
PROGR AMMING/JAVA SCRIPT

JavaScript with Promises

ISBN: 978-1-449-37321-4

US $19.99 CAN $22.99

“	Daniel	Parker	begins	with	
an	insightful	introduction	
to	asynchronous	
programming	that	any	
JavaScript	developer	will	
find	useful.	JavaScript
with Promises	covers	
both	the	How	and	Why,	
focusing	on	current	
practical	tools.”

—Kris Kowal
Senior Software Engineer, Uber; creator of

the Q library and CommonJS modules

“	A	comprehensive	look	
at	one	of	the	most	
important	tools	of	a	
modern	JavaScript	
programmer.”

—Domenic Denicola
Software Engineer, Google; Editor,

ES2015 Promises specification

Twitter: @oreillymedia
facebook.com/oreilly

Asynchronous JavaScript is everywhere, whether you’re using Ajax,
AngularJS, Node.js, or WebRTC. This practical guide shows intermediate
to advanced JavaScript developers how Promises can help you manage
asynchronous code effectively—including the inevitable flood of callbacks
as your codebase grows. You’ll learn the inner workings of Promises and
ways to avoid difficulties and missteps when using them.

The ability to asynchronously fetch data and load scripts in the browser
broadens the capabilities of JavaScript applications. But if you don’t
understand how the async part works, you’ll wind up with unpredictable
code that’s difficult to maintain. This book is ideal whether you’re new to
Promises or want to expand your knowledge of this technology.

 ■ Understand how async JavaScript works by delving into
callbacks, the event loop, and threading

 ■ Learn how Promises organize callbacks into discrete steps
that are easier to read and maintain

 ■ Examine scenarios you’ll encounter and techniques you can
use when writing real-world applications

 ■ Use features in the Bluebird library and jQuery to work with
Promises

 ■ Learn how the Promise API handles asynchronous errors

 ■ Explore ECMAScript 6 language features that simplify
Promise-related code

Daniel Parker is a software developer focused on web and mobile applications.
He writes JavaScript for Evernote in Austin, Texas, and is the organizer of the
Austin Google Developer Group.

Daniel Parker

JavaScript with

 Promises
MANAGING ASYNCHRONOUS CODE

JAVA
SCRIPT W

ITH PRO
M

ISES
Parker

PROGR AMMING/JAVA SCRIPT

JavaScript with Promises

ISBN: 978-1-449-37321-4

US $19.99 CAN $22.99

“	Daniel	Parker	begins	with	
an	insightful	introduction	
to	asynchronous	
programming	that	any	
JavaScript	developer	will	
find	useful.	JavaScript
with Promises	covers	
both	the	How	and	Why,	
focusing	on	current	
practical	tools.”

—Kris Kowal
Senior Software Engineer, Uber; creator of

the Q library and CommonJS modules

“	A	comprehensive	look	
at	one	of	the	most	
important	tools	of	a	
modern	JavaScript	
programmer.”

—Domenic Denicola
Software Engineer, Google; Editor,

ES2015 Promises specification

Twitter: @oreillymedia
facebook.com/oreilly

Asynchronous JavaScript is everywhere, whether you’re using Ajax,
AngularJS, Node.js, or WebRTC. This practical guide shows intermediate
to advanced JavaScript developers how Promises can help you manage
asynchronous code effectively—including the inevitable flood of callbacks
as your codebase grows. You’ll learn the inner workings of Promises and
ways to avoid difficulties and missteps when using them.

The ability to asynchronously fetch data and load scripts in the browser
broadens the capabilities of JavaScript applications. But if you don’t
understand how the async part works, you’ll wind up with unpredictable
code that’s difficult to maintain. This book is ideal whether you’re new to
Promises or want to expand your knowledge of this technology.

 ■ Understand how async JavaScript works by delving into
callbacks, the event loop, and threading

 ■ Learn how Promises organize callbacks into discrete steps
that are easier to read and maintain

 ■ Examine scenarios you’ll encounter and techniques you can
use when writing real-world applications

 ■ Use features in the Bluebird library and jQuery to work with
Promises

 ■ Learn how the Promise API handles asynchronous errors

 ■ Explore ECMAScript 6 language features that simplify
Promise-related code

Daniel Parker is a software developer focused on web and mobile applications.
He writes JavaScript for Evernote in Austin, Texas, and is the organizer of the
Austin Google Developer Group.

Daniel Parker

JavaScript with

 Promises
MANAGING ASYNCHRONOUS CODE

JAVA
SCRIPT W

ITH PRO
M

ISES
Parker

Daniel Parker

Boston

JavaScript with Promises

978-1-449-37321-4

[LSI]

JavaScript with Promises
by Daniel Parker

Copyright © 2015 Daniel Parker. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St.Laurent and Brian MacDonald
Production Editor: Colleen Lobner
Copyeditor: Lindsy Gamble
Proofreader: Elise Morrison

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

June 2015: First Edition

Revision History for the First Edition
2015-05-28: First Release
2015-07-17: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449373214 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JavaScript with Promises, the cover
image of a white-crested helmetshrike, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449373214

Table of Contents

Preface. v

1. Asynchronous JavaScript. 1
Callbacks 2
Asynchronous JavaScript 3
Run to Completion and the Event Loop 6
Summary 10

2. Introducing Promises. 11
Basic Usage 11
Multiple Consumers 14
Promise States 15
Chaining Promises 18
Callback Execution Order 19
Basic Error Propagation 20
The Promise API 22
Summary 24

3. Working with Standard Promises. 25
The Async Ripple Effect 25
Conditional Logic 26
Parallel Execution 28
Sequential Execution Using Loops or Recursion 30
Managing Latency 35
Functional Composition 36
Summary 38

iii

4. Using Libraries and Frameworks. 39
Promise Interoperability and Thenables 40
The Bluebird Promise Library 40

Loading Bluebird 41
Managing Execution Context 42
Wrapping Node.js Functions 43
Working with Collections of Promises 46
Manipulating Fulfillment Values 48

Promises in jQuery 51
Summary 54

5. Error Handling. 55
Rejecting Promises 55
Passing Errors 57
Unhandled Rejections 58
Implementing try/catch/finally 59
Using the Call Stack 61
Summary 63

6. Combining ECMAScript 6 Features with Promises. 65
Destructuring 65
Arrow Functions 67
Iterables and Iterators 68
Generators 69

Synchronous Style 69
Generators and Iterators 70
Sending Values to a Generator 72
Sending Errors to a Generator 76
Practical Application 77

Summary 79

Index. 81

iv | Table of Contents

Preface

Asynchronous JavaScript is everywhere. AJAX, WebRTC, and Node.js are a few
examples of where asynchronous APIs are found. Although it is easy to write a quick
function to handle the result of one HTTP request, it is also easy to get lost in an
unpredictable sea of callbacks as a codebase grows and more people contribute. That’s
where a good approach for handling asynchronous code comes in and many develop‐
ers are choosing to use Promises in their approach.

This is the book I needed when originally choosing an asynchronous strategy, and it
is the result of my experience using promises in JavaScript applications. It explains
their use and inner workings while exposing difficulties and missteps. Promises are
made up of only a few concepts with a small API. But in the same way that
JavaScript’s small number of simple constructs are used to create elegant and power‐
ful solutions, I am surprised and pleased at the number of ways Promises can be used
to effectively manage asynchronous code.

Intended Audience
This book is for intermediate and advanced JavaScript developers who want to write
asynchronous code. These developers may be comfortable with JavaScript for tradi‐
tional web APIs but are moving to environments such as Node.js, Google Chrome
packaged apps, or building desktop applications with JavaScript. Developers who
write browser-based code and want to use frameworks such as Angular or newer
browser technologies such as Service Workers or WebRTC will also benefit. Even
people who are already experienced with Promises may still enjoy reading the code
and discovering additional ideas for their own work.

A Word on Style
This is not a book about JavaScript syntax dos and don’ts. All the examples are
intended to be clear and casual; however, this style may conflict with some recom‐

v

mended practices. Those choices are independent of the ideas presented here and you
are free to choose as you see fit when approaching these concepts in your code.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/dxparker/promises-book-examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

vi | Preface

https://github.com/dxparker/promises-book-examples

need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “JavaScript with Promises by Daniel
Parker (O’Reilly). Copyright 2015 Daniel Parker, 978-1-449-37321-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)

Preface | vii

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/js-with-promises.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to Kris Kowal, Domenic Denicola, and Petka Antonov for their ongoing
contributions to JavaScript Promises and for their feedback during the writing of this
book. Thanks also to Cody Lindley for his valuable feedback.

Thank you to the wonderful people at O’Reilly whose expertise, support, and patience
made the publication of this book possible, especially Simon St.Laurent for his role in
getting the book started, Brian MacDonald and Amy Jollymore for their guidance,
and Colleen Lobner and Lindsy Gamble for sweating the details.

One of the best things about the programming culture is constantly learning from
other people or alongside them in a collaborative effort. I am grateful for having some
exceptional colleagues over the years, including Jerry Raschke, Nathan Price, Hank
Beasley, Gregory Long, and Johnathan Hebert.

This book is dedicated to my loving wife Sarah. You are amazing!

viii | Preface

http://bit.ly/js-with-promises
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Asynchronous JavaScript

The number of asynchronous JavaScript APIs is rapidly growing. Web applications
asynchronously fetch data and load scripts in the browser. Node.js and its derivatives
provide a host of APIs for asynchronous I/O. And new web specifications for
Streams, Service Workers, and Font Loading all include asynchronous calls. These
advancements broaden the capabilities of JavaScript applications, but using them
without understanding how the async part works can result in unpredictable code
that is difficult to maintain. Things may work as expected in development or test
environments but fail when deployed to end users because of variables such as net‐
work speed or hardware performance.

This chapter explains how async JavaScript works. We’ll cover callbacks, the event
loop, and threading. Most of the information is not specific to Promises but provides
the foundation you need to get the most out of Promises and out of the rest of this
book.

Let’s start with a code snippet that frequently surprises people. The code makes an
HTTP request using the XMLHttpRequest (XHR) object and uses a while loop that
runs for three seconds. Although it is generally bad practice to implement a delay
with the while loop, it’s a good way to illustrate how JavaScript runs. Read the code in
Example 1-1 and decide whether the listener callback for the XHR object will ever
be triggered.

Example 1-1. Async XHR

// Make an async HTTP request
var async = true;
var xhr = new XMLHttpRequest();
xhr.open('get', 'data.json', async);
xhr.send();

1

// Create a three second delay (don't do this in real life)
var timestamp = Date.now() + 3000;
while (Date.now() < timestamp);

// Now that three seconds have passed,
// add a listener to the xhr.load and xhr.error events
function listener() {
 console.log('greetings from listener');
}
xhr.addEventListener('load', listener);
xhr.addEventListener('error', listener);

Here are some common opinions on whether listener is called:

1. Yes, listener is always called
2. Not a chance, the addEventListener calls must run before xhr.send()
3. Sometimes, depending on whether the request takes more than three seconds

The correct assessment is that listener is always called. Although the second and
third answers are common, they are incorrect because of the event loop model and
run-to-completion semantics in JavaScript. If you thought otherwise or would like a
refresher on these concepts, this chapter is for you.

Callbacks
Callbacks are the cornerstone of asynchronous JavaScript programming. As a Java‐
Script developer you are probably familiar with callbacks, but just to be sure,
Example 1-2 presents a quick case of a callback that prints each of the elements in an
array.

Example 1-2. Example callback

var cities = ['Tokyo', 'London', 'Boston', 'Berlin', 'Chicago', 'New York'];

cities.forEach(function callback(city) {
 console.log(city);
});

// Console output:
// Tokyo
// London
// Boston
// Berlin
// Chicago
// New York

2 | Chapter 1: Asynchronous JavaScript

In short, a callback is a function provided to other code for invocation. Example 1-2
uses an inline function to define the callback. That is a commonly used style in Java‐
Script applications, but callbacks do not have to be declared inline. Example 1-3
shows the equivalent code with the function declared in advance.

Example 1-3. Passing a callback as a predefined function

function callback(city) {
 console.log(city);
}

cities.forEach(callback);

Whether your callbacks are inline functions or predefined is a matter of choice. As
long as you have a reference to a function, you can use it as a callback.

Asynchronous JavaScript
Callbacks can be invoked synchronously or asynchronously (i.e., before or after the
function they are passed to returns.) The array.forEach() method used in the previ‐
ous section invokes the callback it receives synchronously. An example of a function
that invokes its callback asynchronously is window.requestAnimationFrame(). Its
callback is invoked between browser repaint intervals, as shown in Example 1-4.

Example 1-4. A callback being invoked asynchronously

function repositionElement() {
 console.log('repositioning!');
 // ...
}

window.requestAnimationFrame(repositionElement);
console.log('I am the last line of the script');

// Console output:
// I am the last line of the script
// repositioning!

In this example, “I am the last line of the script” is written to the console before
“repositioning!” because requestAnimationFrame returns immediately and invokes
the repositionElement callback at a later time.

Synchronous code can be easier to understand because it executes in the order it is
written. A good comparison can be made using the synchronous and asynchronous
file APIs in Node.js. Example 1-5 is a script that writes to a file and reads back the

Asynchronous JavaScript | 3

contents synchronously. The numbered comments indicate the relative order in
which some of the lines of code are executed.

Example 1-5. Using synchronous code to write and read a file in Node.js

var fs = require('fs');
var timestamp = new Date().toString();
var contents;

fs.writeFileSync('date.txt', timestamp);
contents = fs.readFileSync('date.txt');
console.log('Checking the contents'); // 1
console.assert(contents == timestamp); // 2

console.log('I am the last line of the script'); // 3

// Console output:
// Checking the contents
// I am the last line of the script

The script uses the writeFileSync and readFileSync functions of the fs module to
write a timestamp to a file and read it back. After the contents of the file are read
back, they are compared to the timestamp that was originally written to see if the two
values match. The console.assert() displays an error if the values differ. In this
example they always match so the only output is from the console.log() statements
before and after the assertion.

The script shown in Example 1-6 does the same job using the async functions
fs.writeFile() and fs.readFile(). Both functions take a callback as their last
parameter. The numbered comments are used again to show the relative execution
order, which differs from the previous script.

Example 1-6. Using asynchronous code to write and read a file in Node.js

var fs = require('fs');
var timestamp = new Date().toString();

fs.writeFile('date.txt', timestamp, function (err) {
 if (err) throw err;

 fs.readFile('date.txt', function (err, contents) {
 if (err) throw err;
 console.log('Checking the contents'); // 2
 console.assert(contents == timestamp); // 3
 });
});

console.log('I am the last line of the script'); // 1

4 | Chapter 1: Asynchronous JavaScript

// Console output:
// I am the last line of the script
// Checking the contents

Comparing this code to the previous example, you’ll see that the console output
appears in reverse order. Similar to the requestAnimationFrame example, the call to
fs.writeFile() returns immediately so the last line of the script runs before the file
contents are read and compared to what was written.

Although synchronous code can be easier to follow, it is also limiting. Programmers
need the ability to write async code so long-running tasks such as network requests
do not block other parts of the program while incomplete. Without that ability, you
couldn’t type in an editor at the same time your document was being autosaved or
scroll through a web page while the browser was still downloading images. This is
where callbacks come in. In JavaScript, callbacks are used to manage the execution
order of any code that depends on an async task.

When programmers are new to asynchronous programming, it’s easy for them to
incorrectly expect an async script to run as if it were synchronous. Putting code that
relies on the completion of an async task outside the appropriate callback creates
problems. Example 1-7 shows some code that expects the callback given to readFile
to be invoked before readFile returns, but when that doesn’t happen the content
comparison fails.

Example 1-7. Naive asynchronous code. This doesn’t work!

var fs = require('fs');
var timestamp = new Date().toString();
var contents;

fs.writeFile('date.txt', timestamp);

fs.readFile('date.txt', function (err, data) {
 if (err) throw err;
 contents = data; // 3
});

console.log('Comparing the contents'); // 1
console.assert(timestamp == contents); // 2 - FAIL!

