


What Readers Are Saying About Pragmatic Guide to Sass

Pragmatic Guide to Sass is a snappy little book that effectively hits you with
the right dose of Sass magic to either pick up Sass as a newcomer or give
you a refresher if you’re already using it. The guide is written in a style
that’s both a tutorial and a reference at the same time, and it’ll be a handy
go-to book for anyone working with Sass, whether on a daily basis or only
on rare occasions. It gets two thumbs-up from me.

➤ Peter Cooper, editor of Ruby Inside and HTML5 Weekly

Sass is the best way to write maintainable CSS. This Pragmatic guide will
get you up to speed on Sass’s most powerful features, including nesting,
variables, and mixins—an invaluable reference.

➤ Sam Stephenson, creator of Sprockets and the Rails asset pipeline



Michael and Hampton, in Pragmatic Guide to Sass, have put together the
most comprehensive and thought-out guide to Sass to date. No matter
what server-side technology you use, Sass can be used in anyone’s devel-
opment stack to help organize your CSS. Pragmatic Guide to Sass shows
you the best practices in DRYing up your CSS with the power of Sass. It
teaches you how to become a CSS heavyweight without the bloated CSS.
This book should be on every web developer’s shelf (and e-reader).

➤ Andrew Chalkley, technical writer, Screencasts.org

Chock-full of unexpected goodies such as extras on Compass and Haml,
Pragmatic Guide to Sass is hands-down the best Sass resource printed to
date—a must-read for web developers and smart designers.

➤ Dan Kissell, Codenicely.com



Pragmatic Guide to Sass

Hampton Catlin
Michael Lintorn Catlin

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Kay Keppler (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-84-5
Printed on acid-free paper.
Book version: P1.0—December 2011

http://pragprog.com


Contents

Acknowledgments . . . . . . . . ix

Welcome! . . . . . . . . . . xi

Part I — Basics

Task 1. Installing Sass . . . . . . . . 4
Task 2. Compiling Sass into CSS . . . . . 6
Task 3. Using Sass with Rails . . . . . . 8
Task 4. Avoiding the Command Line: Using

Scout . . . . . . . . . 10
Task 5. Commenting . . . . . . . . 12
Task 6. Selector Scoping . . . . . . . 14
Task 7. Going Further with Advanced Scoping . . 16
Task 8. Altering the CSS Output . . . . . 18
Task 9. Defining Variables . . . . . . 20
Task 10. Calculating a Layout . . . . . . 22
Task 11. Creating Themes with Advanced Colors . 24
Task 12. Importing . . . . . . . . 26
Task 13. Building a Font Family Library . . . 28
Task 14. Resetting CSS . . . . . . . 30

Part II — Advanced

Task 15. Keeping It Semantic: @extend . . . . 36
Task 16. Keeping Code Clean with Mixins . . . 38
Task 17. Taking Mixins Further with Variables . . 40
Task 18. Debugging . . . . . . . . 42
Task 19. Generating Cross-Browser Rounded

Borders . . . . . . . . . 44
Task 20. Using Cross-Browser Opacity . . . . 46
Task 21. Interpolating . . . . . . . . 48



Task 22. Stop Repeating Yourself with @each . . 50
Task 23. Determining Conditions with @if . . . 52
Task 24. Changing Looks with Nested @media . . 54

Part III — Compass

Task 25. Setting Up for a Compass Project . . . 62
Task 26. Resetting: Much Easier with Compass . . 64
Task 27. Sprucing Up Your Lists . . . . . 66
Task 28. Making Lists Horizontal . . . . . 68
Task 29. Sticking a Footer to a Window . . . . 70
Task 30. Stopping Overflow with Clearfix . . . 72
Task 31. Truncating Text Using Ellipses . . . . 74
Task 32. Stretching Elements . . . . . . 76
Task 33. Jazzing Up Layouts with Columns . . . 78
Task 34. Spriting . . . . . . . . . 80

Part IV — Blueprint CSS

Task 35. Producing More Two-Column Layouts . . 86
Task 36. Using Predefined Fancy Fonts . . . . 88
Task 37. Making Beautiful Buttons . . . . . 90

A1. SassScript Function Reference . . . . . . 93

A2. Introduction to Haml . . . . . . . 101
A2.1 Haml Walkthrough: ERB 102
A2.2 Haml Walkthrough: HTML 106

Index . . . . . . . . . . . 111

vii • Contents



Acknowledgments
We’d both like to thank the entire team at Pragmatic, who
are a great bunch of people to work with. They made the
process of writing really enjoyable. In particular, our editor,
Kay Keppler, and managing editor, Susannah Pfalzer, were
personable and always on hand to answer our most inane
questions.

We’d also like to thank our tech reviewers: Peter Cooper,
Eric Redmond, Shawn Allison, Jeff Patzer, Trevor Burnham,
Bruce Williams, Aaron Godin, and Ian Dees. Your insights
were extremely useful.

Hampton: Most importantly, I’d like to thank Nathan
Weizenbaum, whose endless hours of coding and bug fixes
and extensions make Sass what it is today. And I can’t forget
Chris Eppstein, whose creation of Compass truly changed
the Sass landscape forever.

Michael: Thanks to my parents, Alan and Jayne, for not
giving me too much grief over stopping my PhD. Final
thanks go to the GMO for keeping us sane.

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Welcome!
Welcome to the Pragmatic Guide to Sass. Sass (Syntactically
Awesome Style Sheets) enables you to do amazing things
with your style sheets, helping you describe how HTML is
laid out on a web page. Sass is an alternative way of writing
CSS.

“What’s wrong with regular ol’ CSS?” we hear you cry. The
fact is that CSS, with all its power and elegance, is missing
some crucial, simple elements that other types of develop-
ment take for granted. CSS can also be a bit complicated to
read: Sass fixes that.

Most programmers are familiar with the concept of DRY—
Don’tRepeatYourself. It saves time and effort when writing
code. A core philosophy of Sass is to reduce repetition in
style sheets, and we’ll be coming back to DRY a few times
throughout the guide.

Sass isn’t really a replacement for CSS—it’s a way to help
us write better CSS files, which is essential for large projects.
Sass helps us write clear, semantic style sheets. Sass updates
CSS development for the future.

Hampton originally designed Sass while he was working at
Unspace in Toronto, and Nathan Weizenbaum and Chris
Eppstein now maintain it. A lot of Sass functionality depends
on Ruby. (But don’t worry, we’ll learn how to install Ruby
in Part I, Basics, on page 3.)

In this book, we’ll be using the word Sass as an overarching
concept that describes the engine we use to convert our files
into CSS. We can use two syntaxes to write Sass—SCSS and
Original Sass. These will be described a bit later in this
preface.

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Who Is This Book For?

This book is for people who know the pain of working on
the CSS of a mature website—who have faced a CSS file that
four people wrote and that mutated into a huge, sprawling,
incoherent mess. We’ve looked the beast in the eye and
barely survived.

You’re probably already familiar with CSS, HTML, and the
ideals of semantic web development. We can all agree that
markup should be about logic instead of about presentation
(as much as possible). And we’ll assume that you’re familiar
with margins, padding, the box model, @media queries, and
the myriad of other CSS-related technologies.

If you are looking for a CSS-ninja power-up, you’ve come
to the right place.

Nomenclature and Syntax

Some of the terms associated with CSS can be quite confus-
ing, so we’ve added a short introduction to how we name
things in the book. Also, there are two different syntaxes for
writing Sass that need to be distinguished.

A Brief CSS Recap

We thought it would be useful to go through a couple of
technical terms we’ll be using for different aspects of CSS
markup. If you’re already familiar with selectors, declaration
blocks, and the like, you can probably skip this part.

Let’s use a small bit of CSS as an example:

p {
color: #336699;
font-size: 2em;

}

Here we have p, which we call the selector. What follows (the
bit inside the curly braces) is the declaration block. The two
lines—one defining the color and one defining the font
size—are known as declarations. Each declaration has a
property and a value. The property in this case is the color or
the font size. The value is the color itself—for example,
#336699, blue—or the size of the font—for example, 20px.

xii • Welcome!

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


The use of classes and IDs allows us to define sets of declara-
tions that will only be applied to specific sections of our
HTML. Sass allows you to create much richer selectors, as
we’ll see in Part I, Basics, on page 3.

SCSS: A More CSS-like Way to Write Sass

SCSS, which stands for Sassy CSS, is one of the syntaxes we
use to write Sass. The grand aim of SCSS is to keep the look
of CSS while introducing the units of Sass. If you’re familiar
with CSS, it’s pretty easy to read. We still use selectors,
classes, and IDs. We open a curly brace to start the declara-
tion block, and we separate out declarations with semicolons.
What’s extra is the added functionality.

When we use the word Sass, we’ll mostly be referring to the
SCSS syntax.

Original Sass: A Stripped-down Way to Write Sass

Before SCSS, there was Original Sass, which strips out some
of the unnecessary elements of CSS and SCSS. Original Sass
can be compiled just the same as SCSS, via the Sass engine.

A great example of unnecessary elements are curly braces.
Look at this:

.fab_text {
color: #336699;
font-size: 2em; }

We know by the use of . or # that something is a selector.
Using whitespace (two spaces or a soft tab that indents the
properties) helps us. In the example above, the indentation
lets us know that color and font-size refer only to the fab_text
class. The curly braces aren’t needed. Why not just strip them
out?

.fab_text
color: #336699;
font-size: 2em;

Look at that! Doesn’t the code already look a lot cleaner, a
lot simpler?

While we’re at it, we might as well take away the semicolons
at the end of the values. They don’t add much, do they?

report erratum  •  discuss

Welcome! • xiii

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


.fab_text
color: #336699
font-size: 2em

And this is how Original Sass is written. As you can see, it’s
more different from CSS than from SCSS, as it involves
removing bits we’re used to. So in the examples we use in
the book, we’ll mostly be using SCSS to describe things.
Once you’re used to it, though, Original Sass should be more
readable at a quick glance.

Aside from the curly braces and semicolons, most of the
features we’ll look at are written the same in both SCSS and
Original Sass. When they’re not, we’ll point out how they
differ. It’s really up to you whether you use SCSS or Original
Sass syntax.

Overview

In Part I, Basics, on page 3, we’ll take you through the very
first things you’ll need to know about Sass and SCSS, like
how to install (Task 1, Installing Sass, on page 4). We’ll also
take you through variables, where Sass gets really exciting
(Task 9, Defining Variables, on page 20).

We’ll take things to the next level in Part II, Advanced, on
page 35. One of the main things we’ll look at is mixins (Task
16, Keeping Code Clean with Mixins, on page 38). We’ll also
take a look at some more programmer-style functions of
Sass, such as@each and@if (in Task 22, Stop Repeating Yourself
with @each, on page 50, and Task 23, Determining Conditions
with @if, on page 52, respectively).

Chris Eppstein’s Compass is a great way to style pages, and
we’ll go through it in Part III, Compass, on page 59. We’ll
cover things like adding columns to your text (Task 33,
Jazzing Up Layouts with Columns, on page 78) and making a
sticky footer (Task 29, Sticking a Footer to a Window, on page
70).

In Part IV, Blueprint CSS, on page 85, we’ll look at a frame-
work that makes things even simpler than Compass. Among
other things, it provides a great predefined structure to help
you customize buttons, which we describe in Task 37,Making
Beautiful Buttons, on page 90.

xiv • Welcome!

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


How to Read This Book

The book is arranged into tasks. These are short snippets of
information. On the left you’ll find a description of the task
at hand. On the right you’ll find the code you need to write
to get results.

We’ve tried to arrange the book to go from the most basic
tasks to the most advanced. However, you can definitely
dip in and out of the book if you find a specific task you
need to look at. Once you’ve grasped the very basics (such
as installing), you’ll probably be set to do most of the tasks
in the book.

Getting Help

There are several ways you can find help for your Sass
troubles. For example, join the Sass Lang Google group.1

Also, the Sass documentation has a wealth of information
that covers most of what we look at in this guide and even
goes over a few other things as well.2

In addition, if you ever need help with the sass command,
just type sass --help and Sass will let you know about all the
available ways to run it.

A Few Final Comments

We’re almost ready to start, but here are some little bits that
you’ll probably find useful to know before we dive into the
book.

• We’ll be using the following phrase to show when we’ve
converted some Sass into CSS.

This compiles to:

Hopefully, you’ll be more familiar with the CSS output,
so you can easily compare how much simpler Sass is
compared to CSS.

• If you’ve downloaded the ebook, you’ll notice that all
the code samples are preceded by a little shaded box. If
you click on the box, the code sample shown in the book

1. http://groups.google.com/group/sass-lang
2. http://sass-lang.com/docs/yardoc/file.SASS_REFERENCE.html

report erratum  •  discuss

Welcome! • xv

http://groups.google.com/group/sass-lang
http://sass-lang.com/docs/yardoc/file.SASS_REFERENCE.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


will be downloaded to your computer, allowing you to
play around with our examples.

• You can get more information from the book’s official
web page.3 There you’ll find resources such as the book
forum, code downloads, and any errata.

OK—now we’ve got all that out of the way, are you ready
to get Sassy?

3. http://pragprog.com/book/pg_sass/pragmatic-guide-to-sass

xvi • Welcome!

report erratum  •  discuss

http://pragprog.com/book/pg_sass/pragmatic-guide-to-sass
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Part I

Basics



We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



Let’s get going. Here’s a quick run-down of what we’ll be
going through in the Basics section:

• We’ll start by looking at how to install Sass in Task 1,
Installing Sass, on page 4, then we’ll look at how to
convert a Sass file to a CSS file in Task 2, Compiling Sass
into CSS, on page 6.

• Check out the next task for how to work with Sass in
Task 3, Using Sass with Rails, on page 8.

• If you’re not familiar with the command line, we’ll look
at a great Sass interface in Task 4, Avoiding the
Command Line: Using Scout, on page 10.

• We’ll look at how to do comments in Sass in Task 5,
Commenting, on page 12.

• Then we’re going to look at the idea of scoping and
how this is much simpler in Sass. Scoping is introduced
in Task 6, Selector Scoping, on page 14; we expand upon
it in Task 7, Going Further with Advanced Scoping, on
page 16.

• Learning how to change the exact CSS produced from
your style sheets is covered in Task 8, Altering the CSS
Output, on page 18.

• Then we’ll move on to variables in Task 9, Defining
Variables, on page 20.

• We’ll put the skills we learned about variables to use in
Task 10, Calculating a Layout, on page 22, and Task 11,
Creating Themes with Advanced Colors, on page 24.

• Next we’ll look at how importing can keep your style
sheets cleaner and more semantic in Task 12, Importing,
on page 26.

• In the last tasks, we’ll look at a couple of ways you can
use importing in Task 13, Building a Font Family Library,
on page 28, and Task 14, Resetting CSS, on page 30.

Basics • 3



1 Installing Sass

So before you can explore the simplicity (and beauty) of Sass, you’ll
need to set a few things up. It’s useful to have a folder where you keep
all your Sass files for a project. Creating a Sass file couldn’t be easier:
just use the extension .scss—or .sass for an Original Sass file.

