

decoupling from CSS, 123
inline styles, 18

Huddle, PhantomCSS, 98

I
IDs

converting to classes, 120
not using to style elements, 36
removing redundant IDs, 120
used in JavaScript, prefixing with js-, 35

images
baseline, gather for visual regression testing,

96
styling in base styles, 53

!important declaration, 24, 71, 108
inheritance, property values in CSS, 44
inline CSS, removing, 122
inline styles, 18
inline-block hack for IE 7, 72
Internet Explorer (IE), 29

(see also Microsoft Edge/Internet Explorer)
inline-block hack for IE 7, 72

iOS Simulator, 80
testing old versions of Safari for iOS, 84

J
JavaScript

classes applied by, 108
decoupling from CSS, 34, 117

js- prefix for classes and IDs, 35

K
key selector, 34

Index | 137

L
:link pseudoclass, 47
links, base style for, 48
lists, base style for, 49
Litmus (testing service), 86

M
MailChimp, pattern library, 105
maintainability, 2
margin property, inheritance and, 43
media queries, keeping close to relevant decla‐

ration block, 109
metadata, document, 44
Microsoft Edge/Internet Explorer

developer tools, 86
emulating device sizes, 90

DOM and CSS styles, 92
download site, 79
downloading old versions for testing, 84
early releases for Microsoft Edge, 85
most-used versions, 76
ms vendor prefix, 29

minification, 110
mobile browsers, 79
moz vendor prefix, 29
Mozilla Firefox (see Firefox)
ms vendor prefix, 29

N
normalize.css, 42
normalizing styles, 42, 108

O
ordered and unordered lists, base style for, 49
over-modularization

avoiding over-modularized classes, 37
removing over-modularized classes, 122

overqualified selectors, 31

P
padding property, inheritance and, 43
Parallels, 84
pattern libraries, 104

benefits of, 105
building, 105

performant selectors, 32
PhantomCSS, 98
PhantomJS, 94

predictability of good architectures, 2
properties, x

defined, xi
inherited values in CSS, 44
organizing with vendor prefixes in rulesets,

29
setting for base styles, 43

pseudoclasses, 47

Q
qualified selectors, appropriate use of, 31

R
refactoring

defined, 1
examples, 5-20

calculating total for ecommerce order, 6
displaying the headline of a website, 17

factors leading to, 3
measuring success of, 122-124
permissions for, 5
software architecture and, 2
strategies for, 115-122

consistently structuring rulesets, 115
converting IDs to classes, 120
decoupling CSS and JavaScript, 117
defining reusable components, 121
deleting dead code, 115
removing inline CSS and over-

modularized classes, 122
removing redundant IDs, 120
segregating browser-specific CSS hacks,

122
separating base styles, 117
separating utility styles, 121

when not to do it, 4
when to do it, 4

requirements, changes in, 3
reusable components, 54

defining, 121
ruleset order, 23
rulesets, xi

duplicate declarations in, 116
structuring consistently, 28, 115

S
Safari browsers, 84

developer tools, 86

138 | Index

DOM and CSS styles, 92
download site, 79
Responsive Design mode, emulating device

sizes, 90
testing with upcoming version, 85

Safari for iOS, testing, 79
obtaining old versions for testing, 84

Sauce Labs (testing service), 86
screen resolutions (browser), accessing with

analytics tools, 76
Google Analytics, 78

sectioning elements, base style for, 44
selectors

defined, xi
keeping them simple, 30

matching selectors from right to left, 32
performant selectors and, 32

qualified, appropriate use of, 31
specificity of, 21, 123

software architecture, 1
and refactoring, 2
extensibility, 2
maintainability, 2
poorly designed, causing need for refactor‐

ing, 3
predictability of good architectures, 2
promotion of code reuse, 2

software development, underestimating time
needed for, 3

specificity, 21, 123
inline CSS and, 23
overriding the cascade with !important dec‐

laration, 24
structural styles, 68, 108
styles

DOM (Document Object Model) and CSS
styles, 91

included inline between style tags, 6
inline, 18
modifying element styles with classes, 35
organizing from least specific to most spe‐

cific, 107
syntax, ix

T
tables, base style for, 50
tabs

defining tab component, 55

delegating properties to appropriate con‐
tainers, 59

testing, 75-106
browser market share, 76
deciding which browsers to test, 75
difficulty of testing CSS, reasons for, 75
maintaining code quality, 99-106
reduced time spent on, 124
unit tests, 8
using developer tools, 86

DOM and CSS styles, 91
emulating device sizes, 87

using third-party testing services, 86
visual regression testing, 93-98

alternatives to Gemini, 98
tips for, 93
using Gemini, 94-98

with multiple browsers, 79
Android devices, 81
Safari for iOS, 79

with old versions of browsers, 84
text elements, base style for, 45
text semantics elements, base style for, 48
transform-origin property, vendor prefixes

with, 29
transformations, 29

U
UI bugs, number of, 123
unit tests, 8
universal selector (*), 21

as key selector, 34
using to set box-sizing on any element, 40

unused declaration blocks, 115
user agent spoofing, 91
user agent stylesheet, 41
utility styles, 71, 108

separating, 121

V
vendor prefixes for properties, 29
Virtual Box, VMWare, and Parallels, 84
virtual machines, 84
:visited pseudoclass, 47
visual regression testing, 93-98

alternatives to Gemini, 98
tips for, 93
using Gemini, 94

configuration, 95

Index | 139

gathering baseline images, 96
installing Gemini, 95
testing regressions, 97
writing test files, 96

W
webkit vendor prefix, 29
website for this book, xii
Windows Insider Pogram, 85

Wraith, 98

X
Xcode, downloading and installing, 79

Y
Yelp, pattern library, 104

140 | Index

About the Author
Steve Lindstrom has been building websites since 1999, when he built his first one as
a hobby in middle school. Since then he has earned his BS in computer science at the
Florida Institute of Technology in Melbourne, Florida. Steve has written software
while working in the defense, travel-tech, and most recently ecommerce industries.
When he’s not in front of a computer, he enjoys learning to cook and drinking coffee.