Suppose the file only took a fraction of a millisecond to read. Does the example con‐
tain a race condition where the contents of the file are always ready for comparison
when you test the code on your machine but fail every time you demo the applica‐
tion? The answer is that there isn’t a race condition because the callback to readFile
is always invoked asynchronously, so readFile is guaranteed to return before invok‐
ing the callback. Once that happens, the callback never runs before the log or assert
statements on the next two lines because of the run-to-completion semantics

Asynchronous JavaScript | 5

explained in the next section. But before we get to that, a word of caution about writ‐
ing functions that accept callbacks.

When you pass a callback to a function it’s important to know whether the callback
will be invoked synchronously or asynchronously. You don’t want a series of steps
that build on one another to run out of order. This is generally straightforward to
determine because the function’s implementation, documentation, and purpose indi‐
cate how your callback is handled. However, a function can have mixed behavior
where it invokes a callback synchronously or asynchronously depending on some
condition. Example 1-8 shows the jQuery ready function used to run code after the
Document Object Model (DOM) is ready. If the DOM has finished loading before
ready is invoked, the callback is invoked synchronously. Otherwise the callback is
invoked once the DOM has loaded.

Example 1-8. The jQuery ready function can be synchronous or asynchronous

jQuery(document).ready(function () {
 // jQuery calls this function after the DOM is loaded and ready to use
 console.log('DOM is ready');
});

console.log('I am the last line of the script');

// Console output may appear in either order depending on when the DOM is ready

Functions that are not consistently synchronous or asynchronous create a fork in the
execution path. The jQuery ready function creates a fork with two paths. If a func‐
tion containing the same style of mixed behavior invoked ready, there would be four
possible paths. The explosion in execution branches makes explaining and testing
this approach difficult, and reliable behavior in a production environment more chal‐
lenging. Isaac Schlueter has written a popular blog post about this titled “Designing
APIs for Asynchrony,” in which he refers to the inconsistent behavior as “releasing
Zalgo.”

Functions that invoke a callback synchronously in some cases and
asynchronously in others create forks in the execution path that
make your code less predictable.

Run to Completion and the Event Loop
The JavaScript you write runs on a single thread, which avoids complications found
in other languages that share memory between threads. But if JavaScript is single-

6 | Chapter 1: Asynchronous JavaScript

http://bit.ly/apis-asynchrony
http://bit.ly/apis-asynchrony

threaded, where are the async tasks and callbacks run? To explain, let’s start in
Example 1-9 with a simple HTTP request in Node.

Example 1-9. HTTP request in Node.js

var http = require('http');
http.get('http://www.google.com', function (res) {
 console.log('got a response');
});

The call to http.get() triggers a network request that a separate thread handles. But
wait—you were just told that JavaScript is single-threaded. Here’s the distinction: the
JavaScript code you write all runs on a single thread, but the code that implements the
async tasks (the http.get() implementation in Example 1-9) is not part of that Java‐
Script and is free to run in a separate thread.

Once the task completes the result needs to be provided to the JavaScript thread. At
this point the callback is placed in a queue. A multithreaded language might interrupt
whatever code was currently executing to provide the results, but in JavaScript these
interruptions are forbidden. Instead there is a run-to-completion rule, which means
that your code runs without interruption until it passes control back to the host envi‐
ronment by returning from the function that the host initially called. At that point the
callback can be removed from the queue and invoked.

All other threads communicate with your code by placing items on the queue. They
are not permitted to manipulate any other memory accessible to JavaScript. In the
previous example the callback accesses the response from the async HTTP request.

After the callback is added to the queue, there is no guarantee how long it will have to
wait. How long it takes the current code to run to completion and what else is in the
queue controls the time. The queue can contain things such as mouse clicks, key‐
strokes, and callbacks for other async tasks. The JavaScript runtime simply continues
in an endless cycle of pulling an item off the queue if one is available, running the
code that the item triggers, and then checking the queue again. This cycle is known as
the event loop.

Figure 1-1 shows how the queue is populated and Figure 1-2 shows how the event
loop processes items from the queue. All the JavaScript you write executes in the box
labeled Run JS Event Handler in Figure 1-2. The JavaScript engine performs the rest of
the activity in both diagrams behind the scenes.

Run to Completion and the Event Loop | 7

Figure 1-1. Filling the queue

Figure 1-2. The JavaScript event loop

Using setTimeout to trigger another function after a given amount of time is a simple
way to watch the event loop in action, as shown in Example 1-10. The setTimeout
function accepts two arguments: a function to call and the minimum number of mil‐
liseconds to wait before calling the function.

Example 1-10. Using setTimeout to demonstrate the event loop

function marco() {
 console.log('polo');
}

setTimeout(marco, 0); // zero delay

8 | Chapter 1: Asynchronous JavaScript

console.log('Ready when you are');

// Console output:
// Ready when you are
// polo

The marco function is immediately placed in the queue. After the console displays
“Ready when you are,” the event loop turns and marco can be pulled off the queue.
Notice the second parameter for setTimeout specifies the minimum amount of time
that will lapse before the callback is run as opposed to the exact amount of time. It is
impossible to know exactly when the callback will run because other JavaScript could
be executing at that time and the machine has to let that finish before returning to the
queue to invoke your callback.

Keeping in mind the run-to-completion and event loop concepts, let’s revisit the XHR
example given at the beginning of the chapter, which is repeated in Example 1-11 for
convenience.

Example 1-11. Async XHR (repeated from earlier)

// Make an async HTTP request
var async = true;
var xhr = new XMLHttpRequest();
xhr.open('get', 'data.json', async);
xhr.send();

// Create a three second delay (don't do this in real life)
var timestamp = Date.now() + 3000;
while (Date.now() < timestamp);

// Now that three seconds have passed,
// add a listener to the xhr.load and xhr.error events
function listener() {
 console.log('greetings from listener');
}
xhr.addEventListener('load', listener);
xhr.addEventListener('error', listener);

The question was whether the listener function will ever be triggered. The code
plays out similarly to the previous example with setTimeout. The listeners are regis‐
tered after invoking the send function, but this is safe to do until the event loop turns
because the runtime cannot trigger the load or error events before then.

Allowing the event loop to turn before registering the event listeners would create a
race condition. Example 1-12 demonstrates that by using setTimeout.

Run to Completion and the Event Loop | 9

Example 1-12. Race condition

var async = true;
var xhr = new XMLHttpRequest();
xhr.open('get', 'data.json', async);
xhr.send();

setTimeout(function delayed() { // Creates race condition!
 function listener() {
 console.log('greetings from listener');
 }
 xhr.addEventListener('load', listener);
 xhr.addEventListener('error', listener);
}, 3000);

Performing the event listener registration inside a callback given to setTimeout
causes a delay. Now the only way the listener function will be called is if the
delayed function is pulled off the queue and run before the HTTP request completes
and the load or error event is triggered. Experimenting with different values for the
delay parameter of setTimeout shows listener being invoked sometimes but not
always.

Summary
This chapter covered the underlying concepts of asynchronous JavaScript program‐
ming. Knowing how JavaScript handles callbacks allows you to control the order in
which your code runs instead of writing things that work by coincidence. If the order
in which your code is executed surprises you or you find yourself unsure of what will
happen next, refer back to this chapter. Not only does it prepare you for using Prom‐
ises, but it will make you a better JavaScript developer overall.

10 | Chapter 1: Asynchronous JavaScript

CHAPTER 2

Introducing Promises

The biggest challenge with nontrivial amounts of async JavaScript is managing execu‐
tion order through a series of steps and handling any errors that arise. Promises
address this problem by giving you a way to organize callbacks into discrete steps that
are easier to read and maintain. And when errors occur they can be handled outside
the primary application logic without the need for boilerplate checks in each step.

A promise is an object that serves as a placeholder for a value. That value is usually
the result of an async operation such as an HTTP request or reading a file from disk.
When an async function is called it can immediately return a promise object. Using
that object, you can register callbacks that will run when the operation succeeds or an
error occurs.

This chapter covers the basic ways to use promises. By the end of the chapter you
should be comfortable working with functions that return promises and using prom‐
ises to manage a sequence of asynchronous steps.

This book uses the Promise API for the version of JavaScript known as ECMAScript
6 (ES6.) However, there were a number of popular JavaScript Promise libraries that
the development community created before ES6 that may not match the spec. These
differences are mostly trivial so it is generally easy to work with different implemen‐
tations once you are comfortable using standard promises. We discuss API variations
and compatibility issues with other libraries in Chapter 4.

Basic Usage
Let’s walk through the basics of Promises using a series of examples beginning with a
traditional callback approach and moving to an implementation using promises.
Example 2-1 loads an image in a web browser and invokes a success or error callback
based on the outcome.

11

Example 2-1. Using callbacks

loadImage('shadowfacts.png',
 function onsuccess(img) {
 // Add the image to the current web page
 document.body.appendChild(img);
 },
 function onerror(e) {
 console.log('Error occurred while loading image');
 console.log(e);
 }
);

function loadImage(url, success, error) {
 var img = new Image();
 img.src = url;

 img.onload = function () {
 success(img);
 };

 img.onerror = function (e) {
 error(e);
 };
}

The loadImage function uses an HTML Image object to load an image by setting the
src property. The browser asynchronously loads the image based on the src and
queues the onload or onerror callback after it’s done.

Since loadImage is asynchronous, it accepts callbacks instead of immediately return‐
ing the image from the function. However, if loadImage was changed to return a
promise you would attach the callbacks to the promise instead of passing them as
arguments to the function. Example 2-2 shows how loadImage is used when it
returns a promise.

Example 2-2. Promise then and catch

// Assume loadImage returns a promise
var promise = loadImage('the_general_problem.png');

promise.then(function (img) {
 document.body.appendChild(img);
});

promise.catch(function (e) {
 console.log('Error occurred while loading image');
 console.log(e);
});

12 | Chapter 2: Introducing Promises

1 Chaining then and catch together also allows the catch callback to handle any errors thrown in the callback
passed to then. This distinction is explained in Chapter 5.

The code indicates the following: “Load an image, then add it to the document or
show an error if it can’t be loaded.” The promise that loadImage returns has a then
method for registering a callback to use when the operation succeeds and a catch
method for handling errors. However, both then and catch return promise objects so
callback registration is usually done by chaining these method calls together, as
shown in Example 2-3.1

Example 2-3. Chaining calls using then and catch

loadImage('security_holes.png').then(function (img) {
 document.body.appendChild(img);
}).catch(function (e) {
 console.log('Error occurred while loading image');
 console.log(e);
});

And Example 2-4 is an implementation for loadImage that returns a promise.

Example 2-4. Creating and resolving a promise

function loadImage(url) {
 var promise = new Promise(
 function resolver(resolve, reject) {
 var img = new Image();
 img.src = url;

 img.onload = function () {
 resolve(img);
 };

 img.onerror = function (e) {
 reject(e);
 };
 }
);
 return promise;
}

A global constructor function called Promise exposes all the functionality for prom‐
ises. In this example, loadImage creates a new promise and returns it. When Promise
is used as a constructor it requires a callback known as a resolver function. The
resolver serves two purposes: it receives the resolve and reject arguments, which
are functions used to update the promise once the outcome is known, and any error

Basic Usage | 13

thrown from the resolver is implicitly used to reject the promise. All the logic that
was originally done in loadImage is now done inside the resolver. The resolve func‐
tion is called when the image loads and reject is called if the image cannot be
loaded.

When an operation represented by a promise completes, the result is stored and pro‐
vided to any callbacks the promise invokes. The result is passed to the promise as a
parameter of the resolve or reject functions. In the case of loadImage, the image is
passed to resolve, so any callbacks registered with promise.then() will receive the
image.

Multiple Consumers
When multiple pieces of code are interested in the outcome of the same async opera‐
tion, they can use the same promise. For example, you can retrieve a user’s profile
from the server and use it to display her name in a navigation bar. That data can also
be used on an account page that displays her full profile. The code in Example 2-5
demonstrates this by using a promise to track whether a user’s profile has been
received. Two independent functions use the same promise to display data once it is
available.

Example 2-5. One promise with multiple consumers

var user = {
 profilePromise: null,

 getProfile: function () {
 if (!this.profilePromise) {
 // Assume ajax() returns a promise that is eventually
 // fulfilled with {name: 'Samantha', subscribedToSpam: true}
 this.profilePromise = ajax(/*someurl*/);
 }
 return this.profilePromise;
 }
};

var navbar = {
 show: function (user) {
 user.getProfile().then(function (profile) {
 console.log('*** Navbar ***');
 console.log('Name: ' + profile.name);
 });
 }
};

var account = {
 show: function (user) {
 user.getProfile().then(function (profile) {

14 | Chapter 2: Introducing Promises

 console.log('*** Account Info ***');
 console.log('Name: ' + profile.name);
 console.log('Send lots of email? ' + profile.subscribedToSpam);
 });
 }
};

navbar.show(user);
account.show(user);

// Console output:
// *** Navbar ***
// Name: Samantha
// *** Account Info ***
// Name: Samantha
// Send lots of email? true

Here a user object with a profilePromise property and a getProfile method is cre‐
ated. The getProfile method returns a promise that is resolved with an object con‐
taining the user profile information. Then the script passes the user to the navbar and
account objects, which display information from the profile.

Remember that a promise serves as a placeholder for the result of an operation. In
this case, the user.profilePromise is a placeholder used by the navbar.show() and
account.show() functions. These functions can be safely called anytime before or
after the profile data is available. The callbacks they use to print the data to the con‐
sole will only be invoked once the profile is loaded. This removes the need for an if
statement in either function to check whether the data is ready.

In addition to that simplification, using the promise placeholder has another benefit.
It removes the need for signaling inside the getProfile function to display the user‐
name and profile once the data is ready. The promise implicitly provides that logic,
happily decoupled from the details of how or when the data is displayed.

Promise States
The state of an operation represented by a promise is stored within the promise. At
any given moment an operation has either not begun, is in progress, has run to com‐
pletion, or has stopped and cannot be completed. These conditions are represented
by three mutually exclusive states:

Pending
The operation has not begun or is in progress.

Fulfilled
The operation has completed.

Promise States | 15

Rejected
The operation could not be completed.

Figure 2-1 shows the relationship between the three states.

Figure 2-1. Promise states

In the examples so far, we refer to the fulfilled and rejected states as success and error,
respectively. There is a difference between these terms. An operation could complete
with an error (although that may be bad form) and an operation may not complete
because it was cancelled even though no error occurred. Hence, the terms fulfilled
and rejected are better descriptions for these states than success and error.

When a promise is no longer pending it is said to be settled. This is a general term
indicating the promise has reached its final state. Once a pending promise is settled
the transition is permanent. Both the state and any value given as the result cannot be
changed from that point on. This behavior is consistent with how operations work in
real life. A completed operation cannot become incomplete and its result does not
change. Of course a program may repeat the steps of an operation multiple times. For
instance, a failed operation may be retried and multiple tries may return different val‐
ues. In that case, a new promise represents each try, so a more descriptive way to
think of a promise is a placeholder for the result of one attempt of an operation.

The code in Example 2-6 demonstrates how the state of a promise can only be
changed once. The code calls resolve and reject in the same promise constructor.
The call to resolve changes the state of the promise from pending to fulfilled. Any
further calls to resolve or reject are ignored because the promise is already fulfilled.

Example 2-6. The state of a promise never changes after it is fulfilled or rejected

var promise = new Promise(function (resolve, reject) {
 resolve(Math.PI);
 reject(0); // Does nothing
 resolve(Math.sqrt(-1)); // Does nothing
});

promise.then(function (number) {
 console.log('The number is ' + number);
});

16 | Chapter 2: Introducing Promises

// Console output:
// The number is 3.141592653589793

Running the code in this example demonstrates that the calls to reject(0) and
resolve(Math.sqrt(-1)) have no effect because the promise has already been fulfil‐
led with a value for Pi.

The immutability of a settled promise makes code easier to reason about. Allowing
the state or value to change after a promise is fulfilled or rejected would introduce
race conditions. Fortunately, the state transition rules for promises prevent that
problem.