The only tool you need is a text editor. Every OS comes with something,
but of course that’s not always the best something. Generally, just use
whatever you usually use to write CSS. We recommend some text
editors with each set of installation instructions.

In order to install and run Sass, you need to have Ruby installed on
your system. We’ll go through how to do this in the three major OS
categories. If you’re not comfortable with the command line, you may
want to check out Task 4, Avoiding the Command Line: Using Scout, on
page 10.

Installation on Windows

Because Windows doesn’t come with Ruby, you’ll need to install it.
There are a few installers around the Internet, but we prefer the simple
one at RubyInstaller.4

Once Ruby has been installed, you need to access the command line.
Go to Start, then Accessories, then find Command Prompt. That should
open a window that will allow you to run the needed install com-
mands. A decent text editor for Windows is Notepad++.

Installation on a Mac

Unlike Windows, Ruby is already installed on OS X, making things a
bit easier. All we need to do is open the Terminal application and install
Sass via the command line. The text editor that we use on our Macs is
TextMate.

Installation for Linux

If you’re a Linux user, you’ll be aware of how to access your command
line—we won’t insult your Unix-fu. To install Ruby (and Ruby gems),
use your package manager. We recommend Ruby version 1.9.2. As
for text editors, Vim tends to be the most popular.

4. http://rubyinstaller.org

4 • Basics

report erratum  •  discuss

http://rubyinstaller.org
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Use this command to install Sass.

gem install sass

➤ Create a simple Sass file.

Name a file test.scss with the following contents:

.red {
color: red;

}

➤ Test that Sass is working.

Navigate to the folder containing the test.scss file via the command
line and you should see the following if you run the command sass
test.scss.

$> sass test.scss
.red {
color: red; }

It just reformatted the CSS we wrote above. Now we’re ready to show
you how to rock some Sass superpowers.

report erratum  •  discuss

Installing Sass • 5

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


2 Compiling Sass into CSS

We’ve introduced the idea that Sass is an advanced version of CSS.
As a matter of fact, any valid CSS is valid Sass. Sass just adds features
on top of CSS—it’s a kind of meta language. Unfortunately at this
point, no browsers support Sass files directly, so we have to convert
from Sass into CSS first.

The basic gist is that we write some Sass and then we compile—or
convert—Sass into CSS. How do we compile Sass into CSS? Well, you
did it in the last step of Task 1, Installing Sass, on page 4, but we didn’t
use any of the extra powers of Sass, so the results were pretty similar.

Let’s run through how we can convert a Sass file into a CSS file again
in a lot more detail than we did in the last task.

First, we need to create a Sass file. Any old thing will do—this is just
to show how we can turn our Sass into CSS. Since CSS is valid Sass,
take any random CSS file you have sitting around and change its
extension to .scss.

Now, let’s go to our command line. Type sass, followed by the name
of your file.

Look at that! Oh right, it just printed out the CSS but in a different
format. And printing out your CSS files to the console isn’t very useful.
It would be better if we could make a separate CSS file.

Well, you can! Run the sass command again with a second argument
that specifies the output file you want. For instance, you might say
sass test.scss test.css and Sass will generate a CSS file named test.css.

Running that command over and over would be extremely tedious as
we edit our Sass file. If you are using Rails or another framework, it
can automatically update your CSS for you. But when we aren’t using
a framework, we have a neat command-line trick for converting Sass
files into CSS files as we alter them. It’s called watch.

watch will take any .scss file found in the specified Sass folder and
convert it into a .css file in the specified CSS folder. Magic! It doesn’t
just do this once either. It constantly watches the file for any changes
and incorporates them into the CSS file.

Another useful command to mention here is convert. You can use this
to turn a .css file into a .sass or .scss file.

6 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Start with a simple bit of Sass.

.fab_text {
color: #336699;
font-size: 2em;

}

➤ Type this in your command line.

sass fabtext.scss

You should see the following:

.fab_text {
color: #336699;
font-size: 2em; }

➤ Watch a folder.

Assuming we have a Sass and a CSS folder, the command would look
like this:

sass --watch stylesheets/sass:stylesheets/css

➤ Convert a CSS file to a Sass file.

sass convert test.css test.sass

Related Tasks:

• Task 8, Altering the CSS Output, on page 18

report erratum  •  discuss

Compiling Sass into CSS • 7

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


3 Using Sass with Rails

Sass was originally built to work with Rails, and it’s painfully easy to
use with the popular Ruby web framework. If you don’t use Rails,
then move on to the next chapter, where we’ll show you an easy way
to work with Sass files on your computer. The only difficult part is
dealing with the slight differences between Rails versions. But read
on, brave reader, and we’ll get you sorted out.

If you are using a Rails version previous to 3.0, then all you need to
do to get Sass working with your Rails application is to add config.gem
'sass' to your environment.rb file. If you place your Sass files inside of
public/stylesheets/sass/ (yes, make sure to make the directory!), then they
will automatically get compiled to CSS in the public/stylesheets/ folder.

In Rails 3.0 the process is very similar, but instead of config.gem, we
use the Gemfile and add the line gem 'sass'. Bundler makes it easy, as
usual!

In Rails 3.1+, Sass is included! Seriously! You don’t have to do anything
specific. Just installing Rails 3.1 installs Sass, but the process for
working with Sass is a little different due to the introduction of the
asset pipeline into Rails. The asset pipeline includes both Sass and
CoffeeScript, a Javascript replacement language that supports many
advanced features like asset compression, bundling, and more. Cover-
ing these features is outside of the scope of this quick book, but in
general Rails will generate an .scss file with every controller and will
place it in app/assets/stylesheets. You can find out more about Rails 3.1’s
asset handling at the Rails site.5

5. Rails Edge Guide to the Asset Pipeline: http://edgeguides.rubyonrails.org/
asset_pipeline.html

8 • Basics

report erratum  •  discuss

http://edgeguides.rubyonrails.org/asset_pipeline.html
http://edgeguides.rubyonrails.org/asset_pipeline.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Install with Rails older than 3.0.

Add this line to your config/environment.rb file.

config.gem 'sass'

Since we aren’t using Bundler here, you have to make sure the Sass
gem is installed on your system, which we cover in Task 1, Installing
Sass, on page 4.

gem install sass

➤ Install with Rails 3.0.

Add this line to your Gemfile.

gem 'sass'

Then make sure to run bundle!

bundle install

➤ Use on Rails 2.0 or 3.0.

First, start up your Rails server. Then, create a public/stylesheets/sass/ap-
plication.scss file and put some simple SCSS inside it.

.worked {
width: 100;

}

If you load a page on your Rails application, then public/stylesheets/ap-
plication.css should contain the exact contents as application.scss. It will
auto reload this file every time you make a change to the SCSS file. So
make sure not to edit the CSS file or else you will be sad when it gets
replaced!

report erratum  •  discuss

Using Sass with Rails • 9

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


4 Avoiding the Command Line: Using Scout

So far we’ve been using the command line to generate our CSS from
Sass. However, not everyone is comfortable using the command line.
A great app to help you use Sass (and Compass, a tool we’ll come
across in Part III, Compass, on page 59) is Scout.6

Scout is a graphical user interface (GUI) that automatically sorts out
all the Ruby installation stuff we’ve been describing in the previous
tasks. You don’t need to know about the command line at all.

Once we’ve downloaded Scout, we just import our project file. We
specify the input folder, which is typically our Sass folder. Then we
specify the output folder, which is usually the stylesheet folder. Hit
the play button, and Scout watches your Sass files.

As soon as you make a change to a Sass file, Scout notices and updates
the corresponding CSS file in your output folder. It’s really that simple!

6. http://mhs.github.com/scout-app/

10 • Basics

report erratum  •  discuss

http://mhs.github.com/scout-app/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Import your project and set up your input and output folders.

➤ Scout logs your changes.

report erratum  •  discuss

Avoiding the Command Line: Using Scout • 11

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


5 Commenting

Comments are snippets of text that are ignored by the browser. Sass
gives us the option of two types of comments. One will only show up
in the Sass document, and the other will be incorporated into the CSS
that’s compiled.

The comment style that’s compiled into the CSS is the same one you’re
probably used to—in fact, it’s exactly the same as the CSS comment
style. Just place your comment between /* and */. These comments can
be on multiple lines.

If we want to write a comment that will only appear in the Sass file,
then we place the comment after //. This style only works for single-
line comments, though.

12 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Use two different styles of comments.

Download basics/comments.scss
/* Hey look at this multiline comment
* that we want to show up in our CSS
* output. */

#page {
color: black; }

// These comments are single lines
// and we do not want them to appear
// in our CSS

#sidebar {
color: #336699; }

This compiles to:

/* Hey look at this multiline comment
* that we want to show up in our CSS
* output. */
#page {
color: black; }

#sidebar {
color: #336699; }

report erratum  •  discuss

Commenting • 13

http://media.pragprog.com/titles/pg_sass/code/basics/comments.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


6 Selector Scoping

Let’s look at a core feature of Sass: nesting. If you’ve been working
with CSS for a long time, you know the advantages of giving more
specific selectors to your style sheets. Using .sidebar p em allows you
greater specificity to the em element versus a standalone em selector.
It gives you more freedom with reusing names and making your
HTML more semantic and readable. We generally refer to this as
scoping.

It’s a good thing to scope, except it’s not DRY. (RememberDon’tRepeat
Yourself?). We keep having to repeat our classes or IDs—for example,
repeating an apply-to-all class like .infobox—on every line. Typing this
by hand is laborious and makes us want to be lazy. When writing CSS,
scoping can be very tedious. It involves a lot of copying and pasting.
What’s more, keeping track of parent-child relationships is tough. We
can do better than that! Technology should support good behaviors.
Sass is here to help us with nesting.

We can put a style such as a border color inside a declaration block,
and Sass will automatically do the repetitive part for you when you
generate CSS. I bet your fingers are thanking you already for saving
all that typing. Cool, huh?

A small note: the CSS that’s compiled in the example opposite looks
a bit funny, doesn’t it? Especially when we compare it to the original
(repetitive) CSS example we wrote out. What happens is that the Sass
engine keeps the indentation when it converts to CSS. All it does is
insert the missing selectors.

14 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Look at this scoped CSS.

Look how much repetition there is in this file. Holy cow!

Download basics/scoping.css
.infobox { width: 200px; }
.infobox .message { border: 1px solid red; }
.infobox .message .title { color: red; }
.infobox .user { border: 2px solid black; }
.infobox .user .title { color: black; }

➤ See it in Sass.

Instead of repeating it, just nest it inside the parent selector.

Download basics/example_nesting.scss
.infobox {
width: 200px;
.message {
border: 1px solid red;
.title {
color: red; } }

.user {
border: 2px solid black;
.title {
color: black; } } }

This compiles to:

.infobox {
width: 200px; }
.infobox .message {
border: 1px solid red; }
.infobox .message .title {
color: red; }

.infobox .user {
border: 2px solid black; }
.infobox .user .title {
color: black; }

Related Tasks:

• Task 7, Going Further with Advanced Scoping, on page 16
• Task 8, Altering the CSS Output, on page 18

report erratum  •  discuss

Selector Scoping • 15

http://media.pragprog.com/titles/pg_sass/code/basics/scoping.css
http://media.pragprog.com/titles/pg_sass/code/basics/example_nesting.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


7 Going Further with Advanced Scoping

In the last section, we introduced simple nesting. Just throw a selector
inside a declaration block and BAM! It automatically scopes the style
as being the child of the parent. However, sometimes we need to be
more explicit. The last example we gave didn’t specify that the children
were direct children. In standard CSS, we specify this directness as
parent > child. If your CSS is rusty, that means finding a tag named
<child> who’s exactly one level inside of a <parent> tag.

Using these kinds of CSS operators is as simple as you’d hope. Just
start the child selector with the operator you want. So the child would
be defined as > child inside of the parent definition.

Using nesting is a great way to organize your styles. It means that all
of the related styles are grouped together. By default, every child
selector is the parent selector plus the child selector. In situations where
we want to do something more advanced, we use the & selector. Simply
put, & means “the parent selector.” Don’t look scared. It’s easy stuff
once it clicks.

Oftentimes, we use a bit of Javascript to add classes to the <body> tag
based on what browser the user is using. For instance, if you visit with
Safari, the<body>will have the classes .safari and .webkit. So when we’re
styling the sidebar, we might want to add a rule that says, “If the body
tag has this class, apply this rule,” and it would be nice to have this
code near all the related rules. So if we’re inside of .sidebar .item and
then we write the child selector body.webkit &, Sass will compile into
body.webkit .sidebar .item.

The ampersand got replaced with .sidebar .item, which was the parent’s
scope. If it’s still a bit foggy, read over the examples. Then it should
click. It really is simple!

16 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Define direct ancestors.

Download basics/direct_ancestors.scss
.infobox > {
.message {
border: 1px solid red;
> .title {
color: red; } }

.user {
border: 1px solid black;
> .title {
color: black; } } }

This compiles to:

.infobox > .message {
border: 1px solid red; }
.infobox > .message > .title {
color: red; }

.infobox > .user {
border: 1px solid black; }
.infobox > .user > .title {
color: black; }

➤ Use the magical &.

Download basics/ampersand_example.scss
.infobox {
color: blue;
.user & {
color: gray; } }

.message {
color: gray;
&.new {
color: red; } }

.infobox {
.user & .message {
content: "Selector is '.user .infobox .message'"; } }

This compiles to:

.infobox {
color: blue; }
.user .infobox {
color: gray; }

.message {
color: gray; }
.message.new {
color: red; }

.user .infobox .message {
content: "Selector is '.user .infobox .message'"; }

report erratum  •  discuss

Going Further with Advanced Scoping • 17

http://media.pragprog.com/titles/pg_sass/code/basics/direct_ancestors.scss
http://media.pragprog.com/titles/pg_sass/code/basics/ampersand_example.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


8 Altering the CSS Output

When you compile your Sass, a CSS file is generated. But what if you
want that CSS file to be in a slightly different format? We have a few
options to choose from. This means you can have your CSS output in
a style that you prefer.

In the command line, you can type this:

sass --style

Follow this with the name of the style you want. The four options we
have are called nested, expanded, compact, and compressed.

Nested is the default output style. It looks very much like regular CSS,
with curly braces and semicolons.

Expanded is, as its name suggests, an expanded form of the CSS output.
All classes—including nested ones—expand rather than remaining
nested in their parents. Both nested and expanded styles are probably
the easiest to read, but they also have the largest file sizes.

Compact puts all the properties of a selector on one line so it’s easier
to scan down a list of selectors.

Finally, compressed is possibly the most difficult to read. All spaces
are removed, so the CSS sits on one line. This makes a compressed
CSS file the smallest, which is great for mobile devices, for example.

18 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Check out the Sass we’ll be compiling in each case.

Download basics/outputs.scss
.infobox {
.message {
border: 1px solid red;
background: #336699;
.title {
color: red; } } }

➤ Nested (the default setting) looks like this.

.infobox .message {
border: 1px solid red;
background: #336699; }
.infobox .message .title {
color: red; }

➤ Expanded looks like this.