Colophon
The animal on the cover of CSS Refactoring is an African palm civet (Nandinia bino‐
tata), also called the two-spotted palm civet. This is a small omnivorous mammal
closely related to the weasel and mongoose. Most of the palm civet’s range is in east‐
ern Africa, but it has also been found in central and western regions of the continent.
It prefers a habitat of lowland forests or tropical jungles.

The African palm civet has short legs, a long tail, and tan fur mottled with darker
spots. It somewhat resembles the domestic cat, moreso than other civet species, and
so it is the only member of the Nandinia genus. On average, they weigh between 3 to
5 pounds. This is a solitary animal that spends most daylight hours resting in the
safety of a tree. At night, it emerges to eat: while the civet’s diet is largely made up of
fruit, it also hunts insects, lizards, birds, bats, and small rodents.

African palm civets breed twice a year, in May and October (these are times when
more food is usually available). After her litter is born, the mother’s mammary glands
produce an orange-yellow liquid that stains both her belly and her offspring’s fur. The
purpose of this is not entirely clear, though it could signal that she is not available to
mate and/or warn off males who may try to harm her young.

Civet is also the name of the musk these animals excrete to mark their territory and
find mates. Diluted, it has been used as a perfume ingredient for centuries. A syn‐
thetic version is used in many modern products, but several species of civet are still
illegally trapped for their meat and scent glands.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Intended Audience
	Objectives of This Book
	What’s Not In This Book
	Nomenclature
	What You’ll Find on the Companion Website
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Refactoring and Architecture
	What Is Refactoring?
	What Is Software Architecture?
	Good Architectures Are Predictable
	Good Architectures Promote Code Reuse
	Good Architectures Are Extensible
	Good Architectures Are Maintainable
	Software Architecture and Refactoring

	Shortcomings that Lead to Refactoring
	Changing Requirements
	Poorly Designed Architecture
	Underestimating Difficulty
	Ignoring Best Practices

	When Should Code Be Refactored?
	When Should Code NOT Be Refactored?
	Am I Allowed to Refactor My Code?
	Refactoring Examples
	Refactoring Example 1: Calculating the Total Price of an Ecommerce Order
	Refactoring Example 2: A Simple Example of Refactoring CSS

	Chapter Summary

	Chapter 2. Understanding the Cascade
	What Is the Cascade?
	Selector Specificity
	Ruleset Order
	Inline CSS and Specificity
	Overriding the Cascade with the !important Declaration
	Chapter Summary

	Chapter 3. Writing Better CSS
	Use Comments
	Consistently Structure Rulesets
	Organize Properties with Vendor Prefixes

	Keep Selectors Simple
	Performant Selectors

	Decouple CSS and JavaScript
	Prefix Classes and IDs that Are Used in JavaScript
	Modify Element Styles with Classes

	Use Classes
	Assign Classes Meaningful Names
	Avoid Over-Modularized Classes

	Build a Better Box
	box-sizing: content-box
	box-sizing: border-box
	content-box or border-box?

	Chapter Summary

	Chapter 4. Classifying Different Types of Styles
	The Importance of Classifying Styles
	Normalizing Styles
	Base Styles
	Defining Base Styles
	Document Metadata
	Sectioning Elements
	Heading and Text Elements
	Anchor Tags
	Text Semantics
	Lists
	Grouping Elements
	Tables
	Forms
	Images

	Component Styles
	Define the Behavior that Needs to Be Built
	Keep Component Styles Granular
	Let the Component’s Container Override Visual Styles as Needed
	Delegate the Assignment of Dimensions to Structural Containers

	Structural Styles
	Utility Styles
	Browser-Specific Styles
	Chapter Summary

	Chapter 5. Testing
	Why Is Testing Difficult?
	Which Browsers Are Important to Test?
	Browser Market Share
	Accessing Browser Statistics and Screen Resolutions in Google Analytics

	Testing with Multiple Browsers
	Safari for iOS
	Android

	Testing with Old Versions of Browsers
	Internet Explorer and Microsoft Edge
	Firefox
	Safari and Safari for iOS
	Chrome

	Testing the Bleeding Edge
	Third-Party Testing Services
	Testing with Developer Tools
	Emulating Device Sizes
	The Document Object Model (DOM) and CSS Styles

	Visual Regression Testing
	Tips for Visual Regression Testing
	Visual Regression Testing with Gemini

	Maintaining Your Code
	Coding Standards
	Pattern Libraries

	Chapter Summary

	Chapter 6. Code Placement and Refactoring Strategies
	Organize CSS from Least Specific to Most Specific Styles
	Normalizing Styles
	Base Styles
	Styles for Components and Their Containers
	Structural Styles
	Utility Styles
	Browser-Specific Styles

	Multiple Files or One Big File?
	Serving CSS
	Developing with a Single File
	Developing with Multiple Files

	Auditing Your CSS Before Refactoring
	Refactoring Strategies
	Consistently Structure Rulesets
	Delete Dead Code
	Decouple CSS and JavaScript
	Separate Base Styles
	Remove Redundant IDs
	Convert IDs to Classes
	Separate Utility Styles
	Define Reusable Components
	Remove Inline CSS and Over-Modularized Classes
	Segregate Browser-Specific CSS Hacks

	Measuring Success
	Is Your Website Broken?
	Number of UI Bugs
	Reduced Development and Testing Time

	Chapter Summary

	Appendix A. normalize.css
	Index
	About the Author
	Colophon