Since the reject function transitions a promise to the rejected state, why does the
resolve function transition a promise to a state called fulfilled instead of resolved?
Resolving a promise is not the same as fulfilling it. When the argument passed to
resolve is a value, the promise is immediately fulfilled. However, when another
promise is passed to resolve, such as promise.resolve(otherPromise), the prom‐
ises are bound together. If the promise passed to resolve is fulfilled, then both prom‐
ises will be fulfilled. And if the promise passed to resolve is rejected, then both
promises will be rejected. In short, the argument passed to resolve dictates the fate
of the promise. Figure 2-2 shows this process.

Figure 2-2. Resolving or rejecting a promise

The resolve and reject functions can be called without an argument, in which case
the fulfillment value or rejection reason will be the JavaScript type undefined.

The Promise API also provides two convenience methods (see Example 2-7) for cre‐
ating a promise that is immediately resolved or rejected: Promise.resolve() and
Promise.reject().

Example 2-7. Convenience functions for resolve and reject

// Equivalent ways to create a resolved promise
new Promise(function (resolve, reject) {
 resolve('the long way')
});
Promise.resolve('the short way');

Promise States | 17

// Equivalent ways to create a rejected promise
new Promise(function (resolve, reject) {
 reject('long rejection')
});
Promise.reject('short rejection');

These convenience functions are useful when you already have the item that should
be used to resolve or reject the promise. Some of the code samples that follow use
these functions instead of the traditional Promise constructor to concisely create a
promise with the desired state.

Chaining Promises
We’ve seen how then and catch return promises for easy method chaining, however
they do not return a reference to the same promise. Every time either of these meth‐
ods is called a new promise is created and returned. Example 2-8 is an explicit exam‐
ple of then returning a new promise.

Example 2-8. Calls to then always return a new promise

var p1, p2;

p1 = Promise.resolve();
p2 = p1.then(function () {
 // ...
});

console.log('p1 and p2 are different objects: ' + (p1 !== p2));

// Console output:
// p1 and p2 are different objects: true

Example 2-9 shows how new promises returned by then can be chained together to
execute a sequence of steps.

Example 2-9. Using then to sequence multiple steps

step1().then(
 function step2(resultFromStep1) {
 // ...
 }
).then(
 function step3(resultFromStep2) {
 // ...
 }
).then(
 function step4(resultFromStep3) {

18 | Chapter 2: Introducing Promises

 // ...
 }
);

Each call to then returns a new promise you can use to attach another callback.
Whatever value is returned from that callback resolves the new promise. This pattern
allows each step to send its return value to the next step. If a step returns a promise
instead of a value, the following step receives whatever value is used to fulfill that
promise. Example 2-10 shows all the ways to fulfill a promise created by then.

Example 2-10. Passing values in a sequence of steps

Promise.resolve('ta-da!').then(
 function step2(result) {
 console.log('Step 2 received ' + result);
 return 'Greetings from step 2'; // Explicit return value
 }
).then(
 function step3(result) {
 console.log('Step 3 received ' + result); // No explicit return value
 }
).then(
 function step4(result) {
 console.log('Step 4 received ' + result);
 return Promise.resolve('fulfilled value'); // Return a promise
 }
).then(
 function step5(result) {
 console.log('Step 5 received ' + result);
 }
);

// Console output:
// Step 2 received ta-da!
// Step 3 received Greetings from step 2
// Step 4 received undefined
// Step 5 received fulfilled value

An explicitly returned value resolves the promise that wraps step2. Since step3 does
not explicitly return a value, undefined fulfills that promise. And the value from the
promise explicitly returned in step4 fulfills the promise that wraps step4.

Callback Execution Order
Promises are primarily used to manage the order in which code is run relative to
other tasks. The previous chapter demonstrated how problems occur when async
callbacks are expected to run synchronously. You can avoid these problems by under‐
standing which callbacks in the Promise API are synchronous and which are asyn‐

Callback Execution Order | 19

chronous. Fortunately there are only two cases. The resolver function passed to the
Promise constructor executes synchronously. And all callbacks passed to then and
catch are invoked asynchronously. Example 2-11 shows a Promise constructor and
an onFulfilled callback with some logging statements to demonstrate the order. The
numbered comments show the relative execution order.

Example 2-11. Execution order of callbacks used by promises

var promise = new Promise(function (resolve, reject) {
 console.log('Inside the resolver function'); // 1
 resolve();
});

promise.then(function () {
 console.log('Inside the onFulfilled handler'); // 3
});

console.log('This is the last line of the script'); // 2

// Console output:
// Inside the resolver function
// This is the last line of the script
// Inside the onFulfilled handler

This example is similar to the synchronous and asynchronous callback code in the
previous chapter. You can see that the resolver function passed to the Promise con‐
structor executes immediately followed by the log statement at the end of the script.
Then the event loop turns and the promise that is already resolved invokes the
onFulfilled handler. Although the example code is trivial, understanding the execu‐
tion order is a key part of using promises effectively. If you do not feel confident pre‐
dicting the execution order of any of the examples so far, consider reviewing the
material in Chapter 1 and this section.

Basic Error Propagation
Error propagation and handling is a significant aspect of working with promises. This
section introduces the basic concepts while all of Chapter 5 is dedicated to this topic.

Rejections and errors propagate through promise chains. When one promise is rejec‐
ted all subsequent promises in the chain are rejected in a domino effect until an
onRejected handler is found. In practice, one catch function is used at the end of a
chain (see Example 2-12) to handle all rejections. This approach treats the chain as a
single unit that the fulfilled or rejected final promise represents.

20 | Chapter 2: Introducing Promises

Example 2-12. Using a rejection handler at the end of a chain

Promise.reject(Error('bad news')).then(
 function step2() {
 console.log('This is never run');
 }
).then(
 function step3() {
 console.log('This is also never run');
 }
).catch(
 function (error) {
 console.log('Something failed along the way. Inspect error for more info.');
 console.log(error); // Error object with message: 'bad news'
 }
);

// Console output:
// Something failed along the way. Inspect error for more info.
// [Error object] { message: 'bad news' ... }

This code begins a chain of promises by creating a rejected promise using
Promise.reject(). Two more promises follow that are created by adding calls to
then and finished with a call to catch to handle rejections.

Notice the code in step2 and step3 never runs. These functions are only called when
the promise they are attached to is fulfilled. Since the promise at the top of the chain
was rejected, all subsequent callbacks in the chain are ignored until the catch handler
is reached.

Promises are also rejected when an error is thrown in a callback passed to then or in
the resolver function passed to the Promise constructor. Example 2-13 is similar to
the last, except throwing an error instead of using the Promise.reject() function
now rejects the promise.

Example 2-13. Rejecting a promise by throwing an error in the constructor callback

rejectWith('bad news').then(
 function step2() {
 console.log('This is never run');
 }
).catch(
 function (error) {
 console.log('Foiled again!');
 console.log(error); // Error object with message: 'bad news'
 }
);

function rejectWith(val) {
 return new Promise(function (resolve, reject) {

Basic Error Propagation | 21

 throw Error(val);
 resolve('Not used'); // This line is never run
 });
}

// Console output:
// Foiled again!
// [Error object] { message: 'bad news' ... }

Both examples in this section provided a JavaScript Error object when rejecting the
promise. Although any value, including undefined, can reject promises, we recom‐
mend using an error object. Creating an error can capture the call stack for trouble‐
shooting and makes it easier to treat the argument the catch handler receives in a
uniform way.

Using JavaScript Error objects to reject promises can capture the
call stack for troubleshooting and makes it easier to treat the argu‐
ment the catch handler receives in a uniform way.

The Promise API
The complete Promise API consists of a constructor and six functions, four of which
have already been demonstrated. However, it’s worth describing each of them so you
can see the API as a whole and be aware of optional arguments.

Promise

new Promise(function (resolve, reject) { … }) returns promise

The Promise global is a constructor function that the new keyword invokes.

The Promise global creates promise objects that have the two methods then and
catch for registering callbacks that are invoked once the promise is fulfilled or
rejected.

promise.then

promise.then([onFulfilled], [onRejected]) returns promise

The promise.then() method accepts an onFulfilled callback and an onRejected
callback. People generally register onRejected callbacks using promise.catch()
instead of passing a second argument to then (see the explanation provided in Chap‐
ter 5.) The function then returns a promise that is resolved by the return value of the
onFulfilled or onRejected callback. Any error thrown inside the callback rejects the
new promise with that error.

22 | Chapter 2: Introducing Promises

promise.catch

promise.catch(onRejected) returns promise

The promise.catch() method accepts an onRejected callback and returns a promise
that the return value of the callback or any error thrown by the callback resolves or
rejects, respectively. That means any rejection the callback given to catch handles is
not propagated further unless you explicitly use throw inside the callback.

Promise.resolve

Promise.resolve([value|promise]) returns promise

The Promise.resolve() function is a convenience function for creating a promise
that is already resolved with a given value. If you pass a promise as the argument to
Promise.resolve(), the new promise is bound to the promise you provided and it
will be fulfilled or rejected accordingly.

Promise.reject

Promise.reject([reason]) returns promise

The Promise.reject() function is a convenience function for creating a rejected
promise with a given reason.

Promise.all

Promise.all(iterable) returns promise

The Promise.all() function maps a series of promises to their fulfillment values. It
accepts an iterable object such as an Array, a Set, or a custom iterable. The function
returns a new promise fulfilled by an array containing the values in the iterable. Cor‐
responding fulfillment values in the resulting array replace any promises contained in
the iterable. The new promise that the function returns is only fulfilled after all the
promises in the iterable are fulfilled, or it is rejected as soon as any of the promises in
the iterable are rejected. If the new promise is rejected it contains the rejection reason
from the promise in the iterable that triggered the rejection. If you are working with a
Promise implementation that does not understand ES6 iterables, it will likely expect
standard arrays instead.

What Is an Iterable?
An iterable is an object that provides a series of values by implementing a predefined
interface (also known as a protocol.) Iterables are specified in ES6 and explained in
“Iterables and Iterators” on page 68.

The Promise API | 23

Promise.race

Promise.race(iterable) returns promise

The Promise.race() function reduces a series of items to the first available value. It
accepts an iterable and returns a new promise. The function examines each item in
the iterable until it finds either an item that is not a promise or a promise that has
been settled. The returned promise is then fulfilled or rejected based on that item. If
the iterable only contains unsettled promises, the returned promise is settled once
one of the promises in the iterable is settled.

Summary
This chapter introduced all the basic concepts of Promises. Keep these three points in
mind:

• A promise is a placeholder for a value that is usually the result of an asynchro‐
nous operation.

• A promise has three states: pending, fulfilled, and rejected.
• After a promise is fulfilled or rejected, its state and value can never be changed.

At this point you have walked through a number of examples that demonstrate the
basic ways a promise is used and you are ready to run sequential asynchronous steps
in your own code using promise chains. You should also be comfortable using APIs
that return promises for asynchronous work.

One example of promises in the wild is in the CSS Font Load Events spec, which pro‐
vides a FontFaceSet.load() function that returns a promise for loading fonts into
the browser. Consider how you could use this function to only display text once a
desired font is loaded in the browser.

Promises can be combined to orchestrate async tasks and structure code in various
ways. Although a sequential workflow was provided here, you’ll soon want to use
promises in more advanced ways. The next chapter walks through a variety of ways
you can use promises in your applications.

24 | Chapter 2: Introducing Promises

CHAPTER 3

Working with Standard Promises

We’ve covered the standard Promise API and some basic scenarios, but like any tech‐
nology, that’s only part of the story. Now it’s time for scenarios you’ll encounter and
techniques you can use while writing real-world applications.

The Async Ripple Effect
Async functions and promises are contagious. After you start using them they natu‐
rally spread through your code. When you have one async function, any code that
calls that function now contains an async step. The process of other functions becom‐
ing async by extension creates a ripple effect that continues all the way through the
call stack. This is shown in Example 3-1 using three functions. Look how the async
ajax function forces the other functions to also be async.

Example 3-1. The async ripple effect

showPun().then(function () {
 console.log('Maybe I should stick to programming');
});

function showPun() {
 return getPun().then(function (pun) {
 console.log(pun);
 });
}

function getPun() {
 // Assume ajax() returns a promise that is eventually
 // fulfilled by json for {content: 'The pet store job was ruff!'}
 return ajax(/*someurl*/).then(function (json) {
 var pun = JSON.parse(json);

25

 return pun.content;
 });
}

// Console output:
// The pet store job was ruff!
// Maybe I should stick to programming

The work to retrieve and display a pun is divided into three functions: showPun,
getPun, and ajax. The functions form a chain of promises that starts with ajax and
ends with the object returned by showPun. The ajax function returns a promise rep‐
resenting the result of an async XHR request. If ajax returned the JSON synchro‐
nously, getPun and showPun would not consume or return promises.

As a general rule, any function that uses a promise should also return a promise.
When a promise is not propagated, the calling code cannot know when the promise
is fulfilled and thus cannot effectively perform work after the fact. It’s easy to ignore
this rule when writing a function whose caller does not care when the async work is
finished, but don’t be fooled. It’s much easier to return a promise that initially goes
unused than to retrofit promises into a series of functions later on.

Conditional Logic
It’s common to have a workflow that contains a conditional step. For instance, some
actions may require user authentication. However, once a user is authenticated, he
does not need to repeat that step every time the action is taken.

As an example, we’ll use an electronic book reader that requires authentication before
the user can access any other features. There are multiple ways to code this scenario.
Example 3-2 shows a first pass.

Example 3-2. Conditional async step

var user = {
 authenticated: false,

 login: function () {
 // Returns a promise for the login request
 // Set authenticated to true and fulfill promise when login succeeds
 }
};

// Avoid this style of conditional async execution
function showMainMenu() {
 if (!user.authenticated) {
 user.login().then(showMainMenu);
 return;
 }

26 | Chapter 3: Working with Standard Promises

 // ... Code to display main menu
};

In this implementation of showMainMenu, the menu is displayed immediately if the
user is already authenticated. If the user is not authenticated, the async login process
is performed and showMenu is run again once the login succeeds.

One problem here is that the menu will silently fail to display if the login process fails.
That’s because showMainMenu relies on a promise but does not return a promise as
described in the preceding section.

A second problem is that showMainMenu may behave synchronously or asynchro‐
nously depending on whether the user is already authenticated. As described in
Chapter 1, this style of code creates multiple execution paths that can be difficult to
reason about and create inconsistent behavior.

As shown in Example 3-3, the issues in showMainMenu can be addressed by substitut‐
ing a resolved promise if the user is already authenticated.

Example 3-3. Substituting a resolved promise

function showMainMenu() {
 var p = (!user.authenticated) ? user.login() : Promise.resolve();
 return p.then(function () {
 // ... Code to display main menu
 });
}

Now the menu is always displayed asynchronously using either the promise that
user.login() returned or a resolved promise substituted for the login process.

You can eliminate the need for a substitute promise by calling user.login() every
time, as shown in Example 3-4.

Example 3-4. Encapsulating conditional logic with a promise

function showMainMenu() {
 return user.login().then(function () {
 // ... Code to display main menu
 });
}

This doesn’t mean all the login steps need to be repeated every time. The promise that
login returned can be cached and reused, as shown in Example 3-5.

Conditional Logic | 27

Example 3-5. Caching a promise

var user = {
 loginPromise: null,

 login: function () {
 var me = this;
 if (this.loginPromise == null) {
 this.loginPromise = ajax(/*someurl*/);

 // Remove cached loginPromise when a failure occurs to allow retry
 this.loginPromise.catch(function () {
 me.loginPromise = null;
 });
 }
 return this.loginPromise;
 }
};

In Example 3-5, the loginPromise is created the first time login is called. All subse‐
quent calls to login return the same promise as long as the login process does not fail.
In case of failure, the cached promise is removed so the process can be retried.

Parallel Execution
Multiple asynchronous tasks can be run in parallel, as shown in Example 3-6. Con‐
sider a financial website that shows an updated balance for all your bank accounts
and credit cards each time you log in. The updated balance from each institution can
be requested in parallel and displayed as soon as it is received.