.infobox .message {
border: 1px solid red;
background: #336699;

}
.infobox .message .title {
color: red;

}

➤ Compact looks like this.

.infobox .message { border: 1px solid red;
background: #336699; }

.infobox .message .title { color: red; }

(The first declaration should be on one line.)

➤ Compressed looks like this.

.infobox .message{border:1px solid red;background:#336699}
.infobox .message .title{color:red}

(The compressed output didn’t fit on one line in the book, so we had
to create another one. In the real thing, though, it is all on one line.)

report erratum  •  discuss

Altering the CSS Output • 19

http://media.pragprog.com/titles/pg_sass/code/basics/outputs.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


9 Defining Variables

Have you ever been in a situation where you are copying the value of
a color over and over again? That very specific blue that your clients
want appears in so many places. Then, a couple of weeks later, they
want you to change the color. Or—even worse—you have a whole lot
of colors to change. Find and replace time! Color handling in CSS is
not DRY (there’s that Don’t Repeat Yourself again!) at all.

Sass introduces variables to help us manage problems like this. All
variables in Sass are prefixed with a $ sign. Assigning a variable looks
a lot like typing in a CSS property. For instance, we can set the $prima-
ry_color variable by adding the super-simple line: $primary_color: #369;.
That’s it!

To use the variable, we can just use the variable name where we’d
usually use the property value. If we had to change the colors of the
whole document, all we’d need to do is change the hex value of the
variable and it’s sorted for us when the CSS compiles.

We can use variables to represent colors, sizes, percents, and several
other things that are less commonly used. Anything that you can put
to the right of a CSS property is easily understood by Sass.

Another neat thing about variables is they can be global or scoped. We’ve
pretty much gone through global variables: They’re when a variable
is defined on its own line, and they apply to the whole style sheet.
Scoped variables, on the other hand, appear within a selector and will
only apply to that selector and its children.

We can set default variables with the !default tag after assignment.
When a variable is used, the default is used if there are no other assign-
ments to that variable.

It’s pretty standard in a Sass document to declare the variables at the
top of a file and use them throughout. If you’re familiar with C, then
you’ll be familiar with using constants this way. Or if you have a large
project, you might want to create a file that defines all of the variables.
We’ll show you how you can break up your Sass files in Task 12, Im-
porting, on page 26.

20 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Define and use variables.

Download basics/variable_example.scss
$primary_color: #369;
$secondary_color: #eee;
$page_width: 300px;

body {
// Set the background to be #369
background: $primary_color;
#wrapper {
width: $page_width;
background: white;
border: $secondary_color;
h1 {
color: $primary_color; } } }

This compiles to:

body {
background: #336699; }
body #wrapper {
width: 300px;
background: white;
border: #eeeeee; }
body #wrapper h1 {
color: #336699; }

Related Tasks:

• Task 10, Calculating a Layout, on page 22
• Task 12, Importing, on page 26

report erratum  •  discuss

Defining Variables • 21

http://media.pragprog.com/titles/pg_sass/code/basics/variable_example.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


10 Calculating a Layout

Sass allows you to do calculations on the fly and in your document:
you can easily type width: 12px * 0.5; in your code!

…

OK, OK—we admit that’s not terribly useful. But it is once we throw
variables into the mix. Once we’ve defined a variable, Sass allows us
to perform basic operations on that variable using standard operators
for adding, subtracting, multiplying, and dividing (+, -, *, and /). The
operators will be familiar to anyone who has done any amount of
programming before.

We could say something like width: $page_width * 0.1 as a way to avoid
hard-coding pixel values. When the CSS is compiled, this will be pre-
calculated and will print out an exact width in pixels.

We can now do previously laborious tasks like calculating and main-
taining proportions throughout a layout.

For example, we can define the width of the content area of the page
as 500px. Then we can base the width of the sidebar as a proportion
of the total width—say 0.2. If we wanted to change the size of the
content area, the sidebar can automatically resize itself to fit. All it
takes is variables plus some operator know-how.

A quick note about units here. If we define $page_width as 10em and
we multiply it by two, the resulting value will keep the em unit. The
same goes if it were px. If you mix units, Sass will try to make them
work, but if they are incompatible, Sass will display an error. For
instance, you can’t multiply a px value by a em value. It just doesn’t
make sense.

22 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Add, subtract, multiply, or divide using the standard operators.

Download basics/layout_calc.scss
$width: 10px;
$double_width: $width * 2;
$half_width: $width / 2;
$width_plus_2: $width + 2;
$width_minus_2: $width - 2;

➤ Use calculations inline.

Download basics/calc_inline.scss
$width: 500px;
$sidebar_percent: 0.2;
#page {
width: $width;
#sidebar {
width: $width * $sidebar_percent; }

#content {
width: $width * (1 - $sidebar_percent); } }

This compiles to:

#page {
width: 500px; }
#page #sidebar {
width: 100px; }

#page #content {
width: 400px; }

Related Tasks:

• Task 9, Defining Variables, on page 20

report erratum  •  discuss

Calculating a Layout • 23

http://media.pragprog.com/titles/pg_sass/code/basics/layout_calc.scss
http://media.pragprog.com/titles/pg_sass/code/basics/calc_inline.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


11 Creating Themes with Advanced Colors

Altering a color palette is always a pain. If we want a less saturated
color, we go to the hex charts, find a color that is lighter or darker,
then replace our original hex code with that. Let’s say we have a
background with the color #336699, and we want to make some text
a little bit lighter (or a bit more saturated). We stab around in the dark
until we find a suitable shade.

Sass makes this conversion a lot easier with a few neat functions. We’ve
got lighten and darken, saturate and desaturate, and there’s a whole
bunch more in Appendix 1, SassScript Function Reference, on page 93.
Just put the function before the color you wish to change.

But this doesn’t just work for straightforward colors—we can also use
it for color-based variables, darkening your $main_color, for example.

Using these functions and the ones in the examples opposite, it’s easy
to change the whole website from blue to pink, retaining any of the
differences in saturation and lightness.

24 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Lighten/Darken colors.

#page {
color: lighten(#336699, 20%); }

This compiles to:

#page {
color: #6699cc; }

➤ Saturate/Desaturate colors.

$main_color: #336699;
#page {
color: saturate($main_color, 30%); }

This compiles to:

#page {
color: #1466b8; }

➤ Change the hue.

We use the adjust-hue function, followed by the number of degrees we
want to rotate the hue.

$main_color: #336699;
#page {
color: adjust-hue($main_color, 180); }

#page {
color: adjust-hue(desaturate($main_color, 10%), 90); }

➤ Desaturate by 100 percent with grayscale.

grayscale(#336699);

Using this method is the same as typing this:

desaturate(#336699, 100%);

➤ Mix colors.

This function allows you to mix colors as best as we can guess.

#page {
color: mix(#336699, #993266); }

Mixing blue and red gives a beautiful purple:

color: #664c7f;

report erratum  •  discuss

Creating Themes with Advanced Colors • 25

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


12 Importing

When you’re developing, it’s often useful to have many smaller style
sheets rather than one huge one. This can be a pain for web perfor-
mance. If you have five style sheets on a particular page, it can make
the page loading times much slower because each style sheet needs a
separate request to load.

Importing is a process by which a lot of files are turned into a few files.
Sass has a neat little trick whereby the smaller style sheets are imported
into the larger one as it is compiled into CSS. All you need to type is
@import, followed by the name of the Sass file you want to import. You
can mix Original Sass and SCSS at will with imports—it’s all the same.
Just say @import “sub_page”; and you’re done!

If you don’t want a Sass file to generate a corresponding CSS file, just
start the filename with an underscore (if you’re familiar with Rails,
this is a bit like doing a Rails partial). For example, you can name the
file _sub_page.sass. In the import line, you can leave off the underscore.
If you don’t mind that a separate style sheet is created for the child
page, it can just be named sub_page.sass.

It’s as simple as that. Any variables or mixins (we’ll get to those later)
you used in the imported style sheet can be used in the parent file too.

26 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Create a separate file.

Download basics/_colors.scss
$main_color: #336699;

// A LOT MORE COLORS GO HERE.

Download basics/widths.scss
$main_width: 720px;

// A LOT MORE WIDTHS GO HERE.

➤ Import into the main file.

@import "colors";
@import "widths";

(We don’t need to include the underscore or extension with _colors.scss.)

Download basics/bundling_example.scss
@import "colors";
@import "widths";

#page {
color: $main_color;
width: $main_width; }

#sidebar {
color: darken($main_color, 10%);
width: $main_width*0.2; }

This compiles to:

#page {
color: #336699;
width: 720px; }

#sidebar {
color: #264c73;
width: 144px; }

Remember the rule about the underscores—when we compile into
CSS, the two imported files will not be treated the same. The
widths.scss file will create its own separate CSS file because it doesn’t
start with an underscore.

Related Tasks:

• Task 13, Building a Font Family Library, on page 28
• Task 14, Resetting CSS, on page 30
• Task 16, Keeping Code Clean with Mixins, on page 38

report erratum  •  discuss

Importing • 27

http://media.pragprog.com/titles/pg_sass/code/basics/_colors.scss
http://media.pragprog.com/titles/pg_sass/code/basics/widths.scss
http://media.pragprog.com/titles/pg_sass/code/basics/bundling_example.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


13 Building a Font Family Library

In regular CSS, we specify fonts like this:

font-family: "helvetica neue", arial, helvetica, freesans,
"liberation sans", "numbus sans l", sans-serif;

We have to list all our preferred fonts in the order we want them. Then,
inevitably, we have to include the most basic serif or sans serif at the
end—just in case none of our fonts are available. But if we want to
switch between fonts on a page, then we have to copy and paste this
list over and over in different places or use ugly, nonsemantic font
classes. So much repeated code. We’ve got a simpler way.

We can use variables in Sass! Instead of typing out the list of fonts
over and over, define a variable at the top of the page. Then, when
you want to add that long string of font names to a selector, just use
the variable the way you normally would.

So much easier, don’t you agree? But we can make it even easier. In
almost every one of our projects, we have a set of font-variables that
we always include, which we’ve shown on the opposite page.

You can put this at the beginning of your style sheets. Or, to keep your
style sheets cleaner, you could use the importing technique we’ve just
seen. Make a separate style sheet with all the fonts in it called, for
example, _fonts.sass. Then import the file (using @import) at the top of
your main style sheet.

28 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Define a variable with your fonts.

$helvetica: "helvetica neue", arial, helvetica, freesans,
"liberation sans", "numbus sans l", sans-serif;

➤ Use the font variable as usual.

body {
font-family: $helvetica; }

➤ Try this simple font library.

Download basics/font_family.scss
$helvetica: "helvetica neue", arial, helvetica, freesans,

"liberation sans", "numbus sans l", sans-serif;

$geneva: geneva, tahoma, "dejavu sans condensed",
sans-serif;

$lucida: "lucida grande", "lucida sans unicode",
"lucida sans", lucida, sans-serif;

$verdana: verdana, "bitstream vera sans", "dejavu sans",
"liberation sans", geneva, sans-serif;

$cambria: cambria, georgia, "bitstream charter",
"century schoolbook l", "liberation serif", times,
serif;

$palatino: "palatino linotype", palatino, palladio,
"urw palladio l", "book antiqua",
"liberation serif", times, serif;

$times: times, "times new roman", "nimbus roman no9 l",
freeserif, "liberation serif", serif;

$courier: "courier new", courier, freemono, "nimbus mono l",
"liberation mono", monospace;

$monaco: monaco, "lucida console", "dejavu sans mono",
"bitstream vera sans mono", "liberation mono",
monospace;

Related Tasks:

• Task 9, Defining Variables, on page 20
• Task 12, Importing, on page 26

report erratum  •  discuss

Building a Font Family Library • 29

http://media.pragprog.com/titles/pg_sass/code/basics/font_family.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


14 Resetting CSS

A common technique to reset a style sheet is to override all of the
default styles that browsers provide before you begin styling a site.
This way, you won’t accidentally assume—for instance—that all <h1>
tags are the same font and font size between browsers. The default
<h1> is different in Internet Explorer, Firefox, Safari… it’s so annoying!
To get around this frustration, designers often employ a “reset CSS”
file.

On the right, we’ve provided a Sass version of the most famous reset
CSS file by Eric Meyer. It’s slightly shorter than the original CSS
version.

You probably don’t want to add all that boilerplate to the top of your
master style sheet, so it’s often more useful to employ the importing
technique. Put the reset file into a separate style sheet named something
like _reset.scss. Then at the start of the style sheet, put the following:
@import "reset"; and the reset is magically incorporated into the CSS
file when it’s compiled.

30 • Basics

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Reset CSS.

Download basics/reset.scss
/*

Sass Reset - Converted by Hampton Catlin
A modification of the original found at...
http://meyerweb.com/eric/tools/css/reset/

*/
html, body, div, span, applet, object, iframe, h1, h2, h3, h4,
h5, h6, p, blockquote, pre, a, abbr, acronym, address, big,
cite, code, del, dfn, em, img, ins, kbd, q, s, samp, small,
strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd,
ol, ul, li, fieldset, form, label, legend, table, caption,
tbody, tfoot, thead, tr, th, td, article, aside, canvas,
details, embed, figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary, time, mark, audio,
video {
margin: 0;
padding: 0;
border: 0;
font-size: 100%;
font: inherit;
vertical-align: baseline; }

/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure, footer,
header, hgroup, menu, nav, section {
display: block; }

body {
line-height: 1; }

ol, ul {
list-style: none; }

blockquote, q {
quotes: none; }

blockquote {
&:before, &:after {
content: '';
content: none; } }

q {
&:before, &:after {
content: '';
content: none; } }

table {
border-collapse: collapse;
border-spacing: 0; }

Related Tasks:

• Task 12, Importing, on page 26
• Task 26, Resetting: Much Easier with Compass, on page 64

report erratum  •  discuss

Resetting CSS • 31

http://media.pragprog.com/titles/pg_sass/code/basics/reset.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



Part II

Advanced



We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



Now we’ve gone through the basics of Sass, let’s move on
to some of the more advanced features it offers:

• First off, we’ll go through @extend, which helps clone
attributes: Task 15, Keeping It Semantic: @extend, on
page 36.

• Next, we’ve got Task 16, Keeping Code Clean with Mixins,
on page 38, a useful way to keep your style sheets
clean. We’ll expand on mixins in the next task, Task 17,
Taking Mixins Further with Variables, on page 40.

• Then we’ll look at how to debug your Sass in Task 18,
Debugging, on page 42.

• We’ll see how you can simplify the Sass necessary to
style for different browsers in Task 19, Generating
Cross-Browser Rounded Borders, on page 44, and Task
20, Using Cross-Browser Opacity, on page 46.

• We’ll learn how to dynamically generate your Sass code
in Task 21, Interpolating, on page 48.

• Two more programmer-style functions are covered in
Task 22, Stop Repeating Yourself with @each, on page
50, and Task 23, Determining Conditions with @if, on
page 52. @each applies the same set of rules to a list,
and @if allows conditions in your CSS.