Example 3-6. Running asynchronous tasks in parallel

// Define each account
var accounts = ['Checking Account', 'Travel Rewards Card', 'Big Box Retail Card'];

console.log('Updating balance information...');
accounts.forEach(function (account) {
 // ajax() returns a promise eventually fulfilled by the account balance
 ajax(/*someurl for account*/).then(function (balance) {
 console.log(account + ' Balance: ' + balance);
 });
});

// Console output:
// Updating balance information...
// Checking Account Balance: 384
// Travel Rewards Card Balance: 509
// Big Box Retail Card Balance: 0

28 | Chapter 3: Working with Standard Promises

Promises are also good for consolidating parallel tasks into a single outcome. Suppose
a message should be displayed informing the user when all the account balances are
up-to-date. You can create a consolidated promise using the Promise.all() function
that maps promises to their outcomes, as explained in Example 3-7. A full description
of this function is provided in “The Promise API” on page 22. In short,
Promise.all() returns a new promise that is fulfilled when all the promises it
receives are fulfilled. And if any of the promises it receives get rejected, the new
promise is also rejected.

Example 3-7. Consolidating the outcomes of parallel tasks with Promise.all()

var requests = accounts.map(function (account) {
 return ajax(/*someurl for account*/);
});

// Update status message once all requests are fulfilled
Promise.all(requests).then(function (balances) {
 console.log('All ' + balances.length + ' balances are up to date');
}).catch(function (error) {
 console.log('An error occurred while retrieving balance information');
 console.log(error);
});

// Console output:
// All 3 balances are up to date

Instead of looping through the accounts using forEach, the map function is used to
create an array of promises representing a balance request for each account.
Promise.all() then consolidates the promises into a single promise. An array con‐
taining all the account balances resolves the consolidated promise. In this example
the length property of that array is used to display the number of balances retrieved.

You can also wait for all the operations represented by some promises to settle
regardless of whether they succeeded or failed. In Example 3-8, let’s revise
Example 3-7 to show the number of balances that were updated even if some requests
failed.

Example 3-8. Running code after multiple operations have finished, regardless of their
outcome

function settled(promises) {
 var alwaysFulfilled = promises.map(function (p) {
 return p.then(
 function onFulfilled(value) {
 return { state: 'fulfilled', value: value };
 },
 function onRejected(reason) {

Parallel Execution | 29

1 It is natural to use outcomes.reduce() in place of outcomes.forEach() in this example; however, some read‐
ers may be unfamiliar with reduce, so it is not used until it is explained in the next section (see Example 3-10).

2 The settled function is based on a similar function in the Bluebird library.

 return { state: 'rejected', reason: reason };
 }
);
 });
 return Promise.all(alwaysFulfilled);
}

// Update status message once all requests finish
settled(requests).then(function (outcomes) {
 var count = 0;
outcomes.forEach(function (outcome) {
 if (outcome.state == 'fulfilled') count++;
});
 console.log(count + ' out of ' + outcomes.length + ' balances were updated');
});

// Console output (varies based on requests):
// 2 out of 3 balances were updated

The settled function consolidates an array of promises into a single promise that is
fulfilled once all the promises in the array are settled. An array of objects that indicate
the outcome of each promise fulfills the new promise. In this example, the array of
outcomes is reduced1 to a single value representing the number of requests that suc‐
ceeded.2

Sequential Execution Using Loops or Recursion
You can dynamically build a chain of promises to run tasks in sequential order (i.e.,
each task must wait for the preceding task to finish before it begins.) Most of the
examples so far have demonstrated sequential chains of then calls built with a pre-
defined number of steps. But it is common to have an array where each item requires
its own async task, like the code in Example 3-6 that looped through an array of
accounts to get the balance for each one. Those balances were retrieved in parallel but
there are times when you want to run tasks serially. For instance, if each task requires
significant bandwidth or computation, you may want to throttle the amount of work
being done.

Before building a sequential chain, let’s start with code that runs a set of tasks in par‐
allel, as shown in Example 3-9, based on the items in an array similar to Example 3-6.

30 | Chapter 3: Working with Standard Promises

Example 3-9. Running tasks in parallel using a loop

var products = ['sku-1', 'sku-2', 'sku-3'];

products.forEach(function (sku) {
 getInfo(sku).then(function (info) {
 console.log(info)
 });
});

function getInfo(sku) {
 console.log('Requested info for ' + sku);
 return ajax(/*someurl for sku*/);
}

// Console output:
// Requested info for sku-1
// Requested info for sku-2
// Requested info for sku-3
// Info for sku-1
// Info for sku-2
// Info for sku-3

This code iterates through an array of products and calls the getInfo function for
each one. The beginning of each request is logged to the console inside getInfo and
the outcome of each request is logged inside the loop after completing the request.
You can see the requests are run in parallel because the code inside the forEach does
not use any promises that previous iterations of the loop created. The order of the
console output also demonstrates the parallel nature of the code. All three requests
are made before the first result is received.

Let’s move from parallel tasks to sequential chains. The code we’ll use to do that can
be daunting if you are unfamiliar with the array reduce function, which distills the
elements of an array to a single value. Example 3-10 provides a snippet to serve as an
introduction/refresher on how reduce is used.

Example 3-10. Overview of array.reduce

finalResult = array.reduce(function (previousValue, currentValue) {
 // Create a result using the previousValue and currentValue
 // return the result which will be used as the previousValue in the next loop
 return previousValue + currentValue;
}, initialValue) // Used with first element

The reduce function accepts a callback that is invoked for each element in the array.
It receives the previous value returned from the callback and the current element in
the array. The previous value in the callback is seeded with an initial value the first

Sequential Execution Using Loops or Recursion | 31

time the callback is invoked. The return value for reduce is whatever the callback
returns when it is invoked for the last element in the array.

Example 3-11 uses reduce to calculate the sum of all the numbers in an array.

Example 3-11. Simple array.reduce to sum numbers

var numbers = [2, 4, 6];
var sum = numbers.reduce(function (sum, number) {
 return sum + number;
}, 0);
console.log(sum);

// Console output:
// 12

You could write some code with a for loop that would accomplish the same thing as
reduce but it would be clunky by comparison. Now let’s get back to running tasks
sequentially using reduce.

Example 3-12 uses the same products array and getInfo function from earlier code
to request and display information. However, no request is started until the previous
one completes. Although this could be done by calling the reduce function on
products directly, the logic has been abstracted into a function called sequence.

Example 3-12. Build a sequential chain using a loop

// Build a sequential chain of promises from the elements in an array
function sequence(array, callback) {
 return array.reduce(function chain(promise, item) {
 return promise.then(function () {
 return callback(item);
 });
 }, Promise.resolve());
};

var products = ['sku-1', 'sku-2', 'sku-3'];

sequence(products, function (sku) {
 return getInfo(sku).then(function (info) {
 console.log(info)
 });
}).catch(function (reason) {
 console.log(reason);
});

function getInfo(sku) {
 console.log('Requested info for ' + sku);
 return ajax(/*someurl for sku*/);

32 | Chapter 3: Working with Standard Promises

}

// Console output:
// Requested info for sku-1
// Info for sku-1
// Requested info for sku-2
// Info for sku-2
// Requested info for sku-3
// Info for sku-3

Skip the implementation of sequence for a moment and look at how it is used. An
array of products is passed in along with a callback that is invoked once for each
product in the array. If the callback returns a promise, the next callback is not
invoked until that promise is fulfilled. The console output shows that the requests are
run sequentially.

The sequence function encapsulates the details of chaining promises to dynamically
sequence tasks. It iterates over the array by calling reduce and seeding the previous
value with a resolved promise. The chain function given to reduce always returns a
promise that the return value of the callback passed into sequence resolves. The cycle
continues for each element until exhausting the array and returning the last promise
in the chain. The calling code attaches a catch handler to that promise to conven‐
iently handle any problems.

You can also construct a sequence of tasks from a list using recursion by replacing the
previous sequence implementation in Example 3-12 with the code in Example 3-13.

Example 3-13. Build sequential chain using recursion

// Replaces sequence in previous example with a recursive implementation
function sequence(array, callback) {
 function chain(array, index) {
 if (index == array.length) return Promise.resolve();
 return Promise.resolve(callback(array[index])).then(function () {
 return chain(array, index + 1);
 });
 }
 return chain(array, 0);
};

// Console output is identical to the previous example

Here the reduce function from earlier is replaced by chain, which recursively calls
itself for each element in the array. A risk in recursive programming is creating a
stack overflow by making too many recursive calls in a row. Fortunately, that does not
occur here because a separate turn of the event loop invokes the promise callbacks, so
each recursive call to chain is at the top of the call stack.

Sequential Execution Using Loops or Recursion | 33

3 The code in the spec uses object destructuring with an arrow function, which has been replaced by a tradi‐
tional function declaration here. Destructuring and arrow functions are discussed in Chapter 6.

Although using recursion in Example 3-12 has the same final outcome as building the
chain with a loop, there is an interesting difference between the two approaches.
Using a loop builds the entire chain of promises at the outset without waiting for any
of the promises to be resolved. The recursive approach adds to the chain on demand
after resolving the preceding promise. A major benefit of the on-demand approach is
the ability to decide whether to continue chaining promises based on the result from
the preceding promise.

The last few examples have made a chain with a predefined number of steps based on
the elements in an array. With recursion you can build a chain whose length is not
determined in advance, as shown in Example 3-14. A great example for this case is
included in the WHATWG Streams specification for performing I/O. The spec con‐
tains sample code for sequentially reading all the data from a stream in a series of
chunks. Each call to read returns a promise fulfilled by an object with a value prop‐
erty containing a chunk of data and a done property indicating when the stream is
exhausted.3

Example 3-14. Conditionally expanding a chain based on the outcome of a preceding
promise

function readAllChunks(readableStream) {
 var reader = readableStream.getReader();
 var chunks = [];

 return pump();

 function pump() {
 return reader.read().then(function (result) {
 if (result.done) {
 return chunks;
 }

 chunks.push(result.value);
 return pump();
 });
 };
}

Here the pump function appends each chunk of data to an array and recursively calls
itself until result.done signals there is no more data available.

34 | Chapter 3: Working with Standard Promises

http://bit.ly/whatwg_streams

You may not have an immediate need for building sequential promise chains, but it
will inevitably occur. If you use a library to supplement standard promises, this func‐
tionality may be included. Libraries are discussed in more detail in Chapter 4.

Building long chains of promises may require significant amounts
of memory. Be sure to instrument and test your code to guard
against unexpected performance problems.

Managing Latency
When you have a promise that wraps an asynchronous network request, how long
should you wait for the promise to settle? Although you may expect a quick response,
the actual time is based on many factors outside the control of your code. You can
prevent your application from entering a state of prolonged or endless waiting by
enforcing a time limit.

The getData function in Example 3-15 returns a promise fulfilled by fresh data
fetched from a server. It concurrently pulls existing data from a cache to use in case
the server does not respond quickly enough. And if neither the server nor the cache
respond in time, the promise returned by getData is rejected. Each of the outcomes is
represented by a promise. The code uses Promise.race() to select the first available
outcome.

Example 3-15. Manage response time using Promise.race()

function getData() {
 var timeAllowed = 500; // milliseconds
 var deadline = Date.now() + timeAllowed;

 var freshData = ajax(/*someurl*/);

 var cachedData = fetchFromCache().then(function (data) {
 return new Promise(function (resolve) {
 var timeRemaining = Math.max(deadline - Date.now(), 0);
 setTimeout(function () {
 resolve(data);
 }, timeRemaining);
 });
 });

 var failure = new Promise(function (resolve, reject) {
 setTimeout(function () {
 reject(new Error('Unable to fetch data in allotted time'));
 }, timeAllowed);
 });

Managing Latency | 35

 return Promise.race([freshData, cachedData, failure]);
}

Some scenarios were omitted from the preceding example so that they would not
detract from the point. For instance, if the network request fails quickly, the promise
returned from getData will be rejected immediately. In this case you may still want
to use the cached data if it is retrieved within the allotted time. Reactive program‐
ming libraries such as RxJS, Bacon.js, and Kefir.js are specifically intended for scenar‐
ios like this.

Functional Composition
Earlier in the book you saw how promise chains are useful in orchestrating a series of
async steps. The same pattern is also good for building pipelines of functions. This
technique of combining several basic functions into a more powerful composite is
known as functional composition, and it divides code into discrete units that are easier
to test and maintain.

Let’s use a website for a large real estate agency in Example 3-16. Each agent in the
company has a web page with her picture and contact information. All the profile
photos are displayed in the same size in black and white and include the company
name. You can create a pipeline that processes images for display on the site.

Example 3-16. Verbose pipeline

// Generic image processing functions
function scaleToFit(width, height, image) {
 console.log('Scaling image to ' + width + ' x ' + height);
 return image;
}

function watermark(text, image) {
 console.log('Watermarking image with ' + text);
 return image;
}

function grayscale(image) {
 console.log('Converting image to grayscale');
 return image;
}

// Image processing pipeline
function processImage(image) {
 return Promise.resolve(image).then(function (image) {
 return scaleToFit(300, 450, image);
 }).then(function (image) {
 return watermark('The Real Estate Company', image);

36 | Chapter 3: Working with Standard Promises

 }).then(function (image) {
 return grayscale(image);
 });
}

// Console output for processImage():
// Scaling image to 300 x 450
// Watermarking image with The Real Estate Company
// Converting image to grayscale

The image processing functions in this example are all generic. They have no knowl‐
edge of the real estate website and could easily exist in a third-party library. The
processImage function containing the pipeline is the only thing with domain-specific
knowledge. It composes the three functions in the required order and provides the
necessary parameters.

The processImage function can be shortened, as shown in Example 3-17, by replac‐
ing the traditional-looking promise chain with a chain of functions preconfigured
with the necessary parameters for width, height, and watermark text.

Example 3-17. Concise pipeline

// Replaces processImage in previous example
function processImage(image) {
 // Image is always last parameter preceded by any configuration parameters
 var customScaleToFit = scaleToFit.bind(null, 300, 450);
 var customWatermark = watermark.bind(null, 'The Real Estate Company');

 return Promise.resolve(image)
 .then(customScaleToFit)
 .then(customWatermark)
 .then(grayscale);
}

The pipeline is succinctly written at the end of processImage. The code works
because each of the functions that manipulate the image take it as the last parameter,
allowing the width, height, and watermark parameters to be bound in advance.

Using promise chains in this manner does not require the individual functions to be
async. However, it does allow any of the functions in the chain to change from syn‐
chronous to asynchronous later without affecting the calling code. Just avoid overkill
with this approach by using it whenever you can, as opposed to only when you
should. For example, you may not need a chain of promises when a call to the built-in
map or filter array functions will do.

Functional Composition | 37

Summary
This chapter covered a number of scenarios that are likely to arise when using prom‐
ises. It showed how one async function affects all the functions that come before it in
the call stack. It also showed how to process an arbitrary number of tasks sequentially
or in parallel. And how to build processing pipelines by chaining promises together.

All the topics in this chapter were addressed using the standard Promise API. This
discussion is continued in Chapter 4 using expanded APIs that some promise libra‐
ries and frameworks provided.

38 | Chapter 3: Working with Standard Promises

CHAPTER 4

Using Libraries and Frameworks

Before the ES6 Promise API existed, many JavaScript libraries and frameworks imple‐
mented their own version of Promises. Some libraries were written for the sole pur‐
pose of providing promises while established libraries like jQuery added them to
handle their async APIs.

Promise libraries can act as polyfills in older web browsers and other environments
where native promises are not provided. They can also supplement the standard API
with a wide set of functions for managing promises. If your code only uses promises
that you create you’re in a good position to choose a library and take full advantage of
its extended API. And if you are handling promises that other libraries produced, you
can wrap those promises with ones from your chosen library to access the additional
features.

This chapter focuses on nonnative promise implementations. The majority of the
chapter covers Bluebird, a fast and robust promise library. Although Bluebird is a
compelling choice, there are other good options. For example, the Q promise library
predates Bluebird and is widely used in applications and frameworks including
AngularJS. Q and other libraries are not discussed in detail because this chapter is not
a guide to choosing between libraries. It is an introduction to the enhancements that
third-party libraries offer to demonstrate their value. The Promise implementation in
jQuery is also discussed because of jQuery’s immense popularity. However, this is not
a complete walk-through of either Bluebird or jQuery. These open source projects
evolve rapidly, so refer to the official online documentation for full details of the cur‐
rent features.

39

Promise Interoperability and Thenables
Before diving into the details of specific libraries, let’s discuss how promises from
different libraries can be used with one another. The basis of all interoperability
between promise implementations is the thenable contract. Any object with a
then(onFulfilled, onRejected) method can be wrapped by any standard promise
implementation.

As Kris Kowal wrote when reviewing this chapter, “…regardless of what that method
returns, regardless of what onFulfilled and onRejected return, and in fact regard‐
less of whether onFulfilled or onRejected are executed synchronously or asynchro‐
nously, [then] is sufficient for any of these Promise implementations to coerce the
thenable into a well-behaved, always-asynchronous, always returning capital-P
Promise, promise. This is particularly important when consuming promises from
unreliable third parties, where unreliable can be as innocuous as a backward-
incompatible version of the same library.”

Example 4-1 shows an example of a simple thenable object wrapped with a standard
promise.

Example 4-1. Wrapping a thenable for interoperability

function thenable(value) {
 return {
 then: function (onfulfill, onreject) {
 onfulfill(value);
 }
 };
}

var promise = Promise.resolve(thenable('voila!'));
promise.then(function(result) {
 console.log(result);
});

// Console output:
// voila!

Although it is unlikely you will encounter such a sparse thenable in your own code,
the same concept applies to wrapping promises from other implementations to work
as the promise implementation that your code prefers.

The Bluebird Promise Library
Bluebird is an open source promise library with a rich API and excellent perfor‐
mance. The Bluebird GitHub repo includes benchmarks that show it outperforming

40 | Chapter 4: Using Libraries and Frameworks

other implementations, including the native version in the V8 JavaScript engine used
by Node.js and Google Chrome. Bluebird’s author Petka Antonov says native imple‐
mentations are more focused on matching behavior specifications than performance
optimization, which allows carefully tuned JavaScript to outperform native code.

Bluebird offers many other features including elegant ways of managing execution
context, wrapping Node.js APIs, working with collections of promises, and manipu‐
lating fulfillment values.

Loading Bluebird
When Bluebird is included in a web page using a script tag, it overwrites the global
Promise object by default with its own version of Promise. Bluebird can also be
loaded in the browser in other ways, such as an AMD module using require.js, and it
is available as an npm package for use in Node.js.

The Bluebird Promise object can serve as a drop-in replacement or polyfill for the
ES6 Promise. When the Bluebird script is loaded in a web browser it overwrites the
global Promise object. However, you can use Promise.noConflict() after loading
Bluebird to restore the global Promise object to its previous reference in order to run
Bluebird side by side with native promises. As explained in the earlier section on
interoperability and thenables, you can treat other promise implementations as Blue‐
bird promises by wrapping them using [Bluebird Promise].resolve(promise). In
Example 4-2, Bluebird wraps a native promise to expose functions that reveal its state.

Example 4-2. Wrap a native promise with a Bluebird promise

// Assume bluebird has been loaded using <script src="bluebird.js"></script>
var Bluebird = Promise.noConflict(); // Restore previous reference to Promise
var nativePromise = Promise.resolve(); // Native Promise
var b = Bluebird.resolve(nativePromise); // Wrap native promise with Bluebird promise

// Force event loop to turn
setTimeout(function () {
 console.log('Pending? ' + b.isPending()); // Pending? false
 console.log('Fulfilled? ' + b.isFulfilled()); // Fulfilled? true
 console.log('Rejected? ' + b.isRejected()); // Rejected? false
}, 0);

The remaining examples in this chapter that relate to Bluebird assume that all prom‐
ises are Bluebird promises.

The Bluebird Promise Library | 41

Managing Execution Context
Callbacks frequently need access to variables in their enclosing scope. Two common
ways of accessing those variables are shown in the configure and print methods in
Example 4-3. Both access the pageSize property of a printer object.

Example 4-3. Using the enclosing scope through function.bind() or aliasing

var printer = {
 pageSize: 'US LETTER',

 connect: function () {
 // Return a promise that is fulfilled when a connection
 // to the printer is established
 },

 configure: function (pageSize) {
 return this.connect().then(function () {
 console.log('Setting page size to ' + pageSize);
 this.pageSize = pageSize;
 }.bind(this)); // Using bind to set the context
 },

 print: function (job) {
 // Aliasing the outer context
 // _this, that, and self are some other common alias names
 var me = this;

 return this.connect().then(function () {
 console.log('Printing job using page size ' + me.pageSize);
 });
 }
};

printer.configure('A4').then(function () {
 return printer.print('Test page');
});

// Console output:
// Setting page size to A4
// Printing job using page size A4

The configure method uses bind(this) to share its context with the inner callback.
The print method aliases the outer context to a variable called me in order to access it
inside the callback.

Bluebird offers an alternative way of exposing the enclosing scope by adding a
promise.bind() method that sets the context for all subsequent callbacks used in a
promise chain, as shown in Example 4-4.

42 | Chapter 4: Using Libraries and Frameworks

Example 4-4. Setting callback contexts using promise.bind()

printer.shutdown = function () {
 this.connect().bind(this).then(function() { // bluebird.bind not function.bind
 console.log('First callback can use ' + this.paperSize);
 }).then(function () {
 console.log('And second callback can use ' + this.paperSize);
 });
};

// Console.output:
// First callback can use A4
// And second callback can use A4

Using bluebirdPromise.bind() has an advantage over the previous two solutions
because it removes the call to bind for individual functions in a long chain and avoids
adding a reference to the enclosing scope of each callback.

The effect of bind applies to all subsequently chained promises, even those on a
promise that a function returns. To avoid leaking objects used as the context in bind,
you can mask the effect by calling bind again before returning a bound promise chain
from a function. This practice is even more important if the function is being con‐
sumed as a third-party library.

Example 4-5 shows an updated version of the printer.shutdown() method that
masks the printer context that the callbacks inside it use.

Example 4-5. Hiding the bound context from calling code

printer.shutdown = function () {
 return this.connect().bind(this).then(function () {
 //...
 }).then(function () {
 //...
 }).bind(null); // mask the previous binding
};

printer.shutdown().then(function () {
 console.log('Not running in the context of the printer: ' + this !== printer);
});

// Console.output:
// This code is not running in the context of the printer: true

Wrapping Node.js Functions
Node.js has a standard way of using callbacks in async functions. The node-style
expects a callback as the last argument of a function. The first parameter of the call‐

The Bluebird Promise Library | 43

back is an error object followed by any additional parameters. Example 4-6 shows a
version of the loadImage function implemented in this style.

Example 4-6. Node-style callback

function loadImageNodeStyle(url, callback) {
 var image = new Image();
 image.src = url;
 image.onload = function () {
 callback(null, image);
 };
 image.onerror = function (error) {
 callback(error);
 };
}

loadImageNodeStyle('labyrinth_puzzle.png', function (err, image) {
 if (err) {
 console.log('Unable to load image');
 return;
 }
 console.log('Image loaded');
});

Bluebird provides a convenient function named promisify that wraps node-style
functions with ones that return a promise, as shown in Example 4-7.

Example 4-7. Using promisify to wrap a node-style function

var loadImageWrapper = Bluebird.promisify(loadImageNodeStyle);
var promise = loadImageWrapper('computer_problems.png');

promise.then(function (image) {
 console.log('Image loaded');
}).catch(function (error) {
 console.log('Unable to load image');
});

The loadImageWrapper function accepts the same url argument as the original
loadImageNodeStyle function but does not require a callback. Using promisify cre‐
ates a callback internally and correctly wires it to a promise. If the callback receives an
error the promise is rejected. Otherwise the promise is fulfilled with any additional
arguments passed to the callback.

Standard promises cannot be fulfilled by more than one value. However, some node-
style callbacks expect more than one value when an operation succeeds. In this case
you can instruct promisify to fulfill the promise with an array containing all the
arguments passed to the function except the error argument, which is not relevant.

44 | Chapter 4: Using Libraries and Frameworks

The array can be converted back to individual function arguments using Bluebird’s
promise.spread() method. Example 4-8 shows an example of a node-style function
that provides multiple pieces of information about a user’s account.

Example 4-8. Converting arrays into individual arguments using promise.spread()

function getAccountStatus(callback) {
 var error = null;
 var enabled = true;
 var lastLogin = new Date();

 callback(error, enabled, lastLogin); // Callback has multiple values on success
}

var fulfillUsingAnArray = true;
var wrapperFunc = Bluebird.promisify(getAccountStatus, fulfillUsingAnArray);

// Without using spread
wrapperFunc().then(function (status) {
 var enabled = status[0];
 var lastLogin = status[1];
 // ...
});

// Using spread
wrapperFunc().spread(function (enabled, lastLogin) {
 // ...
});

Using spread in this example allows the enabled and lastLogin values to be clearly
specified without the need to extract them from an array. Use spread to simplify the
code whenever a promise is fulfilled with an array whose length and order of ele‐
ments are known.

ES6 includes a feature called destructuring that can assign values from an array to
individual variables. This feature is described in “Destructuring” on page 65.

If you want to specify the context in which the node-style function runs, you can pass
the context as an argument to promisify or bind the context to the function before
wrapping it with promisify, as shown in Example 4-9.

Example 4-9. Specifying the execution context for a wrapped function

var person = {
 name: 'Marie',
 introNodeStyle: function (callback) {
 var err = null;
 callback(err, 'My name is ' + this.name);
 }

The Bluebird Promise Library | 45

};

var wrapper = Bluebird.promisify(person.introNodeStyle);
wrapper().then(function (greeting) {
 console.log('promisify without second argument: ' + greeting);
});

var wrapperWithPersonArg = Bluebird.promisify(person.introNodeStyle, person);
wrapperWithPersonArg().then(function (greeting) {
 console.log('promisify with a context argument: ' + greeting);
});

var wrapperWithBind = Bluebird.promisify(person.introNodeStyle.bind(person));
wrapperWithBind().then(function (greeting) {
 console.log('promisify using function.bind: ' + greeting);
});

// Console output:
// promisify without second argument: Hello my name is
// promisify with a context argument: Hello my name is Marie
// promisify using function.bind: Hello my name is Marie

Only the wrappers using a bound function or where the context was provided as a
second argument include a name. All the wrappers call person.introNodeStyle(),
which builds a string containing this.name. However, the first wrapper created with
an undefined second argument was run in the root object scope (the window object
in a web browser), which does not have a name property. The next wrapper specifies
the context by passing it as the second argument to promisify. And the last one used
the function’s bind method to set the context to an object literal.

Be careful when wrapping functions that are intended to run as
methods (i.e., in the context of a certain object.) Use the function’s
bind or an equivalent wrapper to ensure the method is run in the
expected context. Running methods in the wrong context may pro‐
duce runtime errors or unexpected behavior.

Working with Collections of Promises
Bluebird provides promise-enabled versions of the map, reduce, and filter methods
similar to the ones available for standard JavaScript arrays. Example 4-10 shows the
filter and reduce methods at work.

Example 4-10. Using a promise-enabled filter and reduce

function sumOddNumbers(numbers) {
 return numbers.filter(function removeEvenNumbers(num) {
 return num % 2 == 1;

46 | Chapter 4: Using Libraries and Frameworks

 }).reduce(function sum(runningTotal, num) {
 return runningTotal + num;
 }, 0);
}

// Use sumOddNumbers as a synchronous function
var firstSum = sumOddNumbers([1, 2, 3, 4]);
console.log('first sum: ' + firstSum);

// Use sumOddNumbers as an async function
var promise = Bluebird.resolve([5, 6, 7, 8]);
sumOddNumbers(promise).then(function (secondSum) {
 console.log('second sum: ' + secondSum);
});

// Console output:
// first sum: 4
// second sum: 12

The sumOddNumbers function accepts an array of numbers and uses filter to remove
any even numbers. Then reduce is used to add together the remaining values. The
function works regardless of whether it is passed a standard array or a promise that
an array fulfilled. These promise-enabled methods allow you to write async code that
looks identical to the synchronous equivalent.

Although the synchronous and async code looks the same and produces the same
result, the execution sequence may differ. The promise-enabled map, reduce, and
filter methods invoke their callbacks for each value as soon as possible. When the
array contains a promise, the callback is not invoked for that element until the
promise is resolved. For map and filter that means the callbacks can receive values
in a different order than they appear in the array. Example 4-11 shows a map passing
values to the callback out of order.

Example 4-11. Eager invocation of aggregate functions

function resolveLater(value) {
 return new Bluebird(function (resolve, reject) {
 setTimeout(function () {
 resolve(value);
 }, 1000);
 });
};

var numbers = Bluebird.resolve([
 1,
 resolveLater(2),
 3
]);

The Bluebird Promise Library | 47

console.log('Square the following numbers...');
numbers.map(function square(num) {
 console.log(num);
 return num * num;
}).then(function (result) {
 console.log('The squares of those numbers are...');
 console.log(result.join(', '));
});

// Console output:
// Square the following numbers...
// 1
// 3
// 2
// The squares of those numbers are...
// 1, 4, 9

When map is invoked it receives an array whose second element is an unresolved
promise. The other two elements are numbers that are immediately passed to the the
square callback. After fulfilling the second promise, its value is passed to square.
Once square processes all the values, an array that is identical to the one that the syn‐
chronous array.map() function would return resolves the promise returned by map.

Since using array.map() or Bluebird.map() in this example produces the same
result, it doesn’t matter what order the values are passed to the callbacks. That only
works as long as the callback used for map does not have any side effects. The map
function is meant to convert one value to another using a callback. Adding side
effects to the map callback conflicts with the intended use. The same thing applies to
the reduce and filter functions. Avoid trouble by keeping any callbacks these func‐
tions use free from side effects.

Manipulating Fulfillment Values
When chaining together promises to execute a series of steps, the fulfillment value of
one step often provides a value needed in the next step. This progression generally
works well, but sometimes multiple subsequent steps require the same value. In that
case you need a way to expose the fulfillment value to additional steps.

Imagine a series of database commands that all require a connection object. If the
connection is obtained through a promise in the chain it will not be available to other
steps in the chain by default. You can expose the connection to other steps by assign‐
ing it to a variable in the enclosing scope, as shown in Example 4-12.

48 | Chapter 4: Using Libraries and Frameworks

Example 4-12. Exposing a fulfillment value using the enclosing scope

var connection; // Declare in outer scope for use in multiple functions

getConnection().then(function (con) {
 connection = con;
 return connection.insert('student', {name: 'Bobby'});
}).then(function () {
 return connection.count('students');
}).then(function (count) {
 console.log('Number of students: ' + count);
 return connection.close();
});

The promise chain in the example consists of three callbacks. The first callback
inserts a student, the second callback fetches the number of students, and the third
reports the number in the console. In order for all three callbacks to use the connec‐
tion object, the fulfillment value from getConnection is assigned to the connection
variable in the enclosing scope.

There are ways to expose the connection object to the other callbacks without creat‐
ing a variable in the outer scope. Bluebird promises have a return method that
returns a new promise that is resolved by the argument it is given. Example 4-13 is a
revised snippet using return to pass the connection to the second callback.

Example 4-13. Passing on a value using promise.return()

getConnection().then(function (connection) {
 return connection
 .insert('student', {name: 'Bobby'})
 .return(connection);
}).then(function (connection) { ...

For this scenario you could also use the tap method of a Bluebird promise to get the
connection object to the second callback. The tap method allows you to insert a call‐
back into the promise chain while passing the fulfillment value it receives on to the
next callback.

Example 4-14. Passing on a value using promise.tap()

getConnection().tap(function (connection) {
 return connection.insert('student', {name: 'Bobby'});
}).then(function (connection) { //...

The Bluebird Promise Library | 49

Think of tap as tapping into a line without interfering with the existing flow. Use tap
to add supplementary functions into a promise chain. A practical use for tap would
be adding a logging statement into a promise chain, as shown in Example 4-15.

Example 4-15. Supplementing a chain with promise.tap()

function countStudents() {
 return getConnection().then(function (connection) {
 return connection.count('students');
 }).tap(function (count) {
 console.log('Number of students: ' + count);
 });
}

countStudents().then(function (count) {
 if (count > 24) console.log('Classroom has too many students');
});

// Console output:
// Number of students: 25
// Classroom has too many students

The call to tap in the countStudents function can be added or removed without
affecting the outcome of the function.