• And finally, want to change CSS layout depending on
what device your user is using? Check out Task 24,
Changing Looks with Nested @media, on page 54.

Advanced • 35



15 Keeping It Semantic: @extend

Keeping things semantic is a philosophy where everything is named
logically. We name items based on what they do, not what they look
like. We don’t want to name something .blue_button; we want to name
it .checkout_button, which is far more useful when we’re going through
the code.

But what if you had a set of attributes—say a blue button—that
needed to be applied to multiple buttons with different functions?
You want to name the buttons after their function, but it would be a
pain typing out the set of attributes over and over again.

This is where@extend comes in.@extend clones the attributes from one
class or ID and adds them to another. Let’s run with the example we
had with the blue button. Say we want to use the blue button style for
the checkout button. If we’ve defined the blue button class elsewhere,
all we need to do is use @extend, followed by the .blue_button class in
the declaration of your selector.

You’ll notice that the CSS output has two selectors. What@extend does
is merge all the properties and values from both selectors, with a list
of selectors merged before the declaration block.

We can also tweak the style being copied. What if we needed the
checkout button to be slightly darker than the regular blue button?
We can just add those properties we need to change onto the end of
the declaration block. The new attributes you add will override the
old ones.

This saves us so much time when we’re coding. There’s far less copying
and pasting: you’ll barely ever use Ctrl+C again.

36 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Use @extend in a selector.

First we make sure we’ve described the class elsewhere:

Download advanced/atextend_blueButton.scss
.blue_button {
background: #336699;
font-weight: bold;
color: white;
padding: 5px; }

Then we can @extend the class to another:

Download advanced/atextend_use.scss
.checkout_button {
@extend .blue_button }

This compiles to:

.blue_button, .checkout_button {
background: #336699;
font-weight: bold;
color: white;
padding: 5px; }

➤ Modify a selector.

Download advanced/atextend_use_modified.scss
.checkout_button {
@extend .blue_button;
color: darken(#336699, 10%); }

report erratum  •  discuss

Keeping It Semantic: @extend • 37

http://media.pragprog.com/titles/pg_sass/code/advanced/atextend_blueButton.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/atextend_use.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/atextend_use_modified.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


16 Keeping Code Clean with Mixins

Mixins are some of the more powerful elements of Sass. A mixin is a
fragment of Sass that can easily be applied to another selector. Let’s
say we require a distinct style: blue text with small caps. We need to
apply this style to many selectors in our document. We don’t want to
have to repeat color: #369; over and over again. This is the perfect situ-
ation for a mixin!

To define a mixin, all you need to type is@mixin, followed by the name
of the mixin and then its styling.

Once we’ve defined it, we can easily use a mixin wherever we
please—it’s a super-portable set of attributes. When you want to use
the mixin, just type @include.

Mixins also help us keep our code semantic. We can define a mixin as
blue_text, then apply it to a class with a more specific name, such as
product_title.

It’s useful to have mixins in a separate style sheet, keeping your main
style sheet cleaner. If this is the case, we need to use the bundling
technique—put@import at the top of your main Sass file, linking in the
mixins file.

Depending on whether you’re using Original Sass or SCSS, the use of
mixins is slightly different. We’ve been through the SCSS way, where
we describe a mixin with@mixin and use it with@include. With Original
Sass, we use = before the mixin description and use + instead of the
@include command.

38 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Define a mixin.

Download advanced/mixin_text.scss
@mixin blue_text {
color: #336699;
font-family: helvetica, arial, sans-serif;
font-size: 20px;
font-variant: small-caps; }

➤ Use a mixin.

Download advanced/mixin_use.scss
.product_title {
@include blue_text; }

This compiles to:

.product_title {
color: #336699;
font-family: helvetica, arial, sans-serif;
font-size: 20px;
font-variant: small-caps; }

➤ Use mixins in Original Sass style.

Define these:

Download advanced/mixin_useS.sass
=blue_text
color: #336699
font-family: helvetica, arial, sans-serif
font-size: 20px
font-variant: small-caps

And use this:

Download advanced/mixin_useS.sass
.product_title
+blue_text

Related Tasks:

• Task 12, Importing, on page 26
• Task 17, Taking Mixins Further with Variables, on page 40

report erratum  •  discuss

Keeping Code Clean with Mixins • 39

http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_text.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_use.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_useS.sass
http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_useS.sass
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


17 Taking Mixins Further with Variables

So far, the idea of a mixin is pretty similar to what we came across in
@extend—a set of attributes we apply somewhere else. With @extend,
however, all values must stay the same. Mixins are more complex.

Mixins can include arguments (i.e., descriptors) that allow you to vary
your values. Take the mixin we defined in the last task—blue_text. It has
a set of attributes associated with it. What if you want the text size to
be variable? You can easily include this in the mixin. Instead of putting
a predefined font size, put $size (or whatever you wish to call it). Then,
when naming your mixin, include the $size part in parentheses after
the name.

When you want to use the mixin, include the argument after the mixin
like you would when using a regular function.

You can also have a default value associated with a mixin. Just add
the value after the variable. If you don’t specify a value when you’re
using your mixin, the default will be used. If you want to change it,
just add the new value like you would for a regular variable.

40 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Define a mixin with variable attributes.

Download advanced/mixin_argument.scss
@mixin blue_text($size) {
color: #336699;
font-family: helvetica, arial, sans-serif;
font-size: $size;
font-variant: small-caps; }

➤ Add the value you want after the mixin.

Download advanced/mixin_argument_use.scss
.product_title {
@include blue_text (15px); }

➤ Define a mixin with a default value.

Download advanced/mixin_default.scss
@mixin blue_text($size: 20px) {
color: #336699;
font-family: helvetica, arial, sans-serif;
font-size: $size;
font-variant: small-caps; }

➤ Use a mixin with and without the default.

Download advanced/mixin_default_use.scss
.product_title {
@include blue_text; }

.product_title {
@include blue_text (100px); }

This compiles to:

.product_title {
color: #336699;
font-family: helvetica, arial, sans-serif;
font-size: 20px;
font-variant: small-caps; }

.product_title {
color: #336699;
font-family: helvetica, arial, sans-serif;
font-size: 100px;
font-variant: small-caps; }

report erratum  •  discuss

Taking Mixins Further with Variables • 41

http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_argument.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_argument_use.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_default.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/mixin_default_use.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


18 Debugging

What if there’s a bug in our code? It happens to the best of us. We can
generally say that there are two kinds of bugs we can encounter. One
is a syntactical error made while writing the Sass—that is, we may
have passed in the wrong number of arguments to a function. Luckily,
Sass makes finding these mistakes a breeze. The Sass development
team has worked really hard to make sure that the error messages
make as much sense as possible.

On top of that, if you have an error in your Sass code, it won’t just
keep quiet. Sass could have failed silently, where you would reload
the page you are styling and all of a sudden it would be unstyled. Sass
doesn’t play that way. Sass loves you! Sass will generate a special CSS
style sheet that will actively print out the message on the page you
are styling. It uses the fun CSS trick of using the body:before selector
and the content= property to inject the error right on the page!

We also have ways to debug more complex issues. When generating
the Sass, we can pass in options to help us out. The line-comments option
causes every selector in the CSS file you create to have a reference to
the file and line number where it came from. This is especially useful
when you are importing many files and want to see where a particular
rule is defined.

Another option available is debug-info, which produces a more browser-
friendly version of the line-comments option. In particular, it works well
with an add-on to Firefox called FireSass for Firebug.7

There are many different ways to run Sass—maybe with Rails or the
command-line interface or an integrated development environment
(IDE)—and each has its own specific way of setting Sass options. The
references provided in the book should be a good starting place.

7. https://addons.mozilla.org/en-US/firefox/addon/firesass-for-firebug/

42 • Advanced

report erratum  •  discuss

https://addons.mozilla.org/en-US/firefox/addon/firesass-for-firebug/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Write some invalid Sass.

Download advanced/debug_error.scss
@import "notfound"

➤ See an error page!

If you include the resulting CSS file in a web page, you’ll see this in
your web browser when you load the page!

Syntax error: File to import not found or unreadable: notfound.
Load paths:
/Users/hcatlin/dev/hcsass/Book/code/advanced
/Users/hcatlin/dev/hcsass/Book/code/advanced

on line 1 of ./debug_error.scss

1: @import "notfound"

➤ Compile with the line-comments option.

$> sass --line-comments nesting.scss
/* line 2, nesting.scss */
.infobox .message {
border: 1px solid red; }
/* line 4, nesting.scss */
.infobox .message .title {
color: red; }

/* line 6, nesting.scss */
.infobox .user {
border: 1px solid black; }
/* line 8, nesting.scss */
.infobox .user .title {
color: black; }

report erratum  •  discuss

Debugging • 43

http://media.pragprog.com/titles/pg_sass/code/advanced/debug_error.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


19 Generating Cross-Browser Rounded Borders

Rounded borders are a complex thing. We need to use a different
method of calculation for Internet Explorer, Firefox, and Webkit.
Wouldn’t it be so much easier if there were one simple way of doing
it?

Why, you can have one simple way: with Sass! There’s a mixin that
allows you to define the rounded borders for all three main browsers.
This keeps our code clean and we don’t need to repeat ourselves.

Just so you know, many of these macros come preinstalled with
Compass, which we’ll look at more in Part III, Compass, on page 59.

44 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Use this mixin for rounded borders.

Download advanced/cross_browser_borders.scss
@mixin rounded_borders($color, $width: 5px, $rounding: 5px) {
-moz-border-radius: $rounding $rounding;
-webkit-border-radius: $rounding $rounding;
-khtml-border-radius: $rounding $rounding;
-o-border-radius: $rounding $rounding;
border-radius: $rounding $rounding;
border: $width $color solid; }

And you can include it like any regular mixin:

Download advanced/cross_browser_borders_use.scss
.header {
@include rounded_borders(#336699, 3px) }

This compiles to:

.header {
-moz-border-radius: 5px 5px;
-webkit-border-radius: 5px 5px;
-khtml-border-radius: 5px 5px;
-o-border-radius: 5px 5px;
border-radius: 5px 5px;
border: 3px #336699 solid; }

report erratum  •  discuss

Generating Cross-Browser Rounded Borders • 45

http://media.pragprog.com/titles/pg_sass/code/advanced/cross_browser_borders.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/cross_browser_borders_use.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


20 Using Cross-Browser Opacity

We saw how browsers can be awkward in the previous task, needing
different ways to define rounded borders. However, the differences
don’t stop there. Changing the opacity of something is simple in
Firefox, Safari, and Opera because of this handy function: opacity.
Opacity in most browsers is defined from 1, meaning fully opaque, to
0, meaning completely invisible.

Life’s never so simple, though. Internet Explorer requires us to use a
different method—something called filter. It takes a value between 0
and 100 instead, in this style:

filter: alpha(opacity = 60);

Depending on how you view opacity, either the 0–1 or the 0–100 scale
can be more logical. It’s pretty easy to convert between the two.

46 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Change opacity across browsers (0–100 scale).

Download advanced/cross_browser_opacity.scss
@mixin opacity($opacity) {
filter: alpha(opacity=#{$opacity}); // IE 5-9+
opacity: $opacity * 0.01; }

Download advanced/cross_browser_opacity_use.scss
@import "cross_browser_opacity.scss";

.h1 {
@include opacity(60); }

This compiles to:

.h1 {
filter: alpha(opacity=60);
opacity: 0.6; }

➤ Change this to a 0–1 scale, if necessary.

Download advanced/cross_browser_opacity_one.scss
@mixin opacity($opacity) {
filter: alpha(opacity=#{$opacity*100}); // IE 5-9+
opacity: $opacity; }

report erratum  •  discuss

Using Cross-Browser Opacity • 47

http://media.pragprog.com/titles/pg_sass/code/advanced/cross_browser_opacity.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/cross_browser_opacity_use.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/cross_browser_opacity_one.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


21 Interpolating

Included in Sass are some programmer-style functions, which we’ll
look over in the next couple of tasks. We generally refer to these as
SassScripts.

Let’s start out with a general SassScript that allows you to dynamically
generate style sheets. It’s called interpolation. Oh, fancy sounding word
—how we love you! It makes us sound smart just by saying it. You
try it: interpolation. Feels good, doesn’t it? OK, sorry—we got a bit
distracted there.

Interpolation basically means “put this there.” Imagine we want to
write a mixin that has a dynamic property or selector. And we don’t
mean a dynamic property value—that’s easy stuff that we’ve already
done. We mean if the very name of a property or selector could be
dynamically generated. Well, you’re in luck, because that’s exactly
what interpolation can do.

Just wrap the name of a variable in#{} and you are done. For example,
we could have #{$myvar}. The variable will be printed out wherever
you put that. So, we could say .red_#{$carname}. And, if $carname is set
to volvo, it would generate the selector .red_volvo. Wha-bam! Victory!

You can pretty much use interpolation anywhere you want in your
Sass files. Go crazy!

48 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Interpolate to create a dynamic selector.

Download advanced/interpolation.scss
@mixin car_make($car_make, $car_color) {
// Set the $car_make with "_make" at the end as a class
.car.#{$car_make}_make {
color: $car_color;
width: 100px;
.image {
background: url("images/#{$car_make}/#{$car_color}.png");

}
}

}

@include car_make("volvo", "green");
@include car_make("corvette", "red" );
@include car_make("bmw", "black");

This compiles to:

.car.volvo_make {
color: "green";
width: 100px; }
.car.volvo_make .image {
background: url("images/volvo/green.png"); }

.car.corvette_make {
color: "red";
width: 100px; }
.car.corvette_make .image {
background: url("images/corvette/red.png"); }

.car.bmw_make {
color: "black";
width: 100px; }
.car.bmw_make .image {
background: url("images/bmw/black.png"); }

Related Tasks:

• Task 22, Stop Repeating Yourself with @each, on page 50

report erratum  •  discuss

Interpolating • 49

http://media.pragprog.com/titles/pg_sass/code/advanced/interpolation.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


22 Stop Repeating Yourself with @each

@each is a trick to keep your Sass DRY (the tenet of Don’t Repeat
Yourself). It’s a way of copying the same style for a lot of different
variables.

Say we have a bunch of pictures, all with similar file URLs. The file
URLs can include figures or punctuation, if necessary. We want to use
them in the same way in each case but with slightly different classes.
Usually, we’d have to write out each selector separately, replacing a
single word each time. So much time, effort, and copying/pasting! This
is where @each comes to the rescue.

We follow @each with the name of the generic variable we want to
use, then with all the members of the group that we want to apply this
to. When compiling the CSS, the list forms automatically.

You’ll notice in the code that we wrap the variable selector name in
#{}, which we learned about in the previous task.

50 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Copy one style to many variables with @each.