Using return or tap masks the fulfillment value that the callback would otherwise
return. That worked well in the previous examples because the results of
connection.insert() or console.log() were not needed. In situations where they
are needed, you can supplement the original fulfillment value with additional items in
a callback by passing them in an array to Promise.all(), as shown in Example 4-16.
Then the items in the array can be split into separate arguments of a callback using
spread.

Example 4-16. Passing in multiple values with Promise.all()

getConnection().then(function (connection) {
 var promiseForCount = connection.count('students');
 return Promise.all([connection, promiseForCount]);
}).spread(function (connection, count) {
 console.log('Number of students: ' + count);
 return connection.close();
});

50 | Chapter 4: Using Libraries and Frameworks

Promises in jQuery
In jQuery, deferred objects represent async operations. A deferred object is like a
promise whose resolve and reject functions are exposed as methods. Example 4-17
shows a loadImage function using a deferred object.

Example 4-17. Simple deferred object in jQuery

function loadImage(url) {
 var deferred = jQuery.Deferred();
 var img = new Image();
 img.src = url;

 img.onload = function () {
 deferred.resolve(img);
 };

 img.onerror = function (e) {
 deferred.reject(e);
 };

 return deferred;
}

The standard Promise API encapsulates the resolve and reject functions inside the
promise. For example, if you have a promise object p, you cannot call p.resolve() or
p.reject() because those functions are not attached to p. Any code that receives a
reference to p can attach callbacks using p.then() or p.catch() but the code cannot
control whether p gets fulfilled or rejected.

By encapsulating the resolve and reject functions inside the promise you can confi‐
dently expose the promise to other pieces of code while remaining certain the code
cannot affect the fate of the promise. Without this guarantee you would have to con‐
sider all code that a promise was exposed to anytime a promise was resolved or rejec‐
ted in an unexpected way.

Using deferreds does not mean you have to expose the resolve and reject methods
everywhere. The deferred object also exposes a promise that can be given to any code
that should not be calling resolve or reject.

Compare the two functions in Example 4-18. The first is a revised version of load
Image that returns deferred.promise() and the second is the equivalent function
implemented with a standard promise.

Promises in jQuery | 51

Example 4-18. Deferred throws synchronous errors

function loadImage(url) {
 var deferred = jQuery.Deferred();
 // ...
 return deferred.promise();
}

function loadImageWithoutDeferred(url) {
 return new Promise(function resolver(resolve, reject) {
 var image = new Image();
 image.src = url;
 image.onload = function () {
 resolve(image);
 };
 image.onerror = reject;
 });
}

The main difference between the two functions is that the function used as a deferred
could throw a synchronous error while any errors thrown inside the function with
the Promise constructor are caught and used to reject the promise. Promises created
from jQuery deferreds do not conform to the standard ES6 Promise API or behavior.
Some method names on jQuery promises differ from the spec; for example, [jQuery
Promise].fail() is the counterpart to [standardPromise].catch().

A more important difference is in handling errors in the onFulfilled and
onRejected callbacks. Standard promises automatically catch any errors thrown in
these callbacks and convert them into rejections. In jQuery promises, these errors
bubble up the call stack as uncaught exceptions.

Also, jQuery will invoke an onFulfilled or onRejected callback synchronously if
settling a promise before the callback is registered. This creates the problems with
multiple execution paths described in Chapter 1.

For more differences between standard promises and the ones jQuery provides, refer
to a document written by Kris Kowal titled Coming from jQuery.

Some developers may prefer the style of deferred objects or find them easier to
understand. However, a more significant case for using a deferred is in a situation
where you cannot resolve the promise in the place it is created.

Suppose you are using a web worker to perform long-running tasks. You can use
promises to represent the outcome of the tasks. The code that receives the response
from the web worker will resolve the promise so it needs access to the appropriate
resolve and reject functions. Example 4-19 demonstrates this.

52 | Chapter 4: Using Libraries and Frameworks

http://bit.ly/kowal-jquery

Example 4-19. Managing web worker results with deferred objects

// Contents of task.js
onmessage = function(event) {
 postMessage({
 status: 'completed',
 id: event.data.id,
 result: 'some calculated result'
 });
};

// Contents of main.js
var worker = new Worker('task.js');
var deferreds = {};
var counter = 0;

worker.onmessage = function (msg) {
 var d = deferreds[msg.data.id];
 d.resolve(msg.data.result);
};

function background(task) {
 var id = counter++;
 var deferred = jQuery.Deferred();
 deferreds[id] = deferred; // Store deferred for later resolution
 console.log('Sending task to worker: ' + task);
 worker.postMessage({
 id: id,
 task: task
 });
 return deferred.promise(); // Only expose promise to calling code
}

background('Solve for x').then(function (result) {
 console.log('The outcome is... ' + result);
}).fail(function(err) {
 console.log('Unable to complete task');
 console.log(err);
});

// Console output:
// Sending task to worker: Solve for x
// The outcome is... some calculated result

Example 4-19 shows the contents of two files: tasks.js for the web worker and
main.js for the script that launches the worker and receives the results. The worker
script is extremely simple for this example. Any time it receives a message it replies
with an object containing the id of the original request and a hard-coded result. The
background function in the main script returns a resolved promise once the worker
sends a “completed” message for that task. Since processing the completed message

Promises in jQuery | 53

occurs outside the background function that creates the promise, a deferred object is
used to expose a resolve function to the onCompleted callback.

For detailed information on web workers, refer to Web Workers:
Multithreaded Programs in JavaScript by Ido Green (O’Reilly.)

One final note for this section: if you wish to use a deferred object without jQuery, it
is easy to create one using the standard Promise API, as shown in Example 4-20.

Example 4-20. Creating a deferred object using a standard Promise constructor

function Deferred() {
 var me = this;
 me.promise = new Promise(function (resolve, reject) {
 me.resolve = resolve;
 me.reject = reject;
 });
}

var d = new Deferred();

Summary
Libraries offer an extended set of features for working with promises. Many of these
are convenience functions that save you from mixing the plumbing with your code.
This chapter covered a number of features that the Bluebird library provides,
although Q and other libraries offer similar functionality and are also popular among
developers. It also explained the deferred objects jQuery uses. These objects expose
promises that have some significant behavioral differences compared to the ES6
standard.

54 | Chapter 4: Using Libraries and Frameworks

http://bit.ly/webworkers_1e
http://bit.ly/webworkers_1e

CHAPTER 5

Error Handling

One of the biggest benefits of using promises is the way they allow you to handle
errors. Async error handling with callbacks can quickly muddy a codebase with boil‐
erplate checks in every function. Fortunately, promises allow you to replace those
repetitive checks with one handler for a series of functions.

The error handling API for promises is essentially one function named catch. How‐
ever, there are some extra things to know when using this function. For instance, it
allows you to simulate an asynchronous try/catch/finally sequence. And it’s easy to
unintentionally swallow errors by forgetting to rethrow them inside a catch callback.

This chapter guides you through error handling in practice so you can write robust
code. It includes examples using the standard Promise API as well as options the
Bluebird promise library offers.

Rejecting Promises
Basic error handling with promises was introduced in Chapter 2 using the catch
method. You saw how a rejected promise invokes callbacks registered with catch
(repeated in Example 5-1.)

Example 5-1. Explicitly rejecting a promise

var rejectedPromise = new Promise(function (resolve, reject) {
 reject(new Error('Arghhhh!')); // Explicit rejection
});

rejectedPromise.catch(function (err) {
 console.log('Rejected');
 console.log(err);
});

55

// Console output:
// Rejected
// [Error object] { message: 'Arghhhh!' ... }

The rejectedPromise was explicitly rejected inside the callback given to the Promise
constructor. As shown in Example 5-2, a promise is also rejected when an error is
thrown inside any of the callbacks the promise invokes (i.e., any callback passed to
the Promise constructor, then, or catch.)

Example 5-2. Unhandled error rejects a promise

var rejectedPromise = new Promise(function (resolve, reject) {
 throw new Error('Arghhhh!'); // Implicit rejection
});

Any error that occurs in a function that returns a promise should be used to reject the
promise instead of being thrown back to the caller. This approach allows the caller to
deal with any problems that arise by attaching a catch handler to the returned
promise instead of surrounding the call in a try/catch block. This can be done by
wrapping code with a Promise constructor. Example 5-3 shows two functions to illus‐
trate the difference between throwing a synchronous error and implicitly rejecting a
promise.

Example 5-3. Functions that return promises should not throw errors

function badfunc(url) {
 var image;
 image.src = url; // Error: image is undefined
 return new Promise(function (resolve, reject) {
 image.onload = resolve;
 image.onerror = reject;
 });
}

function goodfunc(url) {
 return new Promise(function (resolve, reject) {
 var image;
 image.src = url; // Error: image is undefined
 image.onload = resolve;
 image.onload = reject;
 });
}

Runtime errors occur in both functions because the image object is never instanti‐
ated. In badfunc only a try/catch block somewhere up the stack or a global excep‐
tion handler will catch the runtime error. In goodfunc the runtime error rejects the

56 | Chapter 5: Error Handling

returned promise so the calling code can deal with it in the same way as any other
problems that may arise from the operation the promise represents.

Any error that occurs in a function that returns a promise should
be used to reject the promise instead of being thrown back to the
caller.

Passing Errors
Using uncaught errors to reject promises provides an easy way to pass errors across
different parts of an application and to handle them at the place of your choosing. As
you saw in the last section, all the code you write inside promise callbacks is wrapped
in an implicit try block; you just need to provide the catch. When presented with a
chain of promises, add a catch wherever it is helpful to deal with a rejection.
Although you could add a catch handler to every promise in a chain, it is generally
practical to use a single handler at the end of the chain.

Where does a promise chain end? It’s common for a single function to contain a
chain of several promises that a series of calls to then defines. However, the chain
may not end there. Promise chains are frequently extended across functions as each
caller appends a promise to the tail.

Consider an async function that opens a database connection, runs a query, and
returns a promise that is fulfilled with the resulting data. The function returns the last
promise in the chain but the calling function will add to that chain so it can do some‐
thing with the results, as shown in Example 5-4. The pattern continues as the new tail
is returned to the next calling function, as described in “The Async Ripple Effect” on
page 25.

Example 5-4. Promise chains built across functions

var db = {
 connect: function () {/*...*/},
 query: function () {/*...*/}
};

function getReportData() {
 return db.connect().then(function (connection) {
 return db.query(connection, 'select report data');
 });
}

getReportData().then(function (data) {
 data.sort();
 console.log(data);

Passing Errors | 57

}).catch(function (err) {
 console.log('Unable to show data');
});

In this code the promise chain ends at the bottom of the script after the data is sorted
and written to the console. The end of the chain has a catch function to handle any
problems that may occur along the way. Since the chain does not terminate in
getReportData, it is not necessary to include a catch function there. However, you
may wish to include one to put some logging statements close to the source of a
potential error.

The catch function returns a new promise similar to then, but the promise that
catch returns is only rejected if the callback throws an error. In other words, you
must explicitly rethrow an error inside a catch callback if you want the rejection to
continue propagating through the promise chain. Example 5-5 shows an updated ver‐
sion of getReportData that includes a handler to log errors.

Example 5-5. Logging and rethrowing an error

function getReportData() {
 return db.connect().then(function (connection) {
 return db.query(connection, 'select something');
 }).catch(function (err) {
 console.log('An error occurred while getting the data');
 if (err && err.message) console.log(err.message);
 throw err; // Must re-throw if you want the rejection to propagate further
 });
}

If db.connect() or db.query() return promises that are rejected and the catch call‐
back in getData does not include the throw statement, then getData will always
return a resolved promise. In this case a runtime error would occur when
data.sort() is called because the value of data would be undefined.

Unhandled Rejections
It’s easy to forget to add a catch handler to your promise chain. You may start by writ‐
ing code for the happy path and consider your work done once things behave as
expected. Missing a catch handler can be difficult to troubleshoot because the rejected
promise sits silently somewhere in your codebase, as opposed to traditional runtime
errors that are immediately written to the console and may bring your application to
a halt.

Bluebird implements one solution to this problem. After the rejection of a bluebird
promise, the console displays the reason if no catch handlers are registered for the
rejection by the time the event loop turns twice, as shown in Example 5-6. Waiting for

58 | Chapter 5: Error Handling

two turns of the loop gives your code time to deal with a rejected promise, which
reduces the chance of a handled rejection showing up in the console.

Example 5-6. Bluebird reporting an unhandled rejection

Bluebird.reject('No one listens to turtle');

// Console output:
// Possibly unhandled Error: No one listens to turtle
// at Function.Promise$Reject ...

The developer tools in your web browser may also report unhandled rejections. At
the time this book was written, Chrome and Mozilla Firefox both did this but in
slightly different ways. Chrome logged unhandled rejections immediately whereas
Firefox waited until garbage collection occurred. The Firefox approach introduces a
delay but eliminates false positives (i.e., showing a rejection that is eventually han‐
dled.)

Implementing try/catch/finally
A try/catch/finally flow allows you to run some code, handle any exceptions that
the code throws, and then run some final code regardless of whether an exception
occurred. To see why this is useful, first consider the following function in
Example 5-7, which fetches some data and uses the performance.now() Web API to
log the amount of time taken.

Example 5-7. A try/catch block

function getData() {
 var timestamp = performance.now();
 try {
 // Fetch data
 // ...
 } catch (err) {
 // Deal with any errors that arise
 // ...
 }
 console.log('getData() took ' + (performance.now() - timestamp));
}

The log statement always runs regardless of whether an error occurs inside the try
block because catch handles any error. Unfortunately this approach swallows the
errors, so the code that calls getData never knows when an error occurs. In order to
inform the calling code, the catch block needs to rethrow the error, but that will
bypass the log statement. That’s where the finally block comes in.

Implementing try/catch/finally | 59

Example 5-8 is an example of a traditional try/catch/finally block.

Example 5-8. A traditional try/catch/finally block

function getData() {
 var timestamp = performance.now();
 try {
 // Fetch data
 // ...
 } catch (err) {
 // Bubble error up to code that called this function
 throw err;
 } finally {
 // Log time taken regardless of whether the preceding code throws an error
 console.log('getData() took ' + (performance.now() - timestamp));
 }
}

// Console output:
// getData() took 0.030000000158906914

You can create an asynchronous try/catch/finally block using promises. We’ve
already seen how any errors thrown within a promise chain are sent to the next catch
callback in the chain, similar to using traditional try/catch blocks. To implement the
finally portion, follow the call to catch with then and do not rethrow the error pro‐
vided to catch, as shown in Example 5-9.

Example 5-9. Use catch/then to mimic catch/finally

function getData() {
 var dataPromise;
 var timestamp = performance.now();

 dataPromise = new Promise(function (resolve, reject) {
 // ...
 throw new Error('Unexpected problem');
 });

 dataPromise.catch(function (err) {
 // Do not rethrow error
 }).then(function () {
 // Simulates finally block
 console.log('Data fetch took ' + (performance.now() - timestamp));
 });

 // Return data promise instead of catch/then tail to propagate rejection
 return dataPromise;
}

60 | Chapter 5: Error Handling

The code in Example 5-9 creates a chain of three promises: the dataPromise, the
promise returned by catch, and the promise returned by then. The promise returned
by catch is always fulfilled because no error is thrown inside the callback given to
catch. That promise executes the callback passed to then, which contains the same
code that would have been placed in a finally block.

Some promise libraries, including Bluebird, implement a promise.finally()

method for convenience. This method runs regardless of whether the promise is ful‐
filled or rejected and returns a promise that is settled in the same way. Example 5-10
shows a revised version of getData using bluebirdPromise.finally().

Example 5-10. Bluebird’s promise.finally()

function getData() {
 var timestamp = performance.now();

 return new Bluebird(function (resolve, reject) {
 // ...
 throw new Error('Unexpected problem');
 }).finally(function () {
 console.log('Data fetch took ' + (performance.now() - timestamp));
 });
}

The revised code is simpler because bluebirdPromise.finally() can remove the
explicit promise variable and catch function needed to mimic a finally block using
the standard Promise API.

Using the Call Stack
It is often helpful to examine the call stack when troubleshooting code because it
answers the question How did I get here? Whenever a function is invoked, the line
that called the function is added to the stack. When an error occurs, the stack con‐
tains the trail of calls that shows how the machine arrived at that point. A typical view
of the stack lists the name of each function in the trail and the line number of the
code that called the next function.

The JavaScript call stack starts with whatever code the runtime inside the current turn
of the event loop invoked. The stack continues to grow as that code calls another
function, which in turn calls another function, etc. As each function returns, it is
removed from the stack until the stack is empty, at which point the event loop turns
again.

Example 5-11 shows a function that is called whenever clicking the mouse or pressing
a key along with the associated call stack.

Using the Call Stack | 61

Example 5-11. Sample call stack

function echo(text) {
 console.log(text);
 throw Error('oops');

 // Example of call stack for error when triggered by a mouse click:
 // echo (line:3)
 // showRandomNumber (line:12)
 // handleClick (line:16)
}

function showRandomNumber() {
 echo(Math.random());
}

document.addEventListener('click', function handleClick() {
 showRandomNumber();
});

document.addEventListener('keypress', function handleKeypress() {
 showRandomNumber();
});

The call stack shows you whether handleClick or handleKeypress triggered the echo
function. In a larger program, knowing the execution path can go a long way toward
finding the cause of a problem.

Unfortunately, the current call stack is generally not as helpful when promises are
involved. In Example 5-12, we have revised Example 5-11 to call the echo function
using promise.then(). As a result, the call stack inside echo no longer includes
handleClick or showRandomNumber.

Example 5-12. Promise callback breaks up the call stack

function echo(text) {
 console.log(text);
 throw new Error('oops');

 // Example of call stack for error when invoked as a callback for a promise
 // echo (line:3)
}

function showRandomNumber() {
 // Invoking echo as a promise callback
 var p = Promise.resolve(Math.random());
 p.then(echo).catch(function (error) {
 console.log(error.stack)
 });
}

62 | Chapter 5: Error Handling

document.addEventListener('click', function handleClick() {
 showRandomNumber();
});

document.addEventListener('keypress', function handleKeypress() {
 showRandomNumber();
});

Why does using a promise callback appear to truncate the stack when compared to
the earlier example? Remember that a promise invokes each callback in a separate
turn of the event loop. At the beginning of each turn the stack is empty, so none of the
functions called in previous turns appear in the stack when the error occurs.

Losing the stack between each callback makes troubleshooting harder. The problem is
not unique to promises; it exists for any asynchronous callbacks. However, it can be a
frequent source of frustration when using promises. To address this problem in the
debugger, the Chrome team added an option to show the stack across turns of the
event loop. Now you can see a stack that is stitched together at the points where asyn‐
chronous calls are made. A dedicated panel for debugging promises in the Chrome
developer tools is also in the works. This is a huge help and other browsers may offer
a similar feature by the time you read this.

You may also record errors that occur while people are using your software in the
wild. When that happens, you don’t have the luxury of opening the debugger and
looking at the stack. Developers have found clever ways to capture the async call stack
using multiple Error objects. This is problematic because browsers expose the call
stack for errors in different ways and it can degrade application performance. You can
configure Bluebird to capture and report the stack trace across turns of the event loop
by calling Bluebird.longStackTraces(). Keep in mind the impact on performance
before enabling this option in the production version of your application.

Summary
Handling errors in asynchronous code cannot be done with traditional try/catch
blocks. Fortunately, promises have a catch method for handling asynchronous errors.
Although the method is a powerful tool for handling problems that occur deep within
your code, you must use it properly to avoid silently swallowing errors. In addition to
the functionality that the standard Promise API provides, libraries such as Bluebird
offer extra error handling features. This includes the ability to report unhandled
rejections and to capture the call stack across multiple turns of the event loop.

Summary | 63

CHAPTER 6

Combining ECMAScript 6 Features
with Promises

ECMAScript 6 has a number of language features that complement promises. This
chapter shows how destructuring, arrow functions, iterators, and generators simplify
your promise-related code. However, this is not a full explanation of these features or
ES6. It is merely a starting point for taking advantage of ES6 in your code.

The new syntax that these features require causes errors in JavaScript environments
that do not support them. Unlike the Promise API that is unobtrusively polyfilled,
code that uses the new syntax must be modified in order to run in older environ‐
ments. You can automate the modification by transpiling the code into something
equivalent that runs in older environments. However, multiple JavaScript environ‐
ments such as Google Chrome and Mozilla Firefox already support some of these fea‐
tures, such as generators. The ECMAScript 6 compatibility table maintained by Juriy
Zaytsev (a.k.a. kangax) on GitHub is a good place to see which ES6 features are avail‐
able on your target platform.

Destructuring
Destructuring provides a syntax for extracting values from arrays or objects into indi‐
vidual variables. Instead of writing individual assignment statements for each vari‐
able, destructuring allows you to assign the values for multiple variables in a single
statement. Examples 6-1 and 6-2 present destructuring using an array and an object.

Example 6-1. Array destructuring

var numbers = [10, 20];
var [n1, n2] = numbers; // destructuring

65

http://bit.ly/compatibility_table

console.log(n1); // 10
console.log(n2); // 20

Example 6-2. Object destructuring

var position = {x: 50, y: 100};
var {x, y} = position; // destructuring
console.log(x); // 50
console.log(y); // 100

The destructuring syntax can also be used when declaring function parameters. In
Chapter 3, an example from the WHATWG Streams specification used a promise ful‐
filled with an object containing two properties: value and done. Example 6-3 is a
comparison of how the onFulfilled callback can be written with destructuring.

Example 6-3. Object destructuring with function parameters

// Without destructuring
reader.read().then(function (result) {
 // ... Use result.value and result.done
});

// Using destructuring
reader.read().then(function ({value, done}) {
 // ... Use done and value directly
});

Array destructuring also works in function parameters. Example 4-16 mapped values
from an array to parameters called enabled and lastLogin using blue

birdPromise.spread(). Example 6-4 shows the equivalent code using destructuring.

Example 6-4. Array destructuring with function parameters

// Without destructuring
getAccountStatus().then(function (status) {
 var enabled = status[0];
 var lastLogin = status[1];
 // ...
});

// Using destructuring
getAccountStatus().then(function ([enabled, lastLogin]) {
 // ... Use enabled and lastLogin directly
});

Array destructuring is also useful for handling the fulfillment value of
Promise.all(), as seen in Example 6-5.

66 | Chapter 6: Combining ECMAScript 6 Features with Promises

http://bit.ly/whatwg_streams

Example 6-5. Destructuring the fulfillment value from Promise.all()

Promise.all([promise1, promise2]).then(function ([result1, result2]) {
 // ...
});

Arrow Functions
The arrow function syntax is like shorthand for declaring anonymous functions. In
lieu of a full explanation of this new syntax, let’s create a simple example using an
arrow function and then apply it to promises.

Arrow functions are useful for declaring callbacks that you would typically write as
inline functions. In “Parallel Execution” on page 28, an array of bank and credit card
accounts was mapped to requests for their current balance using code similar to
Example 6-6.

Example 6-6. Using array.map() with an inline callback

var requests = accounts.map(function (account) {
 return ajax('/balances/' + account);
});

The code in Example 6-6 can be rewritten as it appears in Example 6-7 using an
arrow function.

Example 6-7. Using array.map() with an arrow function

var requests = accounts.map(account => ajax('/balances/' + account));

The new syntax always omits the function keyword. When there is only one parame‐
ter, the parentheses around the parameter may also be dropped. And when the body
of the function consists of a single return statement, the enclosing braces and the
word return can be left out as well. The noise created by the traditional function syn‐
tax is stripped away, leaving a concise piece of code.

Now let’s use the arrow function syntax in a chain of promises. The section “Func‐
tional Composition” on page 36 used the code in Example 6-8 to create an image pro‐
cessing pipeline.

Example 6-8. Concise pipeline (repeated from earlier chapter)

function processImage(image) {
 // Image is always last parameter preceded by any configuration parameters
 var customScaleToFit = scaleToFit.bind(null, 300, 450);
 var customWatermark = watermark.bind(null, 'The Real Estate Company');

Arrow Functions | 67

 return Promise.resolve(image)
 .then(customScaleToFit)
 .then(customWatermark)
 .then(grayscale);
}

Example 6-9 shows a version of the pipeline using arrow functions.

Example 6-9. Concise pipeline with arrow functions

function processImage(image) {
 return Promise.resolve(image)
 .then(image => scaleToFit(300, 450, image))
 .then(image => watermark('The Real Estate Company', image))
 .then(image => grayscale(image))
 .then(({src}) => console.log('Processing completed for ' + src));
}

This version also includes a logging function at the end of the chain that uses destruc‐
turing to directly access the src property of the image.

Using arrow functions allows you to create one-line callbacks for each of the steps in
the pipeline without creating prebound functions at the top of processImage. This is
just another way to accomplish the same thing as the previous version of process
Image; the implementation style is a matter of preference.

Iterables and Iterators
ES6 introduces the ability to iterate through multiple items that an object provides.
This is similar to walking through the items in an array using an index or through the
properties of an object using for…in. However, iterators differ from both of these
because they allow any object to provide an arbitrary series of items as opposed to
one that is based on the object’s keys. For instance, an object called linkedlist could
provide all the items in the list and an object called tree could expose all of its nodes.

One can access the items through a combination of two interfaces (also known as
protocols), which are predefined sets of functions with specific names and behaviors.
Objects that expose a series of items are known as iterables. These objects provide an
iterator that exposes one item at a time and indicates when the series is exhausted.
Thus the two interfaces are named iterable and iterator.

Objects that want to expose a series of items can implement the iterable interface by
defining a function whose name is the value of Symbol.iterator, that is,
object[Symbol.iterator] = function () {…}. This function should return an
object with the iterator interface.

68 | Chapter 6: Combining ECMAScript 6 Features with Promises

The iterator interface has one method named next. The method returns an object
with two properties named value and done. The value represents the current item in
the iteration and the done property is a flag to indicate when there are no more values
available from the iterator.

Arrays are iterables so they contain the Symbol.iterator method, as shown in
Example 6-10.

Example 6-10. Using the iterable interface of an array

var array = [1, 2];
var iterator = array[Symbol.iterator]();

iterator.next(); // {value: 1, done: false}
iterator.next(); // {value: 2, done: false}
iterator.next(); // {value: undefined, done: true}

How do iterables relate to promises? The Promise.all() and Promise.race() func‐
tions both accept iterables. Although an array is probably the most common type of
iterable you would use with these functions, other options are available. For instance,
the Set datatype in ES6 is also an iterable. A set is a collection of items that does not
contain duplicates. You can pass a set to Promise.all() or you can use a custom
iterable by implementing the interface on an object you define.

In addition to working with Promise.all() and Promise.race(), iterators work
closely with ES6 generators, as described in the next section.

Generators
ES6 includes a feature called generators that allows you to write async code that looks
synchronous. Generators are not easy to explain in a few sentences. Let’s begin with
the end in mind by showing the style of async code that can be written when you
combine promises and generators. Then we’ll work through the individual concepts
required to understand that code.

Synchronous Style
Let’s use the async loadImage function in Example 6-11 as a starting point for the dis‐
cussion.

Example 6-11. Managing asynchronous image loading using a promise

loadImage('thesis_defense.png').then(function (img) {
 document.body.appendChild(img);
}).catch(function (e) {
 console.log('Error occurred while loading image');

Generators | 69

 console.log(e);
});

Callbacks passed to then and catch handle the outcome of loadImage because load
Image returns a promise. If the image was loaded synchronously the calling code
could be written as shown in Example 6-12.

Example 6-12. Hypothetical use of loadImage as a synchronous function

try {
 var img = loadImage('thesis_defense.png');
 document.body.appendChild(img);
} catch (err) {
 console.log('Error occured while loading the image');
 console.log(err);
}

The synchronous version of loadImage returns the image for immediate use and a
traditional try/catch block helps perform error handling. When you combine gener‐
ators and promises you can write code that looks like this even though the functions
being called are asynchronous. Example 6-13 uses the asynchronous version of load
Image with a generator.

Example 6-13. Using a promise with code that looks synchronous

async(function* () {
 try {
 var img = yield loadImage('thesis_defense.png');
 document.body.appendChild(img);
 } catch (err) {
 console.log('Error occurred while loading the image');
 console.log(err);
 }
})();

Ignoring the first line for a moment, we see that the remaining code is identical to the
synchronous equivalent except for one yield keyword added before the call to load
Image. This simple change allows you to write async code in this fashion. The rest of
the chapter explains how that is possible.

Generators and Iterators
A generator is a special type of function that can pause its execution to pass values
back to its caller and later resume executing where it left off. This ability is useful for
generating a series of values. The Fibonacci sequence can be used as an example.
Without using generators it can be computed as shown in Example 6-14.

70 | Chapter 6: Combining ECMAScript 6 Features with Promises

Example 6-14. Computing a series of values without using a generator

var a = 0;
var b = 1;

function fib() {
 b = a + b;
 a = b - a;
 return b;
}

var i;
for (i = 0; i < 5; i++) console.log(fib());

// Console output:
// 1
// 2
// 3
// 5
// 8

The fib function tracks the last two values used in the sequence and adds them
together every time it is called to calculate the next value. Example 6-15 shows the
equivalent code using a generator.

Example 6-15. Computing a series of values using a generator

function* fib() {
 var a = 0;
 var b = 1;
 while (true) {
 yield a + b;
 b = a + b;
 a = b - a;
 }
}

var i;
var result;
var iterator = fib();
for (i = 0; i < 5; i++) {
 result = iterator.next();
 console.log(result.value);
}

// Console output is identical to the previous example

The fib function is now a generator, which is indicated by adding the * at the end of
the function keyword. When the generator is called, the JavaScript engine does not
start running the code inside fib as it would with a normal function. Instead the call

Generators | 71

to fib returns an iterator. The iterator is used to pause and resume execution of the
generator and pass values between the generator and the calling code.

The code inside fib starts running the first time iterator.next() is called. Execu‐
tion continues until the yield keyword. At that point the function pauses and sends
the result of the yield expression back to the calling code as the return value of
iterator.next(). The result is an object that provides the outcome of the yield
statement in a property named value.

When iterator.next() is called again the code inside fib resumes execution on the
line after the yield statement. The values of a and b are updated and the next itera‐
tion of the while loop hits the yield statement, which repeats the pause and send
behavior for another number in the sequence.

A generator may contain multiple yield statements but in this case it has one yield
placed inside an infinite while loop. The loop allows the iterator to provide an indefi‐
nite amount of Fibonacci numbers. In the previous example the calling code stopped
making requests after five values.

Example 6-15 introduced three concepts: the generator declaration syntax, the itera‐
tor, and the yield keyword. That’s a lot to comprehend at once but all three are nec‐
essary to create a basic example. Consider reviewing the previous snippet and
explanation until you are comfortable with these concepts.

Sending Values to a Generator
Not only can values be passed from the generator back to the calling code, they can
also be passed from the calling code into the generator. The iterator.next()
method accepts a parameter that is used as a result of the yield expression inside the
generator. Example 6-16 demonstrates passing a value into the generator. In this case
a function counts things one at a time by default but can be adjusted to count in any
increment.

Example 6-16. Passing values into the generator

function* counter() {
 var count = 0;
 var increment = 1;
 while (true) {
 count = count + increment;
 increment = (yield count) || increment;
 }
}

var iterator = counter();
console.log(iterator.next().value); // 1
console.log(iterator.next().value); // 2

72 | Chapter 6: Combining ECMAScript 6 Features with Promises

console.log(iterator.next().value); // 3
console.log(iterator.next(10).value); // 13 <- Start counting by 10
console.log(iterator.next().value); // 23
console.log(iterator.next().value); // 33

The fourth call to iterator.next() sets the increment value to 10. All the other calls
to iterator.next() pass a value of undefined by not providing an explicit argu‐
ment.

A generator can also declare parameters similar to a traditional function. The values
for these parameters are set when the iterator is created and they may act as a config‐
uration for the iterator. Example 6-17 is a revised version of the counter whose initial
increment can be set by a parameter.