Download advanced/ateach.scss
@each $member in thom, jonny, colin, phil {
.#{$member}_picture {
background-image: url("/image/#{$member}.jpg"); } }

This compiles to:

.thom_picture {
background-image: url("/image/thom.jpg"); }

.jonny_picture {
background-image: url("/image/jonny.jpg"); }

.colin_picture {
background-image: url("/image/colin.jpg"); }

.phil_picture {
background-image: url("/image/phil.jpg"); }

Related Tasks:

• Task 21, Interpolating, on page 48

report erratum  •  discuss

Stop Repeating Yourself with @each • 51

http://media.pragprog.com/titles/pg_sass/code/advanced/ateach.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


23 Determining Conditions with @if

Similar to @each, there’s another feature called @if that allows us to
write conditions in our Sass. This kind of feature is mostly useful when
writing what we generally refer to as SassScript, writing reusable
mixins and functions for Sass.

Oftentimes when writing a mixin that should be used across projects,
we want to react to some variable that is passed in. For instance, if you
had a mixin called width, you might want to do nothing if the first
argument passed in is less than 0. There are lots of situations where
we might want our mixins to act smart and react to the values that we
pass in.

After the@if keyword, we can put a statement that will evaluate to true
or false. For example, 20 > 10 would evaluate to true. And, "hello" ==
"world"would evaluate to false. Other common comparators are avail-
able, such as == (equal to), != (not equal to), > (greater than), and <
(less than).

If the statement is true, whatever is inside the following declaration
block will be executed. If the statement is false, then it looks for an
@else as the next block to continue trying until it successfully matches.
If it runs out of @else blocks, then it doesn’t do anything at all.

In our trite (and nationalistic) example, we have a country color mixin.
We want a particular color to show up only for particular countries.
So, we have @if at the start, and each following country gets an @else
if. The first condition to be satisfied by the variable will be executed,
and the following ones will stop.

52 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Build a mixin with @if.

Download advanced/atif.scss
@mixin country_color($country) {
@if $country == france {
color: blue; }

@else if $country == spain {
color: yellow; }

@else if $country == italy {
color: green; }

@else {
color: red; } }

.england {
@include country_color(england); }

.france {
@include country_color(france); }

This compiles to:

.england {
color: red; }

.france {
color: blue; }

report erratum  •  discuss

Determining Conditions with @if • 53

http://media.pragprog.com/titles/pg_sass/code/advanced/atif.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


24 Changing Looks with Nested @media

Sometimes we’d like to change what is displayed based on the device
on which the content is being displayed. CSS2 introduced the concept
of@media. Various attributes, such as print, handheld, or tv can be used
to define different property values, such as font sizes, depending on
the medium used to view the page.

The main flaw with @media is that it can’t be nested. Say you want to
have all the main areas in 15px font, except for when you print the
document. In CSS, you’d have to copy out all the declarations again.

Sass to the rescue! We can just add in another declaration specifically
for one type of media, and it’s compiled into a whole new selector
when the CSS style sheet is made.

This is particularly useful in the era of the mobile web. The handheld
attribute should alter the page if it’s being viewed on a handheld
device. However, a lot of phones don’t currently seem to support it.
There’s a neat trick around this: use a maximum screen width. We’ll
use the iPhone as an example.

We know that the maximum width of the iPhone screen in portrait
mode is 320px. We can just add this on to the end of our@media! Using
it in a nested style allows us to say that the font should be larger only
when the screen is at a maximum of 320px wide. When this is the only
change we need to make, it’s SO much easier than having a whole
separate selector.

Added bonus: for landscape, we choose a minimum width of 321px
and a maximum width of 480px.

54 • Advanced

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Use @media in a nested style.

Download advanced/atmedia.scss
.main {
color: #336699;
font-size: 15px;
@media print {
font-size: 10px; } }

This compiles to:

.main {
color: #336699;
font-size: 15px; }
@media print {
.main {
font-size: 10px; } }

➤ Make your sites portrait-specific…

Download advanced/atmedia_phone_portrait.scss
.main {
color: #336699;
font-size: 15px;
@media screen and (max-width: 320px) {
font-size: 35px; } }

➤ …or landscape-specific.

Download advanced/atmedia_phone_landscape.scss
.main {
color: #336699;
font-size: 15px;
@media screen and (min-width: 321px) and (max-width: 480px) {
font-size: 25px; } }

report erratum  •  discuss

Changing Looks with Nested @media • 55

http://media.pragprog.com/titles/pg_sass/code/advanced/atmedia.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/atmedia_phone_portrait.scss
http://media.pragprog.com/titles/pg_sass/code/advanced/atmedia_phone_landscape.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



Part III

Compass



We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



Compass is a library of mixins, functions, and other useful
extensions to Sass. Chris Eppstein created Compass and
maintains it to this day. Compass is a toolkit that any
Sass-master should have handy. Because of its value in Sass
development, we’ve devoted a whole chapter to some of
its features—but it’s a mere sampling of what Compass has
to offer. Check out the Compass website for more.8

Make sure RubyGems is up-to-date, then install the Compass
gem.

gem update --system
gem install compass

Then, compile your style sheets with --compass.

sass --compass myfile.scss myfile.css
sass --compass --watch .

Here’s a summary of what we’ll look at in this part.

• First, we’ll look at how to set up a Compass project in
Task 25, Setting Up for a Compass Project, on page 62.

• We’ll see how much easier it is to reset your CSS using
Compass in Task 26, Resetting: Much Easier with
Compass, on page 64.

• We’ve got two nifty ways of playing about with lists in
Task 27, Sprucing Up Your Lists, on page 66, and Task
28, Making Lists Horizontal, on page 68.

• In Task 29, Sticking a Footer to a Window, on page 70,
we’ll see how much easier it is to make a sticky footer
using Compass.

• We make sure our floats clear correctly in Task 30,
Stopping Overflow with Clearfix, on page 72.

• Next we’ll see how to shorten long blocks of text using
ellipses in Task 31, Truncating Text Using Ellipses, on
page 74.

8. http://compass-style.org/reference/compass/

Compass • 59

http://compass-style.org/reference/compass/


• We’ll expand items to fit inside a box in Task 32,
Stretching Elements, on page 76.

• Want a much simpler, more concise way of creating
tables? You can find the solution in Task 33, Jazzing Up
Layouts with Columns, on page 78.

• And finally, we’ll look at converting separate images
into one big image in Task 34, Spriting, on page 80.

60 • Compass



We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



25 Setting Up for a Compass Project

In the introduction to this part, we saw the simple method for using
Compass via the sass --compass command. However, if you want to do
more advanced things in Compass, you can set up a Compass project.
If you are familiar with Rails or Drupal or other similar frameworks,
you’ll be familiar with this kind of process. Compass sets up default
files and folders for you to work with.

If you use another framework like Rails with Sass, you should reference
how to set up a Compass project for it. If you are just using the com-
mand line (which we recommend for following along with this book),
then we recommend using the method detailed on the next page.

Once you have generated your project, you can place your Sass files
in the sass/ folder. If you want to change any Compass settings, feel
free to edit the config.rb file. Compiled CSS is placed inside the css/
folder.

To compile a project, simply run compass compile. If you want to watch
the whole project for changes, then use compass watch.

62 • Compass

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Create a project.

This only works if you followed the compass gem install instructions
found at the introduction to this part.

$> compass create my_project_name

This should print out the following:

directory my_project_name/sass/
directory my_project_name/style sheets/

create my_project_name/config.rb
create my_project_name/sass/screen.scss
create my_project_name/sass/print.scss
create my_project_name/sass/ie.scss
create my_project_name/style sheets/ie.css
create my_project_name/style sheets/print.css
create my_project_name/style sheets/screen.css

*******************************************************
Congratulations! Your compass project has been created.

➤ Compile the project.

$> compass compile my_project_name

This should print out the following:

unchanged project/sass/ie.scss
unchanged project/sass/print.scss
unchanged project/sass/screen.scss

Obviously, if you changed the files, then they would get recompiled.
Try that now!

report erratum  •  discuss

Setting Up for a Compass Project • 63

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


26 Resetting: Much Easier with Compass

Compass comes with a really handy and super-robust reset style sheet
built in. The advantage of using it is that it is far more complete than
Eric Meyer’s original reset CSS—and it includes a lot more browser
tweaks. Plus, since Compass is a collection of libraries, we don’t actu-
ally have to keep a file around anymore. This keeps our code a lot
cleaner.

There are two types of reset. The first is global reset, which resets all
the CSS. All you have to type is @import "compass/reset";. Most imports
in Compass don’t actually cause any styles to get printed in your style
sheet, but this is a special case and it happens automatically. The CSS
rendered is pretty much the same as the one we previously saw in
Task 14, Resetting CSS, on page 30.

But say you don’t want to reset all the CSS. Compass can help! Com-
pass has several different reset mixins that you can use in your project
if you only want to reset certain parts of the page. This is called a
nested reset. Look on the opposite page for an example of a nested reset.9

9. See http://compass-style.org/reference/compass/reset/utilities/ for a complete
reference, as we’ve only provided a couple of examples of different built-in
reset mixins.

64 • Compass

report erratum  •  discuss

http://compass-style.org/reference/compass/reset/utilities/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Reset everything with this excruciatingly simple import.

@import "compass/reset";

➤ Reset only some bits of the page like this.

Download compass/reset.scss
@import "compass/reset/utilities";

body {
.sidebar {
@include nested-reset; } }

This compiles to:

body .sidebar div, body .sidebar span, body .sidebar ...
body .sidebar h1, body .sidebar h2, body .sidebar h3, body ...
body .sidebar a, body .sidebar abbr, body .sidebar acronym, ...
body .sidebar del, body .sidebar dfn, body .sidebar em, ...
body .sidebar small, body .sidebar strike, body .sidebar ...
body .sidebar b, body .sidebar u, body .sidebar i, body ...
body .sidebar dl, body .sidebar dt, body .sidebar dd, body ...
body .sidebar fieldset, body .sidebar form, body .sidebar ...
body .sidebar table, body .sidebar caption, body .sidebar ...
body .sidebar article, body .sidebar aside, body .sidebar ...
body .sidebar figure, body .sidebar figcaption, body ...
body .sidebar menu, body .sidebar nav, body .sidebar ...
body .sidebar time, body .sidebar mark, body .sidebar ... {
margin: 0;
padding: 0;
border: 0;
font-size: 100%;
font: inherit;
vertical-align: baseline; }

body .sidebar table {
border-collapse: collapse;
border-spacing: 0; }

body .sidebar caption, body .sidebar th, body .sidebar td {
text-align: left;
font-weight: normal;
vertical-align: middle; }

body .sidebar q, body .sidebar blockquote {
quotes: none; }
body .sidebar q:before, body .sidebar q:after, body ... {
content: "";
content: none; }

body .sidebar a img {
border: none; }

The ellipses signify lines of code that are too long for the page.

report erratum  •  discuss

Resetting: Much Easier with Compass • 65

http://media.pragprog.com/titles/pg_sass/code/compass/reset.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


27 Sprucing Up Your Lists

Lists need not be dull, vertical things with a single bullet point per
item. You can manipulate them no end! Maybe it annoys you that you
can’t get rid of those bullet points that come with every unordered
list. No worries: Compass has a great mixin called no-bullets, which
removes all the bullet points from a list you’re making. Neat, eh? If
you want to remove only one bullet point, just @includeno-bullet in the
class.

I know some of you might be shouting, “But that’s so easy!” Well, it
can be. It’s so much easier using Compass because of its cross-browser
capabilities. No longer do you have to download every browser
imaginable to test your code.

We can also use our own custom bullet point designs. Once we’ve
imported the correct Compass file, it’s merely a case of using the pretty-
bullets mixin, followed by the reference to the image you want to use
for the bullet.

If you need to define the size of the bullet, you can add the pixel
dimensions of the image after the image name. You can also define
the line height and the padding you want, too.10

In the HTML, make sure to apply the class to the <ul> tag so all the
items in the list have the special bullets applied to them.

10. http://compass-style.org/reference/compass/typography/lists/bullets/

66 • Compass

report erratum  •  discuss

http://compass-style.org/reference/compass/typography/lists/bullets/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Make a list.

Download compass/project/sass/lists.scss
@import "compass/typography/lists/bullets";

.flowerbullet {
@include pretty-bullets("star.png"); }

This compiles to:

.flowerbullet {
margin-left: 0; }
.flowerbullet li {
padding-left: 14px;
background: url('../../../../images/compass/

star.png?1320353498') no-repeat -5.5px -2.5px;
list-style-type: none; }

(The no-repeat …; should be on the same line as the background prop-
erty, but the line was too wide for the book.)

➤ See how the list looks in your browser.

Related Tasks:

• Task 28, Making Lists Horizontal, on page 68

report erratum  •  discuss

Sprucing Up Your Lists • 67

http://media.pragprog.com/titles/pg_sass/code/compass/project/sass/lists.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


28 Making Lists Horizontal

As well as removing bullets and using your own icons, Compass gives
you the cross-browser ease of making horizontal lists.

Horizontal lists are really useful for menus across the top of a page.
They allow for easy navigation of a site.

You can also customize the padding between list points. Just type the
padding you want after the horizontal list mixin. Pretty simple, no?
Check out the Compass documentation for a couple of other things
you can alter about lists.11

11. http://compass-style.org/reference/compass/typography/lists/horizontal_list/

68 • Compass

report erratum  •  discuss

http://compass-style.org/reference/compass/typography/lists/horizontal_list/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Add in the horizontal mixin.

Download compass/horlist.scss
@import "compass/typography/lists/horizontal-list";

ul.horiz {
@include horizontal-list; }

This compiles to:

ul.horiz {
margin: 0;
padding: 0;
border: 0;
overflow: hidden;
*zoom: 1; }
ul.horiz li {
list-style-image: none;
list-style-type: none;
margin-left: 0px;
white-space: nowrap;
display: inline;
float: left;
padding-left: 4px;
padding-right: 4px; }
ul.horiz li:first-child, ul.horiz li.first {
padding-left: 0; }

ul.horiz li:last-child {
padding-right: 0; }

ul.horiz li.last {
padding-right: 0; }

➤ See how a horizontal list looks.

➤ Customize padding.

ul.horiz {
@include horizontal-list(25px); }

Related Tasks:

• Task 27, Sprucing Up Your Lists, on page 66

report erratum  •  discuss

Making Lists Horizontal • 69

http://media.pragprog.com/titles/pg_sass/code/compass/horlist.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


29 Sticking a Footer to a Window

Sticky footers are, as the name suggests, footers that stick to the bottom
of your browser. They’re such a hassle to design in CSS. But in Com-
pass there’s a built-in mixin that allows you to make a sticky footer
very simply.12 All you need to define is the height (measured from the
bottom of the page) at which the sticky footer floats.

There are three predefined selectors that we apply in this mixin: root,
root_footer, and footer. We chose these three because they’ve already
been built into Compass. You can see how we use them on the opposite
page.

But hey, if you desperately want to use your own selector names, you
can! For example, you can change the first ID, root, to a_root in the
HTML. In your style sheet, specify this change by typing "#a_root" after
you’ve defined the height of your footer in the @include function.

12. http://compass-style.org/reference/compass/layout/sticky_footer/

70 • Compass

report erratum  •  discuss

http://compass-style.org/reference/compass/layout/sticky_footer/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Use sticky footers in the style sheet.