Example 6-17. Configuring an iterator with an initial parameter

function* counter(increment) {
 var count = 0;
 increment = increment || 1;
 while (true) {
 count = count + increment;
 increment = (yield count) || increment;
 }
}

var evens = counter(2);
console.log('Even numbers'); // Even numbers
console.log(evens.next().value); // 2
console.log(evens.next().value); // 4
console.log(evens.next().value); // 6

var fives = counter(5);
console.log('Count by fives'); // Count by fives
console.log(fives.next().value); // 5
console.log(fives.next().value); // 10
console.log(fives.next().value); // 15

Two iterators are created from counter with different configurations. Creating itera‐
tors from a generator is similar to creating objects from a constructor function. Each
iterator maintains its own state to apply general code, such as counting in predefined
increments, to the specific cases of counting in even numbers or counting by fives.

We’ve discussed how values can be passed to generators using the initial parameters
and as an argument to iterator.next(). However, there are two cases where the
argument to iterator.next() is ignored. The argument is always ignored the first
time iterator.next() is called. Example 6-18 shows the value being ignored fol‐
lowed by an explanation of why it happens.

Generators | 73

Example 6-18. The parameter in the first call to iterator.next() is always ignored

// Same function* counter as previous example
function* counter(increment) {
 var count = 0;
 increment = increment || 1;
 while (true) {
 count = count + increment;
 increment = (yield count) || increment;
 }
}

var iterator = counter(5); // <- Initial increment is 5
console.log(iterator.next(3).value); // 5 <- 3 is ignored
console.log(iterator.next().value); // 10
console.log(iterator.next(200).value); // 210 <- Increment by 200
console.log(iterator.next().value); // 410

The number 3 passed in the first call to iterator.next() has no effect in the code
because the generator syntax and API do not provide a way to receive this value. All
values that the next method passes to the generator are received when the code
resumes after a yield statement as val = yield. However, the first call to next does
not resume the function from a paused state. The first call starts the initial execution
of the function and there is no mechanism for receiving a value at that point. In a
traditional function the parameters serve that purpose but in a generator the call that
creates the iterator sets the parameter values.

The other case where an argument to iterator.next() is ignored is after the func‐
tion returns. All the previous examples contain infinite loops that paused the function
to send back a value. When a generator function returns from execution in the tradi‐
tional sense as opposed to pausing on yield, there is no way to receive more data from
the iterator. Example 6-19 is a generator that returns after filtering objects in an array.

Example 6-19. Finite iterations

function* match(objects, propname, value) {
 var i;
 var obj;
 for (i = 0; i < objects.length; i++) {
 obj = objects[i];
 if (obj[propname] === value) yield obj;
 };
}

var animals = [
 { type: 'bird', legs: 2 },
 { type: 'cat', legs: 4 },
 { type: 'dog', legs: 4 },
 { type: 'spider', legs: 8 }

74 | Chapter 6: Combining ECMAScript 6 Features with Promises

];

var iterator = match(animals, 'legs', 4);
console.log(iterator.next().value.type); // value is an animal
console.log(iterator.next().value.type); // value is an animal
console.log(iterator.next().value); // value is undefined

// Console output:
// cat
// dog
// undefined

The match generator accepts an array of objects along with a property name and
value used to filter the objects. Any object with a matching property and value is yiel‐
ded back to the calling code. After checking all the objects, the function returns. Any
value returned by the function is used in the final result. And any result objects that
next returns after that point have their value property set as undefined.

The result that next returns also exposes a done property to indicate when the itera‐
tor has finished executing. The property is useful for looping through the results as
shown in Example 6-20.

Example 6-20. Looping through iterations

// Substitute for iterator and console.log in previous example
iterator = match(animals, 'legs', 4);
while ((result = iterator.next()).done !== true) {
 console.log(result.value.type);
}

// Console output:
// cat
// dog

Each turn of the while loop assigns the next iteration result to an object and checks
the done flag. This is a vast improvement over hardcoding for the expected number of
results, but there is a more elegant way to write this loop. A new for…of construct, as
shown in Example 6-21, allows you to implicitly manage the iterator. Use for…of if
you are dealing with a finite number of iterations and do not need to pass values back
to the generator.

Example 6-21. Using an implicit iterator created by for…of

// Better substitute for iterator and loop
for (animal of match(animals, 'legs', 4)) {
 console.log(animal.type);
}

Generators | 75

Sending Errors to a Generator
An iterator can cause an error to be thrown when execution resumes inside a genera‐
tor. Example 6-22 is a contrived scenario to demonstrate the functionality. The
example prints hello in a series of languages that a generator provides. An error is
thrown when there is no translation available for the language. Note the call to
iterator.throw() at the bottom of the example.

Example 6-22. Throwing errors with the iterator

function* languages() {
 try {
 yield 'English';
 yield 'French';
 yield 'German';
 yield 'Spanish';
 } catch (error) {
 console.log(error.message);
 }
}

var greetings = {
 English: 'Hello',
 French: 'Bonjour',
 Spanish: 'Hola'
};
var iterator = languages();
var result;
var word;
while ((result = iterator.next()).done !== true) {
 word = greetings[result.value];
 if (word) console.log(word);
 else iterator.throw(Error('Missing translation for ' + result.value));
}

// Console output:
// Hello
// Bonjour
// Missing translation for German

When the iterator yields “German” there is no translation found for that language
so an error is sent to the generator using iterator.throw(). The error is thrown
inside the generator where the yield 'German' expression is evaluated. The
yield 'Spanish' statement is skipped, as the error immediately falls to the catch
block. Although sending an error back to the generator in this example is not useful,
this ability is needed to write synchronous-looking code using promises and genera‐
tors.

76 | Chapter 6: Combining ECMAScript 6 Features with Promises

Practical Application
Now let’s revisit Example 6-13 from “Synchronous Style” on page 69 to see how it
works. Example 6-23 repeats the code here for convenience.

Example 6-23. Using a promise with code that looks synchronous (repeated from earlier)

async(function* () {
 try {
 var img = yield loadImage('thesis_defense.png');
 document.body.appendChild(img);
 } catch (err) {
 console.log('caught in async routine');
 console.log(err);
 }
})();

The loadImage function is called in the body of a generator. Although loadImage
returns a promise, the yield statement inside the generator returns the fulfillment
value of that promise: an image object in this case. How is that possible? Instead of
directly creating an iterator from the generator and invoking iterator.next(), the
generator is passed to async, which returns a wrapper function. When the wrapper is
invoked it intercepts any promise that the generator yields and waits for it to settle.
Once the promise is fulfilled its value is passed into the generator. If the promise is
rejected its rejection reason is thrown inside the generator.

There are several ways to implement the async function. Example 6-24 shows one
way based on code written by Forbes Lindesay on promisejs.org.

Example 6-24. Sample async wrapper

function async(generator) {
 return function () {
 var iterator = generator.apply(this, arguments);

 function handle(result) {
 if (result.done) return Promise.resolve(result.value);

 return Promise.resolve(result.value).then(function (res) {
 return handle(iterator.next(res));
 }, function (err) {
 return handle(iterator.throw(err));
 });
 }

 try {
 return handle(iterator.next());
 } catch (ex) {
 return Promise.reject(ex);

Generators | 77

https://www.promisejs.org/generators/

 }
 };
}

The wrapper function also returns a promise that the return value of the generator
fulfills or any unhandled error rejects. This behavior is identical to any callback regis‐
tered with promise.then() or promise.catch(). If you prefer handling errors with
promise.catch instead of traditional try/catch blocks, you can attach a catch to the
promise that the async wrapper returns, as shown in Example 6-25.

Example 6-25. Replacing try/catch with promise.catch()

async(function* () {
 var img = yield loadImage('thesis_defense.png');
 document.body.appendChild(img);
})().catch(function (err) {
 console.log('caught in rejection handler');
 console.log(err);
});

Some promise libraries provide a function similar to async, such as Q.async() and
Bluebird.coroutine(). Using these functions to wrap a single call to a promise is
probably overkill, but this style is useful when dealing with multiple asynchronous
steps in a single function because you can replace all the promise.then() callbacks
with synchronous return values.

There is a plan to introduce async and await keywords in ECMAScript 7, as shown
in Example 6-26, that will remove the need for the async(generator) pattern
described in this section.

Example 6-26. Using async and await as proposed in ES7

async function () {
 try {
 var img = await loadImage('thesis_defense.png');
 document.body.appendChild(img);
 } catch (err) {
 console.log('caught in rejection handler');
 console.log(err);
 }
});

The proposed syntax allows you to declare an async function instead of using a gen‐
erator. Since the function is not a generator, the yield keyword is replaced with
await. All other parts of the code are identical and this function behaves the same as
its ES6 counterpart. The purpose is to remove the burden of supplying a boilerplate
async function.

78 | Chapter 6: Combining ECMAScript 6 Features with Promises

Summary
This chapter showed how some of the new language features in ES6 can be used with
promises. These features all allow you to write less code to accomplish the same out‐
come. We began with simplifying access to fulfillment values using destructuring, fol‐
lowed by concise callback declarations using arrow functions. And we concluded
with how iterators and generators can be used to treat async functions that return
promises as synchronous code.

This chapter also concludes the book. We started with the fundamentals of asynchro‐
nous programming in JavaScript and worked through the core concepts in Promises
and how to utilize them in a wide variety of scenarios. At this point you should be
prepared to confidently manage async tasks with Promises, absorb new promise-
based APIs such as Service Workers or Streams, and even create your own promise-
based API.

Summary | 79

http://bit.ly/service_workers/
http://bit.ly/whatwg_streams

Index

A
all function, 23
Antonov, Petka, 41
arrays

destructuring, 65-66
iterable interface of, 69
reduce function, 31-33

arrow functions, 67-68
async ripple effect, 25-26, 57
asynchronous Javascript, 1-10

callbacks, 1-3
event loop, 7-10
run to completion, 6-10

B
Bluebird, 39, 40-50

Bluebird Promise object, 41
jQuery promises, 51-54
loading, 41
managing execution context, 42-43
Node.js functions, 43-46
promise-enabled collections, 46-48
promise.finally, 61
promisify, 44
and unhandled rejections, 58

C
cached promises, 27
call stack, 22, 61-63
callbacks, 1-3, 11-14

arrow functions and, 67
asynchronous versus synchronous, 3-6
enclosing scope access, 42
execution order, 19

inline versus predefined, 3
Node-style, 43-46

catch, 13, 20, 23, 55, 78
(see also then and catch)

catch handlers, 33, 55, 57
catch/then blocks, 60
chaining promises, 18-19

across functions, 57
arrow functions and, 67
ends of chains, 57
for functional pipelines, 36-37
fulfillment values, 48-50
sequential chains, 30-35
then and catch, 13

collections of promises, 46-48
concise pipeline, 37
conditional steps, 26-28
consolidated promises, 29
convenience methods, 17

D
deferred objects, 51-54
destructuring, 45, 65-66

E
ECMAScript 6 (ES6), 11, 65

arrow functions, 67-68
compatibility table, 65
destructuring, 45
generators, 69-78

(see also generators)
iterables and iterators, 68-69

enclosing scope access, 42-43
error handling, 55-63

81

call stack, 61-63
passing errors, 57-58
rejecting promises, 55-57
try/catch/finally blocks, 59-61

error objects, 22
error propagation, 20-22
ES6 Promise (see ECMAScript 6 (ES6))
event loop, 7-10
execution context, 42-43

F
finally blocks, 59-61
fulfilled promises, 15-18
fulfillment values, 48-50
functional composition, 36-37
functions in Promise (see Promise API)

G
generators, 69-78

asynchronous versus synchronous, 77-78
generator declaration syntax, 72
iterators and, 70-72
passing values to, 72-75
throwing errors to, 76

I
interfaces, 68
iterables and iterators, 68-69

creating iterators from a generator, 73
finite iterations, 74
iterables, defined, 23
iterator.next, 72-74
looping through iterations, 75

J
jQuery, 39, 51

K
Kowal, Kris, 40

L
libraries, 39-54

Bluebird, 39, 40-50
(see also Bluebird)

interoperability between, 40
Q promise, 39
thenable contracts, 40

loops, 32-33, 75

M
multiple consumers, 14-15

N
Node.js, 43-46

O
objects, destructuring, 66

P
parallel execution, 28-30
passing errors, 57-58
pending promises, 15-18
pipelines of functions, 36-37
Promise API, 22-23

promise global, 22
promise.all, 23
promise.catch, 23, 78

(see also catch)
promise.race, 24, 35
promise.reject, 23

(see also rejected promises)
promise.resolve, 23

(see also resolved promises)
promise.then, 22

(see also then and catch)
promise global function, 22
Promise libraries (see libraries)
promise states, 15-18
promise, defined, 11
promises

as placeholders, 15, 24
basic usage, 11-14
creating and resolving, 13
multiple consumers, 14-15

protocols, 68

Q
Q promise library, 39

R
race function, 24
recursion, 33-35
reduce function, 31-33
rejected promises, 16-18, 23, 55-57

82 | Index

(see also error propagation)
unhandled, 58
versus thrown errors, 56

resolved promises, 23, 27
run to completion, 6-10
runtime errors, 56

S
sequential execution, 30-35

with loops, 32-33
with recursion, 33-34

set, 69
settled promises, 16
states, 15-18
substitute promises, 27

T
then, 22

(see also catch/then)
then and catch, 12, 70
thenable contracts, 40
try/catch, 56, 78
try/catch/finally blocks, 59-61

U
unhandled rejections, 58

V
verbose pipeline, 36

W
wrapping Node.js functions, 43-46

Y
yield, 70-72

Index | 83

About the Author
Daniel Parker is a software developer focused on web and mobile applications. He
writes JavaScript for Evernote in Austin, Texas, and is the organizer of the Austin
Google Developer Group.

Colophon
The animal on the cover of JavaScript with Promises is a white-crested helmetshrike
(Prionops plumatus). These birds are widespread and common throughout southern
Africa, inhabiting tropical and subtropical woodlands, savanna, and shrubland. The
name comes from ornamental frills of white feathers that sprout from the forehead.

Helmetshrikes are medium-sized birds, ranging from 19 to 25 centimeters and
weighing between 25 to 37 grams. Their plumage is black, white, and gray, with a dis‐
tinctive white stripe on the wings. Other distinctive features include a hooked beak
and bright yellow eyes. They primarily feed on caterpillars, moths, crickets, and
grasshoppers, in addition to small lizards and fruit.

Helmetshrikes are extremely sociable birds, rarely seen unaccompanied. They are also
cooperative breeders, forming small groups that assist a single dominant mating pair
in nesting duties. The breeding pair selects the nesting site, but all members help
build the nest, incubate the eggs, and feed and protect the nestlings. Nests are made
of bark and held together with cobwebs, which serves for camouflage. The helmet‐
shrike’s head feathers are advantageous in this regard, enabling it to pick up spider‐
webs for nest construction.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from loose plates (original source unknown). The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Intended Audience
	A Word on Style
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Asynchronous JavaScript
	Callbacks
	Asynchronous JavaScript
	Run to Completion and the Event Loop
	Summary

	Chapter 2. Introducing Promises
	Basic Usage
	Multiple Consumers
	Promise States
	Chaining Promises
	Callback Execution Order
	Basic Error Propagation
	The Promise API
	Summary

	Chapter 3. Working with Standard Promises
	The Async Ripple Effect
	Conditional Logic
	Parallel Execution
	Sequential Execution Using Loops or Recursion
	Managing Latency
	Functional Composition
	Summary

	Chapter 4. Using Libraries and Frameworks
	Promise Interoperability and Thenables
	The Bluebird Promise Library
	Loading Bluebird
	Managing Execution Context
	Wrapping Node.js Functions
	Working with Collections of Promises
	Manipulating Fulfillment Values

	Promises in jQuery
	Summary

	Chapter 5. Error Handling
	Rejecting Promises
	Passing Errors
	Unhandled Rejections
	Implementing try/catch/finally
	Using the Call Stack
	Summary

	Chapter 6. Combining ECMAScript 6 Features with Promises
	Destructuring
	Arrow Functions
	Iterables and Iterators
	Generators
	Synchronous Style
	Generators and Iterators
	Sending Values to a Generator
	Sending Errors to a Generator
	Practical Application

	Summary

	Index
	About the Author