@import "compass/layout/sticky-footer"

Then using it is just a matter of this:

@include sticky-footer(24px)

➤ The built-in HTML for sticky footers is this.

Download compass/sticky_footer.html
<body>
<div id="root">
<div id="root_footer"></div>

</div>
<div id="footer">
This is my footer!

</div>
</body>

➤ Customize your sticky footer selectors.

Here’s the HTML:

Download compass/sticky_footer_custom.html
<body>
<div id="a_root">
<div id="b_root_footer"></div>

</div>
<div id="c_footer">
This is my footer!

</div>
</body>

And here it is in use in the style sheet:

@include sticky-footer(24px, "#a_root", "#b_root_footer",
"#c_footer")

report erratum  •  discuss

Sticking a Footer to a Window • 71

http://media.pragprog.com/titles/pg_sass/code/compass/sticky_footer.html
http://media.pragprog.com/titles/pg_sass/code/compass/sticky_footer_custom.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


30 Stopping Overflow with Clearfix

If you’ve been doing this as long as we have, you’ve definitely found
out about the annoying little problems you can face with stretching
divs to containers. Say you have an outer box with an undefined height
and an inner box with a height of 100px. The outer box will not
automatically stretch to also include the inner box, leaving an ugly
overhang.

The Clearfix trick in Compass solves this problem. It makes sure that
there’s no overhang if your outer box isn’t defined to be as tall as your
inner box. It’s a great way to solve some messy issues you’re having
with design.

72 • Compass

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Start with this HTML.

Download compass/clearfix.html
<div id="outer_box">
<div id="inner_box"><p>Inner Box</p></div>
<p>I'm in the outer box</p> </div>

➤ Use simple Sass.

Download compass/clearfix_original.scss
#outer_box {
width: 500px;
border: 4px solid black;
#inner_box {
float: left;
width: 200px;
height: 100px;
background: gray; } }

➤ Take a look in your browser.

➤ Use Compass to save the day.

Download compass/clearfix.scss
@import "compass/utilities/general/clearfix";

#outer_box {
@include clearfix;
width: 500px;
border: 4px solid black;
#inner_box {
float: left;
width: 200px;
height: 100px;
background: gray; } }

➤ Take another look: Magically fixed!

report erratum  •  discuss

Stopping Overflow with Clearfix • 73

http://media.pragprog.com/titles/pg_sass/code/compass/clearfix.html
http://media.pragprog.com/titles/pg_sass/code/compass/clearfix_original.scss
http://media.pragprog.com/titles/pg_sass/code/compass/clearfix.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


31 Truncating Text Using Ellipses

Say we have a large paragraph of text that overruns its bounds. Or
maybe we just don’t want to display the whole thing. There’s a neat
way, using Compass, to remove the extra text and replace it with an
ellipsis (…).

First, you need to install some small compass components using the
compass command-line interface. After that, use the @includeellipsis
command just like any other Compass mixin.

But...there’s a problem. This doesn’t work for all browsers. It works
for Chrome, Safari, and early versions of Internet Explorer, but not for
Opera or Firefox. Firefox claims support is coming in the future, but
apparently this feature has been pending for a long time.13

13. You can read more about this technique at http://mattsnider.com/css/css-
string-truncation-with-ellipsis/.

74 • Compass

report erratum  •  discuss

http://mattsnider.com/css/css-string-truncation-with-ellipsis/
http://mattsnider.com/css/css-string-truncation-with-ellipsis/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Install the ellipsis file on the command line.

compass install compass/ellipsis

➤ Use the mixin in SCSS.

Download compass/ellipses.scss
@import "compass/typography/text/ellipsis";
.dotdotdot {
@include ellipsis;
width: 500px; }

This compiles to:

.dotdotdot {
white-space: nowrap;
overflow: hidden;
-o-text-overflow: ellipsis;
-ms-text-overflow: ellipsis;
text-overflow: ellipsis;
width: 500px; }

➤ See how it looks in Safari.

report erratum  •  discuss

Truncating Text Using Ellipses • 75

http://media.pragprog.com/titles/pg_sass/code/compass/ellipses.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


32 Stretching Elements

One of the handy mixins in Compass is used for stretching. Its purpose
is pretty straightforward: it allows you to stretch an element to fit into
a box.

We need to define the space into which the element will be stretched,
which is what we do when we’re defining the stretch_box class. We also
need something to stretch; in this case we’re going to use the blue
button from Task 15, Keeping It Semantic: @extend, on page 36.

At the top of your style sheet, you need to @import three stretching
compass files: compass/layout/stretching, compass/utilities and compass/css3.
Then all you need to do is @include the mixin wherever you need a
class or ID to be stretched. A useful feature is that you can define an
offset border, so that when you stretch an element, it won’t completely
reach the edge of your container box.

You can also stretch the element in either the x-axis (horizontally) or
y-axis (vertically) only.

76 • Compass

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Define a box and an element to be stretched.

Download compass/stretch.scss
.stretch_box {
border: 2px solid black;
width: 240px;
height: 240px;
position: relative;
@include inline-block; }

➤ Stretch the button fully to all sides.

Download compass/stretch.scss
.stretched_fully {
@extend .blue_button;
@include stretch; }

➤ Include an offset to the stretch.

Download compass/stretch.scss
.stretched_with_gap {
@extend .blue_button;
@include stretch(12px, 12px, 12px, 12px); }

➤ Stretch only in the x- or y-axis.

Download compass/stretch.scss
.stretched_horizontally {
@extend .blue_button;
@include stretch-x; }

Appropriately, if you want to stretch it vertically, just use stretch-y
instead.

➤ Use this HTML.

<div class="stretch_box">
<div class="stretched_fully">
Stretched fully!

</div>
</div>

➤ See how it looks in your browser.

report erratum  •  discuss

Stretching Elements • 77

http://media.pragprog.com/titles/pg_sass/code/compass/stretch.scss
http://media.pragprog.com/titles/pg_sass/code/compass/stretch.scss
http://media.pragprog.com/titles/pg_sass/code/compass/stretch.scss
http://media.pragprog.com/titles/pg_sass/code/compass/stretch.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


33 Jazzing Up Layouts with Columns

Say we want to make our website look more like a newspaper. We
want to turn our boring one-column paragraph into multiple columns.
This is a lot easier with Compass.

We have the option to apply any number of columns. We can use two
extra mixins to define the width of each column as well as the gap
between each column.

If necessary, we can add a line to separate the columns of text. The
declarations we use are the same as what we would use for describing
a regular border, namely the width, style, and color.

It’s important to note that columns aren’t really supported in older
versions of Internet Explorer. Also, the column attribute doesn’t really
like it if you define heights.

78 • Compass

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Turn text into columned text.

Download compass/columns.scss
#two_columns {
@include column-count(2);
width: 300px; }

➤ Define the width of columns and the gap between columns.

@include column-width(240px);
@include column-gap(24px);

➤ Add a border between the columns.

Download compass/columns.scss
#columns_borders {
@include column-count (3);
@include column-rule(2px, dashed, #336699);
width: 300px; }

➤ See how these look in the browser.

Related Tasks:

• Task 35, Producing More Two-Column Layouts, on page 86

report erratum  •  discuss

Jazzing Up Layouts with Columns • 79

http://media.pragprog.com/titles/pg_sass/code/compass/columns.scss
http://media.pragprog.com/titles/pg_sass/code/compass/columns.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


34 Spriting

Spriting is a process by which many small icons or pictures are turned
into one larger one for use in a website. The one larger file is not the
direct sum of its parts—its file size is a lot smaller than the separate
images combined. This is of supreme importance in the age of the
mobile web, where every KB counts.

Creating a sprite image file for incorporation into your site is incredibly
simple with Compass. We used to have to stitch together all the images
using Photoshop and then define each image by its location in pixels.
Compass does this all automatically for us.

We have to make sure all our images are in one folder—for example,
icons. Then we @import the icons from the folder.

Compass makes the link.png,movie.png, and script.png icons into one big
image. The sum of the three images is 876B, but the sprited image is
only 357B—a huge savings! Compass gives the big image a unique
identifier, which is why the file name will be something like icon-
s2c4d35777d.png.

Once that’s been sorted, you can specify a class (for example .movie_icon)
and @include your image file name—in this case, movie. Compass
compiles this, and in the CSS it defines a specific place in the image
where our movie icon starts.

In the HTML, all you need to do is use the newly defined movie_icon
class like you would any other class.

80 • Compass

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Import sprites from an icon folder in Compass.

@import "icon/*.png";

➤ Compass combines three images into one.

This
com-

piles to:

➤ Specify a class with the necessary icon.

Download compass/project/sass/screen.scss
.movie_icon {
height: 20px;
@include icon-sprite(movie); }

This compiles to:

.icon-sprite, .movie_icon {
background: url('../../../../images/compass/icon-s2c4d3.png')

no-repeat;
}

/* line 8, ../sass/screen.scss */
.movie_icon {
height: 20px;
background-position: 0 -22px;

}

➤ Use in HTML.

<div class="movie_icon">
</div>

report erratum  •  discuss

Spriting • 81

http://media.pragprog.com/titles/pg_sass/code/compass/project/sass/screen.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



Part IV

Blueprint CSS



We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



Remember how we used Compass to shortcut some
cross-browser issues? Compass also helped with mixins for
various tasks, such as shortening text or making a list a bit
more exciting.

Blueprint is a framework that goes one step further than
Compass—it’s an even more extensive set of mixins that
allows you to easily design your own site. Blueprint has
many more predefined classes that you use when building
a site. Take the caps class that we’ll come across in Task 36,
Using Predefined Fancy Fonts, on page 88. All we need to
know is the class name, and Blueprint will sort out all the
styling aspects of it for us.

The Blueprint website has a downloadable file containing
Blueprint.14 We’re only covering a few aspects of Blueprint,
but you can find a wiki and discussion forums on the site,
where you can ask for help if necessary.

Here’s a summary of what we’re going to look at using
Blueprint.

• Remember when we looked at how to make columns
of text in Compass (Task 33, Jazzing Up Layouts with
Columns, on page 78)? Well, we can do it another way
using Blueprint. To see how, check out Task 35,
Producing More Two-Column Layouts, on page 86.

• Then we’ll look at some predefined font styles that
come with Blueprint in Task 36, Using Predefined Fancy
Fonts, on page 88.

• Finally, we’ll look at ways to improve button aesthetics
in Task 37, Making Beautiful Buttons, on page 90.

14. http://www.blueprintcss.org/

Blueprint CSS • 85

http://www.blueprintcss.org/


35 Producing More Two-Column Layouts

As we saw in Task 33, Jazzing Up Layouts with Columns, on page 78,
we can use Compass to generate columns in our HTML. However,
with Blueprint, there’s an even easier way. Blueprint controls more of
the column layout than Compass, but it still lets you have a say over
the widths.

First we need to define the number of columns and the width of each
column. Here we’re using six columns of 65px width. Once we’ve
done that, we can @import "blueprint".

As we start adding to the .two-col class, we must first include the con-
tainer. We can also set the background and set other box-wide things
here. Then it’s on to the columns.

With our header, we want it to span the whole width of the item, and
the same goes for the footer. So we’ll apply the whole six columns to
this bit using @include column(6).

For the links column and the main text area, we need to divide up the
six columns between them—say two columns’ worth for the links and
the remaining four columns’ worth for the main text. Simply add the
number of columns you want each section to have to the @include
column.

We need to add true to any column (or column set) that appears after
another—this ensures the next column follows on from the previous
column.

86 • Blueprint CSS

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Define the number and width of columns, then import Blueprint.

$blueprint_grid_columns: 6;
$blueprint_grid_width: 65px;

@import "blueprint";

➤ Columnize your text!

Download blueprint/twocolumn.scss
.two-col {
@include container;
background-color: #9ab3cc;
#header, #footer {
@include column(6); }

#links {
@include column(2); }

#main_text {
@include column(4, true); } }

Related Tasks:

• Task 33, Jazzing Up Layouts with Columns, on page 78

report erratum  •  discuss

Producing More Two-Column Layouts • 87

http://media.pragprog.com/titles/pg_sass/code/blueprint/twocolumn.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


36 Using Predefined Fancy Fonts

Blueprint has a couple of text modifying features built in. These allow
you to quickly and easily modify text using predefined classes.

If we go through them in the order they’re compiled to in the CSS, the
first is the p + p element. The + symbol here is for styling something
that follows something else—that is, the directions only apply to a
paragraph that directly follows a paragraph. In this case, they indent
the next paragraph rather than having a line space.

The incr class is used to space out lines as well as to make the font
slightly smaller. We could use it if we wanted to make the text a bit
smaller, for example, in a sidebar.

We can use the caps class as a kind of emphasizer, although it’s not
too easy to read long stretches of text.

Finally, there’s the alt class, which makes your text italic and therefore
look more handwritten. This is the fanciest one of all.

88 • Blueprint CSS

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Add the mixin into your style sheet.

Download blueprint/fancytype.scss
@import "blueprint/fancy-type";
body {
@include fancy-type; }

This compiles to:

@charset "utf-8";
body p + p {
text-indent: 2em;
margin-top: -1.5em; }
form body p + p {
text-indent: 0; }

body p.incr,
body .incr p {
font-size: 0.833em;
line-height: 1.44em;
margin-bottom: 1.5em; }

body .caps {
font-variant: small-caps;
letter-spacing: 1px;
text-transform: lowercase;
font-size: 1.2em;
line-height: 1%;
font-weight: bold;
padding: 0 2px; }

body .dquo {
margin-left: -0.5em; }

body .alt {
color: #666666;
font-family: "Warnock Pro", "Goudy Old Style", "Palatino"...
font-style: italic;
font-weight: normal; }

➤ See how some of the classes look in your browser.

report erratum  •  discuss

Using Predefined Fancy Fonts • 89

http://media.pragprog.com/titles/pg_sass/code/blueprint/fancytype.scss
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


37 Making Beautiful Buttons

If we use a semantic <button> tag, Blueprint makes it easy to style that
button with a custom look. Just use the tag in your HTML as you
normally would, import the required components (see the opposite
page for an exact listing), and finally@includebutton-button. Once we’ve
included that code, we are ready to style the <button> tags.15

As a best practice, if you are doing general styling of all buttons on
the site, we recommend doing that in a separate file that you can
include. This helps to keep the code more organized. We prefer to use
a filename like _button_style.scss.

What if you want to make an <a> look like a button? This is a very
common thing to do on the Web. Blueprint makes this easy, too!

First, @include the anchor-button, and then apply it to the anchor button
class. When including the anchor button, you can alter the float of the
button by typing left or right after anchor-button.

As for coloring options, there are four colors that you can play with
in the design: the font color, the background color, the border color,
and the border highlight color. (By default, the border highlight color
is automatically set to one shade lighter than the border color.)

15. If you reference the Compass documentation at http://compass-style.org/
reference/blueprint/buttons/, you’ll see there are a boatload of variables you
can use to style your buttons.

90 • Blueprint CSS

report erratum  •  discuss

http://compass-style.org/reference/blueprint/buttons/
http://compass-style.org/reference/blueprint/buttons/
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


➤ Install Blueprint buttons.

compass install blueprint/buttons

➤ Style button tags.

@import "compass/utilities/general/float";
@import "blueprint/buttons";

button {
@import button-button();

}

Wha-bam! There you go—magically all of the buttons are styled!

➤ Buttonize an anchor tag.

Download blueprint/buttons.scss
a.button {
@include anchor-button; }

➤ Change the color of a button.

Download blueprint/buttons.scss
a.button.positive {
@include anchor-button(left);
@include button-colors(#305d00, #b0dd80, #478c00);
@include button-hover-colors(#305d00, #d8eec0, #84a560);}

Use the following HTML:

Download blueprint/buttons.html
<a class="button">
I'm using the button class

</a>
<a class="button positive">
I'm in a button!

</a>
<a class="button positive" id="hover">
And I'm being hovered over

</a>

The result in the browser will look like this:

report erratum  •  discuss

Making Beautiful Buttons • 91

http://media.pragprog.com/titles/pg_sass/code/blueprint/buttons.scss
http://media.pragprog.com/titles/pg_sass/code/blueprint/buttons.scss
http://media.pragprog.com/titles/pg_sass/code/blueprint/buttons.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”



APPENDIX 1

SassScript Function Reference
rgb($red, $green, $blue)

Creates a {Color} object from red, green, and blue values.

hsl($hue, $saturation, $lightness)

Creates a {Color} object from hue, saturation, and lightness.
Uses the algorithm from the CSS3 spec.16

hsla($hue, $saturation, $lightness, $alpha)

Creates a {Color} object from hue, saturation, and lightness,
as well as an alpha channel indicating opacity. Uses the
algorithm from the CSS3 spec.

red($color)

Returns the red component of a color.

green($color)

Returns the green component of a color.

blue($color)

Returns the blue component of a color.

hue($color)

Returns the hue component of a color.

See the CSS3 HSL specification.

16. http://www.w3.org/TR/css3-color/#hsl-color

report erratum  •  discuss

http://www.w3.org/TR/css3-color/#hsl-color
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Calculated from RGB where necessary via this algorithm.17

saturation($color)

Returns the saturation component of a color.

See the CSS3 HSL specification.

Calculated from RGB where necessary via the same algo-
rithm as hue($color).

lightness($color)

Returns the hue component of a color.

See the CSS3 HSL specification.

Calculated from RGB where necessary via the same algo-
rithm as hue($color).

alpha($*args)

Returns the alpha component (opacity) of a color. This is 1
unless otherwise specified.

This function also supports the proprietary Microsoft
‘alpha(opacity=20)‘ syntax.

opacity($color)

Returns the alpha component (opacity) of a color. This is 1
unless otherwise specified.

opacify($color, $amount)

Makes a color more opaque. Takes a color and an amount
between 0 and 1, and returns a color with the opacity
increased by that value.

fade-in()

Makes a color more opaque. Takes a color and an amount
between 0 and 1, and returns a color with the opacity in-
creased by that value.

17. http://en.wikipedia.org/wiki/HSL_and_HSV#Conver-
sion_from_RGB_to_HSL_or_HSV

94 • Appendix 1. SassScript Function Reference

report erratum  •  discuss

http://en.wikipedia.org/wiki/HSL_and_HSV#Conversion_from_RGB_to_HSL_or_HSV
http://en.wikipedia.org/wiki/HSL_and_HSV#Conversion_from_RGB_to_HSL_or_HSV
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


transparentize($color, $amount)

Makes a color more transparent. Takes a color and an
amount between 0 and 1, and returns a color with the opac-
ity decreased by that value.

fade-out()

Makes a color more transparent. Takes a color and an
amount between 0 and 1, and returns a color with the opac-
ity decreased by that value.

lighten($color, $amount)

Makes a color lighter. Takes a color and an amount between
0% and 100%, and returns a color with the lightness in-
creased by that value.

darken($color, $amount)

Makes a color darker. Takes a color and an amount between
0% and 100%, and returns a color with the lightness de-
creased by that value.

saturate($color, $amount)

Makes a color more saturated. Takes a color and an amount
between 0% and 100%, and returns a color with the satura-
tion increased by that value.

desaturate($color, $amount)

Makes a color less saturated. Takes a color and an amount
between 0% and 100%, and returns a color with the satura-
tion decreased by that value.

adjust-hue($color, $degrees)

Changes the hue of a color while retaining the lightness and
saturation. Takes a color and a number of degrees (usually
between -360deg and 360deg), and returns a color with the
hue rotated by that value.

adjust-color($color, $kwargs)

Adjusts one or more properties of a color. This can change
the red, green, blue, hue, saturation, value, and alpha prop-
erties. The properties are specified as keyword arguments

report erratum  •  discuss

Appendix 1. SassScript Function Reference • 95

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


and are added to or subtracted from the color’s current value
for that property.

‘$red‘, ‘$green‘, and ‘$blue‘ properties should be between 0
and 255. ‘$saturation‘ and ‘$lightness‘ should be between
0% and 100%. ‘$alpha‘ should be between 0 and 1. All
properties are optional.

You can’t specify both RGB properties (‘$red‘, ‘$green‘,
‘$blue‘) and HSL properties (‘$hue‘, ‘$saturation‘, ‘$value‘)
at the same time.

scale-color($color, $kwargs)

Scales one or more properties of a color by a percentage
value. Unlike adjust-color($color, $kwargs), which changes a
color’s properties by fixed amounts, scale_color fluidly
changes them based on how high or low they already are.
So if we use scale color twice: scale-color scale-color, it won’t
change the lightness much, but lightening a dark color by
the same amount will change it more dramatically. This has
the benefit of making ‘scale-color($color, ...)‘ have a compa-
rable effect across color palettes.

For example, the lightness of a color can be anywhere
between 0 and 100. If ‘scale-color($color, $lightness: 40%)‘
is called, the resulting color’s lightness will be 40% of the
way between its original lightness and 100. If ‘scale-color($col-
or, $lightness: -40%)‘ is called instead, the lightness will be
40% of the way between the original and 0.

This can change the red, green, blue, saturation, value, and
alpha properties. The properties are specified as keyword
arguments. All arguments should be percentages between
0% and 100%. All properties are optional.

You can’t specify both RGB properties (‘$red‘, ‘$green‘,
‘$blue‘) and HSL properties (‘$saturation‘, ‘$value‘) at the
same time.

change-color($color, $kwargs)

Changes one or more properties of a color. This can change
the red, green, blue, hue, saturation, value, and alpha prop-
erties. The properties are specified as keyword arguments
and replace the color’s current value for that property.

96 • Appendix 1. SassScript Function Reference

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


‘$red‘, ‘$green‘, and ‘$blue‘ properties should be between 0
and 255. ‘$saturation‘ and ‘$lightness‘ should be between
0% and 100%. ‘$alpha‘ should be between 0 and 1. All
properties are optional.

You can’t specify both RGB properties (‘$red‘, ‘$green‘,
‘$blue‘) and HSL properties (‘$hue‘, ‘$saturation‘, ‘$value‘)
at the same time.

mix($color1, $color2, $weight = 50)

Mixes together two colors. Specifically, takes the average of
each of the RGB components, optionally weighted by the
given percentage. The opacity of the colors is also considered
when weighting the components.

The weight specifies the amount of the first color that should
be included in the returned color. The default, 50%, means
that half the first color and half the second color should be
used. 25% means that a quarter of the first color and three
quarters of the second color should be used.

grayscale($color)

Converts a color to grayscale. This is identical to ‘desatu-
rate(color, 100%)‘.

complement($color)

Returns the complement of a color. This is identical to
‘adjust-hue(color, 180deg)‘.

invert($color)

Returns the inverse (negative) of a color. The red, green, and
blue values are inverted, while the opacity is left alone.

unquote($string)

Removes quotes from a string if the string is quoted, or
returns the same string if it’s not.

quote($string)

Add quotes to a string if the string isn’t quoted, or returns
the same string if it is.

report erratum  •  discuss

Appendix 1. SassScript Function Reference • 97

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


type-of($value)

Inspects the type of the argument, returning it as an unquot-
ed string.

unit($number)

Inspects the unit of the number, returning it as a quoted
string. Complex units are sorted in alphabetical order by
numerator and denominator.

unitless($number)

Inspects the unit of the number, returning a boolean indicat-
ing if it is unitless.

comparable($number_1, $number_2)

Returns true if two numbers are similar enough to be added,
subtracted, or compared.

percentage($value)

Converts a decimal number to a percentage.

round($value)

Rounds a number to the nearest whole number.

ceil($value)

Rounds a number up to the nearest whole number.

floor($value)

Rounds down to the nearest whole number.

abs($value)

Finds the absolute value of a number.

length($list)

Return the length of a list.

nth($list, $n)

Gets the nth item in a list.

Note that unlike some languages, the first item in a Sass list
is number 1, the second is number 2, and so forth.

98 • Appendix 1. SassScript Function Reference

report erratum  •  discuss

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


join($list1, $list2, $separator = "auto")

Joins together two lists into a new list.

Unless the ‘$separator‘ argument is passed, if one list is
comma-separated and one is space-separated, the first
parameter’s separator is used for the resulting list. If the lists
have only one item each, spaces are used for the resulting
list.

append($list, $val, $separator = "auto")

Appends a single value onto the end of a list.

Unless the ‘$separator‘ argument is passed, if ‘$list‘ has only
one item, the resulting list will be space-separated.

zip($*lists)

Combines several lists into a single comma-separated list,
with spaces between similarly placed items. If we have the
lists 1, 2, 3 and A, B, C, they will be combined into 1A, 2B,
3C, etc. The length of the resulting list is the length of the
shortest list.

index($list, $value)

Returns the position of the given value within the given list.
If not found, returns false.

if($condition, $if_true, $if_false)

Returns one of two values based on the truth value of the
first argument.

numeric-transformation($value)

This method implements the pattern of transforming a
numeric value into another numeric value with the same
units. It yields a number to a block to perform the operation
and return a different number.

report erratum  •  discuss

Appendix 1. SassScript Function Reference • 99

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


APPENDIX 2

Introduction to Haml
Haml is something of a sister language to Sass, but Haml
was actually designed before Sass. It was successful enough
that a CSS-version was developed, applying the same prin-
ciples of Haml into CSS. They were both developed to clarify
the meaning behind design.

Haml was created from the desire to write logically struc-
tured HTML that your designer would thank you for. HTML
builders shouldn’t make crap: the layout of the page and
the information on the page should be logically structured
and well named. Haml isn’t a revolution; it’s a statement of
the obvious and an adoption of best practices.

Installing Haml is pretty similar to installing Sass. Once
Ruby is installed, all you need to type in the command line
is the following:

gem install haml

And you’re done. It used to be that Haml was in the same
gem as Sass, but since version 3.1 they’ve been split into two
separate gems.

If you need any help with Haml, there’s the Haml site and
all its documentation,18 which will have a lot more informa-
tion than the snippet we’ve given here. In addition, there’s
a bunch of friendly people willing to help at the Haml
Google group.19

18. http://haml-lang.com/ and http://haml-lang.com/docs/yardoc/
file.HAML_REFERENCE.html, respectively.

19. http://groups.google.com/group/haml

report erratum  •  discuss

http://haml-lang.com/
http://haml-lang.com/docs/yardoc/file.HAML_REFERENCE.html
http://haml-lang.com/docs/yardoc/file.HAML_REFERENCE.html
http://groups.google.com/group/haml
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


In this appendix, we’ve got two ways to take you through
Haml. The first is from a Ruby-style angle, taking an example
of ERB and reformatting it. The second is for those of us who
are more familiar with HTML. They’re both in a slightly
different format to the rest of the book, as they follow the
progression of ERB/HTML into Haml.

Haml Walkthrough: ERB

Now we’re going to walk you through the exact same pro-
cess with which Haml was created. A well-formatted bit of
HTML was changed step-by-step until Haml was born.

Let’s start with an example using ERB. It’s a pretty standard
template you might find in any Ruby project. Don’t panic if
you aren’t a Rubyist—it’s a straightforward example.

Download haml/haml_e1.html
<div id=”products”>
<%- @products.each do |product| %>

<div class=”product” id=”product_<%= product.id %>”>
<div class=”name”><%= product.name %></div>
<div class=”price”><%= product.price %></div>

</div>
<% end %>

</div>

Executing this would print out each of the products in
@products and assign each one a custom ID like product_23
(where the product’s ID is 23). It’s a very standard and well-
formatted kind of template in ERB, and we are going to
slowly convert this into Haml.

First off: it’s important to correctly indent ERB files, so there
is no reason why you should have to spend so much time
closing tags—it just seems wasteful. So, we’ll take the above
example and remove all of the closing tags.

Download haml/haml_e2.html
<div id=”products”>
<%- @products.each do |product| %>

<div class=”product” id=”product_<%= product.id %>”>
<div class=”name”><%= product.name %>
<div class=”price”><%= product.price %>

See how much cleaner it is? And notice that the <% end %>
tag is gone too. Haml automatically figures out when to close
a Ruby block. (This can vary in non-Ruby implementations.)

102 • Appendix 2. Introduction to Haml

report erratum  •  discuss

http://media.pragprog.com/titles/pg_sass/code/haml/haml_e1.html
http://media.pragprog.com/titles/pg_sass/code/haml/haml_e2.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


You’re probably thinking we’re secretly Python people
because of the decision to make Haml “whitespace sensitive.”
That term’s annoying. When looking at HTML, the advan-
tages of getting rid of the closing tags were clear. Even when
working in a language that doesn’t care about whitespace,
most people still do. Having bad indentation is a serious
issue in any bit of code or markup and should be treated as
a flaw.

Haml used to accept only two spaces as indentation—no
exceptions. That has since changed. Whatever you use to
start indenting is what you must keep with. Just stay consis-
tent. It can be a tab, or one space, or two tabs. It doesn’t
matter. As long as it’s consistent, it’s OK.20

Moving on! We’re not nearly done yet.

Don’t you absolutely hate this line?

id=”product_<%= product.id %>”

Ruby has a fantastic built-in string interpolation feature that
means you should be able to do product_#{product.id} and
skip all that weirdness. So let’s do that.

Download haml/haml_e3.html
<div id=”products”>
<%- @products.each do |product| %>
<div class=”product” id=”product_#{product.id}”>

<div class=”name”><%= product.name %>
<div class=”price”><%= product.price %>

There’s only a small change this time, but already this exam-
ple is far more readable. Always think about how readable
something is at a glance. When you look at it, how quickly
does your brain parse and understand what you’re seeing?
Basically, this removes a bunch of unneeded symbols for
your eyes to deal with.

It’s at this point that everyone’s dislike of % style tags comes
to full vengeance. Has anyone else done PHP for too many
years and been left scarred and angry? Let’s get rid of those!

20. However, we’re still of the belief that using two spaces is far
superior and should be used in Haml. We were convinced by an
article by Jamie Zawinski that we strongly suggest you read:
http://www.jwz.org/doc/tabs-vs-spaces.html

report erratum  •  discuss

Appendix 2. Introduction to Haml • 103

http://media.pragprog.com/titles/pg_sass/code/haml/haml_e3.html
http://www.jwz.org/doc/tabs-vs-spaces.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Download haml/haml_e4.html
<div id=”products”>
- @products.each do |product|

<div class=”product” id=”product_#{product.id}”>
<div class=”name”>
= product.name

<div class=”price”>
= product.price

See, we kept the first character as - or= to signify nonprinting
and printing lines. Anything after an = gets printed, and
anything after a - is executed but its output ignored.

At this point in the transformation, printing lines have been
moved down to their own line. We’ll actually rectify this
later, but for now it makes parsing the document a lot easier.
Besides, <div>= seems inelegant for some reason.

In order to get those back up on the other line, Haml tags
must be different from static HTML tags. One of the design
goals is that you can copy in some plain HTML (properly
indented) and it won’t get too mad at you. Mostly this was
a concern for the <meta> tags on a page, which no matter
what you do are as ugly as sin.

So, let’s use the% character to mean<tag> and use the Ruby/
JSON-style syntax for the attributes. (Note: The JSON-style
syntax only works with Ruby versions 1.9+. In 1.8, you must
use the hashrocket style of {“class” => “product”}.)

Download haml/haml_e5.html
%div{id: ”products”}
- @products.each do |product|

%div{class: ”product” id: ”product_#{product.id}”}
%div{class: ”name”}
= product.name

%div{class: ”price”}
= product.price

At this point, we have fully valid Haml. Congratulations!
But we have a bit more to do. With this, we can now move
those printing lines up again! It’ll look nice.

Download haml/haml_e6.html
%div{id: ”products”}
- @products.each do |product|

%div{class: ”product” id: ”product_#{product.id}”}
%div{class: ”name”}= product.name
%div{class: ”price”}= product.price

104 • Appendix 2. Introduction to Haml

report erratum  •  discuss

http://media.pragprog.com/titles/pg_sass/code/haml/haml_e4.html
http://media.pragprog.com/titles/pg_sass/code/haml/haml_e5.html
http://media.pragprog.com/titles/pg_sass/code/haml/haml_e6.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Now we are getting somewhere! But something is still not
quite right. There is a lot of writing of class: and id:, and it
requires the brain to read the letters to understand what it
means. At this point, inspiration strikes. Can you think of a
symbology that already exists for IDs and classes?

Download haml/haml_e7.html
%div#products
- @products.each do |product|
%div.product{id: ”product_#{product.id}”}

%div.name= product.name
%div.price= product.price

Bam! Using CSS-style naming! We already know what those
symbols mean. We’re on a roll now!

In a larger example, there would be %div all over the place.
And we still aren’t encouraging the use of classes and IDs.
It’s a lot easier—a lot less typing to do the right thing.

What if we assumed that each tag was a <div> by default?

Download haml/haml_e8.html
#products
- @products.each do |product|
.product{id: ”product_#{product.id}”}

.name= product.name

.price= product.price

Now that’s nice! We only have to specify the name when
it’s not a div. And if we’re lazy, it’s easier to name divs well
than it is to type %div over and over again. This is precisely
how Haml should encourage good behavior. With this
shortcut, it’s actually hard to do the wrong thing and easier
to do the right thing (i.e., name everything well!).

Now we’ve really arrived at some standard Haml. But there
is one thing that is still troublesome—the whole id: ”prod-
uct_#{product.id}” line. It is a bit of an ugly duckling there.

If your object has a good answer for the object.id call, then
we can automatically figure out the ID and class name that
the .product div should have. We take the object’s class and
down-case it, add an underscore, then put in the obj.id value
—all with this little shortcut.

Download haml/haml_e9.haml
#products
- @products.each do |product|

report erratum  •  discuss

Appendix 2. Introduction to Haml • 105

http://media.pragprog.com/titles/pg_sass/code/haml/haml_e7.html
http://media.pragprog.com/titles/pg_sass/code/haml/haml_e8.html
http://media.pragprog.com/titles/pg_sass/code/haml/haml_e9.haml
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


%div[product]
.name= product.name
.price= product.price

The product div will automatically receive the proper class
and ID, as in our products example. When we say [product]
though, we’re referring to the |product|variable. If we had
named the variable in |product| as |x|, then it would be%div[x].

Haml Walkthrough: HTML

We’re not going to go through the HTML to Haml conver-
sion in as much detail as the previous ERB one. We just want
to see how the stylistic changes can also be applied to a
static site.

Download haml/haml_h1.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />

<title><%= @title || “Awesome Site” %></title>
</head>
<body>

<div id='wrapper'>
<div id='header'>
<h1>Awesome Site</h1>

</div>
<div id='content'>
<%= yield %>

</div>
<div id='footer'>
<small>Copyright Hampton Catlin</small>

</div>
</div>

</body>
</html>

Pretty standard stuff. In this example (à la Rails), the yield
part is where we print out the page-specific contents. Let’s
convert it the way that we know how so far.

Note: Try doing these next few steps along with us. Grab
one of your sites, throw it into a tmp file and start hacking
away at it. We promise it feels great!

106 • Appendix 2. Introduction to Haml

report erratum  •  discuss

http://media.pragprog.com/titles/pg_sass/code/haml/haml_h1.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


First thing’s first: rip out those pesky end tags!

Download haml/haml_h2.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8" />
<title><%= @title || “Awesome Site” %>

<body>
<div id='wrapper'>

<div id='header'>
<h1>Awesome Site

<div id='content'>
<%= yield %>

<div id='footer'>
<small>Copyright Hampton Catlin

Much neater. Let’s Hamlize it even more! We’ll go ahead
and get rid of the <div> tags too. No sense in wasting our
time.

Note: For the HTML tag, we have to use the old-school
hashrocket syntax for Ruby attributes. Why? Because the
JSON-style attributes don’t let you have dashes in them.
Stupid Ruby hashes.

Download haml/haml_h3.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">
%html{'xmlns' => "http://www.w3.org/1999/xhtml",
'xml:lang' => "en"}
%head
<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8" />
%title= @title || “Awesome Site”

%body
#wrapper

#header
%h1 Awesome Site

#content= yield
#footer

%small Copyright Hampton Catlin

A few things to notice: when the contents aren’t dynamic,
you can just put them after the tag name. For instance:%small

report erratum  •  discuss

Appendix 2. Introduction to Haml • 107

http://media.pragprog.com/titles/pg_sass/code/haml/haml_h2.html
http://media.pragprog.com/titles/pg_sass/code/haml/haml_h3.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Copyright Hampton Catlin. No equals sign means it’s not going
to evaluate it: it’s just static text.

Also, we left the meta tag alone. It’s ugly and will remain
ugly. Converting it to a Haml tag achieves nothing. So nor-
mally we have to leave that, but for your reference, here is
how to do a self-closing tag like that.

%meta{“http-equiv” => "Content-Type", “content” =>
"text/html; charset=UTF-8"}/

We just put a / on the end, and the tag knows to self-close.
So if we wanted to write <br/>, we can write %br/ instead.

We still have one really ugly thing left on this page—the
DOCTYPE! Ugh. How many people just copy and paste
from one project to another? We definitely do! So in Haml,
we have a lovely little helper (named after one of our favorite
bands) called !!! that does the job for us.

Download haml/haml_h4.html
!!!
%html{'xmlns' => "http://www.w3.org/1999/xhtml",
'xml:lang' => "en"}
%head

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />

%title= @title || “Awesome Site”
%body

#wrapper
#header
%h1 Awesome Site

#content= yield
#footer
%small Copyright Hampton Catlin

Voilà. No more ugly DOCTYPE line. If you want a specific
output type, you can always reference the Haml documen-
tation for a complete list of variations.21

One more thing: comments. Just as with regular program-
ming, good commenting is almost always a good idea. If we
want to do a nonprinting comment (i.e., something that we’re
only saying internally), then we can just do the following:

-# This comment won’t print

21. http://haml-lang.com/docs/yardoc/file.HAML_REFERENCE.html

108 • Appendix 2. Introduction to Haml

report erratum  •  discuss

http://media.pragprog.com/titles/pg_sass/code/haml/haml_h4.html
http://haml-lang.com/docs/yardoc/file.HAML_REFERENCE.html
http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Basically, the - means it’s a nonprinting Ruby line, and the
# is the standard Ruby form for comments. So it’s just a little
hack to do nonprinting comments.

What if you want real HTML comments? OK!

/ This is an HTML comment

This compiles to:

<!-- This is an HTML comment -->

report erratum  •  discuss

Appendix 2. Introduction to Haml • 109

http://pragprog.com/titles/pg_sass/errata/add
http://forums.pragprog.com/forums/pg_sass


Index
SYMBOLS
!=, 52
#{…}, 48–49, 51
_ prefix, 26
$ prefix, 20
&, 16–17
+ prefix, 38
/*…*/, 12
//…, 12
<, 52
= prefix, 38
==, 52
>, 52

A
abs(), 98
adjust-color(), 95
adjust-hue(), 25, 95
alpha(), 94
append(), 99
asset pipeline, 8

B
blue(), 93
Blueprint CSS, 85–91

documentation wiki,
85

installing, 85
borders, rounded, 44–45
bullet points, 66–67
buttons, styling, 90–91

C
calculations, 22–23
ceil(), 98
change-color(), 96
Clearfix, 72–73

color management, 24–25
column layout

with Blueprint, 86–87
with Compass, 78–79

comments
in Haml, 109
in Sass, 12–13

comparable(), 98
comparison operators, 52
Compass, 59–60, 62–81

documentation, 59
installing, 59
from sass command,

59
setting up projects,

62–63
compass command options

compile, 62
create, 63
watch, 62–63

compiling Sass, 6–7, 10
CSS output style, 18–

19
complement(), 97
compressed CSS, 18–19
conditional statements,

52–53
convert command, 6
CSS output style, 18–19
CSS reset, 30–31
CSS terminology, xii

D
darken(), 95
debugging Sass, 42–43
declaration blocks, xii
!default, 20
default variables, 20
desaturate(), 25, 95

DOCTYPE, 108
documentation

Blueprint CSS, 85
Compass, 59
Haml, 101
Sass, xv

DRY (Don’t Repeat Your-
self), xi

E
@each, 50–51
editors, 4
ellipses, 74–75
@else, 52–53
environment.rb file, 8
error messages, 42–43
@extend, 36–37

F
fade-in(), 94
fade-out(), 95
file extensions

.sass extension, 4

.scss extension, 4
FireSass for Firebug, 42
floor(), 98
font family library, 29
font-family variables, 28
fonts, fancy, 88–89

G
Gemfile, 9
global reset, 64–65
global variables, 20
grayscale(), 25, 97
green(), 93



H
Haml

documentation, 101
from ERB, 102–106
from HTML, 106–109
installing, 101

help command, xv
horizontal lists, 68–69
hsl(), 93
hsla(), 93
hue(), 93

I
@if, 52–53
if(), 99
@import, 26–27, 30
@include, 38–39, 41
index(), 99
installation

Blueprint CSS, 85
Compass, 59
Haml, 101
Ruby, 4
Sass, 4–5

interpolation, 48–49
invert(), 97

J
join(), 99

L
length(), 98
lighten(), 25, 95
lightness(), 94
lists, unordered, 66–69

M
@media, 54–55
mix(), 25, 97
@mixin, 38–41

N
nested reset, 64–65
nesting

with @media, 54–55
with selector scoping,

14–15
Notepad++, 4

nth(), 98
numeric-transformation(), 99

O
opacify(), 94
opacity(), 46–47, 94
Original Sass

defined, xiii
mixin syntax, 38

output style, 18

P
percentage(), 98
properties

copying between
classes, 36

defined, xii
as variables, 20

Q
quote(), 97

R
Rails and Sass, 8–9
red(), 93
resetting CSS

with Compass, 64–65
with Sass, 30–31

rgb(), 93
round(), 98
Ruby, installing, 4

S
.sass extension, 4
Sass (Syntactically Awe-

some Style Sheets)
Compass extensions,

59–60, 62–81
history, xi
installing, 4–5
with Rails, 8–9
reference docs, xv
SCSS vs. Original

Sass, xiii
sass command options

compass, 59
convert, 6
debug-info, 42
help, xv
line-comments, 42–43

style, 18–19
watch, 6

Sass Lang Google group,
xv

SassScripts
conditionals, 52
defined, 48
function reference,

93–99
saturate(), 25, 95
saturation(), 94
scale-color(), 96
scoped variables, 20
Scout, 10–11
.scss extension, 4
SCSS (Sassy CSS), xiii
selector scoping, 14–17
spriting images, 80–81
sticky footers, 70–71
stretching, 76–77
styles, copying, 36, 50–51

T
text editors, 4
text modifications, 74–75, 

88–89
TextMate, 4
transparentize(), 95
truncating text, 74–75
type-of(), 98

U
unit(), 98
unitless(), 98
unquote(), 97

V
variables, 20–21

with colors, 24
with font families, 28
with mixins, 40–41

Vim, 4

W
watch command, 6

Z
zip(), 99

112 • Index





The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/titles/pg_sass
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/titles/pg_sass

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/titles/pg_sass
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/pg_sass
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Welcome!
	Who Is This Book For?
	Nomenclature and Syntax
	Overview
	How to Read This Book
	Getting Help
	A Few Final Comments

	Part I—Basics
	Task 1. Installing Sass
	Task 2. Compiling Sass into CSS
	Task 3. Using Sass with Rails
	Task 4. Avoiding the Command Line: Using Scout
	Task 5. Commenting
	Task 6. Selector Scoping
	Task 7. Going Further with Advanced Scoping
	Task 8. Altering the CSS Output
	Task 9. Defining Variables
	Task 10. Calculating a Layout
	Task 11. Creating Themes with Advanced Colors
	Task 12. Importing
	Task 13. Building a Font Family Library
	Task 14. Resetting CSS

	Part II—Advanced
	Task 15. Keeping It Semantic: @extend
	Task 16. Keeping Code Clean with Mixins
	Task 17. Taking Mixins Further with Variables
	Task 18. Debugging
	Task 19. Generating Cross-Browser Rounded Borders
	Task 20. Using Cross-Browser Opacity
	Task 21. Interpolating
	Task 22. Stop Repeating Yourself with @each
	Task 23. Determining Conditions with @if
	Task 24. Changing Looks with Nested @media

	Part III—Compass
	Task 25. Setting Up for a Compass Project
	Task 26. Resetting: Much Easier with Compass
	Task 27. Sprucing Up Your Lists
	Task 28. Making Lists Horizontal
	Task 29. Sticking a Footer to a Window
	Task 30. Stopping Overflow with Clearfix
	Task 31. Truncating Text Using Ellipses
	Task 32. Stretching Elements
	Task 33. Jazzing Up Layouts with Columns
	Task 34. Spriting

	Part IV—Blueprint CSS
	Task 35. Producing More Two-Column Layouts
	Task 36. Using Predefined Fancy Fonts
	Task 37. Making Beautiful Buttons

	A1. SassScript Function Reference
	A2. Introduction to Haml
	Haml Walkthrough: ERB
	Haml Walkthrough: HTML

	Index



